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ABSTRACT

We prove that moduli spaces of meromorphic quadratic differentials with simple zeroes on compact Riemann
surfaces can be identified with spaces of stability conditions on a class of CY3 triangulated categories defined using quivers
with potential associated to triangulated surfaces. We relate the finite-length trajectories of such quadratic differentials to
the stable objects of the corresponding stability condition.
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1. Introduction

In this paper we prove that spaces of stability conditions on a certain class of tri-
angulated categories can be identified with moduli spaces of meromorphic quadratic
differentials. The relevant categories are Calabi-Yau of dimension three (CY3), and are
described using quivers with potential associated to triangulated surfaces. The observa-
tion that spaces of abelian and quadratic differentials have similar properties to spaces of
stability conditions was first made by Kontsevich and Seidel several years ago. On the one
hand, our results provide some of the first descriptions of spaces of stability conditions on
CY3 categories, which is the case of most interest in physics. On the other, they give a pre-
cise link between the trajectory structure of flat surfaces and the theory of wall-crossing
and Donaldson-Thomas invariants.

Our results can also be viewed as a first step towards a mathematical understand-
ing of the work of physicists Gaiotto, Moore and Neitzke [13, 14]. Their paper [13] de-
scribes a remarkable interpretation of the Kontsevich-Soibelman wall-crossing formula
for Donaldson-Thomas invariants in terms of hyperkähler geometry. In the sequel [14]
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an extended example is described, relating to parabolic Higgs bundles of rank two. The
mathematical objects studied in the present paper are very closely related to their physi-
cal counterparts in [14], and some of our basic constructions are taken directly from that
paper. We hope to return to the relations with Hitchin systems and cluster varieties in a
future publication. In another direction, the CY3 categories appearing in this paper also
arise as Fukaya categories of certain quasi-projective Calabi-Yau threefolds. That relation
is the subject of a sequel paper [35].

In this introductory section we shall first recall some basic facts about quadratic
differentials on Riemann surfaces. We then describe the simplest examples of the cat-
egories we shall be studying, before giving a summary of our main result in that case,
together with a very brief sketch of how it is proved. We then state the other version of
our result involving quadratic differentials with higher-order poles. We conclude by dis-
cussing the relationship between the finite-length trajectories of a quadratic differential
and the stable objects of the corresponding stability condition.

As a matter of notation, the triangulated categories we consider here are most
naturally labelled by combinatorial data consisting of a smooth surface S equipped with
a collection of marked points M ⊂ S, all considered up to diffeomorphism. Initially S
will be closed, but in the second form of our result S can have non-empty boundary. The
quadratic differentials we consider live on Riemann surfaces S whose underlying smooth
surface is obtained from S by collapsing each boundary component to a point. To avoid
confusion, we shall try to preserve the notational distinction whereby S refers to a smooth
surface, possibly with boundary, whereas S is always a Riemann surface, usually compact.
All these surfaces will be assumed to be connected.

We fix an algebraically closed field k throughout.

1.1. Quadratic differentials. — A meromorphic quadratic differential φ on a Rie-
mann surface S is a meromorphic section of the holomorphic line bundle ω⊗2

S . We em-
phasize that all the differentials considered in this paper will be assumed to have simple
zeroes. Two quadratic differentials φ1, φ2 on Riemann surfaces S1,S2 are considered to
be equivalent if there is a holomorphic isomorphism f : S1 → S2 such that f ∗(φ2)= φ1.

Let S be a compact, closed, oriented surface, with a non-empty set of marked
points M ⊂ S. We assume that if g(S)= 0 then |M|� 3. Up to diffeomorphism the pair
(S,M) is determined by the genus g = g(S) and the number d = |M| > 0 of marked
points. We use this combinatorial data to specify a union of strata in the space of mero-
morphic quadratic differentials; this will be less trivial later when we allow S to have
boundary.

By a quadratic differential on (S,M) we shall mean a pair (S, φ), where S is a
compact and connected Riemann surface of genus g = g(S), and φ is a meromorphic
quadratic differential with simple zeroes and exactly d = |M| poles, each one of order
� 2. Note that every equivalence class of such differentials contains pairs (S, φ) such that
S is the underlying smooth surface of S, and φ has poles precisely at the points of M.
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A quadratic differential (S, φ) of this form determines a double cover π : Ŝ → S,
called the spectral cover, branched precisely at the zeroes and simple poles of φ. This
cover has the property that

π∗(φ)=ψ ⊗ψ

for some globally-defined meromorphic 1-form ψ . We write Ŝ◦ ⊂ Ŝ for the complement
of the poles of ψ . The hat-homology group of the differential (S, φ) is defined to be

Ĥ(φ)= H1(Ŝ◦;Z)−

where the superscript indicates the anti-invariant part for the action of the covering in-
volution. The 1-form ψ is holomorphic on Ŝ◦ and anti-invariant, and hence defines a
de Rham cohomology class, called the period of φ, which we choose to view as a group
homomorphism

Zφ : Ĥ(φ)→ C, γ �→
∫

γ

ψ.

There is a complex orbifold Quad(S,M) of dimension

n = 6g − 6+ 3d

parameterizing equivalence-classes of quadratic differentials on (S,M). We call a
quadratic differential complete if it has no simple poles; such differentials form a dense
open subset Quad(S,M)0 ⊂ Quad(S,M).

The homology groups Ĥ(φ) form a local system over the orbifold Quad(S,M)0.
A slightly subtle point is that this local system does not extend over Quad(S,M), but
rather has monodromy of order 2 around each component of the divisor parameteriz-
ing differentials with a simple pole. It therefore defines a local system on an orbifold
Quad♥(S,M) which has larger automorphism groups along this divisor. There is a nat-
ural map

Quad♥(S,M)→ Quad(S,M),

which is an isomorphism over the open subset Quad(S,M)0, and which induces an iso-
morphism on coarse moduli spaces. Fixing a free abelian group � of rank n, we can also
consider an unramified cover

Quad�(S,M)→ Quad♥(S,M)

of framed quadratic differentials, consisting of equivalence classes of quadratic differen-
tials as above, equipped with a local trivalization � ∼= Ĥ(φ) of the hat-homology local
system.

In Section 4 we shall prove the following result, which is a variation on the usual
existence of period co-ordinates in spaces of quadratic differentials. For this we need to
assume that (S,M) is not a torus with a single marked point.
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FIG. 1. — Quiver associated to a triangulation

Theorem 1.1. — The space of framed differentials Quad�(S,M) is a complex manifold, and

there is a local homeomorphism

(1.1) π : Quad�(S,M)→ HomZ(�,C),

obtained by composing the framing and the period.

In the excluded case the space Quad�(S,M) is not a manifold because it has
generic automorphism group Z2.

1.2. Triangulations and quivers. — Suppose again that S is a compact, closed, ori-
ented surface with a non-empty set of marked points M ⊂ S. For the purposes of the
following discussion we will assume that if g(S)= 0 then |M|� 5.

By a non-degenerate ideal triangulation of (S,M) we mean a triangulation of S
whose vertex set is precisely M and in which every vertex has valency at least 3. To each
such triangulation T there is an associated quiver Q(T) whose vertices are the midpoints
of the edges of T, and whose arrows are obtained by inscribing a small clockwise 3-cycle
inside each face of T, as illustrated in Figure 1.

There are two obvious systems of cycles in Q(T), namely a clockwise 3-cycle T(f )

in each face f , and an anticlockwise cycle C(p) of length at least 3 encircling each point
p ∈ M. We define a potential W(T) on Q(T) by taking the sum

W(T)=
∑

f

T(f )−
∑

p

C(p).

Consider the derived category of the complete Ginzburg algebra [15, 23] of the
quiver with potential (Q(T),W(T)) over k, and let D(T) be the full subcategory con-
sisting of modules with finite-dimensional cohomology. It is a CY3 triangulated cate-
gory of finite type over k, and comes equipped with a canonical t-structure, whose heart
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FIG. 2. — Effect of a flip

A(T) ⊂ D(T) is equivalent to the category of finite-dimensional modules for the com-
pleted Jacobi algebra of (Q(T),W(T)).

Suppose that two non-degenerate ideal triangulations Ti are related by a flip, in
which the diagonal of a quadilateral is replaced by its opposite diagonal, as in Fig-
ure 2. The point of the above definition is that the resulting quivers with potential
(Q(Ti),W(Ti)) are related by a mutation at the vertex corresponding to the edge be-
ing flipped; see Figure 2. It follows from general results of Keller and Yang [23] that there
is a distinguished pair of k-linear triangulated equivalences �± : D(T1)∼=D(T2).

Labardini-Fragoso [27] extended the correspondence between ideal triangulations
and quivers with potential so as to encompass a larger class of triangulations containing
vertices of valency � 2. He then proved the much more difficult result that flips induce
mutations in this more general context. Since any two ideal triangulations are related by
a finite chain of flips, it follows that up to k-linear triangulated equivalence, the category
D(T) is independent of the chosen triangulation. We loosely use the notation D(S,M) to
denote any triangulated category D(T) defined by an ideal triangulation T of the marked
surface (S,M).

1.3. Stability conditions. — A stability condition on a triangulated category D is a
pair σ = (Z,P) consisting of a group homomorphism Z : K(D) → C called the central
charge, and an R-graded collection of objects

P =
⋃
φ∈R

P(φ)⊂D

known as the semistable objects, which together satisfy some axioms (see Section 7.5).
For simplicity, let us assume that the Grothendieck group K(D) is free of some

finite rank n. There is then a complex manifold Stab(D) of dimension n whose points are
stability conditions on D satisfying a further condition known as the support property.
The map

(1.2) π : Stab(D)→ HomZ

(
K(D),C

)

taking a stability condition to its central charge is a local homeomorphism. The manifold
Stab(D) carries a natural action of the group Aut(D) of triangulated autoequivalences
of D.
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Now suppose that (S,M) is a compact, closed, oriented surface with marked
points, and let D be the CY3 triangulated category D(S,M) defined in the last sub-
section. There is a distinguished connected component

Stab�(D)⊂ Stab(D),

containing stability conditions whose heart is one of the standard hearts A(T) ⊂ D(T)

discussed above. We write

Aut�(D)⊂ Aut(D)

for the subgroup of autoequivalences of D which preserve this component. We also define
Aut�(D) to be the quotient of Aut�(D) by the subgroup of autoequivalences which act
trivially on Stab�(D).

The first form of our main result is

Theorem 1.2. — Let (S,M) be a compact, closed, oriented surface with marked points. Assume

that one of the following two conditions holds

(a) g(S)= 0 and |M|> 5;

(b) g(S) > 0 and |M|> 1.

Then there is an isomorphism of complex orbifolds

Quad♥(S,M)∼= Stab�(D)/ Aut�(D).

The assumption on the number of punctures in the g(S)= 0 case of Theorem 1.2
comes from a similar restriction in a crucial result of Labardini-Fragoso [29]. We conjec-
ture that the conclusion of the Theorem holds with the weaker assumptions that |M|> 1
and that if g(S) = 0 then |M| > 3. The case of a once-punctured surface is special in
many respects, and we leave it for future research; see Section 11.6 for more comments
on this. The case of a three-punctured sphere is also special, and is treated in Section 12.4.

1.4. Horizontal strip decomposition. — The main ingredient in the proof of Theo-
rem 1.2 is the statement that a generic point of the space Quad(S,M) determines an
ideal triangulation of the surface (S,M), well-defined up to the action of the mapping
class group. We learnt this idea from Gaiotto, Moore and Neitzke’s work [14, Section 6],
although in retrospect, it is an immediate consequence of well-known results in the theory
of quadratic differentials.

Away from its critical points (zeroes and poles), a quadratic differential φ on a
Riemann surface S induces a flat metric, together with a foliation known as the horizontal
foliation. One way to see this is to write φ = dz⊗2 for some local co-ordinate z, well-
defined up to z �→ ±z+ constant. The metric is then given by pulling back the Euclidean
metric on C using z, and the horizontal foliation is given by the lines Im(z)= constant.
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FIG. 3. — Local trajectory structure at a simple zero and a generic double pole

FIG. 4. — A saddle trajectory, a ring domain and a degenerate ring domain

The integral curves of the horizontal foliation are called trajectories. The trajectory
structure near a simple zero and a generic double pole are illustrated in Figure 3. Note
that generic double poles behave like black holes: any trajectory passing beyond a certain
event horizon eventually falls into the pole. Thus for a generic differential one expects all
trajectories to tend towards a double pole in at least one direction.

In the flat metric on S induced by φ, any pole of order � 2 lies at infinity. Therefore,
assuming that S is compact, any finite-length trajectory γ is either a simple closed curve
containing no critical points of φ, or is a simple arc which tends to a finite critical point
of φ (a zero or simple pole) at either end. In the first case γ is called a closed trajectory,
and moves in an annulus of such trajectories known as a ring domain. In the second case
we call γ a saddle trajectory. Note that the endpoints of a saddle trajectory γ could well
coincide; when this happens we call γ a closed saddle trajectory.

The boundary of a ring domain has two components, and each boundary com-
ponent usually consists of unions of saddle trajectories. There is one other possibility
however: a ring domain may consist of closed curves encircling a double pole p with real
residue; the point p is then one of the boundary components. We call such ring domains
degenerate, see Figure 4.

There is a dense open subset B0 ⊂ Quad(S,M) consisting of differentials (S, φ)

with no simple poles and no finite-length trajectories; we call such differentials saddle-
free. For saddle-free differentials, each of the three horizontal trajectories leaving a given
zero eventually tends towards a double pole. These separating trajectories divide the
surface S into a union of cells, known as horizontal strips (see Figure 5). Taking a single
generic trajectory from each horizontal strip gives a triangulation of the surface S, whose
vertices lie at the poles of φ, and this then induces an ideal triangulation T of the surface
(S,M), well-defined up to the action of the mapping class group. This is what is referred
to as the WKB triangulation in [14].
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FIG. 5. — The separating (solid) and generic trajectories (dotted) for a saddle-free differential; the black dots represent double
poles

The dual graph to the collection of separating trajectories is precisely the quiver
Q(T) considered before. In particular, the vertices of Q(T) naturally correspond to the
horizontal strips of φ. In each horizontal strip hi there is a unique homotopy class of arcs

i joining the two zeroes of φ lying on its boundary. Lifting 
i to the spectral cover gives
a class αi ∈ Ĥ(φ), and taken together, these classes form a basis. There is thus a natural
isomorphism

ν : K
(
D(T)

)→ Ĥ(φ),

which sends the class of the simple module Si at a vertex of Q(T), to the class αi defined
by the corresponding horizontal strip hi .

Using the isomorphism ν, the period of φ can be interpreted as a group homo-
morphism Zφ : K(D(T))→ C. More concretely, this is given by

Zφ(Si)= 2
∫


i

√
φ ∈ C,

where the sign of
√

φ is chosen so that Im Zφ(Si) > 0. We thus have a triangulated cat-
egory D(T), with its canonical heart A(T), and a compatible central charge Zφ . This is
precisely the data needed to define a stability condition on D(T).

We refer to the connected components of the open subset B0 as chambers; the
horizontal strip decomposition and the triangulation T are constant in each chamber,
although the period Zφ varies. As one moves from one chamber to a neighbouring one,
the triangulation T can undergo a flip. Gluing the stability conditions obtained from all
these chambers using the Keller-Yang equivalences �± referred to above eventually leads
to a proof of Theorem 1.2.
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FIG. 6. — Local trajectory structure at a pole of order 5

1.5. Higher-order poles. — We can extend Theorem 1.2 to cover quadratic differ-
entials with poles of order > 2. Such differentials correspond to stability conditions on
categories defined by triangulations of surfaces with boundary. For this reason it will be
convenient to also index the relevant moduli spaces of differentials by such surfaces, as
we now explain.

A marked, bordered surface (S,M) is a pair consisting of a compact, oriented,
smooth surface S, possibly with boundary, together with a collection of marked points
M ⊂ S, such that every boundary component of S contains at least one point of M. The
marked points P ⊂ M lying in the interior of S are called punctures. We shall always
assume that (S,M) is not one of the following:

(i) a sphere with � 2 punctures;
(ii) an unpunctured disc with � 2 marked points on its boundary.

These excluded surfaces have no ideal triangulations, and so our theory would be vacuous
in these cases.

The trajectory structure of a quadratic differential φ near a higher-order pole is
illustrated in Figure 6; just as with double poles there is an event horizon beyond which
all trajectories tend to the pole, but at a pole of order k + 2 there are, in addition, k

distinguished tangent vectors along which all trajectories enter.
A meromorphic quadratic differential φ on a compact Riemann surface S deter-

mines a marked, bordered surface (S,M) by the following construction. To define the
surface S we take the underlying smooth surface of S and perform an oriented real blow-
up at each pole of φ of order � 3. The marked points M are then the poles of φ of order
� 2, considered as points of the interior of S, together with the points on the boundary
of S corresponding to the distinguished tangent directions.

Let us now fix a marked, bordered surface (S,M). Let Quad(S,M) denote the
space of equivalence classes of pairs (S, φ), consisting of a compact Riemann surface S,
together with a meromorphic quadratic differential φ with simple zeroes, whose associ-
ated marked bordered surface is diffeomorphic to (S,M).

More concretely, the pair (S,M) is determined up to diffeomorphism by the genus
g = g(S), the number of punctures p = |P|, and a collection of integers ki � 1 encoding
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the number of marked points on each boundary component of S. The space Quad(S,M)

then consists of equivalence classes of pairs (S, φ) consisting of a meromorphic quadratic
differential φ on a compact Riemann surface S of genus g, having p poles of order � 2, a
collection of higher-order poles with multiplicities ki + 2, and simple zeroes.

The space Quad(S,M) is a complex orbifold of dimension

n = 6g − 6+ 3p+
∑

i

(ki + 3).

We can define the spectral cover π : Ŝ → S, the hat-homology group Ĥ(φ), and the
spaces Quad�(S,M) and Quad♥(S,M) exactly as before. We can also prove the ana-
logue of Theorem 1.1 in this more general setting.

The theory of ideal triangulations of marked bordered surfaces has been devel-
oped for example in [10]. The results of Labardini-Fragoso [27] apply equally well in
this more general situation, so exactly as before, there is a CY3 triangulated category
D = D(S,M), well-defined up to k-linear equivalence, and a distinguished connected
component Stab�(D).

The second form of our main result is

Theorem 1.3. — Let (S,M) be a marked bordered surface with non-empty boundary. Then

there is an isomorphism of complex orbifolds

Quad♥(S,M)∼= Stab�(D)/ Aut�(D).

There are six degenerate cases which have been suppressed in the statement of
Theorem 1.3. Firstly, if (S,M) is one of the following three surfaces

(a) a once-punctured disc with 2 or 4 marked points on the boundary;
(b) a twice-punctured disc with 2 marked points on the boundary;

then Theorem 1.3 continues to hold, but only if we replace Aut�(D) by a certain index 2
subgroup Aut allow

� (D). The basic reason for this is that a triangulation T of such a surface
is not determined up to the action of the mapping class group by the associated quiver
Q(T). Secondly, if (S,M) is one of the following three surfaces

(c) an unpunctured disc with 3 or 4 marked points on the boundary;
(d) an annulus with one marked point on each boundary component;

then the space Quad(S,M) has a generic automorphism group which must first be killed
to make Theorem 1.3 hold. These exceptional cases are treated in more detail in Sec-
tion 11.6.

Particular choices of the data (S,M) lead to quivers of interest in representation
theory. See Section 12 for some examples of this. In particular, we can recover in this way
some recent results of T. Sutherland [37, 38], who used different methods to compute the
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spaces of numerical stability conditions on the categories D(S,M) in all cases in which
these spaces are two-dimensional.

1.6. Saddle trajectories and stable objects. — In the course of proving the Theorems
stated above, we will in fact prove a stronger result, which gives a direct correspondence
between the finite-length trajectories of a quadratic differential and the stable objects of
the corresponding stability condition.

To describe this correspondence in more detail, fix a marked bordered surface
(S,M) satisfying the assumptions of one of our main theorems, and let D = D(S,M)

be the corresponding triangulated category. Let φ be a meromorphic differential on a
compact Riemann surface S defining a point φ ∈ Quad(S,M), and let σ ∈ Stab�(D) be
the corresponding stability condition, well-defined up to the action of the group Aut�(D).
We shall say that the differential φ is generic if for any two hat-homology classes γi ∈
Ĥ(φ)

R · Zφ(γ1)= R · Zφ(γ2) =⇒ Z · γ1 = Z · γ2.

Generic differentials form a dense subset of Quad(S,M), and for simplicity we shall
restrict our attention to these.

To state the result, let us denote by Mσ (0) the moduli space of objects in D that
are stable in the stability condition σ and of phase 0. This space can be identified with a
moduli space of stable representations of a finite-dimensional algebra, and hence by work
of King [24], is represented by a quasi-projective scheme over k.

Theorem 1.4. — Assume that φ is generic. Then Mσ (0) is smooth, and each of its connected

components is either a point, or is isomorphic to the projective line P1. Moreover, there are bijections

{
0-dimensional components of Mσ (0)

}
←→ {non-closed saddle trajectories of φ};{

1-dimensional components of Mσ (0)
}

←→ {non-degenerate ring domains of φ}.
Note that with our conventions, all trajectories are assumed to be horizontal, and

correspond to stable objects of phase 0. In particular, a stability condition σ has a stable
object of phase 0 precisely if the corresponding differential φ has a finite-length trajectory.
Stable objects of more general phases θ correspond in exactly the same way to finite-
length straight arcs which meet the horizontal foliation at a constant angle πθ . This more
general statement follows immediately from Theorem 1.4, because the isomorphisms of
our main theorems are compatible with the natural C∗-actions on both sides.

Standard results in Donaldson-Thomas theory imply that the two types of moduli
spaces appearing in Theorem 1.4 contribute +1 and −2 respectively to the BPS invari-
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ants, although we do not include the proof of this here. These exactly match the con-
tributions to the BPS invariants described in [14, Section 7.6]. In physics terminology,
non-closed saddle trajectories correspond to BPS hypermultiplets, and non-degenerate
ring domains to BPS vectormultiplets.

It is a standard open question in the theory of flat surfaces to characterise or con-
strain the hat-homology classes which contain saddle connections. Theorem 1.4 relates
this to the similar problem of identifying the classes in the Grothendieck group which
support stable objects. Here one has the powerful technology of Donaldson-Thomas in-
variants and the Kontsevich-Soibelman wall-crossing formula [26], which in principle
allows one to determine how the spectrum of stable objects changes as the stability con-
dition varies. It would be interesting to see whether these techniques can be usefully
applied to the theory of flat surfaces.

1.7. Structure of the paper. — The paper splits naturally into three parts.
The first part, consisting of Sections 2–6, is concerned with spaces of meromorphic

quadratic differentials. Section 2 reviews basic notions concerning quadratic differentials,
and introduces orbifolds Quad(g,m) parameterizing differentials with simple zeroes and
fixed pole orders. Section 3 consists of well-known material on the trajectory structure of
quadratic differentials. Section 4 is devoted to proving that the period map on Quad(g,m)

is a local isomorphism. Section 5 studies the stratification of the space Quad(g,m) by the
number of separating trajectories. Finally, Section 6 introduces the spaces Quad(S,M)

appearing above, in which zeroes of the differentials are allowed to collide with the double
poles.

The second part, comprising Sections 7–9, is concerned with CY3 triangulated cat-
egories, and more particularly, the categories D(S,M) described above. Section 7 consists
of general material on quivers with potential, t-structures, tilting and stability conditions.
Section 8 introduces the basic combinatorial properties of ideal and tagged triangulations.
Section 9 contains a more detailed study of the categories D(S,M), including their autoe-
quivalence groups, and gives a precise correspondence relating t-structures on D(S,M)

to tagged triangulations of the surface (S,M).
The geometry and algebra come together in the last part, which comprises Sec-

tions 10–12. Section 10 describes the WKB triangulation associated to a saddle-free dif-
ferential, and the way it changes as one passes between neighbouring chambers. Sec-
tion 11 contains the proofs of our main results identifying spaces of stability conditions
with spaces of quadratic differentials. We finish in Section 12 with some illustrative ex-
amples.

The reader is advised to start with Sections 2–3, the first half of Section 6, and
Sections 7–9, since these contain the essential definitions and are the least technical. It
may also help to look at some of the examples in Section 12.
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2. Quadratic differentials

We begin by summarizing some of the basic properties of meromorphic quadratic
differentials on Riemann surfaces. This material is mostly well-known, although we were
unable to find any references dealing with the moduli spaces of differentials with higher-
order poles that we shall be using. Our standard reference for quadratic differentials is
Strebel’s book [36].

2.1. Quadratic differentials. — Let S be a Riemann surface, and let ωS denote its
holomorphic cotangent bundle. A meromorphic quadratic differential φ on S is a meromorphic
section of the line bundle ω⊗2

S . Two such differentials φ1, φ2 on surfaces S1,S2 are said to
be equivalent if there is a biholomorphism f : S1 → S2 such that f ∗(φ2)= φ1.

In terms of a local co-ordinate z on S we can write a quadratic differential φ as

φ(z)= ϕ(z) dz ⊗ dz

with ϕ(z) a meromorphic function. We write Zer(φ),Pol(φ)⊂ S for the subsets of zeroes
and poles of φ respectively. The subset Crit(φ)= Zer(φ)∪Pol(φ) is the set of critical points

of φ.
At a point of S \ Crit(φ) there is a distinguished local co-ordinate w, uniquely

defined up to transformations of the form w �→ ±w + constant, with respect to which

φ(w)= dw ⊗ dw.

In terms of an arbitrary local co-ordinate z we have w = ∫ √
ϕ(z) dz.

A quadratic differential φ determines two structures on S \ Crit(φ), namely a flat
metric (called the φ-metric) and a foliation (the horizontal foliation). The φ-metric is de-
fined locally by pulling back the Euclidean metric on C using a distinguished co-ordinate
w. The horizontal foliation is given in terms of a distinguished co-ordinate by the lines
Im(w)= constant.

The φ-metric and the horizontal foliation on S \Crit(φ) together determine both
the complex structure on S and the differential φ. Note that the set of quadratic dif-
ferentials on a fixed surface S has a natural S1-action given by scalar multiplication:
φ �→ eiπθ · φ. This action has no effect on the φ-metric, but alters which in the circle
of foliations defined by Im(w/eiπθ)= constant is regarded as being horizontal.

In terms of a local co-ordinate z on S, the length of a smooth path γ in the φ-
metric is

(2.1) 
φ(γ )=
∫

γ

∣∣ϕ(z)
∣∣1/2|dz|.

It is important to divide the critical set into a disjoint union

Crit(φ)= Crit<∞(φ)∪Crit∞(φ),
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where Crit<∞(φ) consists of finite critical points, namely zeroes and simple poles, and
Crit∞(φ) consists of infinite critical points, that is poles of order � 2. We write

S◦ = S \Crit∞(φ)

for the complement of the infinite critical points.
Note that the integral (2.1) is well-defined for curves passing through points of

Crit<∞(φ). This gives the surface S◦ the structure of a metric space, in which the dis-
tance between two points p, q ∈ S◦ is the infimum of the lengths of smooth curves in S◦

connecting p to q. The topology on S◦ defined by this metric agrees with the standard
one induced from the surface S.

2.2. GMN differentials. — All the quadratic differentials considered in this paper
live on compact surfaces and have simple zeroes and at least one pole. Since it will be
convenient to eliminate certain degenerate situations we make the following definition.

Definition 2.1. — A GMN differential is a meromorphic quadratic differential φ on a compact,

connected Riemann surface S such that

(a) φ has simple zeroes,

(b) φ has at least one pole,

(c) φ has at least one finite critical point.

Condition (c) excludes polar types (2,2) and (4) in genus 0; differentials of these
types have unusual trajectory structures, and infinite automorphism groups.

Given a GMN differential (S, φ) we write g for the genus of the surface S and d

for the number of poles of φ. The polar type of φ is the unordered collection of d integers
m = {mi} giving the orders of the poles of φ. We define

(2.2) n = 6g − 6+
d∑

i=1

(mi + 1).

A GMN differential (S, φ) is said to be complete if φ has no simple poles, or in other words,
if all mi � 2. This is exactly the case in which the φ-metric on S \ Pol(φ) is complete. At
the opposite extreme, the differential (S, φ) is said to have finite area if φ has only simple
poles, that is if all mi = 1.

2.3. Spectral cover and periods. — Suppose that φ is a GMN differential on a compact
Riemann surface S, with poles of order mi at points pi ∈ S. We can alternatively view φ

as a holomorphic section

(2.3) ϕ ∈ H0
(
S,ωS(E)⊗2

)
, E =

∑
i

⌈
mi

2

⌉
· pi,
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with simple zeroes at both the zeroes and the odd order poles of φ. The spectral cover1 of S
defined by φ is the compact Riemann surface

Ŝ = {(
p, l(p)

) : p ∈ S, l(p) ∈ Lp such that l(p)⊗ l(p)= ϕ(p)
}⊂ L,

where L is the total space of the line bundle ωS(E). This is a manifold because ϕ has
simple zeroes.

The obvious projection map π : Ŝ → S is a double cover, branched precisely over
the zeroes and the odd order poles of the original meromorphic differential φ. There is a
covering involution τ : Ŝ → Ŝ, commuting with the map π . The surface Ŝ is connected
because Definition 2.1 implies that π has at least one branch point.

We define the hat-homology group of the differential φ to be

Ĥ(φ)= H1

(
Ŝ◦;Z

)−
,

where Ŝ◦ = π−1(S◦), and the superscript denotes the anti-invariant part for the action of
the covering involution τ .

Lemma 2.2. — The group Ĥ(φ) is free of rank n given by (2.2).

Proof. — The Riemann-Hurwitz formula applied to the spectral cover π : Ŝ → S
implies that

(2.4) 2ĝ − 2 = 2(2g − 2)+
(

4g − 4+
d∑

i=1

mi

)
+ (d − e),

where ĝ is the genus of Ŝ, and e is the number of even mi . The group H1(S◦;Z) is free of
rank 2g + d − s−1, where s is the number of simple poles. Similarly, using equation (2.4),
and noting that each even order pole has two inverse images in Ŝ, the group H1(Ŝ◦;Z) is
free of rank

r = 2ĝ + d + e − s − 1 = 8g − 6+
d∑

i=1

mi + 2d − s − 1.

Since the invariant part of H1(Ŝ◦;Z) can be identified with H1(S◦;Z), the anti-invariant
part H1(Ŝ◦;Z)− is therefore free of rank n. �

The spectral cover Ŝ comes equipped with a tautological section ψ of the line
bundle π∗(ωS(E)) satisfying π∗(ϕ) = ψ ⊗ ψ and τ ∗(ψ) = −ψ . There is a canonical
map η : π∗(ωS)→ ωŜ and we can form the composition

OŜ
ψ−→ π∗(ωS(E)

) η(Ê)−−→ ωŜ(Ê),

1 The terminology “spectral cover” fits with that used in the literature on Higgs bundles, cf. [19].
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where Ê = π−1(E). This defines a meromorphic 1-form on Ŝ, which we also denote by ψ .
Since the canonical map η vanishes at the branch-points of π , the differential ψ is

regular at the inverse images of the simple poles of φ, and hence restricts to a holomorphic
1-form on the open subsurface Ŝ◦. By construction ψ is anti-invariant for the action of
the covering involution τ , and therefore defines a de Rham cohomology class

[ψ] ∈ H1
(
Ŝ◦;C

)−
called the period of φ. We choose to view this instead as a group homomorphism

Zφ : Ĥ(φ)→ C.

2.4. Intersection forms. — Consider a GMN differential φ on a Riemann surface S,
and its spectral cover π : Ŝ → S. Write

D̂∞ = π−1
(
Crit∞(φ)

)
.

Thus Ŝ◦ = Ŝ \ D̂∞. There are canonical maps of homology groups

H1

(
Ŝ◦;Z

)= H1

(
Ŝ \ D̂∞;Z

) g−→ H1

(
Ŝ;Z

) h−→ H1

(
Ŝ, D̂∞;Z

)
.

The intersection form on H1(Ŝ;Z) is a non-degenerate, skew-symmetric pairing,
and induces a degenerate skew-symmetric form

H1

(
Ŝ◦;Z

)×H1

(
Ŝ◦;Z

)→ Z,

which we also call the intersection form, and write as (α,β) �→ α ·β . On the other hand,
Lefschetz duality gives a non-degenerate pairing

(2.5) 〈−,−〉: H1

(
Ŝ \ D̂∞;Z

)×H1

(
Ŝ, D̂∞;Z

)→ Z.

These bilinear forms restrict to the anti-invariant eigenspaces for the actions of the cov-
ering involutions.

For each pole p ∈ S of φ of even order there is an associated residue class

βp ∈ H1

(
Ŝ◦;Z

)−
,

well-defined up to sign. It is obtained by taking the inverse image under π of a small loop
δp in S◦ encircling the point p, and then orienting the two connected components so that
the resulting class is anti-invariant.

The residue of φ at p is defined to be

(2.6) Resp(φ)= Zφ(βp)=±2
∫

δp

√
φ,

and is well-defined up to sign.
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Lemma 2.3. — The classes βp ∈ H1(Ŝ◦;Z)− are a Q-basis for the kernel of the intersection

form.

Proof. — If p ∈ S is an even order pole of φ, let {sp, tp} be the classes in H1(Ŝ◦;Z)

defined by small clockwise loops around the two inverse images of p in the spectral cover
Ŝ. Similarly, if p ∈ S is a pole of odd order � 3, let up ∈ H1(Ŝ◦;Z) be the class defined by
a small loop around the single inverse image of p. Standard topology of surfaces shows
that there is an exact sequence

0 → Z
i−→ Z⊕k f−→ H1

(
Ŝ◦;Z

) h−→ H1

(
Ŝ;Z

)−→ 0,

where the map h is induced by the inclusion Ŝ◦ ⊂ Ŝ, the map f sends the generators to the
classes sp, tp and up respectively, and the image of i is spanned by the element (1,1, . . . ,1).

The covering involution exchanges sp and tp, and fixes up, and we have βp =±(sp −
tp). Since the image of the map i lies in the invariant part of H1(Ŝ;Z), the elements βp

are linearly independent. The intersection form on H1(Ŝ;Z)− is non-degenerate, so the
kernel of the induced form on H1(Ŝ◦;Z)− is precisely the kernel of the surjective map

h− : H1

(
Ŝ◦;Z

)− → H1

(
Ŝ;Z

)−
.

The group H1(Ŝ;Z)− has rank 2(ĝ − g), which by (2.4) is equal to n − e, where e is the
number of even order poles of φ. Thus the kernel of h− is spanned over Q by the e

elements βp. �

2.5. Moduli spaces. — We now consider moduli spaces of GMN differentials of
fixed polar type. For this purpose we fix a genus g � 0 and an unordered collection of
d � 1 positive integers m = {mi}.

Define Quad(g,m) to be the set of equivalence-classes of pairs (S, φ) consisting of
a compact, connected Riemann surface S of genus g, equipped with a GMN differential
φ having polar type m = {mi}.

Proposition 2.4. — The space Quad(g,m) is either empty, or is a connected complex orbifold

of dimension n given by (2.2).

Proof. — Let M(g, d) be the moduli stack of compact Riemann surfaces of genus g

with an ordered set of d marked points (p1, . . . , pd). This is a smooth, connected algebraic
stack of finite type over C. Choose an ordering of the integers mi , and let Sym(m) ⊂
Sym(d) be the subgroup of the symmetric group consisting of permutations σ such that
mσ(i) = mi .

At each point of M(g, d)/Sym(m) there is a Riemann surface S equipped with
a well-defined divisor D = ∑

i mipi . The spaces of global sections H0(S,ω⊗2
S (D)) fit to-

gether to form a vector bundle

(2.7) H(g,m)→M(g, d)/Sym(m).
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To see this, note first that if g = 0 then we can assume that the divisor D has degree at
least 4, since otherwise the vector spaces are all zero, and the space Quad(g,m) is empty.
Serre duality therefore gives

H1
(
S,ω⊗2

S (D)
)∼= H0

(
S,ωS(D)∨

)∗ = 0

which proves the claim. It then follows using Riemann-Roch that the rank of the bun-
dle (2.7) is 3g − 3+∑d

i=1 mi .
The stack Quad(g,m) is the Zariski open subset of H(g,m) consisting of sections

with simple zeroes disjoint from the points pi . Since M(g, d) is connected of dimension
3g − 3 + d , the stack Quad(g,m) is either empty, or is smooth and connected of dimen-
sion n.

The final step is to show that the automorphism groups of the relevant quadratic
differentials are finite. This claim is clear if g � 1 or d � 3, because the same property
holds for M(g, d) (a curve of genus g � 2 has a finite automorphism group; a curve of
genus 1 has finitely many automorphisms fixing a given point). When g = 0 the claim is
also clear if the total number of critical points is � 3. Since there is at least one pole, and
the number of zeroes is

∑
mi − 4, the only other possibilities are polar types (1,3), (4),

(5) and (2,2).
In the first three of these cases there is a single quadratic differential up to equiv-

alence, namely φ = zk dz⊗2 with k = −1,0,1 respectively. The corresponding automor-
phism groups are {1}, Z2�C and Z3 respectively. In the remaining case (2,2) the possible
differentials are φ = r dz⊗2/z2 for r ∈ C∗. Each of these differentials has automorphism
group Z2 � C∗. By Definition 2.1(c), a GMN differential must have a zero or a simple
pole; this exactly excludes the troublesome cases (2,2) and (4). �

Example 2.5. — Consider the case g = 1,m = (1). The corresponding space
Quad(g,m) is empty, even though the expected dimension is n = 2. Indeed, this space
parameterizes pairs (S, φ), where S is a Riemann surface of genus 1, and φ is a mero-
morphic differential on S having only a simple pole. On the surface S the bundle ωS is
trivial, so φ defines a meromorphic function with a single simple pole. The Riemann-
Roch theorem shows that no such function exists.

We shall often abuse notation by referring to the points of the space Quad(g,m)

as GMN differentials, and by denoting such a point simply by φ ∈ Quad(g,m). This
is shorthand for the statement that φ is a GMN differential on a compact Riemann
surface S, such that the equivalence class of the pair (S, φ) defines a point of the space
Quad(g,m).

The homology groups H1(S◦;Z)− form a local system over the orbifold Quad(g,m)

because we can realise the spectral cover construction in families, and the Gauss-Manin
connection gives a flat connection in the resulting bundle of anti-invariant homology
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groups. Often in what follows we will be studying a small analytic neighbourhood

φ0 ∈ U ⊂ Quad(g,m)

of a fixed differential φ0. Whenever we do this we will tacitly assume that U is con-
tractible, and use the Gauss-Manin connection to identify the hat-homology groups of all
differentials in U.

2.6. Framings and the period map. — As in the last section, we fix a genus g � 0 and
a collection of d � 1 positive integers m = {mi}. Let us also fix a free abelian group � of
rank n given by (2.2).

As before, we consider pairs (S, φ) consisting of a Riemann surface S of genus g,
equipped with a GMN differential φ of polar type m = {mi}. A �-framing of such a pair
(S, φ) is an isomorphism of groups

θ : � → Ĥ(φ).

Suppose (Si, φi) for i = 1,2 are two quadratic differentials as above, and f : S1 →
S2 is an isomorphism such that f ∗(φ2)= φ1. Then f lifts to an isomorphism f̂ : Ŝ◦

1 → Ŝ◦
2,

which is unique if we insist that it also satisfies f̂ ∗(ψ2)=ψ1, where ψi are the distinguished
1-forms defined in Section 2.3.

Let Quad�(g,m) be the set of equivalence classes of triples (S, φ, θ) consisting of
a compact, connected Riemann surface S of genus g equipped with a GMN differential
φ of polar type m = {mi} together with a �-framing θ . We define triples (Si, φi, θi) to be
equivalent if there is an isomorphism f : S1 → S2 such that f ∗(φ2)= φ1 and such that the
distinguished lift f̂ makes the following diagram commute

(2.8) �

θ1 θ2

Ĥ(φ1)
f̂∗

Ĥ(φ2)

We can define families of framed differentials in the obvious way, and the forgetful
map

(2.9) Quad�(g,m)→ Quad(g,m)

is then an unbranched cover. Thus the set Quad�(g,m) is naturally a complex orbifold.
The group Aut(�) of automorphisms of the group � acts on Quad�(g,m), and the quo-
tient orbifold is precisely Quad(g,m). Note that Quad�(g,m) will not usually be con-
nected, because the monodromy of the local system of hat-homology groups preserves
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the intersection form, and hence cannot relate all different framings of a given differen-
tial. But since all such framings are related by the action of Aut(�), the different connected
components of Quad�(g,m) are all isomorphic.

The period of a framed GMN differential (S, φ, θ) can be viewed as a map Zφ ◦
θ : � → C. This gives a well-defined period map

(2.10) π : Quad�(g,m)→ HomZ(�,C).

In Section 4.7 we shall prove that, with the exception of the six special cases considered
in the next section, the space Quad�(g,m) is a complex manifold, and the period map π

is a local homeomorphism.

2.7. Generic automorphisms. — In certain special cases the orbifolds Quad(g,m) and
Quad�(g,m) have non-trivial generic automorphism groups. In this section we classify
the polar types when this occurs.

Lemma 2.6. — The generic automorphism group of a point of Quad(g,m) is trivial, with the

exception of the polar types

(5); (6); (1,1,2); (3,3); (1,1,1,1),

in genus g = 0, and the polar type m = (2) in genus g = 1.

Proof. — Suppose first that if g = 0 then d � 5, and that if g = 1 then d � 2. With
these assumptions the stack M(g, d)/Sym(d) parameterizing compact Riemann surfaces
of genus g with an unordered collection of d marked points has trivial generic automor-
phism group.2 The same is therefore true of the stack M(g, d)/Sym(m) appearing in the
proof of Proposition 2.4. The space Quad(g,m) is an open subset of a vector bundle over
this stack, so again, the generic automorphism group is trivial.

Consider the case g = 1 and d = 1. The stack Quad(g,m) then parameterizes pairs
consisting of a Riemann surface S of genus 1, together with a meromorphic function on S
with simple zeroes and a single pole, necessarily of order m � 2. For a generic such surface
S, the group of automorphisms preserving the pole is generated by a single involution,
and using Riemann-Roch it is easily seen that if m � 3 then the zeroes of the generic such
function are not permuted by this involution.

When g = 0 Riemann-Roch shows that there exist differentials with any given
configuration of zeroes and poles, providing only that the number k of zeroes is equal
to

∑
mi − 4. Thus if a generic point φ ∈ Quad(0,m) has non-trivial automorphisms,

then |Crit(φ)| � 4. Moreover, if |Crit(φ)| = 4 then the critical points must consist of

2 Consider the case when g � 2. In order for the automorphism group of a marked curve to be non-trivial the
points pi must be permuted by some automorphism of the curve. Since the automorphism group of such a curve is finite
[18, Ex. IV.5.2] this is a non-generic condition. The statement in genus 1 is similar using the set of points {pi − pj} and the
fact that the group of automorphisms modulo translations is finite. The genus 0 case is easily dealt with explicitly.
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two pairs of the same type, since the generic automorphism group of M(0,4)/Sym(4)

acts on the marked points via permutations of type (ab)(cd) (see e.g. [20, Section 2.5]). If
|Crit(φ)| = 3 then at least two of the critical points must be of the same type.

Suppose that the generic point of Quad(0,m) does have non-trivial automor-
phisms. Since there is at least one pole, we must have 0 � k � 3. We cannot have k = 3
since there would then be 4 critical points whose types do not match in pairs. If k = 2
there must be two poles of the same degree, giving the (3,3) case, or a single pole, giving
the (6) case. If k = 1 there must be just one pole, which gives the case (5), since if there
were 2 poles they would have to have the same degree. Finally, if k = 0 we get the cases
(1,1,2) and (1,1,1,1), since the cases (2,2) and (4) have already been excluded by the
definition of a GMN differential, and the case (1,3) leads to a single differential with
trivial automorphism group, as discussed in the proof of Proposition 2.4. �

Examples 2.7. — We consider differentials (S, φ) ∈ Quad(g,m) corresponding to
some of the exceptional cases in the statement of Lemma 2.6.

(a) Consider the case g = 0 and m = (1,1,2). Taking the simple poles to be at
{0,∞} ∈ P1 we can write any such differential in the form

φ(z)= c dz⊗2

z(z − 1)2

for some c ∈ C∗. Thus φ is invariant under the automorphism z �→ 1/z. The
spectral cover Ŝ is again P1 with co-ordinate w =√

z and covering involution
w �→ −w. The automorphism z �→ 1/z lifts to the automorphism w �→ 1/w

of the open subsurface Ŝ◦ = P1 \{±1} and acts trivially on the hat-homology
group, which is H1(Ŝ◦;Z) = Z. Thus every element of Quad�(g,m) has auto-
morphism group Z2.

(b) Consider the case g = 0, m = (3,3). Any such differential is of the form

φ(z)= (
tz + 2s + tz−1

)dz⊗2

z2
,

for constants s ∈ C and t ∈ C∗ with s ± t �= 0, and is invariant under z �→ 1/z.
The spectral cover Ŝ has genus 1. The open subset Ŝ◦ is the complement of
2 points, the inverse images of the poles of φ. The automorphism z �→ 1/z of
P1 lifts to a translation by a 2-torsion point of Ŝ. It acts trivially on the hat-
homology group, which is H1(Ŝ;Z) = Z⊕2. Thus every point of Quad�(g,m)

has automorphism group Z2.
(c) Consider the case g = 0, m = (1,1,1,1). Such differentials are of the form

φ(z)= dz⊗2

p4(z)
,
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where p4(z) is a monic polynomial of degree 4 with distinct roots, and are in-
variant under any automorphism of P1 permuting these roots. The spectral
cover Ŝ has genus 1. The automorphisms of P1 preserving φ lift to transla-
tions by 2-torsion points of Ŝ. These automorphisms act trivially on the hat-
homology group, which is H1(Ŝ;Z) = Z⊕2. Thus every point of Quad�(g,m)

has automorphism group Z⊕2
2 .

In each of the other cases of Lemma 2.6 the orbifold Quad�(g,m) also has non-
trivial generic automorphism group. The case g = 0, m = (5) is elementary, and the case
g = 0, m = (6) is very similar to Example 2.7(a). The case g = 1, m = (2) is treated in
Example 4.10 below.

3. Trajectories and geodesics

In this section we focus on the global trajectory structure of a fixed quadratic dif-
ferential, and the basic properties of the geodesic arcs of the associated flat metric. This
material is all well-known, but since it forms the basis for much of what follows we thought
it worthwhile to give a fairly detailed treatment. The reader can find proofs and further
explanations in Strebel’s book [36].

3.1. Trajectories. — Let φ be a meromorphic quadratic differential on a compact
Riemann surface S. A straight arc in S is a smooth path γ : I → S \ Crit(φ), defined on
an open interval I ⊂ R, which makes a constant angle πθ with the horizontal foliation.
In terms of a distinguished local co-ordinate w as in Section 2.1 the condition is that
the function Im(w/eiπθ ) should be constant along γ . The phase θ of a straight arc is a
well-defined element of R/Z; in the case θ = 0 the arc is said to be horizontal.

We make the convention that all straight arcs are parameterized by arc-length
in the φ-metric. Straight arcs differing by a reparameterization (necessarily of the form
t �→ ±t + constant) will be regarded as being the same. A straight arc is called maximal if
it is not the restriction of a straight arc defined on a larger interval. A maximal horizontal
straight arc is called a trajectory. Every point of S \Crit(φ) lies on a unique trajectory, and
any two trajectories are either disjoint or coincide.

We define a saddle trajectory to be a trajectory γ whose domain of definition is a
finite interval (a, b)⊂ R. Since S is compact, we can then extend γ to a continuous path
γ : [a, b]→ S, whose endpoints γ (a) and γ (b) are finite critical points of φ. We tend not
to distinguish between the saddle trajectory γ and its closure. By a closed saddle trajectory

we mean a saddle trajectory whose endpoints coincide.
More generally, a saddle connection is a maximal straight arc of some phase θ whose

domain of definition is a finite interval. Thus a saddle trajectory is a horizontal saddle
connection, and a saddle connection of phase θ is a saddle trajectory for the rotated
differential e−iπθ · φ.
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FIG. 7. — A closed saddle trajectory γ , and its preimages γ ± in the spectral cover, whose union define its (imprimitive)
hat-homology class

If a trajectory γ intersects itself, then it must be periodic, and have domain I = R.
In this situation we usually restrict the domain of γ to a primitive period [a, b] ⊂ R, and
refer to γ as a closed trajectory. By a finite-length trajectory we mean either a closed trajectory
or a saddle trajectory.

3.2. Hat-homology classes. — Let us again fix a meromorphic quadratic differential
φ on a compact Riemann surface S. The inverse image of the horizontal foliation of
S \ Crit(φ) under the covering map π defines a horizontal foliation on Ŝ \ π−1 Crit(φ).
In more detail, the 1-form ψ of Section 2.3 can be written locally as ψ = dŵ, and the
horizontal foliation of Ŝ is then given by the lines Im(ŵ) = constant. This foliation can
be canonically oriented by insisting that ψ evaluated on the tangent vector to the ori-
ented foliation should lie in R>0 rather than R<0. Note that since ψ is anti-invariant, the
covering involution τ preverses the horizontal foliation on Ŝ, but reverses its orientation.

Suppose that γ : [a, b]→ S is a finite-length trajectory. The inverse image π−1(γ )

is then a closed curve in the spectral cover Ŝ, which could be disconnected (if γ is a
closed trajectory), or singular (if γ is a closed saddle trajectory, see Figure 7). In all cases
we orient π−1(γ ) according to the orientation discussed in the previous paragraph. Since
the covering involution flips this orientation, we obtain a class γ̂ ∈ Ĥ(φ) called the hat-

homology class3 of the trajectory γ . Note that, by definition, it satisfies Zφ(γ̂ ) ∈ R>0.
Similar remarks apply to maximal straight arcs of finite-length and nonzero

phase θ . The only difference is that we orient the inverse image of the arcs on Ŝ by
insisting that ψ evaluated on the tangent vector should have positive imaginary part.
This means that the corresponding hat-homology classes have periods Zφ(γ̂ ) lying in the
upper half-plane.

3.3. Critical points. — We now describe the local structure of the horizontal folia-
tion near a critical point of a meromorphic quadratic differential, following Strebel [36,
Section 6].

3 With this definition it is not necessarily the case that γ̂ is primitive, cf. Figure 7. In the literature one often sees
a more complicated definition of the hat-homology class of a saddle trajectory which boils down to taking the unique
primitive multiple of our γ̂ .
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FIG. 8. — Local trajectory structures at a simple zero and a simple pole

Let φ be a meromorphic quadratic differential on a Riemann surface S. Suppose
first that p ∈ Crit<∞(φ) is either a simple pole of φ, in which case we set k = −1, or a
zero of some order k � 1. Then there are local co-ordinates t such that

φ(t)= c2 · tk dt⊗2, c = 1
2
(k + 2).

At nearby points of S \ {p}, a distinguished local co-ordinate is w = t
1
2 (k+2). The local

trajectory structure is illustrated in the cases k =±1 in Figure 8.
Note that three horizontal rays emanate from each simple zero; this trivalent struc-

ture will be the basic reason for the link with triangulations.
Next suppose that p ∈ Crit∞(φ) is a pole of order 2. Then there are local co-

ordinates t such that

φ(t)= r
dt⊗2

t2
,

for some well-defined constant r ∈ C∗. The residue of φ at p is

(3.1) Zφ(βp)= Resp(φ)=±4π i
√

r,

and is well-defined up to sign.
At nearby points of S \ {p} any branch of the function w = √

r log(t) is a distin-
guished local co-ordinate, and the structure of the horizontal foliation near p is deter-
mined by the residue as follows:

(i) if Resp(φ) ∈ R the foliation is by concentric circles centred on the pole;
(ii) if Resp(φ) ∈ iR the foliation is by radial arcs emanating from the double pole;

(iii) if Resp(φ) /∈ R ∪ iR the leaves of the foliation are logarithmic spirals which
wrap onto the pole.

These three cases are illustrated in Figure 9. In cases (ii) and (iii) there is a neighbourhood
p ∈ U ⊂ S such that any trajectory entering U tends to p.

Finally, suppose that p ∈ Crit∞(φ) is a pole of order m > 2. If m is odd, there are
local co-ordinates t such that

φ(t)= c2 · t−m dt⊗2, c = 1
2
(2− m)
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FIG. 9. — Local trajectory structures at a double pole

FIG. 10. — Local trajectory structures at poles of order m = 3,4,5

as before. If m � 4 is even, there are local co-ordinates t such that

φ(t)=
(

ct−m/2 + b

t

)2

dt⊗2, c = 1
2
(2− m).

The residue of φ at p is then

Zφ(βp)= Resp(φ)=±4π ib,

and is well-defined up to sign.
The trajectory structure in these cases is illustrated in Figure 10. There is a neigh-

bourhood p ∈ U ⊂ S and a collection of m − 2 distinguished tangent directions vi at p,
such that any trajectory entering U eventually tends to p and becomes asymptotic to one
of the vi .

3.4. Global trajectories. — Let φ be a GMN differential on a compact Riemann
surface S. We now consider the global structure of the horizontal foliation of φ, again
following Strebel [36, Section 9–11]. Every trajectory of φ falls into exactly one of the
following categories:

(1) saddle trajectories approach finite critical points at both ends;
(2) separating trajectories4 approach critical points at each end, one finite and one

infinite;
(3) generic trajectories approach infinite critical points at both ends;

4 These trajectories do not separate the surface: we call them separating because in the generic saddle-free situation
considered in Section 3.5 the separating trajectories divide the surface into a disjoint union of cells.
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(4) closed trajectories are simple closed curves in S \Crit(φ);
(5) recurrent trajectories are recurrent in at least one direction.

Since only finitely many horizontal arcs emerge from each finite critical point, the num-
ber of saddle trajectories and separating trajectories is finite. Removing these from S,
together with the critical points Crit(φ), the remaining open surface splits as a disjoint
union of connected components which can be classified as follows5

(1) A half-plane is equivalent to the upper half-plane{
z ∈ C : Im(z) > 0

}⊂ C

equipped with the differential dz⊗2. It is swept out by generic trajectories which
connect a fixed pole of order m > 2 to itself. The boundary is made up of saddle
trajectories and separating trajectories.

(2) A horizontal strip is equivalent to a region{
z ∈ C : a < Im(z) < b

}⊂ C,

equipped with the differential dz⊗2. It is swept out by generic trajectories con-
necting two (not necessarily distinct) poles of arbitrary order m � 2. Each com-
ponent of the boundary is made up of saddle trajectories and separating tra-
jectories.

(3) A ring domain is equivalent to a region{
z ∈ C : a < |z|< b

}⊂ C∗,

equipped with the differential r dz⊗2/z2 for some r ∈ R<0. It is swept out by
closed trajectories. Each component of the boundary is either made up of sad-
dle trajectories or is a single double pole of φ with real residue.

(4) A spiral domain is defined to be the interior of the closure of a recurrent tra-
jectory. The only fact we shall need is that the boundary of a spiral domain is
made up of saddle trajectories. In particular there are no infinite critical points
in the closure of a spiral domain.

A ring domain A will be called degenerate if one of its boundary components consists
of a double pole p. The residue Resp(φ) is then necessarily real, and A consists of closed
trajectories encircling p. Conversely, any double pole p with real residue is contained in a
degenerate ring domain. A ring domain A will be called strongly non-degenerate if its bound-
ary consists of two, pairwise disjoint, simple closed curves on S. Not all non-degenerate
ring domains are strongly non-degenerate; for example, in the case of finite area differ-
entials, there is a dense subspace of Quad(g,m) consisting of differentials which have a
single dense ring domain [36, Theorem 25.2].

5 See [36, Section 11.4]. Strictly speaking the decomposition is into maximal horizontal strips, half-planes etc., but
since all such domains we consider will be maximal, we drop the qualifier. Recall that we have outlawed various degenerate
cases: by assumption φ has at least one finite critical point, and at least one pole.
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FIG. 11. — The generic (dotted) and separating trajectories (solid) for a saddle-free GMN differential having only double
poles. All horizontal strips in the picture are non-degenerate

3.5. Saddle-free differentials. — We say that a GMN differential is saddle-free if it has
no saddle trajectories. The following simple but crucial observation comes from [14, Sec-
tion 6.3].

Lemma 3.1. — If a GMN differential φ is saddle-free, and Crit∞(φ) is non-empty, then φ

has no closed or recurrent trajectories.

Proof. — Since Crit∞(φ) is non-empty the surface S cannot be the closure of a
spiral domain. On the other hand, the boundary of a spiral domain consists of saddle
trajectories. Thus there can be no spiral domains, and hence no recurrent trajectories.
Similarly the boundary of a ring domain must contain saddle trajectories, except for the
case when both boundary components are double poles with real residue. This can only
occur when g = 0 and the polar type is m = (2,2); such differentials are not GMN since
they have no finite critical points. �

Let φ be a saddle-free GMN differential such that Crit∞(φ) is non-empty. Remov-
ing the finitely many separating trajectories from S \Crit(φ) gives an open surface which
is a disjoint union of horizontal strips and half-planes swept out by generic trajectories.

Each of the two components of the boundary of a horizontal strip contains exactly
one finite critical point of φ. If these are both zeroes, then embedded in the surface
there are two possibilities, depending on whether the two zeroes are distinct or coincide;
we call the corresponding strips regular or degenerate respectively. These two possibilities are
illustrated in Figure 12; note though that the two double poles in the first of these pictures
could well coincide on the surface.

A horizontal strip containing a simple pole in one of its boundary components is
almost always of the form illustrated in Figure 13. The one exception occurs in genus
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FIG. 12. — Two types of strip, regular and degenerate

FIG. 13. — Horizontal strip with a simple pole on its boundary; the simple pole is in the centre of the diagram with a
double pole above and a simple zero below

FIG. 14. — A horizontal strip in C with its standard saddle connection

0 and polar type (1,1,2): the moduli space of such differentials consists of a single C∗-
orbit, and the trajectory structure for a generic element consists of a single horizontal
strip containing two simple poles in its boundary.

3.6. Standard saddle connections. — Let φ be a saddle-free GMN differential on a
Riemann surface S, and assume that Crit∞(φ) is non-empty. The interior of each hori-
zontal strip is equivalent to a strip in C equipped with the differential dz⊗2. In each such
strip h there is a unique saddle connection 
h connecting the two finite critical points on
the opposite sides of the strip, as depicted in Figure 14.

Since φ is saddle-free, 
h must have nonzero phase. As in Section 3.1, there is an
associated hat-homology class αh ∈ Ĥ(φ), which by definition satisfies Im Zφ(αh) > 0. We
call the arcs 
h the standard saddle connections of the differential φ. The classes αh will be
called the standard saddle classes.

Lemma 3.2. — The standard saddle classes αh form a basis for the group Ĥ(φ).
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Proof. — In each horizontal strip hi we can choose a generic trajectory and then
take one of its two lifts to the spectral cover to give a class δhi

in the relative homology
group of (2.5). The intersection number 〈αhi

, δhj
〉 is then nonzero precisely if hi = hj , in

which case it is ±1. Thus the elements αhi
are linearly independent. Lemma 2.2 states

that the group Ĥ(φ) is free of rank n given by equation (2.2). To complete the proof it will
be enough to show that this is also the number of horizontal strips of φ.

By a transverse orientation of a separating trajectory we mean a continuous choice
of normal direction; for each separating trajectory there are two possible choices. We ori-
ent the separating trajectories in the boundary of a horizontal strip by taking the inward
pointing normal direction. Each horizontal strip then has four transversally oriented sep-
arating trajectories in its closure; for a degenerate strip, two of these consist of different
orientations of the same trajectory. Similarly, each half-plane has two such oriented trajec-
tories. Moreover, every oriented separating trajectory occurs as the boundary of exactly
one half-plane or horizontal strip.

Let x be the number of horizontal strips, and s the number of simple poles. Three
horizontal arcs emanate from each zero, and one from each simple pole, and each of
these forms the end of a separating trajectory. Each pole of order m � 3 is surrounded
by m − 2 half-planes, so the total number of these is s + ∑d

i=1(mi − 2). Thus we get an
equality

4x + 2s + 2
d∑

i=1

(mi − 2)= 6
(

4g − 4+
d∑

i=1

mi

)
+ 2s.

Simplifying this expression gives x = n. �

3.7. Geodesics. — Let φ be a meromorphic quadratic differential on a Riemann
surface S. Recall from Section 2.1 that φ induces a metric space structure on the open
subsurface S◦ = S \ Crit∞(φ). A φ-geodesic is defined to be a locally-rectifiable path
γ : [0,1] → S◦ which is locally length-minimizing. Note that it is not assumed that γ

is the shortest path between its endpoints.
It follows immediately from the definition of the φ-metric that any straight arc is

a φ-geodesic, and that conversely, in a neighbourhood of a non-critical point of φ, any
geodesic is a straight arc. Using the canonical co-ordinate systems of Section 3.3, it is
easy to determine the local behaviour of geodesics near a finite critical point of φ. Here
we briefly summarize the results of this analysis, and refer the reader to Strebel [36,
Section 8] for more details.

In a neighbourhood of a zero p of φ of order k, any two points are joined by
a unique geodesic, which is also the shortest curve in S◦ connecting these points. This
unique geodesic is either a straight arc not passing through p, or is composed of two
radial straight arcs emanating from p. This second situation occurs precisely if the angle
between the radial arcs is � 2π/(k + 2).
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FIG. 15. — Geodesic segments near a simple zero

FIG. 16. — Geodesic segments near a simple pole, and their inverse images under the square-root map. Note that the
pulled-back differential has a non-critical point at the inverse image of the pole

In a neighbourhood of a simple pole p of φ, any two points are connected by at
least one geodesic, but uniqueness of geodesics fails: some pairs of points are connected by
more than one straight arc (see Figure 16). Moreover, a geodesic need not be the shortest
path between its endpoints: it is length-minimizing locally, but not necessarily globally.
Note however, that no geodesic contains the point p in its interior: the only geodesics
passing through p begin or end there.

From these local descriptions, it immediately follows that any geodesic in S◦ is
a union of (closures of) straight arcs, joined at zeroes of φ. In particular, any geodesic
connecting points of Crit<∞(φ) is a union of saddle connections. Of course, the phases
of the constituent saddle connections will usually be different.

3.8. Gluing surfaces along geodesics. — It will be useful in what follows to glue Rie-
mann surfaces equipped with quadratic differentials along closed curves made up of
unions of saddle connections. We will use some particular examples of this construction
in Sections 5.5 and 6.4 below.

Consider a topological surface S with boundary. By a quadratic differential on S
we simply mean a quadratic differential on the interior of S, that is a quadratic differen-
tial on a Riemann surface whose underlying topological surface is the interior of S. We
say that two such surfaces Si equipped with differentials φi are equivalent if there is a
homeomorphism f : S1 → S2 which restricts to a biholomorphism on the interiors and
satisfies f ∗(φ2)= φ1.
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Given an integer k � 0 we denote by Vk ⊂ C the closed sector bounded by the rays
of argument 0 and 2π(k + 1)/(k + 2). We equip the interior of Vk with the differential

φk(t)= c2 · tk dt⊗2, c = 1
2
(k + 2).

Thus, for example, V0 ⊂ C is the closed upper half-plane equipped with the standard
differential φ0(t)= dt⊗2 on its interior. In general the differential φk extends holomorphi-
cally over a neighbourhood of the boundary of Vk , and when k > 0, the boundary ∂Vk

then consists of two horizontal trajectories of φk meeting at a zero of order k.
Note that the map tk+2 = z2 gives an equivalence

(3.2)
(
C \Vk, φk(t)

)∼= (
h, dz⊗2

)
.

Thus a copy of Vk can be glued to a copy of V0 in such a way that the differentials φk and
φ0 on the interiors extend to a well-defined differential on C.

If φ is a quadratic differential on a topological surface S with boundary, we say
that the pair (S, φ) has a gluable boundary if each point x ∈ ∂S has a neighbourhood which
is equivalent to a neighbourhood of 0 ∈ Vk for some k � 0. In particular it follows that
the boundary ∂S is either a union of saddle trajectories or a single closed trajectory. Note,
however, that the gluable boundary condition is a much stronger statement: if z ∈ ∂S is a
zero of φ of order k, then there are k + 2 horizontal trajectories in S emanating from z,
two of which lie in the boundary.

Suppose that S is a Riemann surface equipped with a meromorphic differential φ

having simple zeroes, and that γ ⊂ S is a separating simple closed curve which is either
a closed trajectory or a union of saddle trajectories. Cutting the underlying topological
surface S along γ we can view it as a union of two surfaces with boundary S± glued along
the curve γ . The assumption that φ has simple zeroes then immediately implies that the
pairs (S±, φ|S±) have gluable boundaries in the sense described above.

Conversely, suppose that S± are two smooth, oriented surfaces with boundary,
each with a single boundary component ∂S±, and each equipped with a meromorphic
quadratic differential φ±.

Lemma 3.3. — Suppose that the pairs (S±, φ±) have gluable boundaries, and that the φ±-

lengths of the boundaries ∂S± are equal. Then there is a Riemann surface S whose underlying topological

surface S is obtained by gluing the surfaces S± along their boundaries, and a meromorphic differential φ

on S which coincides with the differentials φ± on the interiors of the two subsurfaces S± ⊂ S.

Proof. — Parameterize the two boundary components ∂S± by arc-length in the
φ±-metric, and then identify them. When we do this we have the freedom to choose the
rotation of the two surfaces relative to each other, and we can therefore ensure that zeroes
of φ± do not become identified. The fact that the quadratic differentials φ± glue together
then follows from the equivalence (3.2). �
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Remarks 3.4.

(a) It is clear from the proof of Lemma 3.3 that the surface S is not uniquely determined by the

pairs (S±, φ±): we can rotate the subsurfaces S± relative to one another.

(b) The gluable boundary assumption is necessary: one cannot always glue differentials on sur-

faces whose boundaries are made up of saddle trajectories. Indeed, otherwise one could take a

degenerate ring domain whose boundary consists of i � 1 saddle trajectories, and glue it to

itself to obtain a meromorphic differential on a sphere with 2 double poles and i simple zeroes.

This cannot exist by Riemann-Roch.

4. Period co-ordinates

The aim of this section is to prove that the period map (2.10) on the space of
framed differentials is a local isomorphism. For finite area differentials this is standard,
but for the more general meromorphic differentials considered here there does not seem
to be a proof in the literature. The reader prepared to take this result on trust can skip
to the next section. We begin by considering geodesics for the metric defined by a GMN
differential φ, and the way in which these change as φ moves in the corresponding space
Quad(g,m).

4.1. Existence and uniqueness of geodesics. — Let φ be a meromorphic quadratic differ-
ential on a compact Riemann surface S. As in Section 2.1 we equip the open subsurface
S◦ = S \ Crit∞(φ) with the metric space structure induced by the φ-metric. In this sec-
tion we state some well-known global existence and uniqueness properties for geodesics
on this surface. A more detailed treatment can be found in [36, Sections 14–18].

Given points p, q ∈ S◦, we denote by C(p, q) the set of all rectifiable paths
γ : [0,1]→ S◦ connecting p to q. We equip this set with the topology of uniform conver-
gence. Two curves in C(p, q) are considered homotopic if they are homotopic relative to
their endpoints through paths in S◦. We denote by 
φ(γ ) the length of a curve γ ∈ C(p, q).
A curve in C(p, q) will be called a minimal geodesic if no homotopic path has smaller length;
any such curve is locally length-minimising, and hence a geodesic.

The following result is well-known.

Theorem 4.1.

(a) the subset of curves in C(p, q) representing a given homotopy class is open and closed,

(b) the function sending a curve in C(p, q) to its length is lower semi-continuous,

(c) for any L > 0, the subset of curves in C(p, q) of length � L which are parameterized

proportional to arc-length is compact,

(d) every homotopy class of curves in C(p, q) contains at least one minimal geodesic,

(e) if φ has no simple poles then geodesics in C(p, q) are homotopic only if they are equal.
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Proof. — Since the surface S is assumed compact, the metric space S◦ is proper,
which is to say that all closed, bounded subsets are compact. It is also clear that any
two points of S◦ can be connected by a rectifiable path. The statements (a)–(d) hold for
all metric spaces with these two properties: see for example [32, Section 1.4]. Part (e) is
proved by Strebel [36, Theorem 16.2]. �

If the differential φ has no simple poles, Theorem 4.1 implies that all geodesics
are minimal. If φ has simple poles the situation is more complicated: a given homotopy
class may contain more than one geodesic representative, and not all such representatives
need be minimal.

Lemma 4.2. — For any L > 0, there are only finitely many geodesics γ ∈ C(p, q) with


φ(γ )� L.

Proof. — First assume that φ has no simple poles. It follows from Theorem 4.1(c)
that the subset of C(p, q) consisting of curves of length � L has only finitely many con-
nected components. In particular, by part (a), there can only be finitely many homotopy
classes of such curves. But, by part (e), a geodesic is determined by its homotopy class, so
the result follows. In the general case, take a covering π : S̃ → S branched at all simple
poles of φ, and consider the pulled-back differential φ̃ = π∗(φ). Any φ-geodesic in S can
be lifted to a φ̃-geodesic in S̃ of the same length. Since φ̃ has no simple poles, this reduces
us to the previous case. �

4.2. Varying the differential. — Our next step is to study the way geodesics of a GMN
differential move as the differential varies in its moduli space. Fix a genus g � 0 and a
collection of d � 1 positive integers m = {mi}. Recall from the proof of Proposition 2.4
that, when it is non-empty, the space Quad(g,m) is an open subset of a vector bundle

H(g,m)→M(g, d)/Sym(m).

The fibre of this bundle over a marked curve (S, (pi)) is the space of global sections of the
line bundle ω⊗2

S (
∑

i mipi).
Let us consider a fixed differential φ0 ∈ Quad(g,m), which we view as a base-

point, and consider an open ball6 φ0 ∈ Q ⊂ Quad(g,m). By Ehresmann’s theorem, the
universal curve over M(g, d) pulls back to a differentiably locally-trivial fibre bundle
over Q. It follows that we can fix an underlying smooth surface S, and view the points of
Q as defining pairs consisting of a complex structure on S together with a meromorphic
quadratic differential φ on the resulting Riemann surface S. Composing with a smoothly
varying family of diffeomorphisms we can further assume that the differentials in Q have
poles and zeroes at the same fixed points of S.

6 More precisely, if φ0 is an orbifold point, we should take an étale map Q → Quad(g,m) from a complex ball, but
we suppress this point in what follows. Alternatively one could pull back the bundle (2.7) to Teichmüller space and work
locally there.
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Lemma 4.3. — Fix a constant R > 1. Then any point of Q is contained in some neighbourhood

U ⊂ Q such that

(1/R) · 
φ1(γ )� 
φ2(γ )� R · 
φ1(γ ),

for any curve γ in S, and any pair of differentials φi ∈ U.

Proof. — Fix an arbitrary Riemannian metric g on the smooth surface S, and write
η(x, y) for the distance between two points x, y ∈ S computed in this metric. Away from
the poles pi we can view the meromorphic differential φ corresponding to a point of Q
as defining a smooth section of the bundle (T∗

S)
⊗2, the tensor square of the rank 2 bundle

of smooth complex-valued 1-forms on S. Near a pole pi of order mi , the rescaled section
η(x, pi)

mi · φ(x) is smooth in a neighbourhood of pi , and has non-zero value at p. Similar
remarks apply near a zero of φ.

Given two points φ1, φ2 ∈ Q it follows that the ratio |φ1|/|φ2|, considered as a
smooth function on the set of nonzero tangent vectors to S, is everywhere defined and
varies smoothly with the differentials φi . Thus around any point of Q we can find a
neighbourhood U ⊂ Q such that (1/R) · |φ1|� |φ2|� R · |φ1|, for all φ1, φ2 ∈ U and all
tangent vectors to S. Integrating this inequality along a curve gives the result. �

4.3. Persistence of saddle connections. — In this section we show that if a GMN dif-
ferential varies continuously in its moduli space then its geodesics also vary continuously.
We take notation as in the last section.

Proposition 4.4. — Suppose that γ0 ∈ C(p, q) is a φ0-geodesic. Then there is a family of

curves γ (φ) ∈ C(p, q), varying continuously with φ ∈ Q, such that γ0 = γ (φ0), and such that for

all φ ∈ Q the curve γ (φ) is a φ-geodesic.

Proof. — Let us first consider the case when φ0 has no simple poles. By Theo-
rem 4.1, for each φ ∈ Q there exists a unique φ-geodesic γ (φ) in C(p, q) which is ho-
motopic to γ0. We must show that the resulting curves γ (φ) vary continuously with φ.
Assuming the opposite, let us take ε > 0 and suppose that there exists a sequence of dif-
ferentials φn ∈ Q with φn → φ, such that for all n the geodesic γn = γ (φn) does not lie
within distance ε of γ = γ (φ) in the supremum norm. In other words, for each n, we can
find tn ∈ [0,1] such that

d
(
γn(tn), γ (tn)

)
� ε.

Passing to a subsequence we can assume that tn → t ∈ [0,1]. Lemma 4.3 shows that for
any R > 1

(4.1) (1/R) · 
φ(γn)� 
φn
(γn)� 
φn

(γ )� R · 
φ(γ ),
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for large enough n. In particular, we can assume that the γn all satisfy 
φ(γn) � L, for
some constant L > 0. Theorem 4.1 implies that, when parameterised proportional to
φ-arclength, some subsequence of the γn converges to a limit curve γL. This limit curve
cannot be equal to γ , since

d
(
γL(t), γ (t)

)
� ε.

On the other hand, the inequalities (4.1) show that 
φ(γL) � 
φ(γ ). This contradicts the
fact, immediate from Theorem 4.1, that all geodesics are minimal.

For the general case we use the same trick as in Lemma 4.2. Namely, we consider a
covering π : S̃ → S which is branched at all simple poles of φ0. We can lift γ0 to a geodesic
γ̃0 on the surface S̃ for the pulled-back differential π∗(φ0). This differential has no simple
poles, so we can apply what we proved above to obtain a continuous deformation of γ̃0.
Pushing back down to S gives the required deformation of γ0. �

Remarks 4.5.

(a) If the geodesic γ0 = γ (φ0) of Proposition 4.4 is a straight arc (which is to say that it contains

no zeroes of φ0 in its interior) then, by continuity, the same is true for the geodesics γ (φ)

for all differentials φ in some neighbourhood of φ0. Thus, in particular, saddle connections

persist under small deformations of the differential.

(b) A minor modification of the proof shows that the conclusion of Proposition 4.4 also holds if

we allow the endpoints p, q of the path γ (φ) to vary continuously with the differential φ.

4.4. Persistence of separating trajectories. — We explained in Section 3.3 that an infi-
nite critical point p of a meromorphic quadratic differential is contained in a trapping
neighbourhood p ∈ U such that all trajectories entering U eventually tend towards the
point p. In fact we can be more explicit about this neighbourhood.

Lemma 4.6. — Take a point p ∈ Crit∞(φ) which is not a double pole with real residue. Then

there is a disc p ∈ D ⊂ S whose boundary consists of saddle connections and such that any trajectory

intersecting D tends to p in at least one direction.

Proof. — Consider the geodesic representative of the closed loop δp around p. It
consists of a union of straight arcs of varying phase connecting zeroes of φ0, which to-
gether cut out an open disc p ∈ D ⊂ S containing no points of Crit∞(φ). This disc cannot
contain any finite critical points of φ either: if z ∈ D were such a point, the geodesic repre-
sentative of a loop round p based at z would be homotopic to δp, contradicting uniqueness
of geodesic representatives. If a trajectory intersects the boundary of D twice this again
contradicts uniqueness of geodesics. Hence any trajectory in one direction must either be
recurrent or tend to the pole. But recurrence is also impossible since the boundary of the
resulting spiral domain would involve saddle connections contained in D. �
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Remarks 4.7.

(a) In the case of a double pole with real residue, the pole is enclosed in a degenerate ring domain

whose boundary consists of a union of saddle trajectories. This ring domain is the analogue of

the trapping neighbourhood: any trajectory intersecting D is one of the closed trajectories of D.

(b) Proposition 4.4 shows that the region D = D(φ) of Lemma 4.6 varies continuously with

φ. In particular, there is an open neighbourhood of the pole p which has the trapping property

for all differentials in a neighbourhood of a given base-point φ0.

In the last section we proved that saddle connections persist to nearby differentials;
we shall now prove a similar result for separating trajectories. Note that in contrast to
saddle connections (whose phases vary as they deform) we can always deform separating
trajectories in such a way that they remain horizontal.

Proposition 4.8. — Suppose that γ0 : [0,∞) → S◦ is a separating trajectory for the differ-

ential φ0, which starts at a point p ∈ S◦ and limits to an infinite critical point r ∈ S. Then there is a

neighbourhood φ0 ∈ U ⊂ Q, and a family of curves γ (φ) : [0,∞)→ S◦, varying continuously with

φ ∈ Q, such that γ0 = γ (φ0), and such that for all φ ∈ Q the curve γ (φ) is a separating trajectory

for φ, starting at p and limiting to r.

Proof. — Note that r cannot be a double pole of real residue. Consider the open
neighbourhood r ∈ D ⊂ S which has the trapping property for any φ lying in some neigh-
bourhood φ0 ∈ U ⊂ Q. Take a point q0 = q(φ0) ∈ D on the trajectory γ0. Consider the
holomorphic function near q0 obtained by integrating

√
φ along the trajectory γ0. This

function varies smoothly with φ so, by the implicit function theorem, we can continuously
vary q(φ) ∈ D so that

(4.2)
∫ q(φ)

p

√
φ ∈ R,

for all φ ∈ U, where the integral is taken along a path homotopic to γ0.
By Remark 4.5(b), there is a continuous family of curves γ (φ) parameterized by

φ ∈ U, with γ (φ0) = γ0, and such that for each φ the curve γ (φ) is a φ-geodesic con-
necting p to q(φ). Shrinking U if necessary, each of these geodesics is in fact a straight arc,
and the relation (4.2) shows that these arcs are all horizontal. By the trapping assumption
on D, each arc γ (φ) must extend to a separating trajectory γ (φ) : [0,∞) → S for φ.
The fact that these trajectories vary continuously when restricted to any finite interval
[0, t] ⊂ [0,∞) then follows by another application of the argument of Proposition 4.4. �

4.5. Horizontal strip decompositions. — Fix again a genus g � 0 and a collection of
d � 1 unordered positive integers m = {mi}. As preparation for proving that the period
map (2.10) is a local isomorphism, in this section and the next we will study the set of all
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saddle-free GMN differentials whose separating trajectories decompose the underlying
smooth surface S into a given fixed set of horizontal strips and half-planes.

We say that two saddle-free GMN differentials (Si, φi) have the same horizontal strip

decomposition if there is an orientation-preserving diffeomorphism f : S1 → S2 which maps
each horizontal strip (respectively half-plane) of φ1 bijectively onto a horizontal strip (re-
spectively half-plane) of φ2. In particular, equivalent differentials have the same horizontal
strip decomposition.

More concretely, two equivalence-classes of saddle-free differentials have the same
horizontal strip decomposition precisely if we can find representatives (Si, φi) which have
the same underlying smooth surface S, and the same horizontal strips, half-planes and
separating trajectories.

We would like to classify equivalence classes of saddle-free differentials (S, φ) with
a given horizontal strip decomposition in terms of the periods of the corresponding stan-
dard saddle classes αh. However, the existence of differentials with automorphisms which
permute their horizontal strips makes it impossible to assign a well-defined period point
to an arbitrary saddle-free differential. The solution is to consider framed differentials, as
in Section 2.6.

We say that two framed GMN differentials have the same horizontal strip decom-
position if there is an orientation-preserving diffeomorphism f : S1 → S2 preserving the
horizontal strip decomposition as before, and also preserving the framings, in the sense
that the distinguished lift f̂ of Section 2.6 makes the diagram (2.8) commute. Again,
equivalent framed differentials have the same horizontal strip decomposition.

Note that, by Lemma 3.2, a framing of a saddle-free differential gives rise to a
labelling of the horizontal strips by the elements of a basis of �, and that conversely,
the framing is completely determined by this labelling. Explicitly, if the framing is given
by an isomorphism θ : � → Ĥ(φ), then the strip h is naturally labelled by the element
θ−1(αh). Moreover, two saddle-free differentials have the same horizontal strip decom-
position precisely if we can find representatives (Si, φi) which have the same underlying
smooth surface S, and the same horizontal strips as before, and which moreover have the
same labellings by elements of �.

The following result will be the basis for our proof of the existence of period co-
ordinates. We defer the proof to the next subsection: by what was said above it amounts to
classifying saddle-free differentials φ on a smooth surface S with a fixed set of horizontal
strips and half-planes, and also with a fixed ordering of the horizontal strips.

Proposition 4.9. — Let U ⊂ Quad�(g,m) be the set of equivalence-classes of framed saddle-

free GMN differentials with a given horizontal strip decomposition. Choosing an ordering of the horizontal

strips, the resulting map

πU : U → Cn, φ �→ Zφ(αhi
)

is a bijection onto the subset {(z1, . . . , zn) ∈ Cn : Im(zi) > 0}.
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FIG. 17. — Horizontal strip decompositions in case g = 1, m = (2)

The next example shows that it is possible for a saddle-free differential to have
non-trivial automorphisms which preserve each horizontal strip. Such automorphisms
preserve the standard arc classes and hence give automorphisms of the corresponding
framed differential.

Example 4.10. — Consider the case g = 1 and m = (2): one of the exceptional cases
of Lemma 2.6. The space Quad(g,m) parameterizes pairs (S, φ), where S is a Riemann
surface of genus 1, and φ is a meromorphic differential with one double pole and two
simple zeroes. Such differentials can be written explicitly as

φ(z)= (
a℘(z)+ b

)
dz⊗2,

where ℘(z) is the Weierstrass ℘-function corresponding to S. These functions are invari-
ant under the inverse map z �→ −z.

The possible horizontal strip decompositions are shown in Figure 17. Note that the
inverse map (which is a rotation by π on the diagram) preserves each of these decompo-
sitions, and acts via a non-trivial automorphism of each horizontal strip.

4.6. Gluing strips. — In this section we prove Proposition 4.9.
Let h ⊂ C be the upper half-plane, and take z ∈ h. We define the standard com-

plete horizontal strip of period z to be the region

C̄(z)= {
0 � Im(t) � Im(z)

}⊂ C,

with two marked points on its boundary at {0, z}. We equip the interior C(z)⊂ C̄(z) with
the quadratic differential dt⊗2. Similarly, the standard complete half-plane C̄(∞) is the
region {Im(t) � 0}, equipped with the differential dt⊗2 in its interior, and with a single
marked point at 0.

For any two elements w, z ∈ h there is a diffeomorphism

θw,z : C̄(w)∼= C̄(z),

preserving the marked points on the boundary, and with the further property that in
a neighbourhood of each of the two boundary components of C̄(w) it is given by a
translation in C. To be completely definite, we can define

θw,z(t)= t + η
(
Im(t)/ Im(w)

) · (z −w),
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where η : [0,1] → [0,1] is some smooth function satisfying η([0, 1
4 ]) = 0 and η([ 3

4 ,1])
= 1.

When z ∈ h there is a single non-trivial automorphism of C̄(z) preserving the
differential and the marked points, namely t �→ z − t. We can ensure that the diffeo-
morphisms θw,z we have constructed commute with these non-trivial automorphisms by
insising that the function η satisfies η(t)+ η(1− t)= 1.

Let φ be a saddle-free GMN differential on a compact Riemann surface S such that
Crit∞(φ) is non-empty. Thus φ determines a decomposition of the underlying smooth
surface S into horizontal strips and half-planes. The restriction of the differential φ to a
horizontal strip hi is equivalent to the standard differential dt⊗2 on the standard cell C(zi)

via an isomorphism fi : C(zi)→ hi . This extends to a continuous map

f̄i : C̄(zi)→ S,

and composing with a translation we can ensure that it takes the marked points {0, zi} to
the finite critical points on the boundary of hi . The four boundary half-edges of C̄(zi) are
then taken to the separating trajectories forming the boundary of hi .

To build a differential φ on S with the same horizontal strip decomposition, and
arbitrary periods wi , introduce diffeomorphisms

gi = fi ◦ θwi,zi
: C(wi)→ hi.

Pushing forward the complex structure and quadratic differential from C(wi) using gi

defines a new complex structure and differential ψ on the strips hi , and this trivially ex-
tends over the separating trajectories and finite critical points since it agrees with the old
one φ in a neighbourhood of these points. Note that we leave the half-planes completely
unchanged.

We must now show that the new complex structure extends over the poles of φ.
First note that the function θwi,zi

is invariant under translations in the real direction in
C̄(wi), and hence its derivatives are bounded on C̄(wi). It follows that there is a bound

(4.3) (1/R) · |φ|� |ψ |� R · |φ|,
where we consider both sides as functions on the tangent bundle to S◦ = S \ Crit∞(φ),
and R > 1 is a constant depending only on the periods wi and zi.

Take a small punctured disc U ⊂ S centered at a pole p of φ, and consider the
complex structures U(φ) and U(ψ) induced by the two differentials. Thus U(φ) is bi-
holomorphic to the standard punctured disc D∗, and we would like to know that this is
also the case for U(ψ). By the Riemann mapping theorem, U(ψ) is biholomorphic to
some annulus

{
r1 < |z|< r2

}⊂ C.
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We can compute the modulus (1/2π) log(r2/r1) ∈ [0,∞] using extremal length [9], and
the inequalities (4.3) show that this gives the same result as for U(φ). Hence U(ψ) is
also biholomorphic to a punctured disc, and so we can extend the new complex structure
over p. Applying the inequalities (4.3) again then shows that ψ extends to a meromorphic
function at p with the same pole order as φ.

The above argument proves that the map πU of Proposition 4.9 is surjective. To
prove that it is injective, suppose that two differentials (Si, φi) have the same horizontal
strip decomposition and the same periods Zφi

(αhj
). Note that the restrictions of (Si, φi)

to the interior of a given horizontal strip hj are equivalent, via a biholomorphism which
extends continuously over the boundary of the strip. Glueing these maps together gives
a homeomorphism f : S1 → S2 which is biholomorphic on the interior of each strip. It
follows that f is in fact a biholomorphism, and since the meromorphic sections f ∗(φ2)

and φ1 coincide on an open subset, they must be equal.

4.7. Period co-ordinates. — We can now prove that (with certain exceptions) the pe-
riod map (2.10) is a local isomorphism. Let us fix a genus g � 0 and a collection of d � 1
integers m = {mi}. We shall need the following easy corollary of Proposition 4.8.

Lemma 4.11. — Suppose that at least one mi � 2. Then the subset B0 ⊂ Quad(g,m) of

saddle-free differentials is open and has non-trivial intersection with every S1-orbit.

Proof. — By Lemma 3.1, a GMN differential with an infinite critical point is saddle-
free precisely if every trajectory leaving a finite critical point is separating. Proposition 4.8
shows that this condition is stable under small deformations of the differential. Thus B0

is open.
If a GMN differential φ has a saddle trajectory γ then by the definition of the hat-

homology class, Zφ(γ̂ ) ∈ R>0. Consider the subset �φ ⊂ S1 of phases θ for which e−iπθ ·φ
has a saddle trajectory. Then �φ is contained in the set of elements arg Zφ(α) for classes
α ∈ Ĥ(φ) having nonzero period. Thus �φ is countable. In particular, the complement
of �φ is non-empty. �

We remark that the conclusion of Lemma 4.11 is definitely false without the as-
sumption that the differential has an infinite critical point. For a saddle-free differential
on a finite-area surface every trajectory is recurrent; a fairly simple consequence of that
recurrence is that the (still countable) subset �φ ⊂ S1 is then dense, see e.g. [30] for a
detailed proof.

Theorem 4.12. — Suppose that the polar type (g,m) is not one of the 6 exceptional cases listed

in Lemma 2.6. Then the space of framed GMN differentials Quad�(g,m) is either empty, or is a

complex manifold of dimension n, and the period map

π : Quad�(g,m)→ HomZ(�,C)
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is a local isomorphism of complex manifolds.

Proof. — We divide into two cases. In the finite area case when all mi = 1 we appeal
to the known result that the period map is a local isomorphism in this setting.7 We do need
to be a little bit careful to prove that Quad�(g,m) is a manifold. Consider the complex
manifold V(g,m) obtained by pulling back the fibration

Quad(g,m)→M(g, d)/Sym(m)

to Teichmüller space. Pulling back the space of framed differentials gives a local isomor-
phism p : V�(g,m)→ V(g,m). Taking an open subset U ⊂ V(g,m) and a locally-defined
section of p gives local isomorphisms

f : U → V�(g,m)→ Quad�(g,m),

and taking the composition with the period map π gives a locally-defined period map on
V(g,m). This period map is known to be a local isomorphism [39] and, hence, shrinking
U if necessary, we can assume that f is injective on points. Our assumption ensures that
the space Quad�(g,m) has trivial generic automorphism group so it follows that f is an
isomorphism onto its image. Hence Quad�(g,m) is a complex manifold and the period
map π is a local isomorphism.

Suppose now that some mi � 2. By Lemma 4.11 we can use the S1-action and work
in a neighbourhood consisting of saddle-free differentials on a fixed underlying surface S
and with a fixed horizontal strip decomposition. An automorphism of such a differential
φ is a smooth map f : S → S satisfying f ∗(φ) = φ. It preserves the framing precisely if
it acts trivially on the set of horizontal strips. Assume that f is not the identity. When
pulled-back to a standard strip C(zi) it must then act by t �→ zi − t. But the construc-
tion of Section 4.6 shows that f then preserves all differentials with the same horizontal
strip decomposition as φ. Since Quad�(g,m) is assumed to have trivial generic automor-
phism group, this is impossible. Hence Quad�(g,m) is a manifold. The result now follows
from Proposition 4.9. The horizontal strip decomposition is locally-constant on B0, so
the subset U appearing there is open. The map πU is certainly holomorphic because its
components are periods of the spectral cover, which varies holomorphically with φ. Since
πU is also bijective, it is an isomorphism. �

5. Stratification by number of separating trajectories

This rather technical section contains some further results concerning the trajec-
tory structure of GMN differentials. We focus particularly on the stratification of the space
Quad(g,m) by differentials with a fixed number of separating trajectories. Throughout,

7 In fact this appeal can be avoided: see Remark 6.5.
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we fix a genus g � 0 and a polar type m = {mi} such that all mi � 2, and consider differ-
entials in Quad(g,m). In particular, all differentials are complete and have at least one
infinite critical point.

5.1. Homology classes of saddle trajectories. — Let φ be a complete GMN differential
on a Riemann surface S. Recall from Section 3.1 that every saddle trajectory γ has an
associated hat-homology class γ̂ ∈ Ĥ(φ). We say that two saddle trajectories γ1 and γ2

are hat-homologous if γ̂1 = γ̂2. More generally, we say that γ1 and γ2 are hat-proportional if

Z>0 · γ̂1 = Z>0 · γ̂2 ⊂ Ĥ(φ).

Recall from Section 3.1 that a saddle connection is called closed if its two endpoints
coincide. The following result,8 which is the analogue in our situation of a result of [31],
relies essentially on the assumption that all finite critical points of φ are simple zeroes.

Lemma 5.1. — Suppose that (S, φ) admits a pair of distinct hat-proportional saddle trajectories

γ1, γ2. Then one of the following cases holds:

(i) The γi are hat-homologous and closed and form the two boundary components of a non-

degenerate ring domain.

(ii) The surface S contains a separating non-degenerate ring domain A, bounding on one side

an open genus one subsurface T ⊂ S containing no critical points of φ. The boundary

component of A adjoining T is a union of two non-closed saddle trajectories ν1, ν2 and

either

(iia) the second boundary of A consists of more than one saddle trajectory; then

{γ1, γ2} = {ν1, ν2} and the γi are hat-homologous;

(iib) the second boundary of A is a closed saddle trajectory μ; then 2ν̂1 = μ̂= 2ν̂2

and {γ1, γ2} ⊂ {μ,ν1, ν2}.
(iii) The surface S is a torus and φ has a unique pole p, which has order 2 and real residue.

The γi are hat-homologous, have distinct endpoints, and together form the boundary of the

degenerate ring domain enclosing p.

The three cases are illustrated in Figure 18. In the cases (ii) and (iii) the torus sub-
surface carries an irrational foliation, i.e. the interior of the torus is a spiral domain. The
final paragraph of Section 6.4 explains a construction of quadratic differentials illustrat-
ing these cases.

Proof. — We divide the proof into three cases, depending on how many of the
saddle trajectories γi are closed.

8 To simplify notation, for the purposes of Lemma 5.1 and its proof, we will extend the definition of a “closed”
saddle trajectory to include one from a critical point to itself, i.e. we allow the boundary of a ring domain as well as the
trajectories in the interior of a ring domain.
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FIG. 18. — Configurations of hat-proportional saddle trajectories

FIG. 19. — A non-degenerate ring domain with a pair of arcs α±

Case (1). First suppose that γ1 and γ2 are both closed. They must then be disjoint.
Each γi is one boundary component of a ring domain Ai . If both Ai are degenerate,
then γ̂i = βpi

for different double poles pi , and these classes are linearly independent by
Lemma 2.3. Thus we can assume that A1 is non-degenerate. Then, as in Figure 19, we
can write γ̂1 = α̂+ − α̂−, with α± being saddle trajectories contained entirely in the ring
domain A1, and satisfying α̂+ · α̂− =±2. But then α̂+ · γ̂1 =±2 also, so if the γi are hat-
proportional, then γ2 must meet α+, and hence must be the other boundary component
of A1. It then follows that the γi are hat-homologous, and this is case (i) of the Lemma.

Case (2). Next suppose that neither γ1 nor γ2 is closed. If γ1 ∪ γ2 does not separate the
surface S then we can find a path α in S connecting poles of φ, whose interior lies in
S \ Crit(φ), and which intersects γ1 once, and γ2 not at all. If we take α̂ to be one of
the two inverse images of this path on the spectral cover, then the Lefschetz pairings are
〈γ̂1, α̂〉 = ±1 and 〈γ̂2, α̂〉 = 0. Hence the γi are not hat-proportional.

Suppose then that γ1 and γ2 both have the same pair of endpoints z1 �= z2, and
together form a separating loop γ . Consider the third trajectories coming out of z1 and
z2. If these lie on opposite sides of γ then it is easily seen that γ̂1 · γ̂2 =±2 so again the γi

are not hat-proportional. Thus we conclude that the loop γ is one boundary component
of a ring domain A.
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If there are poles on both sides of γ one can take a path between such poles meeting
γ1 exactly once and disjoint from γ2, showing the γi are not hat-proportional. Therefore
we may assume that γ separates S, and bounds on one side a subsurface T containing no
poles of φ. If T contains a zero q of φ, we may take a path α from a pole to itself which
crosses γ1, encircles q once, and returns parallel to itself crossing γ1 again, with α globally
disjoint from γ2. Let α̂ denote one component of the preimage of α on the spectral cover.
Then 〈α̂, γ̂1〉 = ±2 and 〈α̂, γ̂2〉 = 0, so the γi are not hat-proportional.

Since the other boundary component of the ring domain A contains zeroes or a
double pole of φ, it necessarily lies outside T. Thus a closed trajectory σ inside A bounds
a subsurface R ⊃ T which contains two zeroes (lying on γ ) and no poles. Doubling R
along α then gives a holomorphic quadratic differential on a closed surface with exactly
four simple zeroes, which implies that the subsurface R is a torus.

If the ring domain A is non-degenerate we are now in the setting of case (ii) of
the Lemma, and the classes γ̂i coincide since the preimage of γ bounds an unpunctured
subsurface of Ŝ. On the other hand, if A is a degenerate ring domain centered on a
double pole p then we are in the setting of case (iii), and the γi are hat-homologous with
hat-homology class equal to half the residue class βp.

Case (3). Reordering the γi if necessary, we may now suppose that γ1 is closed, and
γ2 has distinct endpoints. If γ1 is not separating, there is a path from a pole to a pole
which meets γ1 once and is disjoint from γ2, so the γi are not hat-proportional. The same
argument applies if γ1 separates S into subsurfaces each of which contain poles, so we
may assume that γ1 bounds a subsurface R containing no pole of φ.

If the interior of γ2 lies inside S \ R then we may take a path α which goes from
a pole, around one end-point of γ2, and back to the pole parallel to itself, and which is
entirely disjoint from γ1. The Lefschetz pairing argument as above then implies that the
γi are not hat-proportional. We may therefore assume that γ2 lies inside the subsurface R
bound by γ1.

If R contains some zero q not lying on either γi , we may pick a closed path α,
disjoint from γ2, which starts at a pole of φ, crosses γ1, encircles q, and then returns
parallel to itself crossing γ1. The Lefschetz pairings again imply that the γi are not hat-
proportional. We may therefore assume that R contains no zeroes other than those lying
on γ1 ∪ γ2.

The curve γ1 is a boundary component of some ring domain A. Suppose A is non-
degenerate, and A is contained inside R. Then γ2 is disjoint from γ1. Let σ be a closed
trajectory in A. Doubling along σ yields a surface containing no poles and four simple
zeroes, hence of genus 2, which implies that γ1 bounds a torus, and γ2 connects the two
zeroes z1, z2 lying inside that torus. If both zeroes zi lie on the boundary of A then, by
considering intersections with closed curves in the torus, it is easy to see that γ2 must be
contained in the boundary of A. We are then in case (iib) of the Lemma. Otherwise, the
other boundary component of A is comprised of a single saddle ν, and γ2 meets ν in a
point, giving a situation as on the left of Figure 20.
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FIG. 20. — Configurations of closed curves which cannot arise as saddle trajectories

We claim this configuration cannot occur. Indeed, if it could, one could replace
everything outside σ with a degenerate ring domain, yielding the right-hand picture of
Figure 20. But, as in Example 4.10, any differential on a torus with a single double pole
and simple zeroes is invariant under an involution of the torus which permutes the two
zeroes, and this rules out the asymmetric trajectory structure shown.9

Suppose next that the ring domain A is non-degenerate, but not contained in-
side R. The third half-edge at the zero on γ1 then enters R, and we can double along
a closed trajectory σ in A to get a surface with at most six zeroes and no poles, hence
with at most four zeroes. It follows again that R is a torus, and that γ2 must intersect γ1

at one point. This gives the same local configuration of saddles as in the previous case,
and by gluing in a degenerate ring domain along σ one obtains the same contradiction
as before.

Finally, if A is degenerate, one arrives directly at the second picture of Figure 20,
and that again yields a contradiction. This then completes the proof. �

5.2. Stratification. — Let φ be a GMN differential on a Riemann surface S defining
a point in Quad(g,m). Note that we are assuming that all mi � 2 so φ has no simple poles,
and at least one infinite critical point. Since exactly 3 horizontal trajectories emerge from
each zero of φ, there is an equality

rφ + 2sφ + tφ = k, k = 3
∣∣Zer(φ)

∣∣= 3
(

4g − 4+
d∑

i=1

mi

)
,

where rφ is the number of trajectories that are recurrent in one direction, but tend to a
zero in the other, sφ is the number of saddle trajectories, and tφ is the number of separating
trajectories. Define subsets

Bp =
{
φ ∈ Quad(g,m) : rφ + 2sφ � p

}
.

Note that B0 = B1 is precisely the set of saddle-free differentials. Indeed, by Lemma 3.1,
a differential having no saddle trajectories has no recurrent trajectories either. We call the
elements of B2 tame differentials; such differentials have at most one saddle trajectory.

9 Alternatively, one could collapse a zero into the double pole using the local surgery from Section 6.4 below. This
would yield a quadratic differential on a torus with a simple pole and a single zero, but as in Example 2.5, no such exists.
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Lemma 5.2. — The subsets Bp ⊂ Quad(g,m) form an increasing chain of dense open subsets

B0 = B1 ⊂ B2 ⊂ · · · ⊂ Bk = Quad(g,m).

Proof. — This is very similar to the proof of Lemma 4.11. Since Bp is the subset
of differentials for which tφ � k − p, the statement that Bp is open is equivalent to the
condition that the function tφ is lower semi-continuous. This follows from Proposition 4.8.
If a differential φ has a saddle trajectory γ then Zφ(γ̂ ) ∈ R by the definition of the hat-
homology class. In local period co-ordinates the complement of B0 is therefore contained
in a countable union of real hyperplanes. �

Define Fp = Bp \ Bp−1 for p � 1, and set F0 = B0. There is a finite stratification

Quad(g,m)=
k⊔

p=0

Fp

by the locally-closed subsets Fi . The stratum F1 is empty, and differentials in F2 have
exactly one saddle trajectory.

We call a GMN differential φ generic if the periods of non-proportional elements
of the lattice Ĥ(φ) define distinct rays in C. More precisely, the condition is that for all
γ1, γ2 ∈ Ĥ(φ) there is an implication

R · Zφ(γ1)= R · Zφ(γ2) =⇒ Zγ1 = Zγ2.

It is easy to see that generic differentials are dense in Quad(g,m): in local period co-
ordinates the complement of the set of such differentials is contained in a countable union
of real submanifolds cut out by relations of the form Zφ(γ1)/Zφ(γ2) ∈ R.

We say that a differential φ is 0-generic if the sublattice
{
γ ∈ Ĥ(φ) : Zφ(γ ) ∈ R

}⊂ Ĥ(φ)

has rank � 1. This implies in particular that all saddle trajectories for φ are hat-
proportional. Clearly, a differential φ is generic precisely if all elements of its S1-orbit
are 0-generic.

5.3. Perturbing saddle trajectories. — Let φ0 be a GMN differential on a Riemann
surface S defining a point

φ0 ∈ Fp ⊂ Quad(g,m)

for some p � 2 (recall that F1 is empty). Our aim in this section and the next is to show that
in period co-ordinates in a neighbourhood of φ0, the closed subset Fp ⊂ Bp is contained
in a real hyperplane. We begin by considering the case when φ0 has saddle trajectories
lying in the boundary of a horizontal strip or half-plane.
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FIG. 21. — Perturbing a horizontal strip

Proposition 5.3. — Suppose that φ0 ∈ Fp has a half-plane or horizontal strip with a boundary

component containing precisely s � 1 saddle trajectories γi . Let

α =
s∑

i=1

γ̂i ∈ Ĥ(φ0)

be the sum of the corresponding hat-homology classes. Then there is an open neighbourhood φ ∈ U ⊂ Bp

such that

φ ∈ U∩ Fp =⇒ Zφ(α) ∈ R.

Proof. — Considered as a subset of S, the half-plane or horizontal strip h is an open
disc whose boundary is a closed curve (not necessarily embedded) made up of saddle
trajectories and separating trajectories of φ0. By Propositions 4.4 and 4.8, if U is small
enough, these trajectories deform continuously with the differential φ ∈ U. The resulting
deformed curve therefore also cuts out a disc in the surface S.

Integrating
√

φ inside this region gives a conformal mapping into C which is a
continuous perturbation of the horizontal strip or half-plane h. The boundary of the im-
age region in C consists of straight lines connecting the images of the critical points of the
differential. If the region in question is a horizontal strip there are two boundary com-
ponents; composing with the map z �→ −z we may assume that the saddle trajectories γi

occur in the lower one.
Order the saddle trajectories from left to right (i.e. in anti-clockwise order around

the boundary) and define real numbers

yi = Im Zφ(γ̂1 + · · · + γ̂i), 1 � i � s.

These numbers give the height of the vertices of the boundary of the perturbed strip,
relative to the first vertex. In particular ys = Im Zφ(α). Note that the class α is definitely
non-zero since Zφ0(γ̂j) ∈ R>0.

Suppose that φ ∈ U ∩ Fp. This implies that if a horizontal arc emerging from a
zero forms part of a non-separating trajectory for φ0, then the same must be true for the
corresponding arc in φ. Working from the left, the first vertex with positive height yi has
a ray escaping to the pole on the left, which previously formed a saddle trajectory (see
Figure 21). Thus we must have yi � 0 for all i. Given this, if we also have ys < 0 then the
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last vertex with yi = 0 has a ray escaping to the pole on the right; if none of the vertices
has height yi = 0 then the very first vertex has such a ray. We conclude that we must also
have ys = 0. �

Note that we actually proved more, namely that if φ ∈ U ∩ Fp then yj � 0 for
1 � j � s.

5.4. Saddle reduction. — As in the last section, let φ0 be a GMN differential on a
Riemann surface S defining a point

φ0 ∈ Fp ⊂ Quad(g,m)

for some p � 2. We shall call a saddle-connection borderline if it lies in the boundary of a
horizontal strip, half-plane or degenerate ring-domain.

The next result is analogous to Proposition 5.3 and deals with the case of saddle
trajectories lying in the boundary of a degenerate ring-domain.

Lemma 5.4. — Suppose that φ0 ∈ Fp contains a degenerate ring domain A centered on a double

pole p. Then there is an open neighbourhood φ0 ∈ U ⊂ Bp such that

φ ∈ U∩ Fp =⇒ Zφ(βp) ∈ R.

Proof. — We can choose U so that we can reach any point by first deforming φ0

maintaining the condition Zφ(βp) ∈ R, and then applying the S1-action. When Zφ(βp) ∈
R the pole p still lies in a degenerate ring domain. Thus it is enough to deal with rotations.
The boundary of A consists of a union of saddle trajectories. To understand trajectories
for the rotated differential it is equivalent to consider non-horizontal trajectories for φ. It
is clear that some of these will fall into the pole p. �

Consider the closed subsurface with boundary S+ ⊂ S which is the closure of the
union of the horizontal strips, half-planes and degenerate ring domains. Consider also the
complementary closed subsurface S− ⊂ S which is the closure of the union of the spiral
domains and non-degenerate ring domains. It is easy to see that these two surfaces S±
meet along a collection of simple closed curves made up of borderline saddle-connections.

Note that all infinite critical points of φ0 are contained in the interior of S+, and
since a GMN differential has a non-empty collection of poles, and we are assuming that
all mi � 2, it follows that S+ is non-empty.

Proposition 5.5. — Take p � 2 and fix a point φ0 ∈ Fp ⊂ Quad(g,m). Then there is a

neighbourhood φ0 ∈ U ⊂ Bp and a nonzero class α ∈ Ĥ(φ0) such that

φ ∈ U∩ Fp =⇒ Zφ(α) ∈ R.
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FIG. 22. — Shrinking a ring domain to have width zero

Proof. — Since p � 2 there is at least one saddle trajectory for φ0. It follows that
there must be at least one borderline saddle trajectory. Indeed, any saddle trajectory in
S+ is borderline, and if S− is non-empty then S− and S+ are separated by borderline
saddle trajectories. Combining Propositions 5.3 and 5.4 therefore gives the result. �

It follows that, shrinking U if necessary, we can find a constant r > 0 such that

eiπθ · φ ∈ Bp−1 when 0 < |θ |< r and φ ∈ U∩ Fp.

Thus we can always move to a larger stratum by small rotations of the differential.

5.5. Ring-shrinking. — The assumption that a point φ ∈ Quad(g,m) is generic gives
no restriction on which stratum Fp the differential φ lies in: although all saddle trajectories
are hat-proportional, φ could well have a ring domain dividing the surface into two parts,
one containing all the poles, and the other consisting of a spiral domain containing some
large number of recurrent trajectories. For this reason it will be important in what follows
to use the construction of Section 3.8 to eliminate ring-domains by shrinking them to a
closed curve.

Recall that a ring domain is strongly non-degenerate if its boundary consists of two
pairwise disjoint, simple, closed curves. The width of a non-degenerate ring domain is
the minimal length of a path connecting the two boundary components. The width is a
strictly positive real number; by a ring domain of width zero we mean any simple closed
curve which is a union of saddle trajectories, and which is not a boundary component
of a ring domain of strictly positive width. The following result, which will be used in
Section 5, shows that any strongly non-degenerate ring domain may be shrunk to width
zero. The result is illustrated in Figure 22.

Proposition 5.6. — Suppose that a differential (S1, φ1) ∈ Quad(g,m) contains a strongly

non-degenerate ring domain A of width w > 0. Then there is a continuous family (St, φt) ∈
Quad(g,m) parameterized by t ∈ [0,1], such that each surface St contains a ring domain At of

width t.w, strongly non-degenerate if t > 0, and there are equivalences

(St \ Āt, φt|St\Āt
)∼= (S \ Ā, φ|S\Ā).
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Proof. — The non-degenerate ring domain A is equivalent to a region
{
a < |z|< b

}⊂ C equipped with φ(z)= r · dz⊗2/z2

for some r ∈ R<0. The only invariants are the width, which is w = log(b/a), and the
length of the two boundary components, which is 2π

√
r. For t ∈ (0,1) we define At to be

the ring domain with the same length boundary components as A, but with width t ·w.
We define the surface St by glueing At into S \ A using Lemma 3.3. There is a choice of
gluing, since one may rotate one boundary component relative to the other by an angle θ .
The end-point surface S0 is again constructed using Lemma 3.3, by directly gluing the
two components of S \ A. To ensure that the resulting differential φ0 has simple zeroes
we may need to take the rotation parameter θ to be nonzero. �

5.6. Walls have ends. — We have shown above that for p � 2 the stratum Fp ⊂
Quad(g,m) is contained in a real hyperplane in local period co-ordinates. It can therefore
be thought of as a wall, potentially dividing two different connected components of the
open subset Bp−1. Now we want to go one step further and show that if p > 2 then these
walls always have ends: we can move along the stratum Fp to get to a point near which
the subset Bp−1 is locally connected.

Proposition 5.7. — Assume that the polar type is not m = (2) and take p > 2. Then every

connected component of Fp ⊂ Quad(g,m) contains a point φ with a neighbourhood φ ∈ U ⊂ Bp, as

in Proposition 5.5, such that U∩ Bp−1 is connected.

Proof. — Take φ0 ∈ Fp and a neighbourhood U as in Proposition 5.5. Consider the
inclusion

U∩ Fp ⊂
{
φ ∈ U : Zφ(α) ∈ R

}
.

If this inclusion is strict, the wall has a hole in it, and then U∩ Bp−1 is connected and we
are done. Otherwise, these two subsets are equal, and so staying in the same connected
component of Fp we can replace φ0 with a very close generic differential φ1.

Suppose that φ1 has only one saddle trajectory γ . Then, since p > 2, there must
exist recurrent trajectories. The surfaces S± introduced in Section 5.4 are thus both non-
empty, and must meet along γ . Then γ is closed and forms one boundary component
of a ring domain A, which has to be degenerate, since there are no saddle trajectories to
form its other boundary. Thus we conclude that S+ = A, and since all poles of φ1 lie in
S+ it follows that φ1 has a single pole p of order 2, and that α is the corresponding residue
class βp.

Suppose then that φ1 has more than one saddle trajectory. By the genericity as-
sumption these are all hat-proportional, so they are arranged as in one of the cases of
Lemma 5.1. It follows that there are two possibilities, corresponding to cases (i) and (iia)
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of Lemma 5.1: case (iii) is ruled out by the assumption on the polar type, and case (iib)
cannot occur for a 0-generic differential, since not all saddle trajectories appearing are
hat-proportional. In particular we see that φ1 has a unique ring domain A, which is
strongly non-degenerate, and whose boundary consists of either 2 or 3 saddle trajecto-
ries.

By Proposition 5.6, we can move along a path in Quad(g,m) in which A shrinks so
as to have width 0, but the rest of the differential remains unchanged. It is clear that this
path remains in the stratum Fp since any separating trajectory lies outside A and hence is
unaffected by the shrinking process. At the end of this operation we arrive at a differential
φ2 with no closed trajectories and either 2 or 3 saddle trajectories γi , which together form
a simple closed curve γ .

We claim that all the saddle trajectories γi are borderline. Indeed, if the surface
S− of Section 5.4 is empty then all saddle trajectories are borderline, and otherwise the
two surfaces S± are separated by a simple closed curve made up of saddle trajectories,
which must be γ . Examining the configuration of trajectories near γ in the two cases it
is easy to see that exactly two of the γi must lie in the boundary of a single horizontal
strip or half-plane h. Proposition 5.3, and the remark following it, shows that there is a
neighbourhood φ2 ∈ U ⊂ Bp such that, with appropriate ordering of the γi ,

φ ∈ U∩ Fp =⇒ y = Im Zφ(γ̂1 + γ̂2)= 0 and

z =± Im Zφ(γ̂1)� 0.

Lemma 5.1 shows that the saddle trajectories γ1, γ2 are not hat-proportional, so the vari-
ables y and z form part of a co-ordinate system near φ2. It follows that U \ Fp is locally
connected near φ2. �

5.7. Homotopies to tame paths. — In the proof of our main Theorems we shall need
the following consequence of Proposition 5.7.

Proposition 5.8. — Assume that the polar type is not m = (2). Then any path β in

Quad(g,m) connecting two points of B2 is homotopic relative to its end-points to a path in B2.

Proof. — Let us inductively assume that β has been deformed so as to lie in Bp

for some p > 2. By Proposition 5.5 we can cover β by open subsets in which Fp ⊂ Bp is
contained in a real hyperplane. We can then wiggle it a little so that it meets Fp at a finite
number of points φi . We now show how to deform β so as to reduce the number k of
these points. Repeating the argument, we can deform β to lie in Bp−1. The result then
follows by induction.

To eliminate a point φ = φi we first use Proposition 5.7 to construct a path δ in Fp

connecting φ to a point ψ where Bp−1 is locally connected. Consider paths δ± obtained
by small rotations of δ in opposite directions. By Proposition 5.5 these can be assumed
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to lie entirely in Bp−1. Inserting these paths into β we obtain a homotopic path which
crosses Fp at the point ψ instead of φ. Since Bp−1 is locally connected near ψ we can then
deform β further and so eliminate one of its intersections with Fp. �

The assumption on the polar type in Propositions 5.7 and 5.8 is necessary, as we
explain in the following remark.

Remark 5.9. — Suppose that the polar type is m = (2) and consider the holomor-
phic function

Zφ(βp)
2 : Quad(g,m)→ C∗.

We claim that this maps the subset B2 into the complement of R>0 ⊂ C∗. Thus for paths
in B2 the function Zφ(βp)

2 does not wind around the origin. But by rotating a differential,
it is easy to construct paths in Quad(g,m) for which this function does wind around the
origin. Thus it follows that Proposition 5.8, and hence also Proposition 5.7, are false in
this case.

To prove the claim note that if φ ∈ B2 and Zφ(βp) ∈ R then the unique pole p

is contained in a degenerate ring domain A. The boundary of A must then be a single
closed saddle trajectory, and the third trajectory leaving the zero on the boundary cannot
be a saddle trajectory, or a separating trajectory, or recurrent. This gives a contradiction.

5.8. More on ring-shrinking. — We assume in this section that if g = 1 then the polar
type is not m = (2). Suppose that φ+ ∈ Quad(g,m) is a 0-generic differential with more
than one saddle trajectory. As in the proof of Proposition 5.7, it follows that φ+ has a
unique ring domain A, which is moreover strongly non-degenerate, and we can shrink
A to obtain a differential φ with a closed curve γ formed of a union of either 2 or 3
non-closed saddle trajectories γi .

Note that the γi are the only saddle trajectories for φ. Let us write αi = γ̂i ∈ Ĥ(φ).
Examining Figure 18, it is easily seen that we can order the γi so that the complete set of
finite-length trajectories for φ+ in the two cases is as follows:

(J1) a single ring domain A of class α = α1 + α2 whose boundary components are
closed saddle trajectories of the same class;

(J2) a single ring domain A of class α = α1 + α2 + α3, one of whose boundary
components is a closed saddle trajectory of the same class, the other being a
union of two non-closed saddle trajectories of equal classes α1 + α2 and α3.

The labelling of the γi is completely determined if we insist that

(5.1) Im Zφ+(α1)/Zφ+(α2) > 0,

and we shall always follow this convention. Note that in the case (J2) there is a relation
α1 + α2 = α3.
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Proposition 4.8 implies that for any differential sufficiently close to φ there are sad-
dle connections deforming each of the saddle trajectories γi . We shall need the following
statement later.

Proposition 5.10. — Given a class β ∈ Ĥ(φ), there is a neighbourhood φ ∈ U ⊂
Quad(g,m) with the following property: if φ− ∈ U satisfies

(5.2) Im Zφ−(α1)/Zφ−(α2) < 0,

and γ is a saddle trajectory for φ− with hat-homology class β , then γ = γi , for some i, and hence

β = αi .

Proof. — Consider first the abstract situation in which two saddle trajectories γ1, γ2

for a differential φ meet at a zero z. Assume that the γi have non-proportional hat-
homology classes αi , and consider differentials on either side of the wall

Im Zφ(α1)/Zφ(α2)= 0.

As above there are saddle connections deforming each γi . Consider the union γ1 ∪ γ2

near the zero z. Local calculations (see Figure 15) show that on one side of the wall this
path is a geodesic, whereas on the other side it is not, since there is a shorter path which
bypasses the zero z.

Consider now the differential φ obtained by shrinking the ring domain in φ+. The
walls

Im Zφ(αi)/Zφ(αj)= 0

for i �= j all coincide. On the side of this wall defined by (5.1), none of the unions γi ∪ γi+1

is a geodesic, since the shortest paths in these homotopy classes cross the ring domain. It
follows that on the side of the wall defined by (5.2) each of these unions is a geodesic.

Suppose for a contradiction that we can find a sequence of differentials φi satisfy-
ing (5.2), each with a saddle connection Ci of class β , and which tend to φ. The length
of the saddle connections 
φi

(Ci)= |Zφi
(β)| is bounded, so by Theorem 4.1, passing to a

subsequence we can assume that the Ci are all homotopic, and converge to a curve C.
By continuity, we now have 
φ(C) = |Zφ(β)|. This implies that C is a union of

saddle trajectories for φ, that is, a union of the γi . But as we just argued, the unique
φi-geodesic representative in this homotopy class is the corresponding union of γi , and
hence can only be a saddle connection if it is one of the γi . �

5.9. Juggles. — We conclude this section with a few brief remarks about the rela-
tionship between the ring-shrinking operation of the last few sections and the notion of a
‘juggle’ appearing in Gaiotto-Moore-Neitzke’s paper [14]. This material will not be used
later and can be safely skipped.
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FIG. 23. — Local perturbations of a differential with two saddle trajectories of equal phase; the left perturbation has a ring
domain, the right does not

Suppose that φ+ ∈ Quad(g,m) has a non-degenerate ring domain A. The closed
trajectories of A have a certain hat-homology class α ∈ Ĥ(φ). Let δ ∈ Ĥ(φ) be the class
of a saddle connection in A joining zeroes of φ+ lying on different boundary components.
Considering lines of suitable rational slope in the universal cover of A shows that for all
k ∈ Z there are saddle connections for φ+ with hat-homology class δ + kα. In particular,
the spectrum �φ+ ⊂ S1 of phases θ for which eiπθ · φ+ has a saddle trajectory has an
accumulation point at θ = 0.

By taking differentials eiπθ · φ+ with θ varying near 0 we can define a path in
Quad(g,m) with saddle-free endpoints which crosses infinitely many of the real codimen-
sion one walls that are the local connected components of F2. We refer to such a path
as a juggle path. In Section 10.1 we will associate ideal triangulations to saddle-free dif-
ferentials; the triangulations associated to the end-points of our path will then be related
by a particular kind of infinite composition of flips, referred to in [14] as a juggle. The
ring-shrinking move of Proposition 5.7 has the effect of removing the accumulation point
at θ = 0 in the spectrum �φ ⊂ S1. This allows us to replace certain juggle paths by paths
which meet only finitely many walls.

Let us consider the case when the boundary components of A are both closed
saddle trajectories, and the differential φ+ contains no other finite-length trajectories.
After shrinking we obtain a differential φ with a closed curve made up of two saddle
trajectories γ1, γ2 with hat-homology classes α1, α2 satisfying α = α1 +α2. The trajectory
structure of differentials near φ satisfying Im Zφ(α)= 0 is determined by the wall

Im Zφ(γ1)/Zφ(γ2)= 0.

Differentials on the φ+ side of this wall have a ring domain; differentials on the other side
are saddle-free. The relevant geometry is illustrated in Figure 23.
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The representation theory relevant to juggles is that of the Kronecker quiver (see
also Example 12.5).

•1

a1

a2

•2

Let A be the category of representations of this quiver, and let S1,S2 be the vertex simple
objects, appropriately ordered. Stability conditions on A satisfying

Im Z(S1)/Z(S2) > 0

have unique stable objects of dimension vectors (n, n + 1) and (n + 1, n) for all n � 0,
and also a moduli space of stable objects of dimension vector (1,1) which is isomorphic
to P1. In particular, the set of phases of stable objects has an accumulation point. On the
other hand, if

Im Z(S1)/Z(S2) < 0

then the only stable objects are the objects Si themselves. The operation of ring-shrinking
is the analogue of moving from a stability condition with Im Z(S1)/Z(S2) > 0 to one
where Im Z(S1)/Z(S2) = 0. This has the effect of removing the accumulation point in
the spectrum of stable phases.

6. Colliding zeroes and poles: the spaces Quad(S,M)

The spaces of quadratic differentials appearing in our main Theorems do not have
fixed polar type; rather the zeroes are allowed to collide with the double poles. This means
that we are dealing with spaces which are unions of strata of the form Quad(g,m). It is
convenient to label these spaces by diffeomorphism classes of marked bordered surfaces.
For definitions concerning such surfaces see the Introduction or Section 8.1 below.

6.1. Union of strata. — A GMN differential φ on a compact Riemann surface S
determines a marked bordered surface (S,M) by the following construction. To define
the surface S we take the underlying smooth surface of S and perform an oriented real
blow-up at each pole of φ of order > 2. The marked points M are then the poles of φ

of order � 2, considered as points of the interior of S, together with the points on the
boundary of S corresponding to the distinguished tangent directions of Section 3.3.

By a quadratic differential on a marked bordered surface (S,M) we mean a pair
(S, φ), consisting of a compact Riemann surface S and a GMN differential φ, whose as-
sociated marked bordered surface is diffeomorphic to (S,M). We let Quad(S,M) denote
the space of equivalence classes of such pairs.
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A marked bordered surface (S,M) is determined up to diffeomorphism by the
genus of S, the number of punctures, and an unordered collection of positive integers
encoding the number of marked points on each boundary component. In more concrete
terms then, we have

(6.1) Quad(S,M)=
⋃
(g,m)

Quad(g,m),

where the union is over pairs (g,m), where g = g(S) is the genus of S, and there is one
mi ∈ {1,2} for each puncture p ∈ P, and one mi = ki + 2 for each boundary component
containing ki marked points.

Let (g,m) be the unique pair appearing in the decomposition (6.1) for which all
mi � 2. In the proof of Proposition 2.4 we considered a vector bundle

(6.2) H(g,m)→M(g, d)/Sym(m),

whose fibre over a marked curve (S, (pi)) is the space of global sections of the line bundle
ω⊗2

S (
∑

i mipi). The space Quad(S,M) is the open subset of H(g,m) consisting of sections
with simple zeroes which are disjoint from the points pi for which mi > 2. As in the proof
of Proposition 2.4 it is therefore either empty, or a complex orbifold of dimension n.

Recall that a GMN differential is called complete if it has no simple poles.

Lemma 6.1. — The subset of complete differentials is an open subset

(6.3) Quad(S,M)0 = Quad(g,m)⊂ Quad(S,M)

whose complement is a normal crossings divisor.

Proof. — Locally on the universal curve over M(g, d) we can trivialise the line bun-
dle ω⊗2

S (
∑

i mipi). Working locally on H(g,m) we can therefore associate to each point an
unordered collection of complex numbers {rp : p ∈ P} obtained by evaluating the defining
section φ at the marked points pi for which mi � 2. The resulting locally-defined functions
rp are holomorphic on H(g,m), and the complement of the open stratum (6.3) is precisely
the vanishing locus of the product of these functions.

Suppose that a point φ ∈ Quad(S,M) has s � 1 simple poles. Then the locally-
defined map

r : Quad(S,M)→ Cs

given by the functions rp corresponding to the simple poles of φ is a submersion at φ.
Indeed, using Riemann-Roch, for each simple pole p of φ we can find sections of
ω⊗2

S (
∑

i mipi) which vanish at all the other simple poles of φ but not at p. Adding linear
combinations of such sections to φ shows that r has a locally-defined section. It follows
from this that the complement of the open stratum (6.3) is a normal crossings divisor. �
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6.2. Signed differentials. — Fix a marked bordered surface (S,M). Although the
hat-homology groups Ĥ(φ) form a local system over the orbifold Quad(S,M)0, this is
not true over the larger orbifold Quad(S,M), since by Lemma 2.2, at differentials where
a zero has collided with a double pole the rank of the hat-homology group drops by one.

A stronger statement is that the local system of hat-homology groups over
Quad(S,M)0 cannot be extended to a local system on Quad(S,M). The reason is that
parallel transport around a differential with a simple pole at a point p changes the sign of
the residue class βp (see the proof of Lemma 6.2 below).

By a signed quadratic differential on (S,M) we mean a differential

(S, φ) ∈ Quad(S,M)

together with a choice of sign of the residue Resp(φ) at each puncture p ∈ P. Note that
by (3.1) this is equivalent to choosing a square-root of the function rp of the last paragraph.
The set of such signed differentials therefore forms a smooth complex orbifold equipped
with a finite map

Quad±(S,M)→ Quad(S,M)

branched precisely over the complement of the incomplete locus. We write Quad±(S,M)0

for the open subset of Quad±(S,M) consisting of signed differentials whose underlying
differential is complete.

Lemma 6.2. — The local system of hat-homology groups Ĥ(φ) pulled back to the étale cover

Quad±(S,M)0 → Quad(S,M)0 extends to a local system on Quad±(S,M).

Proof. — We must compute the monodromy of the hat-homology local system
around each component of the boundary divisor consisting of non-complete differentials.
Consider a differential φ0 lying on this divisor, having a single simple pole p0. Nearby
complete differentials φ will have a corresponding double pole p and a simple zero q

which have collided to produce p0.
The hat-homology group of φ is spanned by the hat-homology classes of saddle

connections. Saddle connections of φ not ending at q correspond canonically to saddle
connections of φ0 not ending at p0, and their hat-homology classes are therefore unaf-
fected by the local monodromy around φ0. Consider the class αq of a saddle connection
ending at q, and let βp be the residue class at p. The local monodromy of the Gauss-Manin
connection10 acts on the classes (αq, βp) by the transformation

(6.4) αq �→ αq + βp, βp �→ −βp,

see Figure 24. This transformation has order 2 and hence becomes trivial when pulled-
back to the double cover determined by a choice of sign of Zφ(βp). �
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FIG. 24. — The local monodromy as a zero encircles a double pole

6.3. Extended hat-homology group. — Let us consider the quotient orbifold

(6.5) Quad♥(S,M)= Quad±(S,M)/Z⊕P
2 ,

where Z⊕P
2 acts in the obvious way on the signings. Note that this quotient is to be under-

stood in the category of spaces over Quad(S,M), since the punctures P form a non-trivial
local system over this space. Practically speaking, we can locally trivialise this local system
P on Quad(S,M), define local quotients by the group Z⊕P

2 , and then glue these together
to form the global quotient (6.5). Note that there is an open inclusion

Quad(S,M)0 ⊂ Quad♥(S,M).

The only difference between the spaces Quad(S,M) and Quad♥(S,M) is some extra
orbifolding along the incomplete locus.

The local system of Lemma 6.2 descends to the orbifold Quad♥(S,M). The ex-

tended hat-homology group Ĥe(φ) of a GMN differential φ is defined to be the fibre of this
local system at φ. This group coincides with the usual hat-homology group Ĥ(φ) pre-
cisely if φ is complete. In general Ĥe(φ) comes equipped with a skew-symmetric pairing
and canonically defined residue classes βp, one for each simple or even order pole of φ.
This data is obtained by parallel transport from a nearby complete differential.

Lemma 6.3. — For any GMN differential φ0 there is a canonical group homomorphism

q : Ĥe(φ0)→ Ĥ(φ0)

whose kernel is spanned over Q by the residue classes βp corresponding to the simple poles of φ0.

Proof. — Consider the family of spectral covers Ŝ → S defined by differentials φ in
some small neighbourhood φ0 ∈ U ⊂ Quad♥(S,M). These covers vary holomorphically
because the divisor E of formula (2.3) varies holomorphically, and ϕ is a holomorphi-
cally varying section. Note however that the open surface Ŝ◦ changes discontinuously in
general, as it must, since the rank of the hat-homology group drops at differentials with
simple poles.

10 To check the sign change for the residue class βp, it may be helpful to consider the family of differentials (z −
a)dz⊗2/z2 of residue 4π i

√
a, as a encircles the origin.
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FIG. 25. — Replacing a simple pole with a degenerate ring domain

More precisely, when a zero of the differential φ collides with a double pole p, the
infinite critical point p becomes a finite critical point of φ0 which is moreover a branch-
point of the corresponding spectral cover. Thus the two punctures in the surface Ŝ lying
over p which are removed when defining Ŝ◦ collide and get filled in.

Define a subsurface Ŝ′ ⊂ Ŝ by removing from Ŝ the inverse images of those infinite
critical points of φ which remain infinite critical points for the differential φ0. The ho-
mology groups H1(Ŝ′;Z)− form a local system over U whose fibre at φ0 coincides with
H1(Ŝ◦;Z)−. Over the complete locus, the inclusion Ŝ◦ ⊂ Ŝ′ defines a map of local systems

q : H1

(
Ŝ◦;Z

)− → H1

(
Ŝ′;Z

)−
.

The same analysis we used to prove Lemma 2.3 shows that the kernel of q is spanned
over Q by the residue classes βp corresponding to the simple poles of φ. Specialising the
map q to the fibres at φ0 then gives the result. �

6.4. Blowing up simple poles. — In this section we explain a surgery which, whilst not
required in the proofs of the main theorems of the paper, helps explain the geometry as
zeroes collide with double poles and one passes between different strata in Quad(S,M).

The surgery involves ‘blowing up’ a simple pole and inserting a metric cylinder (i.e.
a disk with differential r dz⊗2/z2 for some r ∈ R<0). Although as topological surfaces the
complement of the inserted cylinder differs from the original surface by a real blow-up,
metrically the surfaces are related by slitting a finite length of trajectory and opening up
the slit into a boundary component, as indicated in Figure 25.

Proposition 6.4. — Let φ be a GMN differential on S with s simple poles pi . Let ri ∈ R>0 be

sufficiently small. Then there is a uniquely-defined complete GMN differential with double poles at the pi ,

centred on degenerate ring domains with parameters −ri , and equivalent on the complement of the closures

of those ring domains to (S\⋃
i γi, φ), where γi is the unique horizontal trajectory of φ of length ri with

one end-point at pi .

Proof. — If the ri are sufficiently small, the trajectory γi is embedded in the surface
and does not contain any critical points other than pi . The existence part of the statement
is then depicted in Figure 25. The dashed rectangle has boundaries on the horizontal and
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vertical foliations for the relevant differentials; it lies in a co-ordinate chart in the central
picture, and is mapped conformally in its interior to the two outer pictures, which define
surfaces with quadratic differentials which are equivalent in the component exterior to
the rectangle’s boundary arc. The existence of the differential on the surface on the right,
obtained by gluing a cylinder and a surface with geodesic boundary containing a simple
zero, is an application of Lemma 3.3. �

If the original differential has finite area, there are closed geodesics for a dense
set of phases [36, Theorem 25.2]; however, the only such geodesics which survive to the
surgered surface are those which are disjoint from the length ri segments of the trajectories
emanating from the simple poles. This is compatible with the fact that the spectrum of
phases of closed geodesics after surgery is closed in S1.

Remark 6.5. — Let us use the notation Quad(g, (1d)) for the space of GMN differ-
entials (S, φ) with S of genus g, and φ having d simple poles. Similarly let Quadr(g, (2

d))

denote the space of GMN differentials (S, φ) with S of genus g and φ having d double
poles, each of residue ±r. The construction of Proposition 6.4 gives an injective map

B : Quadr

(
g,

(
2d

))→ Quad
(
g,

(
1d

))
which moreover commutes with the locally-defined period maps on both sides. It is not
hard to convince oneself that B is in fact a local homeomorphism. This reduces the ques-
tion of whether the period map is a local isomorphism to the case of differentials with at
least one infinite critical point.

A closely related model is obtained by opening up a length l segment of an ir-
rational foliation on a torus S = T2 to obtain a recurrent surface with one boundary
component, the boundary made of two equal length saddle trajectories; one can then
glue in a degenerate ring domain centred on a double pole as above to obtain another
foliation on a closed torus. The closed geodesics in the new (infinite area) surface corre-
spond to the (p, q)-curves on T2 which are disjoint from the original straight arc of length
l. It is easy to check that only finitely many (p, q)-curves have this property, hence the
surgery collapses the spectrum of closed trajectories from a dense subset of the circle to a
finite subset.

6.5. Extended period map. — Let (S,M) be a marked bordered surface, and let

Quad(g,m)= Quad(S,M)0 ⊂ Quad(S,M)

be the corresponding open stratum of complete differentials. Fix a free abelian group �

of rank n given by (2.2). By an extended framing of a point φ ∈ Quad♥(S,M) we mean an
isomorphism of groups

θ : � → Ĥe(φ).
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Defining the space Quad�(S,M) of extended framed differentials in the obvious way, we
obtain an unbranched cover

Quad�(S,M)→ Quad♥(S,M).

Over the locus Quad(S,M)0 of complete differentials, the resulting space coincides with
the space Quad�(g,m) considered before.

Lemma 2.6 shows that the generic automorphism group of the orbifold Quad(S,

M) is trivial except when (S,M) is one of

(i) an unpunctured disc with 3 or 4 points on its boundary;
(ii) an annulus with one marked point on each boundary component;

(iii) a closed torus with a single puncture;

corresponding to polar types (5), (6) and (3,3) in genus g = 0, and polar type (2) in
genus g = 1. As explained before, in all these cases the orbifold Quad(S,M) also has a
non-trivial generic automorphism group.

Proposition 6.6. — Assume that (S,M) is not one of the 4 exceptional surfaces listed above.

Then the space Quad�(S,M) is a complex manifold. The period map extends to a local isomorphism

of complex manifolds

π : Quad�(S,M)→ HomZ(�,C).

Proof. — Assume first that (S,M) is not a sphere with 3 or 4 punctures. Suppose
that a point of Quad�(S,M) has a non-trivial automorphism. This means that the under-
lying differential φ has a non-trivial automorphism which acts trivially on the extended
hat-homology group Ĥe(φ). It follows from Lemma 6.3 that this automorphism also acts
trivially on the hat-homology group Ĥ(φ). But we proved in Theorem 4.12 that no such
automorphisms exist. Thus Quad�(S,M) is a manifold.

The extended period map π is defined in the obvious way: the period of a
differential φ defines a map Zφ : Ĥ(φ) → C which induces a group homomorphism
Zφ : Ĥe(φ) → C by composing with the map q of Lemma 6.3. To show that π is a local
isomorphism, suppose that a nonzero tangent vector v to Quad�(S,M) at some point
φ lies in the kernel of the derivative of π . Then, since the strata of Quad(S,M) are
determined by the vanishing of the periods Zφ(βp), it follows that v is tangent to the
stratum containing φ. But the period map is a local isomorphism on each stratum by
Theorem 4.12, so this gives a contradiction.

In the case when (S,M) is a 3 or 4 punctured sphere, the above proof is in-
complete, because the two polar types (1,1,2) and (1,1,1,1) in genus g = 0 were ex-
cluded from Theorem 4.12, since the corresponding spaces Quad(g,m) have a non-trivial
generic automorphism group. In both of these cases the generic automorphisms identi-
fied in Example 2.7 act non-trivially on the extended hat-homology group, since they
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permute the simple poles, and hence the corresponding residue classes βp. The fact that
the period map is a local isomorphism on the corresponding strata of Quad(S,M) can
be proved exactly as in Theorem 4.12, or just checked directly. �

6.6. Degenerations. — We finish this first part of the paper with two technical results
which will be used later in the proofs of our main Theorems. The first one will allow
us to extend our correspondence between differentials and stability conditions over the
incomplete locus in Quad(S,M).

Proposition 6.7. — Take a framed differential φ0 ∈ Quad�(S,M). Then for any ε > 0
there is a neighbourhood φ0 ∈ U ⊂ Quad�(S,M) such that for any differential φ ∈ U, and any class

γ ∈ � represented by a non-closed saddle connection in φ, there is an inequality

∣∣Zφ(γ )− Zφ0(γ )
∣∣ < ε

∣∣Zφ0(γ )
∣∣.

Proof. — We can assume that all differentials φ ∈ U are on a fixed underlying
smooth surface S, with finite critical points at fixed points xi ∈ S. However we must allow
the double poles of φ to move, so that they can collide with the zeroes. We can assume
that if φ has a simple pole at xi then so does φ0.

Consider the subset of U × S consisting of pairs (φ, y) with y ∈ S lying on a non-
closed saddle connection for φ, and let F be its closure. Then F contains no points of the
form (φ, pj) with pj an infinite critical point of φ, because any such point is contained in a
trapping neighbourhood containing no non-closed saddle connections. Thus, shrinking
U if necessary, we have a bound

|√φ −√
φ0|< ε|√φ0|

for all points of F. Integrating this along a non-closed saddle connection for φ gives the
result. �

The next result is a kind of completeness result for the space Quad(S,M). It will be
used later to prove that the image of the map we construct from differentials to stability
conditions is closed. We say that a saddle connection γ for a GMN differential φ is
degenerate if it is closed, and is moreover freely homotopic in S◦ to a small loop around a
double pole of φ.11

Proposition 6.8. — Consider a sequence of framed, complete differentials

φn ∈ Quad�(S,M)0, n � 1,

11 Note that a saddle connection γ of phase θ is nothing but a saddle trajectory for the rotated differential e−iπθ · φ,
and that γ is degenerate precisely if this saddle trajectory is the boundary of a degenerate ring domain.
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whose periods Zφn
: � → C converge. Suppose moreover that there is a universal constant L > 0 such

that any non-degenerate saddle connection for φn has length � L. Then some subsequence of the points

φn converges to a limit in Quad�(S,M).

Proof. — Using the fact that stable curves are Gorenstein it is easy to see that the
vector bundle (6.2) extends to a bundle

H̄(g,m)→ M̄(g, d)/Sym(m)

over the Deligne-Mumford compactification. The projectivisation of this bundle is a com-
pact space, and so, passing to a subsequence, and potentially rescaling the φn, we can
assume that the differentials φn have a limit (S, φ) ∈ H̄(g,m). The hypothesis that the
periods Zφn

converge then implies that the rescaling must have been unnecessary.
Note that our assumption implies that if γ is a path in the surface Sn which either

connects two finite critical points of φn, or is closed and not homotopic to a small loop
around a double pole, then the length of γ in the φn-metric is at least L. Indeed, by
Theorem 4.1, the curve γ has a minimal geodesic in its homotopy class and this is a
union of saddle connections.

Suppose that the limit curve S has a node p, and that the limit section φ is non-
vanishing at p. Note that the induced quadratic differential on the normalization has a
double pole at the inverse image of p. Consider a curve connecting two zeroes on Sn lying
on opposite sides of the neck which shrinks to the node p. Then as n →∞ the period of
the corresponding hat-homology class diverges to infinity, which contradicts the fact that
the periods Zφn

converge.
Suppose instead that S is a stable curve with a node p, and that the section φ

vanishes at p. Then consider a closed curve γ on Sn encircling the neck, homotopic to
the vanishing cycle. Either γ is non-separating, or there is more than one marked point on
each side of γ , so γ cannot be homotopic to a small loop around a double pole. Then as
n →∞ the length in the φn-metric of γ tends to zero, which again gives a contradiction.

Thus we conclude that the limit curve S is non-singular. Suppose that the limit
differential φ is defined by a section of ω⊗2

S (
∑

i mipi) which has a zero of some order
k � 1 at a point p ∈ S. This means that k simple zeroes of the φn have collided in the limit.
If p = pi is a marked point then we set m = mi , and otherwise we set m = 0.

Suppose first that k−m �−2 so that p is an infinite critical point of φ. Take a path
γn which connects two zeroes z1, z2 of φn, both of which tend to p. Then the period of
the corresponding hat-homology class tends to infinity, contradicting the assumptions. If
k = 1 so that there is only one zero z which tends to p, then we must have m � 3, and we
can take γn to be a small loop around p based at z.

On the other hand, if k −m >−2 then p is a finite critical point of φ. If also k � 2,
then take a path γn connecting two zeroes of φn which both tend to p. The length of
this path will tend to zero as n →∞ which gives a contradiction as before. We conclude
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that φ has simple zeroes distinct from the points pi of order mi > 2. This is precisely the
condition that φ ∈ Quad(S,M). �

7. Quivers and stability conditions

This section consists of fairly well-known background material on t-structures and
tilting, quivers with potential and their mutations, and stability conditions.

7.1. Introduction. — Let D be a k-linear triangulated category of finite type. We
denote the shift functor by [1] and use the notation

Homi
D(A,B) := HomD

(
A,B[i]).

The finite type condition is the statement that for all objects A,B ∈D

dimk

⊕
i∈Z

Homi
D(A,B) <∞.

The Grothendieck group K(D) then carries the Euler bilinear form

χ(−,−) : K(D)×K(D)→ Z

defined by the formula

χ(E,F)=
∑
i∈Z

(−1)i dimk Homi
D(E,F).

Beginning in Section 9 we shall focus on the particular properties of the categories D =
D(S,M) appearing in our main Theorems, but the present section consists of general
theory, and the only properties of D that will be important are

(i) D admits a bounded t-structure whose heart A⊂D is of finite length and has
a finite number n of simple objects up to isomorphism;

(ii) D is a CY3 category, meaning that there are functorial isomorphisms

Homi
D(A,B)∼= Hom3−i

D (B,A)∗ for all objects A,B ∈D.

Note that (i) implies that K(D)∼= Z⊕n is free of finite rank, and (ii) implies that the
Euler form is skew-symmetric.

The main point of this section is to expand on the following two statements:

(a) Associated to any triangulated category D there is a complex manifold Stab(D)

of dimension n parameterizing certain structures on D known as stability con-
ditions. When D satisfies condition (i), a large open subset of Stab(D) can be
described as a union of cells, one for each bounded t-structure with finite-length
heart. The way these cells are glued together along their boundaries is con-
trolled by an abstract operation called tilting.
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FIG. 26. — A tilting pair

(b) A large class of triangulated categories D satisfying both conditions (i) and (ii)
can be defined using quivers with potential via the Ginzburg algebra construc-
tion. The abstract tilting operation referred to in (a) can then be described
concretely in terms of mutations of quivers with potential.

7.2. Hearts and tilting. — Let D be a triangulated category. We shall be concerned
with bounded t-structures on D. Any such t-structure is determined by its heart A⊂D,
which is a full abelian subcategory. We use the term heart to mean the heart of a bounded
t-structure. A heart will be called finite-length if it is artinian and noetherian as an abelian
category.

We say that a pair of hearts (A1,A2) in D is a tilting pair if the equivalent conditions

A2 ⊂
〈
A1,A1[−1]〉, A1 ⊂

〈
A2[1],A2

〉

are satisfied (see [17] and Figure 26).12 We also say that A1 is a left tilt of A2, and that A2

is a right tilt of A1. Note that (A1,A2) is a tilting pair precisely if so is (A2[1],A1).
If (A1,A2) is a tilting pair in D, then the subcategories

T =A1 ∩A2[1], F =A1 ∩A2

form a torsion pair (T ,F) ⊂A1. Conversely, if (T ,F) ⊂A1 is a torsion pair, then the
subcategory A2 = 〈F ,T [−1]〉 is a heart, and the pair (A1,A2) is a tilting pair.

A special case of the tilting construction will be particularly important. Suppose
that A is a finite-length heart and S ∈ A is a simple object. Let 〈S〉 ⊂ A be the full
subcategory consisting of objects E ∈A all of whose simple factors are isomorphic to S.
Define full subcategories

S⊥ = {
E ∈A : HomA(S,E)= 0

}
, ⊥S = {

E ∈A : HomA(E,S)= 0
}
.

One can either view 〈S〉 as the torsion part of a torsion pair on A, in which case the
torsion-free part is S⊥, or as the torsion-free part, in which case the torsion part is ⊥S. We

12 The angular brackets here signify the extension-closure operation: given full subcategories A,B ⊂D, the extension-
closure C = 〈A,B〉 ⊂D is the smallest full subcategory of D containing both A and B, and such that if X → Y → Z →
X[1] is a triangle in D with X,Z ∈ C then Y ∈ C also.
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FIG. 27. — Left and right tilts of a heart

can then define tilted hearts

μ−
S (A)= 〈

S[1],⊥S
〉
, μ+

S (A)= 〈
S⊥,S[−1]〉,

which we refer to as the left and right tilts of the heart A at the simple S, see Figure 27.
They fit into tilting pairs (μ−

S (A),A) and (A,μ+
S (A)). Note the relation

(7.1) μ+
S[1] ◦μ−

S (A)=A.

The tilting graph of D is the graph Tilt(D) whose vertices are finite-length hearts,
and in which two vertices are joined by an edge if the corresponding hearts are related
by a tilt in a simple object. There is a natural action of the group of triangulated autoe-
quivalences Aut(D) on this graph.

If A⊂D is a finite-length heart we denote by TiltA(D) ⊂ Tilt(D) the connected
component containing A. We say that the hearts in TiltA(D) are reachable from A. We
say that an autoequivalence � ∈ Aut(D) is reachable from A if its action on Tilt(D) pre-
serves the connected component TiltA(D). These autoequivalences form a subgroup
AutA(D)⊂ Aut(D).

We say that a finite-length heart A ⊂ D is infinitely tiltable if the graph TiltA(D)

is 2n-regular, where n is the rank of K(D). This means that the tilting process can be
continued indefinitely at all simple objects, and in both directions, without leaving the
class of finite-length hearts.

7.3. Tilting in the CY3 case. — Suppose now that D is a triangulated category with
the CY3 property. To ensure the existence of the twist functors appearing below we should
also assume that D is algebraic in the sense of Keller [21, Section 3.6].

Associated to a finite-length heart A ⊂D there is a quiver Q(A), whose vertices
are indexed by the isomorphism classes of simple objects Si ∈A and which has

nij = dimk Ext1
A(Si,Sj)

arrows connecting vertex i to vertex j. We call a finite-length heart A⊂D non-degenerate

if it is infinitely-tiltable and if, for every heart B ⊂D reachable from A, the quiver Q(B)

has no loops or oriented 2-cycles.
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The quiver Q(A) associated to a finite-length heart A⊂D has no loops precisely
if the simple objects of A are all spherical in the sense of [33]. Any spherical object S ∈D
defines an autoequivalence TwS ∈ Aut(D) called a spherical twist. It has the property
that for any object E ∈D there is a triangle

Hom•
D(S,E)⊗ S → E → TwS(E).

Suppose now that A ⊂ D is a non-degenerate finite-length heart with n simple
objects up to isomorphism. Taken together, the spherical twists in these simple objects
generate a subgroup

SphA(D)= 〈TwS1, . . . ,TwSn
〉 ⊂ Aut(D).

The following result is well-known, but for the reader’s convenience we include a sketch
proof. A more careful treatment can be found for example in [25].

Proposition 7.1.

(a) for every simple object S ∈A there is a relation

TwS

(
μ−

S (A)
)= μ+

S (A)⊂D;
(b) if B is reachable from A, then SphA(D)= SphB(D).

Proof. — Take a simple object S ∈ A. Since Q(A) has no oriented 2-cycles, we
can order the simple objects of A so that S = Si , and Ext1(Sj,Si) = 0 for j < i and
Ext1(Si,Sj)= 0 for j > i. Then for all j < i, the object TwSi

(Sj) is the universal extension

0 → Sj → TwSi
(Sj)→ Ext1

A(Si,Sj)⊗ Si → 0.

This clearly lies in S⊥
i ⊂ μ+

Si
(A), and is easily checked to be simple. In this way one sees

that the simple objects of μ+
Si
(A) are

(
TwSi

(S1), . . . ,TwSi
(Si−1),Si[−1],Si+1, . . . ,Sn

)
.

By a similar argument, or using μ−
Si[−1] μ

+
Si
(A) =A, it follows that the simple objects in

μ−
Si
(A) are

(
S1, . . . ,Si−1,Si[1],Tw−1

Si
(Si+1), . . . ,Tw−1

Si
(Sn)

)
.

Property (a) is then clear, using the identity TwSi
(Si)= Si[−2], and the fact that a finite-

length heart is determined by its simple objects. Property (b) follows from the identity

TwTwSi
(Sj ) = TwSi

◦TwSj
◦Tw−1

Si
,

and the fact that TwSi[1] = TwSi
. �
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7.4. Quivers with potential. — Suppose that D is a triangulated category with the
CY3 property. In Section 7.3 we associated a quiver Q(A) to a finite-length heart A⊂D
encoding the dimensions of the extension spaces between the simple objects. The next
result shows that after making the choice of a potential on Q(A) one can reverse this
process.

For all notions regarding quivers with potential we refer to [8, Sections 2–5] and
[23, Section 2]. In particular, we recall that a potential on a quiver Q is a formal linear
combination of oriented cycles in Q, and that a potential is called reduced if it is a sum of
cycles of length � 3.

Theorem 7.2. — Associated to a quiver with reduced potential (Q,W) there is a CY3 triangu-

lated category D(Q,W) of finite type over k, with a bounded t-structure whose heart

A=A(Q,W)⊂D(Q,W)

is of finite-length and has associated quiver Q(A) isomorphic to Q.

Proof. — Define the category D(Q,W) to be the subcategory of the derived
category of the complete Ginzburg algebra �(Q,W) consisting of objects with finite-
dimensional cohomology. It has the CY3 property by [23, Lemma 7.16, Theorem 7.17].

The category D(Q,W) has a standard bounded t-structure [23, Lemma 5.2]
whose heart A(Q,W) is equivalent to the category of finite-dimensional modules for the
complete Jacobi algebra J(Q,W)= H0(�(Q,W)). The algebra J(Q,W) is the quotient
of the complete path algebra of Q by the relations obtained by cyclically differentiat-
ing the potential W. In particular, its simple modules are naturally in bijection with the
vertices of Q, and the spaces of extensions between them are based by the arrows in Q. �

The combinatorial incarnation of the process of tilting at a simple module is called
mutation. It acts on right-equivalence classes of quivers with potential. Roughly speaking,
two potentials on a quiver Q are said to be right-equivalent if they differ by an automor-
phism of the completed path algebra which fixes the zero length paths; for the full def-
inition see [8, Section 4] or [23, Section 2.1]. Right-equivalent potentials give rise to
isomorphic complete Ginzburg algebras [23, Lemma 2.9], and hence equivalent cate-
gories D(Q,W).

Suppose that (Q,W) is a reduced quiver with potential, and fix a vertex i of Q. The
mutation (Q′,W′)= μi(Q,W) is another reduced quiver with potential, well-defined up
to right-equivalence, and depending only on the right-equivalence class of (Q,W). The
vertex sets of Q and Q′ are naturally identified, and the operation μi is an involution. We
refer the reader to [8, Section 5] or [23, Section 2.4] for the relevant definitions.

For our purposes, the importance of mutations of quivers with potential is the
following result of Keller and Yang [23, Thm. 3.2, Cor. 5.5].
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Theorem 7.3. — Let (Q,W) be a quiver with reduced potential, such that Q has no loops or

oriented 2-cycles. Let i be a vertex of Q and set(
Q′,W′)= μi(Q,W).

Then there is a canonical pair of k-linear triangulated equivalences

�± : D
(
Q′,W′)→D(Q,W)

which induce tilts in the simple object Si ∈A(Q,W) in the sense that

�±
(
A

(
Q′,W′))= μ±

Si

(
A(Q,W)

)⊂D(Q,W),

and which moreover induce the natural bijections on simple objects.

For the last part of this statement, recall that there is a natural bijection between the
simple objects of A and those of μ±

Si
(A) which was made explicit in the proof of Proposi-

tion 7.1. There is also a natural bijection between the vertices of the quivers (Q,W) and
μi(Q,W). The claim is that these bijections are compatible with the canonical bijections
between the vertices of the quivers Q,Q′ and the simple objects in the corresponding
standard hearts.

A quiver with potential (Q,W) is called non-degenerate [8, Section 7] if any sequence
of mutations of (Q,W) results in a quiver with potential having no loops or oriented 2-
cycles. Theorem 7.3 shows that this condition is equivalent to the statement that the
standard heart A(Q,W)⊂D(Q,W) is non-degenerate in the sense of Section 7.3.

7.5. Stability conditions. — Here we summarize the basic properties of spaces of
stability conditions. We refer the reader to [2, 3] for more details on this material. Let
us fix a triangulated category D, and assume for simplicity that the Grothendieck group
K(D)∼= Z⊕n is free of finite rank.

A stability condition σ = (Z,P) on D consists of a group homomorphism Z : K(D)→
C called the central charge, and full additive subcategories P(φ)⊂D for each φ ∈ R, which
together satisfy the following axioms:

(a) if E ∈P(φ) then Z(E) ∈ R>0 · eiπφ ⊂ C,
(b) for all φ ∈ R, P(φ + 1)=P(φ)[1],
(c) if φ1 > φ2 and Aj ∈P(φj) then HomD(A1,A2)= 0,
(d) for each nonzero object E ∈D there is a finite sequence of real numbers

φ1 > φ2 > · · ·> φk

and a collection of triangles

0 = E0 E1 E2 . . . Ek−1 Ek = E

A1 A2 Ak
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with Aj ∈P(φj) for all j.

The semistable objects Aj appearing in the filtration of axiom (d) are unique up to
isomorphism, and are called the semistable factors of E. We set

φ+(E)= φ1, φ−(E)= φk, m(E)=
∑

i

∣∣Z(Ai)
∣∣ ∈ R>0.

The real number m(E) is called the mass of E. It follows from the definition that the sub-
categories P(φ) ⊂D are abelian categories; the objects of P(φ) are said to be semistable

of phase φ, and the simple objects of P(φ) are said to be stable of phase φ. For any interval
I ⊂ R there is a full subcategory P(I)⊂D consisting of objects whose semistable factors
have phases in I.

We shall always assume that our stability conditions σ = (Z,P) satisfy the support

property of [26], namely that for some norm ‖ · ‖ on K(D)⊗R there is a constant C > 0
such that

(7.2) ‖γ ‖< C · ∣∣Z(γ )
∣∣

for all classes γ ∈ K(D) represented by σ -semistable objects in D. As explained in [1,
Prop. B.4], this is equivalent to assuming that they are full and locally-finite in the termi-
nology of [2, 4]. We let Stab(D) denote the set of all such stability conditions on D.

There is a natural topology on Stab(D) induced by the metric

(7.3) d(σ1, σ2)= sup
0�=E∈D

{∣∣φ−
σ2

(E)−φ−
σ1

(E)
∣∣, ∣∣φ+

σ2
(E)−φ+

σ1
(E)

∣∣,
∣∣∣∣log

mσ2(E)

mσ1(E)

∣∣∣∣
}
∈ [0,∞].

The following result is proved in [2].

Theorem 7.4. — The space Stab(D) has the structure of a complex manifold, such that the

forgetful map

π : Stab(D)→ HomZ

(
K(D),C

)

taking a stability condition to its central charge, is a local isomorphism.

There are two commuting group actions on Stab(D) that will be important later.
The group of triangulated autoequivalences Aut(D) acts on Stab(D) in a rather obvious
way: an autoequivalence � ∈ Aut(D) acts by

� : (Z,P) �→ (
Z′,P ′), Z′(E)= Z

(
�−1(E)

)
, P ′ =�(P).

There is also an action of the universal cover of the group GL+(2,R) of orientation-
preserving linear automorphisms of R2. This action does not change the subcategory P ,
but acts by post-composition on the central charge, viewed as a map to C = R2, with
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a corresponding adjustment of the grading on P . This action is not free in general, but
there is a subgroup isomorphic to C which does act freely: an element t ∈ C acts by

t : (Z,P) �→ (
Z′,P ′), Z′(E)= e−iπ t · Z(E), P ′(φ)=P

(
φ +Re(t)

)
.

Note that for any integer n ∈ Z, the action of the multiple shift functor [n] coincides with
the action of n ∈ C.

Later we will need the following more precise version of Theorem 7.4.

Proposition 7.5. — Fix a real number 0 < ε � 1. Given a stability condition σ = (Z,P) ∈
Stab(D), and a group homomorphism W : K(D)→ C satisfying

∣∣W(E)− Z(E)
∣∣ < ε · ∣∣Z(E)

∣∣
for all σ -stable objects E ∈D, there is a unique stability condition σ ′ ∈ Stab(D) with central charge

W such that d(σ,σ ′) < 1
2 .

Proof. — In fact we can take any 0 < ε < 1
8 . The support property implies that for

any interval I ⊂ R of length < 1, the quasi-abelian categories P(I) have finite-length.
The existence part then follows from the results of [2, Section 7]. The uniqueness is a
consequence of [2, Lemma 6.4]. �

7.6. Walls and chambers. — In this section we give some basic results on the wall-
and-chamber decomposition of the space of stability conditions. These are well-known,
but the proofs in the general setting are not available in the literature. As in the last
section, we fix a triangulated category D and assume that K(D) ∼= Z⊕n is free of finite
rank.

Proposition 7.6. — Fix an object E ∈D. Then

(a) the set of σ ∈ Stab(D) for which E is σ -stable is open.

(b) the set of σ ∈ Stab(D) for which E is σ -semistable is closed.

Proof. — For part (a), take a stability condition σ = (Z,P) and an object E ∈P(φ)

which is σ -stable. Choose 0 < r � 1 and consider the open ball Br(σ ) of radius r centered
at σ , with respect to the metric (7.3). By definition of this metric, for σ ′ = (Z′,P ′) ∈ Br(σ )

there are inclusions

P(φ)⊂P ′(φ − r, φ + r)⊂P(φ − 2r, φ + 2r).

Thus E fails to be stable in σ ′ precisely if there is a triangle A → E → B whose objects
all lie in P(φ − 2r, φ + 2r) and for which φ′(A) � φ′(E).

The support property implies that for any M > 0 there are only finitely many
classes α ∈ K(D) satisfying |Z(α)|< M for which there exist σ -semistable objects of class



226 TOM BRIDGELAND AND IVAN SMITH

α. It follows that the set of classes α ∈ K(D) of objects A as above is finite. Since E is stable
in σ we must have φ(A) < φ(E) for each such subobject, and so, reducing r if necessary,
we can assume that these phase inequalities continue to hold for all σ ′ ∈ Br(σ ). It follows
that E is stable for all stability conditions in Br(σ ).

Part (b) is immediate: the object E is semistable in σ precisely if φ+
σ (E) = φ−

σ (E).
By the definition of the metric (7.3) this is a closed condition. �

Let us now fix a class γ ∈ K(D) and consider stability for objects of this class. Let
α ∈ K(D) be another class which is not proportional to γ . We define

Wγ (α)⊂ Stab(D)

to be the subset of stability conditions σ = (Z,P) satisfying the following condition: for
some φ ∈ R there is an inclusion A ⊂ E in the category P(φ) such that A and E have
classes α and γ respectively. Locally, the subset Wγ (α) is contained in the real codimen-
sion one submanifold of Stab(D) defined by the condition Z(α)/Z(γ ) ∈ R>0.

Lemma 7.7. — If B ⊂ Stab(D) is a compact subset then the set of classes α for which the

subset Wγ (α) intersects B is finite.

Proof. — The support property for a fixed stability condition σ implies that for any
given M > 0 there are only finitely many classes α ∈ K(D) represented by objects of mass
< M in σ . On the other hand, the definition of the metric (7.3) shows that the masses of
objects of D vary by a uniformly bounded amount in B, so the same is true if we allow
σ to vary in B. Using compactness again we can assume that M is large enough that
|Z(γ )| < M for all points in B. But if σ ∈ Wγ (α) ∩ B then there is an inclusion A ⊂ E
in some P(φ), and it follows that A has mass < M, and hence has one of finitely-many
classes. �

Consider the complement of the closures

Cγ = Stab(D) \
⋃
α �∼γ

W̄γ (α)

where the union is over classes α which are not proportional to γ . This is the complement
of a locally-finite union of closed subsets, hence is open.

We refer to the subsets Wγ (α) as walls for the class γ , and the connected compo-
nents of Cγ will be called chambers. The following result shows that the question of whether
a given object E ∈D of class γ is stable or semistable has a constant answer for stability
conditions in a fixed chamber.

Proposition 7.8. — Let U ⊂ Cγ be a chamber. If an object E of class γ is (semi)stable for some

stability condition σ ∈ U then the same is true for all σ ∈ U.
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Proof. — We say that an object E ∈D is pseudostable in a stability condition σ if
it is semistable and the classes in K(D) of its stable factors are all proportional. The set
of points σ ∈ Stab(D) for which a given object E ∈D is pseudostable is open: indeed, by
Lemma 7.6(a), if E is pseudostable for σ then the stable factors of E remain stable in some
open neighbourhood of σ , and their phases remain equal since they have proportional
classes. The set of points where E is unstable is also open, by Lemma 7.6(b), since it is the
complement of the points where E is semistable.

Suppose now that E ∈D has class γ . If E is semistable but not pseudostable then
σ must lie on a wall Wγ (α). Thus, the subset of points of the chamber U for which E
is semistable is both open and closed. Since U is connected, this subset must be either
empty or the whole of U.

Assume now that E is semistable for all σ ∈ U. As above this implies that E is
pseudostable at each σ ∈ U. The set of σ ∈ U for which E is stable is then open, by
Lemma 7.6(a), and its complement, the set of points for which E is strictly pseudostable is
also open, by the argument given above. Hence, if E is stable for some stability condition
in U, then it is stable for all of them. �

7.7. Stability conditions from t-structures. — Let D be a triangulated category. Any
stability condition σ = (Z,P) on D has an associated heart

A=P
(
(0,1])⊂D.

It is the extension closure of the subcategories P(φ) for 0 < φ � 1. All nonzero objects
of A are mapped by Z into the semi-closed upper half plane

H̄= {
r exp(iπφ) : r ∈ R>0 and 0 < φ � 1

}⊂ C.

Conversely, given a heart A⊂D, and a group homomorphism Z : K(A)→ C with this
property, then providing some finiteness conditions are satisfied, there is a unique stability
condition on D with heart A and central charge Z.

In particular, if A ⊂ D is a finite-length heart with n simple objects Si up to iso-
morphism, the subset Stab(A)⊂ Stab(D) consisting of stability conditions with heart A
is mapped bijectively by π onto the subset

{
Z ∈ HomZ

(
K(D),C

) : Z(Si) ∈ H̄
}
,

and is therefore homeomorphic to H̄n.
The following result shows that tilting controls the way the subsets Stab(A), for

different hearts A⊂D, are glued together in Stab(D).

Lemma 7.9. — Let A⊂D be a finite-length heart, and suppose that

σ = (Z,P) ∈ Stab(D)
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lies on a unique boundary component of the region Stab(A) ⊂ Stab(D), so that Im Z(Si) = 0 for

a unique simple object Si . Assume that the tilted hearts μ±
Si
(A) are also finite-length. Then there is a

neighbourhood σ ∈ U ⊂ Stab(D) such that one of the following holds

(i) Z(Si) ∈ R<0, and U ⊂ Stab(A) � Stab(μ+
Si
(A)),

(ii) Z(Si) ∈ R>0, and U ⊂ Stab(A) � Stab(μ−
Si
(A)).

Proof. — This is stated without proof in [3, Lemma 5.5]. A special case is proved in
[5, Proposition 2.4], and the general case is proved in exactly the same way. �

The subsets Stab(A) ⊂ Stab(D) form a different system of walls and chambers
in Stab(D). The walls consist of points where the subcategory P(0) contains nonzero
objects. To distinguish them from the walls considered in the last subsection they are
often referred to as walls of type II. Note that they do not depend on a choice of class
α ∈ K(D).

Suppose that A⊂D is a finite-length heart. It follows from Lemma 7.9 that there
is a single connected component StabA(D)⊂ Stab(D) containing all stability conditions
whose hearts lie in the connected component TiltA(D) ⊂ Tilt(D). Note however that it
is not usually the case that StabA(D) is the union of the chambers Stab(B) for hearts B
reachable from A (see [40] for a detailed discussion of this point).

An autoequivalence of D lying in the subgroup AutA(D)⊂ Aut(D) of autoequiva-
lences reachable from A necessarily preserves the connected component StabA(D). The
converse is false: the existence of the C-action shows that the shift functor [1] fixes all
connected components of Stab(D), but it is not generally true that [1] is reachable.

It is easy to see that a triangulated autoequivalence � acts trivially on StabA(D)

precisely if it fixes a heart A⊂D and furthermore fixes pointwise the isomorphism classes
of its simple objects. This is equivalent to the condition that � acts trivially on the con-
nected component TiltA(D). We say that such autoequivalences are negligible with respect
to the heart A.

8. Surfaces and triangulations

The particular examples of CY3 categories considered in this paper will be defined
using quivers with potential associated to triangulations of marked bordered surfaces.
Unfortunately, the non-degenerate ideal triangulations appearing in Section 1.2 will not
be sufficient for our purposes. Indeed, to understand the space of stability conditions on
our categories, we will need to understand all hearts that are reachable from the standard
heart; whilst some of these hearts correspond to non-degenerate ideal triangulations, oth-
ers correspond to more exotic objects introduced in [10] called tagged triangulations.
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FIG. 28. — A triangulation of a disc with 5 marked points

FIG. 29. — A self-folded triangle

8.1. Ideal triangulations. — Here we give a brief summary of the relevant defini-
tions concerning triangulations of marked bordered surfaces. The reader can find a more
careful treatment in the paper of Fomin, Shapiro and Thurston [10].

A marked bordered surface is defined to be a pair (S,M) consisting of a compact,
connected oriented surface with boundary, and a finite non-empty set M ⊂ S of marked
points such that each boundary component of S contains at least one marked point.
Marked points in the interior of S are called punctures; the set of punctures is denoted
P ⊂ M.

An arc in (S,M) is a smooth path γ in S connecting points of M, whose interior
lies in the open subsurface S\ (M∪∂S), and which has no self-intersections in its interior.
We moreover insist that γ should not be homotopic, relative to its endpoints, to a single
point, or to a path in ∂S whose interior contains no points of M. Two arcs are considered
to be equivalent if they are related by a homotopy through such arcs.

An ideal triangulation of (S,M) is defined to be a maximal collection of equivalence
classes of arcs for which it is possible to find representatives whose interiors are pairwise
disjoint. We refer to the arcs as the edges of the triangulation. An example of an ideal
triangulation of a disc with 5 marked points on its boundary is depicted in Figure 28;
note that it has just two edges. To get something more closely approximating the intuitive
notion of a triangulation of the surface one should add arcs in ∂S connecting the points
of M.

A face or triangle of an ideal triangulation T is the closure in S of a connected
component of the complement of all arcs of T. A triangle is called interior if its intersection
with ∂S is contained in M. Each interior triangle is topologically a disc, containing either
two or three distinct edges of the triangulation.

An interior triangle with just two distinct edges is called a self-folded triangle; such a
triangle has a self-folded edge and an encircling edge, as shown in Figure 29. The valency of a
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puncture p ∈ P with respect to a triangulation T is the number of half-edges of T that
are incident with it; a puncture has valency 1 precisely if it is contained in a self-folded
triangle.

For various technical reasons, when dealing with triangulations of marked bor-
dered surfaces (S,M), we shall always make the following

Assumption 8.1. — We assume that (S,M) is not one of the following surfaces

(a) a sphere with � 5 marked points;

(b) an unpunctured disc with � 3 marked points on the boundary;

(c) a disc with a single puncture and one marked point on its boundary.

In the cases of a sphere with � 2 punctures, or an unpunctured disc with � 2
marked points, there are no ideal triangulations, and so the theory described below is
vacuous. In the cases of an unpunctured disc with 3 marked points, and the surface of case
(c), there is a unique ideal triangulation and the theory is trivial and rather degenerate;
see Examples 12.1 and 12.3.

The case of a three-punctured sphere is special in that there is an ideal triangu-
lation consisting of two self-folded triangles meeting along a common edge; this plays
havoc with the definition of a tagged triangulation below and for this reason it is better
to deal with this case directly: see Section 12.4. Finally, the cases of spheres with 4 or
5 punctures are definitely interesting, but we have to exclude them because the crucial
results of Section 9.1 have not been established for these surfaces.

A marked bordered surface (S,M) is determined up to diffeomorphism by its
genus g, the number of punctures p, and a collection of integers ki � 1 encoding the
number of marked points on each boundary component. Any ideal triangulation of such
a surface has the same number of edges, namely

n = 6g − 6+ 3p+
∑

i

(ki + 3).

8.2. Flips and pops. — Let (S,M) be a marked bordered surface satisfying Assump-
tion 8.1. A signed triangulation of (S,M) is a pair (T, ε) consisting of an ideal triangulation
T, and a function

ε : P →{±1}.
By a pop of a signed triangulation (T, ε) we mean the operation of changing the sign ε(p)

associated to a puncture p ∈ P of valency one. Note that any such puncture lies in the
centre of a self-folded triangle of T.

The popping operation generates an equivalence relation on signed triangulations,
in which two signed triangulations (Ti, εi) are equivalent precisely if the underlying tri-
angulations Ti are the same, and the signings εi differ only at punctures p ∈ P of valency
one.
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FIG. 30. — Flip of a triangulation

It turns out that the equivalence classes for this relation can be explicitly repre-
sented by a combinatorial gadget called a tagged triangulation. We will explain this in Sec-
tion 8.3 below, but for now we simply define a tagged triangulation to be an equivalence
class of signed triangulations.

Let us introduce notation Tri(S,M),Tri±(S,M),Tri� (S,M) for the sets of ideal,
signed and tagged triangulations of (S,M) respectively. There is a diagram of maps

(8.1) Tri±(S,M)

q

Tri(S,M)
i

j

Tri� (S,M)

where q is the obvious quotient map, and the arrows i and j are embeddings obtained by
considering an ideal triangulation as a signed, and hence a tagged triangulation, using
the signing ε ≡+1.

Two ideal triangulations T1 and T2 are related by a flip if they are distinct, and there
are edges ei ∈ Ti such that T1\{e1} = T2\{e2}. Note that the edges e1 and e2 are necessarily
non-self-folded. Conversely, if e is a non-self-folded edge of an ideal triangulation T, it is
contained in exactly two triangles of T, and there is a unique ideal triangulation which
is the flip of T along e. The flipping operation extends to signed triangulations in the
obvious way: we flip the underlying triangulation, keeping the signs constant. We say
that two tagged triangulations are related by a flip if they can be represented by signed
triangulations which differ by a flip.

The sets appearing in the diagram (8.1) can be considered as graphs, with two
(ideal, signed, tagged) triangulations being connected by an edge if they differ by a flip.
The maps in the diagram then become maps of graphs. The important point is that,
unlike the graph Tri(S,M) of ideal triangulations, the graph Tri� (S,M) of tagged trian-
gulations is n-regular.

The basic explanation for this regularity is as follows. When a triangulation T1

contains a self-folded triangle �, we cannot flip the self-folded edge f of �, so the number
of flips that can be performed on T1 is less than the total number of edges n. On the other
hand, if we choose a signing ε : P →{±1}, and consider the signed triangulation (T1, ε1)

up to the above equivalence relation, then when we flip the encircling edge e of �, the
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puncture p contained in � has valency 2 in the new triangulation T2, and so there are
two inequivalent possible choices for the sign ε2(p).

It is well-known that any two ideal triangulations of (S,M) are related by a finite
chain of flips; thus the graph Tri(S,M) is always connected [10, Prop. 3.8]. The graph
Tri� (S,M) is also connected, except for the case when (S,M) is a closed surface with
a single puncture p ∈ P: in that case Tri� (S,M) has two connected components corre-
sponding to the two possible choice of signs ε(p) [10, Prop. 7.10].

8.3. Tagged triangulations. — We now explain why the set Tri� (S,M) of tagged
triangulations we defined above coincides with the standard version as defined by Fomin,
Shapiro and Thurston [10]. This material will not be used in the rest of the paper, and
is only logically necessary to justify the above assertions that the graph Tri� (S,M) is
connected and n-regular.

Let (S,M) be a marked, bordered surface satisfying Assumption 8.1. A tagged arc

in (S,M) is an arc as defined above, each end of which has been labelled by one of two
labels: plain or tagged. Fix a function ε : P → {±1}. Given an ordinary arc e, there is a
corresponding tagged arc tε(e) defined by the following rule:

(a) If e is not a loop enclosing a once-punctured disc, the underlying arc of tε(e) is
just e, and an end of e is labelled tagged precisely if it lies at a puncture p ∈ P
with ε(p)=−1.

(b) If e is a loop based at m ∈ M, enclosing a disc which contains a single puncture
p ∈ P, then the underlying arc of tε(e) is the arc connecting p to m inside the
disc. We label the edge adjacent to m tagged precisely if m is a puncture with
ε(m)=−1, and the edge adjacent to p tagged precisely if ε(p)=+1.

By [10, Lemma 9.3], a tagged triangulation in the standard sense considered there
is precisely a set of tagged arcs of the form tε(T) for some signed triangulation (T, ε). The
following result shows that these tagged triangulations are in bijection with the equiva-
lence classes of signed triangulations considered in the last section.

Lemma 8.2. — Suppose that (T1, ε1) and (T2, ε2) are signed triangulations. Then tε1(T1)=
tε2(T2) if and only if T1 = T2, and the signings ε1, ε2 differ only at punctures of valency one.

Proof. — Any vertex of valency one lies in the interior of a self-folded triangle, and
it is clear from the definition of tε(T) that the resulting collection of tagged arcs does not
distinguish between the two choices of sign at such a vertex (the enclosing and folded
edge of the self-folded triangle get mapped to two taggings of the same arc; changing the
sign just exchanges these two).

The converse follows easily from the following observations. Suppose that η ∈ tε(T)

is a tagged arc, with underlying arc f . Consider tagged arcs ζ ∈ tε(T) which have the
same underlying arc f . If there is no such ζ then we must have η = tε(f ), and the
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arc f is not contained in a self-folded triangle of T. If there is such a ζ , then there is
a self-folded triangle � in T with self-folded edge f , and encircling edge e, such that
{η, ζ } = {tε(e), tε(f )}. Moreover, the encircling edge e is completely determined, because
the puncture inside � is the one at which η and ζ have different markings. �

We should also check that our definition of when two tagged triangulations differ
by a flip coincides with the standard one. Namely, in [10], two tagged triangulations τ1

and τ2 are said to be related by a flip if they are distinct, and there are tagged arcs ηi ∈ τi

such that τ1 \ {η1} = τ2 \ {η2}.
Lemma 8.3. — Two tagged triangulations differ by a flip in the above sense, precisely if they can

be represented by signed triangulations differing by a flip.

Proof. — One implication is clear, since if two signed triangulations differ by a flip
then by Lemma 8.2, so do the associated tagged triangulations. For the converse, suppose
that τ1 \ {η1} = τ2 \ {η2}. Then we can write τ1 = tε(T1) for some signed triangulation
(T1, ε) in such a way that η1 = tε(e1) for some non-self-folded edge e1. Flipping this edge
gives a different signed triangulation T2 satisfying T1 \ {e1} = T2 \ {e2}. It follows that
τ1 \ {η1} = tε(T2) \ tε(e2). But the flip of a tagged triangulation in a tagged arc is unique
[10, Theorem 7.9]. Thus we have τ2 = tε(T2) and η2 = tε(e2). �

8.4. Edge lattice and quiver. — Let (S,M) be a marked bordered surface satisfying
Assumption 8.1. The edge lattice of an ideal triangulation T of (S,M) is defined to be the
free abelian group �(T) on the edges of T. We denote by [e] the basis element corre-
sponding to the edge e ∈ T; thus

�(T)=
⊕
e∈T

Z · [e].

For distinct edges e, f ∈ T, we define c(e, f ) to be the number of triangles of T in which e

and f appear as adjacent edges in clockwise order. There is a skew-symmetric form

〈−,−〉: �(T)× �(T)→ Z

given by the formula
〈[e], [f ]〉= c(f , e)− c(e, f ).

Note that if e and f are the encircling and self-folded edges of a self-folded triangle then

(8.2) c(e, f )= 1 = c(f , e),
〈[e], [f ]〉= 0.

It will be convenient for later purposes to define c(e, e) =−2 for all edges e, although of
course this has no effect on the form 〈−,−〉.

We will also need a modified basis {e} for the group �(T) defined as follows:
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(a) if e ∈ T is not an edge of a self-folded triangle then {e} = [e];
(b) if e and f are respectively the encircling and self-folded edges of a self-folded

triangle, then {e} = [e] and {f } = [e] + [f ].
We will see some more intrinsic interpretations of the edge lattice �(T) later: as a
Grothendieck group with its Euler form (Lemma 9.10), and as a homology group with
an intersection form (Lemma 10.3). We will also give some explanation for the strange-
looking definition of the basis {e} (Section 10.2).

Define a map κ : T → T by setting κ(f ) = f unless f is a self-folded edge of a
self-folded triangle, in which case κ(f )= e is the encircling edge of the same triangle. For
distinct edges e and f define

n(e, f )= max
(
0,

〈[
κ(f )

]
,
[
κ(e)

]〉)
� 0.

Note that there is a relation

(8.3)
〈{e}, {f }〉= 〈[

κ(e)
]
,
[
κ(f )

]〉= n(f , e)− n(e, f )

for all e, f ∈ T. This is easily checked by noting that when f is a self-folded edge, the basis
element [f ] lies in the kernel of the form 〈−,−〉.

To any ideal triangulation T we can now associate a quiver Q(T) whose vertices
are the edges of T, and with n(e, f ) arrows from vertex e to vertex f . By its definition it
has no loops or 2-cycles. In the case of a non-degenerate ideal triangulation of a closed
surface it reduces to the quiver considered in Section 1.2.

Remarks 8.4.

(a) If T has a self-folded triangle with edges e and f , then since κ(e) = κ(f ), there is an

involution of the quiver Q(T) exchanging the vertices corresponding to these two edges.

(b) If e and f are distinct non-self-folded edges, then it is easily checked that c(e, f ) and c(f , e)

are both nonzero precisely if e and f meet at a puncture of valency 2. Thus if a pair of edges

e, f are such that κ(e) are κ(f ) are distinct, and do not meet at a vertex of valency 2, then

n(e, f )= c(κ(e), κ(f )).

8.5. Ordered versions. — Sometimes in what follows it will be clearer to work with
ordered versions of our basic combinatorial objects: triangulations, quivers, t-structures
etc. In this section we gather the necessary definitions; these mostly proceed along the
obvious lines.

An ordered ideal triangulation is an ideal triangulation equipped with an ordering
of its edges. Similarly, one can consider ordered signed triangulations. By a pop of an or-
dered signed triangulation we mean the operation which changes the sign ε(p) associated
to a puncture p ∈ P of valency 1, and which also changes the ordering of the triangula-
tion by transposing the two edges of the self-folded triangle containing p. Two ordered
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signed triangulations are considered equivalent if they differ by a finite sequence of such
pops. By an ordered tagged triangulation we mean an equivalence class of ordered signed
tagged triangulations. The map tε of Section 8.3 respects this equivalence relation, and it
follows that we can realise ordered tagged triangulations as ordered collections of tagged
arcs.

Two ordered triangulations are related by a flip if the underlying triangulations
are related by a flip, and if the orderings of their edges are compatible with the obvious
bijection between the edges of the two triangulations. Similarly, one can consider flips of
ordered signed triangulations. Two ordered tagged triangulations are related by a flip if
they can be represented by ordered signed triangulations that are related by a flip.

An ordered quiver is a quiver equipped with a fixed ordering of its vertices. An or-
dered triangulation T has an associated ordered quiver Q(T). Remark 8.4(a) shows that
the ordered quiver associated to an ordered triangulation is invariant under transpos-
ing the order of the two edges of a self-folded triangle, and it follows that every ordered
tagged triangulation also has an associated ordered quiver.

Finally, suppose that D is a CY3 triangulated category. By an ordering of a finite-
length heart A ⊂ D we mean an ordering of the simple objects of A. The associated
quiver Q(A) is then also ordered in the obvious way. As we explained in the proof of
Proposition 7.1, for any simple object S ∈A, there is a canonical bijection between the
simple objects of the heart A and those of the tilted heart μ±

S (A). We say that two ordered
hearts A,B ⊂D are related by a tilt in a simple object, if the hearts A,B are related by
such a tilt, and if the orderings on A,B are compatible with this canonical bijection.

We denote the graphs of ordered ideal, signed, tagged triangulations by

Tri"(S,M), Tri"±(S,M), Tri"� (S,M)

respectively. The maps in (8.1) induce maps of the ordered versions in the obvious way.
Similarly, given a non-degenerate heart A⊂D we use the notation

Tilt"A(D), Exch"
A(D)

for the graphs of ordered reachable finite-length hearts, and the quotient of this graph by
the group SphA(D). We note that these graphs will not be connected in general.

8.6. Mapping class group. — By a diffeomorphism of a marked bordered surface
(S,M) we mean a diffeomorphism of S which fixes the subset M, although possibly
permuting its elements. The mapping class group MCG(S,M) is the group of all orientation-
preserving diffeomorphisms of (S,M) modulo those which are homotopic to the identity
through diffeomorphisms of (S,M).

The mapping class group clearly acts on the graphs of (ideal, signed, tagged) trian-
gulations of the surface (S,M), since the edges of such triangulations consist of homotopy
classes of arcs.
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Proposition 8.5. — Suppose that (S,M) is a marked bordered surface which satisfies Assump-

tion 8.1 and which is not one of the following 3 surfaces

(a) a once-punctured disc with 2 or 4 marked points on the boundary;

(b) a twice-punctured disc with 2 marked points on the boundary.

Then two ideal triangulations of (S,M) differ by an element of MCG(S,M) precisely if the associated

quivers are isomorphic.

Proof. — One implication is clear: if two triangulations differ by an orientation-
preserving diffeomorphism then they have the same combinatorics and hence the same
associated quivers.

For the converse, suppose that two surfaces (Si,Mi) have ideal triangulations Ti .
In [10, Section 13] it is explained how to decompose the quivers Q(Ti) into certain
blocks. In the proof of [10, Proposition 14.1] it is shown that if each quiver Q(Ti) has
a unique block decomposition, then the quivers Q(Ti) are isomorphic precisely if there
is an orientation-preserving diffeomorphism between the surfaces (Si,Mi) taking one
triangulation Ti to the other. Weiwen Gu [16] has classified all quivers which have more
than one block decomposition. The only examples corresponding to combinatorially-
distinct triangulations of the same surface occur when (S,M) is one of the three cases
listed in the statement of the Proposition, or a sphere with 3 or 4 punctures. These last
two cases are already excluded by Assumption 8.1. �

The mapping class group of (S,M) acts on the set P ⊂ M of punctures in the
obvious way, and we define the signed mapping class group to be the corresponding semi-
direct product

(8.4) MCG±(S,M)= MCG(S,M)� ZP
2 .

This group acts on the set of signed triangulations, with the ZP
2 part acting by changing

the signs ε(p) ∈ {±1} associated to the punctures. This action clearly descends to an
action on tagged triangulations. It is an immediate consequence of Proposition 8.5 that
the quivers associated to two signed or tagged triangulations of (S,M) are isomorphic
precisely if they differ by an element of the signed mapping class group.

8.7. Free action on ordered triangulations. — One reason to introduce ordered triangu-
lations is the following result.

Proposition 8.6. — Suppose that (S,M) satisfies Assumption 8.1 and is not one of the following

3 surfaces:

(i) an unpunctured disc with 4 points on its boundary;

(ii) an annulus with one marked point on each boundary component;
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(iii) a closed torus with a single puncture.

Then the action of the mapping class group MCG(S,M) on the set Tri"(S,M) of ordered ideal

triangulations is free. Similarly, the actions of the signed mapping class group MCG±(S,M) on the sets

Tri"±(S,M) and Tri"� (S,M) are free.

Proof. — For the case of ideal triangulations, we must show that an orientation-
preserving diffeomorphism g of (S,M) which fixes the edges of such a triangulation T is
homotopic to the identity, through diffeomorphisms of (S,M).

Suppose first that g fixes every triangle of T. Since g then induces an orientation-
preserving diffeomorphism of each triangle, it follows that g preserves the orientation of
each edge of T. Moreover, since every triangle contains at least one edge, we see that g

preserves each connected component of ∂S \M. Now Diff(I, ∂I) is contractible, and the
edges are disjoint in their interiors, so we can isotope g so that it fixes all edges of T, and
all components of ∂S pointwise. The result then follows from the fact [34, Theorem B]
that the group Diff(D2, ∂D2) is contractible.

Suppose instead that there is some triangle � such that g(�) �=�. Then the edges
of � coincide with those of gi(�) for all i ∈ Z. Since any edge occurs in the boundary
of at most 2 triangles, it follows that g2(�) = �. Moreover, the surface S is completely
covered by the two triangles � and g(�), since passing through an edge of � takes us into
g(�) and vice versa. We then obtain the three possibilities listed, according to whether
the closures of the triangles � and g(�) meet in 1, 2 or 3 edges.

The extension to signed triangulations is obvious. For the case of tagged triangula-
tions, suppose that an element of g ∈ MCG±(S,M) fixes an ordered tagged triangulation
τ , which we view as an equivalence-class of signed triangulations (T, ε). Note that the
action of g on Tri"±(S,M) commutes with the flipping operation. Thus we can reduce
to the case when T has no self-folded triangles. Then g must fix the signed triangulation
(T, ε), since this is the only signed triangulation in the equivalence-class τ . Hence g is
the identity. �

We note that the excluded cases in Proposition 8.6 are essentially the same as those
in Proposition 6.6 (the case of an unpunctured disc with 3 marked points would appear
above were it not already excluded by Assumption 8.1). This is not a coincidence: generic
automorphisms of the space Quad(S,M) correspond to automorphisms of (S,M) which
preserve a horizontal strip decomposition together with an ordering of the horizontal
strips. Any such automorphism will also preserve an ordered version of the WKB trian-
gulation of Section 10.1.

9. The category associated to a surface

In this section we introduce the particular examples of CY3 categories that ap-
pear in our main Theorems. They are indexed by diffeomorphism classes of marked
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bordered surfaces (S,M). We also provide the combinatorial underpinning of our main
theorems, by giving a precise correspondence between tagged triangulations of (S,M)

and t-structures on the corresponding category D(S,M). Throughout this section we
rely heavily on the work of D. Labardini-Fragoso.

9.1. Some results of Labardini-Fragoso. — Let (S,M) be a marked bordered surface
satisfying Assumption 8.1. Let T be an ideal triangulation of (S,M). Labardini-Fragoso
[27] defined a reduced potential W(T) on the quiver Q(T) introduced in Section 8.4,
depending also on some nonzero scalar constants xp ∈ k \ {0}, one for each puncture
p ∈ P. We shall always take these scalars to be defined by a signing; thus we take a signed
triangulation (T, ε) and consider the quiver with potential (Q(T),W(T, ε)) obtained by
setting xp = ε(p).

In the case when T is non-degenerate, the resulting potential reads

(9.1) W(T, ε)=
∑

f

T(f )−
∑

p

ε(p)C(p),

where T(f ) and C(p) are the cycles in Q(T) defined in Section 1.2. In the presence of
punctures of valency � 2 the recipe becomes more complicated. The explicit form of
the potential will not be important for what follows, and we refer to [27, Section 3] for
details. What will be important are the invariance properties under flips and pops which
we now describe.

The case of flips is dealt with by the following result of Labardini-Fragoso [27,
Theorem 30]. To be absolutely clear we state it for ordered triangulations.

Theorem 9.1. — Let (S,M) be a marked bordered surface satisfying Assumption 8.1. Suppose

that two ordered signed triangulations (Ti, εi) of (S,M) are related by a flip in a non-self-folded edge

e. Then, up to right-equivalence, the ordered quivers with potential (Q(Ti),W(Ti, εi)) are related by a

mutation at the corresponding vertex.

We now move on to the case of pops. As we remarked in Section 8.5, the popping
symmetry of Remark 8.4(a) implies that an ordered tagged triangulation has an associated
ordered quiver. The following result [29, Theorem 6.1] extends this statement to quivers
with potential.

Theorem 9.2. — Let (S,M) be a marked bordered surface satisfying Assumption 8.1. Suppose

that two ordered signed triangulations (T, εi) of (S,M) are related by a pop. Then the associated ordered

quivers with potential (Q(T),W(T, εi) are right-equivalent.

We conclude that every ordered tagged triangulation has an associated ordered
quiver with potential, well-defined up to right-equivalence. If we think of a tagged trian-
gulation τ as a collection of tagged arcs as in Section 8.3, then we can say that there is
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an associated quiver with potential (Q(τ ),W(τ )), well-defined up to right-equivalence,
whose vertices are in natural bijection with these tagged arcs.

To avoid all technical difficulties we shall mostly work with the following class of
surfaces. We return to some of the exceptional cases in Section 11.6.

Definition 9.3. — We say that a marked bordered surface (S,M) is amenable if

(a) (S,M) satisfies Assumption 8.1;

(b) (S,M) is not one of the 3 surfaces listed in Proposition 8.5;

(c) (S,M) is not one of the 3 surfaces listed in Proposition 8.6;

(d) (S,M) is not a closed surface with a single puncture.

Note for example that (S,M) is amenable if g(S) > 0 and |M|> 1.
Recall from Section 7.4 the definition of a non-degenerate quiver with potential.

Theorem 9.4. — Suppose that the marked bordered surface (S,M) is amenable. Then the quiver

with potential (Q(T),W(T, ε)) associated to any signed triangulation of (S,M) is non-degenerate.

Proof. — Up to right-equivalence the quiver with potential (Q(T),W(T, ε)) asso-
ciated to a signed triangulation depends only on the corresponding tagged triangulation.
Since tagged triangulations can be flipped in any edge, and such flips can be expressed
as flips of signed triangulations to which Theorem 9.1 applies, we conclude that every
mutation of (Q(T),W(T, ε)) is of the same type. The result follows, since by definition,
none of the quivers Q(T) has loops or oriented 2-cycles. �

9.2. Definition of the category. — Let (S,M) be an amenable marked bordered sur-
face. In this section we introduce the associated CY3 triangulated category D(S,M),
well-defined up to k-linear triangulated equivalence.

Given a signed triangulation (T, ε) of (S,M), let us write

D(T, ε)=D
(
Q(T),W(T, ε)

)
for the CY3 category defined by the quiver with potential considered in the last subsec-
tion. This category comes equipped with a standard heart

A(T, ε)⊂D(T, ε),

whose simple objects Se are indexed by the edges e of the triangulation T.
Combining Theorem 7.3 and Theorem 9.1 immediately gives

Theorem 9.5. — Suppose that two signed triangulations (Ti, εi) of (S,M) differ by a flip in

an edge e. Then there is a canonical pair of k-linear triangulated equivalences

�± : D(T1, ε1)→D(T2, ε2),

satisfying �±(A(T1, ε1))= μ±
Se
(A(T2, ε2)) and inducing the natural bijection on simple objects.
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Similarly, Theorem 9.2, which holds by the assumption that (S,M) is amenable,
implies

Theorem 9.6. — Suppose that two signed triangulations (T, εi) of (S,M) are related by a pop

at a puncture p ∈ P. Then there is a k-linear triangulated equivalence

� : D(T, ε1)→D(T, ε2)

which identifies the standard hearts, and exchanges the two simple objects Se and Sf corresponding to the

two edges of the self-folded triangle containing p.

Since the graph Tri� (S,M) is connected, these two results show that, up to k-linear
triangulated equivalence, the category D(T, ε) depends only on the surface (S,M) and
not on the chosen signed triangulation. Thus we can associate to the surface (S,M) a
CY3 triangulated category

D =D(S,M).

In fact it will be important to make a slightly stronger statement, as we now explain.
Each category D(T, ε) comes with a distinguished connected component of its tilting
graph, namely the one containing the standard heart. Moreover, if (Ti, εi) are two signed
triangulations of (S,M) then by composing the equivalences of Theorems 9.5 and 9.6 we
obtain equivalences D(T1, ε1) ∼=D(T2, ε2) which identify these connected components.
Thus the category D comes equipped with a distinguished connected component

Tilt�(D)⊂ Tilt(D).

Adapting the general notation from Section 7, we write

Aut�(D)⊂ Aut(D)

for the group of autoequivalences of D which preserve this connected component; such
autoequivalences will be called reachable. We write

Nil�(D)⊂ Aut�(D)

for the autoequivalences which act trivially on Tilt�(D); we call these autoequivalences
negligible.

Negligible autoequivalences fix the simple objects of all the hearts in our distin-
guished component Tilt�(D). They will also act trivially on the corresponding distin-
guished connected component Stab�(D). For this reason, it is useful to consider the quo-
tient group

Aut�(D)= Aut�(D)/Nil�(D)

which acts effectively on these spaces.
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Remark 9.7. — We could instead consider defining a category D†(S,M) by us-
ing uncompleted Ginzburg algebras, rather than the complete ones we are using here.
It seems likely that if (S,M) is amenable the resulting category would be equivalent to
D(S,M). As evidence for this, note that in the case when S has non-empty boundary the
natural map J†(Q,W)→ J(Q,W) from the uncompleted Jacobi algebra to the complete
version is an isomorphism [7, Theorem 5.7]. When the surface is not amenable this state-
ment can definitely fail. For example, when (S,M) is a closed torus with a single puncture
the algebra J†(Q,W) is infinite-dimensional, whereas J(Q,W) is finite-dimensional [28,
Example 8.2]. See also Example 12.4 below for the case of the three-punctured sphere.

9.3. T-structures and autoequivalences. — Let (S,M) be an amenable marked bor-
dered surface, and let D =D(S,M) be the associated CY3 triangulated category. In this
section we study the distinguished connected component Tilt�(D) of the tilting graph of
D, and the corresponding group Aut�(D) of reachable autoequivalences.

Recall from Section 7.3 that there is a subgroup

Sph�(D)⊂ Aut�(D),

generated by the twist functors TwSi
in the simple objects of any heart A ∈ Tilt�(D). We

write

Sph�(D)⊂ Aut�(D),

for the corresponding subgroup of Aut�(D). The group Sph�(D) acts on the tilting
graph Tilt(D), and Proposition 7.1 implies that this action preserves the connected com-
ponent Tilt�(D). We call the quotient graph

Exch�(D)= Tilt�(D)/Sph�(D)

the heart exchange graph of (S,M). There is also an ordered version Exch"
�(D) defined in

the obvious way.
The following result gives the basic link between triangulations of the surface

(S,M) and t-structures in the corresponding category D(S,M).

Theorem 9.8. — There are isomorphisms of graphs

Tri� (S,M)∼= Exch�(D), Tri"� (S,M)∼= Exch"
�(D).

Proof. — Corollary 3.6 of [6] and Theorem 5.6 of [22] together imply that the
heart exchange graph Exch�(D) is isomorphic to the cluster exchange graph. On the
other hand, the cluster exchange graph was shown to be isomorphic to the tagged trian-
gulation graph Tri� (S,M) in [10, Theorem 7.11] and [11]. Both of these isomorphisms
are constructed in such a way that they lift to maps of the corresponding ordered graphs,
and it follows that these maps are also isomorphisms. �
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We note that the isomorphisms of Theorem 9.8 have the property that if a tagged
triangulation is represented by a signed triangulation (T, ε), then the corresponding
heart A⊂D is the image of the standard heart A(T, ε) under an equivalence

D(T, ε)∼=D.

The obvious generalization to the ordered versions also holds. We can use this result to
prove13 a result on the structure of the group Aut�(D).

Theorem 9.9. — Assume that (S,M) is amenable. Then there is a short exact sequence

1 → Sph�(D)→ Aut�(D)→ MCG±(S,M)→ 1.

Proof. — Consider the n-fold free product group

Fn = Z2 ∗ · · · ∗Z2 = 〈μ1, . . . ,μn : μ2
i = 1〉.

There is an obvious action of the symmetric group Symn permuting the generators μi ,
and we also consider the semi-direct product

Gn = Symn �Fn.

The set Tri"� (S,M) of ordered, tagged triangulations has a natural action of the group
Gn: the generator μi acts by flipping the ith edge of an ordered triangulation, and the
group Symn acts by permuting the ordering of the edges. This action is transitive, because,
with our assumptions on S, the graph of unordered tagged triangulations Tri� (S,M) is
connected.

In a similar way, the set Exch"
�(D) of ordered reachable hearts has a transitive

action of the group Gn. This time the generator μi acts by tilting an ordered heart at the
ith simple object. Note that the left and right tilts co-incide on the exchange graph by
Proposition 7.1(a), and the relation μ2

i = 1 follows from the relation (7.1).
Consider the set Qn of right-equivalence classes of ordered quivers with n vertices.

It carries an action of the group Gn, where the generator μi acts by mutation at the ith
vertex. We now have a commutative diagram of Gn-equivariant maps of sets

(9.2) Tri"� (S,M)

p

θ

Exch"
�(D)

q

Qn

13 The method of proof was explained to us by Alastair King.
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where p sends an ordered tagged triangulation (T, ε) to the associated ordered quiver
Q(T), the map q sends an ordered heart A⊂D to the associated quiver Q(A), and θ is
the bijection of Theorem 9.8.

The signed mapping class group MCG±(S,M) acts freely on Tri"� (S,M) by
Proposition 8.6 and obviously commutes with the Gn-action. Proposition 8.5 shows that
the orbits for this action are precisely the fibres of p. It then follows from the transitivity
of the Gn-action that MCG±(S,M) can be identified with the group of automorphisms
of the set Tri"� (S,M) which commute with the Gn-action and preserve the map p.

By the definition of a negligible autoequivalence, the group Aut�(D) acts freely
on the graph Tilt"�(D) of ordered reachable hearts. Quotienting Aut�(D) by the normal
subgroup Sph�(D), we therefore obtain a free action of the group

(9.3) Aut�(D)/Sph�(D)

on the set Exch"
�(D), commuting with the Gn-action. To complete the proof we must

show that the orbits of Aut�(D) are precisely the fibres of the map q.
Suppose that two ordered hearts Ai ⊂ D lie in the same fibre of q. Under the

bijection θ , these hearts correspond to ordered tagged triangulations (Ti, εi) lying in the
same fibre of p. It follows that they differ by an element g ∈ MCG±(S,M). We claim that
the ordered quivers with potential (Q(Ti),W(Ti, εi)) are right-equivalent up to scale,
meaning that there is a nonzero scalar λ ∈ k∗ and a right-equivalence

(
Q(T1, ),W(T1, ε1)

)∼ (
Q(T2), λW(T2, ε2)

)
.

In particular it follows that there are equivalences

D(T1, ε1)∼=D(T2, ε2)

preserving the standard hearts. The remark following Theorem 9.8 then shows that the
hearts Ai differ by an autoequivalence of D, and the result then follows.

When g ∈ MCG(S,M) the claim is obvious since the quiver with potential as-
sociated to a signed triangulation depends only on the combinatorial structure of the
triangulation. For general g ∈ MCG±(S,M) the claim follows from the statement that
the quiver with potential (Q(T),W(T, ε)) is independent of the signing ε, up to scal-
ing and right-equivalence. A proof of this statement appears in [12] (see [7, Prop. 10.4]).
When S has non-empty boundary, no scaling is necessary, and the claim follows from [7,
Prop. 10.2]. �

9.4. Grothendieck group. — Let (S,M) be an amenable marked bordered surface.
Recall from Section 8.4 the definition of the edge lattice �(T) associated to an ideal
triangulation of (S,M).



244 TOM BRIDGELAND AND IVAN SMITH

Lemma 9.10. — Let (T, ε) be a signed triangulation of (S,M). Then there is an isomorphism

of abelian groups

λ : �(T)→ K
(
D(T, ε)

)
,

such that for each edge e, the basis element {e} is mapped to the class of the corresponding simple object

Se. This map takes the form 〈−,−〉 on �(T) to the Euler form on K(D(T, ε)).

Proof. — For any reduced quiver with potential (Q,W), the Grothendieck group of
the category D(Q,W) is identified with that of its canonical heart A=A(Q,W), and is
therefore the free abelian group on the vertices of Q. The CY3 condition implies that the
Euler form is given by skew-symmetrising the adjacency matrix of the quiver. The result
is then immediate from (8.3). �

Suppose that (Ti, εi) are signed triangulations of (S,M) differing by a flip in an
edge e. We then use the natural bijection between the edges of T1 and T2 to identify these
two sets. Theorem 9.5 gives equivalences

�± : D(T1, ε1)∼=D(T2, ε2),

which induce isomorphisms φ± on the Grothendieck groups. We have the following ex-
plicit formulae for these maps.

Lemma 9.11. — Define maps F± by the commutative diagram

�(T1)

λ1

F±
�(T2)

λ2

K(D(T1, ε1))
φ±

K(D(T2, ε2))

where the λi are the maps of Lemma 9.10. Then for all edges f we have

(9.4) F+
({f })= {f } + n(e, f ){e}, F−

({f })= {f } + n(f , e){e},
where n(−,−) is computed in the triangulation T2, and we set n(e, e)=−2.

Proof. — According to Theorem 9.5, the simple objects of the canonical heart
A(T1, ε1) are mapped by the functor �± to the simple objects of the tilted heart
μ±

Se
(A(T2, ε2)). The simple objects of the mutated heart μ+

Se
(A(T2, ε2)) were listed in

the proof of Proposition 7.1. The first formula of (9.4) then follows because the extension
groups between the simple objects in A(T2, ε2) are based by the arrows in the quiver
Q(T2).
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To prove the second formula in (9.4) note that by (8.3) it differs from the first by a
reflection in the element {e} with respect to the form 〈−,−〉. By Lemma 9.10 this cor-
responds under the isometry λ2 to the action of the twist functor TwSe

on K(D(T2, ε2)).
The result therefore follows from Proposition 7.1(a). �

We have a similar result for pops. Suppose that (T, εi) are signed triangulations of
(S,M) differing by a pop at a puncture p ∈ P. Theorem 9.6 gives an equivalence

� : D(T, ε1)∼=D(T, ε2),

which induces an isomorphism ψ on the Grothendieck groups.

Lemma 9.12. — Define a map F by the commutative diagram

�(T)

λ1

F
�(T)

λ2

K(D(T, ε1))
ψ

K(D(T, ε2))

where the λi are the maps of Lemma 9.10. Then the map F exchanges the two elements {e} and {f }
corresponding to the edges of the self-folded triangle containing p, and fixes all other elements of this basis.

Proof. — Immediate from Theorem 9.6. �

9.5. An unpleasant Lemma. — Let (S,M) be an amenable marked bordered surface.
Suppose that (Ti, ε) are two signed triangulations related by a flip in an edge e. The
purpose of this section is to write the maps F± of Lemma 9.11 in terms of the original
basis elements [e] of the lattices �(Ti). As before, we use the natural bijection between
the edges of T1 and T2 to identify these two sets.

Lemma 9.13. — The maps F± of Lemma 9.11 satisfy

(9.5) F+
([f ])= [f ] + c(e, f )[e], F−

([f ])= [f ] + c(f , e)[e],
where c(−,−) is computed in the triangulation T2, and we set c(e, e)=−2.

Proof. — As in the proof of Lemma 9.11, it is enough to check the result for F+ since
the two formulae differ by a reflection in the element [e] = {e}. Recall from Section 8.4
the map κ , which sends an edge to itself, unless it is self-folded, in which case it sends it
to the corresponding encircling edge. We have the relations

(9.6) {f } = [f ] + ρi(f )
[
κi(f )

]
, i = 1,2,
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where ρi(f ) = 0 unless edge f is self-folded in the triangulation Ti , in which case it is
equal to 1. By definition, the edge e is not self-folded in either triangulation, so ρi(e)= 0
and κi(e)= e.

We note two basic facts which we will use in the proof. Firstly, if f is self-folded in
T1 then f fails to be self-folded in T2 if and only if e = κ1(f ). Secondly, if f is not self-
folded in T1 then it is self-folded in T2 precisely if e and f meet in T1 at a puncture of
valency 2.

The formula of the statement certainly defines some isomorphism; we must just
check that it agrees with the formula of Lemma 9.11. Substituting (9.6) into (9.5) gives

F+
({f })= [f ] + ρ1(f )

[
κ1(f )

]+ (
c(e, f )+ ρ1(f )c

(
e, κ1(f )

))[e]
= {f } − ρ2(f )

[
κ2(f )

]+ ρ1(f )
[
κ1(f )

]
+ (

c(e, f )+ ρ1(f )c
(
e, κ1(f )

)){e}.
We now claim that

−ρ2(f )
[
κ2(f )

]+ ρ1(f )
[
κ1(f )

]= (
ρ1(f )δe,κ1(f ) − ρ2(f )δe,κ2(f )

){e}.
To see this, note that both sides are zero unless f is self-folded in one of the Ti . If f is
self-folded in both, then e is not equal to κ1(f ) or κ2(f ), and since κ1(f ) = κ2(f ), both
sides are still zero. If f is self-folded in T1 but not in T2 then necessarily e = κ1(f ), and
both sides return {e}. Similarly, if f is self-folded in T2 but not in T1 then e = κ2(f ) and
both sides return −{e}.

Thus it remains to show that

n(e, f )= c(e, f )+ ρ1(f )c
(
e, κ1(f )

)+ ρ1(f )δe,κ1(f ) − ρ2(f )δe,κ2(f ),

where c(−,−) and n(−,−) are always computed in the triangulation T2. Write m(e, f )

for the expression on the right. If e = f then since e is not self-folded in either triangulation
we have m(e, e)= c(e, e)= n(e, e)=−2. Thus we assume that e �= f . We proceed by a case-
by-case analysis according to whether f is self-folded in each of the two triangulations Ti .

Case (a) ρ1(f )= 0, ρ2(f )= 0. In this case we have n(e, f )= c(e, f )= m(e, f ).
Case (b) ρ1(f )= 0, ρ2(f )= 1. Then e = κ2(f ) so n(e, f )= 0 and m(e, f )= 1−1 =

0.
Case (c) ρ1(f ) = 1, ρ2(f ) = 0. Then e and f must meet at a vertex of valency 2

in T2, so c(e, f ) = c(f , e) = 1 and n(e, f ) = 0. But then κ1(f ) = e, so m(e, f ) =
1− 2+ 1 = 0.
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Case (d) ρ1(f ) = 1, ρ2(f ) = 1. Then κ1(f ) = κ2(f ) and e �= κ2(f ), so using Re-
mark 8.4(b) we have m(e, f )= c(e, κ2(f ))= n(e, f ). �

10. From differentials to stability conditions

In this last part of the paper we shall prove our main theorems, by combining the
geometry of Sections 2–6 with the algebra and combinatorics of Sections 7–9. In this first
section we explain the basic link between quadratic differentials and stability conditions,
following the ideas of Gaiotto, Moore and Neitzke [14, Section 6].

Our starting point is the observation that a complete and saddle-free differential
φ ∈ Quad(S,M) determines an ideal triangulation T(φ) of the surface (S,M) up to
the action of the mapping class group MCG(S,M). We then go on to study how this
triangulation changes as we cross between different connected components of the open
subset of saddle-free differentials.

10.1. WKB triangulation. — Let (S,M) be a marked bordered surface. Take a com-
plete and saddle-free GMN differential φ on a Riemann surface S which defines a point
of the space Quad(S,M)0. The basic link with the combinatorics of ideal triangulations
is the following.

Lemma 10.1. — Taking one generic trajectory from each horizontal strip of φ defines an ideal

triangulation T(φ) of the surface (S,M), well-defined up to the action of MCG(S,M).

Proof. — Let us identify (S,M) with the marked bordered surface associated to
(S, φ). This identification is unique up to the action of the group of orientation-preserving
diffeomorphisms of (S,M). In each horizontal strip h for φ choose a corresponding
generic trajectory gh. Note that if gh tends to a pole p of order m + 2, then it approaches
p along one of the m distinguished tangent vectors at p. It therefore defines a path in the
surface S connecting two (not necessarily distinct) points of M, which we denote δh.

The different δh are clearly non-intersecting in their interiors, and by Lemma 3.2
there are the correct number n of them. The fact that they are arcs corresponds to the
statement that the original separating trajectories gh are not contractible relative to their
endpoints through paths with interiors in S \ Crit∞(φ). This follows from the fact that
they are minimal geodesics. �

The triangulation T(φ) is called the WKB triangulation in [14]. By definition there
is a bijection e �→ he between the edges of T(φ) and the horizontal strips of φ.

Lemma 10.2. — Under the bijection e �→ he an edge e of T(φ) is self-folded precisely if the

corresponding horizontal strip he is degenerate.
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Proof. — This is clear from Figure 12: the two zeroes in the boundary of a non-
degenerate strip he are distinct, so there are four neighbouring strips, whose correspond-
ing edges form the two triangles containing e; in the case of a degenerate strip hf there
is a unique neighbouring strip, necessarily non-degenerate, corresponding to the unique
encircling edge e of the self-folded triangle containing the self-folded edge f . �

Note that for any puncture p ∈ P the residue Resp(φ) is not real, since a double pole
with a real residue is contained in a degenerate ring domain, whose boundary consists of
saddle connections. Suppose that we fix a signing of φ as in Section 6.2; this consists of
a choice of sign for the residue Resp(φ) at each puncture p ∈ P. The WKB triangulation
T = T(φ) then also has a naturally defined signing ε = ε(φ): for a puncture p ∈ P we
define ε(p) ∈ {±1} by the condition

(10.1) ε(p) ·Resp(φ) ∈ h,

where h⊂ C is the upper half-plane. We refer to (T(φ), ε(φ)) as the signed WKB triangu-

lation of the signed differential φ.

10.2. Hat-homology and the edge lattice. — Let (S,M) be a marked bordered surface,
and take a complete and saddle-free differential φ ∈ Quad(S,M). If e is an edge of the
WKB triangulation T = T(φ) we denote by αe = αhe

the standard saddle class of the
corresponding horizontal strip he. The edge lattice �(T) introduced in Section 8.4 then
has the following geometric interpretation.

Lemma 10.3. — There is an isomorphism of abelian groups

μ : �(T)→ Ĥ(φ),

such that for each edge e ∈ T, the basis element [e] is mapped to the standard saddle class αe of the

corresponding horizontal strip he. This map takes the form 〈−,−〉 to the intersection form.

Proof. — The map μ is an isomorphism by Lemma 3.2, since it takes a basis to a
basis. We must just check the relation

αe · αf = c(f , e)− c(e, f )

for all edges e and f of the triangulation T. Examining Figure 11 it is clear that αe meets
αf precisely if e and f are two sides of the same face of T. The intersection then occurs at
the unique point of the spectral cover lying over the zero of the differential contained in
this face.

In the case when e and f are not self-folded, a glance at Figure 31 shows that the
intersection of two such cycles is ±1 depending on whether e and f occur in clockwise or
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FIG. 31. — The oriented foliation on the spectral cover above a simple zero

anticlockwise order. If f is self-folded and e is the encircling edge of the corresponding self-
folded triangle, then αe · αf = 0, since αe meets αf twice with opposite signs. Comparing
with (8.2) we see that the claimed relation holds also in this case. �

In Section 8.4 we also considered a modified basis {e} of the edge lattice �(T),
indexed by the edges of T. Let us define classes

γe = μ
({e}) ∈ Ĥ(φ),

where μ is the map of Lemma 10.3. We can now give some geometric justification for
these classes γe, and hence also the basis {e}.

As explained in the proof of Lemma 10.2, any degenerate horizontal strip hf is
enclosed by a non-degenerate strip he, and taking a generic trajectory from each strip
then gives a self-folded triangle, with self-folded edge f and enclosing edge e. Note that
the standard saddle connection in the strip hf is closed and lifts to a singular curve in Ŝ
which is a bouquet of two circles. By definition of the basis {e} ∈ �(T), we have

(γe, γf )= (αe, αe + αf ).

These classes are both represented by simple closed curves in Ŝ obtained by lifting the
paths illustrated by dotted arcs in the two sides of Figure 33.

10.3. Flips and pops. — We can lift the stratification of Section 5.2 to the étale
cover of complete, signed differentials

Quad±(S,M)0 → Quad(S,M)0.

We call the connected components of B0 chambers. The signed WKB triangulation is
constant in each chamber.

The points of the locally-closed subset F2 = B2 \ B0 consist of complete, signed
differentials with a single saddle trajectory γ . We think of the connected components of
F2 as walls. Let us now consider the behaviour of the signed WKB triangulation as we
cross such a wall.
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Suppose then that φ0 ∈ F2 ⊂ Quad±(S,M)0 is a complete signed GMN differential
lying on a wall, with a unique saddle trajectory γ . By Proposition 5.5 we can find r > 0
such that for all 0 < t � r the signed differentials

φ±(t)= e±it · φ0

are saddle-free and complete. Consider the WKB triangulations T± = T(φ±(r)) with
their signings ε±. Note that the wall has a natural orientation to it: we make the con-
vention that as we cross from φ− to φ+ the period Zφ(γ̂ ) moves in a clockwise direction
around the origin.

There is an isomorphism F : �(T−)→ �(T+) defined by the following commuta-
tive diagram

(10.2) �(T−)

μ−

F
�(T+)

μ+

Ĥ(φ−)
GM

Ĥ(φ+)

where the bottom arrow is given by the Gauss-Manin connection.

Proposition 10.4. — Take a complete signed GMN differential φ0 ∈ F2 with a unique saddle

trajectory γ . There are two possible cases.

(a) The ends of the saddle trajectory γ are distinct. Then the signed triangulations (T±, ε±) are

related by a flip in a non-self-folded edge e. Identifying the edges of these triangulations in the

standard way, the map F is given by

F
([f ])= [f ] + c(e, f )[e],

for all edges f , where c(−,−) is computed in the triangulation T+, and we set c(e, e) =
−2.

(b) The saddle trajectory γ is closed and forms the boundary of a degenerate ring domain centered

on a double pole p with real residue. The triangulations T− = T+ are equal, and the pole p

is the centre of a self-folded triangle with encircling and self-folded edges e and f respectively.

The signed triangulations (T±, ε±) are related by a pop at p, and the map F exchanges the

basis elements {e} and {f }, leaving all other elements of the basis fixed.

Proof. — Case (a) is illustrated in Figure 32 (the four poles represented by the black
dots need not be distinct on the surface, however). The central picture represents φ0 with
a single saddle trajectory appearing in the boundary of two neighbouring horizontal strips
or half-planes. The wall-crossing is effected by rotating φ0. Thus to find out what happens
to the saddle trajectory, we just need to consider trajectories of small nonzero phase in
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FIG. 32. — The separating trajectories on either side of a flip wall

FIG. 33. — The separating trajectories on either side of a pop wall. The hat-homology classes γe are represented by the
lifts of the dotted arcs

the two horizontal strips or half-planes. The result is as illustrated on the two sides of the
figure. The associated triangulations T± are related by a flip in a non-self-folded edge e,
exactly as shown in Figure 30.

Identifying the edges of the two triangulations T± via the obvious bijection, we see
from the picture that the Gauss-Manin connection satisfies

GM(αf )= αf + c(e, f )αe

for all edges f , where c(−,−) is computed in the triangulation T+, and we set c(e, e) =
−2.

For (b) note that if γ is closed then it is necessarily the boundary of a ring do-
main, which must be degenerate because there is only one saddle trajectory. This case
is illustrated in Figure 33. The central picture again represents φ0 with its degenerate
ring domain encased in a horizontal strip. The wall-crossing is effected by rotating the
differential, so to find the separating trajectories on either side of the wall it is enough
to consider trajectories of small nonzero phase. The result on either side of the wall is a
degenerate horizontal strip hf , encased in a non-degenerate horizontal strip he.

The WKB triangulations T± are the same, with a self-folded triangle with self-
folded edge f and encircling edge e. The hat-homology class γ̂ = αf is equal to the
residue class βp, where p is the double pole at the centre of the degenerate ring domain.
Since Zφ(γ̂ ) crosses the real axis as φ crosses the wall, the signing ε(p) given by (10.1)
changes, and the two signed WKB triangulations on either side of the wall are related by
a pop. The two classes {γe, γf } = {αe, αe + αf } are the same on both sides of the wall, but
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their labelling by the edges e, f is exchanged (see the dotted arcs in Figure 33). It follows
that F exchanges the two basis elements {e} and {f } as claimed. �

10.4. Stability conditions from saddle-free differentials. — Let us now assume that our
marked bordered surface (S,M) is amenable, and take a saddle-free, complete, signed
differential

φ ∈ B0 ⊂ Quad±(S,M)0.

Let (T, ε) denote the signed WKB triangulation of φ, and consider the category D(T, ε)

with its canonical heart A(T, ε). The simple objects Se ∈A(T, ε) are naturally indexed
by the edges of the triangulation T, and so too are the classes γe.

Lemma 10.5. — There is an isomorphism of abelian groups

ν : K
(
D(T, ε)

)→ Ĥ(φ),

taking the class of a simple object Se to the corresponding class γe , and taking the Euler form to the

intersection form.

Proof. — This is immediate by combining Lemmas 9.10 and 10.3. �

The following result gives the basic link between quadratic differentials and stabil-
ity conditions.

Lemma 10.6. — There is a unique stability condition σ(φ) ∈ StabD(T, ε) whose heart is

the standard heart A(T, ε)⊂D(T, ε), and whose central charge

Z : K
(
D(T, ε)

)→ C

corresponds to the period of φ under the isomorphism of Lemma 10.5.

Proof. — Define Z via the isomorphism ν of Lemma 10.5. Then for each edge e

the corresponding central charge Z(Se)= Zφ(γe) lies in the upper half-plane. Indeed, by
the definition of the basis {e} in Section 8.4, the classes γe = μ({e}) are positive linear
combinations of the classes αe = μ([e]), whose periods lie in the upper half-plane by
definition. Since the standard heart A(T, ε) is of finite length, this is enough to give a
stability condition. �

10.5. Wall-crossing. — We now describe how the stability conditions σ(φ) defined
in the last section behave as the differential φ crosses walls in Quad±(S,M)0 of the sort
considered in Section 10.3. Consider a complete, signed GMN differential

φ0 ∈ F2 ⊂ Quad±(S,M)0
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with a unique saddle trajectory γ . Take r > 0 such that for all 0 < t � r the signed
differentials

φ±(t)= e±it · φ0

are saddle-free and complete. Consider the corresponding signed WKB triangulations
(T±, ε±)= (T(φ±(r), ε(φ±(r)) and their associated categories

D± =D(T±, ε±)

with their standard hearts A± =A(T±, ε±). For 0 < t < r we set

σ±(t)= σ
(
φ±(t)

) ∈ Stab(D±).

The following result shows that these different stability conditions glue together in the
appropriate way.

Proposition 10.7. — There is a canonical equivalence � : D− ∼=D+ with the following two

properties

(a) the diagram of isomorphisms

K(D−)

ν−

�

K(D+)

ν+

Ĥ(φ−)
GM

Ĥ(φ+)

commutes, where the bottom arrow is given by the Gauss-Manin connection, and the vertical

arrows are the isomorphisms of Lemma 10.5;

(b) the stability conditions �(σ−(t)) and σ+(t) on D+ become arbitrarily close as t → 0.

Proof. — According to Proposition 10.4 there are two cases, the flip and the pop.
In the first case, the signed triangulations (T±, ε±) are related by a flip in an edge

e, and we take � to be the equivalence �+ of Theorem 9.5. Part (a) then follows by
comparing the formulae of Lemma 9.11 and Proposition 10.4 using Lemma 9.13. To
prove (b), note that Theorem 9.5 shows that the heart of the stability condition �(σ−(t))

is the tilted heart μ+
Se
(A+). By Lemma 7.9 the regions in Stab(D+) consisting of stability

conditions with hearts A+ and μ+
Se
(A+) are glued together along a common boundary

component to make a larger region on which the period map is still injective. Since part
(a) shows that the central charges of the two given stability conditions approach one
another, the result follows.

In the case of the pop, the signed triangulations (T±, ε±) differ by a pop, and
we take � to be equivalence of Theorem 9.6. Part (a) then follows by comparing the
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formulae of Lemma 9.12 and Proposition 10.4. To prove (b) note that since � preserves
the canonical hearts, all the stability conditions σ±(t) have the same heart, and since their
central charges approach each other, they become arbitrarily close. �

11. Proofs of the main results

In this section we prove our main results. Throughout (S,M) is a fixed marked
bordered surface. For the first five sections we shall assume that (S,M) is amenable. In
Section 11.6 we shall examine what can be said without this assumption.

11.1. General set-up. — Let us fix a free abelian group � of rank n. We consider
the space of framed differentials Quad�(S,M). A point of this space corresponds to a
GMN differential φ on a Riemann surface S, equipped with a framing of the extended
hat-homology group

θ : � ∼= Ĥe(φ)

as in Section 6.5. By abuse of notation, we will simply write φ ∈ Quad�(S,M).
Let us fix a base-point

φ0 ∈ Quad�(S,M),

which we may as well assume is complete, saddle-free and generic. Recall that the space
of framed differentials on (S,M) is not usually connected, so we define

Quad�
∗ (S,M)⊂ Quad�(S,M)

to be the connected component containing φ0.
Let us choose a signing for the differential φ0, as in Section 6.2. We claim that any

point in Quad�
∗ (S,M) then also has a canonical signing. To see this, note that to specify

a signing of a differential φ is to specify a choice of sign for the residue class βp ∈ Ĥ(φ) at
each double pole p of φ. Given a framing of such a differential, the classes βp correspond
to fixed classes in �. It follows that if we choose a sign for the βp at the base-point φ0,
then this sign propagates throughout Quad�

∗ (S,M).
We want to study stability conditions on the CY3 triangulated category D(S,M).

More precisely, let

(T0, ε0)=
(
T(φ0), ε(φ0)

)

be the signed WKB triangulation associated to the signed differential φ0, and define D =
D(T0, ε0). We identify the Grothendieck group K(D) with � using the isomorphism

(11.1) ν−1
0 ◦ θ0 : � → K(D),
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obtained by composing the framing θ0 with the inverse of the map of Lemma 10.5.
The distinguished connected component Tilt�(D) ⊂ Tilt(D) of the tilting graph

of D is the one containing the standard heart A(T0, ε0). As explained in Section 7.7,
there is a corresponding distinguished connected component

Stab�(D)⊂ Stab(D)

of the space of stability conditions on D. The group of reachable autoequivalences
Aut�(D)⊂ Aut(D) preserves this connected component. We define

Aut0
�(D)⊂ Aut�(D)

to be the subgroup of reachable autoequivalences which act by the identity on K(D).

Remark 11.1. — Later, as a consequence of Corollary 11.12, we will see that

(a) the group Aut�(D) is precisely the group of autoequivalences preserving the
connected component Stab�(D),

(b) the group Aut0
�(D) is non-trivial, and in fact contains all even powers of the

shift functor.

The subgroup Nil�(D) ⊂ Aut�(D) of negligible autoequivalences is precisely the
subgroup of elements acting trivially on Stab�(D). The quotient group

Aut�(D)= Aut�(D)/Nil�(D)

therefore acts effectively. Negligible autoequivalences fix the simple objects of hearts A ∈
Tilt�(D), and hence act trivially on K(D), so we can also form the quotient

Aut 0
�(D)= Aut0

�(D)/Nil�(D).

In the next five sections we shall prove the following result.

Theorem 11.2. — There is an isomorphism of complex orbifolds

Quad♥(S,M)∼= Stab�(D)/Aut�(D).

This result implies Theorems 1.2 and 1.3 from the Introduction, except that it
doesn’t cover the non-amenable cases (a)–(d) listed after the statement of Theorem 1.3.
These exceptional cases will be discussed in Section 11.6 below, and some of them are
worked out explicitly in Section 12.
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11.2. Construction of the map. — In this section we construct a map from framed
quadratic differentials to stability conditions.

Proposition 11.3. — There is a holomorphic map of complex manifolds K fitting into a com-

mutative diagram

(11.2) Quad�
∗ (S,M)

K

π

Stab�(D)/Aut 0
�(D)

π

HomZ(�,C)

and which commutes with the C-actions on both sides.

Proof. — The space on the left of the diagram (11.2) is a manifold by Proposition 6.6
(note that the surfaces listed for which this result fails are not amenable). The space on the
right is a manifold because the action of the group Aut 0

�(D) on the connected component
Stab�(D) is free. To see this, note that if an autoequivalence � fixes a stability condition
σ ∈ Stab�(D) and acts trivially on K(D), then, because the period map π is a local
isomorphism, it must act trivially on a neighbourhood of σ , and hence on the whole
connected component Stab�(D). But then it is negligible and hence defines the identity
in Aut 0

�(D).
The action of C on the right of (11.2) is the standard one of Section 7.5; the element

t ∈ C acts at the level of central charges by Z(E) �→ eiπ t ·Z(E). After the event it will follow
from Corollary 11.12 that 2 ∈ C acts trivially, so that this factors via a C∗ action, but we
don’t know this yet. The action of C on the left is the pullback of the standard C∗ action
rescaling the quadratic differential, via the map C → C∗ defined by t �→ e2π it . This action
lifts to framed differentials by continuity; note that 1 ∈ C acts trivially on the underlying
quadratic differential, but multiplies the framing isomorphism by −1.

The maps π in the diagram (11.2) are both local isomorphisms. The map on the
left is the standard period map on framed differentials. The map on the right sends a
stability condition to its central charge, which we consider as a group homomorphism
Z : � → C by composing it with the isomorphism (11.1). Let t ∈ C act on the space of
central charges HomZ(�,C) via the map Z(E) �→ eiπ t · Z(E) as above. Then because
periods of quadratic differentials are given by integrals of

√
φ, both the maps π are C-

equivariant.
As soon as we know that K is continuous it is automatically holomorphic, and in

fact, a local isomorphism. The C-equivariance is also automatic, just because each of the
two maps π is a local isomorphism. We first define a map

K0 : B0 → Stab�(D)/Aut 0
�(D).
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The key point is to then use the stratification

B0 ⊂ B1 ⊂ B2 ⊂ · · · ⊂ Bk ⊂ · · · ⊂ Quad�
∗ (S,M)0 ⊂ Quad�

∗ (S,M)

and inductively extend the domain of definition of the map across larger strata.
Let φ be a saddle-free complete framed differential defining a point in Quad�

∗ (S,

M). Recall that the signed WKB triangulation (T(φ), ε(φ)) is well-defined up the action
of the mapping class group MCG(S,M). Take an equivalence

� : D(
T(φ), ε(φ)

)→D
(
T(φ0), ε(φ0)

)

with the following two properties

(i) � maps the distinguished connected components of the tilting graphs of
D(T(φ), ε(φ)) and D(T(φ0), ε(φ0)) one to the other;

(ii) the map ψ on Grothendieck groups induced by � makes the following dia-
gram commute

(11.3) K(D(T(φ), ε(φ)))

ν

ψ

K(D(T(φ0), ε(φ0)))

ν0

Ĥ(φ) Ĥ(φ0)

�

θ θ0

where ν and ν0 are the isomorphisms of Lemma 10.5, and θ and θ0 are the
framing isomorphisms.

To see that such an equivalence � exists, connect φ0 to φ by some path in
Quad�

∗ (S,M). Since the subset of differentials with simple poles is locally cut out by com-
plex hyperplanes we can assume that this path lies in Quad�

∗ (S,M)0. By Corollary 5.8
and the fact that Quad�

∗ (S,M)0 is a covering space of Quad(S,M)0, we can then deform
the path so that it lies in B2 and has only finitely many points in F2. Applying Proposi-
tion 10.7 to each of these points, and taking the composite of the given equivalences gives
a suitable equivalence � .

Any two such equivalences � differ by a reachable autoequivalence acting trivially
on K(D), so we obtain a well-defined map K0 by setting

K0(φ)=�
(
σ(φ)

) ∈ Stab�(D)/Aut 0
�(D).

The diagram (11.2) then commutes by definition.
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Our task is now to successively lift K to the inverse images of the various strata Bi .
Let us assume inductively that K is defined and continuous on the open subset Bp−1. As
remarked above, K is invariant under small rotations, i.e.

K(eiπθ · φ)= eiπθ ·K(φ) for 0 < |θ | � 1,

because both maps π of (11.2) are local isomorphisms. Take a point φ0 ∈ Fp. By Proposi-
tion 5.5 there is some r > 0 such that

(11.4) 0 < |t|< r =⇒ eit · φ0 ∈ Bp−1.

By the C-equivariance property, the limits

σ±(φ0)= lim
t→0+

K
(
e±it · φ0

)

both exist, and the diagram (11.2) shows that they have the same central charge. The
point is to show that they are equal.

When p = 2 this involves extending from saddle-free differentials to differentials
lying on a single wall, and the result follows from Proposition 10.7. Thus we can assume
that p > 2. Note that the stability conditions σ±(φ0) vary continuously on Fp, by the fact
that their central charges do, and using the remark following Proposition 5.5. Thus the
question of whether they are equal has a constant answer on each connected component
of Fp. The result then follows from Proposition 5.7.

The final step is to extend K across the incomplete locus. Suppose that φ ∈
Quad�

∗ (S,M) has simple poles, and fix 0 < ε < 1
8 . Using Proposition 6.7 we can find

complete, generic differentials ψ arbitrarily close to φ, and such that
∣∣Zφ(γ )− Zψ(γ )

∣∣ < ε
∣∣Zψ(γ )

∣∣,
for all classes γ ∈ � represented by a non-closed saddle connection in ψ . Lemma 11.4
below then shows that this inequality holds for all classes represented by stable objects in
the stability condition K(ψ). The deformation result Proposition 7.5 then shows that K
extends uniquely over φ. �

11.3. Saddle trajectories and stable objects. — In this section and the next we relate
saddle trajectories for a generic GMN differential to the existence of stable objects in the
corresponding stability condition. Let

φ ∈ Quad�
∗ (S,M)0

be a complete, framed differential, and let σ = K(φ) be the corresponding stability con-
dition on D, well-defined up to the action of the group Aut0

�(D). Note that any saddle
connection γ for φ has a well-defined hat-homology class in Ĥ(φ), which we can view
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as an element of � using the framing isomorphism. Similarly, every object E ∈D has a
well-defined class in � using the identification (11.1).

We shall start with the following simple result which was used in the final step of
the proof of Proposition 11.3 above.

Lemma 11.4. — If σ has a stable object E of class α ∈ � then φ has a saddle trajectory of

class proportional to α.

Proof. — Rotating we can assume that E is of phase 1. Consider a generic differen-
tial ψ close to φ such that Zψ(α) remains real. Proposition 7.6(a) shows that the object E
remains stable in the corresponding stability condition K(ψ). By construction therefore
ψ cannot be saddle-free, and has at least one saddle trajectory Cψ , which by genericity
must have class proportional to α. Since the class of a saddle connection has divisibility
at most 2, the length of this saddle is at most |Zψ(2α)|.

Applying Theorem 4.1, we can now find a sequence of such differentials ψi , con-
verging to φ, such that the corresponding curves Ci limit to some curve C. Then C is a
geodesic in φ which must be a union of saddle trajectories. �

For each class α ∈ � we can consider the moduli space Mσ (α) of σ -stable objects
in D which have class α ∈ � and phase in the interval (0,1]. It is necessary to constrain
the phase, since otherwise all shifts of a given stable object would have to be parameter-
ized.

Lemma 11.5. — The moduli space Mσ (α) is represented by a quasi-projective scheme.

Proof. — By rotation, we can assume that φ is saddle-free and therefore defines
some signed triangulation (T, ε). The heart of the stability condition σ is then equivalent
to the category of finite-dimensional modules for the complete Jacobi algebra of the cor-
responding quiver with potential. This algebra J(T, ε) is known to be finite-dimensional14

[29, Corollary 12.6]. The moduli space Mσ (α) can therefore be identified with the mod-
uli space of θ -stable representations of J(T, ε) with fixed dimension vector. The claim
then follows from the results of King [24]. �

Recall the notion of a 0-generic differential from Section 5.2. Note that any such
differential is, in particular, complete. In this and the next section we shall prove the
following precise correspondence, which implies Theorem 1.4 from the Introduction.

Theorem 11.6. — Assume that φ is 0-generic and take a class α ∈ � satisfying Zφ(α) ∈ R.

Then each connected component of the moduli scheme Mσ (α) is either a point or a copy of P1. Moreover

14 This could also be deduced from Corollary 11.12 below together with an argument of Nagao [22, Theorem 5.4].
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(a) the zero-dimensional components of Mσ (α) are in bijection with the non-closed saddle tra-

jectories for φ of class α;

(b) the one-dimensional components of Mσ (α) are in bijection with the non-degenerate ring

domains for φ of class α.

We first prove the result under an additional assumption; the general case will be
dealt with in the next section.

Proposition 11.7. — Take assumptions as in Theorem 11.6. Suppose moreover that φ has at

most one saddle trajectory. Then the conclusion of Theorem 11.6 holds.

Proof. — Suppose that φ has a unique saddle trajectory γ of some class α ∈ �.
Since the surface (S,M) is assumed to be amenable, it is not a closed surface with a
single puncture, and it follows that there can be no spiral domains. Thus φ ∈ F2 and we
are in the situation of Proposition 10.4.

Assume first that γ has distinct ends, as in Proposition 10.4(a). Small rotations of
φ are saddle-free, and γ is represented by a standard saddle class. The corresponding
stability conditions have a unique simple object S of class α. This is, in particular, stable
and spherical, and all semistable objects of class proportional to α are of the form S⊕k ,
and hence strictly semistable for all k > 1.

Suppose instead that γ is a closed saddle trajectory. This is the situation of Propo-
sition 10.4(b). By Proposition 10.7, stability conditions on either side of the wall obtained
by small rotations of σ have the same heart. This implies that P(0) = (0) and so there
are no semistable objects with class a multiple of α.

For the converse, suppose that the stability condition σ has a stable object of class
α. Then, by construction of the map K, the differential φ cannot be saddle-free. Thus
φ has a saddle trajectory γ of some class β proportional to α. Applying what we have
proved in the first part, it follows that σ has at most one stable object of class β , and no
stable objects of any other class proportional to β . We conclude that α = β and so φ has
a (necessarily unique) saddle trajectory of class α. �

11.4. Ring-shrinking again. — In this section we complete the proof of Theo-
rem 11.6. It will be convenient to denote the differential and corresponding stability
condition of the statement by φ+ and σ+ respectively. Thus we consider a complete,
framed, 0-generic differential

φ+ ∈ Quad�(S,M)0,

and let σ+ = K(φ+) be the corresponding stability condition on D, well-defined up to
the action of the group Aut0

�(D). We may assume that φ+ has more than one saddle
trajectory, since otherwise we are in the situation of Proposition 11.7.
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FIG. 34. — The quivers relevant to the two cases (J1) and (J2)

The surface (S,M) is amenable, hence not a once-punctured torus, so according
to Section 5.9 there are two possible cases, labelled (J1) and (J2). Shrinking the unique
ring domain A as in Section 5.9 gives a smooth path in Quad�(S,M)0 ending at a non-
generic point

φ ∈ Quad�(S,M)0

with either 2 or 3 saddle trajectories γi . Label the saddle trajectories γi exactly as in
Section 5.9, and write αi ∈ � for the corresponding hat-homology classes. We recall that
there is a linear relation

α3 = α1 + α2.

Our strategy will be to first understand the stable objects of phase 1 in the stability
condition σ = K(φ) by applying Proposition 11.7 to nearby points on the other side of
the wall

Im Zφ−(α1)/Zφ−(α2)= 0.

We will then follow this information back through the ring-shrinking operation.
Let A= P(1) denote the abelian category of semistable objects of phase 1 in the

stability condition σ = K(φ). This category has finite-length, so we can model it by the
category of representations of the Jacobi algebra of a quiver with potential (Q,W). The
relevant quivers Q in the two cases (J1) and (J2) are as shown in Figure 34; in both cases
the potential is necessarily zero.

Proposition 11.8. — The category A is equivalent to the category of finite-dimensional repre-

sentations of the corresponding quiver Q.

Proof. — For definiteness we consider the more difficult case (J2).
Let nij denote the number of arrows in the quiver Q connecting vertex i to vertex j.

To prove the Lemma we must show

(a) the category A has exactly 3 stable objects Si ;
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(b) these objects have classes [Si] = αi respectively;
(c) For all i, j we have dimk Ext1

A(Si,Sj)= nij .

It is easy to see that after contracting the ring domain in Figure 18 the intersection
multiplicities αi · αj coincide with the expressions nji − nij . So for the last part it will be
enough to show that each object Si is spherical, and for each pair i �= j, we have either

Ext1
A(Si,Sj)= 0 or Ext1

A(Sj,Si)= 0.

Take a class β ∈ � and consider the wall-and-chamber decomposition of Stab(D)

with respect to the class β . Take a chamber containing σ in its closure, and containing
points σ− = K(φ−) which satisfy

Im Zφ−(α1)/Zφ−(α2) < 0, Im Zφ−(β)= 0.

Let us choose such a point σ− in this chamber, and assume further that the corresponding
differential φ− is generic, and that it lies in the open subset U of Proposition 5.10. Of
course, our choice of φ− = φ−(β) will depend on the class β we started with.

The genericity condition implies that all saddle trajectories for φ− have classes
which are multiples of β . Proposition 5.10 then implies that any such saddle trajectory is
one of the γi . Since the classes αi are pairwise non-proportional, it follows in particular
that φ− has at most one saddle trajectory. Thus Proposition 11.7 applies to φ−, and shows
that φ− has a saddle trajectory of class β precisely if σ− has a stable object of class β .

In the case when β = αi for some i, Proposition 11.7 implies that σ− = σ−(αi) has
a unique stable object Si of class β , which is moreover spherical. By Proposition 7.8, the
object Si is then semistable in σ , and hence lies in the category A=P(1).

Conversely, suppose that an object E ∈ A is stable in σ of phase 1. Proposi-
tion 7.6(a) shows that E is stable in all nearby stability conditions, and in particular we
can assume that this is the case for σ− = σ−(β). Then φ− must have a saddle trajectory of
class β , and by Proposition 5.10 it follows that β = αi for some i. Since Si was the unique
stable object in σ−(αi) of class αi it follows that E = Si .

Thus the set of stable objects in P(1) is some subset of the objects {S1,S2,S3}. It
follows from this that the objects S1 and S2 must actually be stable in σ . For example, if
S2 was unstable, it would have a filtration by the objects S1 and S3, which is impossible
because α2 is not a positive linear combination of the classes α1 and α3 = α1 + α2.

Suppose there are extensions in two directions between S1 and S2. Then on both
sides of the wall Im Zφ(α1)/Zφ(α2)= 0 there would be stable objects of class [S1] + [S2],
which is not the case for σ−. It follows that the object S3 must also be stable, since the
only other possibility is that there is a sequence

0 → S2 → S3 → S1 → 0,

which is impossible since S3 is stable on the σ− side of the wall. Using the same argument
as before, we can now check that nonzero extensions between one of the objects S1 or S2

and S3 only go in one direction. This completes the proof. �
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Consider stability conditions W : K(A)→ C on the abelian category A satisfying
the conditions

(11.5) Z(S1)+ Z(S2) ∈ iR, Im Z(S1)/Z(S2) > 0.

In the case (J2), assume also that Z(S3) ∈ iR. Then

Lemma 11.9. — The set of stable objects satisfying Z(E) ∈ iR is independent of the particular

choice of stability condition satisfying (11.5), and is as follows:

(J1) a single P1 family of objects of dimension vector (1,1);

(J2) a single P1 family of objects of dimension vector (1,1,1), and unique objects of dimension

vectors (1,1,0) and (0,0,1).

Proof. — In the case (a) we are considering representations of the Kronecker quiver
and the result is well-known. In case (b) we are considering the affine A2 quiver, and
since indecomposable representations are completely understood in terms of the real and
imaginary roots, the result is again easy. �

Note the precise correspondence with the finite-length trajectories of φ+ listed in
Section 5.9. The following result then completes the proof of Theorem 11.6.

Proposition 11.10. — An object E ∈ D is stable of phase 1 in σ+ precisely if it lies in the

abelian subcategory A and is stable with respect to stability conditions W as above.

Proof. — As the ring domain A shrinks we move along a path of differentials φ+(t)

for 0 � t � 1 with φ+(0)= φ+ and φ+(1)= φ. Let σ+(t)= K(φ+(t)) be the correspond-
ing stability conditions. The first claim is that the class of stable objects of phase 1 in the
stability condition σ+(t) is constant for 0 � t < 1. To prove this it will be enough to show
that if E is a stable object of phase 1 in some differential σ+(t), then the class β of E is a
multiple of the class α of the ring domain, and hence remains of phase 1 for all t. This
follows immediately from Lemma 11.4 and the list of saddle trajectories for σ+ given in
Section 5.9.

Suppose that E ∈ D is stable in σ+ of phase 1. Then by the above, the class of
E is proportional to α, and moreover E is stable in σ+(t) for 0 � t < 1. It follows that
E is at least semistable in σ , and hence that E ∈ A = P(1). Thus we are reduced to
understanding which objects E ∈A whose classes are proportional to α are stable in the
stability conditions σ+(t) for 0 � t < 1.

Consider the central charge of σ+(t) and rotate it by an angle of π/2. It then
induces a stability function W on A satisfying the conditions (11.5). It follows that an
object E ∈ A of class proportional to α is stable in σ+(t) precisely if it is stable with
respect to the stability conditions W of Lemma 11.9. �
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11.5. Completion of the proof. — The following result will be enough to complete the
proof of Theorem 11.2.

Proposition 11.11. — The map K of Proposition 11.3 is an isomorphism of complex manifolds.

Proof. — We begin by showing that K is injective; it then follows that it is an open
embedding because it commutes with the period maps, which are local isomorphisms.
Suppose we have two distinct framed differentials

φ1, φ2 ∈ Quad�
∗ (S,M)

such that K(φ2) = �(K(φ1)) for some autoequivalence � ∈ Aut0
�(D). Since the period

maps are local isomorphisms, and K commutes with these maps, if we deform both the φi

maintaining the condition that their periods are equal, we will also preserve the condition
K(φ2) = �(K(φ1)). Thus we can assume that the φi are saddle-free. Let (Ti, εi) be the
associated signed WKB triangulations.

By definition, K(φi)=�i(σ (φi)), where the �i are equivalences

�i : D(Ti, εi)→D(T0, ε0)

satisfying the conditions (i) and (ii) of the proof of Proposition 11.3. It follows that
�−1

2 ◦ � ◦ �1 takes the canonical heart A(T1, ε1) ⊂ D(T1, ε1) to the canonical heart
A(T2, ε2)⊂D(T2, ε2). In particular, the quivers Q(Ti) are isomorphic. Thus by Propo-
sition 8.5, the WKB triangulations Ti differ by an orientation-preserving diffeomorphism.

Examining Figure 5 it is easy to see that this implies that the differentials φi have
the same horizontal strip decomposition in the sense of Section 4.5. The fact that the
equivalences �i satisfy the condition (ii) of the proof of Proposition 11.3 implies further
that the horizontal strips of the φi have the same labellings by elements of �. Proposi-
tion 4.9 then shows that φ1 = φ2 ∈ Quad�(S,M).

The fact that the image of K is closed follows from Proposition 6.8. Indeed, sup-
pose σn → σ ∈ Stab�(D) with σn = K(φn). We can assume that each φn is complete
and generic since these points are dense. Theorem 11.6 implies that the lengths of non-
degenerate saddle connections in φn correspond to the masses of stable objects in σn. Thus
it will be sufficient to show that the masses of objects in the σn are uniformly bounded
below. By continuity it is enough to check that the masses of objects in σ are bounded
below, and this follows from the support property (7.2). �
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To prove Theorem 11.2 it remains to show that K descends to give an isomorphism
of complex orbifolds fitting into the commutative diagram

(11.6) Quad�
∗ (S,M)

K
Stab�(D)/Aut 0

�(D)

Quad♥(S,M)
J

Stab�(D)/Aut�(D)

Since the map on the left is a covering map, to prove that K descends it is enough to
check that all framings of the differential φ0 give the same stability condition up to the
action of Aut�(D). This is immediate from the definition of K0.

To prove that the resulting map J is injective, hence an isomorphism, we follow the
same argument used above to show that K is injective. Suppose that J(φ1) = J(φ2). By
deforming the differentials φi as before, it is enough to deal with the case when the φi

are complete and saddle-free. As above we conclude that the φi have the same horizontal
strip decomposition. Since they also have the same periods, they are equal. �

Corollary 11.12. — An autoequivalence of D preserves the connected component Stab�(D)

precisely if it is reachable. In particular, the shift functor [1] lies in the group Aut�(D) of reachable

autoequivalences.

Proof. — One implication is always true, by Lemma 7.9. Conversely, suppose that
� ∈ Aut(D) preserves Stab�(D). Take a smooth path connecting σ0 and �(σ0) in
Stab�(D). Applying K−1 this defines a smooth path of framed quadratic differentials.
As in the proof of Proposition 11.3, we can use Proposition 5.7 to find a homotopic path
consisting entirely of tame differentials, and crossing only finitely many walls. Applying
Proposition 10.7 at each of these walls shows that � is reachable. �

11.6. Non-amenable cases. — Suppose now that (S,M) is a marked bordered sur-
face which fails to be amenable because it violates one of the first four conditions of
Definition 9.3. We shall make some brief comments about what can be said in these
various cases.

Case (a). Suppose that (S,M) does not satisfy Assumption 8.1. We refer the reader
to the comments made following Assumption 8.1. We cannot deal with the case of a
4-punctured sphere, but the other cases are all described explicitly in Section 12.

Case (b). Suppose that (S,M) is one of the three surfaces listed in Proposition 8.5 having
distinct triangulations with the same associated quiver. The isomorphism of Theorem 9.8
still holds and induces an action of the group Aut�(D) on the set of tagged triangulations.
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We say that a reachable autoequivalence is allowable if the induced action on the quotient
set

Tri� (S,M)/MCG±(S,M)

is trivial. If we replace the group Aut�(D) of reachable autoequivalences by the subgroup
Aut allow

� (D) of allowable ones then Proposition 9.9 holds for (S,M) with the same proof.

In these cases Theorem 11.2 still holds, with the group Aut�(D) replaced by
Aut allow

� (D). The proof is the same, one just needs to check at several places that cer-
tain autoequivalences are allowable. This is easily done, and we omit the details. The
case of a once-punctured disc with two points on the boundary is described in detail in
Example 12.4 below.

Case (c). Consider the two non-closed surfaces listed in Proposition 8.6, for which the
action of the mapping class group on ordered ideal triangulations is not free. Proposi-
tion 9.9 also fails in these two cases. These surfaces are dealt with explicitly in Exam-
ples 12.2 and 12.5 below. Note that the orbifold Quad♥(S,M) has non-trivial generic
automorphism group Z2, and Theorem 11.2 continues to hold if we rigidify the orbifold
Quad♥(S,M) by killing this group.

Case (d). We leave the case of a closed surface with a single puncture for future research,
and restrict ourselves here to some sketchy comments about some of the special features
of these surfaces.

The first new feature is that the graph Tri� (S,M) has two connected components.
This means that we have two potentially distinct categories D(S,M), depending on the
choice of sign ε = ε(p). But by the result [7, Prop. 10.4] referred to in the proof of Theo-
rem 9.9, the two potentials W(T,±1) are right-equivalent up to scale, so in fact there is
a well-defined category D =D(S,M).

As stated, Theorem 9.8 is false for these examples, again because the graph
Tri� (S,M) is disconnected. A related issue is that Corollary 11.12 fails, and the shift
functor [1] is not reachable.15 It might therefore be best to replace the notion of a reach-
able heart by a shift-reachable heart: one for which A[i] lies in Tilt�(D) for some i ∈ Z. Of
course, in the case of an amenable surface, the notions of reachable and shift-reachable
coincide by Corollary 11.12.

One more feature in this case is that the complete Ginzburg algebra definitely does
not coincide with the uncompleted version in general, see Remark 9.7. It may well be that
it is more natural to consider the uncompleted Ginzburg algebra in this context.

15 To see this, note that because there are no self-folded triangles, the residue class βp is always either a strictly
positive or strictly negative linear combination of the classes of the simple objects of any heart, and this sign is constant
under mutation.
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FIG. 35. — Triangulation of a 5-gon

12. Examples

In this section we consider some special cases of Theorem 1.3 corresponding to
surfaces (S,M) of genus g = 0. This leads to descriptions of spaces of stability conditions
on CY3 categories associated to certain simple quivers familiar in representation theory.
We adopt a less formal approach in this section, and some of the details are left for the
reader.

12.1. Unpunctured discs: An type. — Fix an integer n � 2 and let (S,M) be an un-
punctured disc with n+ 3 points on its boundary. This corresponds to differentials on P1

with a single pole of order n + 5. The space Quad♥(S,M) coincides with Quad(S,M)

and parameterizes differentials of the form

ϕ(z)= pn+1(z) dz⊗2

where pn+1(z) is a polynomial of degree n + 1 having simple roots, considered modulo
the automorphisms of P1 which fix infinity. Taking the sum of the roots to be 0 we can
reduce to differentials of the form

φ(z)=
n+1∏
i=1

(z − ai) dz⊗2,

n+1∑
i=1

ai = 0, ai �= aj,

modulo a residual action of Zn+3 acting by rescaling z by an (n+ 3)rd root of unity. Thus

Quad(S,M)∼= Confn+1
0 (C)/Zn+3,

where Confn+1
0 (C) denotes the configuration space of n + 1 distinct points in C with

centre of mass at the origin, and the group Zn+3 acts by multiplication by (n+ 3)rd roots
of unity.

The mapping class group of the surface is

MCG(S,M)= Zn+3
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and coincides with the signed mapping class group. Ideal triangulations of (S,M) corre-
spond to triangulations of an (n+ 3)-gon, see Figure 35. For triangulations containing no
internal triangles the resulting quivers are orientations of a Dynkin diagram of An type
and necessarily have zero potential.

Our main Theorem gives an isomorphism of complex orbifolds

Confn+1
0 (C)/Zn+3

∼= Stab�(D)/Aut�(D).

Note that there is a short exact sequence

1 → Br(An)→ π1 Quad(S,M)→ Zn+3 → 1,

where the Artin braid group Br(An) is the fundamental group of the configuration space
Confn+1

0 (C). On the other hand, the group Sph(D) ⊂ Aut(D) is isomorphic to Br(An)

by [33, Theorem 1.3]. The sequence of Lemma 9.9 therefore becomes

1 → Br(An)→ Aut�(D)→ Zn+3 → 1.

The fact that these two sequences coincide suggests that Stab�(D) is simply-connected.

Example 12.1. — The non-amenable case n = 0 corresponding to an unpunctured
disc with 3 marked points on its boundary is very degenerate. The space Quad(S,M)

is a single point with automorphism group Z3, corresponding to the unique differential
φ(z) = z dz⊗2. The mapping class group is MCG(S,M) = Z3. There is a unique ideal
triangulation, but it contains no edges, and the associated quiver is empty.

Example 12.2. — Consider the non-amenable case n = 1 corresponding to an un-
punctured disc with four marked points on its boundary. The space Quad(S,M) consists
of differentials of the form

φ(z)= (
z2 + c

)
dz⊗2, c ∈ C∗,

modulo the action of Z4 acting on z by multiplication by i. Thus

Quad(S,M)∼= C∗/Z4

with the generator of Z4 acting by change of sign. Note that the generic stabilizer group
is Z2.

There are two ideal triangulations of (S,M), each with a single edge. These are
related by the action of the mapping class group Z4. Note that Proposition 8.6 breaks
down in this case: the element of Z4 of order 2 fixes all triangulations.

The quiver corresponding to either triangulation has a single vertex and no arrows.
The category D is generated by a single spherical object S, and the group Aut�(D) is
generated by the shift functor [1]. Proposition 9.9 also breaks down in this case, since
Sph(D)∼= Z is generated by the second shift [2].
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The quotient space Stab(D)/〈[2]〉 is isomorphic to C∗ with co-ordinate Z(S).
Thus

Stab(D)/Aut�(D)∼= C∗/Z2,

with the generator of Z2 acting by change of sign. There is a morphism

Quad(S,M)→ Stab(D)/Aut�(D)

given by setting Z(S) = π ic, but it is not an isomorphism of orbifolds, since the generic
automorphism groups are different.

12.2. Punctured discs: Dn type. — Fix an integer n � 2 and let (S,M) be a once-
punctured disc with n points on its boundary. This corresponds to differentials on P1 with
polar type (2, n+ 2).

The space Quad(S,M) consists of differentials of the form

φ(z)=
n∏

i=1

(z − ai)
dz⊗2

z2
, ai �= aj,

modulo the action of C∗ rescaling z. Thus

Quad(S,M)∼= Confn(C)/Zn,

where Confn(C) denotes the configuration space of n distinct points in C, and the group
Zn acts by multiplication by nth roots of unity.

Note that the product a = ∏n

i=1 ai is invariant under the Zn action, and hence
defines a map

a : Quad(S,M)→ C.

The cover Quad±(S,M) corresponds to choosing a square-root of a.
When n � 3 the obvious rotationally-symmetric triangulation of (S,M) has an

associated quiver with potential which consists of a cycle of n arrows, equipped with a
nonzero superpotential of degree n. This is known [10, Example 6.7] to be mutation-
equivalent to any orientation of the Dynkin diagram of Dn type, necessarily with zero
potential.

Example 12.3. — In the non-amenable case n = 1 the space Quad(S,M) consists
of differentials of the form

φ(z)= (z + c)
dz⊗2

z2
, c ∈ C.
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The residue at 0 is Res0(φ)= 4π i
√

c. The cover Quad±(S,M) corresponds to choosing
a square-root s =√

c. Thus

Quad♥(S,M)∼= C/Z2

with Z2 acting on C by s �→ −s.
There is only one triangulation, and the resulting quiver is a single vertex with

no arrows. The category D is generated by a single spherical object. The mapping class
group is trivial, and MCG±(S,M) = Z2. The group Aut�(D) is generated by the shift
[1], and the subgroup Sph(D) by the second shift [2]. The quotient Stab�(D)/Sph(D)

is isomorphic to C with co-ordinate Z(S). Thus the relation

Quad♥(S,M)∼= Stab�(D)/Aut�(D),

also holds in this case.

Example 12.4. — In the non-amenable case n = 2 the space Quad(S,M) consists
of differentials of the form

φ(z)= (
az2 + bz + c

)dz⊗2

z2
, a ∈ C∗, b, c ∈ C, b2 − 4ac �= 0,

modulo the rescaling action of C∗. Using this we can take a = 1; there is then a residual
action of Z2 acting by z �→ −z. These differentials have a double pole at z = 0 and a
fourth order pole at infinity. The respective residues are

Res0(φ)= 4π i
√

c, Res∞(φ)= 2π ib.

The cover Quad±(S,M) corresponds to choosing a square-root of c. Writing the differ-
ential as

φ(z)= (
z2 + 2sz + t2

)dz⊗2

z2
, s, t ∈ C, s2 �= t2,

we see that Quad±(S,M) is the quotient (C2 \ �)/Z2 where Z2 acts by changing the
sign of the first co-ordinate s, and � ⊂ C2 is the union of the hyperplanes s = ±t. We
also have

(12.1) Quad♥(S,M)= (
C2 \�

)
/Z⊕2

2

with the two Z2 factors changing the signs of s and t respectively. There is a short exact
sequence

1 → Z⊕2 → π1

(
Quad♥(S,M)

)→ Z⊕2
2 → 1.
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FIG. 36. — Triangulations of a once-punctured disc with two marked points on the boundary

The mapping class group and its signed version are

MCG(S,M)= Z2, MCG±(S,M)= Z⊕2
2 .

There are four tagged triangulations; the two possible taggings of the left-hand triangula-
tion in Figure 36, and the tagged triangulations corresponding to the right-hand picture
and its rotation. The corresponding quivers all consist of two vertices with no arrows.

The category D is generated by two spherical objects S1,S2 lying in the heart of
the t-structure corresponding to the triangulation on the left in Figure 36. They have zero
Ext groups between them. The twist functor TwSi

acts by sending Si to Si[2] and leaving
the other Sj unchanged.

The group of allowable autoequivalences Aut allow
� (D) is generated by the spherical

twists TwSi
, together with the autoequivalence swapping S1 and S2, and the shift functor

[1]. It fits into a short exact sequence

1 → Z⊕2 → Aut allow
� (D)→ Z⊕2

2 → 1.

It has index 2 in the full group Aut�(D), which also contains the element sending S1 to
S1[1] and leaving S2 fixed.

The quotient Stab�(D)/Sph(D) is isomorphic to (C∗)2 with co-ordinates Z(Si).
The isomorphism of Theorem 1.3 is given by

Z(S1)− Z(S2)= 2π is, Z(S1)+ Z(S2)= 2π it.

In the Z(Si) co-ordinates the discriminant � of (12.1) is given by Z(S1)Z(S2) = 0. One
of the Z2 factors acts by exchanging the Z(Si), and the other acts by changing the signs
of the Z(Si).

12.3. Unpunctured annuli: affine An type. — Fix integers p, q � 1 and let (S,M) be an
annulus whose boundary components contain p and q marked points respectively. This
corresponds to differentials on P1 with polar type (p+ 2, q + 2). Let n = p+ q.
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The space Quad±(S,M)= Quad(S,M) consists of differentials of the form

φ(z)=
n∏

i=1

(z − ai)
dz⊗2

zp+2
, ai ∈ C∗, ai �= aj.

If p �= q these are considered modulo the action of C∗ rescaling z, so we have

Quad(S,M)∼= Confn
(
C∗)/Zq,

where Confn(C∗) denotes the configuration space of n distinct points in C∗, and the group
Zq acts by multiplication by a qth root of unity. In the case p = q one should quotient by
an extra factor of Z2 acting by z ↔ 1/z.

We remark that despite appearances this answer is symmetric under exchanging
(p, q). To see this observe that the relevant quotients can also be viewed as the quotient of
C∗ × Confn(C∗) by the action of C∗ acting with weight −p or −q on the first factor and
weight 1 on each of the points in the configuration. These two actions are exchanged by
the involution of C∗ ×Confn(C∗) defined by

(
t, {a1, . . . , an}

) �→ (
(a1 · · · an) · t,

{
a−1

1 , . . . , a−1
n

})
.

For any triangulation of (S,M) the resulting quiver Q is a cycle of n arrows but
with a non-cyclic orientation. Thus Q is a non-cyclic orientation of the affine An−1 Dynkin
diagram, necessarily with zero potential.

Example 12.5. — Consider the non-amenable case p = q = 1. The space
Quad(S,M) parameterizes differentials of the form

φ(z)= (
tz + 2s + tz−1

)dz⊗2

z2
, s ∈ C, t ∈ C∗, t2 �= s2

modulo an action of Z⊕2
2 , with one generator acting by changing the sign of t, and the

other acting trivially, via the automorphism z �→ 1/z of P1. Writing a = s ∈ C and b =
t2 ∈ C∗ we obtain

Quad(S,M)∼= (
C×C∗ \�

)
/Z2,

where � is the hypersurface b = a2 and Z2 acts trivially. Write Quad′(S,M) for the
rigidified moduli space obtained by forgetting about the trivial Z2 action. There is a
short exact sequence

1 → Z ∗Z → π1 Quad′(S,M)→ Z → 1

obtained from the obvious projection to C∗ whose fibre over b ∈ C∗ is C \ {±√b}.
The mapping class group is MCG(S,M)= Z2 �Z with the Z2 acting by exchang-

ing the two boundary components, and Z acting by a Dehn twist around an equatorial
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FIG. 37. — Triangulation and quiver for the annulus with one marked point on each boundary component

curve. There is a single triangulation of (S,M) up to diffeomorphism, depicted in Fig-
ure 37, and the associated quiver is the Kronecker quiver.

The spherical autoequivalence group Sph(D) is free on the two generators TwSi
.

The mapping class group does not act freely on ordered triangulations, and Proposi-
tion 9.9 is false in this case. But the same argument gives a short exact sequence

1 → Z ∗Z → Aut�(D)→ Z → 1.

Theorem 11.2 continues to hold if we replace Quad(S,M) by Quad′(S,M). The central
charges of the two simple objects are given by the elliptic integrals

Z(Si)=±2
∫ √

(tz + 2s + tz−1) · dz

z

where the paths of integration are half-loops connecting the two zeroes of φ.

12.4. Three-punctured sphere. — Let (S,M) be the three-punctured sphere. This sur-
face is not amenable, but a version of our Theorem continues to hold. An interesting point
is that it seems to be most natural to work with uncompleted Ginzburg algebras in this
case (see Remark 9.7).

The space Quad(S,M) consists of differentials of the form

φ(z)= (az2 + bz + c) dz⊗2

z2(z − 1)2

for a, b, c ∈ C with b2 �= 4ac, modulo the action of the symmetric group S3 acting via
automorphisms of P1 permuting 0,1,∞. The residues at the points 0,1,∞ are

1
4π i

Res0 = u =√
c,

1
4π i

Res1 = v =√
a + b+ c,

1
4π i

Res∞ =w =√
a.
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The space Quad±(S,M) is therefore C3 with co-ordinates (u, v,w), minus the inverse
image of the discriminant locus b2 − 4ac, all modulo S3 acting by permutations on
(u, v,w). The inverse image of the discriminant locus is easily seen to be the divisor
z1z2z3z4 = 0, where

z1 =−u+ v +w, z2 = u− v +w,

z3 = u+ v −w, z4 = u+ v +w.

Thus we conclude that

Quad±(S,M)∼= ((
C∗)3 \�

)
/S3

where the discriminant � is given by z1 + z2 + z3 = 0 and the symmetric group Sym3

acts by permuting (z1, z2, z3). Hence

Quad♥(S,M)∼= ((
C∗)3 \�

)
/
(
Sym3 �(Z2)

⊕3
)
,

where the Z2 factors change the signs of u, v,w respectively. The fundamental group then
sits in a sequence

1 → π1

((
C∗)3 \�

)→ π1

(
Quad♥(S,M)

)→ Sym3 �Z⊕3
2 → 1.

The space (C∗)3 \� is a trivial C∗-bundle over its projectivisation, which is the comple-
ment of four hyperplanes in CP2. A theorem due to Zariski [41, Lemma, p. 317] asserts
that π1((C∗)3 \�) is abelian, hence isomorphic to H1((C∗)3 \�)∼= Z⊕4.

The mapping class group is MCG(S,M)= S3 and permutes the punctures in the
obvious way. The signed mapping class group is MCG±(S,M)= Sym3 �Z⊕3

2 . There are
two triangulations up to the mapping class group action: one has two triangles meeting
along three common edges, and the other consists of two self-folded triangles glued along
their encircling edges. We claim that the relevant quiver with potential in both cases is
the one depicted in Figure 38.

Note that the associated reduced quiver with potential has three vertices and no
arrows. Let A′ be the category of finite-dimensional representations of the ordinary (in-
complete) Jacobi algebra of the above quiver with potential, and A the category of finite-
dimensional representations of the completed version. Then A⊂A′ is the full subcate-
gory of nilpotent representations.

Lemma 12.6. — The category A′ has exactly four indecomposable objects, all of them simple,

namely the three vertex simple objects S1,S2,S3 together with the representation S4 of dimension vector

(1,1,1) obtained by taking all arrows to be the identity. The subcategory A is the subcategory consisting

of direct sums of the objects S1,S2,S3.
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•1
a

c′

•2

b

a′

•3

cc

b′

W = aa′ + bb′ + cc′ − abc − c′b′a′.
FIG. 38. — The quiver with potential for the 3-punctured sphere

Proof. — Differentiating the potential we see that the Jacobi algebra has relations

a′ = bc, b′ = ca, c′ = ab,

which allow us to eliminate a′, b′, c′. The remaining relations are then

(12.2) a = abca, b = bcab, c = cabc.

Given a representation of the Jacobi algebra we can split the vector space associated
to vertex 1 as Im(abc) ⊕ Ker(abc). Indeed, by the relations (12.2), if v = (w)abc lies in
the kernel of the map abc then (w)a = (w)abca = (v)a = (v)abca = 0 and hence v = 0.
Similar splittings exist at the other vertices and it follows easily from the relations (12.2)
that all arrows preserve these splittings. Hence, if E is an indecomposable object of A′ we
either have abc = bca = cba = 0 or each of these maps is injective.

In the first case it follows from the relations (12.2) that all arrows are 0, and hence,
since E is indecomposable it must be one of the vertex simples. In the second case, each
of a, b, c is injective, hence they are all isomorphisms, and (12.2) implies that abc is the
identity, and similarly for bca and cab. We can then choose the gauge so that a, b, c are
identity maps, and since E is indecomposable it follows that the dimension vector must
be (1,1,1). This unique extra indecomposable S4 is simple, since there are no maps
between it and the vertex simples. �

It follows from the Lemma that the objects Si are all spherical and have no ex-
tensions between them, since otherwise there would be more indecomposable objects in
the category. Consider now the derived category of the uncompleted Ginzburg algebra of
the above quiver with potential, and the subcategory D′ of objects with finite-dimensional
cohomology. It is a CY3 triangulated category with a heart A′ ⊂D containing 4 simple,
spherical objects, with zero Ext-groups between them.
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The Grothendieck group is K(D′)∼= Z⊕4 and the dimension vector defines a group
homomorphism

d : K
(
D′)→ Z⊕3.

Consider the space Stab′(D′) ⊂ Stab(D′) consisting of those stability conditions whose
central charge factors via d . This is acted on by the group of autoequivalences Aut′(D′)
whose action on K(D′) preserves the kernel of d .

The group of all exact autoequivalences of D′ is Aut(D′) ∼= Sym4 �Z⊕4, with the
four generators ρi shifting the four simples Si respectively, and the symmetric group Sym4
permuting them. The subgroup Aut′(D′) contains a subgroup Sph(D′)∼= Z⊕4 generated
by the 4 elements ρ2

i .

Lemma 12.7. — There is a short exact sequence

1 → Sph
(
D′)→ Aut′

(
D′)→ Sym3 �Z⊕3

2 → 1.

Proof. — An element of Aut′(D′) is determined by its action on the objects Si , and,
up to the action of Sph(D′), each of these is taken to an object of the form Sj or Sj[1].
Consider the transformation

τ(12)(34) : (S1,S2,S3,S4) �→
(
S2,S1,S4[1],S3[1]

)
along with its two conjugates by permutations of (S1,S2,S3). There is a relation

τ(12)(34) ◦ τ(13)(24) ◦ τ(23)(14) = [1] ∈ Aut′
(
D′)/Sph

(
D′).

Consider an element σ of the quotient group Aut′(D′)/Sph(D′). Composing with the
above transformations we can assume that σ takes S4 to itself. The relation [S4] = [S1] +
[S2] + [S3] then forces σ to be a permutation of the objects (S1,S2,S3). �

The space Stab′(D′)/Sph(D′) is equal to (C∗)3 \� with co-ordinates zi = Z(Si),
where the discriminant locus � is given by z1 + z2 + z3 = 0 as before. Thus we obtain an
isomorphism

Quad♥(S,M)∼= Stab′(D′)/Aut′
(
D′)

which can be thought of as a modified version of Theorem 1.2.
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