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1. Introduction

1.1. Moduli spaces of Abelian and quadratic differentials. — The moduli space Hg of
pairs (C,ω) where C is a smooth complex curve of genus g and ω is an Abelian dif-
ferential (or, in the other words, a holomorphic 1-form) is a total space of a complex
g-dimensional vector bundle over the moduli space Mg of curves of genus g. The moduli
space Qg of holomorphic quadratic differentials is a complex (3g−3)-dimensional vector
bundle over the moduli space of curves Mg . In all our considerations we always remove
the zero sections from both spaces Hg and Qg .

There are natural actions of C∗ on the spaces Hg and Qg by multiplication of the
corresponding Abelian or quadratic differential by a nonzero complex number. We will
also consider the corresponding projectivizations PHg = Hg/C∗ and PQg = Qg/C∗ of
the spaces Hg and Qg .

Stratification. — Each of these two spaces is naturally stratified by the degrees of zeroes
of the corresponding Abelian differential or by orders of zeroes of the corresponding
quadratic differential. (We try to apply the word “degree” for the zeroes of Abelian differ-
entials reserving the word “order” for the zeroes of quadratic differentials.) We denote the
strata by H(m1, . . . ,mn) and Q(d1, . . . , dn) correspondingly. Here m1+ · · · +mn = 2g− 2
and d1+· · ·+ dn = 4g− 4. By PH(m1, . . . ,mn) and PQ(d1, . . . , dn) we denote the projec-
tivizations of the corresponding strata. We shall also consider slightly more general strata
of meromorphic quadratic differentials with at most simple poles, for which we use the
same notation Q(d1, . . . , dn) allowing to certain dj be equal to −1.

The dimension of a stratum of Abelian differentials is expressed as

dimC H(m1, . . . ,mn)= 2g + n− 1.

The dimension of a stratum of quadratic differentials which are not global squares of an
Abelian differentials is expressed as

dimC Q(d1, . . . , dn)= 2g + n− 2.
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Note that, in general, the strata do not have the structure of a bundle over the moduli
space Mg , in particular, it is clear from the formulae above that some strata have dimen-
sion smaller then the dimension of Mg .

Period coordinates. — Consider a small neighborhood U(C0,ω0) of a “point” (C0,ω0) in
a stratum of Abelian differentials H(m1, . . . ,mn). Any Abelian differential ω defines an
element [ω] of the relative cohomology H1(C, {zeroes of ω};C). For a sufficiently small
neighborhood of a generic “point” (C0,ω0) the resulting map from U to the relative
cohomology is a bijection, and one can use an appropriate domain in the relative coho-
mology H1(C, {zeroes of ω};C) as a coordinate chart in the stratum H(m1, . . . ,mn).

Chose some basis of cycles in H1(S, {P1, . . . ,Pn};Z). By Z1, . . . ,Z2g+n−1 we de-
note the corresponding relative periods which serve as local coordinates in the stratum
H(m1, . . . ,mn). Similarly, one can use (Z1 : Z2 : · · · : Z2g+n−1) as projective coordinates in
PH(m1, . . . ,mn).

The situation with the strata Q(d1, . . . , dn) of meromorphic quadratic differen-
tials with at most simple poles, which do not correspond to global squares of Abelian
differentials, is analogous. We first pass to the canonical double cover p : Ŝ→ S where
p∗q= ω̂2 becomes a global square of an Abelian differential ω̂ and then use the subspace
H1
−(Ŝ, {zeroes of ω̂};C) antiinvariant under the natural involution to construct coordi-

nate charts. Thus, we again use a certain subcollection of relative periods Z1, . . . ,Zk of
the Abelian differential ω̂ as coordinates in the stratum Q(d1, . . . , dn). Passing to the pro-
jectivization PQ(d1, . . . , dn) we use projective coordinates (Z1 : Z2 : · · · : Zk)

1.2. Volume element and action of the linear group. — The vector space

H1
(
S, {zeroes of ω};C)

considered over real numbers is endowed with a natural integer lattice, namely with the
lattice H1(S, {zeroes of ω};Z⊕ iZ). Consider a linear volume element in this vector space
normalized in such way that a fundamental domain of the lattice has area one. Since rel-
ative cohomology serve as local coordinates in the stratum, the resulting volume element
defines a natural measure μ in the stratum H(m1, . . . ,mn). It is easy to see that the mea-
sure μ does not depend on the choice of local coordinates used in the construction, so
the volume element μ is defined canonically.

The canonical volume element in a stratum Q(d1, . . . , dn) of meromorphic
quadratic differentials with at most simple poles is defined analogously using the vec-
tor space

H1
−
(
S, {zeroes of ω̂};C)

described above and the natural lattice inside it.
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Flat structure. — A quadratic differential q with at most simple poles canonically defines
a flat metric |q| with conical singularities on the underlying Riemann surface C.

If the quadratic differential is a global square of an Abelian differential, q = ω2,
the linear holonomy of the flat metric is trivial; if not, the holonomy representation in the
group Z/2Z is nontrivial. We denote the resulting flat surface by S= (C,ω) or S= (C, q)

correspondingly.
A zero of order d of the quadratic differential corresponds to a conical point with

the cone angle π(d + 2). In particular, a simple pole corresponds to a conical point with
the cone angle π . If the quadratic differential is a global square of an Abelian differential,
q = ω2, then a zero of degree m of ω corresponds to a conical point with the cone angle
2π(m+ 1).

When q = ω2 the area of the surface S in the associated flat metric is defined in
terms of the corresponding Abelian differential as

Area(S)=
∫

C
|q| = i

2

∫

C
ω ∧ ω̄.

When the quadratic differential is not a global square of an Abelian differential, one can
express the flat area in terms of the Abelian differential on the canonical double cover
where p∗q= ω̂2:

Area(S)=
∫

C
|q| = i

4

∫

Ĉ
ω̂ ∧ ω̂.

By H1(m1, . . . ,mn) we denote the real hypersurface in the corresponding stra-
tum defined by the equation Area(S) = 1. We call this hypersurface by the same
word “stratum” taking care that it does not provoke ambiguity. Similarly we denote by
Q1(d1, . . . , dn) the real hypersurface in the corresponding stratum defined by the equa-
tion Area(S)= const. Throughout this paper we choose const := 1; note that some other
papers, say [AtEZ], use alternative convention const := 1

2 .

Group action. — Let Xj =Re(Zj) and let Yj = Im(Zj). Let us rewrite the vector of periods
(Z1, . . . ,Z2g+n−1) in two lines

(
X1 X2 . . . X2g+n−1

Y1 Y2 . . . Y2g+n−1

)

The group GL+(2,R) of 2×2-matrices with positive determinant acts on the left on the
above matrix of periods as

(
g11 g12

g21 g22

)
·
(

X1 X2 . . . X2g+n−1

Y1 Y2 . . . Y2g+n−1

)
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Considering the lines of resulting product as the real and the imaginary parts of pe-
riods of a new Abelian differential, we define an action of GL+(2,R) on the stratum
H(m1, . . . ,mn) in period coordinates. Thus, in the canonical local affine coordinates, this
action is the action of GL+(2,R) on the vector space

H1
(
C, {zeroes of ω};C)�C⊗H1

(
C, {zeroes of ω};R)

�R2⊗H1
(
C, {zeroes of ω};R)

through the first factor in the tensor product.
The action of the linear group on the strata Q(d1, . . . , dn) is defined completely

analogously in period coordinates H1
−(C, {zeroes of ω̂};C). The only difference is that

now we have the action of the group PSL(2,R) since p∗q = ω̂2 = (−ω̂)2, and the sub-
group {Id,− Id} acts trivially on the strata of quadratic differentials.

Remark. — One should not confuse the trivial action of the element − Id on
quadratic differentials with multiplication by −1: the latter corresponds to multiplication

of the Abelian differential ω̂ by i, and is represented by the matrix
( 0 1

−1 0

)
.

From this description it is clear that the subgroup SL(2,R) preserves the mea-
sure μ and the function Area, and, thus, it keeps invariant the “unit hyperboloids”
H1(m1, . . . ,mn) and Q1(d1, . . . , dn). Let

a(S) := Area(S)

The measure μ in the stratum defines canonical measure

ν := μ

da

on the “unit hyperboloid” H1(m1, . . . ,mn) (correspondingly on Q1(d1, . . . , dn)). It follows
immediately from the definition of the group action that the group SL(2,R) (correspond-
ingly PSL(2,R)) preserves the measure ν.

The following two Theorems proved independently by H. Masur [M2] and by
W. Veech [Ve1] are fundamental for the study of dynamics in the Teichmüller space.

Theorem (H. Masur; W. Veech). — The total volume of any stratum H1(m1, . . . ,mn) of

Abelian differentials and of any stratum Q1(d1, . . . , dn) of meromorphic quadratic differentials with at

most simple poles with respect to the measure ν is finite.

Note that the strata might have up to three connected components. The connected
components of the strata were classified by the authors for Abelian differentials [KZ2]
and by E. Lanneau [La2] for the strata of meromorphic quadratic differentials with at
most simple poles.
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Remark 1.1. — The volumes of the connected components of the strata of Abelian
differentials were effectively computed by A. Eskin and A. Okounkov [EO]. The volume
of any connected component of any stratum of Abelian differentials has the form r · π 2g ,
where r is a rational number. The exact numerical values of the corresponding rational
numbers are currently tabulated up to genus ten (up to genus 60 for some individual
strata like the principal one).

Theorem (H. Masur; W. Veech). — The action of the one-parameter subgroup of SL(2,R)

(correspondingly of PSL(2,R)) represented by the matrices

Gt =
(

et 0
0 e−t

)

is ergodic with respect to the measure ν on each connected component of each stratum H1(m1, . . . ,mn) of

Abelian differentials and on each connected component of each stratum Q1(d1, . . . , dn) of meromorphic

quadratic differentials with at most simple poles.

The projection of trajectories of the corresponding group action to the moduli
space of curves Mg correspond to Teichmüller geodesics in the natural parametrization,
so the corresponding flow Gt on the strata is called the “Teichmüller geodesic flow”.
Notice, however, that the Teichmüller metric is not a Riemannian metric, but only a
Finsler metric.

1.3. Hodge bundle and Gauss–Manin connection. — A complex structure on the Rie-
mann surface C underlying a flat surface S of genus g determines a complex g-
dimensional space of holomorphic 1-forms �(C) on C, and the Hodge decomposition

H1(C;C)=H1,0(C)⊕H0,1(C)��(C)⊕ �̄(C).

The intersection form

(1.1) 〈ω1,ω2〉 := i

2

∫

C
ω1 ∧ ω̄2

is positive-definite on H1,0(C) and negative-definite on H0,1(C).
The projections H1,0(C) → H1(C;R), acting as [ω] 
→ [Re(ω)] and [ω] 
→

[Im(ω)] are isomorphisms of vector spaces over R. The Hodge operator ∗ :H1(C;R)→
H1(C;R) acts as the inverse of the first isomorphism composed with the second one. In
other words, given v ∈H1(C;R), there exists a unique holomorphic form ω(v) such that
v = [Re(ω(v))]; the dual ∗v is defined as [Im(ω)].

Define the Hodge norm of v ∈H1(C,R) as

‖v‖2 = 〈
ω(v),ω(v)

〉
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Passing from an individual Riemann surface to the moduli stack Mg of Rie-
mann surfaces, we get vector bundles H1

C = H1,0 ⊕H0,1, and H1
R over Mg with fibers

H1(C,C)=H1,0(C)⊕H0,1(C), and H1(C,R) correspondingly over C ∈Mg . The vec-
tor bundle H1,0 is called the Hodge bundle. When the context excludes any possible ambi-
guity we also refer to each of the bundles H1

C and to H1
R as Hodge bundle.

Using integer lattices H1(C,Z ⊕ iZ) and H1(C,Z) in the fibers of these vector
bundles we can canonically identify fibers over nearby Riemann surfaces. This identi-
fication is called the Gauss–Manin connection. The Hodge norm is not preserved by the
Gauss–Manin connection and the splitting H1

C =H1,0 ⊕H0,1 is not covariantly constant
with respect to this connection.

1.4. Lyapunov exponents. — Informally, the Lyapunov exponents of a vector bundle
endowed with a connection can be viewed as logarithms of mean eigenvalues of mon-
odromy of the vector bundle along a flow on the base.

In the case of the Hodge bundle, we take a fiber of H1
R and pull it along a Te-

ichmüller geodesic on the moduli space. We wait till the geodesic winds a lot and comes
close to the initial point and then compute the resulting monodromy matrix A(t). Finally,
we compute logarithms of eigenvalues of ATA, and normalize them by twice the length
t of the geodesic. By the Oseledets multiplicative ergodic theorem, for almost all choices
of initial data (starting point, starting direction) the resulting 2g real numbers converge as
t→∞, to limits which do not depend on the initial data within an ergodic component of
the flow. These limits λ1 ≥ · · · ≥ λ2g are called the Lyapunov exponents of the Hodge bundle
along the Teichmüller flow.

The matrix A(t) preserves the intersection form on cohomology, so it is symplectic.
This implies that Lyapunov spectrum of the Hodge bundle is symmetric with respect to
the sign interchange, λj = −λ2g−j+1. Moreover, from elementary geometric arguments
it follows that one always has λ1 = 1. Thus, the Lyapunov spectrum is defined by the
remaining nonnegative Lyapunov exponents

λ2 ≥ · · · ≥ λg.

Given a vector bundle endowed with a norm and a connection we can construct
other natural vector bundles endowed with a norm and a connection: it is sufficient to
apply elementary linear-algebraic constructions (direct sums, exterior products, etc.). The
Lyapunov exponents of these new bundles might be expressed in terms of the Lyapunov
exponents of the initial vector bundle. For example, the Lyapunov spectrum of a kth
exterior power of a vector bundle (where k is not bigger than a dimension of a fiber) is
represented by all possible sums

λj1 + · · · + λjk where j1 < j2 < · · ·< jk

of k-tuples of Lyapunov exponents of the initial vector bundle.
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1.5. Regular invariant suborbifolds. — For a subset M1 ⊂H1(m1, . . . ,mn) we write

RM1 =
{
(M, tω) | (M,ω) ∈M1, t ∈R

}⊂H(m1, . . . ,mn).

Let a(S) := Area(S).

Conjecture 1. — Let H(m1, . . . ,mn) be a stratum of Abelian differentials. Let ν1 be an ergodic

SL(2,R)-invariant probability measure on H1(m1, . . . ,mn). Then

(i) The support of ν1 is an immersed suborbifold M1 of H1(m1, . . . ,mn). In cohomological

local coordinates H1(S, {zeroes} ; C), the suborbifold M=RM1 of H(m1, . . . ,mn) is

represented by a complex affine subspace, such that the associated linear subspace is invariant

under complex conjugation.

(ii) Let μ be the measure on M such that dμ= dν1 da. Then μ is affine, i.e. it is an affine

linear measure in the cohomological local coordinates H1(S, {zeroes};C).

We say that a suborbifold M1, for which there exists a measure ν1 such that the
pair (M1, ν1) satisfies (i) and (ii), is an invariant suborbifold.

Conjecture 2. — The closure of any SL(2,R)-orbit is an invariant suborbifold. For any invari-

ant suborbifold, the set of self-intersections is itself a finite union of affine invariant suborbifolds of lower

dimension.

These conjectures have been proved by C. McMullen in genus 2, see [McM].
They are also known in a few other special cases, see [EMfMr] and [CaWn]. A proof
of Conjecture 1 has been recently announced by A. Eskin and M. Mirzakhani [EMz];
a proof of Conjecture 2 has been recently announced by A. Eskin, M. Mirzakhani and
A. Mohammadi [EMzMh].

Definition 1. — An invariant suborbifold is regular if in addition to (i) and (ii) it satisfies the

following technical condition:

(iii) For K > 0 and ε > 0 let M1(K, ε)⊂M1 denote the set of surfaces which contain two

non-parallel cylinders C1, C2, such that for i = 1,2, Mod(Ci) > K and w(Ci) < ε.

An invariant suborbifold is called regular if there exists a K > 0, such that

(1.2) lim
ε→0

ν1(M1(K, ε))

ε2
= 0.

All known examples of invariant suborbifolds are regular, and we believe this is
always the case. (After completion of work on this paper, it was proved by A. Avila,
C. Matheus Santos and J. C. Yoccoz that indeed all SL(2,R)-invariant measures are
regular, see [AvMaY1].) In the rest of the paper we consider only regular invariant sub-
orbifolds. (However, the condition (iii) is used only in Section 9.)
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Remark. — In view of Conjecture 1, in this paper we consider only density mea-
sures; moreover, densities always correspond to volume forms on appropriate suborb-
ifolds. Depending on a context we use one of the three related structures mostly referring
to any of them just as a “measure”. Also, if M1 is a regular invariant suborbifold, we often
write carea(M1) instead of carea(ν1), where the Siegel–Veech constant carea is defined in Sec-
tion 1.6. Throughout this paper we denote by dν1 the invariant probability density measure
and by dν any finite invariant density measure on a regular invariant suborbifold M1.

Remark. — We say that a subset M1 of a stratum of quadratic differentials is a regu-
lar invariant suborbifold if under the canonical double cover construction it corresponds
to a regular invariant suborbifold of a stratum of Abelian differentials. See Section 2 for
details.

1.6. Siegel–Veech constants. — Let S be a flat surface in some stratum of Abelian or
quadratic differentials. Together with every closed regular geodesic γ on S we have a
bunch of parallel closed regular geodesics filling a maximal cylinder cyl having a conical
singularity at each of the two boundary components. By the width w of a cylinder we
call the flat length of each of the two boundary components, and by the height h of a
cylinder—the flat distance between the boundary components.

The number of maximal cylinders filled with regular closed geodesics of bounded
length w(cyl)≤ L is finite. Thus, for any L > 0 the following quantity is well-defined:

(1.3) Narea(S,L) := 1
Area(S)

∑

cyl⊂S
w(cyl)<L

Area(cyl)

The following theorem is a special case of a fundamental result of W. Veech, [Ve3]
considered by Y. Vorobets in [Vb]:

Theorem (W. Veech; Ya. Vorobets). — Let ν1 be an ergodic SL(2,R)-invariant probability

measure (correspondingly PSL(2,R)-invariant probability measure) on a stratum H1(m1, . . . ,mn) of

Abelian differentials (correspondingly on a stratum Q1(d1, . . . , dn) of meromorphic quadratic differen-

tials with at most simple poles) of area one. Then, the following ratio is constant (i.e. does not depend on

the value of a positive parameter L):

(1.4)
1

πL2

∫
Narea(S,L) dν1 = carea(ν1)

This formula is called a Siegel–Veech formula, and the corresponding constant carea(ν1) is
called the Siegel–Veech constant.
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Conjecture 3. — For any regular SL(2,R)-invariant suborbifold M1 in any stratum of Abelian

differentials the corresponding Siegel–Veech constant π 2 · carea(M1) is a rational number.

By Lemma 1.1 below an affirmative answer to this conjecture automatically im-
plies an affirmative answer to the analogous conjecture for invariant suborbifolds in the
strata of meromorphic quadratic differentials with at most simple poles.

Let ν1 be an ergodic PSL(2,R)-invariant probability measure on a stratum
Q1(d1, . . . , dn) of meromorphic quadratic differentials with at most simple poles, which
are not the global squares of Abelian differentials. Passing to a canonical double cover p :
Ĉ→C, where p∗q becomes a global square of an Abelian differential we get an induced
SL(2,R)-invariant probability measure ν̂1 on the resulting stratum H1(m1, . . . ,mk). The
degrees mj of the corresponding Abelian differential ω̂ are given by formula (2.5) in Sec-
tion 2.2 below. We shall need the following relation between the Siegel–Veech constant
carea(ν̂1) of the induced invariant probability measure ν̂1 in terms of the Siegel–Veech
constant carea(ν1) of the initial invariant probability measure ν1.

Lemma 1.1. — Let ν̂1 be an SL(2,R)-invariant probability measure on a stratum

H1(m1, . . . ,mk) induced from a PSL(2,R)-invariant probability measure on a stratum Q1(d1,

. . . , dn) by the canonical double cover construction. The Siegel–Veech constants of the two measures are

related as follows:

carea(ν̂1)= 2carea(ν1)

Proof. — Consider any flat surface S= (C, q) in the support of the measure ν1. The
linear holonomy of the flat metric on S along any closed flat geodesic is trivial. Thus, the
waist curves of cylinders on S are lifted to closed flat geodesics on the canonical double
cover Ŝ of the same length as downstairs. Hence, the total area Area(ĉyl) swept by each
family of parallel closed geodesics on the double cover Ŝ doubles with respect to the
corresponding area downstairs. Since Area Ŝ= 2 Area S we get

Narea(Ŝ,L)=
∑

ĉyl⊂Ŝ
w(ĉyl)<L

Area(ĉyl)

Area(Ŝ)
=

∑

cyl⊂S
w(cyl)<L

Area(cyl)
Area(S)

=Narea(S,L)

For a flat surface M denote by M(1) a proportionally rescaled flat surface of area
one. The definition of Narea(M,L) immediately implies that for any L > 0

Narea(M(1),L)=Narea

(
M,

√
Area(M)L

)
.

Hence,
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carea(ν̂1) := 1
πL2

∫
Narea(Ŝ(1),L) d ν̂1 = 1

πL2

∫
Narea

(
Ŝ,

√
Area(Ŝ)L

)
d ν̂1

= 2

π(
√

2L)2

∫
Narea(Ŝ,

√
2L) d ν̂1 = 2

πR2

∫
Narea(S,R) dν1

= 2 carea(ν1),

where we used the notation R := √2L. �

2. Sum of Lyapunov exponents for SL(2,R)-invariant suborbifolds

2.1. Historical remarks. — There are no general methods of evaluation of Lyapunov
exponents unless the base is a homogeneous space or unless the vector bundle has real
1-dimensional equivariant subbundles. However, in some cases it is possible to evaluate
Lyapunov exponents approximately through computer simulation of the corresponding
dynamical system. Such experiments with Rauzy–Veech induction (a discrete model of the
Teichmüller geodesic flow) performed by the authors in 1995–1996, indicated a surpris-
ing rationality of the sums λ1+· · ·+λg of Lyapunov exponents of the Hodge bundle with
respect to Teichmüller flow on strata of Abelian and quadratic differentials, see [KZ1].
An explanation of this phenomenon was given by M. Kontsevich in [K] and then devel-
oped by G. Forni [Fo1].

It took us almost fifteen years to collect and assemble all necessary ingredients to
obtain and justify an explicit formula for the sums λ1 + · · · + λg . In particular, to obtain
explicit numerical values of these sums, one needs estimates from the work of A. Eskin
and H. Masur on the asymptotic of the counting function of periodic orbits [EM] (de-
veloping Veech’s seminal paper [Ve3]); one needs to know the classification of connected
components of the strata (which was performed by M. Kontsevich and A. Zorich [KZ1]
and by E. Lanneau [La2]); one needs to compute volumes of these components (they
are computed in the papers of A. Eskin, A. Okounkov, and R. Pandharipande [EO],
[EOPa]); one also has to know a description of the principal boundary of the compo-
nents of the strata, and values of the corresponding Siegel–Veech constants (obtained by
A. Eskin, H. Masur and A. Zorich in [EMZ] and [MZ]).

Several important subjects related to the study of the Lyapunov spectrum remain
beyond the scope of our consideration. We address the reader to the original paper of
G. Forni [Fo1], to the survey [Fo2] and to the recent papers [Fo3], [Tr], [Au1], [Au2] for
the very important issues of determinant locus and of nonuniform hyperbolicity. We address the
reader to the paper [AvVi] of A. Avila and M. Viana for the proof of simplicity of the spectrum

of Lyapunov exponents for connected components of the strata of Abelian differentials.
For invariant suborbifolds of the strata of Abelian differentials in genus two (see [Ba1],
[Ba2]) and for certain special Teichmüller curves, the Lyapunov exponents are computed
individually, see [BwMö], [EKZ], [Fo2], [FoMaZ1], [Wr1], [Wr2].
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2.2. Sum of Lyapunov exponents. — Now we are ready to formulate the principal
results of our paper.

Theorem 1. — Let M1 be any closed connected regular SL(2,R)-invariant suborbifold of

some stratum H1(m1, . . . ,mn) of Abelian differentials, where m1 + · · · + mn = 2g − 2. The top g

Lyapunov exponents of the of the Hodge bundle H1
R over M1 along the Teichmüller flow satisfy the

following relation:

(2.1) λ1 + · · · + λg = 1

12
·

n∑

i=1

mi(mi + 2)

mi + 1
+ π 2

3
· carea(M1)

where carea(M1) is the Siegel–Veech constant corresponding to the regular suborbifold M1. The leading

Lyapunov exponent λ1 is equal to one.

We prove Theorem 1 and formula (2.1) in the very end of Section 3.

Remark. — For all known regular SL(2,R)-invariant suborbifolds, in particular,
for connected components of the strata and for preimages of Teichmüller curves, the
sum of the Lyapunov exponents is rational. However, currently we do not have a proof
of rationality of the sum of the Lyapunov exponents for any regular SL(2,R)-invariant
suborbifold.

Let us proceed with a consideration of sums of Lyapunov exponents in the case
of meromorphic quadratic differentials with at most simple poles. Let S be a flat surface
of genus g in a stratum Q(d1, . . . , dn) of quadratic differentials, where d1 + · · · + dn =
4g − 4. Similarly to the case of Abelian differentials we have the Hodge bundle H1

R over
Q(d1, . . . , dn) with a fiber H1(S,R) over a “point” S. As before this vector bundle is
endowed with the Hodge norm and with the Gauss–Manin connection. We denote the
Lyapunov exponents corresponding to the action of the Teichmüller geodesic flow on this
vector bundle by λ+1 ≥ · · · ≥ λ+g .

Consider a canonical (possibly ramified) double cover p : Ŝ→ S such that p∗q =
(ω̂)2, where ω̂ is an Abelian differential on the Riemann surface Ŝ. This double cover
has ramification points at all zeroes of odd orders of q and at all simple poles, and no
other ramification points. It would be convenient to introduce the following notation:

(2.2) geff := ĝ − g

By construction the double cover Ŝ is endowed with a natural involution σ : Ŝ→ Ŝ
interchanging the two sheets of the cover. We can decompose the vector space H1(Ŝ,R)

into a direct sum of subspaces H1
+(Ŝ,R) and H1

−(Ŝ,R) which are correspondingly invari-
ant and anti-invariant with respect to the induced involution σ ∗ :H1(Ŝ,R)→H1(Ŝ,R)

on cohomology. Note that topology of the ramified cover Ŝ→ S is the same for all
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flat surfaces in the stratum Q(d1, . . . , dn). Thus, we get two natural vector bundles over
Q(d1, . . . , dn) which we denote by H1

+ and by H1
−. By construction, these vector bundles

are equivariant with respect to the PSL(2,R)-action; they are endowed with the Hodge
norm and with the Gauss–Manin connection.

Clearly, the vector bundle H1
+ is canonically isomorphic to the initial Hodge bundle

H1
R : it corresponds to cohomology classes pulled back from S to Ŝ by the projection

p : Ŝ→ S. Hence,

dim H1
− = dim H1

−(Ŝ,R)= 2geff

We denote the top geff Lyapunov exponents corresponding to the action of the Teich-
müller geodesic flow on the vector bundle H1

− by λ−1 ≥ · · · ≥ λ−geff
.

Theorem 2. — Consider a stratum Q1(d1, . . . , dn) in the moduli space of quadratic differentials

with at most simple poles, where d1+· · ·+dn = 4g−4. Let M1 be any regular PSL(2,R)-invariant

suborbifold of Q1(d1, . . . , dn).

(a) The Lyapunov exponents λ+1 ≥ · · · ≥ λ+g of the invariant subbundle H1
+ of the Hodge bundle

over M1 along the Teichmüller flow satisfy the following relation:

(2.3) λ+1 + · · · + λ+g =
1

24

n∑

j=1

dj(dj + 4)

dj + 2
+ π 2

3
· carea(M1)

where carea(M1) is the Siegel–Veech constant corresponding to the suborbifold M1. By convention the

sum in the left-hand side of Equation (2.3) is defined to be equal to zero for g = 0.

(b) The Lyapunov exponents λ−1 ≥ · · · ≥ λ−geff
of the anti-invariant subbundle H1

− of the Hodge

bundle over M1 along the Teichmüller flow satisfy the following relation:

(2.4)
(
λ−1 + · · · + λ−geff

)− (
λ+1 + · · · + λ+g

)= 1

4
·
∑

j such that
dj is odd

1

dj + 2

The leading Lyapunov exponent λ−1 is equal to one.

We prove part (a) of Theorem 2 and formula (2.3) in the very end of Section 3.

Proof of part (b) of Theorem 2. — Recall that we reserve the word “degree” for the
zeroes of Abelian differentials and the word “order” for the zeroes of quadratic differentials.

Let the covering flat surface Ŝ belong to the stratum H(m1, . . . ,mk). The resulting
holomorphic form ω̂ on Ŝ has zeroes of the following degrees:
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A singularity of order d of q on S gives rise to(2.5)
{

two zeroes of ω̂ of degree m= d/2 when d is even
single zero of ω̂ of degree m= d + 1 when d is odd

Thus, we get the following expression for the genus ĝ of the double cover Ŝ:

(2.6) ĝ = 2g − 1+ 1

2
(Number of singularities of odd order)

which follows from the relation below:

4ĝ − 4=
∑

j such that
dj is odd

(2dj + 2)+
∑

j such that
dj is even

(2dj)

= 2
n∑

j=1

dj + 2 (Number of singularities of odd order)

= 2(4g − 4)+ 2(Number of singularities of odd order)

Applying Theorem 1 and Equation (2.17) to the invariant suborbifold M̂ ⊂
H(m1, . . . ,mk) induced from M we get

λ1 + · · · + λĝ = 1

12
·

n∑

i=1

mi(mi + 2)

mi + 1
+ π 2

3
· carea(M̂)

where ĝ is the genus of Ŝ, and λ1 ≥ · · · ≥ λĝ are the Lyapunov exponents of the Hodge
bundle H1(Ŝ;R) over M̂.

Note that H1(Ŝ;R) decomposes into a direct sum of symplectically orthogonal
subspaces:

H1(Ŝ;R)=H1
+(Ŝ;R)⊕H1

−(Ŝ;R)

Hence,

(λ1 + · · · + λĝ)=
(
λ−1 + · · · + λ−geff

)+ (
λ+1 + · · · + λ+g

)

Moreover, by Lemma 1.1 we have carea(M̂) = 2 carea(M1), which implies the following
relation:

(
λ−1 + · · · + λ−geff

)+ (
λ+1 + · · · + λ+g

)
(2.7)

= 1

12
·

n∑

i=1

mi(mi + 2)

mi + 1
+ 2

π 2

3
· carea(M1)
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The degrees mi of zeroes of the Abelian differential ω̂ defining the flat metric on
Ŝ are calculated in terms of the orders dj of zeroes and of simple poles of the quadratic
differential q defining the flat metric on S by formula (2.5), which implies:

n∑

i=1

mi(mi + 2)

mi + 1
=

∑

j such that
dj is odd

(dj + 1)(dj + 3)

dj + 2
+ 2

∑

j such that
dj is even

(dj/2)(dj/2+ 2)

dj/2+ 1

Thus, we can rewrite relation (2.7) as follows:
(
λ−1 + · · · + λ−geff

)+ (
λ+1 + · · · + λ+g

)

= 1

12

∑

j such that
dj is odd

(dj + 1)(dj + 3)

dj + 2
+ 1

12

∑

j such that
dj is even

dj(dj + 4)

dj + 2
+ 2

π 2

3
· carea(M1)

Taking the difference between the above relation and relation (2.3) taken with
coefficient 2 we obtain the desired relation (2.4). �

2.3. Genus zero and hyperelliptic loci. — Our results become even more explicit in a
particular case of genus zero, and in a closely related case of hyperelliptic loci.

Theorem 3. — Consider a stratum Q1(d1, . . . , dn) in the moduli space of quadratic differentials

with at most simple poles on CP1, where d1 + · · · + dn =−4. Let M1 be any regular PSL(2,R)-

invariant suborbifold of Q1(d1, . . . , dn). Let geff be the genus of the canonical double cover Ŝ over a

Riemann surface S in Q1(d1, . . . , dn).

(a) The Siegel–Veech constant carea(M1) depends only on the ambient stratum and equals

carea(M1)=− 1

8π 2

n∑

j=1

dj(dj + 4)

dj + 2

(b) The Lyapunov exponents λ−1 ≥ · · · ≥ λ−geff
of the anti-invariant subbundle H1

− of the Hodge

bundle over M1 along the Teichmüller flow satisfy the following relation:

(2.8) λ−1 + · · · + λ−geff
= 1

4
·
∑

j such that
dj is odd

1

dj + 2

Remark. — Relation (2.8) was conjectured in [KZ1].

Proof. — Apply Equations (2.3) and (2.4) and note that by convention the sum of
exponents (λ+1 +· · ·+λ+g ) in the left-hand side is defined to be equal to zero for g = 0. �
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The square of any holomorphic 1-form ω on a hyperelliptic Riemann surface S is
a pullback (ω)2 = p∗q of some meromorphic quadratic differential with simple poles q on
CP1 where the projection p : S→ CP1 is the quotient over the hyperelliptic involution.
The relation between the degrees m1, . . . ,mk of zeroes of ω and the orders d1, . . . , dn of
singularities of q is established by formula (2.5).

Note, that a pair of hyperelliptic Abelian differentials ω1,ω2 in the same stra-
tum H(m1, . . . ,mk) might correspond to meromorphic quadratic differentials in different
strata on CP1 depending on which zeroes are interchanged and which zeroes are invari-
ant under the hyperelliptic involution. Note also, that hyperelliptic loci in the strata of
Abelian differentials are SL(2,R)-invariant, and that the orders d1, . . . , dn of singularities
of the underlying quadratic differential do not change under the action of SL(2,R).

Corollary 1. — Suppose that M1 is a regular SL(2,R)-invariant suborbifold in a hyperelliptic

locus of some stratum H1(m1, . . . ,mk) of Abelian differentials in genus g. Denote by (d1, . . . , dn) the

orders of singularities of the underlying quadratic differentials.

The top g Lyapunov exponents of the Hodge bundle H1 over M1 along the Teichmüller flow

satisfy the following relation:

λ1 + · · · + λg = 1

4
·
∑

j such that
dj is odd

1

dj + 2
,

where, as usual, we associate the order di =−1 to simple poles.

In particular, for any regular SL(2,R)-invariant suborbifold M1 in a hyperelliptic connected

component one has

1+ λ2 + · · · + λg = g2

2g − 1
for M1 ⊆Hhyp

1 (2g − 2)

1+ λ2 + · · · + λg = g + 1

2
for M1 ⊆Hhyp

1 (g − 1, g − 1).

Proof. — The first statement is just an immediate reformulation of Theorem 3.
To prove the second part it is sufficient to note in addition, that hyperelliptic connected
components Hhyp(2g − 2) and Hhyp(g − 1, g − 1) are obtained by the double cover con-
struction from the strata of meromorphic quadratic differentials Q(2g − 3,−12g+1) and
Q(2g − 2,−12g+2) correspondingly. �

Corollary 2. — For any regular SL(2,R)-invariant suborbifold M1 in the stratum H1(2) of

Abelian differentials in genus two the Siegel–Veech constant carea(M1) is equal to 10/(3π 2) and the

second Lyapunov exponent λ2 is equal to 1/3.

For any regular SL(2,R)-invariant suborbifold M1 in the stratum H1(1,1) of Abelian differ-

entials in genus two the Siegel–Veech constant carea(M1) is equal to 15/(4π 2) and the second Lyapunov

exponent λ2 is equal to 1/2.



LYAPUNOV EXPONENTS OF THE TEICHMÜLLER FLOW 223

Proof. — Any Riemann surface of genus two is hyperelliptic. The moduli space
of Abelian differentials in genus 2 has two strata H(2) and H(1,1). Both strata are
connected and coincide with their hyperelliptic components. The value of the Siegel–
Veech constant is now given by Theorem 3 and Lemma 1.1 and the values of the sums
λ1 + λ2 = 1+ λ2 are calculated in Corollary 1. �

Remark. — The values of the second Lyapunov exponent in genus 2 were con-
jectured by the authors in 1997 (see [KZ1]). This conjecture was recently proved
by M. Bainbridge in [Ba1] and [Ba2] where he used the classification of ergodic
SL(2,R)-invariant measures in the moduli space of Abelian differentials in genus due
to C. McMullen [McM].

Remark. — Note that although the sum of the Lyapunov exponents is constant,
individual Lyapunov exponents λ−j (M1) in (2.8) might vary from one invariant suborb-
ifold of a given stratum in genus zero to another, or, equivalently, from one invariant
suborbifold in a fixed hyperelliptic locus to another.

We formulate analogous statements for the hyperelliptic connected components in
the strata of meromorphic quadratic differentials with at most simple poles.

Corollary 3. — For any regular PSL(2,R)-invariant suborbifold M1 in a hyperelliptic con-

nected component of any stratum of meromorphic quadratic differentials with at most simple poles, the sum

of nonnegative Lyapunov exponents λ−1 + λ−2 + · · · + λ−geff
has the following value:

g + 1
2
+ g + 1

2(2g − 2k− 1)(2k+ 3)

for Qhyp

1

(
2(g − k)− 3,2(g − k)− 3,2k + 1,2k+ 1

)

where k ≥−1, g ≥ 1, g − k ≥ 2, geff = g + 1

2g + 1
4
+ 1

8(g − k)− 4

for Qhyp

1

(
2(g − k)− 3,2(g − k)− 3,4k + 2

)
,

where k ≥ 0, g ≥ 1, g − k ≥ 1, geff = g

g

2

for Qhyp

1

(
4(g − k)− 6,4k + 2

)
,

where k ≥ 0, g ≥ 2, g − k ≥ 2, geff = g − 1.

We shall need the following general Lemma in the proof of Corollary 3.
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Lemma 2.1. — Consider a meromorphic quadratic differential q with at most simple poles on a

Riemann surface C. We assume that q is not a global square of an Abelian differential. Suppose that for

some finite (possibly ramified) cover

P : C̃→C

the induced quadratic differential P∗q on C̃ is a global square of an Abelian differential. Then the cover

P quotients through the canonical double cover p : Ĉ→C

C̃
P−→ C

↘ ↗
Ĉ

constructed in Section 2.2.

Proof. — Let us puncture C at all zeroes of odd orders and at all simple poles of q;
let us puncture C̃ and Ĉ at all preimages of punctures on C. If necessary, puncture C̃ at all
remaining ramification points. The covers P and p restricted to the resulting punctured
surfaces become nonramified.

A non ramified cover f : X→ Z is defined by the image of the group f∗π1(X) ⊂
π1(Z). A cover f quotients through a cover g : Y→ Z if and only if f∗π1(X) is a subgroup
of g∗π1(Y).

Consider the flat metric defined by the quadratic differential q on C punctured
at the conical singularities. Note that by definition of the cover p : Ĉ→ C, the sub-
group p∗π1(Ĉ) coincides with the kernel of the corresponding holonomy representation
π1(C)→ Z/2Z.

The quadratic differential P∗q induced on the covering surface S̃ by a finite cover
P : C̃→ C is a global square of an Abelian differential if and only if the holonomy of
the induced flat metric is trivial, or, equivalently, if and only if P∗π1C̃ is in the kernel of
the holonomy representation π1(C)→ Z/2Z. Thus, the Lemma is proved for punctured
surfaces.

It remains to note that the ramification points of the canonical double cover p :
Ĉ→C are exactly those, where q has zeroes of odd degrees and simple poles. Thus, the
cover P : C̃→ C necessarily has ramifications of even orders at all these points, which
completes the proof of the Lemma. �

Proof of Corollary 3. — Let S̃ be a surface in a hyperelliptic connected compo-
nent Qhyp(m1, . . . ,mk); let S be the underlying flat surface in the corresponding stratum
Q(d1, . . . , dn) of meromorphic quadratic differentials with at most simple poles on CP1.

Denote by ̂̃S and by Ŝ the corresponding flat surfaces obtained by the canonical ramified
covering construction described in Section 2.2.
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By Lemma 2.1 the diagram

Ŝ ̂̃S
⏐
⏐�

⏐
⏐�

S
f←−−− S̃

can be completed to a commutative diagram

(2.9)

Ŝ
f̂←−−− ̂̃S

⏐
⏐�

⏐
⏐�

S
f←−−− S̃.

By construction f̂ intertwines the natural involutions on ̂̃S and on Ŝ. Hence, we get an

induced linear map f̂ ∗ : H1
−(Ŝ)→ H1

−(̂S̃). Note that since S � CP1, one has H1
−(Ŝ) =

H1(Ŝ). Note also that a holomorphic differential f̂ ∗ω in H1,0(̂S̃) induced from a nonzero
holomorphic differential ω ∈ H1,0(Ŝ) by the double cover f̂ is obviously nonzero. This
implies that f̂ ∗ :H1

−(Ŝ)→H1
−(̂S̃) is a monomorphism.

An elementary dimension count shows that for the three series of hyperelliptic
components listed in Corollary 3, the effective genera associated to the “orienting” dou-
ble covers Ŝ→ S and to ̂̃S→ S̃ coincide. Hence, for these three series of hyperelliptic
components the map f̂ ∗ is, actually, an isomorphism. This implies that the Lyapunov
spectrum λ−1 > λ−2 ≥ · · · ≥ λ−geff

for Qhyp(m1, . . . ,mk) coincides with the corresponding
spectrum for Q(d1, . . . , dn).

The remaining part of the proof is completely analogous to the proof of Corol-
lary 1. The relation between the orders of singularities of Qhyp(m1, . . . ,mk) and of the
underlying stratum Q1(d1, . . . , dn) is described in [La1]. �

Let us use Corollary 3 to study the Lyapunov exponents of the vector bundle H1
−

over invariant suborbifolds in the strata of holomorphic quadratic differentials in small
genera. We consider only those strata, Q(d1, . . . , dn), for which the quadratic differentials
do not correspond to global squares of Abelian differentials.

Recall that any holomorphic quadratic differential in genus one is a global square
of an Abelian differential, so Q(0) = ∅. Recall also, that in genus two the strata Q(4)

and Q(3,1) are empty, see [MSm]. The stratum Q(2,2) in genus two has effective genus
one, so λ−1 = 1 and there are no further positive Lyapunov exponents of H1

−.

Corollary 4. — For any regular PSL(2,R)-invariant suborbifold M1 in the stratum

Q1(2,1,1) of holomorphic quadratic differentials in genus two the second Lyapunov exponent λ−2 is

equal to 1/3.
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For any regular PSL(2,R)-invariant suborbifold M1 in the stratum Q1(1,1,1,1) of holo-

morphic quadratic differentials in genus two the sum of Lyapunov exponents λ−2 + λ−3 is equal to 2/3.

Proof. — Each stratum coincides with its hyperelliptic connected component, so we
are in the situation of Corollary 3. Namely,

Q(2,1,1)=Qhyp
(
2(2− 0)− 3,2(2− 0)− 3,4 · 0+ 2

)

Q(1,1,1,1)=Qhyp
(
2(2− 0)− 3,2(2− 0)− 3,2 · 0+ 1,2 · 0+ 1

)
. �

In analogy with Corollary 1 we can study the sum of the top geff exponents λ−i for
a general PSL(2,R)-invariant suborbifold in a hyperelliptic locus of a general stratum
of meromorphic quadratic differentials with at most simple poles. However, in the most
general situation we only get a lower bound for this sum.

Corollary 5. — Suppose that M̃1 is a regular PSL(2,R)-invariant suborbifold in a hyper-

elliptic locus of some stratum of meromorphic quadratic differentials with at most simple poles. Denote

by geff (M̃) the effective genus of M̃1 and by (d1, . . . , dn) the orders of singularities of the under-

lying quadratic differentials in the associated PSL(2,R)-invariant suborbifold M1 in the stratum

Q1(d1, . . . , dn) in genus 0.

The top geff (M̃1) Lyapunov exponents of the Hodge bundle H1
− over M̃1 along the Teichmüller

flow satisfy the following relation:

(2.10) λ−1 (M̃1)+ · · · + λ−
geff (M̃)

(M̃1) ≥ 1

4
·
∑

j such that
dj is odd

1

dj + 2
,

where, as usual, we associate the order di =−1 to simple poles.

If

2geff (M̃1)− 2= number of odd entries in (d1, . . . , dn),

then the nonstrict inequality (2.10) becomes an equality.

Proof. — For a general ramified double cover S̃→ S � CP1 from diagram (2.9)
the effective genera geff (S̃) and geff (S) associated to the “orienting” double covers Ŝ→ S

and ̂̃S→ S̃ might be different, geff (S̃)≥ geff (S). However, as we have seen in the proof of

Corollary 3, the induced map f̂ ∗ : H1
−(Ŝ)→ H1

−(̂S̃) is still a monomorphism, and f ∗ is
an isomorphism if and only if geff (S̃)= geff (S).

This implies that when we have a regular PSL(2,R)-invariant suborbifold M1 in
some stratum Q1(d1, . . . , dn) of meromorphic quadratic differentials with at most sim-
ple poles on CP1, and an induced regular PSL(2,R)-invariant suborbifold M̃1 in the
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associated hyperelliptic locus of the associated stratum Q1(m1, . . . ,mk), the Hodge bun-
dle H1

−(M̃) over M̃ contains a PSL(2,R)-invariant subbundle f ∗H1
−(M) of dimension

2geff (M) with symmetric spectrum of Lyapunov exponents along the Teichmüller flow.
Here by f we denote the natural projection f : M̃→M. Thus, the sum of nonnega-
tive Lyapunov exponents of the bundle H1

−(M̃1) is greater than or equal to the sum of
nonnegative Lyapunov exponents of the subbundle f ∗H1

−(M). Since f ∗ is a monomor-
phism, the Lyapunov spectrum of f ∗H1

−(M1) and of H1
−(M1) coincide, and the latter

sum is equal to the sum of nonnegative Lyapunov exponents of H−1 (M1), which is given
by (2.8):

λ−1 (M1)+ · · · + λ−geff (M)(M1)= 1

4
·

∑

j such that
dj is odd

1

dj + 2
.

When geff (M̃1)= geff (M1) we get H1
−(M̃)= f ∗H1

−(M) and a nonstrict inequal-
ity (2.10) becomes an equality. It remains to apply (2.5) to compute the effective genus
geff (M1):

2geff (M)− 2= 2geff

(
Q(d1, . . . , dn)

)− 2

= number of odd entries in (d1, . . . , dn)

which completes the proof of Corollary 5. �

2.4. Positivity of several leading exponents.

Corollary 6. — For any regular SL(2,R)-invariant suborbifold in any stratum of Abelian

differentials in genus g ≥ 7 the Lyapunov exponents λ2 ≥ · · · ≥ λk are strictly positive, where k =
[ (g−1)g

6g−3 ] + 1.

For any regular SL(2,R)-invariant suborbifold in the principal stratum H1(1 . . .1) of Abelian

differentials in genus g ≥ 5 the Lyapunov exponents λ2 ≥ · · · ≥ λk are strictly positive, where k =
[ g−1

4 ] + 1.

Currently we do not have much information on how sharp the above estimates
are. The paper [Ma] contains an explicit computation showing that certain infinite fam-
ily of arithmetic Teichmüller curves related to cyclic covers studied in [MaY] has ap-
proximately g/3 positive Lyapunov exponents, where the genus g of the corresponding
square-tiled surfaces tends to infinity. Another family of SL(2,R)-invariant submanifolds
(also related to cyclic covers) seem to have approximately g/4 positive Lyapunov expo-
nents, where the genus g tends to infinity, see [AvMaY2]. Finally, numerical experiments
of C. Matheus seem to indicate that for certain rather special square-tiled surfaces con-
structed in [MaYZm] the contribution of the Siegel-Veech constant to the formula (2.1)
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for the sum of the Lyapunov exponents for the corresponding arithmetic Teichmüller
curve might be very small compared to the combinatorial term.

Proof. — Consider the formula (2.1). Since carea > 0, and 1 = λ1 > λ2 ≥ λ3 ≥ · · · ,
we get at least k+ 1 positive Lyapunov exponents λ1, . . . , λk as soon as the expression

(2.11)
1

12

n∑

i=1

mi(mi + 2)

mi + 1

is greater than or equal to k, where k is a strictly positive integer. (Here the strict inequal-
ity λ1 > λ2 is the result of Forni [Fo1].) It remains to evaluate the minimum of expres-
sion (2.11) over all partitions of 2g − 2 and notice that it is achieved on the “smallest”
partition (2g − 2) composed of a single element. For this partition the sum (2.11) equals

1
12

(
2g − 1− 1

2g − 1

)
= (g − 1)g

6g − 3
.

This proves the first part of the statement.
The consideration for the principal stratum is completely analogous, except that

this time the above sum equals (g − 1)/4. �

Problem 1. — Are there any examples of regular SL(2,R)-invariant suborbifolds
M1 in the strata of Abelian differentials in genera g ≥ 2 different from the two arithmetic
Teichmüller curves found by G. Forni in [Fo2] and by G. Forni and C. Matheus [FoMa],
[FoMaZ1] with a completely degenerate Lyapunov spectrum λ2 = · · · = λg = 0?

By Corollary 6 such example might exist only in certain strata in genera from 3
to 6. After completion of work on this paper, it was proved by D. Aulicino [Au2] that
any such an example must be a Teichmüller curve. By the result of M. Möller [Mö],
Teichmüller curves with such a property might exist only in several strata in genus five.

Corollary 7. — For any regular PSL(2,R)-invariant suborbifold in any stratum of holomorphic

quadratic differentials in genus g ≥ 7 the Lyapunov exponents λ+2 ≥ · · · ≥ λ+k and the Lyapunov

exponents λ−2 ≥ · · · ≥ λ−k are strictly positive, where k = [ (g−1)g

6g+3 ] + 1.

For any regular PSL(2,R)-invariant suborbifold in the principal stratum of holomorphic

quadratic differentials in genus g ≥ 5 the Lyapunov exponents λ+2 ≥ · · · ≥ λ+k are strictly positive,

where k = [ 5(g−1)

18 ] + 1.

For any regular PSL(2,R)-invariant suborbifold in the principal stratum of holomorphic

quadratic differentials in genus g = 2 the Lyapunov exponent λ−2 is strictly positive. For any regular

PSL(2,R)-invariant suborbifold in the principal stratum of holomorphic quadratic differentials in genus

g ≥ 3 the Lyapunov exponents λ−2 ≥ · · · ≥ λ−l are strictly positive, where l = [ 11(g−1)

18 ] + 1.
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Proof. — This time we use formulae (2.3) and (2.4). Note that since the quadratic
differentials under consideration are holomorphic, we have dj ≥ 1 for any j. Note also, that
it follows from the result of Forni [Fo1] that λ−1 > λ−2 and that λ−1 > λ+1 . Finally, by ele-
mentary geometric reasons one has λ−1 = 1. For genus two we use Corollary 4. The rest
of the proof is completely analogous to the proof of Corollary 6. �

Problem 2. — Are there any examples of regular PSL(2,R)-invariant suborbifolds
M1 in the strata of meromorphic quadratic differentials in genera geff ≥ 2 different from
the Teichmüller curves of square-tiled cyclic covers listed in [FoMaZ1] having completely
degenerate Lyapunov spectrum λ−2 = · · · = λ−geff

= 0 for the bundle H1
−?

Note that under the additional restriction that the corresponding quadratic differ-
entials are holomorphic Corollary 7 limits the genus of possible examples for Problem 2
to several possible values only.

When the work on this paper was completed, C. Matheus indicated to us that the
formula (2.4) implies a strong restriction on the strata of meromorphic quadratic differ-
entials which might a priori contain invariant submanifolds with completely degenerate
λ−-spectrum. Namely, since the λ+-exponents in (2.4) are nonnegative, the λ−-spectrum
may not be completely degenerate as soon as the ambient stratum Q(d1, . . . , dn) satisfies

∑

j such that
dj is odd

1

dj + 2
> 4,

say, when quadratic differentials contain at least four poles, and the stratum is different
from Q(−14).

Problem 3. — Are there any examples of regular PSL(2,R)-invariant suborbifolds
M1 in the strata of meromorphic quadratic differentials in genera g ≥ 2 different from
the Teichmüller curves of square-tiled cyclic covers listed in [FoMaZ1] having completely
degenerate Lyapunov spectrum λ+1 = · · · = λ+g = 0 for the bundle H1

+?

Note that formula (2.3) implies that Problem 3 does not admit solutions for the
PSL(2,R)-invariant suborbifolds in the strata of holomorphic quadratic differentials.

After completion of the work on this paper J. Grivaux and P. Hubert found a
geometric reason for the vanishing of all λ+-exponents in examples from [FoMaZ1] and
constructed further examples of the same type with completely degenerate λ+-spectrum,
see [GriHt2]. We do not know whether their construction covers all possible situations
when the λ+-spectrum is completely degenerate.

2.5. Siegel–Veech constants: values for certain invariant suborbifolds. — We compute nu-
merical values of the Siegel–Veech constant for some specific regular SL(2,R)-invariant
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suborbifolds in Section 10. We consider the largest possible and the smallest possible
cases, namely, we consider connected components of the strata and Teichmüller discs of
arithmetic Veech surfaces. In the current section we formulate the corresponding state-
ments; the proofs are presented in Section 10.

2.5.1. Arithmetic Teichmüller discs. — Consider a connected square-tiled surface S in
some stratum of Abelian or quadratic differentials. For every square-tiled surface Si in its
SL(2,Z)-orbit (correspondingly PSL(2,Z)-orbit) consider the decomposition of Si into
maximal cylinders cylij filled with closed regular horizontal geodesics. For each cylinder
cylij let wij be the length of the corresponding closed horizontal geodesic and let hij be the
height of the cylinder cylij . Let card(SL(2,Z) · S) (correspondingly card(PSL(2,Z) · S))
be the cardinality of the orbit.

Theorem 4. — For any connected square-tiled surface S in a stratum H(m1, . . . ,mn) of Abelian

differentials, the Siegel–Veech constant carea(M1) of the SL(2,R)-orbit M1 of the normalized surface

S(1) ∈H1(m1, . . . ,mn) has the following value:

(2.12) carea(M1)= 3

π 2
· 1

card(SL(2,Z) · S)

∑

Si∈SL(2,Z)·S

∑

horizontal
cylinders cylij

such that
Si=�cylij

hij

wij

.

For a square-tiled surface S in a stratum of meromorphic quadratic differentials with at most simple poles

the analogous formula is obtained by replacing SL(2,Z) with PSL(2,Z).

Theorem 4 is proved in Section 10.

Corollary 8. — (a) Let M1 be an arithmetic Teichmüller disc defined by a square-tiled surface

S0 of genus g in some stratum H1(m1, . . . ,mn) of Abelian differentials. The top g Lyapunov exponents

of the of the Hodge bundle H1 over M1 along the Teichmüller flow satisfy the following relation:

λ1 + · · · + λg(2.13)

= 1

12
·

n∑

i=1

mi(mi + 2)

mi + 1
+ 1

card(SL(2,Z) · S0)

∑

Si∈SL(2,Z)·S0

∑

horizontal
cylinders cylij

such that
Si=�cylij

hij

wij

.

(b) Let M1 be an arithmetic Teichmüller disc defined by a square-tiled surface S0 of genus g in

some stratum Q1(d1, . . . , dn) of meromorphic quadratic differentials with at most simple poles. The top

g Lyapunov exponents of the of the Hodge bundle H1
+ over M1 along the Teichmüller flow satisfy the

following relation:
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FIG. 1. — Eierlegende Wollmilchsau

λ+1 + · · · + λ+g(2.14)

= 1

24
·

n∑

i=1

di(di + 4)

di + 2
+ 1

card(PSL(2,Z) · S0)

∑

Si∈PSL(2,Z)·S0

∑

horizontal
cylinders cylij

such that
Si=�cylij

hij

wij

.

Remark. — Combining Equation (2.14) from statement (b) of the Corollary above
with Equation (2.4) from Theorem 2.3 we immediately obtain a formula for the sum of
the Lyapunov exponents λ−1 + · · · + λ−geff

of the corresponding Teichmüller disc.

To illustrate how the above statement works, let us consider a concrete example.
The square-tiled surface from Figure 1 is SL(2,Z)-invariant. It belongs to the principal
stratum H(1,1,1,1) in genus g = 3.

Hence, the sum of the Lyapunov exponents for the corresponding Teichmüller disc
equals

1+ λ2 + λ3 = 1

12
·

4∑

i=1

·1(1+ 2)

1+ 1
+ 1

1

(
1

4
+ 1

4

)
= 1

2
+ 1

2
= 1

This implies that λ2 = λ3 = 0. (This result was first proved by G. Forni in [Fo2], who used
symmetry arguments. See also Problem 1 and the discussion after it.)

2.5.2. Connected components of the strata. — Let us come back to generic flat surfaces
S in the strata. Consider a maximal cylinder cyl1 in a flat surface S. Such a cylinder is filled
with parallel closed regular geodesics. Denote one of these geodesics by γ1. Sometimes it
is possible to find a regular closed geodesic γ2 on S parallel to γ1, having the same length
as γ1, but living outside of the cylinder cyl1. It is proved in [EMZ] that for almost any
flat surface in any stratum of Abelian differentials this implies that γ2 is homologous to
γ1. Consider a maximal cylinder cyl2 containing γ2 filled with closed regular geodesics
parallel to γ2. Now look for closed regular geodesics parallel to γ1 and to γ2 and having
the same length as γ1 and γ2 but located outside of the maximal cylinders cyl1 and cyl2,
etc. The resulting maximal decomposition of the surface is encoded by a configuration C of

homologous closed regular geodesics (see [EMZ] for details).
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One can consider a counting problem for any individual configuration C. Denote
by NC(S,L) the number of collections of homologous saddle connections on S of length
at most L forming the given configuration C. By the general results of A. Eskin and
H. Masur [EM] almost all flat surfaces in Hcomp

1 (m1, . . . ,mn) share the same quadratic
asymptotics

(2.15) lim
L→∞

NC(S,L)

L2
= cC

where the Siegel–Veech constant cC depends only on the chosen connected component of the
stratum.

Theorem (Vorobets). — For any connected component of any stratum of Abelian differentials the

Siegel–Veech constants carea and cC are related as follows:

(2.16) carea = 1

dimC H(m1, . . . ,mn)− 1
·

g−1∑

q=1

q ·
∑

Configurations C
containing exactly

q cylinders

cC.

The above Theorem is proved in [Vb]. As an immediate corollary of Theorem 1
and the above theorem we get the following statement:

Theorem 1′. — For any connected component of any stratum H(m1, . . . ,mn) of Abelian dif-

ferentials the sum of the top g Lyapunov exponents induced by the Teichmüller flow on the Hodge vector

bundle H1
R satisfies the following relation:

λ1 + · · · + λg(2.17)

= 1

12
·

n∑

i=1

mi(mi + 2)

mi + 1
+ π 2

3 dimC H(m1, . . . ,mn)− 3
·

g−1∑

q=1

q

·
∑

Admissible
configurations C
containing exactly

q cylinders

cC

where cC are the Siegel–Veech constant of the corresponding connected component of the stratum

H(m1, . . . ,mn).

The Siegel–Veech constants cC were computed in [EMZ]. Here we present an
outline of the corresponding formulae.

A “configuration” C can be viewed as a combinatorial way to represent a flat sur-
face as a collection of q flat surfaces of smaller genera joined cyclically by narrow flat
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FIG. 2. — Topological pictures for admissible (on the right) and non-admissible (on the left) configurations of cylinders

cylinders. Thus, the configuration represented schematically on the right picture in Fig-
ure 2 is admissible, while the configuration on the left picture is not.

Denote by Hε
1(C) the subset of flat surfaces in the stratum H(m1, . . . ,mn) having

a maximal collection of narrow cylinders of width at most ε forming a configuration C.
Here “maximal” means that the narrow cylinders in the configuration C do not make
part of a larger configuration C ′.

Contracting the waist curves of the cylinders completely and removing them
we get a collection of disjoint closed flat surfaces of genera g1, . . . , gq. By construction
g1 + · · · + gq = g − 1. Denote by Hcomp(β ′j ) the ambient stratum (more precisely, its con-
nected component) for the resulting flat surfaces. Denote by Hcomp

1 (β) the ambient stratum
(more precisely, its connected component) for the initial surface. According to [EMZ] the
Siegel–Veech constant cC can be expressed as

cC = lim
ε→0

1

πε2

VolHε
1(C)

VolHcomp

1 (d1, . . . , dn)
(2.18)

= (explicit combinatorial factor) ·
∏k

j=1 VolH1

(
β ′k
)

VolHcomp

1 (β)
.

Thus, the Theorem above allows to compute the exact numerical values of carea for
all connected components of all strata (at least in small genera, where we know numerical
values of volumes of connected components of the strata). The resulting explicit numer-
ical values of the sums of Lyapunov exponents for all strata in low genera are presented
in Appendix A.

By the results of A. Eskin and A. Okounkov [EO], the volume of any connected
component of any stratum of Abelian differentials is a rational multiple of π 2g . Thus,
relations (2.17) and (2.18) imply rationality of the sum of Lyapunov exponents for any
connected component of any stratum of Abelian differentials.
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3. Outline of proofs

To simplify the exposition of the proof, we have isolated its most technical frag-
ments. In the current section we present complete proofs of all statements of Section 2,
which are however, based on Theorems 5–9 stated below. These Theorems will be proved
separately in corresponding Sections 5–9.

In Section 10 we describe in more detail the Siegel–Veech constant carea; in partic-
ular we explicitly evaluate it for arithmetic Teichmüller discs, thus, proving Theorem 4.

In Appendix A we present the exact values of the sums of the Lyapunov expo-
nents and conjectural approximate values of individual Lyapunov exponents for con-
nected components of the strata of Abelian differentials in small genera. In Appendix B
we present an alternative combinatorial approach to square-tiled surfaces and to the con-
struction of the corresponding arithmetic Teichmüller curves. We apply it to discuss the
non-varying phenomenon of their Siegel–Veech constants in the strata of small genera.

3.1. Teichmüller discs. — We have seen in Section 1.2 that each “unit hyperboloid”
H1(m1, . . . ,mn) and Q1(d1, . . . , dn) is foliated by the orbits of the group SL(2,R) and
PSL(2,R) correspondingly. Recall that the quotient of these groups by the subgroups of
rotations is canonically isomorphic to the hyperbolic plane:

SL(2,R)/SO(2,R)� PSL(2,R)/PSO(2,R)�H2.

Thus, the projectivizations PH(m1, . . . ,mn) and PQ(d1, . . . , dn) are foliated by hyperbolic
discs H2. In other words, every SL(2,R)-orbit in H(m1, . . . ,mn) descends to a commuta-
tive diagram

SL(2,R) −−−→ H(m1, . . . ,mn)
⏐
⏐�

⏐
⏐�

SL(2,R)/SO(2,R)�H2 −−−→ PH(m1, . . . ,mn),

and similarly, every PSL(2,R)-orbit in the stratum of quadratic differentials descends to
a commutative diagram

PSL(2,R) −−−→ Q(m1, . . . ,mn)
⏐
⏐
�

⏐
⏐
�

PSL(2,R)/PSO(2,R)�H2 −−−→ PQ(m1, . . . ,mn).

The composition of each of the immersions

H2 ⊂ PH(m1, . . . ,mn) and H2 ⊂ PQ(d1, . . . , dn)
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with the projections to the moduli space of curves Mg defines an immersion H2 ⊂Mg .
The latter immersion is an isometry for the hyperbolic metric of curvature−1 on H2 and
the Teichmüller metric on Mg . The images of hyperbolic planes in Mg are also called
Teichmüller discs. Following C. McMullen one can consider them as “complex geodesics” in
the Teichmüller metric. The images of the diagonal subgroup in SL(2,R) are represented
by geodesic lines in the hyperbolic plane; their projections to the Teichmüller discs in Mg

might be viewed as geodesics in the Teichmüller metric.
It would be convenient to consider throughout this paper the hyperbolic metric of

constant curvature −4 on H2. Under this choice of the curvature, the parameter t of the
one-parameter subgroup represented by the matrices

Gt =
(

et 0
0 e−t

)

corresponds to the natural parameter of geodesics on the hyperbolic plane H2. In the
standard coordinate ζ = x + iy on the upper half-plane model of the hyperbolic plane
y > 0, the metric of constant curvature −4 has the form

ghyp = |dζ |2
4 Im2 ζ

= dx2 + dy2

4y2
.

The Laplacian of this metric in coordinate ζ = x+ iy has the form

�Teich = 16 Im2 ζ
∂2

∂ζ∂ζ̄
= 4y2

(
∂2

∂x2
+ ∂2

∂y2

)

In the Poincaré model of the hyperbolic plane, |w| < 1, the hyperbolic metric of
constant curvature −4 has the form

ghyp = |dw|2
(1− |w|2)2

In the next section we will also use polar coordinates w = reiθ in the Poincaré model of
the hyperbolic plane. Here

(3.1) r = tanh t,

where t is the distance from the point to the origin in the metric of curvature −4. The
coordinates t, θ will be called hyperbolic polar coordinates.

Example 3.1. — The moduli space M1 of curves of genus one is isomorphic to the
projectivized space of flat tori PH(0); it is represented by a single Teichmüller disc
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FIG. 3. — Space of flat tori

(3.2)
\ SL(2,R) /

SO(2,R) SL(2,Z)
= H2/

SL(2,Z)

(see Figure 3).
Geometrically one can interpret the local coordinate ζ on this Teichmüller disc

as follows. Consider a pair (C,ω), where C is a Riemann surface of genus one, and
ω is a holomorphic one-form on it. By convention C is endowed with a marked point.
Choose the shortest flat geodesic γ1 passing through the marked point and the next after
the shortest, γ2, also passing through the marked point. Under an appropriate choice of
orientation of the geodesics γ1 and γ2, they represent a pair of independent integer cycles
such that γ1 ◦ γ2 = 1. Consider the corresponding periods of ω,

A :=
∫

γ1

ω B :=
∫

γ2

ω.

It is easy to see that the canonical coordinate ζ on the modular surface (3.2) can be
represented in terms of the periods A and B as:

ζ = B
A

.

3.2. Lyapunov exponents and curvature of the determinant bundle. — The following obser-
vation of M. Kontsevich, see [K], might be considered as the starting point of the entire
construction. Consider a flat surface S in some stratum H1(m1, . . . ,mn) of Abelian differ-
entials and consider a Teichmüller disc passing through the projection of the “point” S
to the corresponding projectivized stratum PH(m1, . . . ,mn). Recall that any Teichmüller
disc is endowed with a canonical hyperbolic metric. Take a circle of a small radius ε in
the Teichmüller disc centered at S. Consider a Lagrangian subspace of the fiber H1(S,R)

of the Hodge bundle over S and a basis v1, . . . , vg in it. Apply a parallel transport of the
vectors v1, . . . , vg to every point of the circle. The vectors do not change, but their Hodge
norm does. Evaluate an average of the logarithm of the Hodge norm ‖v1 ∧ · · · ∧ vg‖gε rθ S
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over the circle and subtract the Hodge norm ‖v1 ∧ · · · ∧ vg‖S at the initial point. The
starting observation in [K] claims that the result does not depend on the choice of the
basis v1, . . . , vg , and not even on the Lagrangian subspace L but only on the initial point
S. For the sake of completeness, we present the arguments here.

We start with a convenient expression for the Hodge norm of a polyvector
v1 ∧ · · · ∧ vg spanning a Lagrangian subspace in H1(S,R). Note that the vector space
H1(S,R) is endowed with a canonical integer lattice H1(S,Z), which defines a canonical
linear volume element on H1(S,R): the volume of the fundamental domain of the inte-
ger lattice with respect to this volume element is equal to one. In other words, we have a
map

� :�2gH1(S,R)→R/±
given by

�(λ)= λ(c1, . . . , c2g),

where λ ∈�2gH1(S,R), and {c1, . . . , c2g} is any Z-basis for H1(S,Z). This map naturally
extends to a linear map:

� :�2gH1(S,C)→C/± .

Let L= v1 ∧ · · · ∧ vg , where vectors v1, . . . , vg span a Lagrangian subspace in H1(S,R).
Let ω1, . . . ,ωg form a basis in H1,0(S). We define

(3.3) ‖L‖2 := |�(v1 ∧ · · · ∧ vg ∧ω1 ∧ · · · ∧ωg)| · |�(v1 ∧ · · · ∧ vg ∧ ω̄1 ∧ · · · ∧ ω̄g)|
|�(ω1 ∧ · · · ∧ωg ∧ ω̄1 ∧ · · · ∧ ω̄g)| .

For vectors v1, . . . , vg spanning a Lagrangian subspace, the norm defined above coincides
with the Hodge norm as in Section 1.3 and is thus non-degenerate (see [GriHt1] where
this important issue is clarified). Clearly, this definition does not depend on a choice of
the basis in H1,0(S). Note that

�(ω1 ∧ · · · ∧ωg ∧ ω̄1 ∧ · · · ∧ ω̄g)= det〈ωi,ωj〉,
where

(3.4) 〈ωi,ωj〉 :=
⎛

⎝
〈ω1,ω1〉 . . . 〈ω1,ωg〉

. . . . . . . . .

〈ωg,ω1〉 . . . 〈ωg,ωg〉

⎞

⎠

is the matrix of pairwise Hermitian scalar products (1.1) of elements of the basis in
H1,0(S).
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Proposition 3.1. — ([K]) For any flat surface S, any L = v1 ∧ · · ·vg , where the vectors

v1, . . . vg span a Lagrangian subspace of H1(S,R), and for any basis {ωk} of local holomorphic

sections of the Hodge vector bundle H1,0 over the ambient stratum, the following identity holds:

�Teich log‖L‖ =−1

2
�Teich log

∣
∣det〈ωi,ωj〉

∣
∣

where �Teich is the hyperbolic Laplacian along the Teichmüller disc.

Proof. — Applying the hyperbolic Laplacian to the expression (3.3) we get

�Teich log‖L‖ = 1

2
�Teich log‖L‖2

= 1

2

(
�Teich log

∣
∣�(v1 ∧ · · · ∧ vg ∧ω1 ∧ · · · ∧ωg)

∣
∣

+�Teich log
∣
∣�(v1 ∧ · · · ∧ vg ∧ ω̄1 ∧ · · · ∧ ω̄g)

∣
∣

−�Teich log
∣∣det〈ωi,ωj〉

∣∣)

Note that v1, . . . , vg do not change along the Teichmüller disc, so the function �(v1 ∧
· · · ∧ vg ∧ ω1 ∧ · · · ∧ ωg) is a holomorphic function of the deformation parameter, and
�(v1 ∧ · · · ∧ vg ∧ ω̄1 ∧ · · · ∧ ω̄g) is an antiholomorphic one. Hence both functions are
harmonic. The Lemma is proved. �

Denote

(3.5) �(S) := −1

4
�Teich log

∣
∣det〈ωi,ωj〉

∣
∣,

where �Teich is the hyperbolic Laplacian along the Teichmüller disc in the metric of con-
stant negative curvature −4.

Remark. — Note that one fourth of the hyperbolic Laplacian in curvature −4, as in
definition (3.5), coincides with the plain hyperbolic Laplacian in curvature −1.

The function �(S) is initially defined on the projectivized strata PH(m1, . . . ,mn)

and PQ(d1, . . . , dn). Sometimes it would be convenient to pull it back to the correspond-
ing strata H(m1, . . . ,mn) and Q(d1, . . . , dn) by means of the natural projection. As we
already mentioned, �(S) does not depend on a choice of a basis of Abelian differentials.

One can recognize in �(S) the curvature of the determinant line bundle �gH1,0.
This relation is of crucial importance for us; it will be explored in Sections 3.3–3.4 and
in Section 3.7.
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Remark. — The function �(S) defined by Equation (3.5) coincides with the function

�g(q, Ig)=�1(q)+ · · · +�g(q)

introduced in formula (5.9) in [Fo1]; see also an alternative geometric definition
in [FoMaZ2]. In particular, it is proved in [Fo1] that �(S) is everywhere nonnegative. (A
similar statement in terms of the curvature of the determinant line bundle is familiar to
algebraic geometers.)

The next argument follows G. Forni [Fo1]; see also the survey of R. Kriko-
rian [Kn]. In the original paper of M. Kontsevich [K] an equivalent statement was for-
mulated for connected components of the strata; it was proved by G. Forni [Fo1] that it
is valid for any regular invariant suborbifold.

Following G. Forni we start with a formula from harmonic analysis (literally corre-
sponding to Lemma 3.1 in [Fo1]). Consider the Poincaré model of the hyperbolic plane
H2 of constant curvature −4; let t, θ be hyperbolic polar coordinates (3.1). Denote by Dt

a disc of radius t in the hyperbolic metric, and by |Dt| denote its area.

Lemma. — For any smooth function L on the hyperbolic plane of constant curvature −4 one has

the following identity:

(3.6)
1

2π

1

∂ t

∫ 2π

0
L(t, θ) dθ = 1

2
tanh(t)

1

|Dt|
∫

Dt

�TeichL dghyp

To prove the key Background Theorem below we need a couple of preparatory
statements.

Lemma (Forni). — For any flat surface S in any stratum in any genus the derivative of the Hodge

norm admits the following uniform bound:

max
c∈H1(S,R) such

that ‖c‖=1

∣∣
∣∣
d log‖c‖

dt

∣∣
∣∣≤ 1

and the function �(S) defined in (3.5) satisfies:

(3.7)
∣
∣�(S)

∣
∣≤ g.

Proof. — The statement of the Lemma is an immediate corollary of variational
formulas from Lemma 2.1′ in [Fo1]; basically, it is proved in Corollary 2.2 in [Fo1] (in a
stronger form). �

As an immediate Corollary we obtain the following universal bound:
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Corollary. — For any flat surface S in any stratum in any genus, the logarithmic derivative of the

induced Hodge norm on the exterior power �g(H1(S,R)) admits the following uniform bound:

(3.8) max
L∈�g(H1(S,R))

L�=0

∣∣
∣∣
d log‖L‖

dt

∣∣
∣∣≤ 1.

Now everything is ready to prove the Proposition below, which is the starting point
of the current work.

Background Theorem (M. Kontsevich; G. Forni). — Let M1 be any closed connected regular

SL(2,R)-invariant suborbifold of some stratum of Abelian differentials in genus g. The top g Lyapunov

exponents of the Hodge bundle H1 over M1 along the Teichmüller flow satisfy the following relation:

(3.9) λ1 + · · · + λg =
∫

M1

�(S) dν1(S).

Let M1 be any closed connected regular PSL(2,R)-invariant suborbifold of some stratum of

meromorphic quadratic differentials with at most simple poles in genus g. The top g Lyapunov exponents

of the Hodge bundle H1
+ over M1 along the Teichmüller flow satisfy the following relation:

(3.10) λ+1 + · · · + λ+g =
∫

M1

�(S) dν1(S).

Proof. — We prove the first part of the statement; the proof of the second part is
completely analogous.

Consider the bundle Grg(M1) of Lagrangian Grassmannians Grg(R2g) associated
to the Hodge vector bundle H1

R over M1. A fiber of this bundle over a “point” S ∈M1

can be naturally identified with the set of Lagrangian subspaces of H1(S,R).
Note also that the sum of the top k Lyapunov exponents of a vector bundle is equal

to the top Lyapunov exponent of its k-th exterior power. Denote by dσS the normalized
Haar measure in the fiber of the Lagrangian Grassmannian bundle over a point S ∈M1.
By the Oseledets multiplicative ergodic theorem for (ν1×σ)-almost all pairs (S,L) where
S ∈M1, and L ∈ Grg(H1(S,R)) one has

λ1 + · · · + λg = lim
T→+∞

1
T

log
∥∥L(gtS)

∥∥.

(Here we use the simple fact that for ν1-almost every flat surface σ -almost every La-
grangian subspace is Oseledets-generic.)

Using the identity

log
∥
∥L(gtS)

∥
∥=

∫ T

0

d

dt
log

∥
∥L(gtS)

∥
∥ dt



LYAPUNOV EXPONENTS OF THE TEICHMÜLLER FLOW 241

we average the right hand side of the above formula along the total space of the Grass-
mannian bundle obtaining the first equality below. Then we apply an extra averaging
over the circle, and, using the uniform bound (3.8) we interchange the limit with the inte-
gral over the circle. Thus, we establish a further equality with the expression in the second
line below. We apply Green formula (3.6) to the inner expression in the second line thus
establishing an equality with the expression in the third line. Then we apply Proposi-
tion 3.1 to pass to the expression in line four below. We pass to the expression in line
five applying definition (3.5). (Note that the fraction tanh(t)

2|Dt | in line four gets transformed to
tanh(t)

|Dt | in line five; the factor 2 from the denominator of the first fraction is incorporated
in �(S).) Finally, to pass to the left-hand side expression in the bottom line, we use the
uniform bound (3.7) to change the order of integration. The very last equality is an ele-
mentary property of tanh(t). As a result we obtain the following sequence of equalities:

λ1 + · · · + λg

=
∫

Grg(M1)

lim
T→+∞

1
T

∫ T

0

d

dt
log

∥∥L(gtS)
∥∥ dt dν1 dσS

=
∫

Grg(M1)

lim
T→+∞

1
T

∫ T

0

1
2π

∫ 2π

0

d

dt
log

∥
∥L(gtrθS)

∥
∥dθ dt dν1 dσS

=
∫

Grg(M1)

lim
T→+∞

1
T

∫ T

0

tanh(t)

2|Dt|
∫

Dt

�Teich log
∥∥L(gtrθS)

∥∥dghyp dt dν1 dσS

=
∫

M1

lim
T→+∞

1
T

∫ T

0

tanh(t)

2|Dt|
∫

Dt

−1

2
�Teich log

∣∣det〈ωi,ωj〉
∣∣dghyp dt dν1

=
∫

M1

lim
T→+∞

1
T

∫ T

0

tanh(t)

|Dt|
∫

Dt

�(S) dghyp dt dν1

=
∫

M1

�(S) dν1 ·
(

lim
T→+∞

1
T

∫ T

0
tanh(t) dt

)
=
∫

M1

�(S) dν1(S)

The Proposition is proved. �

This result was developed by G. Forni in [Fo1]. In particular, he defined a collec-
tion of very interesting submanifolds, called determinant locus. The way in which the initial
invariant suborbifold M1 intersects with the determinant locus is responsible for degen-
eration of the spectrum of Lyapunov exponents, see [Fo1], [Fo2], [FoMaZ1], [FoMaZ2].
However, these beautiful geometric results of G. Forni are beyond the scope of this paper,
as well as further results of G. Forni [Fo1], and of A. Avila and M. Viana [AvVi] on sim-
plicity of the spectrum of Lyapunov exponents for connected components of the strata of
Abelian differentials.
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3.3. Sum of Lyapunov exponents for a Teichmüller curve. — For the sake of completeness
we consider an application of formula (3.9) to Teichmüller curves.

Let C be a smooth possibly non-compact complex algebraic curve. We recall that a
variation of real polarized Hodge structures of weight 1 on C is given by a real symplectic
vector bundle ER with a flat connection∇ preserving the symplectic form, such that every
fiber of E carries a Hermitian structure compatible with the symplectic form, and such
that the corresponding complex Lagrangian subbundle E1,0 of the complexification EC =
ER ⊗ C is holomorphic. The variation is called tame if all eigenvalues of the monodromy
around cusps lie on the unit circle, and the subbundle E1,0 is meromorphic at cusps. For
example, the Hodge bundle of any algebraic family of smooth compact curves over C (or
an orthogonal direct summand of it) is a tame variation.

Similarly, a variation of complex polarized Hodge structures of weight 1 is given by
a complex vector bundle EC of rank p+ q (where p, q are nonnegative integers) endowed
with a flat connection ∇ , by a covariantly constant pseudo-Hermitian form of signature
(p, q), and by a holomorphic subbundle E1,0 of rank p, such that the restriction of the
form to it is strictly positive. The condition of tameness is completely parallel to the real
case.

Any real variation of rank 2r gives a complex one of signature (r, r) by the com-
plexification. Conversely, one can associate with any complex variation (EC,∇,E1,0) of
signature (p, q) a real variation of rank 2(p+ q), whose underlying local system of real
symplectic vector spaces is obtained from EC by forgetting the complex structure.

Let us assume that the variation of complex polarized Hodge structures of weight
1 has a unipotent monodromy around cusps. Then the bundle E1,0 admits a canonical
extension E1,0 to the natural compactification C. It can be described as follows: consider
first an extension EC of EC to C as a holomorphic vector bundle in such a way that the
connection∇ will have only first order poles at cusps, and the residue operator at any cusp
is nilpotent (it is called the Deligne extension). Then the holomorphic subbundle E1,0 ⊂ EC

extends uniquely as a subbundle E1,0 ⊂ EC to the cusps.
Let (ER,∇,E1,0) be a tame variation of polarized real Hodge structures of rank

2r on a curve C with negative Euler characteristic. For example, C could be an unram-
ified cover of a general arithmetic Teichmüller curve, and E could be a subbundle of
the Hodge bundle which is simultaneously invariant under the Hodge star operator and
under the monodromy.

Using the canonical complete hyperbolic metric on C one can define the geodesic
flow on C and the corresponding Lyapunov exponents λ1 ≥ · · · ≥ λ2r for the flat bundle
(ER,∇), satisfying the usual symmetry property λ2r+1−i =−λi, i = 1, . . . , r.

The holomorphic vector bundle E1,0 carries a Hermitian form, hence its top exte-
rior power ∧r(E1,0) is a holomorphic line bundle also endowed with a Hermitian metric.
Let us denote by � the curvature (1,1)-form on C corresponding to this metric. Then
we have the following general result:
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Theorem. — Under the above assumptions, the sum of the top r Lyapunov exponents of V with

respect to the geodesic flow satisfies

(3.11) λ1 + · · · + λr =
i

π

∫
C �

2GC − 2+ sC
,

where we denote by GC—the genus of C, and by sC—the number of hyperbolic cusps on C.

Note that the genus GC of the Teichmüller curve C has no relation to the genus g

of the flat surface S.
Formula (3.11) was first formulated by M. Kontsevich (in a slightly different form)

in [K] and then proved rigorously by G. Forni [Fo1].

Proof. — We prove the above formula for ER :=H1
R ; the proof in general situation

is completely analogous.
By formula (3.9) one has

λ1 + · · · + λg =
∫

M1

�(S) dν1(S)= 1

Area(C)

∫

C
�(S) dghyp(S),

where Area(C)= π

2 (2GC − 2+ sC) is the area of C in the hyperbolic metric of curvature
−4.

Let ζ be the natural complex coordinate in the hyperbolic plane; let ∂ = ∂/∂ζ .
The latter integral can be expressed as

∫

C
�(S) dghyp(S)=−1

4

∫

C
�Teich log

∣
∣det〈ωi,ωj〉

∣
∣ dghyp(S)

=−1

4

∫

C
4∂∂ log

∣
∣det〈ωi,ωj〉

∣
∣ i

2
dζ ∧ d ζ̄

= i

2

∫

C
−2∂∂ log

∣
∣det〈ωi,ωj〉

∣
∣

1
2 dζ ∧ d ζ̄

= i

2

∫

C
�
(
�gH1,0

)

where �(�gH1,0) is the curvature form of the determinant line bundle. Dividing the latter
expression by the expression for the Area(C) found above we complete the proof. �

Note that a similar result holds also for complex tame variations of polarized Hodge
structures. Namely, for a variation of signature (p, q) one has p+ q Lyapunov exponents

λ1 ≥ · · · ≥ λp+q.

Let r :=min(p, q). Then, it is easy to verify that we again have the symmetry λp+q+1−i =
−λi , i = 1, . . . , p+ q, and that when p �= q we have an additional relation λr+1 = · · · =
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λp+q−r = 0 (see [FoMaZ3]). The collection (with multiplicities) {λ1, . . . , λr} will be called
the non-negative part of the Lyapunov spectrum. We claim that the sum of non-negative
exponents λ1 + · · · + λr is again given by the formula (3.11).

The proof follows from the simple observation that one can pass from a complex
variation to a real one by taking the underlying real local system. Both the sum of non-
negative exponents and the integral of the curvature form are multiplied by two under
this procedure.

The denominator in the above formula is equal to minus the Euler characteristic
of C, i.e. to the area of C up to a universal factor 2π . The numerator also admits an
algebro-geometric interpretation for variations of real Hodge structures arising as direct
summands of Hodge bundles for algebraic families of curves. Note that the form i

2π
�

represents the first Chern class of E1,0. Let us assume that the monodromy of (E,∇)

around any cusp is unipotent (this can be achieved by passing to a finite unramified cover
of C). Then one has the following identity (see e.g. Proposition 3.4 in [Pe]):

i

π

∫

C
�= 2 degE1,0.

In general, without the assumption on unipotency, we obtain that the integral above is
a rational number, which can be interpreted as an orbifold degree in the following way.
Namely, consider an unramified Galois cover C ′ → C such that the pullback of (E,∇)

has a unipotent monodromy. Then the compactified curve C is a quotient of C ′ by a
finite group action, and hence is endowed with a natural orbifold structure. Moreover,
the holomorphic Hodge bundle on C ′ will descend to an orbifold bundle on C. Then the
integral of i

2π
� over C is equal to the orbifold degree of this bundle.

The choice of the orbifold structure on C is in a sense arbitrary, as we can choose
the cover C ′ → C in different ways. The resulting orbifold degree does not depend on this
choice. The corresponding algebro-geometric formula for the denominator given as an
orbifold degree, is due to I. Bouw and M. Möller in [BwMö].

In the next sections we compute the integral in the right-hand side of (3.9), that
is, we compute the average curvature of the determinant bundle. Our principal tool is
the analytic Riemann–Roch Theorem (Theorem 5 below) combined with the study of
the determinant of the Laplacian of a flat metric near the boundary of the moduli space.
The next Section 3.4 is used to motivate Theorem 5; readers with a purely analytic
background may wish to proceed directly to Section 3.5.

3.4. Riemann–Roch–Hirzebruch–Grothendieck Theorem. — Let π : C→ B be a com-
plex analytic family of smooth projective algebraic curves, endowed with n holomorphic
sections s1, . . . , sn, and multiplicities mi > 0. We assume that for any x ∈ B points si(x), i =
1, . . . , n, in the fiber Cx := π−1(x) are pairwise distinct. Denote by Di, i = 1, . . . , n the
irreducible divisor in C given by the image of si. Moreover, we assume that a complex
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line bundle L on B is given, together with a holomorphic identification

T∗C/B � π∗L⊗OC

(∑

i

miDi

)
.

In plain terms it means that any nonzero vector l in the fiber Lx of L at x ∈ B gives a
holomorphic one form αl on Cx with zeroes of multiplicities mi at points si(x).

Let us apply the standard Riemann–Roch–Hirzebruch–Grothendieck theorem to
the trivial line bundle E :=OC:

ch
(
Rπ∗(E)

)= π∗
(
ch(E)td(TC/B)

) ∈Heven(B;Q)

and look at the term in H2(B;Q). The left-hand side is equal to

c1(H),

where H is the holomorphic vector bundle on B with the fiber at x ∈ B given by

Hx := �
(
Cx,�

1
Cx

)
,

(that is the Hodge bundle H1,0.) The reason is that the class of Rπ∗(OC) in the K-group
of B is represented by the difference

[
R0π∗(OC)

]− [
R1π∗(OC)

]= [OB] −
[
H∗

]

Let us compute the right-hand side in the Riemann–Roch–Hirzebruch–Grothendieck
formula. The Chern character of E :=OC is

ch(E)= 1 ∈Heven(C;Q).

Therefore, the term in

H2(B;Q)

is the direct image of the term in H4(C;Q) of the Todd class TC/B, that is

1
12

π∗
(
c1(TC/B)

2
)
.

By our assumption, we have

c1(TC/B)=−
(

π∗c1(L)+
∑

i

mi[Di]
)

.

First of all, we have

π∗
(
π∗
(
c1(L)

))2 = π∗(1) · c1(L)2 = 0
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because π∗(1)= 0. Also, divisors Di and Dj are disjoint for i �= j. Hence,

π∗
(
c1(TC/B)

2
)= 2

∑

i

miπ∗
(
π∗c1(L) · [Di]

)+
∑

i

m2
i π∗

([Di] · [Di]
)
.

Obviously,

π∗
(
π∗c1(L) · [Di]

)= c1(L) · π∗
([Di]

)= c1(L) ∈H2(B;Q)

because π∗([Di])= 1.
Also,

π∗
([Di] · [Di]

)= s∗i
(
c1(NDi

)
)
,

where NDi
is the normal line bundle to the Di . If we identify Di with the base B by map

si, one can see easily that

s∗i
(
c1(NDi

)
)=− 1

mi + 1
c1(L) ∈H2(B;Q)

The conclusion is that

c1(H)= const · c1(L)

where the constant is given by

const = 1
12

∑

i

(
2mi − m2

i

mi + 1

)
= 1

12

∑

i

mi(mi + 2)

mi + 1

The line bundle L is endowed with a natural Hermitian norm, for any l ∈ Lx,
x ∈ B we define

|l|2 :=
∫

Cx

|αl|2

where αl ∈ �(Cx,�
1
Cx

) is the holomorphic one form corresponding to l.
Hence, we have a canonical 2-form representing c1(L). Similarly, the vector bundle

H carries its own natural Hermitian metric coming form Hodge structure. It gives an-
other canonical 2-form representing c1(H). The analytic Riemann–Roch theorem pro-
vides an explicit formula for a function, whose ∂∂ derivative gives the correction. To
formulate the analytic Riemann–Roch theorem we need to introduce the determinant of
Laplace operator.
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3.5. Determinant of Laplace operator on a Riemann surface. — A good reference for this
subsection is the book [So].

To define a determinant det�g of the Laplace operator on a Riemann surface C
endowed with a smooth Riemannian metric g one defines the following spectral zeta func-

tion:

ζ(s)=
∑

θ

θ−s

where the sum is taken over nonzero eigenvalues of �g . This sum converges for Re(s) > 1.
The function ζ(s) might be analytically continued to s= 0 and then one defines

log det�g := −ζ ′(0)

The analytic continuation can be obtained from the following formula expressing
ζ(s) in terms of the trace of the heat kernel,

ζ(s)= 1
�(s)

∫ ∞

0
ts−1 Tr

(
exp(t�g)

)
dt,

and the well known short-time asymptotics of the trace of the heat kernel.
Let g1 and g2 be two nonsingular metrics in the same conformal class on a closed

nonsingular Riemann surface C. Let the smooth function 2φ be the logarithm of the
conformal factor relating the metrics g1 and g2:

g2 = exp(2φ) · g1.

The theorem below, see [Po1], [Po2], relates the determinants of the two Laplace opera-
tors:

Theorem (Polyakov Formula).

log det�g2 − log det�g1(3.12)

= 1
12π

(∫

C
φ �g1φ dg1 − 2

∫

C
φ Kg1 dg1

)

+ (
log Areag2(C)− log Areag1(C)

)

3.6. Determinant of Laplacian in the flat metric. — Consider a flat surface S of area one
in some stratum of Abelian or quadratic differentials. In a neighborhood of any nonsin-
gular point of S we can choose a flat coordinate z such that the corresponding quadratic
differential q (which is equal to ω2 when we work with an Abelian differential ω) has the
form

q= (dz)2.
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A conical singularity P of order d of S has the cone angle (d+ 2)π . One can choose
a local coordinate w in a neighborhood of P such that the quadratic differential q has the
form

(3.13) q=wd(dw)2

in this coordinate. The corresponding flat metric gflat has the form |dz|2 in a neighborhood
of a nonsingular point and

(3.14) gflat(w, w̄)= |w|d |dw|2

in a neighborhood of a conical singularity.
Let ε > 0, and suppose that gflat is such, that the flat distance between any two

conical singularities is at least 2ε. We define a smoothed flat metric gflat,ε as follows. It
coincides with the flat metric |q| outside of the ε-neighborhood of conical singularities.
In an ε-neighborhood of a conical singularity it is represented as gflat,ε = ρflat,ε(|w|) |dw|2
where the local coordinate w is defined in (3.13). We choose a smooth function ρflat,ε(r)

so that it satisfies the following conditions:

(3.15) ρflat,ε(r)=
{

rd r ≥ ε

constflat,ε 0≤ r ≤ ε′
,

and on the interval ε′ < r < ε the function ρflat,ε(r) is monotone and has monotone
derivative.

It is convenient for us to obtain the function ρflat,ε(r) in the definition of gflat,ε from
a continuous function which is constant on the interval [0, ε] and coincides with rd for
r ≥ ε. This continuous function is not smooth for r = ε, so we smooth out this “cor-
ner” in an arbitrary small interval ]ε′, ε[ by an appropriate convex or concave function
depending on the sign of the integer d , see Figure 4.

Denote by S a flat surface of area one defined by an Abelian differential or by a
meromorphic quadratic differential with at most simple poles. Denote by S0 some fixed
flat surface in the same stratum.

FIG. 4. — Function ρflat,ε(r) corresponding to a zero of a meromorphic quadratic differential on the left and to a simple
pole—on the right
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Definition 2. — We define the relative determinant of a Laplace operator as

(3.16) det�flat(S,S0) := lim
ε→0

det�flat,ε(S)

det�flat,ε(S0)

where �flat,ε is the Laplace operator of the metric gflat,ε .

Note that numerator and denominator in the above formula diverge as ε→ 0.
However, we claim that for sufficiently small ε the ratio, in fact, does not depend neither
on ε nor the exact form of the function ρflat,ε. Indeed, suppose ε1 < ε2. Then by the
Polyakov formula,

log
det�flat,ε2(S)

det�flat,ε2(S0)
− log

det�flat,ε1(S)

det�flat,ε1(S0)

= log
det�flat,ε2(S)

det�flat,ε1(S)
− log

det�flat,ε2(S0)

det�flat,ε1(S0)

= 1
12π

(∫

S
φS �flat,ε1φS dgflat,ε1 − 2

∫

S
φS Kflat,ε1 dgflat,ε1

)

+ (
log Areagflat,ε2

(C)− log Areagflat,ε1
(C)

)

− 1
12π

(∫

S0

φS0 �flat,ε1φS0 dgflat,ε1 − 2
∫

S0

φS0 Kflat,ε1 dgflat,ε1

)

− (
log Areagflat,ε2

(C0)− log Areagflat,ε1
(C0)

)
.

Note that the metrics gflat,ε2 and gflat,ε1 on C differ only on ε2-neighborhoods of conical
points. Similarly, the metrics gflat,ε2 and gflat,ε1 on C0 differ only on ε2-neighborhoods of
conical points; in particular the conformal factors are supported on this neighborhoods.
Since these neighborhoods are isometric by our construction the above difference is equal
to zero.

Thus, det�flat(S,S0) is well-defined on the entire stratum.

Remark 3.1. — It is clear from the definition that log det�flat(S,S0) depends on the
choice of S0 only via an additive constant.

Remark. — One can apply various approaches to regularize the determinant of the
Laplacian of a flat metric with conical singularities, see, for example, the approach of
A. Kokotov and D. Korotkin, who use Friedrichs extension in [KkKt3], or the approach
of A. Kokotov [Kk2], who works with more general metrics with conical singularities.
All these various approaches lead to essentially equivalent definitions, and to the same
definition for the “relative determinant” det�flat(S,S0).
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3.7. Analytic Riemann–Roch theorem. — The Analytic Riemann–Roch Theorem was
developed by numerous authors in different contexts. To give a very partial credit we
would like to cite the papers of A. Belavin and V. Knizhnik [BeKzh], of J.-M. Bismut
and J.-B. Bost [BiBo] of J.-M. Bismut, H. Gillet and C. Soulé [BiGiSo1], [BiGiSo2],
[BiGiSo3], of D. Quillen [Q], of L. Takhtadzhyan and P. Zograf [TaZg], and references
in these papers.

The results obtained in the recent paper of A. Kokotov and D. Korotkin [KkKt3]
are especially close to Theorem 5 (see Section 5.2 below).

Theorem 5. — For any flat surface S in any stratum H1(m1, . . . ,mn) of Abelian differentials

the following formula holds:

(3.17) �Teich log
∣∣det〈ωi,ωj〉

∣∣=�Teich log det�flat(S,S0)− 1

3

n∑

j=1

mj(mj + 2)

mj + 1
,

where m1 + · · · + mn = 2g − 2. Here �Teich is taken with respect to the canonical hyperbolic metric

of curvature −4 on the Teichmüller disc passing through S. (Note that the right-hand-side of (3.17) is

independent of the choice of S0 in view of Remark 3.1.)

For any flat surface S in any stratum Q1(d1, . . . , dn) of meromorphic quadratic differentials with

at most simple poles the following formula holds:

(3.18) �Teich log
∣∣det〈ωi,ωj〉

∣∣=�Teich log det�flat(S,S0)− 1

6

n∑

j=1

dj(dj + 4)

dj + 2
,

where d1 + · · · + dn = 4g − 4.

Theorem 5 is proved in Section 5.
Consider two basic examples illustrating Theorem 5.

Example 3.2 (Flat torus). — Consider the canonical coordinate ζ = x + iy in the
fundamental domain, Im ζ > 0, |ζ | ≥ 1, −1/2 ≤ Re ζ ≤ 1/2, of the upper half-plane
parametrizing the space of flat tori. This coordinate was introduced in Example 3.1 in
the end of Section 3.1.

There are no conical singularities on a flat torus, so the definition of the determi-
nant of Laplacian does not require a regularization. For a torus of unit area, one has:

det�flat = 4 Im(ζ )
∣∣η(ζ )

∣∣4,

where η is the Dedekind η-function, see, for example, [RySi, §4], [OsPhSk], page 205, or
formula (1.3) in [McITa]. Since η is holomorphic,

�Teich log det �flat =�Teich log | Im ζ | =�Teich log y= 4y2 ∂2

∂y2
log y=−4.
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On the other hand, as a holomorphic section ω(ζ ) we can choose the Abelian
differential with periods 1 and ζ . Then det〈ωi,ωj〉| = ‖ω‖2 = Area = Im ζ = y. Thus,
the equality (3.17) holds. In addition, we get

�(S)=−1
4
�Teich log det〈ωi,ωj〉 = −1

4
�Teich log y= 1.

Thus, since ν1 is a probability measure, we get

(3.19)
∫

M1

�(S) dν1(S)= 1.

In the torus case there is only one Lyapunov exponent, namely λ1, and we know from
general arguments that λ1 = 1. Therefore, (3.19) verifies explicitly the key formula (3.9).

Example 3.3 (Flat sphere with four cone points). — According to a result A. Kokotov
and D. Korotkin [KkKt2], the determinant of the Laplacian for the flat metric defined
by a quadratic differential with four simple poles and no other singularities on CP1 one
has the form

det�|q| = const · | Im(AB̄)| · |η(B/A)|2
|A| ,

where A and B are the periods of the covering torus (see the last pages of [KkKt2]).
Here, the determinant det�|q| of Laplacian corresponding to the flat metric |q| defined
in [KkKt2] differs from det�|q|(S,S0) only by a multiplicative constant. Note that

Im(AB̄)= Im
(

AĀB̄

Ā

)
= |A|2 Im(B̄/Ā)=−|A|2 Im(B/A)

Thus,

det�|q| = const · |A| · ∣∣ Im(B/A)
∣
∣ · ∣∣η(B/A)

∣
∣2.

One should not be misguided by the fact that under the normalization A := 1 one gets
�Teich|A| = 0 along a holomorphic deformation. Recall that in our setting we have to
normalize the area of the flat sphere to one! Doing so for the double-covering torus with
A= 1 and B= ζ = x+ iy we rescale A to A= 1/

√
y and B∼√y, which implies that for

the sphere of unit area we get

(3.20) det�|q| = const · y−1/2 · y · ∣∣η(B/A)
∣∣2,

so

�Teich log det�|q| = 1

2
log y.
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Comparing to the integral above, we get
∫

M1

−1

4
�Teich log det�|q| = 1

2
.

On the other hand, for four simple poles one has

1

24

4∑

j=1

(−1)(−1+ 4)

−1+ 2
=−1

2
,

and integrating (3.18) we get zeros on both sides, as expected.

3.8. Hyperbolic metric with cusps. — A conformal class of a flat metric |q| contains
a canonical hyperbolic metric of any given constant curvature with cusps exactly at the
singularities of the flat metric. (In the case, when q= ω2, where ω ∈H(0) is a holomor-
phic Abelian differential on a torus, we mark a point on the torus.) In an appropriate
holomorphic coordinate ζ in a neighborhood of a conical singularity P of such canonical
hyperbolic metric ghyp of curvature −1 has the form

(3.21) ghyp(ζ, ζ̄ )= |dζ |2
|ζ |2 log2 |ζ | .

Similarly to the smoothed flat metric we define a smoothed hyperbolic metric ghyp,δ .
It coincides with the hyperbolic metric ghyp outside of a neighborhood of singularities. In a
small neighborhood of a singularity it is represented as ghyp,δ = ρhyp,δ(|ζ |) |dζ |2 where the
local coordinate ζ is as in (3.21). We choose a smooth function ρhyp,δ(s) so that it satisfies
the following conditions:

(3.22) ρhyp,δ(s)=
{

s−2 log−2 s s ≥ δ

consthyp,δ 0≤ s ≤ δ′,

and on the interval δ′ < s < δ the function ρhyp,δ(s) is monotone and has monotone deriva-
tive. We can assume that δ′ is extremely close to δ and that consthyp,δ is extremely close to
δ−2 log−2(δ), see Figure 4.

Suppose that S and S0 are two surfaces in the same stratum.

Definition 3 (Jorgenson–Lundelius). — Define relative determinant of a Laplace operator in the

hyperbolic metric as

det�ghyp
(S,S0) := det�hyp,δ(S)

det�hyp,δ(S0)
,

where �hyp,δ(S) and �hyp,δ(S0) are Laplace operators of the metric ghyp,δ on S and S0 correspondingly.

As in Section 3.6, we can see that det�ghyp
(S,S0) does not depend either on δ or

on the exact choice of the function ρhyp,δ(s).
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Strategy. — Now we can formulate our strategy for the rest of the proof. By formula (3.9),
to compute the sum of the Lyapunov exponents we need to evaluate the integral of
�Teich log |det〈ωi,ωj〉| over the corresponding SL(2,R)-invariant suborbifold. Using the
analytic Riemann–Roch Theorem this is equivalent to evaluation of the integral of
�Teich log det�flat(S,S0), see Equations (3.17) and (3.18). Using Polyakov formula we com-
pare log det�flat(S,S0) with log det�ghyp

(S,S0) and show that when the underlying Rie-
mann surface S is close to the boundary of the moduli space, there is no much difference
between them.

The determinant of Laplacian in the hyperbolic metric was thoroughly stud-
ied, see, for example, papers of B. Osgood, R. Phillips, and P. Sarnak [OsPhSk], of
S. Wolpert [Wo1], of J. Jorgenson and R. Lundelius [JoLu], [Lu]. In particular, there
is a very explicit asymptotic formula for log det�ghyp

(S,S0) due to S. Wolpert [Wo1] and
to R. Lundelius [Lu]. Using these formulas and performing an appropriate cutoff near
the boundary, we evaluate the integral of �Teich log det�flat(S,S0).

3.9. Relating flat and hyperbolic Laplacians by means of the Polyakov formula. — Consider
a function f on a flat surface S and a function f0 on a fixed flat surface S0 in the same
stratum as S. Assume that the functions are nonsingular outside of conical singularities
of the flat metrics. By convention the surfaces belong to the same stratum. We assume
that the conical singularities are named, so there is a canonical bijection between conical
singularities of S and S0. By construction, small neighborhoods of corresponding conical
singularities are isometric in the corresponding hyperbolic metrics with cusps defined
by (3.21). The isometry is unique up to a rotation.

Suppose that we can represent f and f0 in a neighborhood O(R) of each cusp as

f (r, θ)= g(r)+ h(r, θ)

f0(r, θ)= g(r)+ h0(r, θ)

where g(r) is rotationally symmetric and h and h0 are already integrable with respect to
the hyperbolic metric of the cusp. We define

〈∫

S
f dghyp −

∫

S0

f0 dghyp

〉
(3.23)

:=
∫

S−∪Oj (R)

f dghyp −
∫

S0−∪Oj (R)

f0 dghyp +
∑

j

∫

Oj (R)

(f − f0) dghyp

Clearly, this definition does not depend on the cutoff parameter R.
Recall that gflat and ghyp belong to the same conformal class. Denote by φ (corre-

spondingly φ0) the following function on the surface S (correspondingly S0):

gflat = exp(2φ)ghyp.
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Theorem 6. — For any pair S,S0 of flat surfaces of the same area in any stratum of Abelian

differentials or of meromorphic quadratic differentials with at most simple poles one has

log det�flat(S,S0)− log det�ghyp
(S,S0)(3.24)

= 1
12π

〈∫

S
φ dghyp −

∫

S0

φ0 dghyp

〉

− 1
6

∑

j

(
log

∣∣
∣∣
dw

dζ
(Pj,S)

∣∣
∣∣− log

∣∣
∣∣
dw0

dζ
(Pj,S0)

∣∣
∣∣

)
,

where ζ is as in (3.21), and w and w0 are as in (3.13) for S and S0 respectively.

Theorem 6 is a corollary of Polyakov formula; it is proved in Section 6.

3.10. Comparison of relative determinants of Laplace operators near the boundary of the moduli

space. — In Section 7 we estimate the integral in formula (3.24) from Theorem 6 and
prove the following statement.

Theorem 7. — Consider two flat surfaces S,S0 of area one in the same stratum. Let

�flat(S), �flat(S0) be the lengths of shortest saddle connections on flat surface S and S0 correspondingly.

Assume that �flat(S0)≥ l0. Then
∣
∣ log det�flat(S,S0)− log det�ghyp

(S,S0)
∣
∣(3.25)

≤ const1(g, n) · ∣∣ log�flat(S)
∣∣+ const0(g, n, l0)

with constants const0(g, n, l), const1(g, n) depending only on the genus of S, on the number n of conical

singularities of the flat metric on S and on the bound l0 for �flat(S0).

In fact we prove a much more accurate statement in Theorem 11, which gives the
exact difference between the flat and hyperbolic determinants up to an error which is
bounded in terms only of S0, g and n. The optimal constant c1(g, n) in (3.25) can also be
deduced easily from Theorem 11.

Establishing a convention confining the choice of the auxiliary flat surface S0 to
some reasonable predefined compact subset of the stratum one can make const0 inde-
pendent of l0. For example, the subset of those S0 for which �flat(S0) ≥ 1/

√
2g − 2+ n

is nonempty for any connected component of any stratum. As an alternative one can
impose a lower bound on the shortest hyperbolic geodesic on the Riemann surface un-
derlying S0 in terms of g and n.

We prove Theorem 7 applying the following scheme. To evaluate the integral in
formula (3.24) we use a thick-thin decomposition of the surface S determined by the
hyperbolic metric. Then, using Theorem 10 (Geometric Compactification Theorem) we
obtain a desired estimate for the thick part. We then use the maximum principle and
some simple calculations to obtain the desired estimates for the integral on the thin part.
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3.11. Determinant of Laplacian near the boundary of the moduli space. — Consider a holo-
morphic 1-form ω (or a meromorphic differential q with at most simple poles) on a closed
Riemann surface of genus g. Consider the corresponding flat surface S = S(ω) (corre-
spondingly S(q)). Assume that ω (correspondingly q) is normalized in such way that the
flat area of S is equal to one.

Every regular closed geodesic on a flat surface belongs to a family of parallel closed
geodesics of equal length. Such family fills a maximal cylinder with conical points of the
metric on each of the two boundary components. Denote by hj and wj a height and a
width correspondingly of such a maximal cylinder. (By convention a “width” of a cylinder
is the length of its waist curve, which by assumption is a closed geodesic in the flat metric.)
By a modulus of the flat cylinder we call the ratio hj/wj .

Theorem 8. — For any stratum H1(m1, . . . ,mn) of Abelian differentials and for any stratum

Q1(d1, . . . , dn) of meromorphic quadratic differentials with at most simple poles there exist a constant

M=M(g, n)� 1 depending only on the genus g and on the number n of zeroes and simple poles, such

that for any pair S,S0 of flat surfaces of unit area in the corresponding stratum one has

(3.26) − log det�flat(S,S0)= π

3

∑

cylinders with
hr/wr≥M

hr

wr

+O
(
log�flat(S)

)
,

where �flat(S) is the length of the shortest saddle connection on the flat surfaces S and hr,wr denote heights

and widths of maximal flat cylinders of modulus at least M on the flat surface S. Here
∣
∣O

(
log�flat(S)

)∣∣≤C1(g, n) · ∣∣ log�flat(S)
∣
∣+C0(g, n,S0)

with C1(g, n),C0(g, n,S0) depending only on the genus g, on the number n of conical singularities of

the base flat surface S0.

Choice of the constants. — Similarly to the way suggested in the discussion following The-
orem 7, establishing a reasonable convention on the choice of S0 one can get rid of de-
pendence of the constants on the base surface S0.

Remark. — It is a well known fact, see e.g. [Hb, Proposition 3.3.7] that a flat cylin-
der of sufficiently large modulus necessarily contains a short hyperbolic geodesic for the
underlying hyperbolic metric. The number of short hyperbolic geodesics on a surface is
bounded by 3g − 3 + n. Thus, for sufficiently large M depending only on g and n, the
number of summands in expression (3.26) is uniformly bounded.

Example 3.4 (Flat torus). — In notations of Example 3.2 from the previous section,
one has the following expression for the determinant of the Laplacian in a flat metric on
a torus of area one:

det�flat(ζ )= 4 Im(ζ )
∣
∣η(ζ )

∣
∣4
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see, for example, [OsPhSk], page 205, or formula (1.3) in [McITa]. Taking the logarithm
of the above formula and using the asymptotic of the Dedekind η-function for large values
of Im ζ we get

log det�flat ∼ 4 log
∣∣η(ζ )

∣∣∼−π

3
Im ζ, when Im ζ →+∞.

Note that h/w does not depend on the rescaling of the torus, and h/w ∼ Im ζ . Thus, we
get the asymptotics promised by relation (3.26) of Theorem 8.

Example 3.5 (Flat sphere with four cone points). — In Example 3.3 from the previous
section we considered the determinant of the Laplacian in a flat metric on CP1 defined
by a quadratic differential with four simple poles and with no other singularities; see the
last pages of [KkKt2] for details. This expression (3.20) implies the following asymptotics
for large values of Im ζ (we keep notations of Example 3.3):

log det�|q| ∼ 2 log
∣∣η(ζ )

∣∣, when Im ζ →+∞,

which is one half of the torus case. Indeed, the height h of the single flat cylinder of the
covering torus is twice bigger then the height of the single flat cylinder on the underlying
flat sphere, while the width w of the cylinder on the torus is the same as the width of the
one on the flat sphere. Thus, we again get the asymptotics promised by relation (3.26) of
Theorem 8.

Theorem 8 is proved in Section 8. Our strategy is to derive the result from an anal-
ogous estimate by Lundelius and Jorgenson–Lundelius for a hyperbolic metric punctured
at the zeroes of ω (correspondingly, q) and then apply the estimate (3.26) from Theorem 8.

3.12. The contribution of the boundary of moduli space. — A regular invariant suborb-
ifold M1 is never compact, so one should not expect that the integral of �Teich log det�flat

over M1 would be zero. Indeed,

Theorem 9. — Let M1 be a regular invariant suborbifold of flat surfaces of area one in a stratum

of Abelian differentials (correspondingly in a stratum of quadratic differentials with at most simple poles).

Let ν1 be the associated probability SL(2,R)-invariant (correspondingly PSL(2,R)-invariant) density

measure. Let carea(M1) := carea(ν1) be the corresponding Siegel–Veech constant. Then

(3.27)
∫

M1

�Teich log�flat(S,S0) dν1 =−4
3

π 2 · carea(M1)

Theorem 9 is proved in Section 9.

Remark 3.2. — After integrating by parts, the left side of (3.27) can be written as an
integral over a neighborhood of the boundary of the moduli space, which in view of (3.26)
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is dominated by a sum over all cylinders of large modulus. Also the Siegel–Veech constant
carea(M1) measures the contribution of (certain kinds) of cylinders of large modulus; this
gives a heuristic explanation of (3.27). However, for the precise proof of (3.27) in Section 9
we need the assumptions of Section 1.5, (so we can e.g. justify the integration by parts).

The main Theorems now become elementary corollaries of the above statements.

Proof of Theorem 1. — Suppose that M1 is a regular suborbifold of a stratum of
Abelian differentials. Apply Equation (3.9) from the Background Theorem to express
the sum of the Lyapunov exponents as the integral of �(S) defined by relation (3.5).
Use Equation (3.17) from Theorem 5 to rewrite the integral of �Teich log |det〈ωi,ωj〉| in
terms of the integral of �Teich log det�flat(S,S0). Finally, apply the relation (3.27) from
Theorem 9 to express the latter integral in terms of the corresponding Siegel–Veech
constant. �

Proof of part (a) of Theorem 2. — The proof of part (a) of Theorem 2 is completely
analogous to the proof of Theorem 1 with the only difference that one uses expres-
sion (3.18) from Theorem 5 instead of Equation (3.17). �

4. Geometric compactification theorem

In Section 4.1, we present the results of K. Rafi on comparison of flat and hy-
perbolic metrics near the boundary of the moduli space. Using the notions of a thick-thin

decomposition and of a size (in the sense of Rafi) of a thick part we formulate and prove
in Section 4.3 a version of the Deligne–Mumford–Grothendieck Compactification The-
orem in geometric terms. The proof is an elementary corollary of nontrivial results of
K. Rafi. The Geometric Compactification Theorem is an important ingredient of the
proof of Theorem 8 postponed to Section 8.

4.1. Comparison of flat and hyperbolic geometry (after K. Rafi). — We start with an outline
of results of K. Rafi [Rf2] on the comparison of flat and hyperbolic metrics when the
Riemann surface underlying the flat surface S is close to the boundary of the moduli
space.

Throughout Section 4 we consider a larger class of flat metrics, namely, we consider
a flat metric defined by a meromorphic quadratic differential q which might have poles
of any order. In particular, the flat area of the surface might be infinite. Unless it is stated
explicitly, it is irrelevant whether or not the quadratic differential q is a global square of a
meromorphic 1-form.

In Section 4 we mostly consider the flat surface S and its subsurfaces Y punctured
at all singular points of the flat metric (or, in other words at all zeroes and poles of the cor-
responding meromorphic quadratic differential q). Sometimes, to stress that the surface
is punctured we denote it by S̊ and Y̊ correspondingly.
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FIG. 5. — As a geodesic representative of a closed curve α encircling a short saddle connection γ we get a closed broken
line composed from two copies of γ

Following K. Rafi, by a “curve” we always mean a non-trivial non-peripheral
piecewise-smooth simple closed curve. Any curve α in S, has a geodesic representative
in the flat metric. This representative is unique except for the case when it is one of the
continuous family of closed geodesics in a flat cylinder. We denote the flat length of the
geodesic representative of α by lflat[α].

A saddle connection is a geodesic segment in the flat metric joining a pair of con-
ical singularities or a conical singularity to itself without any singularities in its interior.
A geodesic representative of any curve on S is a closed broken line composed from a finite
number of saddle connections.

Considering the punctured flat surface S̊, formally we have to speak about the in-

fimum of a flat length over essential (non-peripheral) curves in a free homotopy class of a
given curve. However, even in the case of the punctured flat surface S̊ it is convenient to
consider limiting closed geodesic broken lines, where segments of the broken line are sad-
dle connections joining zeroes and simple poles of the quadratic differential. For example,
for a closed curve α encircling a short saddle connection γ , one has lflat[α] = 2|γ | and the
corresponding closed broken line is composed from two copies of γ , see Figure 5. Follow-
ing the discussion in [Rf1], we can ignore this difficulty and treat these special geodesics
as we would treat any other geodesic.

Under this convention every curve α in the punctured surface S̊ has a geodesic
representative in the flat metric, and this representative is unique except for the case
when it is one of the continuous family of closed geodesics in a flat cylinder. We call such
a representative a q-geodesic representative of γ .

Let ghyp be the hyperbolic metric with cusps at all singularities of S in the conformal
class of the flat metric on S. We define lhyp[α] to be the shortest hyperbolic length of a
curve in a free homotopy class of α on the corresponding punctured surface S̊ or on its
appropriate subsurface Y̊.
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FIG. 6. — Schematic picture of thick components of the underlying hyperbolic metric (on the left) and their q-representatives
(on the right). The q-representative Y2 degenerate to a pair of saddle connections. Each of the q-representatives Y3,Y4 of the
corresponding pair of pants degenerate to a single saddle connection joining a zero to itself

Let δ  1 be a fixed constant; let �(δ) be the set of simple closed geodesics of
ghyp in S whose hyperbolic length is less than or equal to δ. A δ-thick component of ghyp is a
connected component Y of the complement S− �(δ).

Assume that δ is sufficiently small (here the measure of “sufficiently small” depends
only on the genus and on the number of punctures of the surface). We now cut the surface
S along all the q-geodesic representatives of all the short curves in �(δ). More precisely,
if γ ∈ �(δ) has a unique q-geodesic representative, we cut along that representative; oth-
erwise γ is represented by a closed geodesic in a flat cylinder Fγ , in which case we cut
along both curves at the ends of Fγ (and thus remove the cylinder Fγ from the surface).
After this procedure the surface S breaks up into the following pieces:

• For each γ ∈ �(δ) whose q-geodesic representative is part of a continuous family
of closed geodesics in a cylinder, we get the corresponding cylinder.

• For each δ-thick component Y of S − �(δ) we get a subsurface Y ⊂ S with
boundaries which are geodesic in the flat metric defined by q. Following K. Rafi,
we call such a flat surface with boundary Y a q-representative of Y (see an example
at Figure 6). Note that Y always has finite area; in some particular cases it might
degenerate to a graph. In that case, we should think of Y as a ribbon graph
(which, as all ribbon graphs, uniquely defines a surface with boundary). With
that caveat, we can say that Y is in the same homotopy class as Y. We note
that Y is the smallest representative of the homotopy class of Y with q-geodesic
boundaries.

A very expressive example of q-representatives is presented at the very end of the
original paper [Rf2] of K. Rafi.

We shall also need the notion of a curvature of a boundary curve of a subsurface Y
introduced in [Rf2]. Let γ be a boundary component of Y. The curvature κY(γ ) of γ in
the flat metric on S is well defined as a measure with atoms at the corners.
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We choose the sign of the curvature to be positive when the acceleration vector
points into Y. If a curve is curved non-negatively (or non-positively) with respect to Y
at every point, we say that it is monotonically curved with respect to Y. Let A be an
annulus in S with boundaries γ0 and γ1. Suppose that both boundaries are monotonically
curved with respect to A and that κA(γ0) ≤ 0. Further, suppose that the boundaries are
equidistant from each other, and the interior of A contains no zeroes or poles. We call A
a primitive annulus and write κA := −κA(γ0). When κA = 0, A is called a flat cylinder,
in this case it is foliated by closed Euclidean geodesics homotopic to the boundaries.
Otherwise, A is called an expanding annulus. See [Min] for more details.

Definition 4 (K. Rafi). — Define the flat size λ(Y) of a subsurface Y different from a pair of

pants to be the shortest flat length of an essential (non-peripheral) curve in Y.

When Y is a pair of pants (that is, when Y̊ has genus 0 and 3 boundary components), there

are no essential curves in Y. In this case, define the flat size of Y as the maximal flat length of the three

boundary components of Y.

We will often use the notation λ(Y) to denote λ(Y).

Theorem (K. Rafi). — For every δ-thick component Y of S and for every essential curve α in Y,

the flat length of α is equal to the size of Y times the hyperbolic length of α up to a multiplicative constant

C(g, n, δ) depending only on δ and the topology of S:

λ(Y)

C(g, n, δ)
· lhyp[α] ≤ lflat[α] ≤C(g, n, δ)λ(Y) · lhyp[α]

Also, the diameter of Y in the flat metric is bounded by C(g, n, δ)λ(Y).

One possible heuristic explanation of this theorem is as follows (see also Theo-
rem 10 and Remark 4.1 below). On compact subsets of the moduli space the flat and
hyperbolic metrics are comparable (by a compactness argument), and so the theorem
trivially holds. Thus assume that we have a sequence of surfaces Sτ = (Cτ , qτ ) tending
to infinity in moduli space. By the Deligne–Mumford theorem, we may assume that the
Riemann surfaces Cτ tend to a noded surface C∞. Then, the δ-thick subsurfaces Yτ,j

of Cτ converge to the components of C∞,j of C∞. We may also assume after passing
to a subsequence that the quadratic differentials qτ tend to a (meromorphic) quadratic
differential on C∞. (If the original quadratic differentials qτ are holomorphic, the limit
quadratic differential will be holomorphic away from the nodes of C∞, but may develop
poles at the nodes.) However, qτ may tend to zero on some component C∞,j of C∞, i.e. it
may be very small on the subsurfaces Yτ,j . But, with the proper choice of rescaling factors
λτ,j ∈R+, we can make sure that the sequence of quadratic differentials λτ,j qτ tends to a
bounded and non-zero limit on C∞,j . This limit is a meromorphic quadratic differential
with poles, and number and the degrees of the poles can be bounded in terms of only
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the topology. The set of all such differentials is a finite dimensional vector space, and so,
as all such vector spaces, is projectively compact. Thus, after the rescaling, the restriction
to Yτ,j is again in a situation where the moduli space is compact, and thus (up to the
rescaling factor) the flat metric coming from q is comparable to the hyperbolic metric.

The strength of the above theorem of K. Rafi (which is proved by completely dif-
ferent methods) is to justify the above discussion, and also to identify the rescaling factor
λτ,j with λ(Yτ,j)

−2, where λ(Yτ,j) is the size of Yτ,j which can be detected by measur-
ing the flat lengths of saddle connections in the (q-geodesic representative of) the δ-thick
subsurface Yτ,j .

We complete this section by the following elementary Lemma which will be used
in Section 7.

Lemma 4.1. — The size of any thick component of a flat surface S is bounded from below by

the length �flat(S) of the shortest saddle connection on S:

λ(Y)≥ �flat(S).

Proof. — We consider separately the situation when Y is different from a pair of
pants, and when Y is a pair of pants.

If Y is not a pair of pants, λ(Y) is the shortest flat length of an essential (non-
peripheral) curve γ in Y̊. This shortest length is realized by a flat geodesic representative
of γ , that is by a broken line composed from saddle connections (possibly a single saddle
connection). This implies the statement of the Lemma.

Implicitly the statement for the pair of pants is contained in the paper of K. Rafi.
According to [Rf2] the size of any pair of pants is strictly positive. Hence, the correspond-
ing boundary component has a geodesic representative composed from saddle connec-
tions and the statement follows. A direct proof can be easily obtained from the explicit
description of possible “pairs of flat pants” in the next section. �

4.2. Flat pairs of pants. — In this section we describe the flat metric on CP1 defined
by a meromorphic quadratic differential from Q(d1, d2, d3), where d1 + d2 + d3 =−4. In
particular, we consider the size of the corresponding flat surface.

Consider the subcase, when among d1, d2, d3 there are two entries, say d1, d2, sat-
isfying the inequality d1, d2 ≥ −1. If d1 = d2 = −1, then Y is metrically equivalent to
the following surface. Take a flat cylinder and isometrically identify a pair of symmetric
semi-circles on one of its boundary components, see Figure 7a. We get a saddle connec-
tion joining a pair of simple poles as a boundary on one side of the cylinder and an “open
end” on the other side. The size of Y is represented by the flat length of the waist curve
of the cylinder, which is twice longer than the corresponding saddle connection joining
the two simple poles.

If, say, d1 ≥ 0, and d2 ≥−1, the situation is completely analogous except that now Y
is metrically equivalent to a flat expanding annulus with a pair of singularities of degrees
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FIG. 7. — Different types of flat pairs of pants

d1, d2 inside it. The size of Y is twice the length of the saddle connection joining these
singularities, see Figure 7b.

Finally, there remains the case when there are two values, say, d2, d3, out of three,
satisfying the inequality d2, d3 ≤ −2, then the third value, d1, necessarily satisfy the in-
equality d1 ≥ 1 (note that d1 cannot be equal to zero). In this case Y is metrically equiv-
alent to a pair of expanding annuli attached to a common saddle connection joining a
zero of order d1 to itself, see Figure 7c. The size of Y coincides with the length of this
saddle connection.

4.3. Geometric compactification theorem. — Recall, that throughout Section 4 we con-
sider a wider class of flat metrics, namely, we consider flat metrics corresponding to
meromorphic quadratic differentials (and meromorphic 1-forms) having poles of arbi-
trary order. We also deviate from the usual convention denoting by the same symbol
Q(d1, . . . , dn) strata of meromorphic differentials even when they correspond to “strata
of global squares of 1-differentials”.

Now we are ready to formulate a version of the Deligne–Mumford–Grothendieck
Compactification Theorem in geometric terms. As remarked above, this theorem is im-
plicit in the statement of the theorem of K. Rafi.

Theorem 10. — Consider a sequence of flat surfaces Sτ = (Cτ , qτ ) where meromorphic

quadratic differentials qτ stay in a fixed stratum Q(d1, . . . , dn). Suppose that the underlying Riemann

surfaces Cτ converge to a stable Riemann surface C∞. Choose δ0 so that δ0 is smaller then half the

injectivity radius (in the hyperbolic metric) of any desingularized irreducible component C∞,j of C∞. Let

Yτ,j be the component corresponding to C∞,j in a δ0-thick-thin decomposition of Cτ ; let λ(Yτ,j) be the

size of a flat subsurface (Yτ,j, qτ ). Denote

q̃τ,j := 1

λ(Yτ,j)2
· qτ .

There is a subsequence Sτ ′ = (Cτ ′, qτ ′) and a nontrivial meromorphic quadratic differential

q̃∞,j on C∞,j such that the q̃τ ′,j -representatives Ỹτ ′,j of the corresponding thick components Yτ ′,j of the
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flat surfaces (Cτ ′, q̃τ ′,j) converge to the q̃∞,j -representative Ỹ∞,j of the flat surface (C∞,j, q̃∞,j). Fur-

thermore, the conformal structures on Cτ,j converge to the conformal structure of C∞,j , and the quadratic

differentials q̃τ,j converge to the limiting quadratic differential q̃∞,j on compact subsets of C∞,j .

With the possible exception of the nodes of C∞,j all zeroes and poles of q̃∞,j are limits of zeroes

and poles of the prelimit differentials q̃τ,j . If all meromorphic quadratic differentials qτ are global squares

of meromorphic 1-forms ωτ , then the limiting quadratic differential q̃∞,j is also a global square of a

meromorphic 1-form ω̃∞,j on C∞,j .

Remark. — Completing the current paper we learned that analogous results were si-
multaneously and independently obtained by S. Grushevsky and I. Krichever in [GruKr],
by S. Koch and J. Hubbard [KhHb], and by J. Smillie [Sm].

We start with the following Lemma which will be used in the proof of Theorem 10.

Lemma 4.2. — For every thick component Y of a thick-thin decomposition of S the q-geodesic

representative Y can be triangulated by adding C1 saddle connections γ , each satisfying the flat length

estimate:

(4.1)
λ(Y)

2
≤ |γ | ≤C2λ(Y),

where the constants C1 and C2 depend only on the ambient stratum Q(d1, . . . , dn) of S.

Proof. — We build this triangulation inductively. At each stage we have a partial
triangulation of Y. If some complementary region is not a triangle, it contains a saddle
connection whose associated closed curve γ ′ is essential, i.e. not homotopic to a bound-
ary component of Y. Let γ be the shortest saddle connection with this property. Then
the flat length of γ ′, which is twice the flat length of γ is bounded from below by the
size λ(Y) (by the definition of size). Also, the flat length of γ is bounded above by the
diameter diamq(Y) of Y in the flat metric defined by q. By the Theorem of K. Rafi (see
Theorem 4 in [Rf2])

diamq(Y)≤ const · λ(Y)

and thus, (4.1) holds. This process has to terminate after finitely many steps (depending
only on the stratum) since the Euler characteristic is finite. Thus the lemma holds. �

Proof of Theorem 10. — For each component of the stable Riemann surface consider
the associated hyperbolic metric, and consider the length of the shortest closed geodesic
in this metric. Let L be the minimum of these lengths over all components. We choose
δ in such way that δ L. For each surface Sτ we consider a decomposition into δ-thick
components as in Section 4.1.

Since the Riemann surfaces Cτ converge to C∞, we know that, for sufficiently
large τ , the topology of Yτ,j coincides with the topology of C∞,j punctured at the points
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of crossing with other components of the stable Riemann surface C∞ and at the points
of self-intersection. Hence, for sufficiently large τ the q̃τ,j-geodesic representative Yτ,j of
the thick component Yτ,j might have only finite number of combinatorial types of trian-
gulations as in Lemma 4.2. Passing to a subsequence we fix the combinatorial type of the
triangulation.

Such a triangulation contains a finite number of edges. Hence, by Lemma 4.2
we may chose a subsequence for which lengths of all sides of the triangulation of Yτ ′,j
converge. Note that by continuity, the limiting length γ∞ of each side satisfies:

|γ∞| ≤ const.

Hence, the limiting triangulation defines some flat structure sharing with Yτ ′,j the com-
binatorial geometry of the triangulation. Clearly, the linear holonomy of the limiting flat
metric is the same as the linear holonomy of the prelimiting flat metrics.

By construction, the underlying Riemann surface for the limiting flat surface
is C∞,j . Thus, to complete the proof it is sufficient to consider a meromorphic quadratic
differential q̃∞,j representing the limiting flat structure. Since C∞,j and Cτ,j for large τ

have triangulations which are close, if we remove the neighborhoods of the cusps of C∞,j ,
there is a quasiconformal map with dilatation close to 1 taking Cτ,j to C∞,j which is
close to the identity on compact sets. This implies that Cτ,j converge to C∞,j as Riemann
surfaces, and also that q̃τ,j converge to q̃∞,j . �

Remark 4.1. — Note that the quadratic differentials q̃τ ′,j defined in the statement of
Theorem 10 might tend to zero or to infinity while restricted to other thick components
Yτ ′,k , where k �= j. To get a well-defined limiting quadratic differentials on each individual
component one has to rescale the quadratic differentials qτ ′ individually component by
component. As an illustration the reader may consider an example at the very end of the
paper [Rf2] of K. Rafi.

4.4. The (δ, η)-thick-thin decomposition. — Suppose δ > 0 in the choice of the thick-
thin decomposition is sufficiently small, and fix η (depending only on the genus and the
number of punctures) so that δ η 1. In particular, we choose η to be smaller than
the Margulis constant. We work in terms of a hyperbolic metric with cusps ghyp(S). Con-
sider an (η, δ)-thick-thin decomposition of the surface S. Namely, for each short closed
geodesic γ ∈ �(δ) consider the set of points in the surface located at a bounded distance
from γ . When the bound for the distance is not too large, we get a topological annulus.
We choose the bounding distance to make the length of each of the two boundary compo-
nents of the annulus equal to the chosen constant η. Let Aγ (η) denote this annulus. If we
remove these annuli from S, the surface might become disconnected, see Figure 8. The
connected components which we denote by Yj(η) are subsets of the δ-thick components
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FIG. 8. — (δ, η)-thick components in hyperbolic metric

Yj defined in Section 4. We have

S=
( m⋃

j=1

Yj(η)

)
∪
( ⋃

γ∈�(δ)

Aγ (η)

)
.

We note that the (δ, η)-thick components Yj(η) and the (δ, η)-thin components Aγ (δ)

depend only on the hyperbolic metric on S, and not the quadratic differential q.

4.5. Uniform bounds for the conformal factor. — For R > 0 and a cusp P, let OP(R)

denote the neighborhood {ζ | |ζ |< R} where ζ is as in (3.21). In this subsection we fix a
constant R (depending only on δ, η and the stratum) such that for any hyperbolic surface
S and each hyperbolic cusp P of S, the neighborhood OP(R) does not intersect any of
the (δ, η)-thin components Aγ (η), γ ∈ �(δ), and also for distinct cusps P and Q, the
neighborhoods OP(R) and OQ(R) are disjoint.

The following Proposition is a variant of the Theorem of K. Rafi stated in the
beginning of Section 4.

Proposition 4.1. — Let S = (C, q) be a flat surface, and let Y be a δ-thick component of

S. Let Y(η) be the corresponding (δ, η)-thick component of S (defined as in Section 4.4). For each

P ∈ Z(Y(η)), let OP(R) be the neighborhood of P as defined in the beginning of Section 4.5. Then,

there exists a constant C′ depending only on the stratum, δ, η and R such that for all x ∈ Y(η) −⋃
P∈Z(Y)OP(R),

∣∣φ(q)(x)− logλ(Y)
∣∣≤C′,

where φ(q) is the conformal factor of q defined by gflat(q)= exp(2φ(q))ghyp.
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Proof. — The proof will be by contradiction. Suppose there is no C′ satisfying the
conditions of the lemma. Then there exists sequence of triples (xτ ,Yτ ,Sτ ) such that Yτ ⊂
Sτ is a δ-thick subsurface, xτ ∈ Yτ (η), and if we write Sτ = (Cτ , qτ ) then

(4.2)
∣
∣φ(qτ )(xτ )− logλ(Yτ )

∣
∣→∞.

After passing to a subsequence, we may assume that the flat surfaces Sτ converge in the
sense of Theorem 10. Let C∞, δ0, C∞,j , Yτ,j , q̃τ,j be as in the statement of Theorem 10.
One technical issue is that the constant δ0 (which depends on the sequence Sτ ) might not
coincide with the constant δ > 0 which is chosen in advance; in particular, we may have
δ0 < δ.

Since Yτ is a thick component of Sτ , for large enough τ no boundary curve of one
of the Yτ,j (which are all in �(δ0)) can cross the interior of Yτ ; therefore the subsurface
Yτ must be contained in one of the Yτ,j where j = j(τ ); however after passing to a sub-
sequence we may assume that j is fixed. Even then, we might not have Yτ = Yτ,j since
all we know about the boundary curves of Yτ is that they have hyperbolic length at most
δ, while by definition, the hyperbolic length of the boundary curves of Yτ,j tends to 0 as
τ→∞. However, we claim that

(4.3) lim sup
τ→∞

∣∣ logλ(Yτ )− logλ(Yτ,j)
∣∣<∞.

Indeed, if (4.3) failed, then (after passing to a subsequence) by [EMzRf, Lemma 4.9], the
subsurface Yτ,j would contain a curve γτ,j with the hyperbolic length of γτ,j → 0; this
contradicts the fact that Yτ,j → C∞,j where C∞,j is connected. Therefore (4.3) holds. It
follows from (4.2) and (4.3) that

(4.4)
∣
∣φ(qτ )(xτ )− logλ(Yτ,j)

∣
∣→∞.

As in Theorem 10, let

q̃τ,j = λ(Yτ,j)
−2qτ

By Theorem 10, we have q̃τ,j → q̃∞,j on uniformly on compact subsets of C∞,j After
passing to a subsequence, we have xτ → x∞ ∈ C∞,j . Since xτ stays away from Z(Yτ,j),
x∞ �∈ Z(Y∞,j). Also, since xτ ∈ Yτ,j(η), x∞ is not one of the nodes. Since q̃∞,j is finite and
does not vanish except at ponts of Z(Y∞,j) and the nodes, we see that q̃∞,j(x∞) �= 0.

Recall that we represent the conformal factor relating the flat and hyperbolic met-
rics as gflat(qτ )= exp(2φ(qτ ))ghyp. Therefore,

φ(q̃τ,j)(xτ )→ φ(q̃∞,j)(x∞) �= 0.

Hence,

(4.5) lim sup
τ→∞

∣∣φ(q̃τ,j)(xτ )
∣∣<∞.
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Recall that by definition q̃τ,j := λ(Yτ,j)
−2qτ . Note that multiplying qτ by a constant factor

k we do not change the hyperbolic metric, ghyp(kqτ )= ghyp(qτ ). Thus,

(4.6) φ(q̃τ,j)= φ(qτ )− logλ(Yτ,j).

Now (4.6) and (4.5) contradict (4.4). �

5. Analytic Riemann–Roch theorem

This section is entirely devoted to a proof of Theorem 5. In Section 5.1 we present
our original proof based on the results of J. Fay [Fay].

Having seen a draft of the paper, D. Korotkin indicated us that Theorem 5 should
be an immediate corollary of the holomorphic factorization formula from [KkKt3] com-
bined with the homogeneity properties of the tau-function established in [KtZg]. We
present a corresponding alternative proof in Section 5.2.

5.1. Proof based on the results of J. Fay. — Recall the setting of Theorem 5. Consider
a flat surface S of area one in a stratum of Abelian differentials or in a stratum of mero-
morphic quadratic differentials with at most simple poles. In the current context we are
interested only in the underlying flat metric, so we forget about the choice of the vertical
direction. In other words, we do not distinguish flat surfaces corresponding to Abelian
differentials ω and exp(iϕ)ω (correspondingly quadratic differentials q and exp(2iϕ)q),
where ϕ is a constant real number. e consider the flat surface WS as a point of the quotient

H1(m1, . . . ,mn)/SO(2,R)� PH(m1, . . . ,mn)

or

Q1(d1, . . . , dn)/SO(2,R)� PQ1(d1, . . . , dn)

correspondingly.
Consider a complex one-parameter family of local holomorphic deformations S(t)

of S in the ambient stratum H(m1, . . . ,mn) or Q(d1, . . . , dn) correspondingly. Denote by
z a flat coordinate on the initial flat surface, and by u denote a flat coordinate on the
deformed flat surface. The area of the deformed flat surface S(t) is not unit anymore. We
denote by S(1)(t) the flat surface of area one obtained from S(t) by the proportional rescal-
ing. Smoothing the resulting flat metric of area one as it was described in Section 3.6, we
get the smoothed flat metric ρε(u, ū)|du|2.

By ωi , i = 1, . . . , g, we denote local nonvanishing holomorphic sections of the
Hodge bundle H1,0, so det

1
2 〈ωi,ωj〉 is a local holomorphic section of the determinant

bundle �gH1,0, and |det〈ωi,ωj〉| is the square of its norm induced by Hermitian met-
ric (1.1), see (3.4).

The starting point of the proof is the following reformulation of a formula of J. Fay.
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Proposition 5.1 (after J. Fay). — The following relation is valid

∂t̄∂t log det�flat,ε

(
S(1)(t)

)− ∂t̄∂t log
∣
∣det〈ωi,ωj〉

∣
∣(5.1)

= 1

6π

∫

C
det

(
∂t̄∂t logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
dx dy

where the derivatives of functions of the local coordinate u are evaluated at t = 0.

Proof. — Actually, formula (5.1) above is formula (3.37) in [Fay] adjusted to our
notations.

A vector bundle Lt in formula (3.37) in [Fay] is trivial in our case. This means that
the metric h on it is also trivial and equals identically one: h= 1. The same is true for the
determinant det〈ωi,ωj〉Lt

in formula (3.37) in [Fay]; this determinant is identically equal
to one in our case.

A vector bundle Kt ⊗ L∗t in formula (3.37) in [Fay] becomes in our context the
vector bundle H1,0 and a basis in the fiber of this vector bundle denoted in [Fay] by {ω∗k }
becomes a basis of holomorphic 1-forms in H1,0(C(t)), denoted in our notations by ωk(t)

where C(t) is a Riemann surface underlying the deformed flat surface S(t). Note that
each ωk(t) considered as a section of the holomorphic vector bundle H1,0 is holomorphic
with respect to the parameter of deformation t.

Note, that we represent the metric as ρε(u, ū) |du|2 while in the original paper [Fay]
the same metric is written as ρ−2|du|2. This explains an extra factor of 4 in the denomina-
tor of 1/(4π) in formula (5.2) below with respect to the original formula (3.37) in [Fay].

Finally, using that

ρε∂
(
ρ−1

ε

)=−∂ logρε

we can rewrite formula (3.37) in [Fay] in our notations as

∂t̄∂t log
(

det�flat,ε(S(1)(t))

|det〈ωi,ωj〉|
)

(5.2)

= 1
4π

∫

S

(
(∂t̄∂t logρε)(∂z̄∂z logρε)− (∂t∂ū logρε)(∂t̄∂u logρε)

− 1
3
(∂t∂t̄ logρε)(∂z∂z̄ logρε)+ 1

3
(∂t∂ū logρε)(∂t̄∂u logρε)

)
dx dy.

Simplifying the expression in the right-hand side of (5.2), we can rewrite the latter formula
in the form (5.1). �
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Lemma 5.1. — In the same setting as above the following formula is valid

∂t̄∂t log det�flat

(
S(1)(t),S0

)
(5.3)

= ∂t̄∂t log
∣
∣det〈ωi,ωj〉

∣
∣+ 1

6π
lim

ε→+0

∫

C
det

(
∂t̄∂t logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
dx dy

where all derivatives of functions of the local coordinate u are evaluated at t = 0.

Proof. — Combine the latter equation with definition (3.16) of det�flat(S(1)(t),S0)

and pass to the limit as ε→+0. �

Now let us specify the holomorphic 1-parameter family S(t) of infinitesimal defor-
mations of the flat surface S= S(0).

When the flat surface S is represented by an Abelian differential ω in a stratum
H(m1, . . . ,mn) we consider an infinitesimal affine line γ (t) defined in cohomological co-
ordinates

(Z1, . . . ,Z2g+n−1) ∈H1
(
S, {zeroes of ω};C)

by the parametric system of equation

Zj(t) :=a(t)Zj(0)+ b(t)Z̄j(0), for j = 1, . . . ,2g + n− 1,(5.4)

where a(0)= 1, b(0)= 0, and b′(0) �= 0.

When the flat surface S is represented by a meromorphic quadratic differential q

in a stratum Q(d1, . . . , dn), we consider an infinitesimal affine line γ (t) defined in coho-
mological coordinates

(Z1, . . . ,Z2g+n−2) ∈H1
−
(
S, {zeroes of ω̂};C)

by an analogous parametric system of equations

Zj(t) := a(t)Zj(0)+ b(t)Z̄j(0), for j = 1, . . . ,2g + n− 2,(5.5)

where a(0)= 1, b(0)= 0, and b′(0) �= 0.

The next Proposition evaluates the limit in Equation (5.3) for families of deforma-
tions (5.4) and (5.5).

Proposition 5.2. — In the same setting as above the following formulae hold.

For a family of deformations (5.4) of the initial flat surface S inside a stratum H(m1, . . . ,mn)

of Abelian differentials one has:

(5.6) lim
ε→+0

∫

C
det

(
∂t∂t̄ logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
dx dy= π ·

n∑

j=1

mj(mj + 2)

2(mj + 1)
· ∣∣b′(0)

∣∣2



270 ALEX ESKIN, MAXIM KONTSEVICH, ANTON ZORICH

For a family of deformations (5.5) of the initial flat surface S inside a stratum Q(d1, . . . , dn) of

meromorphic quadratic differentials with at most simple poles one has:

(5.7) lim
ε→+0

∫

C
det

(
∂t∂t̄ logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
dx dy= π ·

n∑

j=1

dj(dj + 4)

4(dj + 2)
· ∣∣b′(0)

∣∣2

Proof. — We are going to show that the integral under consideration is localized
into small neighborhoods of conical singularities, and that the integral over any such
neighborhood depends only on the cone angle at the singularity. In particular, it does
not depend on the holonomy of the flat metric, so it does not distinguish flat metrics
corresponding to holomorphic 1-forms and to quadratic differentials. In other words the
second formula in the statement of Proposition 5.2 is valid no matter whether a quadratic
differential is or is not a global square of an Abelian differential. The first formula, thus,
becomes an immediate corollary of the second one: if an Abelian differential has zeroes
of degrees m1, . . . ,mn, the quadratic differential ω2 has zeroes of orders 2m1, . . . ,2mn.
Applying the second formula to this latter collection of singularities we obtain the first
one.

We can represent a holomorphic deformation of the flat coordinate z as follows:

u(z, z̄, t)= a(t)z+ b(t)z̄

where t ∈C is a parameter of the deformation and coefficients are normalized as a(0)=
1, b(0)= 0, and b′(0) �= 0, see (5.4), and (5.5). We get

(5.8) du∧ dū= (a dz+ b dz̄)∧ (ā dz̄+ b̄ dz)= (aā− bb̄) dz∧ dz̄

Computing the derivatives we get:

∂tu= a′z+ b′z̄ ∂t ū= 0(5.9)

∂t̄u= 0 ∂t̄ ū= ā′z̄+ b̄′z

where a′ = ∂t a(t) and b′ = ∂t b(t).
It would be convenient to introduce the following notation: G(t, t̄) := (aā− bb̄)−1.

Computing the derivatives of G we get:

∂tG=−G2 · (a′ā− b′b̄
)

∂tG|t=0 =−a′(0)

∂t̄G=−G2 · (aā′ − bb̄′
)

∂t̄G|t̄=0 =−ā′(0)(5.10)

∂t∂t̄G= 2G3 · (a′ā− b′b̄
)(

aā′ − bb̄′
)

−G2
(
a′ā′ − b′b̄′

)
∂t∂t̄G|t=0 = a′(0)ā′(0)+ b′(0)b̄′(0)
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Consider a neighborhood O of a conical singularity P of order d on the ini-
tial flat surface S. Recall that the local coordinate w in O is defined by the equa-
tion (dz)2 = wd (dw)2, see (3.13). The smoothed metric gflat,ε was defined in O as
gflat,ε = ρflat,ε(|w|) |dw|2, where the function ρflat,ε is defined in Equation (3.15). In the flat
coordinate z the smoothed metric has the form gflat,ε = ρε(|z|) |dz|2, where the function
ρε(|z|) is defined by the equation

ρflat,ε

(|w|)|dw|2 = ρε

(|z|)|dz|2

A simple calculation shows that

(5.11) ρε(r)=
{

1, when r ≥ ε

( 2
d+2)

2 · r− 2d
d+2 , when 0 < r ≤ ε′.

Finally, it would be convenient to make one more substitution, representing the smoothed
metric in O as

ρε

(|z|)|dz|2 = exp
(
2ϕε

(|z|2))|dz|2.
The above definition of ϕε implies that

(5.12) ϕε(s)=
{

0, when s ≥ ε2

log( 2
d+2)− d

2(d+2)
log s, when 0 < s ≤ (ε′)2.

We will need below the following immediate implication of the above expression:

(5.13) ϕ′ε(s) · s=
{

0 when s ≥ ε2

− d

2(d+2)
when 0 < s ≤ (ε′)2

Consider now a neighborhood O of a conical singularity P on the deformed
flat surface S(1)(t) with normalized metric. It follows from (5.8) that smoothed metric
ρε(u, ū)|du|2 has the form

ρε(u, ū)= exp
(
2ϕε(uūG)

) ·G(t, t̄)

in such neighborhood. The second factor G(t, t̄) in the above expression is responsible
for the normalization

area
(
S(1)(t)

)= 1

of the total area of the deformed flat surface S(t). Passing to the logarithm we get

logρε(u, ū)= 2ϕε(uūG)+ log G.
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Now everything is ready to compute the entries of the matrix
(

∂t∂t̄ logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
.

Entry

(• )
.

Evaluating the first derivative ∂t̄ logρε we get

∂t̄ logρε = ∂t̄

(
2ϕε(uūG)+ log G(t, t̄)

)= 2ϕ′ε ·
(

u
∂ ū

∂ t̄
G+ uū

∂G

∂ t̄

)
+ ∂G

∂ t̄
· 1

G

Passing to the second derivative we obtain

∂t∂t̄ logρε = 2ϕ′′ε ·
(

ū
∂u

∂ t
G+ uū

∂G

∂ t

)(
u
∂ ū

∂ t̄
G+ uū

∂G

∂ t̄

)

+ 2ϕ′ε ·
(

∂u

∂ t

∂ ū

∂ t̄
·G+ ū

∂u

∂ t

∂G

∂ t̄
+ u

∂ ū

∂ t̄

∂G

∂ t
+ uū

∂2G

∂ t ∂ t̄

)

+ ∂2G

∂ t∂ t̄
· 1

G
− ∂G

∂ t

∂G

∂ t̄
· 1

G2

Applying formulae (5.9) we evaluate the above expression at t = 0 getting:

2ϕ′′ε ·
((

a′z+ b′z̄
)
z̄ ·G+ zz̄

∂G

∂ t

)((
ā′z̄+ b̄′z

)
z ·G+ zz̄

∂G

∂ t̄

)

+ 2ϕ′ε ·
(
(
a′z+ b′z̄

)(
ā′z̄+ b̄′z

) ·G+ (
a′z+ b′z̄

)
z̄
∂G

∂ t̄

+ (
ā′z̄+ b̄′z

)
z

∂G

∂ t
+ zz̄

∂2G

∂ t∂ t̄

)

+ ∂2G

∂ t∂ t̄
· 1

G
− ∂G

∂ t

∂G

∂ t̄
· 1

G2

Applying formulae (5.10) for derivatives of G at t = 0 we can rewrite the latter
expression as

2ϕ′′ε ·
((

a′z+ b′z̄
)
z̄ · 1+ zz̄ · (−a′

))((
ā′z̄+ b̄′z

)
z · 1+ zz̄ · (−ā′

))

+ 2ϕ′ε ·
((

a′z+ b′z̄
)(

ā′z̄+ b̄′z
) · 1+ (

a′z+ b′z̄
)
z̄
(−ā′

)

+ (
ā′z̄+ b̄′z

)
z
(−a′

)+ zz̄
(
a′ā′ + b′b̄′

))

+ (
a′ā′ + b′b̄′

) · 1− (−a′
)(−ā′

) · 1
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Simplifying the latter expression we get

(5.14) ∂t∂t̄ logρε = b′b̄′
(
2ϕ′′ε · (zz̄)2 + 4ϕ′ · zz̄+ 1

)

Entry

(

•
)

.

For this entry of the determinant we have

∂z∂z̄ logρε = 2ϕ′′ε ·
(

ū
∂u

∂z
+ u

∂ ū

∂z

)(
ū
∂u

∂ z̄
+ u

∂ ū

∂ z̄

)
G2

+ 2ϕ′ε ·
(

∂u

∂ z̄

∂ ū

∂z
+ ∂u

∂z

∂ ū

∂ z̄

)
G

Applying (5.9) we can evaluate the above expression at t = 0 which leads to

∂z∂z̄ logρε = 2ϕ′′ε · zz̄ ·G2(0)+ 2ϕ′ε · 1 ·G(0)= 2
(
ϕ′′ε · zz̄+ ϕ′ε

)

Product of diagonal terms

(•
•
)

.

Taking into consideration (5.14) we obtain the following value for the diagonal
product in our determinant:

(5.15) ∂t∂t̄ logρε · ∂z∂z̄ logρε = 2b′b̄′ · (2ϕ′′ε · (zz̄)2 + 4ϕ′ε · zz̄+ 1
)(

ϕ′′ε · zz̄+ ϕ′ε
)

Entry

( •)
.

For the first derivative ∂ū logρε we get

∂ū logρε = 2ϕ′ε · u ·G
For the second derivative we obtain:

∂t∂ū logρε = 2ϕ′′ε ·
(

ū
∂u

∂ t
G+ uū

∂G

∂ t

)
· u ·G+ 2ϕ′ε ·

(
∂u

∂ t
G+ u

∂G

∂ t

)

Evaluating the above second derivative at t = 0 using (5.9) and (5.10) we proceed
as

∂t∂ū logρε = 2ϕ′′ε ·
(
z̄ · (a′z+ b′z̄

) · 1+ zz̄ · (−a′
)) · z · 1(5.16)

+ 2ϕ′ε ·
((

a′z+ b′z̄
) · 1+ z · (−a′

))= 2b′z̄ · (ϕ′′ε · zz̄+ ϕ′ε
)
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Entry

(

•
)

.

Analogously, for the first derivative ∂u logρε we get

∂u logρε = 2ϕ′ε · ū ·G
and for the second derivative we obtain:

∂t̄∂u logρε = 2ϕ′′ε ·
(

u
∂ ū

∂ t̄
G+ uū

∂G

∂ t̄

)
· ū ·G+ 2ϕ′ε ·

(
∂ ū

∂ t̄
G+ ū

∂G

∂ t̄

)

Evaluating the above expression at t = 0 using (5.9) and (5.10) we complete the
calculation as

∂t̄∂u logρε = 2ϕ′′ε ·
(
z · (ā′z̄+ b̄′z

) · 1+ zz̄ · (−ā′
)) · z̄ · 1(5.17)

+ 2ϕ′ε ·
((

ā′z̄+ b̄′z
) · 1+ z̄ · (−ā′

))= 2b̄′z · (ϕ′′ε · zz̄+ ϕ′ε
)

Product of diagonal terms

( •
•

)
.

Combining (5.16) and (5.17) we obtain the following value for the anti diagonal
product in our determinant:

(5.18) ∂t∂ū logρε · ∂t̄∂u logρε = 4b′b̄′ · zz̄ · (ϕ′′ε · zz̄+ ϕ′ε
)2

Finally, combining (5.15) and (5.18) we obtain the desired value of the determinant:

det
(

∂t∂t̄ logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
(5.19)

= 2b′b̄′ · (ϕ′′ε · zz̄+ ϕ′ε
) · ((2ϕ′′ε · (zz̄)2 + 4ϕ′ε · zz̄+ 1

)

− 2zz̄ · (ϕ′′ε · zz̄+ ϕ′ε
))

= 2b′b̄′ · (2ϕ′ε · ϕ′′ε · (zz̄)2 + 2
(
ϕ′ε
)2 · zz̄+ ϕ′′ε · zz̄+ ϕ′ε

)

Now we need to integrate the above expression over the flat surface S. First
note that outside of small neighborhoods of conical singularities, the smoothed metric
ρε(z, z̄)|dz|2 coincides with the original flat metric, so for such values of x, y we have
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ρε = 1 and hence, for such values of (x, y) we have logρε(x, y) = 0. This observation
proves that

∫

S
det

(
∂t∂t̄ logρε ∂t∂ū logρε

∂t̄∂u logρε ∂z∂z̄ logρε

)
dx dy(5.20)

=
n∑

j=1

∫

Oj (ε)

2b′b̄′ · (2ϕ′ε · ϕ′′ε · (zz̄)2 + 2
(
ϕ′ε
)2 · zz̄+ ϕ′′ε · zz̄+ ϕ′ε

)
dx dy,

where the sum is taken over all conical points P1, . . . ,Pn. (We did not introduce separate
notations for flat coordinates in the neighborhoods of different conical points).

Using the definition (5.12) of ϕε(s) we can rewrite the expression which we inte-
grate in terms of a single variable s= zz̄= |z|2 as follows:

2ϕ′ε · ϕ′′ε · (zz̄)2 + 2
(
ϕ′ε
)2 · zz̄+ ϕ′′ε · zz̄+ ϕ′ε(5.21)

= 2ϕ′ε(s) · ϕ′′ε (s) · s2 + 2
(
ϕ′ε(s)

)2 · s+ ϕ′′ε (s) · s+ ϕ′ε(s)=:�ε(s)

Recall that in the flat coordinate z a small neighborhood of a conical singularity
of order d is glued from d + 2 metric half-discs. Taking into consideration angular sym-
metry of the expression which we integrate and passing through polar coordinates in our
integral we can reduce integration over a d + 2 metric half-discs to integration over a
segment:

2b′b̄′
∫

Oj (ε)

�ε(zz̄) dx dy= 2(d + 2)b′b̄′
∫

|z|≤ε
Re(x)≥0

�ε

(
r2
)
rdrdθ(5.22)

= (d + 2)π · b′b̄′
∫ ε2

0
�ε(s) ds

Finally, observe that it is easy to find an antiderivative for �ε(s), namely:

�ε(s)=
((

ϕ′(s)
)2 · s2 + ϕ′(s) · s)′

which implies, that
∫ ε2

0
�ε(s)ds= (

ϕ′ε(s) · s
)2∣∣ε2

+0
+ ϕ′ε(s) · s|ε2

+0

Using the properties (5.13) of ϕε(s) we get
∫ ε2

0
�ε(s)ds=

(
0−

(
− d

2(d + 2)

)2)
+
(

0−
(
− d

2(d + 2)

))

= d(d + 4)

4(d + 2)2
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Plug the value of the integral obtained in the right-hand side of the above formula
in Equation (5.22) and combine the result with (5.20) and with (5.21). The resulting ex-
pression coincides with Equation (5.7) in the statement of Proposition 5.2. As we have
already indicated above, relation (5.6) follows immediately from Equation (5.7) and from
the fact that the integral is supported on small neighborhoods of the conical points of the
metric. Proposition 5.2 is proved. �

Lemma 5.2. — In the same setting as above the following formulae hold.

For a family of deformations (5.4) of the initial flat surface S in a stratum H(m1, . . . ,mn) of

Abelian differentials one has:

∂t̄∂t log det�flat(S,S0)(5.23)

= ∂t̄∂t log
∣∣det〈ωi,ωj〉

∣∣+ 1
12
·

n∑

j=1

mj(mj + 2)

(mj + 1)
· ∣∣b′(0)

∣∣2

For a family of deformations (5.5) of the initial flat surface S inside a stratum Q(d1, . . . , dn) of

meromorphic quadratic differentials with at most simple poles one has:

∂t̄∂t log det�flat(S,S0)(5.24)

= ∂t̄∂t log
∣
∣det〈ωi,ωj〉

∣
∣+ 1

24
·

n∑

j=1

dj(dj + 4)

(dj + 2)
· ∣∣b′(0)

∣
∣2

Proof. — Plugging expressions (5.6) and (5.7) obtained in Proposition 5.2 into for-
mula (5.3) from Lemma 5.1 we get the relations (5.23) and (5.24) from above. �

Consider the natural projection

p :H(m1, . . . ,mn)→ PH(m1, . . . ,mn).

Families of deformations (5.4) and (5.5) are chosen in such a way that the resulting in-
finitesimal affine line γ (t) defined by Equation (5.4) in the stratum H(m1, . . . ,mn) (cor-
respondingly by Equation (5.5) in the stratum Q(d1, . . . , dn)) projects to the Teichmüller
disc passing through p(S). We will show below that the projection map p from γ (t) to the
Teichmüller disc is nondegenerate in the neighborhood of t = 0. Thus, we can induce
the canonical hyperbolic metric of curvature −4 to γ (t).

Lemma 5.3. — The canonical hyperbolic metric of curvature−4 on the Teichmüller disc induced

to the infinitesimal complex curve γ (t) under the projection p has the form

∣
∣b′(0)

∣
∣2|dt|2

at the point t = 0.
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In particular, the Laplacian of the induced hyperbolic metric of curvature −4 on γ (t) satisfies the

relation

(5.25)
∣∣b′(0)

∣∣2 · 1

4
�Teich

∣
∣∣
∣
t=0

= ∂2

∂ t ∂ t

∣
∣∣
∣
t=0

at the point t = 0.

Proof. — We prove the Lemma for a flat surface corresponding to an Abelian dif-
ferential; for a flat surface corresponding to a meromorphic quadratic differentials with
at most simple pole the proof is completely analogous.

Choose a pair of independent integer cycles c1, c2 ∈H1(C,Z) such that c1 ◦ c2 = 1,
and transport them to all surfaces C(t) (we assume that γ (t) stays in a tiny neighbor-
hood of the initial point, so we would not have any ambiguity in doing so). Consider the
corresponding periods of ω(t),

A(t) :=
∫

c1

ω(t) B(t) :=
∫

c2

ω(t).

By definition of the family of deformations we get

A(t)= a(t)A+ b(t)Ā

B(t)= a(t)B+ b(t)B̄,

where A = A(0) and B = B(0) are the corresponding periods of the initial Abelian dif-
ferential ω. Define

ζ(t) := B(t)

A(t)
= a(t)B+ b(t)B̄

a(t)A+ b(t)Ā
.

At the first glance this definition of the hyperbolic coordinate ζ(t) depends on
the choice of a pair of cycles c1, c2, and on the values of the periods of the initial Abelian
differential. However, it would be clear from the proof that the induced hyperbolic metric
does not depend on this choice. Basically, the situation is the same as in the case of flat
tori, see Example 3.1 in Section 3.1.

Consider now the hyperbolic half-plane H2 endowed with the canonical metric
|dζ |2

4| Im ζ |2 of curvature −4. Let us compute the induced metric in the coordinate t.
Clearly

Im ζ(0)= Im
B
A

.

Computing the derivative at t = 0 we get

∂ζ

∂ t

∣∣
∣∣

t=0

= b′(0)
B̄A− BĀ

A2
.
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Thus

∂ζ

∂ t

∂ζ̄

∂ t̄

∣
∣∣
∣

t=0

=−b′(0)b̄′(0)

(
B̄A− BĀ

AĀ

)2

= 4
∣∣b′(0)

∣∣2
(

Im
B
A

)2

= 4
∣
∣b′(0)

∣
∣2 Im2 ζ(0).

Hence, the hyperbolic metric has the following form in coordinates t at t = 0

|dζ |2
4(Im ζ )2

∣∣
∣∣
ζ(0)

= ∂ζ

∂ t

∂ζ̄

∂ t̄

|dt|2
4(Im ζ(t))2

∣∣
∣∣
t=0

= 4
∣∣b′(0)

∣∣2 Im2 ζ(0)
|dt|2

4(Im ζ(0))2
= ∣∣b′(0)

∣∣2|dt|2

This implies that the Laplacian of this metric at t = 0 is expressed as

�Teich = 4

|b′(0)|2
∂2

∂ t ∂ t
. �

Proof of Theorem 5. — Plug the expression (5.25) for ∂t ∂̄t obtained in Lemma 5.3 into
formulae (5.23) and (5.24) obtained in Lemma 5.2. Dividing all the terms of the resulting
equality by the common factor |b′(0)| (which is nonzero by the definition of the family of
deformations) we obtain the relations equivalent to the desired relations (3.17) and (3.18)
in Theorem 5. �

5.2. Alternative proof based on results of A. Kokotov, D. Korotkin and P. Zograf. — By as-
sumption the initial flat surface S = S(0) has area one. However, the area of the flat
surface S(t) in family (5.4) or in family (5.5) varies in t. Define the function

k(t, t̄ ) := Area
(
S(t)

)− 1
2 .

We shall need the following technical Lemma concerning this function.

Lemma 5.4. — One has the following expression for the partial derivative of k(t, t̄ ) at t = 0:

(5.26)
∂2 log k(t, t̄ )

∂ t∂ t

∣∣
∣
∣

t=0

= 1
2

∣
∣b′(0)

∣
∣2

Proof. — Relation (5.8) implies that:

Area
(
S(t)

)= (aā− bb̄),

so we get the following expression for the function k(t, t̄ ):

k(t, t̄ )= (aā− bb̄)−
1
2 .
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Computing the value of the second derivative at t = 0, we get

∂2 log k(t, t̄ )

∂ t∂ t

∣∣
∣∣

t=0

= 1
2

∣
∣b′(0)

∣
∣2,

where we used the conventions chosen above: a(0)= 1 and b(0)= 0. �

The proof of Theorem 5 can be derived from the following formula due to
A. Kokotov, D. Korotkin (formula (1.10) in [KkKt3]). Denote by det�|ω|2 the regular-
ized determinant of the Laplace operator in the flat metric defined as in [KkKt3] by a
holomorphic form ω ∈H(m1, . . . ,mn). It is defined for flat surfaces of arbitrary area. For
ω ∈H1(m1, . . . ,mn) the determinant det�|ω|2 differs from det�flat(S(ω),S0) by a multi-
plicative constant depending only on the choice of the base surface S0.

Theorem (A. Kokotov, D. Korotkin [KkKt3]). — For any flat surface in any stratum of Abelian

differentials the following formula of holomorphic factorization holds:

(5.27) det�|ω|
2 = const ·Area(C,ω) · det(Im B) · ∣∣τ(C,ω)

∣
∣2,

where B is the matrix of B-periods and τ(C,ω) is a flat section of a holomorphic line bundle over the

ambient stratum H(m1, . . . ,mn) of Abelian differentials.

Moreover (see [KtZg]), τ(S,ω) is homogeneous in ω of degree p, where

(5.28) p= 1
12

n∑

i=1

mi(mi + 2)

mi + 1
.

In other words, for any nonzero complex number k one has

(5.29) τ(C, kω)= kpτ(C,ω)

Remark 5.1. — Note that the “Bergman τ -function” τ(C,ω) is, actually, a flat sec-
tion of a certain local system over the stratum H(m1, . . . ,mn), see Definition 3 in [KkKt3].
Such a section is defined up to a constant factor. However, in the calculation below the
τ -function is present only in the expression ∂2

∂ t ∂ t
log(|τ(C,ω)|2) which does not depend

on the choice of the particular flat section. (See Section 3.1 in [KkKt3] for more details.)

Alternative proof of Theorem 5. — Note that Im B(t) depends only on the underlying
Riemann surface C(t); in particular, rescaling ω(t) proportionally, we do not change
Im B(t).

Applying formula (5.27) to the normalized Abelian differential k(t, t̄)ω(t), which
defines a flat surface S(1)(t, t̄ ) of unit area, we get
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det�flat

(
S(1)(t),S0

)= const · 1 · det
(
Im B(t)

) · ∣∣τ(C(t), k(t, t̄ )ω(t)
)∣∣2

= const · det
(
Im B(t)

) · k2p(t, t̄ ) · ∣∣τ(C,ω(t)
)∣∣2,

where we used homogeneity (5.29) of τ to get the latter expression. Passing to logarithms
of the above expressions, applying ∂2

∂ t ∂ t
, taking into consideration that τ(C(t),ω(t)) is a

holomorphic function, and using relations (5.26) and (5.28) we get

∂2

∂ t ∂ t
log

∣∣det�flat

(
S(t),S0

)∣∣(5.30)

= ∂2

∂ t ∂ t
log |det Im B| + 1

12

n∑

i=1

mi(mi + 2)

mi + 1

∣
∣b′(0)

∣
∣2.

It remains to note that
∣∣det

〈
ωi(t),ωj(t)

〉∣∣= |holomorphic function of t| · Im B(t).

Thus,

∂2

∂ t ∂ t
log

∣
∣det

〈
ωi(t),ωj(t)

〉∣∣= ∂2

∂ t ∂ t
log

∣
∣det Im B(t)

∣
∣.

Applying the latter remark to expression (5.30), dividing the result by |b′(0)|2 and recall-
ing (5.25) we get

�Teich log
∣
∣det

〈
ωi(t),ωj(t)

〉∣∣=�Teich log
∣
∣�flat(S,S0)

∣
∣− 1

3

n∑

i=1

mi(mi + 2)

mi + 1 �

The proof for quadratic differentials is completely analogous. It is based on the
following statement of A. Kokotov and D. Korotkin (see[KkKt1]):

Theorem (A. Kokotov, D. Korotkin). — For any flat surface in any stratum of meromorphic

quadratic differentials with at most simple poles the following formula of holomorphic factorization holds:

det�|q| = const ·Area(C, q) · det(Im B) · ∣∣τ(C, q)
∣∣2,

where τ(S, q) is a holomorphic function in the ambient stratum Q(d1, . . . , dn) of quadratic differentials.

Moreover, τ(S, q) is homogeneous in q of degree p, where

p= 1
48

n∑

i=1

di(di + 4)

di + 2
.

In other words, for any nonzero complex number k one has

τ(C, kq)= kpτ(C, q)
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Note the only difference with the previous case. Multiplying an Abelian differential
by a factor k we change the area of the corresponding flat surface by a factor |k|2. Multi-
plying a quadratic differential by a factor k we change the area of the corresponding flat
surface by a factor |k|.

6. Relating flat and hyperbolic Laplacians by means of Polyakov formula

In this section we prove Theorem 6. Our proof is based on the Polyakov formula.
We start by rewriting the Polyakov formula in a more symmetric form (6.1). Then we
perform the integration separately over complements to neighborhoods of cusps and
over neighborhoods of cusps. A neighborhood of each cusp we also subdivide into sev-
eral domains presented at Figure 9, and we perform the integration separately for each
domain.

6.1. Polyakov formula revisited. — In local coordinates x, y the Laplace operator of a
metric ρ(x, y)(dx2 + dy2) has the form

�g = ρ−1

(
∂2

∂x2
+ ∂2

∂y2

)

and the curvature Kg of the metric is expressed as

Kg =−�g log
√

ρ.

In some situations it would be convenient to use the following coordinate version
of the Polyakov formula (see Section 3.5). Let in some coordinate domain x, y

g1 = ρ1

(
dx2 + dy2

)= exp(2φ1)
(
dx2 + dy2

)

g2 = ρ2

(
dx2 + dy2

)= exp(2φ2)
(
dx2 + dy2

)
.

Then, g2 = exp(2(φ2−φ1)) · g1, so φ = φ2−φ1. An elementary calculation shows that in
the corresponding coordinate domain

(6.1)
∫

(φ�g1φ − 2φKg1)dg1 =
∫

(φ2�φ2− φ1�φ1)+ (φ2�φ1− φ1�φ2) dx dy,

where �= ∂2

∂x2 + ∂2

∂y2 .

6.2. Polyakov Formula applied to smoothed flat and hyperbolic metrics. — Let w be a coor-
dinate in a neighborhood of a conical point on S defined by (3.14); let w0 be analogous
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coordinate for S0. By assumptions, the order d of the corresponding conical singularity is
the same for S and S0. Then, we obtain

2
(
φ(ζ )− φ0(ζ )

)= log

∣
∣∣
∣w

d

(
dw

dζ

)2

ζ 2 log2 ζ

∣
∣∣
∣− log

∣
∣∣
∣w

d
0

(
dw0

dζ

)2

ζ 2 log2 ζ

∣
∣∣
∣(6.2)

= d log

∣∣
∣
∣
w

w0

∣∣
∣
∣+ regular function= regular function

In the last equality we used that w = dw

dζ
|ζ=0 · ζ(1 +O(|ζ |)) and w0 = dw0

dζ
|ζ=0 · ζ(1 +

O(ζ )) where both derivatives are different from zero. This proves that the right-hand-
side expression in formula (3.24) of Theorem 6 is well-defined.

Applying the Polyakov formula to the metrics gflat,ε = exp(2φ)ghyp,δ on S, then to
the metrics gflat,ε = exp(2φ0)ghyp,δ on S0, and taking the difference we get the following
relation:

log det�gflat,ε
(S,S0)− log det�ghyp,δ

(S,S0)(6.3)

= 1

12π

∫

S
φ(�ghyp,δ

φ − 2Kghyp,δ
)dghyp,δ

− 1

12π

∫

S0

φ0(�ghyp,δ
φ0 − 2Kghyp,δ

)dghyp,δ,

where we took into account that

Areagflat,ε
(S)= Areagflat,ε

(S0) and Areaghyp,δ
(S)= Areaghyp,δ

(S0).

To prove Theorem 6 we need to compute the limit of expression (6.3) as ε and δ

tend to zero. Note that the term log det�gflat,ε
(S,S0) does not depend on δ, and that the

existence of a limit of this term as ε tends to zero is a priori known. Similarly, the term
log det�ghyp,δ

(S,S0) does not depend on ε and the existence of a limit of this term as δ

tends to zero is also a priori known. Hence, to evaluate the difference of the corresponding
limits we can make ε and δ tend to zero in any particular way, which is convenient for us.
From now on let us assume that 0 < δ ε R 1.

As usual, we perform the integration over a surface in several steps integrating
separately over complements to R-neighborhoods of cusps and over R-neighborhoods
of cusps. An R-neighborhood of each cusp we also subdivide into several domains. We
proceed by computing the integral in the right-hand-side of (6.3) domain by domain.

6.2.1. Integration over complements of cusps. — In this domain gflat,ε = gflat , and ghyp,δ =
ghyp. In coordinates z and ζ we have

φ = log

∣
∣∣
∣

dz

dζ

∣
∣∣
∣+

1

2
logρ−1,
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where ρ(ζ, ζ̄ )= |ζ |−2(log |ζ |)−2 is the density of the hyperbolic metric. Also, in this do-
main

�ghyp,δ
=�ghyp

= 4ρ−1 ∂2

∂ζ∂ζ̄

Hence,

�ghyp,δ
φ = 4ρ−1 ∂2

∂ζ∂ζ̄

(
1
2

(
log

dz

dζ
+ log

dz̄

d ζ̄

)
− 1

2
logρ

)

Since log dz

dζ
is holomorphic and log dz̄

d ζ̄
is antiholomorphic they both are annihilated by

the Laplace operator. Thus, in this domain

�ghyp,δ
φ =−1

2
�ghyp

logρhyp =Kghyp
=−1,

and, hence, in this domain we get

(�ghyp,δ
φ − 2Kghyp,δ

)= 1 and (�ghyp,δ
φ0 − 2Kghyp,δ

)= 1

In notations (3.23) we can represent integrals (6.3) over complements S − �Oj(R) and
S0 −�Oj(R) to the cusps as

(6.4)
1

12π

〈∫

S
φdghyp −

∫

S0

φ0dghyp

〉
− 1

12π

∫

�Oj (R)

(φ − φ0)dghyp.

6.3. Integration over a neighborhood of a cusp. — The rest of Section 6 consists of a
very tedious calculation. We fix a pair of corresponding conical singularities Pj on S and
on S0, and we consider neighborhoods O(R) of the corresponding cusps in hyperbolic
metrics on S and S0. These neighborhoods are isometric, where isometry is defined up to
a global rotation of the cusp. Using such an isometry we identify the two corresponding
neighborhoods on S and on S0. Clearly, ghyp and ghyp,δ coming from S and from S0 coincide,
while the holomorphic functions w, and w0 defined in a disc O(R)= {ζ such that |ζ | ≤
R} (and hence the corresponding flat metrics and smoothed flat metrics) differ. Note,
however, that the cusp was chosen exactly at the conical point, so w(0) = w0(0) = 0.
Also, since ζ,w are holomorphic coordinates in a neighborhood of a point Pj of a regular
Riemann surface S, one has dw

dζ
|ζ=0 �= 0. Similarly dw0

dζ
|ζ=0 �= 0.

By assumption 0 < δ ε R 1. We subdivide the disc |ζ | < R into the fol-
lowing domains (see also Figures 9)

(1) ε < |w|;
(2) ε′ ≤ |w| ≤ ε;
(3) |w|< ε′ but δ < |ζ |;
(4) δ′ ≤ |ζ | ≤ δ;
(5) |ζ |< δ′

and we perform integration over domains (1)–(5) in parallel with integration over analo-
gous domains defined in terms of w0.
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FIG. 9. — Domains of integration

6.3.1. Integration over a cusp: the domain |w|> ε. — First note the following elemen-
tary formula from calculus: for any constant C > 0

(6.5)
∫

r≤|ζ |≤Cr

log |ζ ||dζ |2
|ζ |2 log2 |ζ | → 0 as r→+0

In other words, while the corresponding integral over a disc diverges, an integral over a
contracting annulus tends to zero as soon as a modulus of the annulus remains bounded.

Now consider the smallest annulus

(6.6) A(ε) := {
ζ such that r(ε)≤ |ζ | ≤C(ε)r(ε)

}

containing both curves |w| = ε and |w0| = ε. Clearly r(ε)→ 0 as ε→+0 and C(ε) is
uniformly bounded by some constant C for all sufficiently small values of ε.

Now let us compute the difference of the integrals (6.3) over the domain |w| > ε

and integrals over the corresponding domain |w0|> ε. Our computation mimics one in
the previous section. In particular, our integrals (6.3) are reduced to

1
12π

(∫

|ζ |<R
|w|>ε

φdghyp −
∫

|ζ |<R
|w0|>ε

φ0dghyp

)
,

where
(6.7) φ = (d + 2)

(
log |ζ |)(1+ o(1)

)
φ0 = (d + 2)

(
log |ζ |)(1+ o(1)

)

in our domains. Decomposing the domains of integration we can proceed as:(∫

|ζ |<R
|w|>ε

φdghyp −
∫

|ζ |<R
|w0|>ε

φ0dghyp

)

=
∫

O(R)

(φ − φ0) dghyp −
∫

|ζ |≤r(ε)

(φ − φ0) dghyp +
∫

|ζ |>r(ε)|w|≤ε

φ dghyp

−
∫

|ζ |>r(ε)
|w0|≤ε

φ0dghyp
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By (6.2) the difference (φ−φ0) is regular in a neighborhood of a cusp, so its integral
over a small disc {|ζ | ≤ r(ε)} tends to zero as ε tends to zero. We can bound from above
absolute values of each of the remaining two integrals by the integrals of |φ| and |φ0|
correspondingly along a larger domain A(ε), see (6.6). Taking into consideration (6.7)
and (6.5) we conclude that these two integrals also tend to zero.

Hence, after passing to a limit ε→ 0 integration over the domains w > ε and
w0 > ε compensates a missing term

1
12π

∫

�Oj (R)

(φ − φ0)dghyp

in (6.4).

6.3.2. Integration over a cusp: the domain ε′ ≤ |w| ≤ ε. — In the annulus ε′ ≤ |w| ≤ ε

we have

2gflat,ε = ρflat,ε(|w|)|dw|2 = exp(2φ2)|dw|2

ghyp,δ = ghyp = 1

|ζ |2 log2 |ζ |
∣∣
∣∣

dζ

dw

∣∣
∣∣

2

|dw|2 = exp(2φ1)|dw|2

where

φ2 = 1

2
logρflat,ε

(|w|)

φ1 =− log |ζ | − log
∣
∣log |ζ |∣∣+ log

∣∣
∣∣

dζ

dw

∣∣
∣∣

An elementary calculation shows that

φ2 = d

2
· log |w| + regular function of w and w̄

φ1 =− log |w| − log
∣∣log |w|∣∣+O

(
1

log |w|
)

(6.8)

�φ1 = 1

|w|2 log2 |w|
(

1+O
(

1
log |w|

))

Applying formula (6.1) to the first integral in (6.3) we obtain
∫

ε′≤|w|≤ε

φ(�ghyp,δ
φ − 2Kghyp,δ

)dghyp,δ(6.9)

=
∫

ε′≤|w|≤ε

(φ2�φ2 − φ1�φ1 + φ2�φ1 − φ1�φ2) dx dy,
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An expression φ2�φ2 in (6.9) does not depend on ζ or ζ̄ . Hence it coincides with the
corresponding expression for w0, and the difference

∫

ε′≤|w|≤ε

φ2�φ2dxdy −
∫

ε′≤|w0|≤ε

φ2�φ2dxdy= 0

is equal to zero. This term produces no contribution to the difference of integrals in (6.3).
By assumption the ratio ε/ε′ is uniformly bounded (and, actually, can be chosen

arbitrarily close to one). Hence, the estimates (6.8) combined with the formula (6.5) imply
that

∫

ε′≤|w|≤ε

φ1�φ1 dx dy→ 0

∫

ε′≤|w|≤ε

φ2�φ1 dx dy→ 0

as ε tends to zero, and these two terms produce no contribution to the difference of
integrals in (6.3) either.

Finally,

∫

ε′≤|w|≤ε

φ1�φ2 dx dy(6.10)

=
∫ 2π

0
dθ

∫ ε

ε′
φ1 ·

[
1
r

∂

∂r

(
r
∂

∂r

)
+ 1

r2

∂2

∂θ 2

]
φ2(r)r dr

=
∫ 2π

0
dθ

∫ ε

ε′
φ1

∂

∂r

(
r
∂φ2

∂r

)
dr

=
∫ 2π

0
dθ

(
φ1r

∂φ2

∂r

∣∣
∣
∣

ε

ε′
−
∫ ε

ε′

∂φ1

∂r
r
∂φ2

∂r
dr

)

Recall that φ2(r)= 1
2 logρflat,ε(r), where ρflat,ε(r) is defined in (3.15). In particular,

r · φ′2(r)|r=ε = d

2

r · φ′2(r)|r=ε′ = 0

and
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∫ 2π

0

(
φ1r

∂φ2

∂r
|εε′
)

dθ = d

2

∫ 2π

0
φ1(r, θ)dθ

= d

2

∫ 2π

0

(
− log ε− log | log ε| +O

(
1

log ε

))
dθ

=−πd
(
log ε+ log | log ε|)+O

(
1

log ε

)

where we used expression (6.8) for φ1. Once again, the first term in the above expression
will be compensated by an identical term in the corresponding expression for w0, while
the second term in both expressions tends to zero.

It remains to evaluate the difference of the integrals

(6.11)
∫ 2π

0
dθ

∫ ε

ε′

∂φ1

∂r
r
∂φ2

∂r
dr

for w and for w0.
By the construction (3.15) of ρflat,ε(r), the maximum of the absolute value of its

derivative on the interval ε′ ≤ r ≤ ε is attained at r = ε where ρ ′flat,ε(ε) = dεd−1. Also,
by construction of ρflat,ε(r), the minimum of its value on the interval ε′ ≤ r ≤ ε equals
εd · (1+ o(1)). Finally, by our choice of ε′ and ε we have ε/ε′ → 1 as ε→ 0. Hence

max
ε′≤r≤ε

∣
∣∣
∣r

∂φ2

∂r

∣
∣∣
∣= max

ε′≤r≤ε

∣
∣∣
∣

r

2
∂ logρflat,ε

∂r

∣
∣∣
∣≤

ε

2
· maxε′≤r≤ε |ρ ′flat,ε(r)|

minε′≤r≤ε ρflat,ε(r)
(6.12)

= ε

2
· dεd−1

εd(1+ o(1))
= d

2
+ o(1) as ε→ 0

Now,

φ1 =− log |ζ | − log
∣
∣log |ζ |∣∣− log

∣∣
∣∣
dw

dζ

∣∣
∣∣= log

∣∣
∣∣
dw

dζ
ζ

∣∣
∣∣− log

∣
∣log |ζ |∣∣.

Note that

dw

dζ
ζ =w · f1(w) ζ =w · f2(w)

where f1(w), f2(w) are holomorphic functions different from zero in a neighborhood of
w = 0. Hence

∂

∂r

(
log

∣∣
∣∣
dw

dζ
ζ

∣∣
∣∣

)
= 1

r
+O(1)

∂

∂r
log

∣∣log |ζ |∣∣= 1
log r +O(1)

(
1
r
+O(1)

)
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Taking into consideration estimate (6.12) this implies that the difference of the inte-
grals (6.11) taken for S and S0 is of order

∫ ε

ε′

o(1)

r log r
dr,

which tends to zero as ε→ 0 since ε′/ε is bounded (and, actually can be chosen to tend
to 1).

We conclude that in the limit the difference of integrals (6.3) over the domains
ε′ ≤ |w| ≤ ε and ε′ ≤ |w0| ≤ ε is equal to zero; in particular, it produces no contribution
to the formula (3.24).

6.3.3. Integration over a cusp: the domain where |w| < ε′ but |ζ | > δ. — The compu-
tation of the difference of integrals (6.3) over the domains {|w| < ε′} ∩ {|ζ | > δ} and
{|w| < ε′} ∩ {|ζ | > δ} is analogous to the one in Section 6.3.1. In particular the differ-
ence of the integrals for these domains tends to zero as R→ 0 and hence it produces no
contribution to the formula (3.24).

6.3.4. Integration over a cusp: the annulus δ′ ≤ |ζ | ≤ δ. — In the annulus δ′ ≤ |ζ | ≤ δ

we have

gflat,ε = constflat,ε|dw|2 = exp(2φ2)|dζ |2
ghyp,δ = ρhyp,δ

(|ζ |)|dζ |2= exp(2φ1)|dζ |2
where

φ2 = 1

2
log constflat,ε + log

∣
∣∣
∣
dw

dζ

∣
∣∣
∣

φ1 = 1

2
logρhyp,δ.

In particular, �φ2 = 0.
Applying the formula (6.1) to the first integral in (6.3) we obtain

∫

δ′≤|ζ |≤δ

φ(�ghyp,δ
φ − 2Kghyp,δ

) dghyp,δ(6.13)

=
∫

δ′≤|ζ |≤δ

(φ2�φ2 − φ1�φ1 + φ2�φ1 − φ1�φ2)|dζ |2

=
∫

δ′≤|ζ |≤δ

(−φ1�φ1 + φ2�φ1)|dζ |2.

The expression φ1�φ1 in (6.13) does not depend on w or w̄. Hence it is annihilated by
the corresponding expression for w0.
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It remains to compute the integral of φ2�φ1. Similarly to the analogous computa-
tion (6.10) we get

∫

δ′≤|w|≤δ

φ2�φ1|dζ |2 =
∫ 2π

0
dθ

(
φ2r

∂φ1

∂r

∣∣
∣∣

δ

δ′
−
∫ δ

δ′

∂φ2

∂r
r
∂φ1

∂r
dr

)

Note that

∂φ1

∂r
= 1

2
· ∂

∂r
logρhyp,δ(r).

By definition (3.22) of ρhyp,δ(r) we get ∂φ1
∂r
|r=δ′ = 0 and

(6.14)
∂φ1

∂r

∣
∣∣
∣

r=δ

=− ∂

∂r

(
log r + log | log r|)

∣
∣∣
∣
r=δ

=−
(

1
δ
+ 1

δ log δ

)
.

Hence
∫ 2π

0
dθφ2 · r · ∂φ1

∂r

∣
∣∣
∣

δ

δ′

= −
∫ 2π

0

(
1

2
log constflat,ε + log

∣
∣∣
∣
dw

dζ

∣
∣∣
∣
ζ=δeiθ

∣
∣∣
∣

)(
1+ 1

log δ

)
dθ

=−π log constflat,ε

(
1+ 1

log δ

)
− 2π log

∣
∣∣
∣
dw

dζ

∣
∣∣
∣
ζ=0

∣
∣∣
∣+ o(1)

Evaluating the difference with the corresponding integral for w0 and passing to a
limit as δ→+0 we see that these terms produces the following impact to (6.3):

1

12π
· 2π

(
log

∣
∣∣
∣
dw0

dζ

∣
∣∣
∣
ζ=0

∣
∣∣
∣− log

∣
∣∣
∣
dw

dζ

∣
∣∣
∣
ζ=0

∣
∣∣
∣

)

It remains to evaluate the integral
∫ δ

δ′

∂φ2

∂r
r
∂φ1

∂r
dr

Recall that

min
δ′≤r≤δ

ρhyp,δ(r)= ρhyp,δ(δ)= 1

δ2 log2 δ
,

see the definition (3.22) of the monotone function ρhyp,δ(r). Note also that by definition
ρhyp,δ(r) has monotone derivative on the interval [δ′, δ] and ρ ′hyp,δ(r) vanishes at r = δ′.
Hence, the maximum of the absolute value of the logarithmic derivative

∣∣
∣∣
∂φ1

∂r

∣∣
∣∣=

1
2

∣∣
∣∣
∂

∂r
logρhyp,δ(r)

∣∣
∣∣=

1
2

∣∣
∣∣
ρ ′hyp,δ(r)

ρhyp,δ(r)

∣∣
∣∣
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on the interval [δ′, δ] is attained at the endpoint δ, where its value is already evaluated
in (6.14). Since the function ∂φ2

∂r
is regular, we conclude that the integral

∣∣
∣∣

∫ δ

δ′

∂φ2

∂r
r
∂φ1

∂r
dr

∣∣
∣∣≤

∫ δ

δ′

∣∣
∣∣
∂φ2

∂r

∣∣
∣∣δ ·

(
1
δ
+ 1

δ log δ

)
dr

tends to zero as δ tends to zero.

6.3.5. Integration over a cusp: the disc |ζ |< δ′. — In the disc |ζ |< δ′ we have

gflat,ε = constflat,ε|dw|2= exp(2φ2)|dζ |2
ghyp,δ = consthyp,δ|dζ |2= exp(2φ1)|dζ |2

where

φ2 = 1

2
log constflat,ε + log

∣∣
∣∣
dw

dζ

∣∣
∣∣

φ1 = 1

2
log consthyp,δ

Hence �φ1 =�φ2 = 0 and the integral
∫

|ζ |≤δ′
(φ2�φ2 − φ1�φ1 + φ2�φ1 − φ1�φ2)|dζ |2

is identically equal to zero.
Applying the formula (6.1) we conclude that integrals over this region produce no

contribution to the difference of integrals in (6.3).
Combining the relation (6.4) with the estimates from Sections 6.3.1–6.3.5 we get

the formula (3.23). Theorem 6 is proved.

7. Comparison of relative determinants of Laplace operators near the
boundary of the moduli space

In notations of Theorem 7 define the following function:

E(S,S0)(7.1)

:=
〈∫

S
φ dghyp −

∫

S0

φ0dghyp

〉
− 2π

∑

j

(
log

∣
∣∣
∣
dw

dζ
(Pj)

∣
∣∣
∣− log

∣
∣∣
∣
dw0

dζ
(Pj)

∣
∣∣
∣

)
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Here w denotes the coordinate defined by Equation (3.13) in a neighborhood of a conical
point and ζ is a holomorphic coordinate defined by Equation (3.21) in the neighborhood
of the same conical point. By Equation (3.24) from Theorem 6 one has

log det�flat(S,S0)− log det�ghyp
(S,S0)= 1

12π
E(S,S0).

In this section we estimate the value of E(S,S0) and prove Theorem 7.
We will actually prove a stronger statement, which is in some ways best possible.

Recall the thick-thin decomposition for a quadratic differential which was defined in
Section 4.

Theorem 11. — Let S ∈ Q1(d1, . . . , dn), S0 ∈ Q1(d1, . . . , dn) be flat surfaces, and let

Y1, . . . ,Ym be the δ-thick components of S. Let Z(Yj) denote the subset of zeroes and poles which

is contained in Yj (so that
⋃m

j=1{orders of Z(Yj)} = {d1, . . . , dn}). Then,

∣
∣∣
∣E(S,S0)−

m∑

j=1

(
−2πχ(Yj)−

∑

P∈Z(Yj )

4π

d(P)+ 2

)
logλ(Yj)

∣
∣∣
∣≤C,

where χ(Yj) is the Euler characteristic of Yj (considered as a surface with boundary which is punctured

at all points of Z(Yj)), λ(Yj) is the size of Yj (defined in Section 4), and C depends only on δ, η, R,

on the stratum Q1(d1, . . . , dn), and on S0.

For each stratum, we should consider the positive parameters δ, η,R, and S0 as
fixed. In this sense, the constant C in Theorem 11 depends only on the stratum.

We note that Theorem 11 immediately implies Theorem 7, since by Lemma 4.1,
for any thick component Y of S, �flat(S) ≤ λ(Y) (and since S is normalized to have unit
area, λ(Y)=O(1)).

Example 7.1 (Two merging zeroes). — Consider the following one-parameter family
of flat surfaces. Take a flat surface with a zero P of order d , and break this zero into two
zeroes P1,P2 of orders d1 + d2 = d by a local surgery in a neighborhood of P, see [EMZ]
for details. Consider a family of flat surfaces Sτ isometric outside of a neighborhood of
P1,P2 such that the saddle connection joining P1 with P2 contracts.

For the underlying hyperbolic surface we get a “bulb” in the form of a pair of pants
Yτ growing out of our surface. This pair of pants has cusps at the points P1,P2 and is
separated from the main body of the surface by a short hyperbolic geodesic homotopic to
a curve encircling P1,P2, see Figure 10. Clearly, the size of Yτ satisfies λ(Yτ )= 2�flat(Sτ ),
where �flat(Sτ ) is the length of the short saddle connection joining P1 and P2. The size
of the main body of the surface stays bounded. The Euler characteristic of the pair of
pants Y̊τ is equal to minus one. We assume that Sτ has no other short saddle connections.
Applying Theorem 11, we get
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FIG. 10. — A simple saddle connection in the flat metric produces in the underlying hyperbolic metric a pair of pants with
two cusps. Contracting the saddle connection we pinch the pair of pants out of the main body of the surface

log det�flat(S,S0)− log det�ghyp
(S,S0)

= 1
12π

E(S,S0)

= 1
6
·
(

1− 2
d1 + 2

− 2
d2 + 2

)
· log�flat(Sτ )+O(1),

where the error term is bounded in terms only of the orders of the singularities of Sτ .

7.1. Admissible pairs of subsurfaces. — Suppose Y⊂ S and Y0 ⊂ S0 are subsurfaces.
We say that the pair (Y,Y0) is admissible if Z(Y)= Z(Y0) (i.e. the degrees of the zeroes
and poles in Y and Y0 are the same). We now introduce the following notation: for an
admissible pair (Y,Y0), let (in the notation of (7.1)),

E(Y,S;Y0,S0)=
〈∫

Y
φdghyp −

∫

Y0

φ0dghyp

〉

− 2π
∑

P∈Z(Y)

(
log

∣
∣∣
∣
dw

dζ
(P)

∣
∣∣
∣− log

∣
∣∣
∣
dw0

dζ
(P)

∣
∣∣
∣

)
.

This definition implies that

E(Y,S;Y0,S0)=
∫

Y
φdghyp −

∫

Y0

φ0dghyp, when Z(Y)= Z(Y0)=∅.

If Z(Y)=∅, we let

I(Y,S)=
∫

Y
φdghyp.

Let

S=
( m⋃

j=1

Yj(η)

)
∪
( ⋃

γ∈�(δ)

Aγ (η)

)

be a (δ, η)-thick-thin decomposition of S (as defined in Section 4.4). We now choose a
decomposition S0 into a sum

⋃m

j=1 Y′j such that the subsurfaces Y′j have pairwise disjoint
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interiors, and such that all the pairs (Yj(η),Y′j) are admissible. Then, it follows immedi-
ately from the above definitions that

(7.2) E(S,S0)=
m∑

j=1

E
(
Yj(η),S;Y′j,S0

)+
∑

γ∈�(δ)

I
(
Aγ (η),S

)
.

Our proof of Theorem 11 will be based on (7.2). We will estimate the terms on the right-
hand-side of (7.2) in the following subsections.

7.2. Estimate for the thick part. — Recall that by δ-thick components we call the con-
nected components of S−⊔

γi∈�(δ) γi , where �(δ) is the collection of δ-short closed hy-
perbolic geodesics, see Section 4.

Lemma 7.1. — Suppose that S,S0 ∈ Q1(d1, . . . , dn), and (Y,Y0) is an admissible pair,

where Y⊂ S, Y0 ⊂ S0 and Y is δ-thick. Then,

∣∣
∣∣E
(
Y(η),S;Y0,S0

)−
(

Areahyp

(
Y(η)

)−
∑

P∈Z(Y)

4π

d(P)+ 2

)
logλ(Y)

∣∣
∣∣< C,

where C depends only on δ, η, R, Y0, S0, where R > 0 be as defined in the beginning of Section 4.5.

Proof. — In this proof we will say that a quantity is uniformly bounded if it is
bounded only in terms of δ, η, Y0, S0 and R. Write S = (C, q), and let q̃ = λ(Y)−2q.
Then,

(7.3) φ(q̃)= φ(q)− logλ(Y).

Let P ∈ Y be a zero or a first-order pole of q. Let ζ be the local coordinate near P
as in (3.21), and let w be the local coordinate near P as in (3.13). Let w̃ be the local
coordinate near P as in (3.13), for q̃ instead of q. Then,

w̃ = λ(Y)−2/(d(P)+2)w,

where d(P) is the degree of P. Hence,

(7.4) log

∣
∣∣
∣
dw̃

dζ
(P)

∣
∣∣
∣=−

2
d(P)+ 2

logλ(Y)+ log

∣
∣∣
∣
dw

dζ
(P)

∣
∣∣
∣.

Let S̃= (C, q̃) and let Ỹ⊂ S̃ be the corresponding subsurface (so the flat metric on Ỹ is
scaled to have size 1). Note that Ỹ and Y have the same hyperbolic metric. Then, by (7.3)
and (7.4),
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E
(
Ỹ(η), S̃;Y0,S0

)

= E
(
Y(η),S;Y0,S0

)−
(

Areahyp

(
Y(η)

)−
∑

P∈Z(Y)

4π

d(P)+ 2

)
logλ(Y).

Thus, it is enough to show that E(Ỹ(η), S̃;Y0,S0) is uniformly bounded. We may write

E
(
Ỹ(η), S̃;Y0,S0

)=H− 2π
∑

P∈Z(Y)

J(P),

where

H=
〈∫

Y(η)

φ(q̃)dghyp −
∫

Y0

φ0dghyp

〉

and

J(P)= log

∣
∣∣
∣
dw̃

dζ
(P)

∣
∣∣
∣− log

∣
∣∣
∣
dw0

dζ
(P)

∣
∣∣
∣.

Let O(R)=⋃
P∈Z(Y)OP(R). We have

(7.5) H=
∫

Y(η)−O(R)

φ(q̃)dghyp −
∫

Y0

φ0dghyp +
∑

P∈Z(Y)

∫

OP(R)

(
φ(q̃)− φ0

)
dghyp.

By Proposition 4.1, φ(q̃) is uniformly bounded (i.e. bounded depending only on δ, η,
R and the stratum); therefore, so is the first integral in (7.5) Also, obviously the second
integral in (7.5) is uniformly bounded, since it is independent of q̃. To bound the third
integral, note that φ(q̃) − φ0 is a harmonic function of the coordinate ζ of (3.21), and
by Proposition 4.1, φ(q̃)− φ0 is uniformly bounded on ∂OP(R); then by the maximum
principle, φ(q̃) − φ0 is uniformly bounded on all of OP(R). This shows that the third
integral in (7.5) is uniformly bounded.

It remains to give a uniform bound for J(P) for each P. We may write

(7.6) q̃= w̃d(dw̃)2 = f (ζ )ζ d(dζ )2,

where ζ is as in (3.21) so ζ = 0 corresponds to the point P, d is the degree of P, and f (ζ )

is some holomorphic function which has no zeroes in OP(R). Then, we may write
(

dw̃

dζ

)2

= f (ζ )

(
ζ − 0
w̃− 0

)d

,

and taking the limit as ζ → 0 we get
(

dw̃

dζ
(0)

)2

= f (0)

(
dζ

dw̃
(0)

)d

.
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After taking logs, we get

log

∣∣
∣∣
dw̃

dζ
(0)

∣∣
∣∣=

1
d + 2

log
∣
∣f (0)

∣
∣.

In view of (7.6) and of explicit formula (3.21) for the hyperbolic metric in terms of ζ , the
conformal factor of q̃ restricted to ∂OP(R) can be written as

(7.7) φ(q̃)= 1
2

log

∣∣
∣∣

f (ζ )ζ d

(|ζ |2 log2 |ζ |)−1

∣∣
∣∣ where |ζ | =R.

By Proposition 4.1, φ(q̃) on ∂OP(R) is “uniformly bounded”, i.e. bounded by a con-
stant depending only on δ, η, R and the stratum; then by (7.7), log |f (ζ )| is also uni-
formly bounded on ∂OP(R). Thus, by the maximum principle, log |f (0)| is uniformly
bounded. �

7.3. Estimate for the thin part. — Let Aγ (η) be a thin component of the (δ, η) thick-
thin decomposition of a flat surface S = (C, q) (see Section 4.4), corresponding to the
curve γ ∈ �(δ). Recall that each short hyperbolic geodesic γ ∈ �(δ) uniquely determines
either a flat cylinder or an expanding annulus (see Section 4 for the definitions). The short
geodesic γ is embedded into the corresponding maximal flat cylinder or expanding an-
nulus and realizes a generator of its fundamental group. Let λ+(Aγ ) and λ−(Aγ ) denote
the sizes of the δ-thick components Y+,Y− ⊂ S− �(δ) on the two sides of γ .

Lemma 7.2. — Suppose γ is represented in the flat metric of S by a flat cylinder, of height h and

width w (so that the flat length of the q-geodesic represtative of γ is w). Then,

(7.8)
∣∣logλ+(Aγ )− logw

∣∣≤C′ and
∣∣ logλ−(Aγ )− logw

∣∣≤C′,

where C′ depends only on δ, η and the stratum.

It is important to note that Lemma 7.2 holds only because we consider the zeroes
of the quadratic differential q to be punctures (cusps in the hyperbolic metric). Without
this assumption, Lemma 7.2 fails, and part (a) of Lemma 7.3 below needs to be modified.

In fact, the proof is contained between the lines of the paper [Rf2] of K. Rafi.
However, since it is not stated in the precise form which we need, we give a sketch of a
proof below.

In the proofs of Lemmas 7.2 and 7.3 the constants ci will depend only on the genus,
the number of punctures and the parameters δ, η and R of the thick-thin decomposition.

Proof of Lemma 7.2. — Suppose that the perimeter w of the cylinder is much bigger
than the size λ±(Aγ ) of the thick component Y± to which it is adjacent. In order to glue a
relatively wide cylinder to something small we have to fold the boundary of the cylinder.
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FIG. 11. — The simple closed curve β separates all local geometry near the boundary of the cylinder from the main body
of the thick component. The left picture represents the flat metric, and the right picture schematically represents the hyperbolic
metric

However, for any fixed stratum, the complexity of this folding is bounded in terms of the
genus and the number of conical singularities, which proves the inequalities

w

λ±(Aγ )
≤ c1.

Suppose that the perimeter w of the cylinder is much smaller than the size λ±(Aγ )

of the thick component Y± to which it is adjacent. Then all local geometry near the
boundary of the cylinder can be separated from the main body of the thick component by
a simple closed curve β (non necessarily a geodesic) such that the flat length of β is much
bigger than w but much smaller than λ±(Aγ ), see Figure 11. Suppose β is peripheral.
Then either β is homotopic to a curve in the boundary of the cylinder Fγ whose core
curve is γ or else β is homotopic to some other curve in the boundary of λ±(Aγ ). The
first possibility cannot occur since the boundary of Fγ has non-trivial topology (because
of the cone points). The second possibility cannot occur since β is much smaller than the
size of λ±(Aγ ).

Thus β must be non-peripheral. Then, by the definition of size, �flat(β)≥ λ±(Aγ )

for any nonperipheral curve. Hence our assumption that the perimeter w of the cylinder
is much smaller than the size λ±(Aγ ) leads to a contradiction, and we have proved that

λ±(Aγ )

w
≤ c2.

Lemma 7.2 is proved. �

In the statement and in the proof of Lemma 7.3 below the ci denote constants de-
pending only on the stratum, on the parameters δ and η of the thick-thin decomposition,
and on the parameter R responsible for neighborhoods of cusps. The constants ci are
different from those used in the proof of Lemma 7.2.

Lemma 7.3. — Suppose the constant δ defining the thick-thin decomposition is sufficiently small

(depending only on the genus and on the number of punctures). Then, for any (δ, η)-thin component

Aγ (η) of a flat surface S the following holds:
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(a) Suppose γ is represented in the flat metric by a flat cylinder of height h and of width w (so

that the flat length of the q-geodesic representative of γ is w). Then

π

�hyp(γ )
= h

w
+O(1),

where the implied constant is bounded only in terms of δ, η, R, and the stratum.

(b) If γ is represented in the flat metric by an expanding annulus, then

c0 ≤ �hyp(γ )
∣
∣logλ+(Aγ )− logλ−(Aγ )

∣
∣≤ c1

where c0 > 0 and c1 > c2 depend only on δ, η and the stratum.

In addition,

(c) There is a constant M0 > 0 (depending only on δ and the stratum) such that any flat cylinder

of modulus at least M0 contains a hyperbolic geodesic of length at most δ.

Proof. — The statement (c) is classical, see e.g. [Hb, Proposition 3.3.7]. The state-
ment (b) is due to Minsky [Min, §4], see also [Rf3, Theorem 3.1]. (The discussion in [Rf3]
is in terms of extremal lengths, but recall that for very short curves, the extremal length is
comparable to the hyperbolic length [Mk]).

The statement (a) is standard, but since we found it difficult to extract it in the
precise form we need from the literature, we give a sketch of a proof below. (Similar
results can be found in [Br], [M1, §6], [Wo2]).

Let Y±(η) be as in the proof of Lemma 7.2, and let Y′±(η,R) denote Y±(η) with
R-neighborhoods of the cusps removed (with the cuts along horocycles around cusps of
hyperbolic length R), see Section 4.5.

Let α± denote the boundary curves of Aγ (η). We do not know the precise position
of the α± in the flat metric. However, we claim that

(7.9) ∀p ∈ α+, dflat(p,�+)≤ c2w and ∀p ∈ α−, dflat(p,�−)≤ c2w,

see Figure 12. We prove the first estimate; the second one is proved analogously.
Let us show that Y′+(η,R) has nonempty intersection with the boundary compo-

nent �+ of the maximal flat cylinder Fγ . First note that Y′+(η,R) cannot be completely
contained in the interior of Fγ for topological reasons.

By construction, the boundary component α+ of Y′+(η,R) corresponding to γ is
homotopic to the waist curve of the cylinder Fγ . Each boundary component �± of the
maximal cylinder Fγ passes through at least one conical singularity of the flat metric, and
this singularity defines a puncture. Together these two observations imply that α+ cannot
be located completely outside of the part Fγ,+ of the flat cylinder Fγ bounded by γ and
�+, so α+ has nonempty intersection with Fγ,+.
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FIG. 12. — The boundary components α± of the hyperbolic cylinder A(η) of large modulus (colored in grey) stay within flat
distance of order w from the corresponding boundary components �± of the flat cylinder Fγ of perimeter w

Thus Y′+(η,R) has nonempty intersection with Fγ,+ and is not contained in the
interior of Fγ,+. Hence, it intersects with the boundary of ∂Fγ,+ = γ ��+. Since Y′+(η,R)

cannot intersect the boundary component represented by the hyperbolic geodesic γ , it
should intersect the boundary component �+. Denote by x+ a point in Y′+(η,R)∩�+.

Suppose p ∈ α+. Since the hyperbolic diameter of Y′+(η,R) is bounded by a con-
stant c3, there exists a path λx+,p ⊂ Y′+(η,R) connecting x+ to p of hyperbolic length at
most c3. But then, Lemma 7.2 and Proposition 4.1 imply that there exists a constant c+2
such that the flat length of λx+,p is at most c+2 w.

Applying a similar argument to �− and letting c2 = max(c+2 , c−2 ) we prove the
estimate (7.9).

We note that as a consequence of (7.9),

(7.10) Areaflat

(
Aγ (η)

)≤ hw+ c4w
2.

Choose any c5 > c2, and let A′ denote the flat cylinder obtained by removing the (c5w)-
neighborhood of the boundary from Fγ . Then, by (7.9), A′ ⊂ Aγ (η).

Recall that the extremal length of a family of curves � on a surface C endowed
with a conformal structure is defined to be

(7.11) Ext(�)= sup
ρ

inf
γ∈�

�ρ(γ )2

Areaρ(C)
.

The supremum in (7.11) is taken over all the metrics in the conformal class of C. The
extremal length is a conformal invariant, and the modulus M(A) of a topological annulus
A⊂C can be expressed as

M(A)= 1
Ext(�)

,

where the extremal length Ext(�) is evaluated for the family � of curves γ in A given by
the homotopy class of the generator of the fundamental group of the annulus A.
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Clearly, if �1 ⊂ �2 then Ext(�1)≥ Ext(�2). Then, since A′ ⊂ Aγ (η), we have

(7.12) Mod
(
A′
)≤Mod

(
Aγ (η)

)
.

The cylinder A′ is flat, and so

(7.13) Mod
(
A′
)= h− 2c5w

w
= h

w
− 2c5.

Also by the explicit formula for the hyperbolic metric in a cylinder (see [Hb, pages 25–26
and page 72] and also the proof of Lemma 7.4 below),

(7.14) Mod
(
Aγ (η)

)= π

�hyp(γ )
− c6,

where c6 depends only on η.
It remains to bound Mod(Aγ (η)) from above. We now apply the definition (7.11)

of extremal length to the family of curves �′′ which consists of curves homotopic to γ and
staying within Aγ (η). We get, by choosing the flat metric for ρ and using (7.10),

1
Mod(Aγ (η))

= Ext
(
�′′
)≥ �flat(γ )2

Areaflat(Aγ (η))
≥ w2

hw+ c4w2
.

Hence,

(7.15) Mod
(
Aγ (η)

)≤ h

w
+ c4.

Now part (a) of the lemma follows from (7.12), (7.13), (7.14) and (7.15). �

Let �(δ), I(Aγ (η),S) be as defined in Section 7.1.

Lemma 7.4. — For any γ ∈ �(δ),

∣
∣∣
∣I
(
Aγ (η),S

)− 1
2

Areahyp

(
Aγ (η)

)(
logλ+(Aγ )+ logλ−(Aγ )

)
∣
∣∣
∣< C,

where C depends only on δ, η and the stratum.

Proof. — Choose coordinates in which Aγ is represented by a rectangle 0≤ x ≤ 1;
−h/2≤ y≤ h/2, see Figure 13.

The hyperbolic metric on Aγ is represented in our coordinates as follows (see [Hb,
pages 25–26 and page 72]):

(7.16) ghyp = 1
cos2(π

h
y)

(
π

h

)2(
dx2 + dy2

)
.
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FIG. 13. — Parametrization of a hyperbolic cylinder

In this hyperbolic metric the hyperbolic geodesic γ representing a waist curve of the
cylinder (the circle y = 0) has length lhyp(γ ) = π

h
. We assume that the modulus of the

cylinder is very large, so lhyp(γ ) 1.
Cut the flat cylinder at the vertical levels h

2 − y0 and −( h

2 − y0), where parameter
y0(η) is chosen in such a way that the hyperbolic length of the boundary curves is equal
to η. As usual, we assume that lhyp(γ ) η 1. It is easy to see that

(7.17) cos
(

π

h

(
h

2
− y0

))
= sin

(
πy0

h

)
= π

ηh
= lhyp(γ )

η
 1,

so

(7.18) y0 = h

π
arcsin

π

ηh
≈ 1

η
.

Then, Aγ (η) is represented in our coordinates by the rectangle 0≤ x≤ 1, −(h/2− y0)≤
y≤ (h/2− y0).

The cylinder Aγ (η) is subset of our surface S. As such, it inherits a flat metric from
the quadratic differential q on S. We may write

q=ψ(z)(dz)2,

where z = x + iy, and ψ(z) is holomorphic. Note that ψ has no zeroes on Aγ (η) (since
zeroes of ψ correspond to zeroes of q which will become cusps in our hyperbolic metric).
By (7.16), the conformal factor φ(q) is given by:

(7.19) φ(q)= 1
2

log

∣
∣∣
∣ψ(x+ iy) cos

(
π

h
y

)2(
h

π

)2∣∣∣
∣.

Consider the values of φ(q) on the boundaries of Aγ (η), i.e on the segments α+ ≡ [0,1]×
{h/2− y0} and α− ≡ [0,1]× {−(h/2− y0)}. Let λ± be the size of the thick component on
the other side of α± from Aγ (η). Then, by Proposition 4.1, we have

(7.20)
∣
∣φ(q)− logλ±

∣
∣≤C,
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where C is bounded in terms of δ, η, R, and the stratum. Then, combining (7.17)–(7.20),
we get

(7.21)

∣
∣∣
∣
1
2

log
∣∣ψ(z)

∣∣− logλ±

∣
∣∣
∣≤C′ on α±,

where C′ is bounded in terms of η, δ, R, and the stratum.
Let

(7.22) f (z)= 1
2

log
∣∣ψ(z)

∣∣− logλ+ + logλ−
2

− (logλ+ − logλ−)y
(h− 2y0)

.

Then, f (z) = 1
2 log |ψ(z)| − logλ± on α±. In view of (7.21), we have f (z) = O(1) on

∂Aγ (η). But f is harmonic, and thus in view of the maximum principle, f (z)=O(1) (i.e.
bounded in terms of δ, η R, and the stratum) on all of Aγ (η). Substituting (7.22) into
(7.19), we get

(7.23) φ(q)= logλ+ + logλ−
2

+ (logλ+ − logλ−)y
(h− 2y0)

+ log

∣
∣∣
∣cos

(
π

h
y

)
h

π

∣
∣∣
∣+ f (z).

We now multiply both sides by the hyperbolic metric (see (7.16)) and integrate both sides
over the rectangle [0,1] × [−(h/2− y0), (h/2− y0)]. We get

(7.24) I
(
Aγ (η),S

)= logλ+ + logλ−
2

Areahyp

(
Aγ (η)

)+ I2 + I3 + I4,

where I2, I3 and I4 are the contributions of the second, third, and fourth terms in (7.23).
The integral I2 vanishes because it is odd under the map y→−y. By construction, |I4| ≤
sup |f (z)|Areahyp(Aγ (η)) is bounded in terms of δ, η, R, and the stratum. It remains to
bound |I3|. We have

|I3| ≤
∫ 1

0

∫ (h/2−y0)

−(h/2−y0)

1
cos2(

πy

h
)

(
π

h

)2∣∣∣
∣log

(
cos

(
πy

h

)
h

π

)∣∣∣
∣ dx dy

= 2
∫ (h/2−y0)

0

1
cos2(

πy

h
)

(
π

h

)2∣∣
∣∣log

(
cos

(
πy

h

)
h

π

)∣∣
∣∣ dy

= 2
∫ 1

sin(πy0/h)

(
π

h

) | log(hu/π)|
u2
√

1− u2
du using u= cos(πy/h)

= 2
∫ 1

π/(ηh)

(
π

h

) | log(hu/π)|
u2
√

1− u2
du using (7.17)

= 2
∫ 1/

√
2

π/(ηh)

(
π

h

) | log(hu/π)|
u2
√

1− u2
du+ 2

∫ 1

1/
√

2

(
π

h

) | log(hu/π)|
u2
√

1− u2
du

= 2(I3a + I3b).
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The integral I3b is bounded independently of h� 1 since it converges and the integrand
is bounded independently of h. Also,

I3a ≤ 2
∫ 1/

√
2

π/(ηh)

(
π

h

) | log(hu/π)|
u2

du

= 2
∫ h

π
√

2

1/η

| logv|
v2

dv using v = hu/π

≤ 2
∫ ∞

1/η

| logv|
v2

dv since the integral converges.

We see that I3a is bounded depending only on η. Thus, |I3| is bounded depending only η.
This completes the proof of the lemma. �

7.4. Proof of Theorem 11. — The theorem follows almost immediately from (7.2),
Lemma 7.1 and Lemma 7.4. It remains only to note that for any thick component Y⊂ S,

Areahyp

(
Y(η)

)+ 1
2

∑

γ∈∂Y

Areahyp

(
Aγ (η)

)= Areahyp(Y)=−2πχ(Y)

where the last equality follows from the Gauss-Bonnet theorem (since the geodesic cur-
vature of ∂Y is 0). This completes the proof of Theorem 11.

8. Determinant of Laplacian near the boundary of the moduli space

8.1. Determinant of hyperbolic Laplacian near the boundary of the moduli space. — The
proof of Theorem 8 is based on the following result of R. Lundelius, see [Lu], Theorem
1.2. This result generalizes an analogous statement proved by S. Wolpert in [Wo1] for
surfaces without cusps.

Theorem (R. Lundelius). — Let Cτ be a family of hyperbolic surfaces of finite volume which tend

to a stable Riemann surface C∞ as τ →∞. The surfaces are allowed to have cusps, but do not have

boundary. Let C0 be a “standard” hyperbolic surface of the same topological type as each Cτ . Then

(8.1) − log
∣
∣det�ghyp

(Cτ ,C0)
∣
∣=

∑

k

π 2

3lτ,k
+O

(− log�hyp(Cτ )
)+O(1)

as τ →∞. Here lτ,k are the lengths of the pinching hyperbolic geodesics, and �hyp(Cτ ) is the length of

the shortest hyperbolic geodesic on Cτ .

Remark 8.1. — The definition of relative determinant of the Laplacian in the hy-
perbolic metric used in [Lu] differs from ours. However, it was shown to be equivalent by
J. Jorgenson and R. Lundelius in [JoLu].
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Remark 8.2. — Note that the original formula of R. Lundelius contains a misprint:
the coefficient in the denominator of the leading term in Theorem 1.2 of [Lu] is erro-
neously indicated as “6” compared to “3” in formula (8.1) above. The missing factor 2
is lost in the computation in Section 3.3 “Analysis of the cylinder” of [Lu]. The author
considers there a flat cylinder obtained by identifying the vertical sides of the narrow
rectangle [0, l)× (2l,π −2l), where 0 < l 1, in the standard coordinate plane and de-
scribes the eigenfunctions of the Laplacian on this flat cylinder with Dirichlet conditions
as

sin
(

2πnu

l

)
sin

(
2πmv

a

)
and cos

(
2πnu

l

)
sin

(
2πmv

a

)

while they should be written as

sin
(

2πnu

l

)
sin

(
πmv

a

)
and cos

(
2πnu

l

)
sin

(
πmv

a

)

with n ∈N and m ∈N∪ {0} (page 232 of [Lu]). The rest of the computation works, basi-
cally, in the same way as in [Lu] except that the resulting asymptotics for the determinant
of Laplacian on this flat cylinder is get multiplied by the factor 2 producing:

− log |det�flat| ∼ π 2

3l
+O(log l).

(The original paper has “6” in the denominator of the fraction above.)

Example 8.1 (A pair of homologous saddle connections). — Consider the following one-
parameter family of flat surfaces. Take a pair of flat surfaces S1,S2; make a short slit on
each flat surface; open up the slits and glue the surfaces together, see Figure 14. Con-
tracting continuously the length s of the slit we get a family of flat surfaces Sτ . For the
underlying hyperbolic surface we get three thick components: two obvious ones, but also
a sphere separating the other two thick components. This sphere Yτ has cusps at the

FIG. 14. — A pair of homologous saddle connections in the flat metric produces in the underlying hyperbolic metric a
thick component isometric to a sphere with two cusps and with two boundary components represented by short hyperbolic
geodesics. The stable curve obtained in the limit has three irreducible components: the two Riemann surfaces underlying
S1 and S2 and a four-punctured sphere between them
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endpoints points P1,P2 of the slits and is separated from the rest of the surface by a pair
of short hyperbolic geodesic homotopic to curves encircling P1,P2, see Figure 14. Clearly,
the size of Yτ satisfies λ(Yτ )= 2�flat(Sτ ), where �flat(Sτ )= s is the length of the slit. The
sizes of the other two thick components stay bounded. The Euler characteristic of the
sphere Y̊τ with two holes and two punctures is equal to minus two.

Assuming that the slits which we made on the original flat surfaces S1, S2 are not
adjacent to conical singularities, the points P1,P2 on the compound flat surface Sτ have
cone angles 4π which correspond to zeroes of order d = 2 in the sense of quadratic
differentials. Applying Theorem 11, we get

log det�flat(S,S0)− log det�ghyp
(S,S0)(8.2)

= 1
6
·
(

2− 2
2+ 2

− 2
2+ 2

)
· log�flat(Sτ )+O(1)

= log�flat(Sτ )

6
+O(1),

where the error term is bounded in terms only of the orders of the singularities of Sτ .
A particular case of the above construction when the surfaces S1,S2 belong to the

principal stratum of Abelian differentials, was recently studied by A. Kokotov in much
more detail, see [Kk1]. His result implies that

log det�flat(S,S0)= 1
2

log�flat(Sτ )+O(1).

We now compute the asymptotic of log det�ghyp
(Cτ ,C0) in this example to show that the

expression (8.2) for the difference of the flat and hyperbolic determinants matches the
asymptotics obtained by A. Kokotov.

By Theorem of Lundelius, see (8.1),

log det�ghyp
(Cτ ,C0)∼−

∑

k

π 2

3lk(Sτ )
,

where summation is taken over all short hyperbolic geodesics. In our case we have two
short hyperbolic geodesics of approximately same length �hyp(Sτ ), so we get

(8.3) log det�ghyp
(Cτ ,C0)∼−2 · π 2

3�hyp(Sτ )
.

The length of a short hyperbolic geodesic is expressed in terms of the modulus of the
embodying maximal conformal annulus as

�hyp(Sτ )= π

Modτ

,

see (3.3.7) in [Hb].
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By considering the Zhukovsky function z 
→ 1
2(z+ 1

z
) we can see that asymptoti-

cally, as the size �flat(Sτ ) of the slit tends to zero,

1
�hyp(Sτ )

∼− log�flat(Sτ )

2π 2
.

Plugging this into (8.3) we get

log det�ghyp
(Cτ ,C0)∼−2 · π 2

3�hyp(Sτ )
∼−2 · π

2

3
− log�flat(Sτ )

2π 2

= log�flat(Sτ )

3
.

Thus,

log det�flat(S,S0)− log det�ghyp
(S,S0)∼ log�flat(Sτ )

6
,

which matches (8.2).

It is immediate to recast the above Theorem of R. Lundelius as a uniform bound:

Corollary 9. — Let C, C0 be two hyperbolic surfaces of finite volume and the same topological

type. The surfaces are allowed to have cusps, but do not have boundary. Let δ > 0 (depending only on

the genus g and the number of cusps n) be such that any two curves of hyperbolic length less than δ are

disjoint. Then, there exists c1 > 0 (depending only on g, n, δ and C0) such that

(8.4)

∣
∣∣
∣log

∣∣det�ghyp
(C,C0)

∣∣+ π 2

3

∑

γ∈�(δ)

1
�hyp(γ )

∣
∣∣
∣≤ c1

(
1+ ∣∣log�hyp(C)

∣∣)

Here �(δ) is the set of closed geodesics of length at most δ (so the cardinality of �(δ) is at most

(3g − 3+ n)), and �hyp(C) is the length of the shortest hyperbolic geodesic on C.

Proof of Corollary 9. — The proof is by contradiction. If such a constant c1 did not
exist, then there would exists a sequence Cτ with fixed topology such that

(8.5)
1

1+ | log�hyp(Cτ )|
∣
∣∣
∣log

∣∣det�ghyp
(Cτ ,C0)

∣∣+ π 2

3

∑

γ∈�(δ)

1
�hyp(γ )

∣
∣∣
∣→∞

The existence of the Deligne-Mumford compactification implies that (after passing to
a subsequence) we may assume that the sequence Cτ tends to a stable Riemann sur-
face C∞. Then, from (8.1) we see that the left-hand-side of (8.5) is bounded. This contra-
dicts (8.5). �
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8.2. Proof of Theorem 8. — We start with the following preparatory Lemma.

Lemma 8.1. — Consider a stratum Q(d1, . . . , dn) of meromorphic quadratic differentials with

at most simple poles (the case of global squares of 1-forms is not excluded). Let �flat(S) be the length of

a shortest saddle connection on a flat surface S; let �hyp(S) be the length of the shortest geodesic in the

canonical hyperbolic metric with cusps in the conformal class of S.

The following estimate is valid for any flat surface S of unit area in the stratum:

∣∣log�hyp(C)
∣∣=O

(∣∣ log�flat(S)
∣∣)

where

O
(∣∣ log�flat(S)

∣∣)≤ 2
∣∣log�flat(S)

∣∣+C(g, n)

with C(g, n) depending only on a genus of S and on the number n of zeroes and simple poles of the

quadratic differential.

Proof. — It is straightforward to deduce this lemma from Lemma 7.3, but we find
the following argument more illuminating. Recall that the extremal length of a curve γ

on a Riemann surface C is defined to be:

Ext(γ )= sup
ρ

inf
α∈[γ ]

�ρ(α)2

Areaρ(C)
,

where the inf is over the homotopy class [γ ] of γ , and the sup is over all metrics in the
conformal class of C. Letting ρ be the flat metric on C we get

Ext(γ )≥ �flat(γ )2.

It is a well known fact (see e.g. [Mk]) that for sufficiently short curves, the hyperbolic
length is comparable to the extremal length. Then, taking logs completes the proof of the
lemma. �

Proof of Theorem 8. — We choose δ > 0 so that Lemma 7.3 holds, and also Corol-
lary 9 holds. Choose M > M0 where M0 is as in Lemma 7.3(c). As above, let �(δ) denote
the simple closed curves of hyperbolic length at most δ. Let �′M denote the simple closed
curves which are represented in the flat metric by a flat cylinder of modulus at least M.
Then the sum in (8.4) is over γ ∈ �(δ), while the sum in the expression (3.26) in the
statement of Theorem 8 is over γ ∈ �′M. By Lemma 7.3(c), �′M ⊂ �(δ). Let
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E(S)≡ π 2

3

∑

γ∈�(δ)

1
�hyp(γ )

− π

3

∑

γ∈�′M

h(γ )

w(γ )

= π

3

∑

γ∈�(δ)∩�′M

(
π

�hyp(γ )
− h(γ )

w(γ )

)
+ π 2

3

∑

γ∈�(δ)−�′M

1
�hyp(γ )

.

We claim that

(8.6)
∣
∣E(S)

∣
∣=O

(∣∣ log�flat(S)
∣
∣).

Indeed, since the number of terms in both sums defining E(S) is bounded by 3g − 3+ n,
it is enough to bound each term separately. If γ ∈ �(δ)∩ �′M then by Lemma 7.3(a),

∣
∣∣
∣

π

�hyp(γ )
− h(γ )

w(γ )

∣
∣∣
∣=O(1).

Now suppose γ ∈ �(δ)−�′M. Since γ ∈ �(δ), γ is represented in the flat metric by either
a flat cylinder or an expanding annulus. If the representative is a flat cylinder, then, since
γ �∈ �′M, the modulus of the cylinder can be at most M; this implies by Lemma 7.3(a) that

1
�hyp(γ )

is bounded in terms of M, i.e. π

�hyp(γ )
= O(1). If the representative of Aγ (η) is an

expanding annulus, then by Lemma 7.3(b), and Lemma 4.1,

π

�hyp(γ )
≈
∣
∣∣
∣log

λ+(Aγ )

λ−(Aγ )

∣
∣∣
∣≤

∣
∣∣
∣log

O(1)

�flat(S)

∣
∣∣
∣.

Therefore, in this case, π

�hyp(γ )
=O(| log�flat(S)|). This concludes the proof of (8.6).

Now Theorem 8 follows immediately from Corollary 9, Lemma 8.1 and (8.6). �

9. Cutoff near the boundary of the moduli space

In this section we prove Theorem 9 establishing relation (3.27) between the inte-
gral of �Teich log |det�flat(S,S0)| over a regular invariant suborbifold M1 and the Siegel–
Veech constant carea(M1) corresponding to this suborbifold.

The only property of log |det�flat(S,S0)| which we use in the current section is,
basically, reduced to the asymptotic formula (3.26) from Theorem 8. This formula does
not distinguish flat surfaces defined by Abelian differentials from flat surfaces defined
by meromorphic quadratic differentials with at most simple poles. Thus, in the current
section it is irrelevant whether a regular invariant suborbifold M1 belongs to a stratum of
Abelian differentials or to a stratum of meromorphic quadratic differentials with at most
simple poles.

Recall that the Laplace operator associated to the hyperbolic metric of curvature
−4 on Teichmüller discs is defined on the projectivized strata PH(m1, . . . ,mn); it acts
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along the leaves of the corresponding foliation in PH(m1, . . . ,mn). The relative deter-
minant of the flat Laplacian det�flat(S,S0) is defined for flat surfaces S of area one in
the stratum H1(m1, . . . ,mn). Note, that det�flat(S,S0) is invariant under the action of
SO(2,R). Using the natural identification

PH(m1, . . . ,mn)�H1(m1, . . . ,mn)/SO(2,R)

we may consider det�flat(S,S0) as a function on PH(m1, . . . ,mn).
In practice, it would be convenient to pull back all the functions to the stratum

H1(m1, . . . ,mn) and work there. Throughout this section we consider only those functions
on H1(m1, . . . ,mn) which are SO(2,R)-invariant.

9.1. Green’s formula and cutoff near the boundary. — We start by recalling Green’s For-
mula adopted to our notations.

Green’s Formula. — Suppose that f1 :M1→R and f2 :M1→R are continuous, leafwise-

smooth along Teichmüller discs, SO(2,R)-invariant, and at least one of the functions has compact

support. Then,

(9.1)
∫

M1

f1(�Teichf2)dν1 =−
∫

M1

(∇Teichf1) · (∇Teichf2)dν1 =
∫

M1

(�Teichf1)f2dν1.

Let C be a flat cylinder. We denote its modulus by Mod(C). (Recall that the modu-
lus of a cylinder with closed horizontal curves is its height divided by its width.) We denote
the length of the waist curve (i.e. of the closed trajectory) of the cylinder C by w(C). For
any point S ∈M1, let CylK(S) denote the set of cylinders with modulus at least K. We
shall always assume that K is large enough, so that condition (1.2) is satisfied. We also
assume that K is sufficiently large so that the core curves of all the cylinders in CylK(S)

are short in the hyperbolic metric, see [Wo2] or [Wo3]. Thus, the cylinders in CylK(S)

are disjoint, and their number is bounded by 3g − 3+ n. Let

�K(S)= min
C∈CylK(S)

w(C).

We set �K(S)= 1000 if CylK(S) is empty.
As in Theorem 8, let �flat(S) be the length of the shortest saddle connection in the

flat metric on S. Clearly, �flat(S)≤ �K(S).

Lemma 9.1. — For any invariant suborbifold M1, we have

(9.2) ν1

({
S ∈M1 |�flat(S) < ε

})≤Cε2,

where C depends only on M1.

In particular, (after summing the geometric series), we see that for any β < 2, (�flat(·))−β ∈
L1(M1, ν1).
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Proof. — We use only the fact that ν1 is an SL(2,R)-invariant probability mea-
sure (and not the manifold structure of M1). Let Ns(S,L) denote the number of saddle
connections on S of length at most L. By the Siegel–Veech formula applied to saddle
connections [Ve3], [EM, Theorem 2.2] we have for all ε > 0,

∫

M1

Ns(S, ε)dν1(S)= cs(M1) · πε2.

Note that if �flat(S) < ε, Ns(S, ε)≥ 1. It follows that

ν1

({
S ∈M1 | �flat(S) < ε

})≤
∫

M1

Ns(S, ε)dν1(S)≤ cs(M1) · πε2. �

Let χε be the characteristic function of the set {S ∈M1 | �K(S)≥ ε}. Pick a non-
negative SO(2,R)-invariant smooth function η : SL(2,R)→R such that

∫
SL(2,R)

η(g)dg =
1, and η is supported on the set {g | 1/2 < ‖g‖< 2}. Here ‖g‖ is the operator norm of g,
viewed as a 2× 2 matrix. Let

(9.3) fε(S) :=
∫

SL(2,R)

η(g)χε(gS)dg,

where dg is the Haar measure on SL(2,R). Note that since the functions η is SO(2,R)-
invariant, fε :M1→R is also SO(2,R)-invariant and thus quotients to fε : PM→R.

Lemma 9.2. — The nonnegative function fε :M1→R has the following properties:

(a) fε(S)= 0 if �K(S)≤ ε/2.

(b) fε(S)= 1 if �K(S)≥ 2ε.

(c) fε is leafwise-smooth along Teichmüller discs, and ∇Teichfε and �Teichfε are bounded on M1

by a uniform bound independent of ε.

Proof. — The properties (a) and (b) are clear from the definition. To see that (c)
holds, note that for h(t) ∈ SL(2,R) we can rewrite

fε(hS)=
∫

SL(2,R)

η(g)χε(ghS)dg =
∫

SL(2,R)

η
(
gh−1(t)

)
χε(gS)dg

and (c) follows since η is smooth and has compact support. �

9.2. Restriction to cylinders of large modulus sharing parallel core curves. — Let C̃ylK(S)⊆
CylK(S) denote those cylinders, which are parallel to the cylinder whose waist curve is the
shortest. If there are two cylinders in CylK(S) with nonparallel waist curves of the same
shortest length �K(S) we define C̃ylK(S) to be empty.
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We define

ψK(S) :=
∑

C∈CylK(S)

(
Mod(C)−K

)
,

and

ψ̃K(S) :=
∑

C∈C̃ylK(S)

(
Mod(C)−K

)
.

By convention, a sum over an empty set is defined to be equal to zero. Thus, both func-
tions ψ and ψ̃ are continuous, piecewise smooth, and SO(2,R)-invariant on M1. Recall
that it follows from our assumptions on K that the waist curves of the cylinders in CylK(S)

are disjoint, and their number is bounded by 3g− 3+ n. Since the area of any cylinder is
at most 1, it follows that

(9.4) ψ̃K(S)≤ψK(S)≤ 3g − 3+ n

(�flat(S))2
.

Lemma 9.3. — Let M1 be a regular suborbifold, and fε be as in (9.3). Then,

∫

M1

�Teich log det�flat(S,S0)dν1 = π

3
· lim

ε→0

∫

M1

∇Teichψ̃
K · ∇Teichfε dν1.

Proof. — By assumption M1 is regular. Let f := log det�flat(S,S0). Note that
fε(S)→ 1 as ε→ 0. Then, by Green’s Formula (9.1),

(9.5)
∫

M1

�Teichfdν1 = lim
ε→0

∫

M1

fε�Teichfdν1 = lim
ε→0

∫

M1

f �Teichfε dν1.

Now, by Equation (3.26) from Theorem 8 we have

(9.6) f (S)=−π

3
·ψK(S)+O

(
log

(
�flat(S)

))
,

where we use that K · card(CylK(S)) ≤ (3g − 3 + n)K = O(1) is dominated by
O(log(�flat(S))).

Note that by Lemma 9.2 the function �Teichfε is bounded and supported on the set

(9.7) Mε
1 =

{
S | ε/2 < �K(S) < 2ε

}
.

Since �flat(S) ≤ �K(S), Lemma 9.1 implies that ν1(Mε
1) = O(ε2). Also, it follows from

Lemma 9.1, that the function | log�flat| is of the class L1(M1, ν1). Then, by the dominated
convergence theorem, we get:

lim
ε→0

∫

M1

| log�flat|�Teichfε dν1 = 0.
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Therefore,

(9.8)
∫

M1

�Teichfdν1 =−π

3
· lim

ε→0

∫

M1

ψK�Teichfε dν1.

Recall the definition of M1(K, ε) from (1.2). Since M1 is regular, there exists a
function R(ε) (depending on M1) with R(ε)→∞ as ε→ 0 such that

(9.9) lim
ε→0

ν1(M1(K, εR(ε)))

ε2
= 0.

For S ∈Mε
1, we may write

ψK(S)=ψK
1 (S)+ψK

2 (S),

where ψK
2 (S) is the contribution of all cylinders in CylK(S)− C̃ylK(S) with waist curve of

length at least εR(ε), and ψK
1 (S) is the contribution of the rest of the cylinders. Then,

(9.10) ψ̃K(S)≤ψK
1 (S)≤ψK(S)≤ 3g − 3+ n

(�flat(S))2
.

Also, as in (9.4), for S ∈Mε
1 we have

ψK
2 (S)≤ 3g − 3+ n

ε2R(ε)2
.

By Lemma 9.2(c), |�Teichfε| is bounded by some constant C(M1) which does not depend
on ε. Therefore,

∣
∣∣
∣

∫

M1

ψK
2 �Teichfε dν1

∣
∣∣
∣≤C(M1) · 3g − 3+ n

ε2R(ε)2
ν1

(
Mε

1

)
.

Hence, since R(ε)→∞ as ε→ 0 and since ν1(Mε
1)=O(ε2) by Lemma 9.1, we have

lim
ε→0

∫

M1

ψK
2 �Teichfε dν1 = 0.

By (9.9), we have 1
ε2 ν1({S ∈Mε

1 | ψK
1 (S) > ψ̃K(S)})→ 0 as ε→ 0. By (9.10), we get

ψK(S)=O(ε−2) on Mε
1. Thus,

−π

3
· lim

ε→0

∫

M1

ψK�Teichfε dν1 =−π

3
· lim

ε→0

∫

M1

ψK
1 �Teichfε dν1

− π

3
· lim

ε→0

∫

M1

ψ̃K�Teichfε dν1

= π

3
· lim

ε→0

∫

M1

∇Teichψ̃
K · ∇Teichfε dν1.
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For the last equality we applied Green’s formula to fε and ψ̃K. The function ψ̃K is con-
tinuous on M1 and ∇Teichψ̃

K is piecewise continuous, which is sufficient for the validity of
Green’s formula. �

Let Cyl(S, ε, ε/2) denote the cylinders on S for which the length of the core curve
is between ε/2 and ε.

Lemma 9.4. — Let

ÑK
area(S, ε, ε/2) :=

∑

C∈C̃ylK(S)∩Cyl(S,ε,ε/2)

Area(C).

Then,

carea(M1)= lim
ε→0

1
3
4πε2

∫

M1

ÑK
area(S, ε, ε/2)dν1(S).

Proof. — Write Narea(S, ε, ε/2) = Narea(S, ε) − Narea(S, ε/2). By Siegel–Veech for-
mula (1.4), for any ε > 0,

(9.11) carea(M1)= 1
3
4πε2

∫

M1

Narea(S, ε, ε/2)dν1(S).

Let

NK
area(S, ε, ε/2) :=

∑

C∈CylK(S)∩Cyl(S,ε,ε/2)

Area(C).

By [EM, Theorem 5.1], card Cyl(S, ε, ε/2) = O(�flat(S)−β) for any 1 < β <

2. Suppose C is a cylinder in Cyl(S, ε, ε/2) − CylK(S). Then, since Mod(C) ≤ K,
Area(C)≤Kw(C)2 ≤Kε2. Thus,

(9.12) Narea(S, ε, ε/2)−NK
area(S, ε, ε/2)≤Kε2�flat(S)−β.

Since the left hand side of (9.12) is supported on {S ∈M1|�flat(S) ≤ ε}, and since
�flat(·)−β ∈ L1(M1, ν1) by Lemma 9.1, we have

lim
ε→0

1
ε2

∫

M1

(
Narea(S, ε, ε/2)−NK

area(S, ε, ε/2)
)
dν1 = 0.

Thus, in view of (9.11),

carea(M1)= lim
ε→0

1
3
4πε2

∫

M1

NK
area(S, ε, ε/2)dν1(S).
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By (1.2) NK
area(·, ε, ε/2) and ÑK

area(·, ε, ε/2) might differ only on a set of measure o(ε2).
Note also, that NK

area(S, ε, ε/2)≤ 3g − 3+ n. Hence, we may replace NK
area by ÑK

area in the
above equation. Lemma 9.4 is proved. �

Suppose P > 1. Let C̃ylK,P(S) := {C ∈ C̃ylK(S) |w(C) < P�K(S)}, and let

ψ̃K,P(S) :=
∑

C∈C̃ylK,P(S)

(
Mod(C)−K

)
.

Let

ÑK,P
area (S, ε, ε/2) :=

∑

C∈C̃ylK,P(S)∩Cyl(S,ε,ε/2)

Area(C).

Lemma 9.5. — For all K sufficiently large, and all P > 1, the following estimates hold:
∣∣
∣∣

∫

M1

�Teich log det�flat(S,S0)dν1(9.13)

− π

3
· lim

ε→0

∫

M1

∇Teichψ̃
K,P · ∇Teichfε dν1

∣∣
∣∣≤

C(M1)

P2

and

(9.14)

∣∣
∣∣carea(M1)− lim

ε→0

1
3
4πε2

∫

M1

ÑK,P
area (S, ε, ε/2)dν1(S)

∣∣
∣∣≤

C(M1)

P2
,

where the constant C(M1) depends only on M1.

Proof. — If C ∈ C̃ylK,P(S)− C̃ylK(S) then w(C) ≥ P�K(C), and hence Mod(C) ≤
1

P2(�K(S))2 . The latter implies, that

(9.15) ψ̃K(S)− ψ̃K,P(S)≤ 3g − 3+ n

P2(�K(S))2
.

Suppose C is a vertical cylinder on a surface S (so that the waist curve of C is
vertical). Then for g ∈ SL(2,R), gC is a cylinder on gS. Let H(g)=Mod(gC). Then, we
claim that

(9.16) ∇TeichH=
(

0
2H

)
.

Indeed, we may write

(9.17) g =
(

cos θ sin θ

− sin θ cos θ

)(
y1/2 0
0 y−1/2

)(
1 x

0 1

)
= rθayux,
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in such a way that ux acts by Dehn twists on C. Then,

H(rθayux)=H(ay)= y Mod(C).

The decomposition (9.17) was chosen in such way that ζ = x + iy provides a standard
coordinate in the hyperbolic upper half-plane parametrizing the Teichmüller disc, see
Section 3.1. For the associated hyperbolic metric of curvature −4 one has

∇TeichH=
(

2y ∂H
∂x

2y ∂H
∂y

)

=
(

0
2y Mod(C)

)
=
(

0
2H

)

This completes the proof of (9.16).
In general, the direction of the gradient of the function H(g)=Mod(gC) depends

on the cylinder C (however we still have ‖∇TeichH‖ = 2H). This is the motivation for
the restriction to parallel cylinders in Section 9.2 and the “regularity” assumption in
Section 1.5.

Now in view of (9.15), and (9.16), we have

0≤ ∥∥∇Teichψ̃
K(S)−∇Teichψ̃

K,P(S)
∥∥≤ 2(3g − 3+ n)

P2(�K(S))2
,

for all S where ∇Teichψ̃
K(S) and ∇Teichψ̃

K,P(S) are defined.
Note that by Lemma 9.2 the function �Teichfε is bounded and supported on the set

Mε
1 defined in (9.7). On this set we can extend the latter estimate as

∥∥∇Teichψ̃
K(S)−∇Teichψ̃

K,P(S)
∥∥≤ 2(3g − 3+ n)

P2(�K(S))2
≤ 2(3g − 3+ n)

P2(ε/2)2
.

Finally, note that since �flat(S) ≤ �K(S), Lemma 9.1 implies that ν1(Mε
1) = O(ε2). By

property (c) of Lemma 9.2, ‖∇Teichfε‖ is bounded by a uniform bound independent of ε.
The estimate (9.13) now follows from Lemma 9.3.

For the estimate (9.14) note that if ÑK
area(S, ε, ε/2)− ÑK,P

area (S, ε, ε/2) > 0, i.e. if there
exists C ∈ C̃ylK(S) − C̃ylK,P(S) with ε/2 < w(C) < ε, then �flat(S) ≤ �K(S) ≤ ε

P . Now
since ÑK

area(S, ε, ε/2)− ÑK,P
area (S, ε, ε/2)≤ (3g − 3+ n),

∫

M1

(
ÑK

area(S, ε, ε/2)− ÑK,P
area (S, ε, ε/2)

)
dν1(S)

≤ (3g − 3+ n) · ν1

({
S |�flat(S) <

ε

P

})
=O

(
ε2

P2

)
,

where we have used Lemma 9.1 for the last estimate. Now the estimate (9.14) follows
from Lemma 9.4. �
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Remark 9.1. — Note that in the calculation in Lemma 9.5 we confront a conflict
of two conventions. One uses the upper half-plane for the Poincaré model of the hyperbolic
plane, which imposes the decomposition (9.17) of SL(2,R). The latter implies, that the
holonomy vector associated to the waist curve of the cylinder C should be expressed as
( 0

w(C)

)
, as if it was vertical and not traditionally horizontal. A similar situation is reproduced

in the next section.

9.3. The Determinant of the Laplacian and the Siegel–Veech constant.

Lemma 9.6. — If K/P2 is sufficiently large (depending only on the genus), then

lim
ε→0

∫

M1

∇Teichψ̃
K,P · ∇Teichfε dν1

=−(4π) · lim
ε→0

1
3
4πε2

∫

M1

ÑK,P
area (S, ε, ε/2)dν1(S).

Proof. — Let Q= 2P, where, by assumption, P > 1. Note that the supports of both
∇Teichfε and ÑK,P

area are contained in the set

MQ,ε

1 = {
S ∈M1 | ε/Q < �K(S) < Qε

}
.

Note also that the support of ÑK,P
area , is contained in the smaller subset M̃Q,ε

1 ⊆MQ,ε

1 of
those surfaces, for which all cylinders in CylK(S) having the waist curve of the shortest
length �K(S) are parallel. Note that the intersection of the supports of ∇Teichfε and of ψ̃K,P

is also contained in M̃Q,ε

1 .
We normalize the Haar measure dg on SL(2,R) in coordinates (9.17) as

dg = 1

4y2
dxdydθ = dghyp dθ,

where ghyp is the hyperbolic metric of curvature −4 on the upper half-plane

H2 � SL(2,R)/SO(2,R).

We choose a codimension two cross section Ñ of M̃Q,ε

1 represented by the surfaces
Sε for which �K(Sε)= ε and such that on Sε the cylinders in C̃ylK,P(Sε) are horizontal in the
sense of Remark 9.1 at the end of Section 9.2. Then, every S ∈ M̃Q,ε

1 can be represented
as

(9.18) S= rθaySε,

where y ∈ [Q−2,Q2], Sε ∈ Ñ .
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Recall that since the measure dν1 is affine, it disintegrates as

dν1 = dy

4y2
dθ dβ ′,

where β ′ is a measure on Ñ .
For Sε ∈ Ñ , let

H(y,Sε) :=
∑

C∈C̃ylK,P(Sε)

Mod(ayC).

Suppose that some cylinder C belongs to the symmetric difference of C̃ylK,P(Sε) and
C̃ylK,P(aySε) for some y ∈ [Q−2,Q2]. Then,

KQ−2 ≤Mod(C)≤KQ2

By assumption KQ−2 is sufficiently large so that all cylinders of modulus at least KQ−2

are disjoint. It follows that for y ∈ [Q−2,Q2],
∣
∣ψ̃K,P(aySε)−H(y,Sε)

∣
∣≤ (3g − 3+ n)KQ2.

By the same argument as in the proof of (9.16), this implies

(9.19)
∥∥∇Teichψ̃

K,P(aySε)−∇TeichH(y,Sε)
∥∥≤ 2(3g − 3+ n)KQ2

We will eventually need to consider the integral

(9.20)
∫

M1

∇Teichψ̃
K,P · ∇Teichfεdν1.

However, the integrand is supported on a set MQ,ε

1 satisfying ν1(MQ,ε

1 )≤C(M1)ε
2 and

‖∇Teichfε‖ is bounded independent of ε. Then, the contribution of the right hand side
of (9.19) to (9.20) will tend to 0 as ε→ 0.

Similarly, let

A(y,Sε) :=
∑

C∈C̃yl
K,P

(Sε)∩Cyl(aySε,ε,ε/2)

Area(C).

As above, if some cylinder C belongs to the symmetric difference of C̃ylK,P(Sε) and
C̃ylK,P(aySε) for some y ∈ [Q−2,Q2], then,

Area(C)= (
w(C)

)2
Mod(C)≤ (Qε)2KQ2 ≤KQ4ε2.

Thus,

(9.21)
∣
∣ÑK,P

area (aySε, ε, ε/2)−A(y,Sε)
∣
∣≤ (3g − 3+ n)KQ4ε2.
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We will eventually need to consider the expression:

(9.22)
1

3
4πε2

∫

M1

ÑK,P
area (S, ε, ε/2)dν1(S).

Since the integrand is supported on a set MQ,ε

1 satisfying ν1(MQ,ε

1 ) ≤ C(M1)ε
2, the

contribution of the right hand side of (9.21) to (9.22) will tend to 0 as ε→ 0.
We now claim that for any Sε ∈ Ñ we have

(9.23)
∫ Q2

1/Q2
∇TeichH(y,Sε) · ∇Teichfε(aySε)

dy

4y2
=−4π · 1

3
4πε2

∫ Q2

1/Q2
A(y,Sε)

dy

4y2
.

Note that by definition the function H(y,Sε) is linear in y, namely, for y ∈
[1/Q2,Q2] we have H(y,Sε)= y ·Mod(C). Also by construction, for Sε ∈ Ñ , fε(aQ2Sε)=
0, and fε(a1/Q2Sε)= 1. Thus,

∫ Q2

1/Q2
∇TeichH(y,Sε) · ∇Teichfε(aySε)

dy

4y2

=
∫ Q2

1/Q2
∇H(y,Sε)∇fε(aySε) dy

=
∑

C∈C̃ylK,P(Sε)

Mod(C)

∫ Q2

1/Q2

∂ fε(aySε)

∂y
dy

=
∑

C∈C̃ylK,P(Sε)

Mod(C)
(
fε(aQ2Sε)− fε(a1/Q2Sε)

)

=
∑

C∈C̃ylK,P(Sε)

Mod(C) · (−1).

Now,

A(y,Sε)=
∑

C∈C̃ylK,P(Sε)

Area(C) · χ(ε/2,ε)

(
y−1/2 ·w(C)

)
,

where the characteristic function χ(a,b)(t) is 1 if a < t < b and 0 otherwise. By our choice
of Q and by the definition of C̃ylK,P(Sε), for every C ∈ C̃ylK,P(Sε), we have [w2(C)

4ε2 , w2(C)

ε2 ] ⊂
[Q−2,Q2]. Then,
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∫ Q2

1/Q2
A(y,Sε)

dy

4y2

=
∫ Q2

1/Q2

∑

C∈C̃ylK,P(Sε)

Area(C)χ(ε/2,ε)

(
y−1/2w(C)

) dy

4y2

=
∑

C∈C̃ylK,P(Sε)

Area(C)

∫ 4w2(C)/ε2

w2(C)/ε2

dy

4y2

= 1

4
· 3

4
ε2

∑

C∈C̃ylK,P(Sε)

Area(C)
1

w(C)2

= 1

4
· 3

4
ε2

∑

C∈C̃ylK,P(Sε)

Mod(C).

This completes the proof of (9.23). We now integrate (9.23) over Ñ with respect to the
measure dβ ′, and over θ from 0 to 2π , use (9.19) and (9.21), and take the limit as ε→ 0.
Since ν1(MQ,ε

1 ) ≤ C(M1)ε
2 and ∇Teichfε is bounded independent of ε, we see that the

contributions of each of the right-hand-sides of (9.19) and (9.21) tend to 0 as ε→ 0.
Lemma 9.6 follows. �

Proof of Theorem 9. — Choose arbitrary large P > 1 and choose K′ so large, that all
previous considerations in Sections 9.2–9.3 work for K=K′/Q2 =K′/(4P2). Since P is
arbitrary, formula (3.27) and thus, Theorem 9 follow from Lemma 9.5 and Lemma 9.6.
Theorem 9 is proved. �

10. Evaluation of Siegel–Veech constants

It follows from the general results of A. Eskin and H. Masur [EM] that almost all
flat surfaces in any closed connected regular SL(2,R)-invariant suborbifold M1 share
the same quadratic asymptotics

(10.1) lim
L→∞

Narea(S,L)

πL2
= carea(M1)

where the Siegel–Veech constant carea(M1) depends only on M1 (see also more specific results
of Ya. Vorobets [Vb]).

In Section 10.1 we recall some basic facts concerning arithmetic Teichmüller discs.
The reader can find a more detailed presentation in the original articles [GuJu], [EMSl],
[HtLe], [Z].
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Following analogous computations in [Ve2], [Ve3], [EMZ], [Le] and [EMSl] we
compute the Siegel–Veech constant carea for an arithmetic Teichmüller surface in Sec-
tion 10.2 thus proving Theorem 4.

10.1. Arithmetic Teichmüller discs. — Consider a unit square representing a funda-
mental domain of the integer lattice Z⊕√−1 · Z in the complex plane. Consider a flat
torus T2 obtained by identification of opposite sides of this unit square. A square-tiled surface

(also an origami) S is a ramified cover

(10.2) S
p−→T2

of finite degree D over the torus such that all ramification points project to the same point
of the torus.

Clearly, S ∈H(m1, . . . ,mn) where m1 + 1, . . . ,mn + 1 are degrees of ramification
points. By construction, the cohomology class of the closed 1-form ω = p∗dz is integer:
[ω] ∈H(S, {zeroes};Z⊕√−1 ·Z).

One can slightly generalize the above construction admitting other flat tori without
singularities and with a single marked point as a base of the cover (10.2). The correspond-
ing covering flat surface S is called an arithmetic Veech surface. An SL(2,R)-orbit of such flat
surface in the corresponding stratum is called an arithmetic Teichmüller disc, and its projec-
tion to PH(m1, . . . ,mn) (or to the moduli space of curves) is called an arithmetic Teichmüller

curve.
We say that an arithmetic Veech surface is reduced if the cover (10.2) does not factor

through a nontrivial regular cover of a larger torus:

S
p−−−−→T2

↘ ↗
T2

Throughout this section we consider only reduced arithmetic Veech surfaces S.
Moreover, we always assume that the base torus of the cover (10.2) has area one.

The action of the group GL(2,R) on an arithmetic Veech surface S and on the
underlying torus T2 are compatible: having a cover (10.2) we get a cover gS→ gT2 for
any group element g; moreover, this new cover has the same topology as the initial one.
This implies, in particular, that if the base torus of the cover (10.2) has area one, than
the SL(2,R)-orbit SL(2,R) ·S of an arithmetic Veech surface S representing contains at
least one square-tiled surface. This also implies that the orbit SL(2,R) · S of S is a finite
nonramified cover over the moduli space H1(0) of flat tori with a marked point.

It would be convenient to apply extra factorization over ± Id ∈ SL(2,Z) and to
pass to PSL(2,R) and PSL(2,Z). The degree N of the cover

� : PSL(2,R) · S→H1(0)
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coincides with the cardinality of the PSL(2,Z)-orbit of any square-tiled surface S0 in the
orbit PSL(2,R) · S,

N= deg(�)= card PSL(2,Z) · S0

Rescaling every flat surface in the orbit PSL(2,R) ·S by a homothety with a factor
1/
√

D we can identify the orbit PSL(2,R) · S with a regular PSL(2,R)-invariant variety
M1 of flat surfaces of area one. The corresponding Teichmüller curve PM has a natural
structure of a cover of degree N over the modular curve PH(0), where

PH(0)� PSO(2,R)\PSL(2,R)/PSL(2,Z)�H2/PSL(2,Z).

This cover might have ramification points over any (or over both) orbifoldic points of the
modular curve.

The canonical density measure dν on H1(0) = PSL(2,R)/PSL(2,Z) in stan-
dard normalization disintegrates to the hyperbolic area form dνhyp on PH(0) �
H2/PSL(2,Z). In particular,

ν
(
H1(0)

)= π 2

3
, νhyp

(
PH(0)

)= π

3
.

Clearly, a flat torus of area one cannot have two short non-homologous closed
geodesics. Since Hε

1(0) is connected, it represents the single cusp of H1(0). It is easy to
compute that

ν
(
Hε

1(0)
)= πε2, νhyp

(
PHε(0)

)= ε2.

Since any arithmetic Teichmüller curve PM is a (possibly ramified) cover of finite
order N over the modular curve, PM is a Riemann surface of finite area N · π 2/3 with
cusps, where the cusps of PM are in a bijection with connected components C1, . . . ,Cs of
the subset PMε.

Consider a very short (say, shorter than ε

N ) simple closed curve γ non-homotopic
to zero in PHε(0) (for example, a very short horocycle). Consider its preimage �−1γ in
PMε. By construction the preimage has a unique connected component γj in each cusp
Cj of PMε. We define a width Nj of the cusp Cj as a ratio of lengths of γj and γ measured in
the canonical hyperbolic metric. Note that the connected component PMε(Cj) of PMε

representing the cusp Cj is a cover of degree Nj over the neighborhood PHε/Nj (0) of the
only cusp of the modular curve.

Consider a square-tiled surface S0. Every nonsingular leaf of the horizontal foli-
ation on S0 is closed. Thus, S0 decomposes into a finite number of maximal cylinders
bounded by unions of horizontal saddle connections. We denote the length of the hori-
zontal waist curve of the cylinder number j by wj and the vertical height of the cylinder
by hj . We enumerate the cylinders in such a way that w1 ≤w2 ≤ · · · ≤wk , where k is the
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total number of cylinders. Clearly all parameters wj, hj are integer. The area of the cylin-
der number j equals wjhj . The area of the entire square-tiled surface S0 (which coincides
with the number D of unit squares tiling it) is equal to the sum

area(S)=D=w1h1 + · · · +wkhk,

where k is the total number of cylinders. We enumerate the cylinders in such a way that
w1 ≤w2 ≤ · · · ≤wk .

Consider a unipotent subgroup

U=
{(

1 n

0 1

)
| n ∈ Z

}

of PSL(2,Z). Consider an orbit U · S0 of a square-tiled surface. Any flat surface in this
orbit is also a square-tiled surface. Moreover, it has the same number of maximal cylinders
in its cylinder decomposition, and the cylinders have the same heights and widths as the
ones of the initial square-tiled surface. (The only parameters which differ for different
elements of U · S0 are the integer twists which are responsible for gluing the cylinders
together.)

The proof of the following simple Lemma can be found in [HtLe].

Lemma 10.1. — Let S0 be a reduced square-tiled surface and let Z(S0) = PSL(2,Z) · S0

be the set of square-tiled surfaces in its orbit. The cusps of the corresponding arithmetic Teichmüller disc

M1 = PSL(2,R) · S0 are in bijection with the U-orbits of Z(S0), and the widths Nj of the cusps

coincide with cardinalities of the corresponding U-orbits.

(10.3) Z(S0)=
s⊔

i=1

Ui card(Ui)=Ni,

where s is the total number of cusps.

10.2. Siegel–Veech constants for square-tiled surfaces. — Consider an arithmetic Veech
surface S; let p : S→ T2 be the corresponding torus cover. As usual we assume that
the area of the flat torus in the base of the cover is equal to one. Let γ be a closed
geodesic on S. Its projection p(γ ) to the torus T2 is also a closed geodesic. Let %v ∈R2 be
a primitive vector of the lattice associated to T2 representing this closed geodesic on the
torus. Applying an appropriate rotation rθ ∈ PSO(2,R) to %v we can make it horizontal.
Applying a hyperbolic transformation

gt =
(

et 0
0 e−t

)

with a sufficiently large negative t to the resulting horizontal vector we can make it very
short. The corresponding flat surface gtrθ · S belongs to a neighborhood of one of the
cusps Cj of the orbit PSL(2,R) · S.
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Note that a direction of any closed geodesic (or of any saddle connection) on a
square-tiled surface is completely periodic: any leaf of the foliation in the same direction is
either a regular closed leaf or is a saddle connection. Thus, any closed geodesic on a
square-tiled surface defines a cylinder decomposition of it. Proportions of lengths of the
waist curves of the cylinders or of heights of the cylinders as well as areas on the cylinders
do not change under the action of the group PSL(2,R). In particular, any closed geodesic
on a square-tiled surface defines a rigid configuration of saddle connections. We say that this
configuration has type Cj when the flat surface gtrθ · S defined as above belongs to a
neighborhood of one of the cusps Cj .

Any closed geodesic corresponds to a unique cusp Cj , so

carea =
s∑

i=1

carea(Ci).

Here s denotes the total number of cusps of PM. The Siegel–Veech constant carea(Ci)

corresponds to counting total areas of only those cylinders of bounded length, which
represent a given rigid configuration Ci of saddle connections.

To compute the Siegel–Veech constant carea(Ci) we follow analogous computations
in [EM], [EMZ], [Le] and especially a computation in [EMSl] which is the closest to our
case.

Having an arithmetic Veech surface S ∈M1 choose a cusp Ci of M1. Having a
configuration of closed geodesics of the type Ci choose a regular closed geodesic γ in this
configuration and consider the associated vector %v(γ ) as above. By construction %v does
not depend on the choice of a representative γ . Moreover, it can be explicitly evaluated as
follows. Consider the cylinder decomposition of square-tiled surfaces in the orbit U-orbit
Ui representing the cusp Ci . If the representative γ belongs to a cylinder number j, then

%v(γ )= %γ
wj

where %γ is a plane vector having the length and the direction of γ .
Associating to every configuration of parallel closed geodesics of the type Ci a vector

%v as above we construct a discrete subset Vi(S) in the plane R2. By construction the subset
changes equivariantly with respect to the group action: for any g ∈ PSL(2,R) we have
Vi(gS)= gVi .

Consider a Siegel–Veech transform which associates to a function f with compact
support in R2 a function f̂ on M defined as

f̂ (S)=
∑

v∈Vi(S)

f (v)
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By a Theorem of Veech (see [Ve3]) one has

(10.4)
1

ν(M1)

∫

M1

f̂ (S)dν = const ·
∫

R2
f (x, y)dxdy,

where the constant const does not depend on the function f .
Hence, to compute the constant const it is sufficient to evaluate both integrals for

some convenient function f , for example for a characteristic function χε(x, y) of a disc
{(x, y)| x2 + y2 ≤ ε2} of a very small radius ε. In this particular case the integral on the
right is just the area πε2 of the disc. Function χ̂ε is the characteristic function of those
component of the preimage �−1(Hε

1(0)), which corresponds to the cusp Ci . If the width
of the corresponding cusp is Ni , than,

∫

M1

f̂ (S)dν =Ni · ν
(
Hε

1(0)
)=Ni · πε2

Finally, ν(M1)=N · ν(H1(0))=Nπ 2/3. Thus, the Siegel–Veech formula (10.4) applied
to χε establishes the following relation:

1
Nπ 2/3

·Niπε2 = const · πε2

which implies that the constant in (10.4) has the following value:

(10.5) const = 3
π 2

Ni

N
.

To compute carea(Ci) we introduce a counting function χr(%v,Ci) : R2 → R with
compact support defined as follows:

χr(%v,Ci) :=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 when w1‖%v‖> r
w1h1

D when w2‖%v‖> r ≥w1‖%v‖
. . . . . .

1
D(w1h1 + · · · +wjhj) when wj+1‖%v‖> r ≥wj‖%v‖
. . . . . .

1
D(w1h1 + · · · +wkhk) when r ≥wk‖%v‖

Here k is total number of cylinders in the cylinder decomposition corresponding to the
configuration Ci, and D = area(S) is the number of unit squares used to tile the initial
square-tiled surface. As always, we enumerate the cylinders in such a way that w1 ≤w2 ≤
· · · ≤wk .

By definition of Narea(S, r;Ci) we have

Narea(S, r;Ci)=
∑

v∈Vi(S)

χr(%v,Ci)= χ̂r(S,Ci).
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Note that modifying a flat structure on a surface S by a homothety with a positive
coefficient λ is equivalent to changing the scale. Hence, for any counting function N(S, r)

with a quadratic asymptotics in r we get

N(λ · S, r)=N
(

S,
r

λ

)
∼ 1

λ2
·N(S, r)

By definition the coefficient carea is defined as a coefficient in a quadratic asymp-
totics of a counting function Narea on a surface of unit area. Since arithmetic Veech surfaces
in our consideration have area D (the number of unit squares tiling the initial square-tiled
surface S0), we need to normalize the limit below by the area of S in order to obtain carea:

carea(Ci) := area(S) · lim
r→∞

Narea(S, r;Ci)

π r2
=D · lim

r→∞
1

π r2
· χ̂r(S,Ci).

By the results of W. Veech [Ve3] for the case of a Teichmüller disc of a Veech
surface the constant above is one and the same for all surfaces in the corresponding
Teichmüller disc and

(10.6) carea(Ci)=D · lim
r→∞

1
π r2
· 1
ν(M1)

∫

M1

χ̂r(S,Ci)dν.

On the other hand, by the Siegel–Veech formula (10.4) the above normalized in-
tegral equals to

(10.7)
1

ν(M1)

∫

M1

χ̂r(S,Ci)dν = const

∫

R2
χr(v,Ci)dxdy,

where the value of the constant is obtained in (10.5).
It remains to compute the integral

∫

R2
χr(%v,Ci) dx dy= π r2 · 1

D

(
h1w1

w2
1

+ h2w2

w2
2

+ · · · + hkwk

w2
k

)
(10.8)

= π r2 1

D

k∑

j=1

hj

wj

,

and to collect Equations (10.5)–(10.8) to get

carea(Ci) =D · 3
π 2

Ni

N
· 1

D
·

k∑

j=1

hj

wj

= 3
π 2

1
N

∑

surfaces
in the

orbit Ui

k∑

j=1

hj

wj

.
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Taking a sum of carea(Ci) over all cusps C1, . . . ,Cs of M1 and taking into consider-
ation that the PSL(2,Z)-orbit Z(S) of the initial square-tiled surface decomposes into a
disjoint union of orbits Ui , see (10.3) we obtain the desired formula (2.12):

carea =
s∑

i=1

carea(Ci)= 3
π 2

1
N
·
∑

cusps Ci

∑

surfaces
in the

orbit Ui

k(i)∑

j=1

hij

wij

= 3

π 2
· 1

card(PSL(2,Z) · S0)

∑

Si∈PSL(2,Z)·S0

∑

horizontal
cylinders cylij

such that
Si=�cylij

hij

wij

Theorem 4 is proved. �
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Appendix A: Conjectural approximate values of individual Lyapunov
exponents in small genera

Degrees of zeros Connected component Lyapunov exponents
Experimental Exact

λ2 λ3
∑g

j=1 λj

∑g

j=1 λj

(4) hyp 0.6156 0.1844 1.8000 9/5
(4) odd 0.4179 0.1821 1.6000 8/5

(1,3) – 0.5202 0.2298 1.7500 7/4
(2,2) hyp 0.6883 0.3117 2.000 4/2
(2,2) odd 0.4218 0.2449 1.6667 5/3

(1,1,2) – 0.5397 0.2936 1.8333 11/6
(1,1,1,1) – 0.5517 0.3411 1.8928 53/28

Degrees of zeros Connected component Lyapunov exponents
Experimental Exact

λ2 λ3 λ4
∑g

j=1 λj

∑g

j=1 λj

(6) hyp 0.7375 0.4284 0.1198 2.2857 16/7
(6) even 0.5965 0.2924 0.1107 1.9996 14/7
(6) odd 0.4733 0.2755 0.1084 1.8572 13/7

(1,5) – 0.5459 0.3246 0.1297 2.0002 2
(2,4) even 0.6310 0.3496 0.1527 2.1333 32/15
(2,4) odd 0.4789 0.3134 0.1412 1.9335 29/15
(3,3) hyp 0.7726 0.5182 0.2097 2.5005 5/2
(3,3) – 0.5380 0.3124 0.1500 2.0004 2

(1,2,3) – 0.5558 0.3557 0.1718 2.0833 25/12
(1,1,4) – 0.55419 0.35858 0.15450 2.06727 1137/550
(2,2,2) even 0.6420 0.3785 0.1928 2.2133 737/333
(2,2,2) odd 0.4826 0.3423 0.1749 1.9998 2

(1,1,1,3) – 0.5600 0.3843 0.1849 2.1292 66/31
(1,1,2,2) – 0.5604 0.3809 0.1982 2.1395 5045/2358

(1,1,1,1,2) – 0.5632 0.4032 0.2168 2.1832 131/60
(1,1,1,1,1,1) – 0.5652 0.4198 0.2403 2.2253 839/377

Degrees of zeros Connected component Lyapunov exponents
Experimental Exact

λ2 λ3 λ4 λ5
∑g

j=1 λj

∑g

j=1 λj

(8) hyp 0.798774 0.586441 0.305803 0.086761 2.777779 25
9

(8) even 0.597167 0.362944 0.189205 0.072900 2.222217 20
9

(8) odd 0.515258 0.343220 0.181402 0.071107 2.110987 19
9

(7,1) – 0.560205 0.378184 0.206919 0.081789 2.227098 2423
1088

(6,2) even 0.603895 0.385796 0.220548 0.091624 2.301862 178429
77511

(6,2) odd 0.521181 0.368690 0.211988 0.088735 2.190594 46
21

(6,1,1) – 0.563306 0.398655 0.229768 0.093637 2.285367 59332837
25961866

(5,3) – 0.561989 0.376073 0.216214 0.095789 2.250066 9
4

(5,2,1) – 0.564138 0.396293 0.236968 0.103124 2.300523 4493
1953

(5,1,1,1) – 0.565422 0.414702 0.252838 0.107906 2.340868 103
44
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Appendix B: Square-tiled surfaces and permutations

B.1 Alternative interpretation of Siegel–Veech constant for arithmetic Teichmüller discs. —

Consider an N-square-tiled surface and enumerate its squares in some way. The structure
of the square tiling can be encoded by a pair of permutations (πhor,πvert), indicating for
each square (say, for a square number k) the number πhor(k) of its direct neighbor to the
right, and the number πhor(k) of its direct neighbor on top. Reciprocally, any ordered pair
of permutations (πhor,πvert) from SN, such that πhor,πvert do not have nontrivial common
invariant subsets in {1, . . . ,N}, defines a connected square-tiled surface.

Applying a simultaneous conjugation

(B.1)
(
π ◦ πhor ◦ π−1,π ◦ πvert ◦ π−1

)

by the same permutation π to both permutations (πhor,πvert) we do not change the square-
tiled surface, but only the enumeration of the squares. Thus, N-square-tiled surfaces are
in a one-to-one correspondence with the resulting equivalence classes of ordered pairs of
permutations.

Let S(πhor,πvert) ∈H(m1, . . . ,mn). The degrees mi of zeroes can be reconstructed
from (πhor,πvert) as follows. Consider a decomposition of the commutator

[πhor,πvert] := πhor ◦ πvert ◦ π−1
hor ◦ π−1

vert

into cycles. Then the following two unordered sets with multiplicities coincide:

{m1 + 1, . . . ,mn + 1}
= {

Lengths of cycles of [πhor,πvert], which are longer than 1
}
.

Consider the following generators T,S of the group SL(2,Z):

T :=
(

1 −1
0 1

)

R :=
(

0 1
−1 0

)
.

In terms of pairs of permutations the action of T and R on square-tiled surfaces can be
represented as

T(πhor,πvert)=
(
πhor,πvert ◦ π−1

hor

)

R(πhor,πvert)=
(
π−1

vert ,πhor

)
.

Thus, an SL(2,Z)-orbit O(S) of a square-tiled surface S(πhor,πvert) can be obtained as an
orbit of the equivalence class ˜(πhor,πvert) under the transformations T,S as above in the
set of equivalence classes of ordered pairs of permutations.
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We can rewrite now expression (2.12) for the Siegel–Veech constant of an arith-
metic Teichmüller disc M1 as follows. Let O(S) be the SL(2,Z)-orbit of the square-tiled
surface S(πh,πv). Let O(πh,πv) be the corresponding orbit in the set of equivalence
classes of ordered permutations. Then

carea(M1)= 3

π 2
· 1

cardO(S)

∑

Si∈O(S)

∑

horizontal
cylinders cylij

such that
Si=�cylij

hij

wij

= 3

π 2
· 1

cardO(πh,πv)

∑

˜(πhor ,πvert)
in O(πh,πv)

∑

cycles ci
in πhor

1
length of ci

Note that the subset of noncommuting pairs of permutations (πhor,πvert) in SN ×SN

is invariant under the action (B.1) of SN, and this action does not have fixed points in this
subset. Hence, when the surface S(πh,πv) has genus at least two, the projection of the
T,R-orbit of (πh,πv) in SN×SN to the orbit O(πh,πv) in the set of equivalence classes
is a (N!)-to-one map. Since the collection of lengths of the cycles of a permutation does
not change under the conjugation, we can rewrite the expression for the Siegel–Veech
constant in terms of the T,S-orbit:

(B.2) carea(M1)= 3

π 2
· 1

card(T,R-orbit of (πh,πv))

∑

(πhor ,πvert)
in the

T,R-orbit

∑

cycles ci
in πhor

1
length of ci

B.2 Non varying phenomenon. — By Corollaries 1 and 2, the Siegel–Veech constant
of any arithmetic Teichmüller disc in a hyperelliptic locus depends only on the ambient
locus. Being formulated in terms of Equation (B.2) this statement becomes by far more
intriguing. For example, Corollary 2 implies the following statements about pairs of per-
mutations.

Corollary 2′ Consider permutations πh,πv ∈SN such that πh,πv do not have nontrivial

common invariant subsets in {1, . . . ,N}.
If the commutator [πh,πv] has a single cycle of length three and all other cycles have lengths one,

than

1
card(T,R-orbit of (πh,πv))

∑

(πhor ,πvert)
in the

T,R-orbit

∑

cycles ci
in πhor

1
length of ci

= 10
9
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Here by a “T,R-orbit of (πh,πv)” we mean the minimal subset in SN ×SN containing (πh,πv)

and invariant under the operations T and R.

If the commutator [πh,πv] has exactly two cycles of length two and all other cycles have lengths

one, than

1
card(T,R-orbit of (πh,πv))

∑

(πhor ,πvert)
in the

T,R-orbit

∑

cycles ci
in πhor

1
length of ci

= 5
4

In other words, when the commutator has a single nontrivial cycle of length three,
or only two nontrivial cycles of length two, the average inverse length of a cycle over all
cycles of all permutations in a T,R-orbit does not depend neither on N nor on a specific
T,R-orbit for a given N.

Experimenting with orbits of square-tiled surfaces, the authors have observed the
same phenomenon in further strata in small genera. For example, in genus three the
Siegel–Veech constant of arithmetic Teichmüller discs did not vary for discs in all strata
except the principal one, H(1,1,1,1).

Of course, this non-varying phenomenon was initially checked only for orbits of
size sufficiently small to be treated by a computer (of cardinality below 106). However,
we have conjectured that it would be valid for all orbits in a certain list of connected
components of the strata in genera 3,4,5.

An explanation and a proof of this non-varying phenomenon was finally recently
found by D. Chen and M. Möller [ChMö] almost a decade after it was conjectured.

B.3 Global average. — Finally, one can use the interpretation (B.2) of the Siegel–
Veech constant of an arithmetic Teichmüller disc to state the following statement, where
the operations T and R are not present anymore.

Definition 5. — A pair (πh,πv) of permutations in SN has type (m1, . . . ,mn) if πh,πv do

not have nontrivial common invariant subsets in {1, . . . ,N} and if the length spectrum of decomposition

into cycles of the commutator [πhor,πvert] satisfies

{m1 + 1, . . . ,mn + 1}
= {

Lengths of cycles of [πhor,πvert] which are longer than 1
}
.

Proposition B.1. — For any connected stratum H(m1, . . . ,mn) the limit below exists and is

equal to the normalized Siegel–Veech constant:

lim
N→∞

N∑

k=1

∑

(πhor ,πvert)
of type

(m1,...,mn)
in Sk×Sk

∑

cycles ci
in πhor

1
length of ci

= π 2

3
· carea

(
H(m1, . . . ,mn)

)
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Proof. — This is essentially the content of [Ch, Appendix A]. �
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