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ABSTRACT

We prove that, for general cost functions on Rn, or for the cost d2/2 on a Riemannian manifold, optimal transport
maps between smooth densities are always smooth outside a closed singular set of measure zero.

1. Introduction

A natural and important issue in optimal transport theory is the regularity of opti-
mal transport maps. Indeed, apart from being a typical PDE/analysis question, knowing
whether optimal maps are smooth or not is an important step towards a qualitative un-
derstanding of them.

It is by now well known that, for the smoothness of optimal maps, conditions on
both the cost function and on the geometry of the supports of the measures are needed.

In the special case c(x, y) = |x − y|2/2 on Rn, Caffarelli [3–6] proved regularity of
optimal maps under suitable assumptions on the densities and on the geometry of their
support. More precisely, in its simplest form, Caffarelli’s result states as follows:

Theorem 1.1. — Let f and g be smooth probability densities, respectively bounded away from

zero and infinity on two bounded open sets X and Y, and let T : X → Y denote the unique optimal

transport map from f to g for the quadratic cost |x − y|2/2. If Y is convex, then T is smooth inside X.

On the other hand, if Y is not convex, then there exist smooth densities f and g (both bounded away from

zero and infinity on X and Y, respectively) for which the map T is not continuous.

A natural question which arises from the previous result is whether one may prove
some partial regularity on T when the convexity assumption on Y is removed. In [16, 18]
the authors proved the following result:

Theorem 1.2. — Let f and g be smooth probability densities, respectively bounded away from

zero and infinity on two bounded open sets X and Y, and let T : X → Y denote the unique optimal

transport map from f to g for the quadratic cost |x − y|2/2. Then there exist two open sets X′ ⊂ X and

Y′ ⊂ Y, with |X \ X′| = |Y \ Y′| = 0, such that T : X′ → Y′ is a smooth diffeomorphism.

In the case of general cost functions on Rn, or when c(x, y) = d(x, y)2/2 on a Rie-
mannian manifold M (d(x, y) being the Riemannian distance), the situation is much more
complicated. Indeed, as shown by Ma, Trudinger, and Wang [33], and Loeper [31], in
addition to suitable convexity assumptions on the support of the target density (or on the
cut locus of the manifold when supp(g) = M [24]), a very strong structural condition on
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the cost function, the so-called MTW condition, is needed to ensure the smoothness of the
map.

More precisely, if the MTW condition holds (together with some suitable convexity
assumptions on the target domain), then the optimal map is smooth [19, 21, 30, 35, 36].
On the other hand, if the MTW condition fails at one point, then one can construct
smooth densities (both supported on domains which satisfy the needed convexity assump-
tions) for which the optimal transport map is not continuous [31] (see also [15]).

In the case of Riemannian manifolds, the MTW condition for c = d2/2 is very
restrictive: indeed, as shown by Loeper [31], it implies that M has non-negative sectional
curvature, and actually it is much stronger than the latter [23, 28]. In particular, if M
has negative sectional curvature, then the MTW condition fails at every point. Let us
also mention that, up to now, the MTW condition is known to be satisfied only for very
special classes of Riemannian manifolds, such as spheres, their products, their quotients
and submersions, and their perturbations [10, 11, 20, 22, 25, 29, 32], and for instance it
is known to fail on sufficiently flat ellipsoids [23].

The goal of the present paper is to show that, even without any condition on the
cost function or on the supports of the densities, optimal transport maps are always
smooth outside a closed singular set of measure zero. In order to state our results, we
first have to introduce some basic assumptions on the cost functions which are needed to
ensure existence and uniqueness of optimal maps. As before, X and Y denote two open
subsets of Rn.

(C0) The cost function c : X × Y → R is of class C2 with ‖c‖C2(X×Y) < ∞.
(C1) For any x ∈ X, the map Y � y 	→ −Dxc(x, y) ∈ Rn is injective.
(C2) For any y ∈ Y, the map X � x 	→ −Dyc(x, y) ∈ Rn is injective.
(C3) det(Dxyc)(x, y) 
= 0 for all (x, y) ∈ X × Y.

Here are our main results:

Theorem 1.3. — Let X,Y ⊂ Rn be two bounded open sets, and let f : X → R+ and g :
Y → R+ be two continuous probability densities, respectively bounded away from zero and infinity on X
and Y. Assume that the cost c : X×Y → R satisfies (C0)–(C3), and denote by T : X → Y the unique

optimal transport map sending f onto g. Then there exist two relatively closed sets ΣX ⊂ X,ΣY ⊂ Y
of measure zero such that T : X \ ΣX → Y \ ΣY is a homeomorphism of class C0,β

loc for any β < 1.

In addition, if c ∈ Ck+2,α
loc (X × Y), f ∈ Ck,α

loc (X), and g ∈ Ck,α
loc (Y) for some k ≥ 0 and α ∈ (0,1),

then T : X \ ΣX → Y \ ΣY is a diffeomorphism of class Ck+1,α
loc .

Theorem 1.4. — Let M be a smooth Riemannian manifold, and let f , g : M → R+ be two

continuous probability densities, locally bounded away from zero and infinity on M. Let T : M → M
denote the optimal transport map for the cost c = d2/2 sending f onto g. Then there exist two closed

sets ΣX,ΣY ⊂ M of measure zero such that T : M \ ΣX → M \ ΣY is a homeomorphism of class

C0,β

loc for any β < 1. In addition, if both f and g are of class Ck,α , then T : M \ ΣX → M \ ΣY is a

diffeomorphism of class Ck+1,α
loc .
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The paper is structured as follows: in the next section we introduce some notation
and preliminary results. Then, in Section 3, we show how both Theorem 1.3 and Theo-
rem 1.4 are a direct consequence of some local regularity results around differentiability
points of T, see Theorems 4.3 and 5.3. Finally, Sections 4 and 5 are devoted to the proof
of these local results.

2. Notation and preliminary results

Through a well established procedure, maps that solve optimal transport problems
derive from a c-convex potential, itself solution to a Monge-Ampère type equation.

More precisely, given a cost function c : X × Y → R, a function u : X → R is said
c-convex if it can be written as

(2.1) u(x) = sup
y∈Y

{−c(x, y) + λy

}
,

for some constants λy ∈ R ∪ {−∞}.
Similarly to the subdifferential for convex function, for c-convex functions one can

talk about their c-subdifferential: if u : X → R is a c-convex function as above, the c-

subdifferential of u at x is the (nonempty) set

(2.2) ∂cu(x) := {
y ∈ Y : u(z) ≥ −c(z, y) + c(x, y) + u(x) ∀z ∈ X

}
.

If x0 ∈ X and y0 ∈ ∂cu(x0), we will say that the function

(2.3) Cx0,y0(·) := −c(·, y0) + c(x0, y0) + u(x0)

is a c-support for u at x0. We also define the Frechet subdifferential of u at x as

∂−u(x) := {
p ∈ Rn : u(z) ≥ u(x) + p · (z − x) + o

(|z − x|)}.
We will use the following notation: if E ⊂ X then

∂cu(E) :=
⋃

x∈E

∂cu(x), ∂−u(E) :=
⋃

x∈E

∂−u(x).

It is easy to check that, if c is of class C1, then the following inclusion holds:

(2.4) y ∈ ∂cu(x) =⇒ −Dxc(x, y) ∈ ∂−u(x).

In addition, if c satisfies (C0)–(C2), then we can define the c-exponential map:

(2.5) for any x ∈ X, y ∈ Y, p ∈ Rn,

{
c-expx(p) = y ⇔ p = −Dxc(x, y)

c∗-expy(p) = x ⇔ p = −Dyc(x, y)



84 GUIDO DE PHILIPPIS, ALESSIO FIGALLI

Using (2.5), we can rewrite (2.4) as

(2.6) ∂cu(x) ⊂ c-expx

(
∂−u(x)

)
.

Notice that, if c ∈ C1 and Y is bounded, it follows immediately from (2.1) that c-convex
functions are Lipschitz, so in particular they are differentiable a.e.

The following notation will be convenient: given a c-convex function u : X → R,
we define (at almost every point) the map Tu : X → Y as

(2.7) Tu(x) := c-expx

(∇u(x)
)
.

(Of course Tu depends also on c, but to keep the notation lighter we prefer not to make
this dependence explicit. The reader should keep in mind that, whenever we write Tu,
the cost c is always the one for which u is c-convex.)

Finally, let us observe that if c satisfies (C0) and Y is bounded, then it follows from
(2.1) that u is semiconvex (i.e., there exists a constant C > 0 such that u + C|x|2/2 is
convex, see for instance [13]). In particular, by Alexandrov’s Theorem, c-convex functions
are twice differentiable a.e. (see [37, Theorem 14.25] for a list of different equivalent
definitions of this notion).

The following is a basic result in optimal transport theory (see for instance [37,
Chapter 10]):

Theorem 2.1. — Let c : X×Y → R satisfy (C0)–(C1). Given two probability densities f and

g supported on X and Y respectively, there exists a c-convex function u : X → R such that Tu : X → Y
is the unique optimal transport map sending f onto g.

In the particular case c(x, y) = −x · y (which is equivalent to the quadratic cost
|x − y|2/2), c-convex functions are convex and the above result takes the following simple
form [2]:

Theorem 2.2. — Let c(x, y) = −x · y. Given two probability densities f and g supported on

X and Y respectively, there exists a convex function v : X → R such that Tv = ∇v : X → Y is the

unique optimal transport map sending f onto g.

Although on Riemannian manifolds the cost function c = d2/2 is not smooth ev-
erywhere, one can still prove existence of optimal maps [13, 17, 34] (let us remark that,
in this case, the c-exponential map coincides with the classical exponential map in Rie-
mannian geometry):

Theorem 2.3. — Let M be a smooth Riemannian manifold, and c = d2/2. Given two prob-

ability densities f and g supported on M, there exists a c-convex function u : M → R ∪ {+∞} such

that u is differentiable f -a.e., and Tu(x) = expx(∇u(x)) is the unique optimal transport map sending

f onto g.
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We conclude this section by recalling that c-convex functions arising in optimal
transport problems solve a Monge-Ampère type equation almost everywhere, referring
to [1, Section 6.2], [37, Chapters 11 and 12], and [15] for more details.

Whenever c satisfies (C0)–(C3), then the transport condition (Tu)�f = g gives

(2.8)
∣∣det

(
DTu(x)

)∣∣ = f (x)

g(Tu(x))
a.e.

In addition, the c-convexity of u implies that, at every point x where u is twice differen-
tiable,

(2.9) D2u(x) + Dxxc
(
x, c-expx

(∇u(x)
)) ≥ 0.

Hence, writing (2.7) as

−Dxc
(
x,Tu(x)

) = ∇u(x),

differentiating the above relation with respect to x, and using (2.8) and (2.9), we obtain

det
(
D2u(x) + Dxxc

(
x, c-expx

(∇u(x)
)))

(2.10)

= ∣∣det
(
Dxyc

(
x, c-expx

(∇u(x)
)))∣∣ f (x)

g(c-expx(∇u(x)))

at every point x where u it is twice differentiable. In particular, when c(x, y) = −x · y, the
convex function v provided by Theorem 2.2 solves the classical Monge-Ampère equation

det
(
D2v(x)

) = f (x)

g(∇v(x))
a.e.

3. The localization argument and proof of the results

The goal of this section is to prove Theorems 1.3 and 1.4 by showing that the
assumptions of Theorems 4.3 and 5.3 below are satisfied near almost every point.

The rough idea is the following: if x̄ is a point where the semiconvex function u is
twice differentiable, then around that point u looks like a parabola. In addition, by looking
close enough to x̄, the cost function c will be very close to the linear one and the densities
will be almost constant there. Hence we can apply Theorem 4.3 to deduce that u is of
class C1,β in neighborhood of x̄ (resp. u is of class Ck+2,α by Theorem 5.3, if c ∈ Ck+2,α

loc and
f , g ∈ Ck,α

loc ), which implies in particular that Tu is of class C0,β in neighborhood of x̄ (resp.
Tu is of class Ck+1,α by Theorem 5.3, if c ∈ Ck+2,α

loc and f , g ∈ Ck,α
loc ). Being our assumptions

completely symmetric in x and y, we can apply the same argument to the optimal map
T∗ sending g onto f . Since T∗ = (Tu)

−1 (see the discussion below), it follows that Tu is a
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global homeomorphism of class C0,β

loc (resp. Tu is a global diffeomorphism of class Ck+1,α
loc )

outside a closed set of measure zero.
We now give a detailed proof.

Proof of Theorem 1.3. — Let us introduce the “c-conjugate” of u, that is, the function
uc : Y → R defined as

uc(y) := sup
x∈X

{−c(x, y) − u(x)
}
.

Then uc is c∗-convex, where

(3.1) c∗(y, x) := c(x, y), and x ∈ ∂c∗u
c(y) ⇐⇒ y ∈ ∂cu(x)

(see for instance [37, Chapter 5]).
Being our assumptions completely symmetric in x and y, c∗ satisfies the same as-

sumptions as c. In particular, by Theorem 2.1, there exists an optimal map T∗ (with
respect to c∗) sending g onto f . In addition, it is well-known that T∗ is actually equal to

Tuc(y) = c∗-expy

(∇uc(y)
)
,

and that Tu and Tuc are inverse to each other, that is

(3.2) Tuc

(
Tu(x)

) = x, Tu

(
Tuc(y)

) = y for a.e. x ∈ X, y ∈ Y

(see, for instance, [1, Remark 6.2.11]).
Since semiconvex functions are twice differentiable a.e., there exist sets X1 ⊂

X,Y1 ⊂ Y of full measure such that (3.2) holds for every x ∈ X1 and y ∈ Y1, and in
addition u is twice differentiable for every x ∈ X1 and uc is twice differentiable for every
y ∈ Y1. Let us define

X′ := X1 ∩ (Tu)
−1(Y1).

Using that Tu transports f on g and that the two densities are bounded away from zero
and infinity, we see that X′ is of full measure in X.

We fix a point x̄ ∈ X′. Since u is differentiable at x̄ (being twice differentiable), it
follows by (2.6) that the set ∂cu(x̄) is a singleton, namely ∂cu(x̄) = {c-expx̄(∇u(x̄))}. Set
ȳ := c-expx̄(∇u(x̄)). Since ȳ ∈ Y1 (by definition of X′), uc is twice differentiable at ȳ and
x̄ = Tuc(ȳ). Up to a translation in the system of coordinates (both in x and y) we can
assume that both x̄ and ȳ coincide with the origin 0.

Let us define

ū(z) := u(z) − u(0) + c(z,0) − c(0,0),

c̄(z,w) := c(z,w) − c(z,0) − c(0,w) + c(0,0),

ūc̄(w) := uc(w) − u(0) + c(0,w) − c(0,0).
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Then ū is a c̄-convex function, ūc̄ is its c̄-conjugate, Tū = Tu, and Tūc̄ = Tuc , so in partic-
ular (Tū)�f = g and (Tūc̄)�g = f . In addition, because by assumption 0 ∈ X′, ū is twice
differentiable at 0 and ūc̄ is twice differentiable at 0 = Tū(0). Let us define P := D2ū(0),
and M := Dxyc̄(0,0). Then, since c̄(·,0) = c̄(0, ·) ≡ 0 and c̄ ∈ C2, a Taylor expansion
gives

ū(z) = 1
2

Pz · z + o
(|z|2), c̄(z,w) = Mz · w + o

(|z|2 + |w|2).

Let us observe that, since by assumption f and g are bounded away from zero and infinity,
by (C3) and (2.10) applied to ū and c̄ we get that det(P),det(M) 
= 0. In addition (2.9)
implies that P is a positive definite symmetric matrix. Hence, we can perform a second
change of coordinates: z 	→ z̃ := P1/2z, w 	→ w̃ := −P−1/2M∗w (M∗ being the transpose
of M), so that, in the new variables,

(3.3) ũ(z̃) := ū(z) = 1
2
|z̃|2 + o

(|z̃|2), c̃(z̃, w̃) := c̄(z,w) = −z̃ · w̃+ o
(|z̃|2 +|w̃|2).

By an easy computation it follows that (Tũ)� f̃ = g̃, where1

(3.4) f̃ (z̃) := det
(
P−1/2

)
f
(
P−1/2z̃

)
, g̃(w̃) := ∣∣det

((
M∗)−1

P1/2
)∣∣ g

(−(
M∗)−1

P1/2w̃
)
.

Notice that

(3.5) Dz̃z̃ c̃(0,0) = Dw̃w̃ c̃(0,0) = 0n×n, −Dz̃w̃ c̃(0,0) = Id, D2ũ(0) = Id,

so, using (2.10), we deduce that

(3.6)
f̃ (0)

g̃(0)
= det(D2ũ(0) + Dz̃z̃ c̃(0,0))

|det(Dz̃w̃ c̃(0,0))| = 1.

To ensure that we can apply Theorems 4.3 and 5.3, we now perform the following
dilation: for ρ > 0 we define

uρ(z̃) := 1
ρ2

ū(ρz̃), cρ(z̃, w̃) := 1
ρ2

c̄(ρz̃, ρw̃).

We claim that, provided ρ is sufficiently small, uρ and cρ satisfy the assumptions of The-
orems 4.3 and 5.3.

Indeed, it is immediate to check that uρ is a cρ-convex function. Also, by the
same argument as above, from the relation (Tũ)� f̃ = g̃ we deduce that Tuρ

sends f̃ (ρz̃)

1 An easy way to check this is to observe that the measures μ := f (x)dx and ν := g(y)dy are independent of the
choice of coordinates, hence (3.4) follows from the identities

f (x)dx = f̃ (x̃)dx̃, g(y)dy = g̃(ỹ)dỹ.
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onto g̃(ρw̃). In addition, since we can freely multiply both densities by a same constant,
it actually follows from (3.6) that (Tuρ

)�fρ = gρ , where

fρ(z̃) := f̃ (ρz̃)

f̃ (0)
, gρ(w̃) := g̃(ρw̃)

g̃(0)
.

In particular, since f and g are continuous, we get

(3.7) |fρ − 1| + |gρ − 1| → 0 inside B3

as ρ → 0. Also, by (3.3) we get that, for any z̃, w̃ ∈ B3,

(3.8) uρ(z̃) = 1
2
|z̃|2 + o(1), cρ(z̃, w̃) = −z̃ · w̃ + o(1),

where o(1) → 0 as ρ → 0. In particular, (4.9) and (4.10) hold with any positive constants
δ0, η0 provided ρ is small enough.

Furthermore, by the second order differentiability of ũ at 0 it follows that the mul-
tivalued map z̃ 	→ ∂−ū(z̃) is differentiable at 0 (see [37, Theorem 14.25]) with gradient
equal to the identity matrix (see (3.3)), hence

∂−uρ(z̃) ⊂ Bγρ
(z̃) ∀z̃ ∈ B2,

where γρ → 0 as ρ → 0. Since ∂cρ uρ ⊂ cρ-exp(∂−uρ) (by (2.6)) and ‖cρ-exp − Id‖∞ =
o(1) (by (3.8)), we get

(3.9) ∂cρ uρ(z̃) ⊂ Bδρ
(z̃) ∀z̃ ∈ B3,

with δρ = o(1) as ρ → 0. Moreover, the cρ-conjugate of uρ is easily seen to be

ucρ
ρ (w̃) = ūc̄

(
ρ
(
M∗)−1

P1/2w̃
)
.

Since uc is twice differentiable at 0, so is u
cρ
ρ . In addition, an easy computation2 shows that

D2u
cρ
ρ (0) = Id. Hence, arguing as above we obtain that

(3.10) ∂c∗ρ ucρ
ρ (w̃) ⊂ Bδ′

ρ
(w̃) ∀w̃ ∈ B3,

with δ′
ρ = o(1) as ρ → 0.
We now define

C1 := B1, C2 := ∂cρ uρ(C1).

2 For instance, this follows by differentiating both relations

Dz̃cρ
(
z̃,Tuρ (z̃)

) = −∇uρ(z̃) and Dw̃cρ
(
T

u
cρ
ρ

(w̃), w̃
) = −∇u

cρ
ρ (w̃)

at 0, and using then (3.5) and the fact that ∇T
u
cρ
ρ

(0) = [∇Tuρ (0)]−1 and D2uρ(0) = Id.
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Observe that both C1 and C2 are closed (since the c-subdifferential of a compact set is
closed). Also, thanks to (3.9), by choosing ρ small enough we can ensure that B1/3 ⊂
C2 ⊂ B3. Finally, it follows from (2.6) that

(Tuρ
)−1(C2) \ C1 ⊂ (Tuρ

)−1
({

points of non-differentiability of ucρ
ρ

})
,

and since this latter set has measure zero, a simple computation shows that

(Tuρ
)�( fρ1C1) = gρ1C2 .

Thus, thanks to (4.8), we get that for any β < 1 the assumptions of Theo-
rem 4.3 are satisfied, provided we choose ρ sufficiently small. Moreover, if in addition
c ∈ Ck+2,α

loc (X × Y), f ∈ Ck,α
loc (X), and g ∈ Ck,α

loc (Y), then also the assumptions of Theo-
rem 5.3 are satisfied.

Hence, by applying Theorem 4.3 (resp. Theorem 5.3) we deduce that uρ ∈
C1,β(B1/7) (resp. uρ ∈ Ck+2,α(B1/9)), so going back to the original variables we get the
existence of a neighborhood Ux̄ of x̄ such that u ∈ C1,β(Ux̄) (resp. u ∈ Ck+2,α(Ux̄)). This
implies in particular that Tu ∈ C0,β(Ux̄) (resp. Tu ∈ Ck+1,α(Ux̄)). Moreover, it follows by
Corollary 4.6 that Tu(Ux̄) contains a neighborhood of ȳ.

We now observe that, by symmetry, we can also apply Theorem 4.3 (resp. Theo-
rem 5.3) to u

cρ
ρ . Hence, there exists a neighborhood Vȳ of ȳ such that Tuc ∈ C0,β(Vȳ). Since

Tu and Tuc are inverse to each other (see (3.2)) we deduce that, possibly reducing the size
of Ux̄, Tu is a homeomorphism (resp. diffeomorphism) between Ux̄ and Tu(Ux̄). Let us
consider the open sets

X′′ :=
⋃

x̄∈X′
Ux̄, Y′′ :=

⋃

x̄∈X′
Tu(Ux̄),

and define the (relatively) closed ΣX := X \ X′′, ΣY := Y \ Y′′. Since X′′ ⊃ X′, X′′ is a set
of full measure, so |ΣX| = 0. In addition, since ΣY = Y \ Y′′ ⊂ Y \ Tu(X′) and Tu(X′)
has full measure in Y, we also get that |ΣY| = 0.

Finally, since Tu : X \ ΣX → Y \ ΣY is a local homeomorphism (resp. diffeomor-
phism), by (3.2) it follows that Tu : X \ ΣX → Y \ ΣY is a global homeomorphism (resp.
diffeomorphism), which concludes the proof. �

Proof of Theorem 1.4. — The only difference with respect to the situation in The-
orem 1.3 is that now the cost function c = d2/2 is not smooth on the whole M × M.
However, even if d2/2 is not everywhere smooth and M is not necessarily compact, it
is still true that the c-convex function u provided by Theorem 2.3 is locally semiconvex
(i.e., it is locally semiconvex when seen in any chart) [13, 17]. In addition, as shown
in [9, Proposition 4.1] (see also [14, Section 3]), if u is twice differentiable at x, then
the point Tu(x) is not in the cut-locus of x. Since the cut-locus is closed and d2/2 is
smooth outside the cut-locus, we deduce the existence of a set X of full measure such
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that, if x0 ∈ X, then: (1) u is twice differentiable at x0; (2) there exists a neighborhood
Ux0 ×VTu(x0) ⊂ M × M of (x0,Tu(x0)) such that c ∈ C∞(Ux0 ×VTu(x0)). Hence, by taking a
local chart around (x0,Tu(x0)), the same proof as the one of Theorem 1.3 shows that Tu

is a local homeomorphism (resp. diffeomorphism) around almost every point. Using as
before that Tu : M → M is invertible a.e., it follows that Tu is a global homeomorphism
(resp. diffeomorphism) outside a closed singular set of measure zero. We leave the details
to the interested reader. �

4. C1,β regularity and strict c-convexity

In this and the next section we prove that, if in some open set a c-convex function
u is sufficiently close to a parabola and the cost function is close to the linear one, then u

is smooth in some smaller set.
The idea of the proof (which is reminiscent of the argument introduced by Caf-

farelli in [6] to show W2,p and C2,α estimates for the classical Monge-Ampère equation,
though several additional complications arise in our case) is the following: since the cost
function is close to the linear one and both densities are almost constant, u is close to
a convex function v solving an optimal transport problem with linear cost and constant
densities (Lemma 4.1). In addition, since u is close to a parabola, so is v. Hence, by [18]
and Caffarelli’s regularity theory, v is smooth, and we can use this information to deduce
that u is even closer to a second parabola (given by the second order Taylor expansion
of v at the origin) inside a small neighborhood around of origin. By rescaling back this
neighborhood at scale 1 and iterating this construction, we obtain that u is C1,β at the
origin for some β ∈ (0,1). Since this argument can be applied at every point in a neigh-
borhood of the origin, we deduce that u is C1,β there, see Theorem 4.3. (A similar strategy
has also been used in [7] to show regularity optimal transport maps for the cost |x − y|p,
either when p is close to 2 or when X and Y are sufficiently far from each other.)

Once this result is proved, we know that ∂−u is a singleton at every point, so it
follows from (2.6) that

∂cu(x) = c-expx

(
∂−u(x)

)
,

see Remark 4.4 below. (The above identity is exactly what in general may fail for general
c-convex functions, unless the MTW condition holds [31].) Thanks to this fact, we obtain
that u enjoys a comparison principle (Proposition 5.2), and this allows us to use a second
approximation argument with solutions of the classical Monge-Ampère equation (in the
spirit of [6, 27]) to conclude that u is C2,σ ′

in a smaller neighborhood, for some σ ′ > 0.
Then higher regularity follows from standard elliptic estimates, see Theorem 5.3.

Lemma 4.1. — Let C1 and C2 be two closed sets such that

(4.1) B1/K ⊂ C1, C2 ⊂ BK
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for some K ≥ 1, f and g two densities supported respectively in C1 and C2, and u : C1 → R a c-

convex function such that ∂cu(C1) ⊂ BK and (Tu)� f = g. Let ρ > 0 be such that |C1| = |ρ C2|
(where ρ C2 denotes the dilation of C2 with respect to the origin), and let v be a convex function such that

∇v�1C1 = 1ρC2 and v(0) = u(0). Then there exists an increasing function ω : R+ → R+, depending

only K, and satisfying ω(δ) ≥ δ and ω(0+) = 0, such that, if

(4.2) ‖f − 1C1‖∞ + ‖g − 1C2‖∞ ≤ δ

and

(4.3)
∥∥c(x, y) + x · y

∥∥
C2(BK×BK)

≤ δ,

then

‖u − v‖C0(B1/K) ≤ ω(δ).

Proof. — Assume the lemma is false. Then there exists ε0 > 0, a sequence of closed
sets Ch

1, Ch
2 satisfying (4.1), functions fh, gh satisfying (4.2) with δ = 1/h, and costs ch con-

verging in C2 to −x · y, such that

uh(0) = vh(0) = 0 and ‖uh − vh‖C0(B1/K) ≥ ε0,

where uh and vh are as in the statement. First, we extend uh an vh to BK as

uh(x) := sup
z∈Ch

1, y∈∂ch
uh(z)

{
uh(z) − ch(x, y) + ch(z, y)

}
,

vh(x) := sup
z∈Ch

1, p∈∂−vh(z)

{
vh(z) + p · (x − z)

}
.

Notice that, since by assumption ∂ch
uh(Ch

1) ⊂ BK, we have ∂ch
uh(BK) ⊂ BK. Also,

(Tuh
)� fh = gh gives that

∫
fh = ∫

gh, so it follows from (4.2) that

ρh = (∣∣Ch
1

∣∣/
∣∣Ch

2

∣∣)1/n → 1 as h → ∞,

which implies that ∂−vh(BK) ⊂ BρhK ⊂ B2K for h large. Thus, since the C1-norm of ch is
uniformly bounded, we deduce that both uh and vh are uniformly Lipschitz. Recalling
that uh(0) = vh(0) = 0, we get that, up to a subsequence, uh and vh uniformly converge
inside BK to u∞ and v∞ respectively, where

(4.4) u∞(0) = v∞(0) = 0 and ‖u∞ − v∞‖C0(B1/K) ≥ ε0.

In addition fh (resp. gh) weak-∗ converge in L∞ to some density f∞ (resp. g∞) supported
in BK. Also, since ρh → 1, using (4.2) we get that 1Ch

1
(resp. 1ρhCh

2
) weak-∗ converges in L∞
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to f∞ (resp. g∞). Finally we remark that, because of (4.2) and the fact that Ch
1 ⊃ B1/K, we

also have

f∞ ≥ 1B1/K .

In order to get a contradiction we have to show that u∞ = v∞ in B1/K. To see this,
we apply [37, Theorem 5.20] to deduce that both ∇u∞ and ∇v∞ are optimal transport
maps for the linear cost −x · y sending f∞ onto g∞. By uniqueness of the optimal map
(see Theorem 2.2) we deduce that ∇v∞ = ∇u∞ almost everywhere inside B1/K ⊂ spt f∞,
hence u∞ = v∞ in B1/K (since u∞(0) = v∞(0) = 0), contradicting (4.4). �

Here and in the sequel, we use Nr(E) to denote the r-neighborhood of a set E.

Lemma 4.2. — Let u and v be, respectively, c-convex and convex, let D ∈ Rn×n be a symmetric

matrix satisfying

(4.5) Id/K ≤ D ≤ K Id

for some K ≥ 1, and define the ellipsoid

E(x0, h) := {
x : D(x − x0) · (x − x0) ≤ h

}
, h > 0.

Assume that there exist small positive constants ε, δ such that

(4.6) ‖v − u‖C0(E(x0,h)) ≤ ε, ‖c + x · y‖C2(E(x0,h)×∂cu(E(x0,h)) ≤ δ.

Then

(4.7) ∂cu
(
E(x0, h − √

ε)
) ⊂NK′(δ+√

hε)

(
∂v

(
E(x0, h)

)) ∀0 < ε < h2 ≤ 1,

where K′ depends only on K.

Proof. — Up to a change of coordinates we can assume that x0 = 0, and to simplify
notation we set Eh := E(x0, h). Let us define

v̄(x) := v(x) + ε + 2
√

ε(Dx · x − h),

so that v̄ ≥ u outside Eh, and v̄ ≤ u inside Eh−√
ε. Then, taking a c-support to u in Eh−√

ε

(i.e., a function Cx,y as in (2.3), with x ∈ Eh−√
ε and y ∈ ∂cu(x)), moving it down and then

lifting it up until it touches v̄ from below, we see that it has to touch the graph of v̄ at
some point x̄ ∈ Eh: in other words3

∂cu(Eh−√
ε) ⊂ ∂cv̄(Eh).

3 Even if v̄ is not c-convex, it still makes sense to consider his c-subdifferential (notice that the c-subdifferential of v̄
may be empty at some points). In particular, the inclusion ∂cv̄(x) ⊂ c-expx(∂

−v̄(x)) still holds.
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By (4.5) we see that diam Eh ≤ 2
√

Kh, so by a simple computation (using again (4.5)) we
get

∂−v̄(Eh) ⊂N4K
√

Khε

(
∂−v(Eh)

)
.

Thus, since ∂cv̄(Eh) ⊂ c-exp(∂−v̄(Eh)) (by (2.6)) and ‖c-exp − Id‖C0 ≤ δ (by (4.6)), we
easily deduce that

∂cu(Eh−√
ε) ⊂NK′(δ+√

hε)

(
∂−v(Eh)

)
,

proving (4.7). �

Theorem 4.3. — Let C1 and C2 be two closed sets satisfying

B1/3 ⊂ C1, C2 ⊂ B3,

let f , g be two densities supported in C1 and C2 respectively, and let u : C1 → R be a c-convex function

such that ∂cu(C1) ⊂ B3 and (Tu)�f = g. Then, for every β ∈ (0,1) there exist constants δ0, η0 > 0
such that the following holds: if

(4.8) ‖f − 1C1‖∞ + ‖g − 1C2‖∞ ≤ δ0,

(4.9)
∥∥c(x, y) + x · y

∥∥
C2(B3×B3)

≤ δ0,

and

(4.10)

∥∥∥∥u − 1
2
|x|2

∥∥∥∥
C0(B3)

≤ η0,

then u ∈ C1,β(B1/7).

Proof. — We divide the proof into several steps.

• Step 1: u is close to a strictly convex solution of the Monge Ampère equation.

Let v : Rn → R be a convex function such that ∇v�1C1 = 1ρC2 with ρ = (|C1|/|C2|)1/n (see
Theorem 2.2). Up to adding a constant to v, without loss of generality we can assume
that v(0) = u(0). Hence, we can apply Lemma 4.1 to obtain

(4.11) ‖v − u‖C0(B1/3) ≤ ω(δ0)

for some (universal) modulus of continuity ω : R+ → R+, which combined with (4.10)
gives

∥∥∥∥v − 1
2
|x|2

∥∥∥∥
C0(B1/3)

≤ η0 + ω(δ0).
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Also, since
∫
C1

f = ∫
C2

g, it follows easily from (4.8) that |ρ − 1| ≤ 3δ0. By these two facts
we get that ∂−v(B1/4) ⊂ B7/24 ⊂ ρC2 provided δ0 and η0 are small enough (recall that v

is convex and that B1/3 ⊂ C2), so we can apply [18, Proposition 3.4] to deduce that v is a
strictly convex Alexandrov solution to the Monge-Ampère equation

(4.12) det D2v = 1 in B1/4.

In addition, by a simple compactness argument, we see that the modulus of strict con-
vexity of v inside B1/4 is universal. So, by classical Pogorelov and Schauder estimates, we
obtain the existence of a universal constant K0 ≥ 1 such that

(4.13) ‖v‖C3(B1/5) ≤ K0, Id/K0 ≤ D2v ≤ K0 Id in B1/5.

In particular, there exists a universal value h̄ > 0 such that, for all x ∈ B1/7,

Q(x, v, h) := {
z : v(z) ≤ v(x) + ∇v(x) · (z − x) + h

}
� B1/6 ∀h ≤ h̄.

• Step 2: Sections of u are close to sections of v.

Given x ∈ B1/7 and y ∈ ∂cu(x), we define

S(x, y, u, h) := {
z : u(z) ≤ u(x) − c(z, y) + c(x, y) + h

}
.

We claim that, if δ0 is small enough, then for all x ∈ B1/7, y ∈ ∂cu(x), and h ≤ h̄/2, it holds

(4.14) Q
(
x, v, h − K1

√
ω(δ0)

) ⊂ S(x, y, u, h) ⊂ Q
(
x, v, h + K1

√
ω(δ0)

)
,

where K1 > 0 is a universal constant.
Let us show the first inclusion. For this, take x ∈ B1/7, y ∈ ∂cu(x), and define

px := −Dxc(x, y) ∈ ∂−u(x).

Since v has universal C2 bounds (see (4.13)) and u is semi-convex (with a universal
bound), a simple interpolation argument gives

(4.15)
∣∣px − ∇v(x)

∣∣ ≤ K′
√

‖u − v‖C0(B1/5) ≤ K′√ω(δ0) ∀x ∈ B1/7.

In addition, by (4.9),

(4.16) |y − px| ≤ ‖Dxc + Id‖C0(B3×B3) ≤ δ0,

hence

(4.17)
∣∣z · px + c(z, y)

∣∣ ≤ |z · px − z · y| + ∣∣z · y + c(z, y)
∣∣ ≤ 2δ0 ∀x, z ∈ B1/7.
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Thus, if z ∈ Q(x, v, h − K1
√

ω(δ0)), by (4.11), (4.15), and (4.17) we get

u(z) ≤ v(z) + ω(δ0) ≤ v(x) + ∇v(x) · (z − x) + h − K1

√
ω(δ0) + ω(δ0)

≤ u(x) + px · z − px · x + h − K1

√
ω(δ0) + 2ω(δ0) + 2K′√ω(δ0)

≤ u(x) − c(z, y) + c(x, y) + h − K1

√
ω(δ0) + 2ω(δ0)

+ 2K′√ω(δ0) + 4δ0

≤ u(x) − c(z, y) + c(x, y) + h,

provided K1 > 0 is sufficiently large. This proves the first inclusion, and the second is
analogous.

• Step 3: Both the sections of u and their images are close to ellipsoids with controlled eccentricity,

and u is close to a smooth function near x0.

We claim that there exists a universal constant K2 ≥ 1 such that the following holds: For
every η0 > 0 small, there exist small positive constants h0 = h0(η0) and δ0 = δ0(h0, η0)

such that, for all x0 ∈ B1/7, there is a symmetric matrix A satisfying

(4.18) Id/K2 ≤ A ≤ K2 Id, det(A) = 1,

and such that, for all y0 ∈ ∂cu(x0),

(4.19)
A

(
B√

h0/8(x0)
) ⊂ S(x0, y0, u, h0) ⊂ A

(
B√

8h0(x0)
)
,

A−1
(
B√

h0/8(y0)
) ⊂ ∂cu

(
S(x0, y0, u, h0)

) ⊂ A−1
(
B√

8h0(y0)
)
.

Moreover

(4.20)

∥∥∥∥u − Cx0,y0 − 1
2

∣∣A−1(x − x0)
∣∣2

∥∥∥∥
C0(A(B√

8h0
(x0)))

≤ η0h0,

where Cx0y0 is a c-support function for u at x0, see (2.3).
In order to prove the claim, take h0 � h̄ small (to be fixed) and δ0 � h0 such that

K1
√

ω(δ0) ≤ h0/2, where K1 is as in Step 2, so that

(4.21) Q(x0, v, h0/2) ⊂ S(x0, y0, u, h0) ⊂ Q(x0, v,3h0/2) � B1/6.

By (4.13) and Taylor formula we get

(4.22) v(x) = v(x0)+∇v(x0) · (x − x0)+ 1
2

D2v(x0)(x − x0) · (x − x0)+ O
(|x − x0|3

)
,

so that defining

(4.23) E(x0, h0) :=
{

x : 1
2

D2v(x0)(x − x0) · (x − x0) ≤ h0

}
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and using (4.13), we deduce that, for every h0 universally small,

(4.24) E(x0, h0/2) ⊂ Q(x0, v, h0) ⊂ E(x0,2h0).

Moreover, always for h0 small, thanks to (4.22) and the uniform convexity of v

(4.25) ∇v
(
E(x0, h0)

) ⊂ E∗(∇v(x0),2h0

) ⊂ ∇v
(
E(x0,3h0)

)

where we have set

E∗(ȳ, h0) :=
{

y : 1
2

[
D2v(ȳ)

]−1
(y − ȳ) · (y − ȳ) ≤ h0

}
.

By Lemma 4.2, (4.24), and (4.25) applied with 3h0 in place of h0, we deduce that for
δ0 � h0 � h̄

(4.26) ∂cu
(
S(x0, y0, u, h0)

) ⊂NK′′√ω(δ0)

(∇v
(
E(x0,3h0)

)) ⊂ E∗(∇v(x0),7h0

)
.

Moreover, by (4.15), if y0 ∈ ∂cu(x0) and we set px0 := −Dxc(x0, y0), then
∣∣y0 − ∇v(x0)

∣∣ ≤ ∣∣px0 − ∇v(x0)
∣∣ + ‖Dxc + Id‖C0(B3×B3) ≤ K′√ω(δ0) + δ0.

Thus, choosing δ0 sufficiently small, it holds

(4.27) E∗(∇v(x0),7h0

) ⊂ E∗(y0,8h0) ∀y0 ∈ ∂cu(x0).

We now want to show that

E∗(y0, h0/8) ⊂ ∂cu
(
S(x0, y0, u, h0)

) ∀y0 ∈ ∂cu(x0).

Observe that, arguing as above, we get

(4.28) E∗(y0, h0/8) ⊂ E∗(∇v(x0), h0/7
) ∀y0 ∈ ∂cu(x0)

provided δ0 is small enough, so it is enough to prove that

E∗(∇v(x0), h0/7
) ⊂ ∂cu

(
S(x0, y0, u, h0)

)
.

For this, let us define the c∗-convex function uc : B3 → R and the convex function
v∗ : B3 → R as

uc(y) := sup
x∈B1/5

{−c(x, y) − u(x)
}
, v∗(y) := sup

x∈B1/5

{
x · y − v(x)

}

(see (3.1)). Then it is immediate to check that

(4.29)
∣∣uc − v∗∣∣ ≤ ω(δ0) + δ0 ≤ 2ω(δ0) on B3.
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Also, in view of (4.13), v∗ is a uniformly convex function of class C3 on the open set
∇v(B1/5). In addition, since

(4.30) F ⊂ ∂cu
(
∂c∗u

c(F)
)

for any set F,

thanks to (4.21) and (4.24) it is enough to show

(4.31) ∂c∗u
c
(
E∗(∇v(x0), h0/7

)) ⊂ E(x0, h0/4).

For this, we apply Lemma 4.2 to uc and v∗ to infer

∂c∗u
c
(
E∗(∇v(x0), h0/7

)) ⊂NK′′′√ω(δ)

(∇v∗(E∗(∇v(x0), h0/7
)))

⊂ E(x0, h0/4),

where we used that

∇v∗ = [∇v]−1 and D2v∗(∇v(x0)
) = [

D2v(x0)
]−1

.

Thus, recalling (4.26), we have proved that there exist h0 universally small, and δ0 small
depending on h0, such that

(4.32) E∗(∇v(x0), h0/7
) ⊂ ∂cu

(
S(x0, y0, u, h0)

) ⊂ E∗(∇v(x0),7h0

) ∀x0 ∈ B1/7.

Using (4.21), (4.24), (4.27), and (4.28), this proves (4.19) with A := [D2v(x0)]−1/2. Also,
thanks to (4.12) and (4.13), (4.18) holds.

In order to prove the second part of the claim, we exploit (4.11), (4.9), (4.16),
(4.15), (4.22), and (4.18) (recall that Cx0,y0 is defined in (2.3) and that A = [D2v(x0)]−1/2):

∥∥∥∥u − Cx0,y0 − 1
2

∣∣A−1(x − x0)
∣∣2

∥∥∥∥
C0(E(x0,8h0))

=
∥∥∥∥u − Cx0,y0 − 1

2
D2v(x0)(x − x0) · (x − x0)

∥∥∥∥
C0(E(x0,8h0))

≤ 2‖u − v‖C0(E(x0,8h0)) + ∥∥c(x, y0) + x · y0

∥∥
C0(E(x0,8h0))

+ ∥∥c(x0, y0) + x0 · y0

∥∥
C0(E(x0,8h0))

+ ∥∥(y0 − px0) · (x − x0)
∥∥

C0(E(x0,8h0))

+ ∥∥(
px0 − ∇v(x0)

) · (x − x0)
∥∥

C0(E(x0,8h0))

+
∥∥∥∥v − v(x0) − ∇v(x0) · (x − x0)

− 1
2

D2v(x0)(x − x0) · (x − x0)

∥∥∥∥
C0(E(x0,8h0))

≤ 2ω(δ0) + 3δ0 + K′√ω(δ0) + K(K2

√
8h0)

3 ≤ η0h0,
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where the last inequality follows by choosing first h0 sufficiently small, and then δ0 much
smaller than h0.

• Step 4: A first change of variables.

Fix x0 ∈ B1/7, y0 ∈ ∂cu(x0), define M := −Dxyc(x0, y0), and consider the change of variables
{

x̄ := x − x0

ȳ := M−1(y − y0).

Notice that, by (4.9), it follows that

(4.33) |M − Id| + ∣∣M−1 − Id
∣∣ ≤ 3δ0

for δ0 sufficiently small. We also define

c̄(x̄, ȳ) := c(x, y) − c(x, y0) − c(x0, y) + c(x0, y0),

ū(x̄) := u(x) − u(x0) + c(x, y0) − c(x0, y0),

ūc̄(ȳ) := uc(y) − uc(y0) + c(x0, y) − c(x0, y0).

Then ū is c̄-convex, ūc̄ is c̄∗-convex (where c̄∗(ȳ, x̄) = c̄(x̄, ȳ)), and

(4.34) c̄(·,0) = c̄(0, ·) ≡ 0, Dx̄ȳc̄(0,0) = − Id .

We also notice that

(4.35) ∂c̄ ū(x̄) = M−1
(
∂cu(x̄ + x0) − y0

)
.

Thus, recalling (4.19), and using (4.33) and (4.35), for δ0 sufficiently small we obtain

(4.36)

A(B√
h0/9) ⊂ S(0,0, ū, h0) ⊂ A(B√

9h0),

A−1(B√
h0/9) ⊂ M−1A−1(B√

h0/8) ⊂ ∂c̄ ū
(
S(0,0, ū, h0)

) ⊂ M−1A−1(B√
8h0)

⊂ A−1(B√
9h0).

Since (Tu)� f = g, it follows that Tū = c̄-exp(∇ ū) satisfies

(Tū)� f̄ = ḡ, with f̄ (x̄) := f (x̄ + x0), ḡ(ȳ) := det(M) g(Mȳ + y0)

(see for instance the footnote in the proof of Theorem 1.3). Notice that, since |M − Id| ≤
δ0 (by (4.9)), we have |det(M) − 1| ≤ (1 + 2n)δ0 (for δ0 small), so by (4.8) we get

(4.37) ‖f̄ − 1C1−x0‖∞ + ‖ḡ − 1M−1(C2−y0)‖∞ ≤ 2(1 + n)δ0.
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• Step 5: A second change of variables and the iteration argument.

We now perform a second change of variable: we set

(4.38)

{
x̃ := 1√

h0
A−1x̄,

ỹ := 1√
h0

Aȳ,

and define

c1(x̃, ỹ) := 1
h0

c̄
(√

h0Ax̃,
√

h0A−1ỹ
)
,

u1(x̃) := 1
h0

ū
(√

h0Ax̃
)
,

u
c1
1 (ỹ) := 1

h0
ūc̄

(√
h0A−1ỹ

)
.

We also define

f1(x̃) := f̄
(√

h0Ax̃
)
, g1(ỹ) := ḡ

(√
h0A−1ỹ

)
.

Since det(A) = 1 (see (4.18)), it is easy to check that (Tu1)� f1 = g1 (see the footnote in the
proof of Theorem 1.3). Also, since (‖A‖ + ‖A−1‖)√h0 � 1, it follows from (4.37) that

(4.39) |f1 − 1| + |g1 − 1| ≤ 2(1 + n)δ0 inside B3.

Moreover, defining

C(1)

1 := S(0,0, u1,1), C(1)

2 := ∂c1u1

(
S(0,0, u1,1)

)
,

both C(1)

1 and C(1)

2 are closed, and thanks to (4.36)

(4.40) B1/3 ⊂ C(1)

1 , C(1)

2 ⊂ B3.

Also, since (Tu1)�f1 = g1, arguing as in the proof of Theorem 1.3 we get

(Tu1)�( f11C(1)
1

) = (g11C(1)
2

),

and by (4.39)

‖f11C(1)
1

− 1C(1)
1

‖∞ + ‖g11C(1)
2

− 1C(1)
2

‖∞ ≤ 2(1 + n)δ0.

Finally, by (4.34) and (4.20), it is easy to check that

∥∥c1(x̃, ỹ) + x̃ · ỹ
∥∥

C2(B3×B3)
≤ δ0,

∥∥∥∥u1 − 1
2
|x̃|2

∥∥∥∥
C0(B3)

≤ η0.



100 GUIDO DE PHILIPPIS, ALESSIO FIGALLI

This shows that u1 satisfies the same assumptions as u with δ0 replaced by 2(1 + n)δ0.
Hence, up to take δ0 slightly smaller, we can apply Step 3 to u1, and we find a symmetric
matrix A1 satisfying

Id/K2 ≤ A1 ≤ K2 Id, det(A1) = 1,

A1(B√
h0/8) ⊂ S(0,0, u1, h0) ⊂ A1(B√

8h0),

A−1
1 (B√

h0/8) ⊂ ∂c1u1

(
S(0,0, u1, h0)

) ⊂ A−1
1 (B√

8h0),
∥∥∥∥u1 − 1

2

∣∣A−1
1 x̃

∣∣2
∥∥∥∥

C0(A1(B(0,
√

8h0))

≤ η0h0.

(Here K2 and h0 are as in Step 3.)
This allows us to apply to u1 the very same construction as the one used above to

define u1 from ū: we set

c2(x̃, ỹ) := 1
h0

c1

(√
h0A1x̃,

√
h0A−1

1 ỹ
)
, u2(x̃) := 1

h0
u1

(√
h0A1x̃

)
,

so that (Tu2)� f2 = g2 with

f2(x̃) := f1
(√

h0A1x̃
)
, g2(ỹ) := ḡ

(√
h0A−1

1 ỹ
)
.

Arguing as before, it is easy to check that u2, c2, f2, g2 satisfy the same assumptions as u1,
c1, f1, g1 with exactly the same constants.

So we can keep iterating this construction, defining for any k ∈ N

ck+1(x̃, ỹ) := 1
h0

ck

(√
h0Ak x̃,

√
h0A−1

k ỹ
)
, uk+1(x̃) := 1

h0
uk

(√
h0Ak x̃

)
,

where Ak is the matrix constructed in the k-th iteration. In this way, if we set

Mk := Ak · . . . · A1, ∀k ≥ 1,

we obtain a sequence of symmetric matrices satisfying

(4.41) Id/Kk
2 ≤ Mk ≤ Kk

2 Id, det(Mk) = 1,

and such that

(4.42) Mk(B(h0/8)k/2) ⊂ S
(
0,0, uk, hk

0

) ⊂ Mk(B(8h0)k/2).

• Step 6: C1,β regularity.

We now show that, for any β ∈ (0,1), we can choose h0 and δ0 = δ0(h0) small enough
so that u1 is C1,β at the origin (here u1 is the function constructed in the previous step).
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This will imply that u is C1,β at x0 with universal bounds, which by the arbitrariness of
x0 ∈ B1/7 gives u ∈ C1,β(B1/7).

Fix β ∈ (0,1). Then by (4.41) and (4.42) we get

(4.43) B(
√

h0/(
√

8K2))k ⊂ S
(
0,0, u1, hk

0

) ⊂ B(K2
√

8h0)k ,

so defining r0 := √
h0/(

√
8K2) we obtain

‖u1‖C0(B
rk0

) ≤ hk
0 = (√

8K2r0

)2k ≤ r
(1+β)k

0 ,

provided h0 (and so r0) is sufficiently small. This implies the C1,β regularity of u1 at 0,
concluding the proof. �

Remark 4.4 (Local to global principle). — If u is differentiable at x and c satisfies (C0)–
(C1), then every “local support” at x is also a “global c-support” at x, that is, ∂cu(x) =
c-expx(∂

−u(x)). To see this, just notice that

∅ 
= ∂cu(x) ⊂ c-expx

(
∂−u(x)

) = {
c-expx

(∇u(x)
)}

(recall (2.6)), so necessarily the two sets have to coincide.

Corollary 4.5. — Let u be as in Theorem 4.3. Then u is strictly c-convex in B1/7. More

precisely, for every γ > 2 there exist η0, δ0 > 0 depending only on γ such that, if the hypotheses of

Theorem 4.3 are satisfied, then, for all x0 ∈ B1/7, y0 ∈ ∂cu(x0), and Cx0,y0 as in (2.3), we have

(4.44) inf
∂Br(x0)

{u − Cx0,y0} ≥ c0rγ ∀r ≤ dist(x0, ∂B1/7),

with c0 > 0 universal.

Proof. — With the same notation as in the proof of Theorem 4.3, it is enough to
show that

inf
∂Br

u1 ≥ r1/β,

where u1 is the function constructed in Step 5 of the proof of Theorem 4.3. Defining
�0 := K2

√
8h0, it follows from (4.43) that

inf
∂B

�k
0

u1 ≥ hk
0 = (

�0/
(√

8K2

))2k ≥ �
γ k

0 ,

provided h0 is small enough. �

A simple consequence of the above results is the following:

Corollary 4.6. — Let u be as in Theorem 4.3, then Tu(B1/7) is open.
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Proof. — Since u ∈ C1,β(B1/7) we have that Tu(B1/7) = ∂cu(B1/7) (see Remark 4.4).
We claim that it is enough to show that if y0 ∈ ∂cu(B1/7), then there exists ε = ε(y0) > 0
small such that, for all |y− y0| < ε, the function u(·)+ c(·, y) has a local minimum at some
point x̄ ∈ B1/7. Indeed, if this is the case, then

∇u(x̄) = −Dxc(x̄, y),

and so y ∈ ∂cu(x̄) (by Remark 4.4), hence Bε(y0) ⊂ Tu(B1/7).
To prove the above fact, fix r > 0 such that Br(x0) ⊂ B1/7, and pick x̄ a point in

Br(x0) where the function u(·) + c(·, y) attains its minimum, i.e.,

x̄ ∈ argmin
Br(x0)

{
u(x) + c(x, y)

}
.

Since, by (4.44),

min
x∈∂Br(x0)

{
u(x) + c(x, y)

} ≥ min
x∈∂Br(x0)

{
u(x) + c(x, y0)

} − ε‖c‖C1

≥ u(x0) + c(x0, y0) + c0rγ − ε‖c‖C1,

while

u(x0) + c(x0, y) ≤ c(x0, y0) + u(x0) + ε‖c‖C1,

choosing ε < c0
2‖c‖C1

rγ we obtain that x̄ ∈ Br(x0) ⊂ B1/7. This implies that x̄ is a local
minimum for u(·) + c(·, y), concluding the proof. �

5. Comparison principle and C2,α regularity

We begin this section with a change of variable formula for the c-exponential map.

Lemma 5.1. — Let Ω be an open set, v ∈ C2(Ω), and assume that ∇v(Ω) ⊂ Domc- exp
and that

D2v(x) + Dxxc
(
x, c- expx

(∇v(x)
)) ≥ 0 ∀x ∈ Ω.

Then, for every Borel set A ⊂ Ω ,

∣∣c- exp
(∇v(A)

)∣∣ ≤
∫

A

det(D2v(x) + Dxxc(x, c- expx(∇v(x))))

|det(Dxyc(x, c- expx(∇v(x))))| dx.

In addition, if the map x 	→ c- expx(∇v(x)) is injective, then equality holds.
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Proof. — The result follows from a direct application of the Area Formula [12,
Section 3.3.2, Theorem 1] once one notices that, differentiating the identity

∇v(x) = −Dxc
(
x, c-expx

(∇v(x)
))

(see (2.5)), the Jacobian determinant of the C1 map x 	→ c-expx(∇v(x)) is given precisely
by

det(D2v(x) + Dxxc(x, c-expx(∇v(x))))

|det(Dxyc(x, c-expx(∇v(x))))| . �

In the next proposition we show a comparison principle between C1 c-convex func-
tions and smooth solutions to the Monge-Ampère equation.4 As already mentioned at the
beginning of Section 4 (see also Remark 4.4), the C1 regularity of u is crucial to ensure
that the c-subdifferential coincides with its local counterpart c-exp(∂−u).

Here and in the sequel, we use co[E] to denote the convex hull of a set E. Also,
recall that Nr(E) denotes the r-neighborhood of E.

Proposition 5.2 (Comparison principle). — Let u be a c-convex function of class C1 inside the

set S := {u < 1}, and assume that u(0) = 0, B1/K ⊂ S ⊂ BK, and that ∇u(S) � Dom- exp. Let

f , g be two densities such that

(5.1) ‖f /λ1 − 1‖C0(S) + ‖g/λ2 − 1‖C0(Tu(S)) ≤ ε

for some constants λ1, λ2 ∈ (1/2,2) and ε ∈ (0,1/4), and assume that (Tu)� f = g. Furthermore,

suppose that

(5.2) ‖c + x · y‖C2(BK×BK) ≤ δ.

Then there exist a universal constant γ ∈ (0,1), and δ1 = δ1(K) > 0 small, such that the following

holds: Let v be the solution of

{
det(D2v) = λ1/λ2 in Nδγ (co[S]),
v = 1 on ∂(Nδγ (co[S])).

Then

(5.3) ‖u − v‖C0(S) ≤ CK

(
ε + δγ/n

)
provided δ ≤ δ1,

where CK is a constant independent of λ1, λ2, ε, and δ (but which depends on K).

4 A similar result for the case c(x, y) = |x − y|p appeared in [7, Theorem 6.2]. Here, however, we have to deal with
some additional difficulties due to the fact that the c-exponential map is not necessarily defined on the whole Rn.
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Proof. — First of all we observe that, since u(0) = 0, u = 1 on ∂S, S ⊂ BK, and
‖c + x · y‖C2(BK) ≤ δ � 1, it is easy to check that there exists a universal constant a1 > 0
such that

(5.4)
∣∣Dxc(x, y)

∣∣ ≥ a1 ∀x ∈ ∂S, y = c-expx

(∇u(x)
)
.

Thanks to (5.4) and (5.2), it follows from the Implicit Function Theorem that, for each
x ∈ ∂S, the boundary of the set

Ex := {
z ∈ BK : c(z, y) − c(x, y) + u(x) ≤ 1

}

is of class C2 inside BK, and its second fundamental form is bounded by CKδ, where
CK > 0 depends only on K. Hence, since S can be written as

S :=
⋂

x∈∂S

Ex,

it follows that

S is a (CKδ)-semiconvex set,

that is, for any couple of points x0, x1 ∈ S the ball centered at x1/2 := (x0 + x1)/2 of radius
CKδ|x1 − x0|2 intersects S. Since S ⊂ BK, this implies that co[S] ⊂ NC′

Kδ(S) for some
positive constant C′

K depending only on K. Thus, for any γ ∈ (0,1) we obtain

Nδγ

(
co[S]) ⊂N(1+C′

K)δγ (S).

Since v = 1 on ∂(Nδγ (co[S])) and λ1/λ2 ∈ (1/4,4), by standard interior estimates for
solution of the Monge-Ampère equation with constant right hand side (see for instance
[8, Lemma 1.1]), we obtain

osc
S

v ≤ C′′
K(5.5)

1 − C′′
Kδγ/n ≤ v < 1 on ∂S,(5.6)

D2v ≥ δγ/τ Id/C′′
K in co[S],(5.7)

for some τ > 0 universal, and some constant C′′
K depending only on K.

Let us define

v+ := (
1 + 4ε + 2

√
δ
)
v − 4ε − 2

√
δ,

v− := (
1 − 4ε − √

δ/2
)
v + 4ε + √

δ/2 + 2C′′
Kδγ/n.

Our goal is to show that we can choose γ universally small so that v− ≥ u ≥ v+ on S.
Indeed, if we can do so, then by (5.5) this will imply (5.3), concluding the proof.
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First of all notice that, thanks to (5.6), v− > u > v+ on ∂S. Let us show first that
v+ ≤ v.

Assume by contradiction this is not the case. Then, since u > v+ on ∂S,

∅ 
= Z := {
u < v+}

� S.

Since v+ is convex, taking any supporting plane to v+ at x ∈ Z, moving it down and then
lifting it up until it touches u from below, we deduce that

(5.8) ∇v+(Z) ⊂ ∇u(Z)

(recall that both u and v+ are of class C1), thus by Remark 4.4

(5.9)
∣∣c-exp

(∇v+(Z)
)∣∣ ≤ ∣∣Tu(Z)

∣∣.

We show that this is impossible. For this, using (5.7) and choosing γ := τ/4, for any x ∈ Z
we compute

D2v+(x) + Dxxc
(
x, c-expx

(∇v+(x)
))

≥ (
1 + √

δ + 4ε
)
D2v + √

δD2v − δ Id

≥ (
1 + √

δ + 4ε
)
D2v + (

δ3/4/C′′
K − δ

)
Id

≥ (
1 + √

δ + 4ε
)
D2v,

provided δ is sufficiently small, the smallness depending only on K. Thus, thanks (5.2)
we have

det(D2v+(x) + Dxxc(x, c-expx(∇v+(x))))

|det(Dxyc(x, c-expx(∇v+(x))))| ≥ det((1 + √
δ + 4ε)D2v)

1 + δ

≥ (
1 + √

δ + 4ε
)n

(1 − 2δ)
λ1

λ2

≥ (1 + 4nε)
λ1

λ2
.

In addition, thanks (5.7) and (5.2), since δγ/τ = δ1/4 � δ we see that

D2v+ > ‖Dxxc‖C0(BK×BK) Id inside co[S].
Hence, for any x, z ∈ Z, x 
= z and y = c-expx(∇v+(x)) (notice that c-expx(∇v+(x)) is
well-defined because of (5.8) and the assumption ∇u(S)� Domc-exp), it follows

v+(z) + c(z, y) ≥ v+(x) + c(x, y) + 1
2

∫ 1

0

(
D2v+(

tz + (1 − t)x
)

+ Dxxc
(
tz + (1 − t)x, y

))[z − x, z − x] dt

> v+(x) + c(x, y),
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where we used that ∇v+(x) + Dxc(x, y) = 0. This means that the supporting function
z 	→ −c(z, y) + c(x, y) + v+(x) can only touch v+ from below at x, which implies that the
map Z � x 	→ c-expx(∇v+(x)) is injective. Thus, by Lemma 5.1 we get

(5.10)
∣∣c-exp

(∇v+(Z)
)∣∣ ≥ (1 + 4nε)

λ1

λ2
|Z|.

On the other hand, since u is C1, it follows from (Tu)� f = g and (5.1) that

∣∣Tu(Z)
∣∣ =

∫

Z

f (x)

g(Tu(x))
dx ≤ λ1(1 + ε)

λ2(1 − ε)
|Z| ≤ (1 + 3ε)

λ1

λ2
|Z|.

This estimate combined with (5.10) shows that (5.9) is impossible unless Z is empty. This
proves that v+ ≤ u.

The proof of the inequality v− ≤ u follows by the same argument except for a mi-
nor modification. More precisely, let us assume by contradiction that W := {u > v−}
is nonempty. In order to apply the previous argument we would need to know that
∇v−(W) ⊂ Domc-exp. However, since the gradient of v can be very large near ∂S, this
may be a problem.

To circumvent this issue we argue as follows: since W is nonempty, there exists a
positive constant μ̄ such that u touches v− + μ̄ from below inside S. Let E be the contact
set, i.e., E := {u = v− + μ̄}. Since both u and v− are C1, ∇u = ∇v− on E. Thus, if η > 0
is small enough, then the set Wη := {u > v− + μ̄ − η} is nonempty and ∇v−(Wη) is con-
tained in a small neighborhood of ∇u(Wη), which is compactly contained in Domc-exp.
At this point, one argues exactly as in the first part of the proof, with Wη in place of Z, to
find a contradiction. �

Theorem 5.3. — Let u, f , g, η0, δ0 be as in Theorem 4.3, and assume in addition that c ∈
Ck,α(B3 × B3) and f , g ∈ Ck,α(B1/3) for some k ≥ 0 and α ∈ (0,1). There exist small constants

η1 ≤ η0 and δ1 ≤ δ0 such that, if

(5.11) ‖f − 1C1‖∞ + ‖g − 1C2‖∞ ≤ δ1,

(5.12)
∥∥c(x, y) + x · y

∥∥
C2(B3×B3)

≤ δ1,

and

(5.13)

∥∥∥∥u − 1
2
|x|2

∥∥∥∥
C0(B3)

≤ η1,

then u ∈ Ck+2,α(B1/9).

Proof. — We divide the proof in two steps.

• Step 1: C1,1 regularity.
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Fix a point x0 ∈ B1/8, and set y0 := c-expx0
(∇u(x0)). Up to replace u (resp. c) with the

function u1 (resp. c1) constructed in Steps 4 and 5 in the proof of Theorem 4.3, we can
assume that u ≥ 0, u(0) = 0, that

Sh := S(0,0, u, h) = {u ≤ h},
and that

(5.14) Dxyc(0,0) = − Id .

Under these assumptions we will show that the sections of u are of “good shape”, i.e.,

(5.15) B√
h/K ⊂ Sh ⊂ BK

√
h ∀h ≤ h1,

for some universal h1 and K. Arguing as in Step 6 of Theorem 4.3, this will give that u is
C1,1 at the origin, and thus at every point in B1/8.

First of all notice that, thanks to (5.13), for any h1 > 0 we can choose η1 = η1(h1) >

0 small enough such that (5.15) holds for Sh1 with K = 2. Hence, assuming without loss
of generality that δ1 ≤ 1, we see that

B√
h1/3 ⊂Nδ

γ
1
√

h1

(
co[Sh1]

) ⊂ B3
√

h1,

where γ is the exponent from Proposition 5.2. Let v1 solve the Monge-Ampère equation
{

det(D2v1) = f (0)/g(0) in Nδ
γ
1
√

h1
(co[Sh1]),

v1 = h1 on ∂Nδ
γ
1
√

h1
(co[Sh1]).

Since B1/3 ⊂ Nδ
γ
1
√

h1
(co[Sh1])/

√
h1 ⊂ B3, by standard Pogorelov estimates applied to the

function v1(
√

h1x)/h1 (see for instance [26, Theorem 4.2.1]), it follows that |D2v1(0)| ≤
M, with M > 0 some large universal constant.

Let hk := h12−k and define K̄ ≥ 3 to be the largest number such that any solution
w of

(5.16)

{
det(D2w) = f (0)/g(0) in Z,

w = 1 on ∂Z,
with B1/K̄ ⊂ Z ⊂ BK̄,

satisfies |D2w(0)| ≤ M + 1.5 We prove by induction that (5.15) holds with K = K̄.

5 The fact that K̄ is well defined (i.e., 3 ≤ K̄ < ∞) follows by the following facts: first of all, by definition, M is
an a-priori bound for |D2w(0)| whenever w is a solution of (5.16) with B1/3 ⊂ Z ⊂ B3, so K̄ ≥ 3. On the other hand
K̄ ≤ √

2(M + 1). Indeed, since 1/2 ≤ f (0)/g(0) ≤ 2 (by (5.11)) and M ≥ 1, the function

w̄ := (M + 1)x2
1 + f (0)

g(0)

x2
2

M + 1
+ x2

3 + · · · + x2
n

is a solution of (5.16) such that B1/
√

2(M+1) ⊂ B1/
√

M+1 ⊂ {w̄ ≤ 1} ⊂ B√
2(M+1) and |D2w̄(0)| = 2(M + 1).
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If h = h1 then we already know that (5.15) holds with K = 2 (and so with K = K̄).
Assume now that (5.15) holds with h = hk and K = K̄, and we want to show that

it holds with h = hk+1. For this, for any k ∈ N we consider uk the solution of
{

det(D2vk) = f (0)/g(0) in Nδ
γ
k

√
hk
(co[Shk

]),
vk = h12−k on ∂Nδ

γ
k

√
hk
(co[Shk

]),
where

δk := ∥∥c(x, y) + x · y
∥∥

C2(Shk
×Tu(Shk

))
≤ δ1.

Let us consider the rescaled functions

ūk(x) := u
(√

hkx
)
/hk, v̄k(x) := vk

(√
hkx

)
/hk.

Since by the inductive hypothesis B1/K̄ ⊂ S̄k := {ūk ≤ 1} ⊂ BK̄, we can apply Proposi-
tion 5.2 to deduce that

(5.17) ‖ūk − v̄k‖C0(S̄k)
≤ CK̄

(
osc
Shk

f + osc
Tu(Shk

)
g + δ

γ/n

k

)
≤ CK̄

(
δ1 + δ

γ/n

1

)
.

This implies in particular that, if δ1 is sufficiently small, B1/(2K̄) ⊂ {v̄k ≤ 1} ⊂ B2K̄. By
standard estimates on the sections of solutions to the Monge-Ampère equation, the shapes
of {v̄k ≤ 1} and {v̄k ≤ 1/2} are comparable, and in addition sections are well included into
each other [26, Theorem 3.3.8]: there exists a universal constant L > 1 such that

B1/(LK̄) ⊂ {v̄k ≤ 1/2} ⊂ BLK̄,

dist
({v̄k ≤ 1/4}, ∂{v̄k ≤ 1/2}) ≥ 1/(LK).

Using again (5.17) we deduce that, if δ1 is sufficiently small,

B1/(2LK̄) ⊂ {ūk ≤ 1/2} ⊂ B2LK̄,

dist
({ūk ≤ 1/4}, ∂{ūk ≤ 1/2}) ≥ 1/(2LK)

so, by scaling back,

(5.18) B√
hk+1/(2LK̄)

⊂ Shk+1 ⊂ B2LK̄
√

hk+1
, dist(Shk+2, ∂Shk+1) ≥ √

hk/(2LK).

This allows us to apply Proposition 5.2 also to ūk+1 to get

(5.19) ‖ūk+1 − v̄k+1‖C0(S̄k+1)
≤ C2LK̄

(
osc
Shk+1

f + osc
Tu(Shk+1 )

g + δ
γ/n

k+1

)
.
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We now observe that, by (5.15) and the C1,β regularity of u (see Theorem 4.3), it follows
that

diam(Shk
) + diam

(
Tu(Shk

)
) ≤ Ch

β/2
k ,

so by the C0,α regularity of f and g, and the C2,α regularity of c, we have (recall that
γ < 1)

(5.20) osc
Shk

f + osc
Tu(Shk

)
g + δ

γ/n

k ≤ C′hσ
k , σ := αβγ

2n
.

Hence, by (5.17) and (5.19),

‖ūk − v̄k‖C0(S̄k)
+ ‖ūk+1 − v̄k+1‖C0(S̄k+1)

≤ C(CK̄ + C2LK̄)hσ
k ,

from which we deduce (recall that hk = 2hk+1)

‖vk − vk+1‖C0(Shk+1 ) ≤ ‖vk − u‖C0(Shk
) + ‖u − vk+1‖C0(Shk+1 )

= hk‖ūk − v̄k‖C0(Sk) + hk+1‖ūk+1 − v̄k+1‖C0(Sk+1)

≤ C(CK̄ + C2LK̄)h1+σ
k .

Since vk and vk+1 are two strictly convex solutions of the Monge Ampère equation with
constant right hand side inside Shk+1 , and since Shk+2 is “well contained” inside Shk+1 , by
classical Pogorelov and Schauder estimates we get

∥∥D2vk − D2vk+1

∥∥
C0(Shk+2 )

≤ C′
K̄hσ

k ,(5.21)
∥∥D3vk − D3vk+1

∥∥
C0(Shk+2 )

≤ C′
K̄h

σ−1/2
k ,(5.22)

where C′
K̄

is some constant depending only on K̄. By (5.21) applied to vj for all j =
1, . . . , k (this can be done since, by the inductive assumption, (5.15) holds for h = hj with
j = 1, . . . , k) we obtain

∣∣D2vk+1(0)
∣∣ ≤ ∣∣D2v1(0)

∣∣ +
k∑

j=1

∣∣D2vj(0) − D2vj+1(0)
∣∣

≤ M + C′
K̄hσ

1

k∑

j=0

2−jσ

≤ M + C′
K̄

1 − 2−σ
hσ

1 ≤ M + 1,

provided we choose h1 small enough (recall that hk = h12−k ). By the definition of K̄ it
follows that also Shk+1 satisfies (5.15), concluding the proof of the inductive step.
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• Step 2: higher regularity.

Now that we know that u ∈ C1,1(B1/8), Equation (2.10) becomes uniformly elliptic. So
one may use Evans-Krylov Theorem to obtain that u ∈ C2,σ ′

loc (B1/9) for some σ ′ > 0, and
then standard Schauder estimates to conclude the proof. However, for the convenience
of the reader, we show here how to give a simple direct proof of the C2,σ ′

regularity of u

with σ ′ = 2σ .
As in the previous step, it suffices to show that u is C2,σ ′

at the origin, and for this
we have to prove that there exists a sequence of paraboloids Pk such that

(5.23) sup
B

rk0/C

|u − Pk| ≤ Cr
k(2+σ ′)
0

for some r0,C > 0.
Let vk be as in the previous step, and let Pk be their second order Taylor expansion

at 0:

Pk(x) = vk(0) + ∇vk(0) · x + 1
2

D2vk(0)x · x.

We observe that, thanks to (5.15),

(5.24) ‖vk − Pk‖C0(B(0,
√

hk+2/K))
≤ ‖vk − Pk‖C0(Shk+2 ) ≤ C

∥∥D3vk

∥∥
C0(Shk+2 )

h
3/2
k .

In addition, by (5.22) applied with j = 1, . . . , k and recalling that hk = h12−k and 2σ < 1
(see (5.20)), we get

∥∥D3vk

∥∥
C0(Shk+2 )

≤ ∥∥D3v1

∥∥
C0(Sh3 )

+
k∑

j=1

∥∥D3vj − D3vj+1

∥∥
C0(Shj+2 )

(5.25)

≤ C
(

1 +
k∑

j=1

h
(σ−1/2)

j

)
≤ Ch

σ−1/2
k .

Combining (5.15), (5.24), (5.25), and recalling (5.17) and (5.20), we obtain

‖u − Pk‖C0(B√
hk+2/K) ≤ ‖vk − Pk‖C0(Shk+2 ) + ‖vk − u‖C0(Shk+2 ) ≤ Ch1+σ

k ,

so (5.23) follows with r0 = 1/
√

2 and σ ′ = 2σ . �
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