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ABSTRACT

We study regularity properties of solutions to the Dirichlet problem for the complex Homogeneous Monge-
Ampère equation. We show that for certain boundary data on P1 the solution � to this Dirichlet problem is connected
via a Legendre transform to an associated flow in the complex plane called the Hele-Shaw flow. Using this we determine
precisely the harmonic discs associated to �. We then give examples for which these discs are not dense in the product,
and also prove that this situation persists after small perturbations of the boundary data.

Let (X,ω) be a compact Kähler manifold of dimension n and D ⊂ C be the open unit
disc. Consider boundary data consisting of a family ω+ ddcφ(·, τ ) of Kähler forms where
φ(·, τ ) is a smooth function on X for τ ∈ ∂D. The Dirichlet problem for the complex
Homogeneous Monge-Ampère equation (HMAE) asks for a function � on X × D such
that

�(·, τ ) = φ(·, τ ) for τ ∈ ∂D,

π∗ω + ddc� ≥ 0,

(
π∗ω + ddc�

)n+1 = 0.

We say � is a regular solution if it is smooth and ω + ddc�(·, τ ) is a Kähler form for
all τ ∈ D. By an example of Donaldson [12] we know there exist smooth boundary data
for which there does not exist a regular solution. Nevertheless, the equation always has a
unique weak solution, which by the work of Chen [6] with complements by Błocki [5] we
know is at least “almost” C1,1 (so in particular C1,α for any α < 1). See [14] for a recent
survey.

A more subtle aspect of the regularity of solutions to the HMAE is the question of
existence and distribution of harmonic discs.

Definition. — Let g : D → X be holomorphic. We say that the graph of g is a harmonic disc
(with respect to �) if � is π∗ω-harmonic (i.e. π∗ω + ddc� vanishes) along this graph.

As is well known, a regular solution to the HMAE yields a complex foliation of
X × D whose leaves restrict to harmonic discs in X × D. Even when the solution is
not regular, the existence of such harmonic discs is important; for instance along such a
harmonic disc the density of the varying measure ωn

φ(·,τ ) is essentially log-subharmonic
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(see [1], [7], [4, Sect. 3.2]). It was hoped that any weak solution would enjoy a weaker
form of regularity, so that a dense open subset of X × D would be foliated by harmonic
disc, but as we will see this is not always the case.

This paper describes a correspondence between the HMAE when X = P1 with
boundary data that has a certain kind of symmetry and the so-called “Hele-Shaw” flow
in the plane. As a result we will see that the set of harmonic discs is determined by the
topology of the flow. To state precise results, let ωFS denote the Fubini-Study form on P1

and φ be a smooth Kähler potential, i.e. a smooth function on P1 such that ωFS + ddcφ is
Kähler. Let ρ denote the usual C×-action on P1 which acts by multiplication on C ⊂ P1.
We consider the function

(1) φ(z, τ ) := φ
(
ρ(τ)z

)

as boundary data over P1 × ∂D, so for each τ ∈ ∂D we have a Kähler form ωFS +
ddcφ(·, τ ). We show that the solution � to the Homogeneous Monge-Ampère equation
with this boundary data is intimately connected to the Hele-Shaw flow


t :=
{
z : ψt(z) < φ(z)

}

where

ψt := sup
{
ψ : ψ is usc and ψ ≤ φ and ωFS + ddcψ ≥ 0 and ν0(ψ) ≥ t

}
.

By this we mean the supremum is over all upper semicontinuous (usc) functions from
P1 to R ∪ {−∞} with these properties, and ν0(ψ) denotes the order of the logarithmic
singularity (Lelong number) of ψ at 0 ∈ C ⊂ P1. In fact we show that the solution � and
the family ψt are related via a Legendre transform.

Using this we prove the following:

Theorem 1. — Let � be the solution to the HMAE with boundary data φ and g : D → P1

be holomorphic. Then the graph of g is a harmonic disc of � if and only if either

(1) g ≡ 0, or

(2) g(τ ) = τ−1z for some fixed z ∈ P1 \ 
1, or

(3) τ �→ τ g(τ ) is a Riemann mapping for a simply connected Hele-Shaw domain 
t that maps

0 ∈ D to 0 ∈ 
t .

Remark. — In [23] the authors prove that 
t is simply connected for 0 < t � 1, so
there is always an infinite number of harmonic discs of the form (3).

The Hele-Shaw flow 
t has a physical interpretation as describing the expansion
of a liquid in a medium with permeability inversely proportional to 
(φ + ln(1 + |z|2)).
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FIG. 1. — The Hele-Shaw flow developing a multiply connected domain

Guided by this one can rather easily find potentials φ for which at some time t the flow
domain 
t becomes multiply connected as in Figure 1.

This then translates into an obstruction to the presence of harmonic discs of the
associated solution to the HMAE:

Theorem 2. — There exist smooth boundary data φ(·, τ ) for which the solution to the Dirichlet

problem for the HMAE has the following property: there exists an open set U in P1 × D meeting

P1 × ∂D, such that no harmonic disc intersects U.

Next we address the question whether generic boundary data give rise to solutions
with a weak form of regularity. The following theorem answers that question negatively.

Theorem 3. — There exist smooth boundary data φ(·, τ ) for which the following is true: there

exist a nonempty open set U′ in P1 × D and an ε > 0 such that if φ′(z, τ ) is any C4,α boundary data

for α ∈ (0,1), with

∥∥φ′ − φ
∥∥

C4,α

(
P1 × ∂D

)
< ε

and �′ is the associated solution to the HMAE then no harmonic disc (associated to �′) passes

through U′.

Theorems 2 and 3 disagree with the main results of Chen and Tian in [7]. Specifi-
cally Theorem 2 gives solutions to the HMAE that are not “partially smooth”, and Theo-
rem 3 gives examples that are not “almost smooth” (see also Section 6), contradicting the
statements [7, Thm. 1.3.2] and [7, Thm. 1.3.4] respectively. We emphasise that what is
done in this paper is not merely negative, and Theorem 1 should be thought of as describ-
ing in some detail the regularity of the weak solution to the HMAE in what is probably
the simplest non-trivial case of this Dirichlet problem (namely the twisted boundary data
on P1 × ∂D from (1)). Since this is done in terms of the Hele-Shaw flow, this can in turn
be further investigated in particular examples, and is even amenable to computer simula-
tions which give a visualisation of the behaviour of some of the harmonic discs associated
to the weak solution.

Comparison with other works. — In this paper we consider the Hele-Shaw flow with
varying permeability starting from the origin which has been considered before by
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Hedenmalm-Shimorin; in fact the basic properties of the flow that we use are a small
variant of those in [16]. There is a much larger literature on the Hele-Shaw flow (which
usually considers the case of constant permeability but with non-trivial initial condition

0) for which we refer the reader to the book [15] of Gustafsson-Vasil’ev and the refer-
ences therein.

In [12] Donaldson gave the first example of boundary data for which the Dirichlet
problem for the HMAE on some X × D has no regular solution.

One motivation for studying the regularity of solutions to the HMAE is the work
of Semmes [25] and Donaldson [12], which shows that the geodesic equation in the
space of Kähler metrics on a compact Kähler manifold (X,ω) cohomologous to ω can
be cast as a Dirichlet problem for the HMAE on X × A where A is an annulus. In this
way the question of geodesic connectivity is translated into a question of regularity for
solutions to the HMAE. In [19] Lempert-Vivas found such boundary data for which the
solution failed to be regular, and thus showed that not all pairs of cohomologous Kähler
metrics can be connected by a geodesic (see also later work by Darvas-Lempert [10] and
Darvas [11]).

In [10] examples are given for which the solution (again with the base being an
annulus rather than a disc) does not have continuous second derivative. We expect that
the examples considered here in fact fail to be twice differentiable at any point (z,1)

where z ∈ P1 is a self-intersection point of the boundary of a simply connected Hele-
Shaw domain 
t . Finally, we refer the reader to [14, Chapter 2] for a discussion of the
analogous problem of the complex HMAE for domains in Cn.

The connection between the HMAE and the Hele-Shaw flow has been studied
previously by the authors in [23] (see also [13] for another connection between the
HMAE and free boundary problems). The results there are in the opposite direction
to those here, in that we use known regularity results of the HMAE (and thus the exis-
tence of the associated foliation by holomorphic discs) to prove short time regularity of
the Hele-Shaw flow.

1. The Hele-Shaw flow

1.1. Definition and basic properties. — We denote by ωFS the standard Fubini-Study
form on P1, normalised so

∫
P1 ωFS = 1. We take the normalisation of the operator dc to

be so that ωFS = ddc ln(1 + |z|2), and observe that ddc ln |z|2 = δ0 is the Dirac distribution
at the origin.

Now assume φ is a smooth Kähler potential on P1, so ωφ := ωFS + ddcφ is Kähler.
Given t ∈ [0,1] we define

(2) ψt = sup
{
ψ : ψ is usc and ωψ ≥ 0 and ψ ≤ φ and ν0(ψ) ≥ t

}
.

Here ωψ := ωFS + ddcψ and ν0 denotes the Lelong number, so ν0(ψ) ≥ t means that
there is a constant C such that ψ(z) ≤ t ln |z|2 + C for all z near 0 ∈ C ⊂ P1 (we remark
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that some authors define the Lelong number to be half of this). As the usc regularisation
of ψt is itself a candidate for the envelope we see that ψt is usc.

We now define the Hele-Shaw flow by

(3) 
t := 
φ
t := {

z ∈ P1 : ψt(z) < φ(z)
}
.

Proposition 1.1 (Basic Properties of Hele-Shaw flow).

(1) 
0 = ∅ and 0 ∈ 
t for t > 0.

(2) 
t is open, connected and ∂
t has measure zero.

(3) ψt is C1,1 on P1 \ {0}.
(4)

ωψt
= (1 − χ
t

)ωφ + tδ0

in the sense of currents. Here χA denotes the characteristic function of a set A, and δ0 the

Dirac delta.

(5)

Area(
t) :=
∫


t

ωφ = t.

Proof. — The techniques used for this are standard (see e.g. [16]) but for the conve-
nience of the reader we sketch some details.

Clearly ψ0 ≡ φ and thus 
0 = ∅ so the lemma is obviously true for t = 0. Thus
let t > 0. That 0 ∈ 
t is obvious. Since ψt is upper semicontinuous ψt < φ in a neigh-
bourhood of the origin. It follows from standard potential theory that ψt + ln(1 + |z|2)
is harmonic in any open set contained in 
t \ {0}, so in particular ψt is smooth on any
punctured disc D centred at the origin contained in 
t . Define

ψ ′ = sup
{

ψ is usc on P1 \ D with ωFS |P1\D + ddcψ ≥ 0 and ψ ≤ φ|P1\D

and ψ ≤ ψt on ∂D

}
.

Since ψt |P1\D is a candidate for the envelope ψ ′ we get that ψ ′ ≥ ψt |P1\D. On
the other hand, if ε > 0 then extending max(ψt,ψ

′ − ε) by ψt on D gives an ωFS -
subharmonic function on P1 which is thus a candidate for the envelope defining ψt .
Hence ψ ′ ≤ ψt |P1\D + ε and so ψ ′ = ψt |P1\D.

If we let w = 1/z then ψ ′(w) + ln(1 + |w|2) now solves a standard free boundary
problem on the disc P1 \ D with obstacle given by φ(w) + ln(1 + |w|2) and boundary
condition given by ψt(w) + ln(1 + |w|2) restricted to ∂D. So (3) follows from standard
theory of free boundary problems (e.g. [9, Thm. 2.3]) and (4) follows from (3) on P1 \ D.
On the other hand the function t ln |z|2 + C for some constant C is a candidate for the
envelope defining ψt , so ν0(ψt) = t, giving (4) on all of P1. Moreover (5) in turn follows
from (4) by Stokes theorem.
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That 
t is open of course also follows from ψt being continuous. The proof that

t is connected is as in [16, Proposition 2.6]. Finally the fact that ∂
t has zero measure
again follows from standard theory of free boundary problems, see e.g. [8, p. 296]. In fact
even more is proved in [8], namely that each component of the boundary consists of a
finite number of rectifiable Jordan curves. �

Remark 1.2. — Item (4) in particular implies that the sets 
t together with ωφ

contain the same information as the functions ψt , and so we also think of this latter
collection as the Hele-Shaw flow. Items (3), (4) and (5) of the above proposition also follow
from more general work of Berman [2, Sect. 4].

Clearly by definition if t ≤ t′ then 
t ⊂ 
t′ so this is an increasing flow of subsets
of P1. Observe also that if φ is rotation invariant then so is the flow 
t .

An important fact is that the family of functions ψt is concave in t.

Proposition 1.3. — For any given z we have that ψt(z) is concave, decreasing and continuous

in t for t ∈ [0,1].

Proof. — Let us define ψt := φ for t < 0. It is then clear that ψt is concave in t since
if t = at1 + (1 − a)t2 where a ∈ [0,1] and t1, t2 ∈ (−∞,1] then

aψt1 + (1 − a)ψt2 ≤ ψt

simply because the LHS has at least Lelong number t at the origin while being bounded
from above by φ. That it is decreasing is obvious. That ψt decreases with t then implies
that limt→s− ψt is ωFS -subharmonic and thus one sees that

lim
t→s−ψt = ψs,

i.e. ψt is left-continuous in t. This combined with concavity implies continuity. �

1.2. Multiply connected Hele-Shaw domains. — As already mentioned, the sets 
t have
a physical interpretation. They describe the flow obtained by injecting a fluid at a point
between two parallel plates between which there is a medium with permeability inversely
proportional to 
(φ + ln(1 + |z|2)). As such it is intuitively clear that there will be φ for
which this flow becomes multiply connected. In fact suppose we arrange so 
(φ + ln(1+
|z|2) is very small on some Jordan curve going through the origin, while 
(φ+ ln(1+|z|2)
being relatively large in two regions separated by the curve. Then the flow will then cover
the curve before having the chance to engulf either of the regions, thereby giving rise to
multiply connected Hele-Shaw domains. We now prove that this does indeed happen for
suitable choices of φ.



HARMONIC DISCS OF THE HMAE 321

Proposition 1.4. — There exists a smooth Kähler potential on P1 whose associated Hele-Shaw

flow has the following property: there exist two times 0 < t1 < t2 < 1 such that for all t ∈ (t1, t2) the

Hele-Shaw domain 
t is not simply connected.

Proof. — We will construct a φ with the following property: there exist two times
0 < t1 < t2 < 1, a Jordan curve γ which passes through the origin and two points p, q on
opposite sides of γ such that 
t1 contains γ while neither p or q lie in 
t2 . By monotonicity
of the flow, it follows immediately that for any t ∈ (t1, t2) the Hele-Shaw domain 
t is
multiply connected.

So pick a Jordan curve γ in P1 which passes through the origin, and let U1 and
U2 denote the two connected components of the complement of γ. Let f be a smooth
nonnegative function on P1 which is zero in a neighbourhood Uγ of γ and such that

∫

U1

f ωFS =
∫

U2

f ωFS = 1/2.

Let φf be a smooth function such that

ωφf
= f ωFS .

Fix

0 < t0 < 1/4,

and set

ψf := sup
{
ψ : ωψ ≥ 0,ψ ≤ φf , ν0(ψ) ≥ t0

}
.

So ωψf
= χ{ψf =φf }ωφf

+ t0δ0 and we conclude that ψf − φf is harmonic in Uγ \ {0} while
having a singularity at the origin. Clearly ψf − φf ≤ 0 on Uγ . Thus we conclude from
the maximum principle that in fact ψf − φf < 0 in Uγ .

Now let

ψε := sup
{
ψ : ωψ ≥ −εωFS,ψ ≤ φf , ν0(ψ) ≥ t0

}
.

Then ψε − φf decreases to ψf − φf as ε tends to zero (as for any decreasing sequence of
subharmonic functions the limit is also subharmonic, and thus a candidate for ψf −φf ). In
particular if z is a fixed point on γ then for ε sufficiently small ψε − φf is strictly negative
at z, and hence by upper semicontinuity of ψε − φf this is true in a neighbourhood of z.
Thus for ε � 1 sufficiently small, ψε − φf is negative on the compact set γ .

Pick such a small ε and let

φ := φf

1 + ε
.
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Then ωφ = (1 + ε)−1(εωFS + ωφf
) so φ is a Kähler potential. By construction it now

follows that if we let t1 := (1 + ε)−1t0 then γ ⊂ 

φ
t1 . Observe that 0 < t1 < 1/4.

We have that

Areaφ(U1) :=
∫

U1

ωφ =
∫

U1

ωFS + ddcφf

1 + ε
≥ 1

1 + ε

∫

U1

ωφf
> 1/4,

and similarly Areaφ(U2) > 1/4. Now if we pick some t2 such that 0 < t1 < t2 < 1/4, then

Areaφ

(

φ

t2

) = t2 < 1/4 < Areaφ(U1)

and similarly

Areaφ

(

φ

t2

)
< Areaφ(U2).

In particular the sets U1 \ 

φ
t2 and U2 \ 


φ
t2 must both be nonempty, which allows us to

pick points p and q in the complement of 

φ
t2 on either side of γ. This then concludes the

proof. �

2. The Legendre transform between the HMAE and the Hele-Shaw flow

We shall focus on a simple case of the complex Homogeneous Monge-Ampère
equation. Suppose that φ(·, τ ) is a sufficiently smooth family of Kähler potentials pa-
rameterised by τ ∈ ∂D. We denote by π the projection P1 × D → P1.

Definition 2.1. — The solution � to the Homogeneous Monge-Ampère equation with boundary

data φ(·, τ ) is the function on P1 × D given by

� = sup
{
ψ : ψ is usc and π∗ωFS + ddcψ ≥ 0

and ψ(·, τ ) ≤ φ(·, τ ) for τ ∈ ∂D
}
.

From general theory π∗ωFS + ddc� ≥ 0 as a current, has the boundary value
�(·, τ ) = φ(·, τ ) for τ ∈ ∂D and solves the equation

(
π∗ωFS + ddc�

)2 = 0

in the sense of Bedford-Taylor. As is well known, due to Chen [6] with complements by
Błocki [5], the solution is almost C1,1, and in fact since in our case (P1,ωFS) has nonneg-
ative sectional curvature the solution is truly C1,1 by the result of Błocki [5, Thm. 1.4]
(see also the recent work of Berman [3] for a proof the weak solution is C1,1

loc along the
original lines of Bedford-Taylor).
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Recall ρ denotes the usual C×-action on P1 which acts by multiplication on
C ⊂ P1. Letting φ be a Kähler potential as before, we wish to consider the function

φ(z, τ ) := φ
(
ρ(τ)z

)

as boundary data to the HMAE on P1 × D. Let � denote the weak solution to the
corresponding HMAE, as in Definition 2.1. The goal in this section is to show that �

is connected via a Legendre transform to the Hele-Shaw flow on P1 taken with respect
to φ.

To do this, consider the envelope on P1 × D given by

�̃ = sup
{
ψ : ψ is usc, π∗ωFS + ddcψ ≥ 0, ψ(z, τ ) ≤ φ(z)

for τ ∈ ∂D and ν(0,0)(ψ) ≥ 1
}

(so the boundary data is independent of τ , and the ψ have Lelong number at least one at
the point (0,0)). Then by standard arguments, �̃ is usc, π∗ωFS + ddc�̃ ≥ 0 and (π∗ωFS +
ddc�̃)2 = 0 away from (0,0).

Remark 2.2. — The function �̃ solves the HMAE over the punctured disc D
×

with
boundary data independent of τ , and thus is a weak geodesic ray emanating from φ.

Proposition 2.3. — We have that

�(z, τ ) + ln |τ |2 + ln
(
1 + |z|2) = �̃(τz, τ ) + ln

(
1 + |τz|2)

for (z, τ ) ∈ P1 × D
×
.

Proof. — Consider the space X we get by blowing up P1 × D at the point (∞,0).
Let μ1 denote the modification map, and let E1 denote the exceptional divisor. The cen-
tral fibre thus consists of two copies of P1. We call the other one E2, and if we blow down
this one we get again P1 ×D. Call this modification map μ2, so E2 is now the exceptional
divisor of μ2. One can now check that

μ2 ◦ μ−1
1 (z, τ ) = (τz, τ ),

except for being undefined at the point (∞,0).

We have two ways to pull back the Fubini-Study form to X , via μ1 or μ2, and we
want to describe how they are related. For this let f denote the function on X defined as

f := (
ln

(|τ |2 + |z|2) − ln
(
1 + |z|2)) ◦ μ2.

Then a simple calculation shows that

ddcf = μ∗
1

(
π∗ωFS

) − (
μ∗

2

(
π∗ωFS

) − [E2]
)
,
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where [E2] denotes the current of integration along E2. This then shows that

� ◦ μ1 ◦ μ−1
2 + ln

(|τ |2 + |z|2) − ln
(
1 + |z|2)

is a candidate for the envelope defining �̃, while reversely

�̃ ◦ μ2 ◦ μ−1
1 + f ◦ μ−1

1

is a candidate for the envelope defining �. It follows that

� ◦ μ1 + f = �̃ ◦ μ2

and we simply get the formula of the proposition by first taking μ−1
1 . �

Remark 2.4. — From the above we see that

�(z, τ ) − �̃(τz, τ ) = ln
(

1 + |τz|2
|τ |2(1 + |z|2)

)

which is smooth on P1 × D
×

. Hence as � is C1,1 on P1 × D
×

, the same is true of �̃.

Lemma 2.5.

(4) �̃(z, τ ) ≤ ln
(|τ |2 + |z|2) − ln

(
1 + |z|2) + max(φ).

Proof. — First assume that φ is identically zero. Then clearly � is also identically
zero so from Proposition 2.3 we see that

�̃(z, τ ) = ln
(|τ |2 + |z|2) − ln

(
1 + |z|2).

The lemma then follows from the obvious monotonicity property of �̃. �

Now we wish to connect �̃ (and hence �) with the Hele-Shaw flow of φ. For any
t ∈ R we let

(5) ψt = sup
{
ψ : ψ is usc and ωψ ≥ 0 and ψ ≤ φ and ν0(ψ) ≥ t

}
.

Note that for t < 0, ψt = φ while if t > 1 we get that ψt ≡ −∞. For t ∈ [0,1] we recognise
ψt as the envelopes that contain the same data as the Hele-Shaw flow 
t = {ψt < φ}.

We saw in Section 1 that for a fixed z the function ψt(z) is concave in t. On the
other hand, the function �̃(z, e−s/2) is subharmonic and independent of the imaginary
part of s and thus �̃(z, e−s/2) is convex in s (where we now think of s as a real variable
taking values in [0,∞)). We can then define �̃(z, e−s/2) to be +∞ for s < 0 to get a
convex function defined on the whole of R.

Now we recall the definition of the (one-variable) Legendre transform (or convex
conjugate).
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Definition 2.6. — Given a function u : R → R ∪ {+∞} the Legendre transform û : R →
R ∪ {+∞} is the convex function defined as

û(y) := sup
x∈R

{
xy − u(x)

}
.

The Fenchel-Moreau theorem (see e.g. [22]) now asserts that the Legendre trans-
form is an involution (i.e. ˆ̂u = u) precisely on the set of convex lower semicontinuous
functions.

The next theorem says that u(s) := �̃(z, e−s/2) + s is the Legendre transform of
−ψt(z) and vice versa.

Theorem 2.7.

(6) ψt(z) = inf
|τ |>0

{
�̃(z, τ ) − (1 − t) ln |τ |2}

and

(7) �̃(z, τ ) = sup
t

{
ψt(z) + (1 − t) ln |τ |2}.

Proof. — First we note that

ψt(z) + (1 − t) ln |τ |2

is a candidate for the envelope defining �̃ so by definition we get that the LHS is less
than or equal to the RHS in (6). Since �̃(z, τ ) is independent of the argument of τ it
follows from Kiselman’s minimum principle (see [17]) that the RHS defines an ωFS -sh
function on P1, which we will denote by ψ̃t. Clearly ψ̃t ≤ φ, so if we can show that it
has logarithmic singularity of order at least t at the origin, then it would follow from the
definition of ψt as the supremum of all such functions that ψ̃t ≤ ψt . Since for a fixed z

the function �̃(z, e−s/2) is subharmonic and independent of the imaginary part of s we
get that �̃(z, e−s/2) is convex in s (where we now think of s as a real variable taking values
in [0,∞)). Thus for a fixed z

−ψ̃t(z) = inf
s≥0

{
�̃

(
z, e−s/2

) + (1 − t)s
} = sup

s∈R

{
ts − (

�̃
(
z, e−s/2

) + s
)}

is the Legendre transform of a convex function. Using the inequality (4) we get that

ψ̃t(z) ≤ inf
s≥0

{
ln

(
e−s + |z|2) + (1 − t)s

} − ln
(
1 + |z|2) + max(φ).

By elementary means one easily checks that if t ∈ (0,1) then

inf
s≥0

{
ln

(
e−s + |z|2) + (1 − t)s

} = t
(
ln |z|2 − ln t

) − (1 − t) ln(1 − t)
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which shows that indeed ψ̃t has a logarithmic singularity of order t, at least when t ∈
(0,1). For t = 0 one notes that φ(z) + ln |τ |2 is a candidate for the envelope defining �̃,
so φ(z) + ln |τ |2 ≤ �̃, which implies that ψ̃0 = φ. For t = 1, the fact that

ψ̃1(z) ≤ �̃(z,0)

implies that it has the right singularity as well. The case that t < 0 and t > 1 are immedi-
ate, so this proves (6).

We thus see that

−ψt(z) = sup
s∈R

{
ts − (

�̃
(
z, e−s/2

) + s
)}

,

i.e. that −ψt(z) is the Legendre transform of u(s) := �̃(z, e−s/2) + s. We also know that
u(s) is convex and lower semicontinuous (since it is continuous on [0,∞) and constantly
−∞ on (−∞,0)) so by the Fenchel-Moreau theorem we get that u(s) is the Legendre
transform of −ψt(z). This is exactly what is asserted in (7). �

2.1. The Hamiltonian. — We will have use for the function H on P1 × D
×

defined
as

H(z, τ ) := ∂

∂s
�̃

(
z, e−s/2

)
,

where s := − ln |τ |2 (when |τ | = 1 and thus s = 0 we take the right derivative). As �̃ is
C1,1 on P1 × D

×
the function H is well-defined and continuous (even Lipschitz but we

will not need this).

Remark 2.8. — By an easy calculation one checks that if � is regular and 
 =
π∗

P1ωFS + ddc� then dH = ιζ
 where ζ is the infinitesimal action of the natural S1-action
given by eiθ · (z, τ ) = (eiθz, e−iθτ ) for (z, τ ) ∈ P1 × D× (this is essentially as in [24, The-
orem 3.14]). In particular the function H is constant along the leaves of the associated
foliation. For this reason we consider the function H (which is always defined without any
regularity assumptions on �) as a kind of Hamiltonian for the degenerate form 
.

Proposition 2.9.

H(z,1) + 1 = sup
{
t : ψt(z) = φ(z)

} = sup{t : z /∈ 
t}.
Proof. — From (7) we see that if ψt(z) = φ(z) then

�̃
(
z, e−s/2

) ≥ (t − 1)s + φ(z)

and thus

H(z,1) ≥ sup
{
t : ψt(z) = φ(z)

} − 1.



HARMONIC DISCS OF THE HMAE 327

Suppose ψt(z) ≤ φ(z) + a for some a < 0. Recalling that for a fixed z the function t′ �→
ψt′(z) is concave and decreasing in t′, one sees that for t ≤ t′ ≤ 1 and s ≥ 0 we have
ψt′(z) + (t′ − 1)s ≤ φ(z) + a. On the other hand we always have ψt′ ≤ φ so if 0 ≤ t′ ≤ t

then ψt′(z) + (t′ − 1)s ≤ φ(z) + (t − 1)s. Putting this together with (7) gives

�̃
(
z, e−s/2

) ≤ φ(z) + max
(
(t − 1)s, a

)

and so H(z,1) ≤ t − 1, which proves the proposition. �

Proposition 2.10. — For 0 < |τ | < 1 we have that

H(z, τ ) = t − 1 ⇐⇒ �̃(z, τ ) = ψt(z) + (1 − t) ln |τ |2.

Proof. — Fix a point (z0, τ0), 0 < |τ0| < 1. From (7) we see that

�̃(z0, τ0) = sup
t∈[0,1]

{
ψt(z0) + (1 − t) ln |τ0|2

}
.

Since ψt(z0) is continuous in t we must have that �̃(z0, τ0) = ψt0(z0)+ (1 − t0) ln |τ0|2 for
some t0 ∈ [0,1]. Since we always have that

�̃
(
z, e−s/2

) ≥ ψt0(z) − (1 − t0)s

it follows that

H(z0, τ0) = ∂

∂s |s=− ln |τ0|2
(
ψt0(z) − (1 − t0)s

) = t0 − 1. �

3. Harmonic discs

As above, let � be the weak solution to the HMAE with boundary data φ(z, τ ) =
φ(ρ(τ)z). Recall that if g : D → P1 is holomorphic then we say the graph of g is a har-
monic disc if � is π∗ωFS -harmonic along this graph.

Theorem 3.1. — Let g : D → P1 be holomorphic. Then the graph of g is a harmonic disc of

� if and only if either (1) g ≡ 0 or (2) g(τ ) = τ−1z where z ∈ 
c
1 or (3) τ �→ τ g(τ ) is a Riemann

mapping for a simply connected Hele-Shaw domain 
t that maps 0 ∈ D to 0 ∈ 
t . The function H is

constant along the associated discs {(τ g(τ ), τ )}, in the first case H = −1, in the second case H = 0
while in the third case H = t − 1.

Lemma 3.2. — If f : D1 → D2 is a proper holomorphic map between two open domains in

P1 then the number of preimages Np := #{f −1(p)} (counted with multiplicity) is constant.
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Proof. — Let γ be a smooth curve in D2 connecting two points p and q and let
U be a finite union of open discs compactly supported in D1 which together cover the
compact set f −1(γ ). Since the image of any boundary component of U cannot cross γ

the winding numbers of the image of any such boundary component with respect to p and
q must be the same. Since that winding number counts the number of preimages inside
that component we get by adding up the winding numbers for the different boundary
components that Np = Nq. �

Proof of Theorem 3.1. — First assume that � is ωFS -harmonic along a holomorphic
disc {(g(τ ), τ )}. We want to show that g(τ ) must be of the form stated in the theorem.

Let f (τ ) := τ g(τ ). From Proposition 2.3 we have �̃ is ωFS -harmonic along the
punctured disc {(f (τ ), τ ) : 0 < |τ | < 1} and since �̃ is bounded away from (0,0) it
will be ωFS -harmonic along the unpunctured disc {(f (τ ), τ ) : |τ | < 1} unless that disc
passes through (0,0). If it does pass through (0,0), the restriction of �̃ to this disc has a
logarithmic singularity of order at most one at (0,0), because �̃(z, τ ) is bounded from
below by φ(z) + ln |τ |2.

Pick a τ0, 0 < |τ0| < 1 and let z0 := f (τ0) and t0 := H(z0, τ0) + 1. The restriction
of

ψt0(z) + (1 − t0) ln |τ |2 − �̃(z, τ )

to the disc is clearly subharmonic and less than or equal to zero on the boundary, and
from Proposition 2.10 we see that it is equal to zero at (z0, τ0). By the maximum principle
we thus get that

(8) �̃
(
f (τ ), τ

) = ψt0

(
f (τ )

) + (1 − t0) ln |τ |2

for all τ .
We now consider the case when f is constant. Putting f (τ ) = z0 in (8) we get that

(9) �̃(z0, τ ) = ψt0(z0) + (1 − t0) ln |τ |2.
One possible case is that z0 = 0, and in fact we will see later that �̃ always is ωFS -
harmonic along this disc. If z0 �= 0, then we know that the LHS is ωFS -harmonic along
the whole unpunctured disc, which forces t0 = 1 (otherwise the RHS would be singular
at the centre). Letting τ → 1 in (9) we get that

ψ1(z0) = lim
τ→1

�̃(z0, τ ) = φ(z0)

by continuity of �̃ which shows that z0 ∈ 
c
1.

We move on to the case when f is nonconstant. By (8) we then get that ψt0 is ωFS -
harmonic in a neighbourhood of any point f (τ ), |τ | > 0, which implies that f (τ ) ∈ 
t0 .

Note that this rules out the possibility of t0 = 0, which in turn implies that f (τ ) �= 0
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whenever τ �= 0 as this would make the RHS in (8) be −∞. If f (0) �= 0 then �̃ is ωFS -
harmonic along the entire disc and the same argument as above shows that f (0) ∈ 
t0

while f (0) = 0 of course also implies that f (0) ∈ 
t0 . We thus have that f maps D to 
t .
We now claim that f is proper. Because if we choose a sequence τi such that

|τi| → 1 then by continuity of �̃ and (8) we get that

(10) lim
i→∞

(
ψt0

(
f (τi)

) − φ
(
f (τi)

)) = 0.

Since 
t0 is exhausted by the compact sets {z : ψt0(z) ≤ φ(z) − 1/n} by (10) f (τi) escapes
to infinity in 
t0 . This shows that f is proper.

We now want to calculate N0 := #{f −1(0)}. Because f (τ ) �= 0 whenever τ �= 0, N0

equals multiplicity of the zero at zero. If f (0) �= 0 we have N0 = 0, which by Lemma 3.2
is impossible, so we conclude that f (0) = 0. From (8) we get that

ψt0

(
f (τ )

) + (1 − t0) ln |τ |2 = �̃
(
f (τ ), τ

) ≥ φ
(
f (τ )

) + ln |τ |2.
If m is the multiplicity of the zero of f at zero we get that the LHS has Lelong number
1+ (m−1)t0 while the RHS has Lelong number one, which shows that N0 = m = 1. This
via Lemma 3.2 implies that f is a bijection between D and 
t0 .

Since τ g(τ ) = f (τ ) this concludes the proof of the first direction of the theorem.
We now prove that if g(τ ) is of the form specified in the theorem then � is ωFS -

harmonic along the graph of g. As before we let f (τ ) := τ g(τ ) and it is clearly enough to
show that �̃ is ωFS -harmonic along the punctured disc {(f (τ ), τ ) : 0 < |τ | < 1}.

The first case was g ≡ 0 and thus f ≡ 0. From (7) we see that �̃(0, τ ) = φ(0) +
ln |τ |2 and thus �̃ is indeed ωFS -harmonic along {(0, τ ) : 0 < |τ | < 1}. The second case
corresponded to f (τ ) = z where z ∈ 
c

1. From (7) we get that �̃(z, τ ) ≥ ψ1(z) = φ(z).

On the other hand the opposite inequality always holds and hence �̃ is constant along
the disc {(z, τ ) : |τ | < 1}. The third case meant that f was a bijection between D and
some simply connected Hele-Shaw domain 
t , and f (0) = 0. From (7) we get that

�̃
(
f (τ ), τ

) ≥ ψt

(
f (τ )

) + (1 − t) ln |τ |2.
The LHS is ωFS -subharmonic with Lelong number one at τ = 0 while the RHS is ωFS -
harmonic except at τ = 0 where it also has Lelong number one. Since f (τ ) escapes to
infinity in 
t as |τ | → 1 the RHS approaches the LHS as τ approaches the boundary.
By the maximum principle we get the equality

�̃
(
f (τ ), τ

) = ψt

(
f (τ )

) + (1 − t) ln |τ |2,

which shows that �̃ is ωFS -harmonic along the punctured disc {(f (τ ), τ ) : 0 < |τ | < 1}.
This concludes the proof. �
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4. Restatement of main theorems

We saw in Section 1.2 that for some φ the Hele-Shaw domains 
t are multiply
connected for all t in some interval. Combining this with our main theorem yields the
following.

Theorem 4.1. — Let φ be a Kähler potential on P1 whose Hele-Shaw flow satisfies the con-

clusion of Proposition 1.4, i.e. there are two times 0 < t1 < t2 < 1 such that for any t ∈ (t1, t2) 
t is

multiply connected. Let � be the solution to the HMAE on P1 × D with φ(z, τ ) := φ(ρ(τ)z) as

boundary data. Then for such � there exists an open set U in P1 × D with nonempty intersection with

P1 × ∂D which does not intersect any harmonic disc of �.

Proof. — By Theorem 3.1 no harmonic disc of � can intersect the open set

U := {
(z, τ ) : t1 − 1 < H(τz, τ ) < t2 − 1, |τ | > 0

}
.

Since H(z,1) clearly attains both values −1 and 0 it follows from continuity that U ∩
(P1 × ∂D) is nonempty. �

Theorem 4.2. — Let φ be as in Theorem 4.1. Then there exist a nonempty open set U′ in

P1 × D and an ε > 0 such that if φ′(z, τ ) is any C4,α boundary data for α ∈ (0,1) with

∥
∥φ′ − φ

∥
∥

C4,α(P1×∂D)
< ε

and �′ is the associated solution to the HMAE, then no harmonic disc of �′ can pass through U′.

5. Proof of Theorem 4.2

Recall from the Introduction that a solution � to the HMAE is called a regular

solution if it is smooth and ω + ddc�(·, τ ) is a Kähler form for all τ ∈ D. To prove Theo-
rem 4.2 we will need Donaldson’s Openness Theorem:

Theorem 5.1. — (See Donaldson [12, Theorem 1].) The set of boundary data φ : X ×
∂D → R for which the HMAE has a regular solution is open in the C4,α topology.

Remark 5.2. — As will be clear, our proof of Theorem 4.2 works in any topology
for which this Openness Theorem holds, and the original statement of Donaldson is that
this holds in C2. Using the setup described by Oh [21] (see also Sun [26]) along with the
machinery of McDuff-Salamon [20, Appendices B, C] it is possible to prove this openness
in the Hölder space H4 (and maybe even in a weaker topology than that). In [18] LeBrun
solves essentially the same Fredholm problem working in the C6,α-topology.
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Proof of Theorem 4.2. — Let U and � be as above, and U′ be an nonempty open
set which is relatively compact in U ∩ ((P1 \ {0}) × D×). We argue by contradiction, so
assume that there is a sequence of solutions �k with boundary values φk such that

∥∥φk − φ(z, τ )
∥∥

C4,α(P1×∂D)
< 1/k

and such that for each k the graph of some holomorphic gk : D → P1 is a harmonic disc
of �k which pass through U′.

Our first claim is that there exists an r > 0 such that for k large

inf
{∣∣gk(τ )

∣∣ : τ ∈ D
} ≥ r.

For simplicity we will assume that ωφ = δωFS in Dr′ := r′D for some δ, r′ > 0, as was
the case for the φ used to prove Proposition 1.4. Then the function h(z) := φ(z) +
(1 − δ) ln(1 + |z|2) is harmonic in Dr′ . By symmetry, it is not hard to see that the Hele-
Shaw domains (defined by our potential φ) are initially just concentric discs centred at
the origin, at least up to the point where 
t = Dr′ . From Theorem 3.1 we see that this
implies that for any fixed z ∈ Dr′, the set {(z, τ ) : τ ∈ D} is a harmonic disc associated
to �. Thus �(z, τ ) is harmonic in τ for these fixed z.

This then implies that

�(z, τ ) = −(1 − δ) ln
(
1 + |z|2) + h(τz) on Dr′ × D.

Pick a smooth Kähler potential u on P1 which is rotation invariant, and such that
on Dr′ we have that

u ≤ −(1 − δ) ln
(
1 + |z|2)

with equality on Dr′/2 but strict inequality on ∂Dr′ . Clearly �(z, τ ) := u(z) is a regular
solution to the HMAE and we note that

�(z, τ ) + h(τz) = �(z, τ ) on Dr′/2 × D,

�(z, τ ) + h(τz) ≤ �(z, τ ) on Dr′ × D,(11)

�(z, τ ) + h(τz) < �(z, τ ) on ∂Dr′ × D.

(Even if one loses the assumption that ωφ = δωFS near 0 then arguing as in [23] one can
still find an r′ > 0 and harmonic h and regular solution � such that the three statements
of (11) hold).

Let fk(z, τ ) := φk(z, τ )−φ(z, τ ) and let �k denote the solution to the HMAE with
boundary data ψk(z, τ ) := u(z) + fk(z, τ ). Since by assumption

‖fk‖C4,α(P1×∂D) < 1/k
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it follows from Donaldson’s Openness theorem that for large k the function �k is regular,
and that the harmonic discs of �k converge to those of �. In particular there exists an
r > 0 such that for any large enough k there is a neighbourhood Uk of Dr × D that is
relatively compact in Dr′/2 × D which is foliated by harmonic discs of �k. We also have
that for large k

�k(z, τ ) + h(τz) = �k(z, τ ) on Dr′/2 × ∂D,

�k(z, τ ) + h(τz) ≤ �k(z, τ ) on Dr′ × ∂D,

�k(z, τ ) + h(τz) < �k(z, τ ) on ∂Dr × D,

and therefore

�k(z, τ ) + h(τz) ≤ �k(z, τ ) on Dr′ × D.

On Uk though we must have

�k(z, τ ) + h(τz) ≥ �k(z, τ )

since along any harmonic disc of �k with boundary in Dr′/2 × ∂D the LHS is π∗ωFS -
harmonic, the RHS is π∗ωFS -subharmonic, and they agree on the boundary. In conclu-
sion

�k(z, τ ) + h(τz) = �k(z, τ )

on Uk which shows �k is regular on Uk and that Uk is foliated by harmonic discs of �k.

By shrinking U′ if necessary we may assume U′ ∩ (Dr′/2 × D) = ∅, and so

U′ ∩ Uk = ∅ for all k.

Since the graph of gk by assumption passes through U′ it is not one of the harmonic discs
that foliate Uk and since �k is regular this means that the graph of gk cannot intersect Uk.

Finally this implies that |gk(τ )| ≥ r for all k as claimed.

Thus 1/gk is a bounded family of holomorphic functions on D so by Montel’s
theorem it is normal and thus replacing gk by a subsequence we may assume gk converges
uniformly on compacts to a holomorphic function g. We claim that the graph of g then
is a harmonic disc of �.

To see this let

hk(τ ) := �k

(
gk(τ ), τ

) + ln
(
1 + ∣

∣1/gk(τ )
∣
∣2)

and

h(τ ) := �
(
g(τ ), τ

) + ln
(
1 + ∣

∣1/g(τ )
∣
∣2)

.
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By assumption hk is harmonic and we want to show that h is harmonic (which says pre-
cisely that the graph of g is a harmonic disc of �). Now

∣
∣hk(τ ) − h(τ )

∣
∣ ≤ ∣

∣�k

(
gk(τ ), τ

) − �
(
gk(τ ), τ

)∣∣

+ ∣
∣�

(
gk(τ ), τ

) − �
(
g(τ ), τ

)∣∣.(12)

The first term of the RHS tends uniformly to zero since (as is easily seen)

‖�k − �‖C0(P1×D) ≤ ‖φk − φ‖C0(P1×∂D) ≤ 1/k.

The second term of the RHS of (12) tends to zero uniformly on compacts since gk tends
to g uniformly on compacts and � is C1. Thus hk tends to h uniformly on compacts which
implies that h is harmonic, and so the graph of g is a harmonic disc of �. But since U′

was compactly supported in U ∩ ((P1 \ {0})× D×) the graph of g must intersect U which
by Theorem 4.1 is a contradiction. This concludes the proof. �

6. Partial and almost smoothness

Definition 6.1. — Let � be upper semicontinuous on an open subset of P1 ×D with π∗
P1ωFS +

ddc� ≥ 0 and (π∗
P1ωFS + ddc�)2 = 0. The regular locus R� is the set of all (z, τ ) ∈ P1 × D

near which � is smooth and π∗
P1ωFS + ddc�(·, τ ) is a Kähler form.

In particular the above definition applies to the weak solution of the HMAE. It is
clear that R� is open, and inside it the kernel of π∗

P1ωFS + ddc� defines a complex one-
dimensional integrable distribution D� in R�. By restriction this gives a foliation on any
open subset V ⊂Rφ which, when necessary, we refer to as the Monge-Ampère foliation in V.

The following definition is a slight adaptation of those from [7, Sect. 1.3].

Definition 6.2. — We say the weak solution � to the HMAE is partially smooth1 if it holds

that (1) Rφ ∩ (P1 × D) is foliated by harmonic discs and (2) Rφ is dense in P1 × ∂D and (3) the

fibrewise volume form ω�(·,τ ) which is defined on Rφ extends to a continuous (1,1)-form on P1 × D.

The following disagrees with [7, Thm. 1.3.2] which says weak solutions are always
partially smooth.

Corollary 6.3. — There exist φ such that the weak solution � to the HMAE with boundary

data φ(z, τ ) := φ(ρ(τ)z) are not partially smooth.

1 Prof. Tian has informed us that the definition of partially smooth in [7, Def. 1.3.1] contains a typo, and should
read that “Rφ is saturated in X × (� \ ∂�)”. This is potentially weaker than what is written in [7, Def. 1.3.1], and is what
we use here.
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Proof. — This is immediate, for our example from Theorem 4.1 gives boundary
data for which the solution to the HMAE is not partially smooth, since no harmonic disc
intersects the open set U which has non-empty intersection with the boundary. �

As mentioned above, the example in Theorem 4.2 contradicts [7, Thm. 1.3.4],
since the solutions �′ associated to the perturbed boundary data φ′ cannot be “almost
smooth” (for by [7, Prop. 2.3.1] for any almost smooth solution, the set of harmonic discs
is dense in P1 × D).
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