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ABSTRACT

An n-gap consists of n many pairwise orthogonal families of subsets of a countable set that cannot be separated.
We prove that for every positive integer n there is a finite basis for the class of analytic n-gaps. The proof requires an analysis
of certain combinatorial problems on the n-adic tree, and in particular a new partition theorem for trees.
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Introduction

In this paper we are try to provide a structural theory for n-gaps, a notion recently
introduced in [2] generalizing the classical notion of gap (here, 2-gap). An n-gap is noth-
ing else than n many families �0, . . . ,�n−1 of subsets of a fixed countable set N which are
hereditary (if a ∈ �i and b ⊂ a, then b ∈ �i ), pairwise orthogonal (if a ∈ �i and b ∈ �j for
i �= j, then a ∩ b is finite), and satisfy the non-triviality condition of not being separated.
Here, separated would mean that we can write N = a0 ∪ · · · ∪ an−1 in such a way that
�i is trivial on ai in the sense that �i|ai

= {a ∈ �i : a ⊂ ai} consists only of finite sets. An
n-gap may arise in any situation where we have a sequence and different classes of subse-
quences. For example, N could be a sequence of points in a topological space X, and �i

could be the fami ly of su bsequences of N whose cluster points lie in certain set Xi ⊂ X.
Another example is N = {xk : k < ω} a sequence of vectors in a normed space, and each
family �i consists of subsequences with a given estimate on the computation of norms of
linear combinations (like being c0-sequence, �p-sequence, etc.).

The main problem that we address is the following:

Problem 1. — Given an n-gap � = {�0, . . . ,�n−1}, can we find an infinite set M ⊂ N
such that the restriction {�0|M, . . . ,�n−1|M} becomes a canonical object?

That this project, even in the case n = 2, is of a great complexity was first realized
by Hausdorff [14, 15] more than a century ago after a series of earlier papers of Du Bois-
Reymond [9] and Hadamard [12] showing that the case of countably generated families
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presents no difficulties. What Hausdorff showed is that there exist 2-gaps that could code
objects far outside the reach of structure theory we would hope to develop. It is interesting
that even such a non-structure theorem of Hausdorff would bare some fruits such as, for
example, the solution of Kaplanski’s problem (see [16]) about the automatic continuity in
the context of Banach algebras where the answers essentially depended on whether the
list of spectra of 2-gaps discovered by Hausdorff [14] is complete or not (see [10], [5],
[6]). We were motivated to consider Problem 1 by a more concrete question that arose in
[2]:

Problem 2. — If we are given a 3-gap {�0,�1,�2}, can we find an infinite set M ⊂ N
and some reordering {0,1,2} = {i, j, k} such that {�i|M,�j|M} is still a 2-gap, but �k|M
consists only of finite sets?

We know that the answer is, in general, negative, but the counterexample provided
in [2] is done in a non-constructive way, using the axiom of choice to produce non-
measurable sets. So what if the families �i are, for example, analytic? It was already
realized in [19], in the classical context of 2-gaps, that many of the pathologies that might
occur in arbitrary gaps can be ruled out for gaps of certain descriptive complexity, that
have a more rigid structural theory. In this paper, we develop a structural theory for
analytic n-gaps, that not only extends the one found in [19] for 2-gaps, but it provides new
information even in the classical setting of two families. Let us mention that the results
from [19] have already found some substantial applications (see, for example, [20], [1],
[8], [7]).

The main result is that for every natural number n ≥ 2, there exists a finite basis of
analytic n-gaps, so that given any analytic n-gap {�0, . . . ,�n−1} there exists a restriction
{�0|M, . . . ,�n−1|M} to an infinite set M ⊂ N which is an n-gap isomorphic (in a sense) to
one n-gap from the finite basis. This is the foundation of the theory that allows to give a
positive answer to Problem 2 above for analytic n-gaps. The proofs required for this and
other concrete facts of the like require considerable extra effort and long computations
and this will appear elsewhere.

We achieve our goal in two steps. First, we reduce the problem from n-gaps on an
arbitrary set N to n-gaps on the n-adic tree n<ω (the set of all finite sequences of numbers
from {0, . . . , n − 1}). Thus, given any analytic n-gap {�0, . . . ,�n−1}, Theorem 4.2 states
that we can find an injective map u : n<ω −→ N which, after a permutation, sends [i]-
chains to sets in �i , for i = 0, . . . , n − 1. The [i]-chains are a special kind of subsets
{t0, t1, . . .} ⊂ n<ω in which tk+1 is obtained by adding to the right of tk a sequence of the
form (i, j1, . . . , jp) with j1 ≤ i, . . . , jp ≤ i. The families Ci of [i]-chains constitute an analytic
n-gap, and Theorem 4.2 is telling that any other analytic n-gap contains this canonical
example inside. The case n = 2 of this result is essentially a convenient reformulation of
[19, Theorem 3].

In the second step we make a deeper analysis of the combinatorics of the n-adic
tree, expanding the classes of [i]-chains to a wider collection of types of subsets of n<ω
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including further kinds of chains as well as so-called combs. The main tool needed is a
new partition principle, Theorem 2.5, that states that if we color all subsets of n<ω of a
given type into finitely many colors in a measurable way, then we can pass to a suitable
subtree where all sets have the same color. We believe that this partition theorem is of
independent interest an may have further applications. The result is given in a similar
context as Milliken’s theorem [18], but we code more information by demanding to stay

below number i once we get a number i.
Although all results are stated for analytic n-gaps in order to hold in ZFC, it is

still possible to get analogous statements for more general projective n-gaps assuming
projective determinacy. This is discussed in Section 5.

We should mention our previous paper [3] as an important precedent of this work.
We consider there similar problems but dealing with countable separation instead of separa-

tion, and strong n-gaps instead of general n-gaps. The main scheme is similar to the one
presented here but far simpler, and in particular no new partition theorem was necessary
as Milliken’s theorem was enough.

1. Basic definitions

As mentioned above, we introduced the notion of multiple gaps in our previous
papers [2, 3]. This time, we shall modify slightly our working definition to gain some
generality, we shall work with preideals instead of ideals.

Definition 1.1. — A preideal on a countable set N is a family I of subsets of N such
that if x ∈ I and y ⊂ x is infinite, then y ∈ I.

The preideal ideal I is analytic if it is analytic as a subset of P(N) = 2N. We use
the symbol ∗ to denote inclusions modulo finite sets, so x ⊂∗ y means that x \ y is finite,
and x =∗ y means that x ⊂∗ y and y ⊂∗ x. We say that x and y are orthogonal if x ∩
y =∗ ∅. Following the tradition in set-theory, we identify each natural number with its
set of predecessors, so that n = {0,1, . . . , n − 1}. The set of natural numbers is written
as ω = {0,1,2, . . .}. In this way, {xi : i ∈ n} = {x0, x1, . . . , xn−1}, while {xn}n<ω denotes an
infinite sequence. The letters N and M will denote some general countable infinite sets.

Definition 1.2. — Let � = {�i : i ∈ n} be a family of n many preideals on the set N
and let X be a family of subsets of n.

(1) We say that � is separated if there exist subsets a0, . . . , an−1 ⊂ N such that⋂
i∈n ai = ∅ and x ⊂∗ ai for all x ∈ �i, i ∈ n.

(2) We say that � is an X-gap if it is not separated, but
⋂

i∈A xi =∗ ∅ whenever
xi ∈ �i, A ∈X.
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We say that � is analytic if each �i is analytic. In the same way, we can say that
� is Borel, coanalytic, projective, etc. We will consider only two choices of the family X,
when X= [n]2 is the family of all subsets of n of cardinality 2, a [n]2-gap will be called an
n-gap, while when X consists only of the total set n = {0, . . . , n − 1}, then an X-gap will
be called an n∗-gap. The notion of n∗-gap is more general than that of a n-gap, since it
does not require the preideals to be pairwise orthogonal. On the other hand, the use of
n-gaps is more natural in some contexts, and for many of the problems that we discuss
here, questions about n∗-gaps can be reduced to questions about n-gaps.

In the language of sequences and subsequences that we used in the introduction,
if we have an infinite sequence {xn}n<ω, and C is a hereditary class of subsequences, then
I = {a ⊂ ω : {xn}n∈a ∈ C} is a preideal. When we talk about analytic, Borel or projective
classes, we mean that the corresponding preideals have that complexity. It is a simple
exercise that the notion of separation of preideals stated above is equivalent to the notion
of separation of classes that was stated in the introduction. In this way, all the results that
we shall produce about gaps can be restated as facts about classes of subsequences and
the ways that they can be separated.

Remember that the general question that our theory deals with is the following:
Given a gap � on N, can we find an infinite set M ⊂ N such that the restriction of � to
M becomes a gap which is canonical in some sense? The restriction of a preideal I to M
is the preideal I|M = {x ∈ I : x ⊂ M}, and the restriction of a gap � is �|M = {�i|M : i ∈ n}.
Notice that �|M may not be in general a gap, as the preideals may become separated
when restricted to M.

The orthogonal of I is the family I⊥ consisting of all x ⊂ N such that x ∩ y =∗ ∅ for
all y ∈ I. The orthogonal of the gap � is �⊥ = (

⋃
i∈n �i)

⊥. The gap � is called dense if
�⊥ is just the family of finite subsets of N.

Definition 1.3. — Given � and � two n∗-gaps on countable sets N and M, we say
that � ≤ � if there exists a one-to-one map φ : N −→ M such that for every i ∈ n,

(1) if x ∈ �i then φ(x) ∈ �i .
(2) If x ∈ �⊥

i then φ(x) ∈ �⊥
i .

When � is a n-gap, the second condition can be substituted by saying that if x ∈ �⊥

then φ(x) ∈ �⊥. Notice also that if � is a n-gap, � is a n∗-gap, and � ≤ �, then � is an
n-gap. Another observation is that the above definition implies that φ(x) ∈ �⊥⊥

i if and
only if x ∈ �⊥⊥

i , and φ(x) ∈ �⊥ if and only if x ∈ �⊥. Therefore the gaps {�⊥⊥
i : i < n}

and {�⊥⊥
i |φ(N) : i < n} are completely identified under the bijection φ : N −→ φ(N).

Definition 1.4. — An analytic n∗-gap � is said to be a minimal analytic n∗-gap if for
every other analytic n∗-gap �, if � ≤ �, then � ≤ �.

Definition 1.5. — Two minimal analytic n∗-gaps � and �′ are called equivalent if
� ≤ �′ (hence also �′ ≤ �).
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In this language, one of our main results can be stated as follows:

Theorem 1.6. — Fix a natural number n. For every analytic n∗-gap � there exists a minimal

analytic n∗-gap � such that � ≤ �. Moreover, up to equivalence, there exist only finitely many minimal

analytic n∗-gaps.

The same statements hold for n-gaps instead of n∗-gaps, the minimal analytic n-
gaps are a subset of the minimal analytic n∗-gaps.

2. A partition theorem

In this section we state and prove a new pigeon hole principle that at the same time
incorporates some features of the infinite Hales-Jewett theorem for left-variable words
([13], [4]) and some features of the Gowers theorem for FINk ([11]; see also [21]). In par-
ticular, we shall rely on the Galvin-Glazer method of idempotent ultrafilters on partial
semigroups. We refer the reader to the introductory chapters of [21] where this method
is explained in details and where both the Gowers theorem and the extension of the
Hales-Jewett theorem are proved using this method. The reader will find there also some
details and references about the long and intricate way this subject was developed so that
we can comment here only about the new ideas in the proof below. First of all, we have
to restrict ourselves here to idempotent ultrafilters Uk on semigroups of words Wk that
besides the usual equations T(Uk) = Ul satisfy the equations U�

k Ul = Ul rather than the
stronger equations U�

k Ul = U�
l Uk = Ul for l ≤ k. The idempotent ultrafilters Uk on Wk

are then used to obtain an infinite-dimensional Ramsey statement that involves the no-
tion of an Uk-tree. An infinite sequence {w0,w1, . . .} generates a partial subsemigroup
Full(w0,w1, . . .) in the standard way (see [21, Section 2.5]). The crucial lemma here is
that for every Uk-subtree ϒ of W<ω

k there exists a rapidly increasing sequence w0,w1, . . .

of elements of Wk such that (x0, x1, . . . , xn) ∈ ϒ for every x0, x1, . . . , xn ∈ Full(w0,w1, . . .)

with λ(x0) < λ(x1) < · · · < λ(xn), where for x ∈ Full(w0,w1, . . .), by λ(x), we denote the
maximal index of a term of the sequence {w0,w1, . . .} that occurs in the unique concate-
nation that forms x. This allows us to transfer Souslin-measurable colorings of subtrees
of Wk of the same shape to colorings of branches of the tree W<ω

k and in return get a
copy of Wk with all subtrees of the given shape monochromatic. This is quite different
from the standard method that involves the Ramsey space of strong subtrees of a given
rooted finitely branching tree U of height ω (see [18], [21, Chapter 6]). We expect that
this approach will find some other uses.

Given a set A, we denote by A<ω the set of all finite sequences of elements
of A. Remember that we identify a natural number m with its set of predecessors,
m = {0,1, . . . ,m − 1}. Thus, m<ω is the m-adic tree. We consider two order relations
on m<ω. Consider t = (t0, . . . , tp) and s = (s0, . . . , sq) in m<ω, the tree order is defined by
t < s if and only if p < q and ti = si for all i ≤ p. The linear order relation ≺ is given by:
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t ≺ s if and only if either (p < q) or (p = q and tmin{i:ti �=si} < smin{i:ti �=si}). The concatenation
of t and s is t �s = (t0, . . . , tp, s0, . . . , sq). We denote by t ∧ s the infimum of t and s in the
order <, that is, t ∧ s is the largest common initial segment of t and s. If t �s = r, then we
write s = r \ t.

For a fixed natural number k, we denote by Wk the set of all finite sequences of
natural numbers from {0, . . . , k} that start by k, that is

Wk = {
(t0, t1, . . . , tp) : t0 = k, ti ∈ {0, . . . , k}, i = 1, . . . , p

}

We shall view the set Wk as a semigroup, endowed with concatenation � as the
operation. Define T : Wk −→ Wk−1 by

T(w)(i) = max
{
0,w(i) − 1

}

That is, T(w) is a word with the same number of letters as w, and at each place
T(w) has a number one unit less than in w, except for zeros which are preserved. Let
T(0) : Wk −→ Wk be the identity map, T(1) = T and T(j) : Wk −→ Wk−j be the j-th iter-
ate of T. We will often denote this iteration as Ti = T(k−i) : Wk −→ Wi using the same
subindex for Ti as for the range space Wi .

Definition 2.1. — We will say that a subset F ⊂ m<ω is closed if it satisfies:

(1) If s, t ∈ F, then s ∧ t ∈ F
(2) If s = t�r�

1 · · ·� rk with t, s ∈ F, r1 ∈ Wi1, . . . , rk ∈ Wik , i1 < i2 < · · · < ik , then
t�r1 ∈ F (therefore also t�r�

1 r2 ∈ F, etc.)

Given F ⊂ m<ω we will denote by 〈F〉 the intersection of all closed sets which con-
tain F, which is itself a closed set.

Definition 2.2. — Consider sets X ⊂ m<ω, Y ⊂ n<ω. A function f : X −→ Y is called
an equivalence if it is the restriction of a bijection g : 〈X〉 −→ 〈Y〉 satisfying the following

(1) g(t ∧ s) = g(t) ∧ g(s) for all t, s ∈ 〈X〉,
(2) g(t) ≺ g(s) if and only if t ≺ s for all t, s ∈ 〈X〉,
(3) For all t, s ∈ 〈X〉 with t ≤ s and every k, we have that s \ t ∈ Wk if and only if

g(s) \ g(t) ∈ Wk .

Notice that if s is the immediate successor of t in 〈X〉 (that is, t < s but there is
no r ∈ 〈X〉 with t < r < s), then s \ t ∈ Wk for some k, and condition (3) of the above
definition can be considered just for pairs of immediate successors. The sets X and Y are
called equivalent if there is an equivalence between them.
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A sequence {w0,w1, . . .} ⊂ Wk is called rapidly increasing if

|wi| >
∑

j<i

|wj|

for every i. A family {ws : s ∈ m<ω} ⊂ Wk will be called rapidly increasing if for every
s ∈ m<ω we have

|ws| >
∑

t≺s

|wt|.

Definition 2.3. — Let m ≤ n < ω. A function ψ : m<ω −→ n<ω will be called a nice
embedding if there exists a rapidly increasing family {ws : s ∈ m<ω} ⊂ Wm−1 such that for
every t ∈ m<ω and for every i ∈ m, we have that ψ(t�i) = ψ(t)�Ti(wt�i).

Notice that the above implies that ψ is one-to-one. Along this section we are mostly
interested in nice embeddings from the m-adic tree into itself. The important thing about
nice embeddings is that they preserve equivalence.

Proposition 2.4. — If ψ : m<ω −→ n<ω is a nice embedding, then X is equivalent to ψ(X)

for every set X ⊂ m<ω.

The range of a nice embedding ψ will be call a nice subtree of m<ω, which is
naturally bijected with m<ω itself by ψ . For a fixed set X0 ⊂ m<ω, let us say that Y is an
X0-set if Y is equivalent to X0. It is easy to check that the family of all X0-subsets of m<ω

is closed in the product topology of the Cantor set 2m<ω

, hence this family has a natural
Polish topology. This section is devoted to the proof of the following theorem:

Theorem 2.5. — Fix a set X0 ⊂ m<ω. Then for every finite partition of the X0-subsets of m<ω

into finitely many Suslin-measurable sets, there exists a nice subtree T ⊂ m<ω all of whose X0-subsets

lie in the same piece of the partition.

By Suslin measurability, we mean with respect to the σ -algebra generated by an-
alytic sets. This is a partition theorem for trees in a similar spirit as Milliken’s Theo-
rem [18]. Partition theorems are often stated in the language of colorings. Having a finite
partition X = ⋃

i<n Xi of a set X is equivalent to having a function c : X −→ n, that is
called a coloring, and c(y) is called the color of y. A subset Y ⊂ X lies in one piece of the
partition if and only if it is monochromatic for the coloring c, meaning that Y ⊂ c−1(i) for
some i. The simplest case of Theorem 2.5 happens when X0 is a singleton:

Corollary 2.6. — If we color n<ω into finitely many colors, then there is a nice subtree which is

monochromatic.



64 ANTONIO AVILÉS, STEVO TODORCEVIC

Let W∗
l be the collection of all nonprincipal ultrafilters on Wl . We extend the con-

catenation � to an operation on W∗
l that we also denote by �:

A ∈ U�V ⇔ (
Ux Vy x�y ∈ A

)

This1 makes (W∗
l ,

� ) a compact left topological semigroup.2 For every U ∈ W∗
k

define

T(U) = {
T(X) : X ∈ U

} = {
Y ⊂ Wk−1 : T−1(Y) ∈ U

}

Notice that A ∈ T(U) if and only if Ux T(x) ∈ A. The function T : W∗
k −→ W∗

k−1
is a continuous onto homomorphism.

We shall construct by induction ultrafilters Uk ∈ W∗
k for k = 0,1, . . . which will

have the following properties:

(1) Each Uk is a minimal idempotent of W∗
k . Idempotent means that Uk

�Uk = Uk ,
and Uk is minimal among the set of idempotents of W∗

k in the order given by
U ≤ V iff U = U�V = V�U . Cf. [21, Chapter 2].

(2) T(Uk+1) = Uk for every k = 0,1,2, . . . .
(3) Uk

�Ul = Uk whenever l ≤ k.

Notice that condition (3) above is just equivalent to Uk+1
�Uk = Uk+1 for every k.

We choose U0 to be any minimal idempotent of W∗
0 (see [21, Lemma 2.2]).

Construction of Uk+1 from Uk : Let

S = {
X ∈ W∗

k+1 : T(X ) = Uk

}
.

Then S is a closed subsemigroup of W∗
k+1 and

S�Uk = {
X�Uk :X ∈ S

}

is a closed left-ideal of S. Using [21, Lemma 2.2] again, we find Uk+1 ∈ S�Uk a minimal
idempotent of S�Uk , which is in turn a minimal idempotent of S. Notice that Uk+1

�Uk =
Uk+1 since Uk+1 ∈ S�Uk and Uk is idempotent. Also T(Uk+1) = Uk . It remains to show that
Uk+1 is a minimal idempotent of W∗

k+1. Let V ≤ Uk+1 be an idempotent of W∗
k+1. Since T

is a homomorphism and T(Uk+1) = Uk , we have that T(V) is an idempotent of W∗
k such

that T(V) ≤ Uk . Since Uk was minimal, we conclude that T(V) = Uk , hence V ∈ S. Since
Uk+1 was a minimal idempotent of S we conclude that Uk+1 = V .

The construction of the ultrafilters Uk is thus finished. We define a Uk-tree to be a
nonempty downwards closed subtree ϒ of W<ω

k such that
{
x ∈ Wk : (x0, . . . , xn, x) ∈ ϒ

} ∈ Uk

1 The notation Ux P(x) means that {x : P(x)} ∈ U .
2 This means that the operation U �→ U�V is continuous for every V ∈ W∗

l that we endow with its Stone topology
as a set of ultrafilters.
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for every (x0, . . . , xn) ∈ ϒ .
We shall use the following lemma which is a corollary of [21, Theorem 7.42]:

Lemma 2.7. — For every finite Suslin-measurable coloring of the branches of W<ω
k there exists

a Uk-tree ϒ such that the set of branches of ϒ is monochromatic.

Definition 2.8. — Let {w0,w1, . . .} be a rapidly increasing sequence of elements of
Wk .

Full(w0,w1, . . .) = {
w�

m0
Tk1(wm1)

� · · ·� Tkn
(wmn

) :
n < ω, 0 ≤ k1, . . . , kn ≤ k, m0 < · · · < mn < ω

}

Given x = w�
m0

Tk1(wm1)
� · · ·� Tkn

(wmn
) as above, we denote λ(x) = mn the last

subindex of wi which appears in the expression of x. Notice that this is properly defined
because the sequence {w0,w1, . . .} is rapidly increasing.

Lemma 2.9. — Given ϒ a Uk-tree of W<ω
k there exists a rapidly increasing sequence

w0,w1, . . . of elements of Wk such that

(x0, x1, . . . , xn) ∈ ϒ

for every x0, x1, . . . , xn ∈ Full(w0,w1, . . .) with λ(x0) < λ(x1) < · · · < λ(xn).

Proof. — For every x̄ = (x0, . . . , xn) ∈ ϒ , let Px̄ = {x ∈ Wk : (x0, . . . , xn, x)} ∈ ϒ .
Along this proof we denote Uk = U . We know that Px̄ ∈ U for every x̄ ∈ ϒ . We can
assume without loss of generality that Px̄ ⊃ Pȳ whenever x < y (in the tree order, meaning
that y is an end-extension of x). We shall construct the sequence w0,w1, . . . by induction.

Construction of w0. We know that Ux x ∈ P∅, and since

U = U�Tk1(U)� · · ·� Tkn
(U)

for every k1, . . . , kn ≤ k we have that

Uy0 Uy1 · · · Uyn y�
0 Tk1(y1)

� · · ·� Tkn
(yn) ∈ P∅

In particular, we can choose w0 ∈ P∅ such that

(∗) Uy1 · · · Uyn w�
0 Tk1(y1)

� · · ·� Tkn
(yn) ∈ P∅

whenever 0 ≤ k0 < k1 < · · · < kn ≤ k, since there are only finitely many choices for indices
ki like this. Notice however, that once w0 is chosen in this way, the statement (∗) above
holds whenever 0 ≤ k0, k1, . . . , kn ≤ k (now infinitely many possibilities). The reason is
that if we have an expression

x = w�
0 Tk1(y1)

� · · ·� Tkn
(yn)
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we can choose 1 = i1 < · · · < im such that

k1 = ki1 < ki2 < · · · < kim = km

such that kj ≤ kil whenever il ≤ j < il+1. And then, we can rewrite

x = w�
0 Tk1

(
y�

1 T(k1−k2)(y2)
� · · · )�

Tki2

(
y�

ki2
T(ki2−ki2+1)(yki2+1)

� · · · )� · · ·
Construction of wm. Let F = Full(w0, . . . ,wm−1) and

G = {
x̄ = (x0, . . . , xξ ) : x0, . . . , xξ ∈ F, λ(x0) < · · · < λ(xξ )

}
.

Notice that G is finite. Our inductive hypotheses are that for every (x0, . . . , xξ ) ∈ G and
every 0 ≤ k1, . . . , kn ≤ k we have that

(∗) xξ ∈ P(x0,...,xξ−1)

(∗∗) Uy1 · · · Uyn x�
ξ Tk1(y1)

� · · ·� Tkn
(yn) ∈ P(x0,...,xξ−1)

The hypothesis (∗) will prove the statement of the lemma. The hypothesis (∗∗) is a
technical condition necessary for the inductive procedure. On the other hand, like in the
case of the construction of w0, we have that Uy y ∈ Px̄ for every x̄ ∈ G, and this implies
that for every x̄ ∈ G and every 0 ≤ k1, . . . , kn ≤ k

Uy0 Uy1 · · · Uyn y�
0 Tk1(y1)

� · · ·� Tkn
(yn) ∈ Px̄

Therefore in particular, we can find wm such that for every k0 ≤ k, every 0 ≤ k1 <

· · · < kn ≤ k and every x̄ = (x0, . . . , xξ ) ∈ G we have that

wm ∈ Px̄

Uy1 · · · Uyn w�
m Tk1(y1)

� · · ·� Tkn
(yn) ∈ Px̄

x�
ξ Tk0(wm) ∈ P(x0,...,xξ−1)

Uy1 · · · Uyn x�
ξ Tk0(wm)�Tk1(y1)

� · · ·� Tkn
(yn) ∈ P(x0,...,xξ−1)

By the same trick that we used in the case of the construction of w0, the above
sentences actually hold whenever 0 ≤ k0, k1, . . . , kn ≤ k. This completes the proof, since
the statements above imply that the inductive hypotheses (∗) and (∗∗) are transferred to
the next step. �

We proceed now to the proof of Theorem 2.5. Without loss of generality we can
suppose that X0 is a closed set. Indeed, if X0 is not closed, consider its closure Y0 = 〈X0〉.
If Y ∼ Y0, then there is a unique set X ∼ X0 such that Y = 〈X〉, and the correspon-
dence Y ↔ X is Suslin-measurable. In this way, we reduce the general case to the case of
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closed X0. We can suppose that X0 is infinite as well. If we prove the theorem for infinite
X0, the finite case follows as a corollary, just making X0 infinite by adding zeros above
a maximal node. Enumerate X0 = {x0 ≺ x1 ≺ · · · }. Let k = m − 1, and we consider the
infinite product Wω

k that we identify when convenient with the branches of the tree W<ω
k .

Let W̃ω
k ⊂ Wω

k be the set of all sequences which are rapidly increasing. We are going to
define a function  that associates to each z ∈ W̃ω

k an X0-set (z) ⊂ m<ω. The set (z)

will be the range of a function φz : X0 −→ m<ω that establishes an equivalence between
X0 and (z) = φz(X0). The function φz is defined inductively. As a starting point of the
induction, φz(x0) = z0. Now, suppose that φz(xq) is defined for q < p and we shall define
φz(xp). Let xq be the ≤-immediate predecessor of xp in X0, and suppose that xp = x�

q r with
r ∈ Wi , i ≤ k. Then, define φz(xp) = φz(xq)

�Ti(zp).
We consider now a finite partition of Wω

k , in which one piece is the set Wω
k \ W̃ω

k ,
while the partition of W̃ω

k is induced by the given partition of the X0-sets of m<ω through
the function . By Lemma 2.7 there exists a Uk-tree ϒ ⊂ W<ω

k all of whose branches lie
in the same piece of the partition. This piece cannot be Wω

k \ W̃ω
k since every Uk tree has

rapidly increasing branches. So what we have is that for each rapidly increasing branch
z of ϒ , the set (z) has the same color.

Let {w0,w1, . . .} be the sequence given by Lemma 2.9 applied to the ϒ that we
found. Let F = Full(w0,w1, . . .). We reorder {w0,w1, . . .} in the form of a rapidly in-
creasing family {ws : s ∈ m<ω}. We claim that the nice embedding that we are looking for
is the one given by ψ(∅) = w∅ and ψ(t�i) = ψ(t)�Ti(wt�i). In order to check this, it
is enough to prove that for every X0-set Y, the set ψ(Y) is of the form (z) for some
z ∈ Wω

k which is a branch of ϒ . So let Y = {y0 ≺ y1 ≺ · · · } be an X0-set. Let y−
i be the

≤-immediate predecessor of yi in Y and write ψ(yi \ y−
i ) = Tj(zi) for some zi ∈ Wk . Then

zi ∈ Full(w0,w1, . . .) and λ(z0) < λ(z1) < · · · , so by Lemma 2.9 we have that (z0, z1, . . .)

is a branch of ϒ . Moreover ψ(Y) = (z) and this finishes the proof of Theorem 2.5.
We finish this subsection with the following variation of Theorem 2.5. We refer to

[17] for information on projective sets and the axiom of projective determinacy.

Theorem 2.10 (Projective Determinacy). — Fix a set X0 ⊂ m<ω. Then for every finite partition

of the X0-subsets of m<ω into finitely many projective sets, there exists a nice subtree T ⊂ m<ω all of

whose X0-subsets lie in the same piece of the partition.

We do not include the proof here since it is out of the scope of this paper. It follows
the general lines of Woodin’s proof in [22] that every projective set is Ramsey in the
classical sense (cf. [21]) under the assumption of the projective determinacy.
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3. Types in the m-adic tree

Among the equivalence classes of subsets of m<ω to which Theorem 2.5 can be
applied, we are a particularly interested in the minimal equivalence classes of infinite sets,
which are described by what we call types.

Definition 3.1. — A type τ is a triple τ = (τ 0, τ 1,�), where τ0 and τ1 are finite
subsets of ω with τ 0 �= ∅, min(τ 0) �= min(τ 1), together with a linear order relation � on
the set (τ 0 ×{0})∪ (τ 1 ×{1}) which extends the natural order of τ 0 and of τ 1 and whose
maximum is (max(τ 0),0).

Notice that in the above definition we demand that τ 0 �= ∅, but τ 1 may be empty
or not. The sentence “extends the natural order of τ 0 and of τ 1” means that (k, i) � (k′, i)

whenever k < k′ and i ∈ {0,1}. A type τ will be represented as a ‘matrix’ where the lower
row is τ 0, the upper row is τ 1 and the order � is read from left to right (so the rightmost
element must be always below). For example

τ =
[

6 9
1 3 6 7

]

would represent the type ({1,3,6,7}, {6,9},�) with the order

(1,0) � (6,1) � (3,0) � (6,0) � (9,1) � (7,0)

When τ 1 = ∅ we will write a ‘matrix’ with just one row.

Definition 3.2. — Consider a type τ where τ 0 = {k0 < · · · < kn} and τ 1 = {l0 <

· · · < lm}. We say that a couple (u, v) is a rung of type τ if the following conditions hold:

(1) u can be written as u�
0 · · ·� un where ui ∈ Wki

,
(2) v can be written as v�

0 · · ·� vm where vi ∈ Wli ,
(3) (ki,0) � (lj,1) if and only if u�

0 · · ·� ui ≺ v�
0 · · ·� vj .

In the above definition notice that v = ∅ if and only if τ 1 = ∅.

Definition 3.3. — Consider a type τ . We say that an infinite set X ⊂ m<ω is of type
τ if there exists u ∈ m<ω and a sequence of rungs (u0, v0), (u1, v1), . . . of type τ such that
we can write X = {x0, x1, . . .} and

xk = u�u�
0 u�

1 · · ·� uk−1
�vk

for k = 0,1, . . . .



FINITE BASIS FOR ANALYTIC MULTIPLE GAPS 69

When τ 1 = ∅, subsets of type τ will be called τ -chains. If τ 1 �= ∅ they will be called
τ -combs. A type in m<ω is a type such that τ 0, τ 1 ∈ m<ω. These are the possible types of
subsets of m<ω.

Let us give a couple of examples as illustration. The set

{
(00), (00213), (00213213), (00213213213), . . .

}

is a [23]-chain, because if satisfies Definition 3.3 for u = (00), and the rungs (ui, vi) where
vi = ∅, and ui = (21)�(3), with (21) ∈ W2 and (3) ∈ W3.

On the other hand, the set

{
(005), (002135), (002132135), (002132132135), . . .

}

is a [5
23]-comb, because if satisfies Definition 3.3 for u = (00), and the rungs (ui, vi) where

vi = (5) ∈ W5, and ui = (21)�(3), with (21) ∈ W2 and (3) ∈ W3.
For a fixed type τ , the sets of type τ constitute an equivalence class of subsets of

m<ω. Every infinite subset of a set of type τ has again type τ . These facts, together with the
following lemma, imply that types can be identified with the minimal equivalence classes
of infinite subsets of m<ω.

Lemma 3.4. — If x is an infinite subset of m<ω, then there exists a type τ and an infinite subset

y ⊂ x of type τ .

Proof. — Define inductively {tk : k < ω} ⊂ x, a chain {sk : k < ω} ⊂ m<ω and infinite
sets x = x0 ⊃ x1 ⊃ · · · in the following way: First, x0 = x, s0 = ∅ and t0 ∈ x is arbitrary.
Given tk, sk, xk , fix a number pk > |tk| and choose sk+1 such that |sk+1| = pk , sk+1 > sk ,
xk+1 = {t ∈ xk : t > sk+1} is infinite,3 and tk+1 ∈ xk+1. The set {tk : k < ω} ⊂ x obtained in
this manner may still not be of any type τ but it is very close. Consider rk = tk ∧ tk+1 which
lie in a chain as rk ≤ sk+1. By passing to a subsequence we may suppose that max(rk+1 \ rk)

is the same for all k ∈ ω, and by passing to a further subsequence we may suppose that the
pairs (rk+1 \ rk, tk \ rk) are all rungs of the same type τ , and then we will get that {tk : k < ω}
is indeed of type τ . �

4. Finding standard objects

A family of sets I is said to be countably generated in a family J if there exists a
countable subset J0 ⊂ J such that for every x ∈ I there exists y ∈ J0 such that x ⊂ y. The
following is restatement of [19, Theorem 3]:

3 The property that {t ∈ xk : t > sk} is infinite is assumed inductively on k.
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Theorem 4.1. — If {�0,�1} are preideals on N such that �1 is analytic and is not countably

generated in �⊥
0 , then there exists an injective function u : 2<ω −→ N such that u(x) ∈ �i whenever x

is an [i]-chain, i = 0,1.

Proof. — The actual statement of [19, Theorem 3] says that there is a �0-tree all
of whose branches are in �1, which means that there is a family � of finite subsets of N
such that

(1) ∅ ∈ �,
(2) �a = {k ∈ N : a ∪ {k} ∈ �} is an infinite set in �0, for every a ∈ �,
(3) if a0, a1, . . . ∈ � with a0 ⊂ a1 ⊂ · · · , then

⋃
i<ω ai ∈ �1.

We define inductively the function v : 2<ω −→ N together with a function a : 2<ω −→
� such that v(s) ∈ �a(s) in the following way: a(∅) = ∅, v(∅) is some element of �∅,
a(s�0) = a(s), a(s�1) = a(s) ∪ {v(s)}, v(s�0) is an element of �a(s�0) = �a(s) different
from all v(t) that have been previously chosen, and finally v(s�1) is an element of �a(s�1)

different from all v(t) that have been previously chosen. Then, we have

(1) If x = {s0 < s1 < · · · } is a [0]-chain in 2<ω, then a(si) = a(s0) for all i < ω, hence
{v(s1), v(s2), . . .} ⊂ �a(s0) and therefore v(x) ∈ �0, since � was a �0-tree.

(2) If x = {s0 < s1 < · · · } is a [1]-chain, then a(s0) ⊂ a(s1) ⊂ · · · and v(x) =
{v(s0), v(s1), . . .} ⊂ ⋃

i<ω a(si) ∈ �1 since all branches of � are in �1.
(3) Finally, v is injective because at each step we take care that v(t) is different

from all previously chosen values of v.
�

Theorem 4.2. — If � = {�i : i ∈ n} are analytic preideals on the set N which are not separated,

then there exists a permutation ε : n −→ n and a one-to-one map u : n<ω −→ N such that u(x) ∈ �ε(i)

whenever x is an [i]-chain, i ∈ n.

Proof. — We may assume that � is an n∗-gap because otherwise the statement of
the theorem is trivial. We will prove the theorem by induction on n. At each step, we
shall assume that the statement of the theorem holds for smaller n and we shall find a
permutation ε : n −→ n and a function v : n<ω −→ ω such that v(x) ∈ �ε(i) whenever x is
an [i]-chain, i ∈ n, but v will not be one-to-one. Instead, v will have the property that for
every s ∈ n<ω, the set {v(s�0q) : q < ω} is infinite.

Let us show how to get the one-to-one function u that we are looking for from
a function v as above. For this we shall consider a one-to-one g : n<ω −→ n<ω and
we will make u = vg. The value of g(s) is defined ≺-inductively on s: g(∅) = ∅ and
g(s�i) = g(s)�i�(0,0, . . . ,0) where the number of zeros is chosen so that v(g(s�i)) is
different from all v(g(t)) which have been already defined. Notice that g(x) is an [i]-
chain whenever x is an [i]-chain and u = vg is one-to-one and satisfies the statement of
the theorem.
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Initial case of the induction: n = 2. In view of Theorem 4.1, it is enough to check
either �1 is not countably generated in �⊥

0 or �0 is not countably generated in �⊥
1 . So

suppose that we had x0 ⊂ x1 ⊂ · · · witnessing that �1 is countably generated in �⊥
0 , and

y0 ⊂ y1 ⊂ · · · witnessing that �0 is countably generated in �⊥
1 . Then, the elements x =⋃

k<ω xk \ yk and y = ⋃
k<ω yk \ xk separate �1 and �0. This finishes the proof of the case

when n = 2.
Inductive step: We assume that the theorem holds for n − 1 and we construct the

function v for n. We say that a family I of sets is covered by a family J if for every x ∈ I
there exists y ∈ J such that x ⊂ y. We say that a set a ⊂ N is small if �a is separated. We
say that I covers � if I covers

⋃
i �i.

Claim A. — � cannot be covered by countably many small sets.

Proof of Claim A. — Assume that {ak : k < ω} is a sequence of small sets that covers
�. We can suppose that a0 ⊂ a1 ⊂ a2 ⊂ · · · . For every k, since �|ak

is separated, there exist
sets ak(i), i ∈ n such that

⋂
i ak(i) = ∅ and x ⊂∗ ak(i) whenever x ∈ �i|ak

. By choosing these
sets inductively on k, we can make sure that ak(i) ⊂ ak+1(i) for every k, i. At the end the
sets a(i) = ⋃

k ak(i) witness that � is separated. This contradiction finishes the proof of
Claim A. �

By Claim A, we can find p ∈ n such that �p is not covered by countably many small
sets. Without loss of generality we assume that p = n − 1. If ε is a permutation of p, we
say that a ⊂ N is ε-small if there exists no one-to-one function u : p<ω −→ a such that
u(x) ∈ �ε(i) whenever x is an [i]-chain, i < p.

Claim B. — There exists a permutation ε : p −→ p such that �p is not covered by countably

many ε-small sets.

Proof of the claim. — Suppose for contradiction, that �p is countably covered by τ -
small sets for every permutation τ : p −→ p. Let Aτ be a countable family of τ -small sets
that covers �p. Then the family of all intersections of the form a = ⋂

τ aτ with aτ ∈ Aτ is
a countable family that also covers �p. Moreover, each such set a is small by the inductive
hypothesis, since we cannot find a permutation τ and a one-to-one function u : p<ω −→ a

such that u(x) ∈ �τ(i) when x is an [i]-chain, i < p. This contradicts that �p cannot be
countably covered by small sets, and finishes the proof of Claim B. �

A tree on the set N × ω is a subset ϒ ⊂ (N × ω)<ω such that if t ∈ ϒ and s < t

(in the tree-order, meaning that s is an initial segment of t) then s ∈ ϒ . A branch of ϒ is
an infinite sequence {(ξk,mk) : k < ω} in N × ω such that ((ξk,mk) : k < k0) ∈ ϒ for each
k0 < ω. The set of all branches of ϒ is denoted by [ϒ]. Remember that trees on N × ω

characterize analytic families of subsets of N, in the sense that a family I of subsets of N
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is analytic if and only if there exists a tree ϒ on N × ω such that I = [ϒ]1, where

[ϒ]1 = {{ξk : k < ω} : ∃{
(ξk,mk) : k < ω

} ∈ [ϒ]}

Since the ideal �p is analytic, we can find a tree ϒ such that �p = [ϒ]1. For t ∈ ϒ

let us denote by ϒt = {s ∈ ϒ : s ≥ t or s ≤ t}. Let ϒ ′ be the set of all t ∈ ϒ such that [ϒt]
is not countably covered by ε-small sets. Notice that ϒ ′ is a downwards closed subtree
of ϒ . Also, for each t ∈ ϒ ′ we have that [ϒ ′

t ] is not countably covered by ε-small sets,
since [ϒ ′

t ] is obtained by removing from [ϒt] countably many sets of the form [ϒs] which
are countably covered by ε-small sets.

We shall define the function v : n<ω −→ N together with a function z : n<ω −→ ϒ ′.
For s ∈ n<ω, let Xs = {s�p�r : r ∈ p<ω}. By induction on s, we shall define v|Xs

and z(s).
For formal reasons, we consider an imaginary element ξ such that ξ�p = ∅. In this way,
ξ is the first step of the induction. We choose z(ξ) = ∅. Since [ϒ ′] is not covered by
countably many ε-small sets, in particular b = ⋃[ϒ ′] is not ε-small, hence we have a
one-to-one function vξ : Xξ = p<ω −→ b such that v(x) ∈ �ε(i) whenever x is an [i]-chain,
i < p. We define v|Xξ

= vξ . This finishes the initial step of the inductive definition. We
shall suppose along the induction that if s ∈ Xt , then v(s) ∈ ⋃[ϒ ′

z(t)]1 \ z1(t), where z1(t)

is the set of first coordinates of z(t): if z(t) = {(ξk,mk) : k < k0} then, z1(t) = {ξk : k < k0}.
So suppose that we want to define v on Xs and z(s). Then s ∈ Xt for some t < s,

s = t�p�r, r ∈ p<ω. Therefore v(s) ∈ ⋃[ϒ ′
z(t)]1 \ z1(t), so there is a branch of ϒ ′

z(t) such
that v(s) appears in the first element at some point—higher than the length of z(t)—in
the branch. We pick z(s) > z(t) to be a node in this branch which is high enough in order
that v(s) appears in the first coordinate. Let bs = ⋃[ϒ ′

z(s)]1 \ z1(s) which is not ε-small, so
we get a one-to-one vs : p<ω −→ bs such that vs(x) ∈ �ε(i) whenever x is an [i]-chain, i < p.
For r̃ = s�p�r ∈ Xs we define v(r̃) = vs(r). This finishes the inductive definition of v.

Let us check that v has the properties that we were looking for. If t ∈ n<ω, then
the set x = {t�0k : k < ω} is contained in some Xs, so since the function v|Xs

, obtained
from vs, was one-to-one it is clear that v(x) is infinite. Suppose that x is an [i]-chain
with i < p. Then x ⊂ Xs for some s, and then v|Xs

was given by vs which was chosen
such that vs(x) ∈ �ε(i) whenever x is an [i]-chain, i < p. Finally, suppose that x is a [p]-
chain, so that x = {s0, s1, s2, . . .} with sk

�p ≤ sk+1 for every k < ω. Then, by enlarging x

intercalating extra elements if necessary we can suppose that sk+1 ∈ Xsk
for every k < ω.

Then, by the way that we chose z(s) inductively, we have that z(s0) < z(s1) < · · · and
v(sk) is the first coordinate of a node of z(sk) above the length of z(sk−1). It follows that
{v(sk) : k < ω} ∈ [ϒ ′]1 ⊂ [ϒ]1 = �p. �

Lemma 4.3. — Let �i be the set of all [i]-chains of n<ω. Then � = {�i : i ∈ n} is an n-gap.

Proof. — The intersection of an [i]-chain and a [j]-chain contains at most one point
when i �= j, so it is clear that the preideals are mutually orthogonal. Let us show that they
are not separated. So suppose that we had ai ⊂ n<ω such that x ⊂∗ ai for every [i]-chain x.
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Claim A. — For every i ∈ n and for every s ∈ n<ω, there exists t = t(i, s) ∈ Wi such that

s�t�r ∈ ai for all r ∈ Wi .

Proof of the claim. — If not, we would have i ∈ n and s ∈ n<ω such that for every t ∈ Wi

there exists r ∈ Wi with s�t�r �∈ ai . But then we can construct by induction a sequence
{rp : p < ω} ⊂ Wi such that r′

p = s�r�
0 r�

1 · · ·� rp �∈ ai for every p. But this is a contradiction,
because {r′

p : p < ω} is an [i]-chain, and we supposed that x ⊂∗ ai for all [i]-chains. �

Using Claim A, define sn = ∅, and by backwards induction si = si+1
�t(i, si+1)

�i for
i = n−1, n−2, . . . ,0. In this way sn < sn−1 < · · · < s0 and s�

i r ∈ ai whenever r ∈ (i+1)<ω.
At the end, we have that s�

0 r ∈ ⋂
j∈n aj for all r ∈ W0. This shows that

⋂
j∈n aj �=∗ ∅. �

Theorem 4.2 is saying that every analytic n∗-gap � contains—in a sense—a per-
mutation �ε of the gap � in Lemma 4.3, but it is not saying that �ε ≤ � because the
definition of the order ≤ between gaps is much more demanding, as it requires the one-
to-one function to respect the orthogonals as well as each of the preideals. If we want to
get �′ ≤ �, we must allow the rest of types to play, not just the simple types [i], and for
this we shall need the machinery of Section 2.

Given a set of types S in m<ω we denote by �S the preideal of all subsets of m<ω

which are of type τ for some type τ ∈ S. If S ∩ S′ = ∅, then �S and �S′ are orthogonal;
indeed, if x and y have different types, then |x ∩ y| ≤ 2.

Corollary 4.4. — If {Si : i ∈ n} are nonempty sets of types in n<ω with
⋂

i∈n Si = ∅, and there

is some permutation ε : n −→ n such that [i] ∈ Sε(i) for every i, then � = {�Si
: i ∈ n} is an n∗-gap

in n<ω. If the sets Si are pairwise disjoint, then � is an n-gap.

The existence of the permutation ε is not really necessary for Corollary 4.4 to
hold, but the proof is more involved and we shall not include it here. A gap of the form
{�Si

: i ∈ n} as in Corollary 4.4 above will be called a standard n∗-gap. When we have
an n∗-gap of the form � = {�Si

: i ∈ n} and a type τ , we may, in abuse of notation, write
τ ∈ �Si

meaning that τ ∈ Si .

Theorem 4.5. — For every analytic n∗-gap � there exists a standard n∗-gap �′ such that

�′ ≤ �.

Proof. — First, we obtain u : n<ω −→ ω as in Theorem 4.2. Now fix a type τ and
we color the sets of type τ into 2n many colors by declaring that a set x of type τ has color
ξ ⊂ n if u(x) ∈ ⋃

i∈ξ �i \ ⋃
i �∈ξ �i . This coloring is Suslin-measurable since the ideals �i

are analytic, so by Theorem 2.5, by passing to a nice subtree we can suppose that all sets
of type τ have the same color. We do this for every type τ . For i ∈ n, let Si be the set of
types for which we got that all sets of type τ have color a color ξ with i ∈ ξ (notice that
[i] ∈ Si ). Let us check that under these hypotheses, u witnesses that {�Si

: i ∈ n} ≤ �. It is
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clear that if x ∈ �Si
then u(x) ∈ �i . Now, take x ∈ �⊥

Si
and let us suppose for contradiction

that u(x) �∈ �⊥
i , so that there exists an infinite y ⊂ u(x) such that y ∈ �i. By Lemma 3.4, we

can find an infinite z ⊂ u−1(y) of some type τ . Since z ⊂ x ∈ �⊥
Si

, we must have τ �∈ Si . But
this means that all subsets of type τ had color ξ �� i, which implies that u(z) �∈ �i which
contradicts that u(z) ⊂ y ∈ �i . �

The existence of a finite basis stated in Theorem 1.6 is a corollary of Theorem 4.5
above. There are only finitely many standard n∗-gaps, so if we pick from them those which
are minimal among them, that is the finite list of minimal analytic n∗-gaps that lie below
any analytic n∗-gap in the order ≤.

5. Projective gaps under determinacy

Theorem 5.1 below states that Theorem 4.2 holds not only for analytic gaps, but
also for gaps of higher complexity, when assuming determinacy axioms. Theorem 5.1 to-
gether with Theorem 2.10 imply that the whole theory developed in this paper holds true
for projective instead of analytic gaps if one assumes Projective Determinacy. The proof that
we provide of Theorem 5.1 consists in a reduction to the analytic case of Theorem 4.2.

Theorem 5.1 (Projective Determinacy). — If � = {�i : i ∈ n} are projective preideals on the

set N which are not separated, then there exists a permutation ε : n −→ n and a one-to-one map

u : n<ω −→ N such that u(x) ∈ �ε(i) whenever x is an [i]-chain, i ∈ n.

Proof. — Consider a game G(�). Player I plays elements d0, d1, d2, . . . from N in
such a way that di �∈ {dj : j < i}, and Player II responds with p0, p1, p2, . . . from n. At the
end, we consider p∞ = lim supi pi and i∞ = min{i : ∀j ≥ i pj ≤ p∞}. Player I wins if and
only if

{di : i ≥ i∞, pi = p∞} ∈ �p∞

As far as the families �p are projective, this is a projective game, hence determined. It is
straightforward to check that Player I having a winning strategy means that there exists
a one-to-one map u : n<ω −→ N such that u(x) ∈ �p whenever x is a [p]-chain. (The
strategy immediately gives a function u which may not be one-to-one, but it is easy to
make it injective by restricting to a nice subtree.)

Claim A. — If Player II has a winning strategy in the game G(�), then there exist Borel

preideals �̃i ⊃ �i , such that Player II still has a winning strategy in the game G(�̃).

Proof of Claim A. — Let S be a winning strategy for Player II in the game G(�).
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For k < n and for ζ ∈ N<ω, we define the set Vk(ζ ) ⊂ N<ω as the family of all
ζ�η = (ζ0, . . . , ζm, η0, . . . , ηl) such that if

Player I ζ0 · · · ζm η0 · · · ηl

Player II p0 · · · pm q0 · · · ql

is played according to the strategy S, then q0, . . . ql ≤ k and ql = k. We make the conven-
tion that ζ ∈ Vk(ζ ).

For every k < n and ζ ∈ N<ω, we also define

xk
ζ = {

d ∈ N : ξm �= d for all ξ = (ξ0, . . . , ξm) ∈ Vk(ζ ) \ {ζ }}

For every k < n, we also define ϒ k to be the set of all ζ = (ζ0, . . . , ζm) ∈ N<ω such
that if

Player I ζ0 · · · ζm

Player II p0 · · · pm

is played according to the strategy S, then there exists no j ∈ {0, . . . ,m} such that pj = k

and pi < k for all i > j. �

Claim A1. — For every k < n, for every ζ ∈ ϒ k and for every a ∈ �k , there exists ξ ∈ Vk(ζ )

such that a ⊂ xk
ξ .

Proof of Claim A1. — Fix k < n, ζ ∈ ϒ k and a ∈ �k for which the statement of Claim
A1 fails. Then, it is possible to construct inductively an infinite set {d1, d2, d3, . . .} ⊂ a

together with elements η1, η2, . . . ∈ N<ω such that

ξm = ζ�η�
1 d�

1 η�
2 d�

2 · · ·� η�
m dm ∈ Vk(ζ )

for all m. Consider the full infinite round of the game G(�), in which Player I moves
ζ ≺ ξ1 ≺ ξ2 ≺ · · · and Player II plays according to the strategy S. In this case, p∞ = k,
and the fact that Player II wins means exactly that {d1, d2, . . .} �∈ �k . This contradicts that
{d1, d2, . . .} ⊂ a ∈ �k . This finishes the proof of Claim A1. �

For each k < ω, let �̃k be the family of all sets a that satisfy Claim A1. That is,

�̃k = {
a ⊂ N : ∀k < n ∀ζ ∈ ϒ k ∃ξ ∈ Vk(ζ ) : a ⊂ xk

ξ

}

This is a Borel preideal, and by Claim A1, �k ⊂ �̃k . Now we show that for �̃ = {�̃k : k

< n}, we can find a winning strategy S̃ for Player II in the game G(�̃). In order to describe
the strategy S̃, let us suppose that Player I plays d0, d1, d2, . . . and we will describe how
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Player II must respond. At each move i < ω, we will not only define the number pi that
Player II must play, but also auxiliary numbers ν

(k)

i < ω for k < n.

Player I d0 d1 · · ·
Player II p0 p1 · · ·

ν
(n−1)

0 ν
(n−1)

1 · · ·
ν

(n−2)

0 ν
(n−2)

1 · · ·
· · · · · · · · ·
ν

(0)

0 ν
(0)

1 · · ·
For every k < n and every ζ ∈ ϒ k , let {ξ k

ν (ζ ) : ν < ω} be an enumeration4 of Vk(ζ ).
Together with the integers ν

(k)

i we also keep track of elements ξ
(k)

i ∈ N<ω defined as fol-
lows:

ξ
(n−1)

i = ξ n−1
ν

(n−1)
i

(∅) ∈ Vn−1(∅)

ξ
(k)

i = ξ k

ν
(k)
i

(
ξ

(k+1)

i

) ∈ Vk
(
ξ

(k+1)

i

)

Notice the following general fact:

Claim A2. — Let {ξ (k) : k < n} ⊂ N<ω be such that ξ (n−1) ∈ Vn−1(∅) and ξ (k) ∈
Vk(ξ (k+1)) for k < n − 1. Then

⋂
k<n xk

ξ (k) = ∅.

Proof of Claim A2. — Suppose for contradiction that d ∈ ⋂
k<n xk

ξ (k) = ∅. Consider
the finite run of the game G(�) played according to strategy S, in which Player I plays
the finite sequence ξ (0)�d . Suppose that Player II responds to the last move d with p < n.
This would violate that d ∈ x

p

ξ (p) and we get a contradiction. This finishes the proof of
Claim A2. �

The initial input is that ν
(k)
0 = 0 for all k < n. Suppose that we are at stage i, that

we are given ν
(k)

i (hence also ξ
(k)

i ) for k < n, and we describe how Player II must choose pi

and the auxiliary numbers ν
(k)

i+1.
By Claim A2,

⋂

k<n

xk

ξ
(k)
i

= ∅

so we can choose

pi = max
{
k < n : di �∈ xk

ξ
(k)
i

}

4 Notice that Vk(ζ ) is nonempty as ζ ∈ Vk(ζ ). In case it was finite, an enumeration with repetitions is allowed.
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and then

ν
(k)

i+1 = ν
(k)

i if k > pi

ν
(pi)

i+1 = ν
(pi)

i + 1

ν
(k)

i+1 = 0 if k < pi

Let us check that this is a winning strategy for Player II in the game G(�̃). So
consider

Player I d0 d1 · · ·
Player II p0 p1 · · ·

ν
(n−1)

0 ν
(n−1)

1 · · ·
ν

(n−2)

0 ν
(n−2)

1 · · ·
· · · · · · · · ·
ν

(0)

0 ν
(0)

1 · · ·
a full infinite run of the game, played according to the strategy S̃, and with the auxiliary
ν

(k)

i and ξ
(k)

i obtained along the run. The first observation is that

p∞ = max
{
k < n : the sequence

{
ν

(k)

i : i < ω
}

is not eventually constant
}

i∞ = min
{
i < ω : ∀k > p∞ the sequence

{
ν

(k)

j : j ≥ i
}

is constant
}

Let ζ be the value at which the sequence {ξ (p∞+1)

j : j < ω} stabilizes. If p∞ = n − 1,
we define ζ = ∅. Notice that ζ ∈ ϒ p∞ because, in the strategy S, if Player I plays ζ , the
last move of Player II is p∞ + 1. We have to check that

a = {di : i ≥ i∞, pi = p∞} �∈ �̃p∞

Assume for contradiction that a ∈ �̃p∞ . By the definition of the �̃k ’s, there must exist
ξ ∈ Vp∞(ζ ) such that a ⊂ x

p∞
ξ . This must appear somewhere in the enumeration that we

made, so there exists ν < ω such that ξ = ξ p∞
ν (ζ ). By the way in which the pi and the ν

(k)

i

are inductively defined, we have that
{
ν

(p∞)

i : i ≥ i∞, pi = p∞
} = {0,1,2,3, . . .}

But on the other hand, since a ⊂ x
p∞
ξ , we have that di ∈ x

p∞
ξ

p∞
ν (ζ )

whenever i ≥ i∞, pi = p∞,

and the definition of pi and the other numbers then implies ν
(p∞)

i �= ν + 1 for all i ≥ i∞.
This is a contradiction, and it finishes the proof of Claim A.

We come back to the proof of the theorem. For every permutation σ : n −→ n we
consider �σ = {�σ(i) : i < n}. If there is a permutation σ such that Player I has a winning
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strategy in the game G(�σ ) we are done. Otherwise, Player II has a winning strategy in
G(�σ ) for every σ . Consider �̃σ given by Claim A, and let

�i =
⋂

σ

�̃σ
σ−1(i)

and we consider again all the permutations �σ = {�σ(i) : i < n}. For every permutation
σ , since �σ

i ⊂ �̃σ
i , and Player II has a winning strategy in G(�̃σ ), we conclude that Player

II has a winning strategy in G(�σ ) as well. In particular, Player I does not have a winning
strategy, so there is no one-to-one map u : n<ω −→ N such that u(x) ∈ �σ

i whenever x is
an [i]-chain. But the sets �i are Borel, so we can apply Theorem 4.2, and we conclude
that � is separated. Since �i ⊂ �i , we get that � is separated as well. �

The proof of Theorem 5.1 contains implicitly an asymmetric version of the theorem,
in which on one side no permutation is considered, and on the other side separation
is substituted by a winning strategy of Player II. In principle, Player II having a win-
ning strategy gives a coanalytic condition, and the proof above is essentially devoted to
transform it into a Borel condition. We found it too technical to state this asymmetric
version as a theorem, as it would not look more friendly than referring to the proof of
Theorem 5.1.
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