ON THE INVERSE SPECTRAL PROBLEM
FOR THE QUASI-PERIODIC SCHRODINGER EQUATION

by Davio DAMANIK and Micuae. GOLDSTEIN

ABSTRACT
We study the quasi-periodic Schrodinger equation
V' W+ VWY@ =Ey (), reR

in the regime of “small” V. Let (E/ , E), m € Z", be the standard labeled gaps in the spectrum. Our main result says that
if B/ — E! < eexp(—«o|m|) for all m € Z", with & being small enough, depending on «, > 0 and the frequency vector
involved, then the Fourier coefficients of V obey |c(m)| < &'/2 exp(—%o |m|) for all m € Z’. On the other hand we prove
that if |¢c(m)| < € exp(—«|m|) with & being small enough, depending on «, > 0 and the frequency vector involved, then
E! —E <2e exp(f%\ml)A
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1. Introduction and statement of the main result

In the last thirty five years after the classical pioneering work [DiSi] by Dinaburg
and Sinai the theory of quasi-periodic Schrodinger equations has been extensively devel-
oped. Despite that there are still a number of basic problems which seem to be hard to
access. Here are a few such problems:

Problem 1. — Consider the Schridinger equations
(1.1) " (x) + [61 cos(2x) + ¢ cos(Qnax)]w(x) =Ey(x), xe€R,

where o s wrrational with “nice” Diophantine properties and ¢y, co are constants. Describe the eigenfunc-
tions and the instability intervals of the equation.
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Problem 2. — Find all functions of the form

<1‘2> V(x) = Z C(m, n)€2ﬂz’(m+an)x,

n,mel

such that the equation

(1.3) —¥"(0) + V) (x) =E¢ (v)

has the same instability intervals as Equation (1.1).

Problem 3. — Giuve a sufficient condition_for a subset S C R to be the spectrum of the Equa-
tion (1.3) with some function V as in (1.2).

Problem 4. — Solve the KdV equation
(1.4) du+ 9 u+udu=0
with the imitial data

(1.5) u(x, 0) = ¢; cos(2mwx) + ¢o cos(2max).

Here are two comments regarding these problems.

(1) It is known that for ¢, ¢; small, all generalized eigenfunctions are Floquet-
like. On the other hand, for ¢, ¢; large, there is a collection of exponentially decaying
eigenfunctions with eigenvalues which are dense in a Cantor set of positive measure. The
problem is to find a method that will work for all values of ¢, ¢;. In the discrete case, Avila
has recently made significant progress in this direction in a series of papers [Avl, Av2,
Av3].

(2) We state the problems for the function ¢ cos(2mx) + ¢ cos(2max) just for the
sake of simplicity of the statement. In fact the problems are as hard for this function as
for any quasi-periodic function

(1.6) V(x) = Z c(n)e(xnw),

neZv
o= (0,...,0,) € R, nw="7y nw;, ex) := exp(2rrix). In this work we study the latter
case.

Let us state the main results of this work. We consider the Schrodinger equation
(1.7) =¥ () + VWY () =Ey(v), xR,

where V() is a real quasi-periodic function as in (1.6). We assume that the Fourier coef-
ficients ¢(m) obey

(1.8) |c(m)| < & exp(—Kolm|)
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with € being small. We assume that the vector w satisfies the following Diophantine con-
dition:
(1.9) Inw| > ag|n|™", neZ"\ {0}
with some 0 <ag < 1, v — 1 < by < 00. Set
k,=—nw/2, neZ"\{0}, K(w) ={k,:neZ"\ {0}},

(1.10) Jo= (k=80 k+8m), s =a(1+nl) """, neZ"\{0},
Rh)={neZ’\{0}:keJ,},  &={k:|RK)|<oc},

where ag, by are as in the Diophantine condition (1.9). Let £ € & be such that |23(£)| > 0.
Due to the Diophantine condition, one can enumerate the points of JR(k) as n® (k),
0=0,...,L(k), 1 +£(k) = |R(k)|, so that |z (k)| < [TV (k)|; see Lemma 10.9 in Sec-
tion 10. Set

3

T,n)=m—n, mneZ’,
(1.11) m@ (k) = {0, (B},
m@ k) =m VR UT,00m k), £=1,...,00k).
Theorem A. — There exists €y = &o(ko, ag, bp) > 0 such that if ¢ < &y, then for any

ke ®\ $(Z"\{0}), there exist E(k) € R and (k) := (¢(n; k)) ez such that the following con-
ditions hold:

(@) @0; k) =1,
LIRSS eXp<—éKo|n - ml), n g m“ k),
(1.12) mem(©
lpm; )| <2, for any m e m“P (k).
(b) The function
Yk x) =Y @ ke(x(nw + k)

neZV
is well-defined and obeys Equation (1.7) with E = E(k), that is,
(1.13) Hy (k, x) = —y" (k, x) + V(x) ¥ (k, x) = Ek) Y (£, x).
(©)

E(k) = E(—A), o (n; —k) = p(—n; k), Y(—k, x) =Y (k, x),
(1.14) (K)*(k = k)* < E(h) — E(h) < 2k — k) +2¢ Y 8(n),

kit <hy<k
O<k—k <1/4, k>0,
where k¥ := min(g,, k/1024).
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(d) The spectrum of H consusts of the following set,

8 =[E(0), 00)\ U (B (k). B (52),

meZ’\{O}:E~ (k) <E* (k)

where

E*(k,) = li E -
(hn) s 0 LG\ () B, Jor k>0

One of the central results of the current work is the following:

Theorem B. — (1) The gaps (E~(k,), ET(k,)) in Theorem A obey E* (k,) — E~(k,) <
2¢ exp(—"}|ml).

(2) Using the notation from Theorem A, there exists &€ such that if the gaps (B~ (k,,), E¥ (k,))
obey BT (k,) —E~(k,) < e exp(—k|m|) withe < &, k > 4, then, in fact, the Fourier coefficients
c(m) obey |o(m)| < &'/ exp(—*ml).

Remark 1.1. — (1) In a companion paper, [DG], we apply Theorem B to establish
the existence of a global solution of the KdV equation

(1.15) du+ 3 u+ udu=0

with small quasi-periodic initial data. This application is the main objective of Theorem B. We
would like to explain in this remark why the estimate in part 2 of Theorem B is crucial for
the existence of a global solution of (1.13) with quasi-periodic data. Recall the following
fundamental result by P. Lax [Lax]: Let u(¢, x) be a function defined for 0 <¢ < f,x€ R
such that %« exist and are continuous and bounded in both variables for 0 < o < 3.
Assume that z obeys Equation (1.13). Consider the Schrodinger operators

(1.16) Hy1(x) = —v"(x) +ult, x)¥ (x), x€R.
Then o (H,) = o (Hy) for all {. Assume that
(1.17) u(t, x) =Y clt, ™,
neZ’
with

‘c(t, n)‘ < eexp(—K1|n|) forall 0 <¢ <,

where & < g¢(ag, by, k1). Assume in addition that for ¢ = 0, the estimates are better:
(0, n)| < g exp(—ko|n|), & < e (ay, by, k1). Applying Theorems A and B, one concludes
that in fact |¢(¢, n)| < &'/% exp(— %0 [n]). In other words, there is no blow up of the estimates
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for the Fourier coefficients of the solution. Thus, due to Theorems A, B, to prove the ex-
istence of a global solution of the KdV equation (1.15) with quasi-periodic initial data

(1.18) up(x) =Y co(m)e™,

neZv

with |¢o(n)| < e exp(—ko|n|), € < &, one only has to establish the existence of a local
solution.

(2) An estimate similar in spirit to the one in the first part of Theorem B was
established by Hadj Amor [HA].

(3) The problem of “keeping the exponential decay of the Fourier coefficients in
check” 1s also well known in the KAM theory of perturbations of integrable PDE’s; see
for instance the paper [EK] by Eliasson and Kuksin on periodic non-linear Schrodinger
equations.

The existence of solutions ¥ (%, x) as in Theorem A was discovered for a large set
of £’s in the paper [DiSi] by Dinaburg and Sinai. Such solutions are called Floquet-Bloch
or just Floquet solutions and the parameter £ is called quasi-momentum. In [El], Eliasson
proved the existence of Floquet solutions for £ € & and also the fact that the spectrum is
purely absolutely continuous.

Our approach is completely different from Eliasson’s approach. We prove exponential
localization of the eigenfunctions of the dual operator. The duality underlying this approach is
called Aubry duality. In [Bo]Ji], Bourgain and Jitomirskaya used this approach to study
discrete quasi-periodic Schrodinger operators for small values of the coupling constant;
see also [Bo]. Let us introduce the dual operators for (1.7). Given £ € R and a function
@(n), n € Z" such that |@(n)| < C,|n|™""!, where G, is a constant, set

(1.19) D) =Y p(me((ne + k)x).
neZ”
The function y, ;(x) satisfies Equation (1.7) if and only if
(1.20) (27)* (nw + k)*@(n) + Z ¢(n — m)p(m) = Ep(n)
meZY

for any n € Z’. Put

h(m, n; k) = 27)*(mow + £)*  ifm=n,
(1.21) ‘

h(m, n; k) = c(n —m) if m # n.

Consider Hy, = (h(m, n; k) .nez> -

Theorem C. — There exists €9 = €o(ko, ao, by) > 0 such that for ¢ < gy and any k € & \
%Z", there exists E(k) € R and (k) := (@(n; k))ezv such that the following conditions hold:
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(1) @0; k) =1,

7
|¢Ou@\§8”2E:fo<—§de—mo, ngm“@ k),

(1.22) mem®
lom; )| <2, for any me m“® (k),
(1.23) Hep (k) = E(Ho ().
(2)
(1.24) E®) =E(=h), ¢ —h=¢(=nh),
(1.25) (KO) (k= k) <E(®) — Eh) < 2k — k) +2¢ > (6) ",

k1 <ky<k

O<k—Fk <1/4,k >0,

where K := min(g,, £/1024).
(3) Set E*(k,) = lim_;1oree E(e, k). Assume that E (ko) > E~ (ko). Let
E~ (ko) <E <E* (k). Then (E — Hy) ts nvertible for every k.

Let us give a short description of our method and the central technical difficulty we
resolve. The proof of Theorem C is built upon an abstract multi-scale analysis scheme.
We estimate the Green function (E — Hy)(m, n) of the matrix Hy := (h(m, n; £)) ynen,
A C Z" moving up on the “size scale” of A. This approach was introduced in the theory
of Anderson localization in the fundamental work [FrSp] of Frohlich and Spencer on ran-
dom potentials and later by Frohlich, Spencer and Wittwer in [FSW] for quasi-periodic
potentials. Our multi-scale scheme is based on the Schur complement formula:

1.26) My Do [HS +H T T Hy Y = T
) FQ,I H? —H2_1FQ’1H1_1 HQ_I ’
with
~ _ —1
(1.27) Hy'=(H, =T H'Tho) .

The main piece here is I:IQI. The iteration of (1.27) over the scales builds up a “continued-fraction-
Junction” of the spectral parameter E. and the quasi-momentum k. 'To estimate I:IZ_ " on a given scale,
say s, one has to study the roots of the determinant of Hy — 'y ;1 'T"} 5 which is the pre-
vious continued-fraction-function. These roots are close to EX,_l)(k)—the eigenvalues of
the matrix of the previous scale set A’ parameterized against £. The major problem here
1s that Exfl)(k) and EX;I)(/{) can be “extremely” close for a finite (if £ € &), but large
number of times. These are the so-called essential resonances. The eigenfunction ¢ (#; k)
in fact “typically” assumes values ~ 1 for all n € m®(£); see (1.11). The sets “around”
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n € mY (k) produce these resonance effects. This fact gives an idea of the complexity of
the central technical problem one faces in this approach. The advantage of this approach
1s that it eventually gives a system of equations relating the gaps in the spectrum and
the Fourier coefficients. The central technical tool we develop to resolve the resonance
problem consists of “continued-fraction-functions” and their roots. This is done in Sec-
tion 4. To give the reader an idea what this is about, consider the problem for the simplest
“continued-fraction-function”:

b(e, k, E)?

1.28 E— JEE) — —mMmMm———— =
129 N P

The new variable ¢ is introduced here by considering ec¢(n) instead of ¢(n). This variable
plays a crucial role since we build the solutions via analytic continuation in &, starting
at ¢ = 0. Note that the fact that the numerator 4* here is non-negative reflects the self-
adjointness of the problem, which is also crucial for the derivation. Technically, the prob-
lem here 1s that ¢ and a, can be arbitrarily close due to resonances. A direct application
of the implicit function theorem to

(1.29) x(e,kE):=(E—a(e, k,E))(E—ax(e, k,E)) — b(e, k,E)> =0

fails (dg x may have zeros). What comes to the rescue is that the symmetries in the structure of
Hyp, with A built appropriately, allow for the comparison

(1.30) a (e, k, E) > ay(e, k, E)

Jor all values of € € (—&y, &) and for k, £ close to the ones in question. Due to this fact, one has
two solutions E* (g, k) > E~ (¢, k). Yor k= —%, these are very close to the two edges of
the corresponding gap. One of the crucial estimates we develop says that the margins
E® (k) — ECV (k) can be estimated via the quantities |k + % |. The symmetries in the structure
of Hp with A built appropriately play a crucial role in this. Let us mention here that the next
level “continued-fraction-functions” look as follows,

[72
(1.31) f=hH-—

Jo
where /), fo are like in (1.28). We are interested in the solution of the equation / = 0.
An important detail here 1s that although f;, fo are assumed to be “small on the next
scale,” their derivatives are of magnitude ~ 1. This accommodates the above mentioned
fact that the eigenfunction ¢(#; £) assumes values ~ 1 at all resonant points involved. In
general the construction iterates a large number of times.

Let us say a few words about these symmetries. Given £, we define an increasing
sequence A/(:) of subsets of Z", | J, A®) = Z”, which allows us to analyze inductively the
eigenvalues E(A,(;), k) and the eigenvectors. The construction of the sets Aff) requires
mvolved combinatorial arguments. The set A,(f) is a relatively “small” perturbation of a
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union of two “large” cubes, one centered at the origin and another at 7' (k); see (1.10).
The boundary of the set is of “fractal nature” built on the scale basis. The purpose of
this “fractal” boundary is as follows. We need the set A" to be invariant under the map
T(n) = n¥ (k) — n, and at the same time we want the boundary 8A,(f) to avoid each subset
m—+ A with s < sand with [E(AY) | k+mw) — E(A'™", k)| being “small.”

Finally, let us say a few words about the structure of the work. First of all we split
the technical difficulties into two major parts. In the first one, we develop a general the-
ory of matrices which by definition have the needed structures. These matrices do not
depend on the quasi-momentum k. We start with a general multi-scale analysis scheme
and then inductively introduce more and more complex matrices under consideration.
This is done in Sections 2-3 and 5-6. As already mentioned, in Section 4 we develop the
necessary theory of “continued-fraction-functions.” In the second part, which consists of
Sections 7—10, we verify that the matrices dual to the quasi-periodic Schrodinger equa-
tion, with appropriate A,(f), fit into the definitions from Sections 2-6. Finally, in Section 11
we prove the main theorems.

Remark 1.2. — The fact that our presentation separates the general theory from the
application to small quasi-periodic potentials with Diophantine frequency vector also has
the additional benefit that in subsequent applications of the general theory, one merely
needs to verify all its necessary assumptions in a given situation. We envision a number of
additional applications of the general theory, such as an extension of the quasi-periodic
results beyond the case of small coupling, and more generally a version of them for suit-
able non-zero background potentials. We intend to address these additional applications
in future works.

2. A general multi-scale analysis scheme based on the Schur complement
formula

Let A € Z" and let H = (H(m, n))nen be an arbitrary matrix. For A" C A,
denote by P, the orthogonal projection onto the subspace C* of all functions
Y = {Y(n) : n € Z"} vanishing off A’. The restriction of H to A’ is the operator H, :
CN — ¢,

HA’ = PA//IL[PA/.

Let Ay C A be an arbitrary subset and set A} = A \ Ay. Then,

H =Pp,HaPr, +Pr, HaPr, +Pa,HaPa, +Pr, HaPy,.

By viewing C* as C*' @ C2?, one has the following matrix representation of H,,

HA] FAI,AO]

.1 -
2.1 He [F 4
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where
Can k0 =Hk 0), kel LeA,;.
Recall the following fact, known as the Schur complement formula.

Lemma 2.1. — Let

H, FI,Q]

2.2 H= [FM i

where H; is an (N; x Ny)-matrix, j =1,2, and T';; is an (N; x N;)-matrix. Assume that H, s
woertible. Let I:IQ =H, — 1"2,17-[1_1 [y.9. Then, H is nvertible if and only if I:IQ 15 tnoerlible; and in
this case, we have

2.3) T [HT] +H; Ty of1 Ty My —Hl‘iI‘LQH;l} |

—H; 'Ty H! H,'
Definition 2.2.

(1) For each m, let y(m) := (m) be the sequence which consists of ome point m. Set
C(m,m; 1, A) :={y(m)}, C(m,n; 1, A) :=D for n % m,

F(k,A)={V=(7’l1,...,nk):nj€A,nj+1#nj}, k22’
F(m,ﬂ;k,A):{yer(k,A),n]:m,nk:n}, maneAak229

(2.4)
Cymn A)=|JT@mn k. A),  TiA)= | Tilmn A).
k>1 m,nEN
Lety = (ny,...,n), y' =, ...,m), n, n}eZ”. Set
2.5) b Uy = (nyy oo,y oo ) of e # ),
(nyy ooy mp, ny, ooy ny)  f me=n.
(2) Let w(m, n), D(m) be_functions obeying w(m,n) >0, D(m) > 1, m,ne A. Fory =
(ny,...,mn), set
(2.6) W (V) :=[ [T w. njH)] exp(Z D(nj)).

1<j<k—1 I<j<k

Wherever we apply wr ., (y1 U v2), we assume that we are in the second case in (2.5). For

t}ldt matter, wD,K[)(Vl U J/Q) - wD,K(](yl)wD,K[](y2)~
Let 0 < kg < 1. We always assume that w(m, m) =1 and

(2.7) w(m, n) fexp(—lcolm—m),
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2.9)

(2.10)

(2.11)

(2.12)
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and we set
Wpe (1) = CXP(—K()H)/H +y D(n»),
1<j<k

Iyli= 3" Im=mal, D) :=maxDy).

1<i<k—1

Here, ||y || =0 f k= 1. Obviously, wp 4, (¥) < Wp ., (V).
(3) Let'T' > 8. Wesay thaty = (ny, ..., n),nj € A, k> 1 belongs to U'p t . (n1, 5 &, A)
if the following condition holds:

. 1/5
min(D(n), D)) < T (ni, ..., )"

Jor any 1 < such that min(D(ni), D(nj)) > 4TK0_1.
Note that T'p 1, (01, ny5 1, A) = {(ny)}. Set

FD,T,K()(m’ n; A) - U 1—‘D,T,K() (ma n’ k’ A)7
k

o1 (A) = Tor (m, m A).

m,n
(4) Set
SD,T,Ko;k,A(m, n) = Z wD,K(]()/),
yEFD.TtKO(m,n;k,A)
Sp, Tpia (7, 2) = Yo Wi,

V€D, Toicq (m,m:k, A)

NOt@ zf/zat S]_),T,Ko;l,A(mv m) = SD,T,KO;I,A(m’ m_) = exp(D(m))
(5) Let AN C AN CZ. Set pup ;(m) :=dist(m, A\ A). We say that the function D(m),
m € A belongs to G & 1., If the following condition holds:

D(m) < T,uA,;\(m)l/5 Jor any m such that D(m) > 4TKO_1.

6) Let D € Gy Rorwy- We say that y = (ny,...,m), nj € A, k=1 belongs to
bt (1, s ky AL R) if the following conditions hold:

min(D(n), D(n)) < T (ni, ..., w) ||

Sor any 1 < such that min(D(n;), D(nj)) > 4TKO_1, unlessj =1+ 1.
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Moreover, if min(D(n;), D(niy1)) > T|(n; — nip1)|" _for some i, then

9

min(D (), D(n)) < Ty, ..., 1) | 7,

mln(D(n) D(njr) ) =< TH (i oy ) |1/J’

mln(D ), D(nl-+1)) < T” (nj, .. ”z+1)” 1/5
(

min(D(ny.1), D(ny) ) =< TH (g1 - ooy myr) ‘1/3

Joramy <1 <1+ 1<j".

Set Toru(mny AR = U, Torw(mnk, A,R),  Tprg(A,R)
Um,n o1 (mn A, R). Gowen y = (ny,...,m) € Tpu(nr, i by A, R) N\
b1 (1, s ky A), we denote by P (y) the set of all i for which min(D(n;), D(n:41))
> T|(n; — )| Set

SD, Tk, A, 03 (11, 1) = Z W, (V)
)/EF]);[‘_KO (m,n; k, A, R)
S, Tokosk, A, (1, 1) = Z Who, (¥)-

V€D, T,k (m,ms k, A, R)

Remark 2.3. — (1) Everywhere in this section the set A is fixed. For this reason we suppress

A fiom the notation. We always assume in all statements that each subset A C Z under consideration
is a subset of A. The complement A° always means A\ A. When we apply the statements from
the current section in Sections 3 and 5, we will assume A = Z". On the other hand, we

will use different subsets in the role of A starting from Section 6. Note for that matter
that Gx A 1y CGaA, T T A C A CA.

(2) The sets of trajectories I'p 1, (11, m5 ky A), I'p i (1, 15 ky A, R) are designed

to estimate the inverse for two different types of matrices we study in this work. We intro-
duce these two types of matrices in Section 3 and Section 5, respectively. We estimate the
inverse via the functions

(2.15)

. k-1
5D, Tk, e0:4 (M5 1) 1= Zao 5D, Tz A (12, 1),
k>1

. k—1
5D, Tk e0; 4,93 (1, 1) 1= Z €0 D, Tuoik a1 (M, 1),
k>1

. k—1
SD. T 0,80:4 (M, 1) 1= 280 SO, T osk, A (M1, 1)

k>1

. k—1
SD,T,K(),E[);A,m(m’ n) = ZSO SD,T,K(];/{,A,m(mv ﬂ),
k>1
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respectively. One of the important properties of these functions is “functoriality” with
respect to the Schur complement formula. The precise meaning of this “functoriality” is
formulated in Lemma 2.13. Its derivation is based on the multiplicativity property of the
functions wp 4, (¥), Wp «, () with respect to the operation y;, U ys.

(3) In Sections 3—10 we will use the function Wp ,,(y) and the corresponding
sums. We will use the function wp ,,(y) and the corresponding sums in Section 11.

Lemma 2.4. — Let y = (ny,...,n) € Tp e, (nr, i by A, R). Set M = 4TK(;1,

ip(y) = loligpls/)l/)’ U= Zo<xsz 27,
Ifty(y) <5, then Wp ,(v) < exp(—kolly || + kM), Otherwise, with £ chosen such that
D(ne) =D(y), we have

¢~ K01=Dp, )Y [+D(y)

if 0,6 —1¢ P(y) and max;z D(n) < 3%

M2

o 0U=Fqm+D 7|

#E, -1 ¢ P(‘}/) andmaxj-# D(nj) > D)

M2
e K0(I=Pq )Y I+2D(y)

YLeP(y)orl —1€P(y) and maxjg_ ¢ D(nj) < Ding)

M2

(2.16) Wh () = 9

o 0U=Fqmn+D 17|

fleP(y) ot —1eP(y) and maxjg—i ¢ D(nj) > D)

M?

Here, by convention, a maximum taken over the empty set is set to be —o0.

Progf- — The verification of the estimate goes by induction in £ =1,2,.... The
estimate obviously holds for £ = 1. Note also that if #,(y) < 5, the estimate holds for
obvious reasons. So, we assume henceforth that #(y) > 5. Assume that the estimate
(2.16) holds for any trajectory y' = (n},...,n) with t <k — 1, £ > 2. Recall that £ is
chosen such that D(n,) = D(y). There are several cases to be considered.

Case (I). Assume first that £ — 1, € ¢ P(y). Assume also that 2 < £ <k — 1, so that
vi=m,...,n_1), Yo = (ng41, ..., n) are defined. Let £; be such that D(n,,) = l_)()/l-), 1=
1,2. Note that y = (n1, ..., n;) € Cpr(ny, m; A, R) implies T||(ng,, ..., n) [|'° > D(ny,),
since otherwise £; = € — 1 € P(y). In particular, (||y;]l + |7e—1 — n])'°> > T7'D(ny,) =
TIMPOD > MPOD=1 T et us consider the following sub-cases.

(a) Assume that M? max;¢ ¢, D(n;) < D(ng,) < M~—D(n;). This implies in par-
ticular D(ny,) > M?, that is, #p(y;) > 2. In particular, 445(y1) — 5 > tp(y1) + 1. It im-
plies also that #{(y) + 2 < tp(y). Recall that due to the inductive assumption, we have
W (71) < exp(—ko(l = By ) 17111 + 2D (e, ). Hence,

(2.17) WD,KO(J/l)CXP(—K0|W—1 - ﬂz|)
< eXp(_KO(1 - 1911)()/1))(”)/1 |+ lne—1 — nzl) + QD(ﬂgl))
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< exp(—ko(1 = Oy (111l + 1me1 = nel)

+ 2T+ lemy — mel)')
< exp(—[ko(1 = D — 2Tk (Il + ey — mel) )]

x (Il + Ine-r — nel))
< exp(—[ko(1 = Py — 2T MOV (19| + ey — mel))
< exp(—ko(1 = T — 4 (Il + lne—y — nel))
< exp(—ko(1 = Oy (1711l + 11 — nel))

< exp(—ko(1 = B4y (71| 4 1y — mel))-

(b) Assume that D(n,,) < M2 max; ¢ jz¢, D(n), D(ng,) < M~2D(n;). Once again,
ih(y1) + 2 < ip(y). Due to the inductive assumption, this time one has Wp ,, (y1) <
CXP(—KO(1 - ﬁtn(m)ﬂ)“)/l ). So,

(2.18) WD,K(](yl)eXp(—Komg_l — ﬂgl)
< exp(—ko(1 = Dy +1) (19111 + 1201 — nel))
< exp(—ko(1 = ) (1711l + lre—1 — nel)).

(c) Assume D(ny,) < M~2D(n;). Obviously, (a) or (b) applies. Thus, in any event,
we have Wp , (¥1) exp(—kolne—1 — ng|) < exp(—ko(1 — D) N1l + Ine—y — ne))).

(d) Assume D(ny,) > M™?D(n). Since we assumed that f,(y) > 5, we have
D(ny,) > M72M° = M?. So, #(y) > 3. In particular, 4t5(y1) — 7 > tp(y1) + 1. Using

the inductive assumption, we obtain
(2.19) Wb .o (V1) eXp(—K0|ng_1 —ne| + QD(ng))
< exp(—=o(1 = 40 (171 + Iy = mel) + (2 4 2M?) D (e, )
< exp(—ko(1 = Py — kg (2 + 2MF)MHR0D=D)
< (Iyill + -y — nel))
< exp(—ko(1 = Dy — 47T Iyl + et — nel))
< exp(—ko(1 = Dy 4) (171 + Ine—y — nel))
< exp(—ko(1 = Py ) (Il + ey = mel)).

Now we prove the statement in case (I). Obviously, the cases (¢) and (d) complement
each other. Note also that since £ ¢ P, one can similarly identify the cases (a)~(d) for y»
and establish estimates similar to (2.17)—(2.19). Assume that case (c) applies for both y;
and y,. Combining the estimates for y; and y», we obtain the desired estimate in the first
line case in (2.16). Assume now that we have case (d) for y; and case (c) for y,. Then,
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(2.20) Woe, (¥) = W (1) exp(—kolne—1 — ne| + D(nz))
X €XP(—K0|W+1 - nz|)WD,K0(V2)
< GXP(—KO(1 - ﬁn)(y)ﬂ)(”)’l I+ -1 — ﬂe|) — Kko(1 = Diy9))
X (||)/2|| + gy — W|))
< exp(—ko(1 = Ty ) 1V 1)
which is the estimate in the second line case in (2.16). The same estimate holds if we

have case (c) for y; and case (d) for y,. Finally, assume we have case (d) for both y; and ys.
Since D(x) > 1 for any «, it follows that

(2.21) W, (¥) = Wp e, (1) exp(—kolne—1 — ne| + D(ny))
X eXI)(—K()|W+1 - ne|)WD,K0(V2)
< exp(—o(1 = D) (17111 + 1201 = mel) — o (1 = Dy 1)
x (||)’2|| + ey — ﬂe|))
< exp(—ko(1 = D) 17 1),

which is again the estimate in the second line case in (2.16).

This finishes the verification in the case (I) with 2 < £ <% — 1. One can see that
the estimates hold for the rest of sub-cases in the case (I).

Case (II). Assume now that £ € P(y). Then, in particular, £ + 1 < k. Assume in
addition that 2 < £ <k — 2, so that y; = (ny, ..., m—1), ¥y = (n¢49, ..., m) are defined.
Due to (2.13) in Definition 2.2, the arguments from case (I) apply to ;. For the same
reason very similar arguments apply also to y,. The estimates for y; are as follows:

7\ ,—koll (g, ne1,m0492) || —ko(1-=7, Yy ll+Ine—1 —nel)
WD,Ko(yQ)e +inell < D) ,

if D(y,) < M~*D(n),

1\ Kol (esner1,ne2)|[+2D(ne) =Ko (=D, )+ DUyt 1+ ne—1 —nel)
WD,Ko(yQ)e oll(ng.net1mer2 0 < g 0=V rill+le—=neh)

(2.22)

if D(yy) = M*D(ny).

Combining the estimates for y; and y,, one obtains the desired estimate in the third and
forth line cases in (2.16). One can see that the estimates hold for the rest of sub-cases in
the case (II).

Case (I11). Finally, assume that £ — 1 € P(y). Then, in particular £ — 1 > 1. Assume
in addition that 3 < ¢ <k —1,sothaty, = (n, ..., n—9), Yo = (41, ..., n;) are defined.
The argument for this case is completely similar to the one in case (II). 0J
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Corollary 2.5. — Let D € Ga 1y, ¥ € Doty (m, ik, A, R), k> 1. Then,
Wi (7) < exp(—olly Il + £(4T; "))
< exp(—%/colm — nl) CXP<_%K0”V” + k(4TK0_1)5>
Yin(y) <5,

15 _
Wb (¥) < exp (—1—6Kolly | + 2D(y))

(2.23) < min[exp(—g’fdm —n| + QT(min(MA(m)» MA(n)))l/5>

1 -
X eXP(-EKoII)/II +2TIIV||”°>,

15 -
exp —1—6K0|m—n|+2D ,

D:=maxD(x) ifip(y)>>.

Proof. — It tp(y) < 5, then the estimate follows from Lemma 2.4 since ||y| >
|m — n|. Assume that #{p(y) > 5. Let £ be such that D(n,) = l_)(y). Recall that D(n,) <
Tpa (). Furthermore, pax(n) < pa(m) + |m — ml < pam) + Iy ll. So, D(y) <
T(a(m) + Iy < T(ua(m) + ly 7). Similarly, D(y) < T(ua(m)' + 7]]).
Note also that I — ¢, > 1 —1/31 > 15/16 for any ¢. Due to Lemma 2.4, one has in any

event

(2.24) W, (1) < exp(—ko(1 = D) 1y | + 2D ()

15 -
< eXP<—EK0||J/|| + QD(V))

7 5
< exp(—gic(ﬂm —n|+ 2T(min(pLA(m), MA(n)))l/ )

1
X €XP(—1—6K0|I)/II + 2T||V||1/5)-

It follows also from Lemma 2.4 that Wp ,,(y) < exp(—%lcdm — | + 2D). O
To proceed we need the following elementary estimate.

Lemma 2.6. — (1) Forany o, B, k > 0 and 0 < & < min(27"*"*a™, exp(—8B)), we
have
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Yo exp(—allyll) < (8",

yel (mun;k,ZV)

1
D b lexp(iB) Y exp(—allyl) <&

k=2 yel (nmk,Zv)

(2.25)

(2) For any C, T > 1 and &y < min(exp(—8TC!/%), 274D (C + 1)™"), we have

(2.26) > e > exp(2Ty 1)

k=2 yel(mn;k,A),|ly||<C

<Y e exp(2TC ) (2(C+ D) <.

k>2

Progf. — One has

Y. exp(—alyl)

y el (m,n;k,2ZV)

k-1
= (Zexp(—aM)) < <2 Z exp(—ar))
reZ” reZ,r>0
(2.27) _ (2(1 _ eXp(_a))—l)(k—l)v - (Sa_l)(k—m’

D eilexpB) > exp(—alyl)

k>2 y el (mn;k, A, R)
_ k=1 i
<Y el expiB)(8a) T <
k>2

This verifies (1). Part (2) follows from (1). O

(k—1v

Lemma 2.7, — Let D € Go 1y Let 0 < g5 < min(2724”*4/<g”, exp(—(8TK(;1)5),
2710(V‘|’1)T78U). Then,

SD,T,K(),SU;A,m(m’ n)
7
= mir1|:38(1)/2 exp(—glcolm —n|+ QT(min(,uA(m), MA(n)))l/5>,

. 1 =
2.28 26 exp(—gealn—s +2) | imtn,

SD,T‘KO,s();A,m(mv m)

< min[exp(D(m)) + 385/2 exp(QT,uA (m)1/5), 2 exp(QD)].
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Proof. — Let m # n. Using (2.23), one obtains
(2.29) Sp.T k0.4 4,9 (M, 1)

7 1
< exp(—gkolm —n|+ /f(4TK0_1)5) Z €Xp(—§/<0||)/ ||>

y el (m,n;k, A, R)

7 5
+ exp<—§Ko|m —nl+ QT(min(MA(m)» MA(")))I/ )

x[ ) CXP(‘%’COHVH)

yel (mmn;k, A,R)
1/5
+ > exp(2T 1y || )].
el (mmk, A, R), [y <25 (Tieg )32

Combining (2.29), (2.25), and (2.26), one obtains

SD,T,KQ,Eo;A,m(m’ n)
7 5
<3¢ exp<—§KQ|m — 0| 4 27T (min (s (m), pua())) " )
The derivation of the other estimates is completely similar. UJ

Remark 2.8. — In the last lemma we estimate the functions Sp 1 .¢.: .= (1, 7) only.
Clearly; SD,T,KO,SO;A(m7 n) S SD,T,KQ,&Q;A,m(mv n)

Later in this work we will need also the following estimates:

Lemma 2.9. — Let D € Gpry- Lot 0 < &9 < min(2727 ¢, exp(—(8Tk; ")),
Q=00HEDT=8Yy Lot O < a(m,n) <1, m,n € A be arbitrary. Then, for any mo, ny € A°, we have

®D,T,K0,50;A,%(mo, ny)
. 1/5
i=g9 Y a(mg, m) exp(—kolmo — m| + [mg — m|"*)Sp 1.4 e0:.9:(m, 1)
(2.30) A
1
x exp(—rolno — nl + [ng — n|')a(n, n) < &,

. 3/2
QD,T,K{),S[);A,%(mO) = 80Q5D,T,K(],€();A,m(m0a m()) < 80 )

"% exp(—kolmo — ol /4),

(2.31) D 0.2 (M0, 10)

=& Z a(my, my) exp(—kolmo — mi| + |mg — m;|'"°)

mi,n; €A
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15 15
X Sp, T xg,e0:4,98 (11, ﬂ1)€Xp(—K0|ﬂ1 — mo| + [y — mo|'" + |my — "/ )
1/5
X SD, T kg,0:4,98 (M2, 19) CXP(—KOWO — no| + o — "/ )a(nQ, ny)
/2

< sé 6Xp(—l(0|m0 — n0|/8),

(2.32) D5k coson (M0, 70)

=& Z a(mg, my) eXP(_KOWO —my| + [mg —m |1/5)

mini €A

X Sp, T.icg.e0: 0,9 (7215 71)

x exp(—kolny — mo| + my — m|"° + |my — m0|1/5)SD,T,KO,SU;A,m(m2, ny)
x eXP(—Ko|m3 — nol + |my — no| "7 + |ms — mOlI/B)SD,T,KQ,So;A,m(mS’ n3)
X eXP(—KO|7Z3 — my| + |my — ng|"° + |my — m0|1/5)SD,'1‘,K0,50;A,9%(7714, ny)
X CXP(—KOWO —my| + |np — ﬂ4|1/5)d(724, ny)

< 8(])/2 exp(—K0|m0 — 7’l()|/16)

Progf: — Using (2.28) from Lemma 2.7 and (2.11) from Definition 2.2, one obtains
(2.33) QDT g.0:4.9 (M0)

1
<e D, & eXp(—;xom— nl = olmo — m| = Kolmy —
m,n€N,m#n

+ T (min (24 (), s (1)) 4l — 0"+ g — ] + g — n|”5)

+e Z exp(—2/<0|m0 —m| + 2|my — m|1/5)[eXP(T/LA(m)1/5)

meA

+ 36, exp(2T s (m) ') ]

. 1
58(2) Z 38(1)/2exp<—zlco|m—n|—K0|m0—m|—K0|m0—n
m,n€ N, m#n

. 1/5
+ T (min(jmo — ml, |mo — nl))""” + |m — n|'”?
+ |mg — m|'" + |my —”|1/5>

+ 83 Z exp(—?/colmo —m| + 2|my — m|1/5)

meA

x [exp(Tlmo — m|'"*) + 3ey’* exp(2T|my — m|'*)].
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Combining this estimate with (2.25), one obtains (2.30). The derivation of the rest of the
estimates 1s completely similar. O

Lemma 2.10. — Assume that A = Ay U Ao, Ay N Ay = 0. Then, pa(m) > pa(m)
if m € Aj. In particular, let D; € Ga, vy j = 1,2. Set D(m) := Dj(m) of m € A;. Then,
D E gA,T,K()'

Proof. — Let m € A;. It follows from the definition of the functions s that
pa(m) = py;(m). The second statement follows from the first one, just due to the def-
inition of G 4, - O

Lemma 2.11. — Assume that A = Ay U Ag, Ay N Ay =0. Let D; € Gy, 105 ) = 1, 2.
Set D(m) :=D;(m) ifme A;. Let m,n € Ay,

y=nUpyoU---Upoyy, o=y Uy U---Uyy,

2.34) Yoirr = (M1 9i4 1, « - o Mgy 2i41) € Upy 1 (M0,9i4 15 Mgy 20415 D1y R,

ny1=m, Rhyrp1 0001 = 1

Yo = (nl,Qia ceey ”kg;,?i) € FDQ,T(n(),Qis Noi 2i+15 Ay, 9{), ny, = n.
Then,

(1) Y,0 € FD,T,K(](A’ 9{)
@ FrnUrU-- Uy =y Uy U Uy, 020, then t =1, y; =/
Similarly, if i Uy U+ Uyy =y Uy, U Uy, 6,0 >0, then t =1, y; =y

Proof. — (1) We verify the statement for y. The verification for o is completely
similar. Re-denote y as y = (ng, ny, ..., n). We need to verify conditions (2.12), (2.13)
for any : < such that mm(D(%;), D(n)) > 4T« L Clearly these conditions hold if
n;, ..., n; are consecutive points in some y,. Assume that n; € Ay, n; € Ay. Assume also
that D(n,;), D(n)) > 4TK(;1. One has

D (n) < Tiea, ()", Dy () < Thea, ()",

(2.35) | iy . om) | > 1 — i) = max(pea, (1), pa, (1)),
max(D(r), D) < T (air ..., m)[| .

So, conditions (2.12), (2.13) hold in this case. Assume now that n; € Ay, n, € Ay, m; € Ay,

1 < h <j. Assume also that D(»;), D(n;), D(n)) > 4-TK0_1. Then, due to (2.33), one has

D) <T|(ns, ..., m)|"°, D) < T|l(m, ..., nj)||l/5. This of course implies conditions

(2.12), (2.13) in this case. The verification for the rest of the cases is completely similar.

This finishes the first statement.
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(2) The proof goes by induction in max(¢, #) =0, 1, .... We will prove the state-
ment regarding ¥ = y’. The proof for 0 = ¢’ is completely similar. If ¢, # = 0, then the
statement is trivial. Assume that the statement holds if max(¢, #') <s— 1, where s > 1. If
t>1,then yy Uy U---Uypoyy & T'(m,n; Ay) since Ay N Ay = . So, one can assume
t,t > 1. Note that ny o1, ..., Wy, 241 € A, ”/1,2z’+1’""”;@/H,Qz’ﬂ € Ay, myy,0 € A,
”22,,,2¢/ € Ay. Since y =y, one concludes that ky 1 = kyyy1 and n; 9,11 = 1}, for all .
This implies y; Uy U --- Uy, =y Uyy U---Uy,,. Repeating this argument, one
concludes that Ay, = ko and n; o, = ngﬂ for all 7. This implies yy Uy U -+ U yp ) =
Yi Uy, U---Uyy,_,. Due to the inductive assumption, one has then t — 1 =1¢ — 1,
V= yj’, 1 <j <t¢— 1. This finishes the proof. O

Lemma 2.12. — (1) Assume that A = Ay U Ay, Ay N Ay =0 Let Dy € Gp, 1y, Let
Dy(x) > 1, x € Ay be such that Dy(x) < Tua(x)' for any x € Ay. Set D(m) := D;(m) o
me Nj,me Aj. Then, D € Gp 1-

(2) Let myn € Ay and y; = (ny iy ... ;i) € Up i (A1, R), 0 =1, 2, be arbitrary. Set
y'=(mn) fm#Eny' =m) fm=n,y/=m),y,=n Then, yn Uy",y' Uy, i Uy'U
Yo, ViUniUyy € Tpr (A, R).

Progf: — The first part is clear. For the second part, we cannot just refer to
Lemma 2.11 since it may happen that Dy ¢ Gu, 1., However, a part of the argument
from the proof of Lemma 2.11 still works. We need to verify conditions (2.12), (2.13) for
any ¢ <j. We will do this for y := (n,...,n) =y, Uy' Uy with m # n. The verifi-
cation for the rest of the cases is similar. If i <j <k or &y + 3 <1 <j <k, then (2.12),
(2.13) hold since y; € I'p 1.4, (A1, R). The argument from the proof of Lemma 2.11 still
works in the following cases: (a) t <k, ki +3 <)<k, (b) 1 <k, k+1 <)<k + 2,
Okh+1<i<k+2k+3<j<ksince D; € Gy, 14 Lethki+1<i<j<k +2.Then
i=k +1,j=4k + 2, thatis,j =74 1. Obviously, in this case (2.13) holds. 0J

Lemma 2.13. — Let A = A1 U AQ, A1 N AQ =0. Let Dj' € gAj’Tﬁ,((],j =1,2. Let

Lij =Tk €)= H(k, £), k€ A, £ € A;. Assume that the following conditions hold:
M
gow(m, n) := gqwp(m, n) := |Hr(m, n)| < egexp(—kolm —nl), m#n,

0<ky<1,0<eg <min(2 2!, exp(—(8Tx; ")), 27 100+DT—8v),

(i) The matrix H »; 1s invertible; moreover,

(2.36) ‘/ijl (m, n) | S SDJ',T,K(),E[);A]',m (m’ n) M
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Then, I:IQ = [Ha, — Fg,l'}’-[xllf’l,g](m, n) ts movertible, H n is invertible, and

|H L (m,m)| < Zsk ! Z W, o (V)

k=1 Y €D Ty (mm3k, A1 R)

+y e Y wpe®)

: 1,2
7>3 VGFE),‘[‘?KO (m,n;q,A)

= SD»T,K()qﬁ(];k,A,f)’%(mv 7’1), m,n e Al,

My )| = [Hy )] < et > W« ()
<2.37) k>1 V€D, Tk (mnsk, Ao, R)
+ Z 81(;71 Z wD,Ko(V)
k=3 VEDfy, (msk A R)

< 5D, Toxpresh A m (M), m,n € Ay,

Hlmm| <Y el Y wpg ()

k23 yer e nnk, A, 9)

S SD,T,KU,Eo;k,A,fR(m’ n)’ me A])’ ne A(/ap 75 q’

where D0 (mom by Ay R) = U o, Tt (mmy ks A, ), Tt (m, ms &, A, )
stands for the set of all y € U'p 1, (m, n5 k, A, R) such that y =y, Uy U---Uyy,
with v, € Tp, 1 (A R), ¥ € Tp (A, p 7 ¢ Tt (myny k, A, R) =
Uit T Gmy s by A, R), Doyt my s by AR stands for the set of all y €
b1, (0, 15 k, A, R) such that y =y Uy U---Uy/ with y; € I'p, 10 (Ap),
Y, € T, 1 (Ay), p# g, and D(m) =Dj(m) if m € A,

Proof. — Let m,n € Ay. For any ¢ > 1, one has
(2.38) Ml (Ton H T oM ) |, )]
< Z 8§t|HX; (m, nl)‘

nieAQ;n;eAl,izl ,,,,, t

s exp(—ko|m — i, |) [ Hal (i mp) | .. |k (u )]

< Z Z 8(()2_,- W)+ K)—1 Z

n€AgimEA =1, ...t ki K= 1j=1,... 71€Dg, T i (mym13 K1, Ag, R)

Z U Z tz,K()()/l)

Y1€TD, Ty (n2,n3:4], A1, 0R) Vi1 €Dy Tk (s 13 K1, Mg, )
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x exp(—«oln — nol )W, e (¥)) - - - Wiy (Vir1)

= Z Z Sézj )+ K -1

nZ'EAz;rL;EAl,Z':l ..... tk,‘,ijlJ:l,...

2. 2.

Y1€Dy Ty (man1: k1, A2, R) y{ €D, 1k (n2,m5547, A1, 9R)
/
Z wD,KU(VlUylu"'UVH-I)-

Yi+1€0 Dy, Tk (s ki1, Ao, R)

Combing (2.38) with Lemma 2.11, one obtains
-1 -1 —1\! k—1
(2.39) [Ha (CoaHy T o) N < el S wn,).
k=1 yery iy (mmk AR)
2,1,7)

Due to Lemma 2.11, F]()Qv’Tl”QO(m, nk, A, R) N Tpip, (m, K,A,R) =0, unless t = 1.
Hence,

(2.40) D Mo (Coa M T oM )) [ m )|

>1

S ZS(}VI Z wD,Ko(y)-

L e
Note that I}y m, &, A, R) N Ty, 1) (m, 15k, Ao, R) = 0. Thus,
(2.41) Ay o= |[(Ha, = TonHy ' Tr) om0
< [[Halonw |+ D |[Ha) (o Hy T oHa)) Jon )|

t>1

<> & > W« ()

k>1 Y €Dy, T ko (m,n3k, Ao, R)

+ Zgé_l Z wD,Ko(V)

= Y ey (mmk AR)

< SD.Tkg.e0:k 4,98 (M, ).

Due to the Schur complement formula, H , is invertible and [HKI](m, n) = [I:IZ_ N(m, n)|.
This finishes the proof of the statement when m, n € As.
Let now m, n € A,. Using the Schur complement formula and (2.39), one obtains

(2.42) [ )| = [[HR) Jon )|+ | [ TaFy Ton My m )|
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<) e > W,k (V)

k=1 V€D T g (momik, A, R)
k—1
+ et ) >
k0 F>1 n1,na€A1;n2,n3€ N9 Yy €Dy T i (myn1 3k, A1, R)

2 2

AELDy Tug (121336, A2) 21 5 ep(LD () psi0 A D)
s LK) b

Z wD,m(y)w(nl , M)
V€D, T (4,15, A1, R)
X wD,K() ()\.)w(ﬂg, n4)wD,K(] ();)

Note that here

W, (Y)W (n1, 1) Wp ey (M)W (13, 1) WD 40 (V) = Wi (¥ UL U ).

Let y € T, r (ks AL, R), 7 € Do, (B, A1, R, A € T2 (£, A, R). One has A =
)\,1 U )\./1 U---uU )"l‘+1 with )\fl' € FDQ,T,KO(m? n, AQ, 9{), )\.; € FD[,T,KU (Al, Eﬁ) Therefore, Y U
AUy e FS”%?(:D(m, nmk+ €+ k A, R). Furthermore, let y" € I'p, 1, (K, A1, R), y' €
Tiy 1 (B, AL R), 0 € T (€, A, R), 0 =01 Uo] -~ Uoyy with o) € Dy, 1. (m, 75
Ao, R), 0/ €T, 14 (A1,R). IfyULUy =y"Uo Uy’, then, due to Lemma 2.11, 1 =7/,
Yy = ]/,, )7 = '}7,, )\.1 =0y, )\.,1 = (71/:. A }\‘t+1 = 04]. If A e FDQ,T,KU(nQ’ ns,; E, AQ, 9{), then
yUAUYp € F](DI%}C?] (m,n; k+ £+ k, A, R). Therefore,

(2.43) ENCOIED I > W, (V)

k>1 Y€MD Tk (mnsk, Ay, R)

+Zzgq—1 Z wD,Ko(y)

(> > 1,2,t
=l =3 bty (730, AL )

= Z 857] Z W, o (V)

k=1 V€D Tk (m,mik, A1, R)

+Y e YT wp (),

g
=5 yery ), ng A %)

yell

where Th (monk, A, R) = U, Dhire (mons k, A, R). Note that I\, (m,
/i, A, %) N FD[,T,KU (m, 7, /f, Al, %) = 0. Thus,

(2.44) ‘H/_\l(m, n)| =< D, Toxoue0ik. A, (1, 7).

This finishes the proof of the statement when m, n € A;. The proof for the cases m € A,
ne€ Ay and m € Ay, n € Ay is completely similar. U



240 DAVID DAMANIK, MICHAEL GOLDSTEIN
Lemma 2.14. — Let A C 2. Assume that
gow(m, n) == gowp(m, n) := "HA(m, n)‘ <g exp(—Kolm — n|), m#n,

0<ky<1,0<eg <min@ ", exp(—25TK0_1), Q- 100HDT=8v Tt AU Ay = A,
A] N AQ = Q))

| Ha, Ty
HA‘[FQ,I HA]

Assume that

(1) The matrix H ,, is invertible and there exists Dy € G| ., Such that
—1
<2‘45> ‘HAI (m, n)| =< sD],T,K(),S();Al,m(mi n)'

(i) Hy := Ha, — DonHy Tio obeps [detF,|™' < exp(Dg), where Dy <
Tmin,ep, MA(x)l/S-

Set D(x) =Dy (x) if x € Ay, D(x) =Dy if x € Ag. Then, D € G 14ps Ha is tnvertible

and
(2.46) | H ! (m, )| < 5p.7 e e0:m,08 (2, ).

Progf. — Note that condition (i) implies in particular D € G4 1 ,. Furthermore,
(2.47) |Hy G, n)| < [HGmw) |+ D [H (. m)|sp, vageniaron (' 2) [ H(#' ) .

m' ,n €N

Letm/,n € Ay and y € I'p 14, (A1, R) be arbitrary. Set y| = (m) if y” = (n). Then, due
to Lemma 2.12, y/ Uy U yy € I'p 1, (A1, R). Using Cramer’s rule, condition (i), and
(2.47), one obtains

(2.48) |1, (m, )| < 5,1 0,00:0,02 (2, ).

Similarly, let m, n € A ;. Using the Schur complement formula, Lemma 2.12, (2.36), and
(2.47), one obtains

(2.49) |Hy ()| = |[Hy ], )|+ | [Hy T1oH, ' Ty Hy ] m, )|
< 5D, Tokg.e0: A0 (M, 7).

The same estimate holds for m € A, n € As,. [
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Lemma 2.15. — Assume that the following conditions hold:
gow(m, n) 1= ‘H(m, n)‘ <g exp(—K0|m — nl), m,n€ N, m#n,

2.50) %i/r\l‘%(m, m)‘ > CXp(—4TK0_1),

0 <&y <min(27 24, exp(—(8TK(;1)5), Q= 10CHDT=8vy “Then, H 5 is invertible and

<2.51) ‘7‘[;\1 (m7 n)| S SD,T,KU,EU;k,A(m7 n)

Progof. — Set D(m) = 4TK(;1, m € A. Note that D € G4 1,,. Set also A(m, n) =
H(m, m)d,, ., Blm,n) = H(m,n) — A(m,n), m,n € A. Then, A is invertible with
A= (m, m)| < exp(4TK0_l) and A~!'(m, n) = 0 if m # n. Just as in (2.38)-(2.40), one ob-
tains

(2.52) DA BAT) e <D el T wp, ().

>1 k>1 yel“D;y_KO(m,n;k,A)
Hence,
(2.53) Hy o) | < [A o)+ ) | [AT ) |G, )|
>1
= SD,Txp.e0:k. A (M, 1) 0

Now it is very easy to derive the main result of this section which is the “general
multi-scale analysis scheme based on the Schur complement formula” mentioned in the
section title.

Proposition 2.16. — Let (H(x,9))yen, A CZ" be a matrix, which obeys
sow(m, n) = ‘H(x,y)‘ <eg exp(—/(olx —yl)

Jorany x # 9, 0 < g9 < min(2_24”_4/cg", exp(—(8TK0_1)5), Q100D =8vy Lot A, j €] be
subsets of A, Ai NV Aj =@ if i #]. Let D; € Gy, 1., Assume that the following conditions hold:

(a) Each My, is invertible and

(2.54) "ijl (m, n)| < 5D Tug.cohr, m(m, ), forany m,n € A; and any j.
(b) Foreachn &\, Ay, IH(n, m)| = exp(—4Tk; ).

T hen,

(2.55) [ H 0ma )| < DT e.eoik a0 (s 1),

where D(m) = D;(m) if m € A; for some j, and D(m) = ATk " otherwise.
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Proof. — Note that D € Gp 1,,. Set Ag:= A \ UjggA;. Due to Lemma 2.15,
-1
(2.56) ‘HA[] (m, n)| =< D Tkg.e0:k, Ao (M2 ).

Applying repeatedly Lemma 2.13, one obtains the statement. 0J

Remark 2.17. — In the last three lemmas and in Proposition 2.16 we analyze the
cases based on the functions sp 1 )¢ 4,91 (m, 7) only. The analysis of the cases based on
the functions sp 1 x,.¢,:a (M, 7) 13 completely similar.

Lemma 2.18. — Assume that (H(m, n)) .. .ezv 0beys
‘H(m, n)‘ <& exp(—icolm — n|), m#“n, min€Z’.
Given A\ such that H 5 ts tnvertible, set

(2.57) G(mg, ng, A) := Z H(myg, m)/HXl(m, nH@, ny), mo,ny €Z’.

m,nEN

Assume that A;, A are such that all conditions of Lemma 2.13 hold. Assume also that R :=
dist({my, no}, Ao) 0beys max(max,cp D(x), 4TK0_1) <koR/8. Then,

(2.58) |G, 1m0, A) — Glmo, mo, A )| < 4| exp(—%R).

Proof.: — We write

G(mo,ﬂo,A)=|:Z+Z+ Yoo+ > ]Mmo,m)

mneA;  mnehs  meAin€As  meAsneA;
(2.59) x H 1 m, ) H (n, ny)
=Qu1+ Qoo+ Q0+ Q.
Due to the Schur complement formula (2.3), one has for x, y € Ay,
(2.60) Hy () = [Hi ] Gop) + [Ha TroH, Ton iy ] (r,0),

where H, := Ha, — To M T'1 0. This implies
(2.61) |G (mo, no, &) = G(mo, no, A

=

> Hmo, myH(n, ng)[H T oHy T H |, )

myneN|

+ Qoo +1Qy 2] + Q91|
= Qu |+ 1Qual +1Q) ol + Q..
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Since all conditions of Lemma 2.13 hold, one can invoke (2.37). Using the estimate (2.37)
combined with the estimate (2.16), one obtains

<2.62) ‘Ql,1| 58(2) Z exp(—lco|m0—m| —K()|7’l—7l()|)
m,neAmO
X 28371 Z wD,Ko(J/)
>3 (1.2)

y EFD,T,K() (m,n;q, A, R)

—1
<&l Z exp(—ko|my — m| —K0|n—no|)283

m,neN 7>3

1 _
x ¥ exp<—§/<o||)/|| +max(D(y), 4Tk 1)>,

(1,2) .
yeFD,T,x[] (m,n;q, A, R)

where T2 (mony by A, R) = U Tt (myny by A, R), T2 (m, n k, A, M) stands
for the set of all y € I'p 1, (m, n, k, A, ) such that y =y, U yi U - Uy, with
Yi € Py (Ay, R), ¥/ € Tp (A, R), p # q. Note that for any m,n and any y €
P (s 15 ¢, A, R), we have [mg — m| + ||y || + |n — no] > 2dist({mo, no}, A) = 2R.
Due to the assumptions of the lemma, max(D(y), 4Tk, ") <koR/8. Combining these
estimates, one obtains

- 1
(2.63) Q| < ool Y leolr™! > y QRexp(—;Konyu)
Y=

7>3 y €l (mo,no;q+2,A,%R),
2 g—1 Ko 1
< leol” ) _leol " exp| =R > e —gxlyl
7>3 y €l (mg,no;¢+2,A,R)
¢ Ko
< lgo|*? exp[ ——R }.
4
The estimation of the rest of the terms in (2.61) is completely similar. U

Remark 2.19. — We remark here that Lemma 2.18 applies to any m, ny € Z, re-
gardless of whether A =Z" or A # Z" in Remark 2.3, provided of course the conditions
of the lemma hold. The same applies to Lemma 2.21 below.

Lemma 2.20. — (1) Let He = (h(x,9; &) yen be a matrix-function, § € U C RY. Assume
that Hgl exists for all & . If H is C'-smooth, then Hgl is C-smooth, and

(2.64) 9 H; ' =H;'(8;H)H, '
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IfH is C*-smooth, then H ' is C*-smooth, and
2 -1 -1 -1 -1 ~1(52 -1
(2.65) d He =H (9Ho)H (9 He)H, ™ + H (8&’%HE)Hs
+ H; ' (95 Ho)H; ' (3 He ) H, '
(2) Assume that for any & and any x, y € A, we have

(2.66) IH ' (0,0)] < speanyocas(x,0),  x,9 € A,

where D € Gy 1.y Assume that h(m, n; &) are C*-smooth and for m # n obey [0%h(m, n; §)| <
Bexp(—«o|m—nl) for |o| < 2, where B > 0 s a constant. Furthermore, assume that there 1s my € A
such that |0*h(m, m; €)| < B exp(ko|lm — mo|') foramy m€ A, 0 < || < 2, where B' > 0 is
a constant. Finally, assume that |h(m, m; &) < B” for any m € A, where B” > 0 1s a constant. Set
By =max(1, B, B, B”). Then, for any |B| <2, and any n € A, we have

(2.67) |0PH; " (m, )| < (3Bo)'® exp(1Blkolm — mol *) DY, 1 oo (s 1),
X,y € A;
compare (2.30) in Lemma 2.9.
Proof: — (1) To verity (2.64), assume for convenience d =1, & € (§,,&). Let
&0 € (&1, &). For sufficiently small |§ — &|, one has ||[Hg — Hg, || < M(§)|§ — &o|, where

M(&) = 1 + [|9:He |e=g, l|. In particular, [|[Hg — Hg, || ||Hg01 || < 1/2 for sufficiently small
& — &ol. Hence,

H' —H' =) H'[(Hg, — HoH ']

t>1

=H,'(Hs, — Ho)H ' +R(E, &),

(2.68) IR &) = S H | IH, — H, I
=2
< |H P, = Hy 17 Y27 < CE) & — &)

>0
where C/(&)) = M(&))? ||Hg01 [|*. This implies (2.64). The derivation of the rest of the iden-
tities is similar.

(2) This part follows from part (1) combined with Lemma 2.9. ]

Lemma 2.21. — Let He = (h(x,9;8))yezv, § € U C RY be as in part (2) of
Lemma 2.20. Given A’ C A, set Hyr = Harpe = (B — h(m, 05 €))yynenr. Provided H' exists,

set

(2.69) G(mg, ng, A E, &) = Z h(mg, m; S)Hxl(m, nh(n, ng; £), my,ng € Z’.

m,neN
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Assume that A = Ay U Ny, A\N Ay =@, and foramy ¥ € (B, E"), &, Ha, Ha, obey all conditions
of Lemma 2.13. Assume also that R := dist({mo, no}, Ao) obeys max(max,cp D(x), 4Tk, h <
koR /8. Finally, assume that (E', E") C (—=Bo, By). Then, for any multi-index |B| < 2, we have

(2.70) 102G (mo, no, A3 E, &) — 8°G(mo, ny, A1; E, &)| < 780B2ey” exp(—%R).

Progf: — We use the notation from the proof of Lemma 2.18 with E, & being sup-
pressed. Using the notation from (2.61), one obtains
(2.71) |0%(G(mo, no, A) — G(mg, ng, A1)

<[07 Q|+ 07 Qua| +[07 Q2| + 07 Q.
Using (2.67) from part (2) of Lemma 2.20, one obtains
272 \aﬂHA%m: W), |97, (my )| < (3B0) P'DBL 1 0o enin (15 1),
|08 (H ' Ty oHy ' Ty 1y (my )| < (195B) DY 1 oon (s 1),

Now, using (2.72) just like in (2.62), (2.63), one obtains [3#Q, | < 195Bye,’” exp(—LR).
The estimation of the rest of the terms in (2.71) is similar. O

3. Eigenvalues and eigenvectors of matrices with inessential resonances
of arbitrary order

Let A be a non-empty subset of Z". Let v(n), n € A, hy(m, n), m,n € A, m # n be
some complex functions. Consider Hy , = (4(m, n; €)) ..en, where € € G,

n(n, n; e) =v(n), ne A,
3.1
h(m, n; €) = ehy(m, n), m,ne€ A, m#%n.

Assume that the following conditions are valid,

(3.2) v(n) =v(n),

(3.3) ho(m, n) = ho(n, m),

(3.4) |\ho(m, n)| < By exp(—kolm—nl), m,neA, m#n,

where 0 < By < 00, > 0 are constants, [(z1, 22, - - -, 20)| = X 5], 2 € G. For convenience

we always assume that 0 < B, < 1,0 <k < 1/2.
Take an arbitrary my € A. For ¢ = 0, the matrix Hp  has an eigenvalue Ey =
v(my), and @o(n) = 8,,.., n € A 1s the corresponding eigenvector. Assume that

(3.5) inf{|v(n) — v(my)| :n € A, n#my} >8> 0.
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In this case, elementary perturbation theory yields the following:
There exist ey > 0 and analytic functions Y(€), @ (n, €) defined in the disc D(0, gy) = {¢ €
C:le| <&y}, ne€ A such that

(3.6) Y e e)| =1, foree(—e. e,
neA

3.7) Hop(n, &) = E(e)p(n, &),

(3.8 E(0) = Eo, @(n,0) = @o(n).

Let Hp . = (h(m, n; €)) nnen be defined as in (3.1) In this section we will analyze some
cases where the basic non-resonance condition (3.3) does not hold for the matrix Hy o, but it does hold for
some smaller matrices Hpr o, A" C A. More specifically, we will assume that there is some structure of
such smaller matrices. This idea leads to an inductive definition of classes of matrices N'© (my, A5 8¢),
which we introduce here.

The idea of analytic continuation in the parameter ¢ is absolutely crucial in the
further development of the method. This development addresses the so-called cases of
pairs of resonances. In this section we establish all estimates related to the analytic de-
pendence on the parameter ¢ needed later in the applications. On the other hand, the
analytic dependence itself helps to avoid certain ambiguities in the very definitions in this
section. Let us first recall Rellich’s theorem on the analytic dependence of the eigenvalues
of self-adjoint matrices:

o Let A, = (a,,,(€))1<mn<n be an analytic matrix function defined in a neighbor-
hood of the interval &, < & < &,. Assume that for € € (g1, &), the matrix A,
is self-adjoint. Then, there exist real analytic functions E,(¢), € € (¢}, €9), such
that for each €, specA, = {E,(¢) : | <n < N}. In particular, assume that for

some &, the matrix has a simple eigenvalue E®. Then, there is unique E,, (¢)
such that E,, (¢) = E©.

Defination 3.1. — Assume that Hy ¢ obeys (3.1)<3.5),
(3.9) el < &0, €0 :=€0(80, ko) = (80)’,
&y 1= min(2724”74/<g”, 839, 2—10(u+1)(4K0 log8071)781)),

For these values of €, we say that H . belongs to the class NV (mg, A; 8).
Let 0 < By < 1 be a constant. We assume that log8;"' > 232B; ' logicy . Introduce the
Jollowing quantities:

RV =), RO:=(5{")", u=2,3,...,
(3.10) )
8(()”) = exp(—(logR(“)) ), u=1,2,....
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Assume that the classes N m(mg, A'; 8¢) are already defined for s = 1,...,s — 1, where

s> 2.

Assume that Hp , obeys (3.1)+(3.4). Let my € Z". Assume that there exist subsets

MON) CA, S =1,...,5 — 1, some of which may be empty, and a collection of subsets
A (m) C A, me MY, such that the Jollowing conditions hold:

(@) my e MOD(A), me A (m) for any me M (A), s <s—1.
(b) MOA) N MEV(A) = @ for any s < s". For any (m', s') # (m", "), we have

A () 0 A (") = 9.

(€) For any s = 1,...,5 — 1 and any m € MY (A), the matrix Hy ). belongs to
N (m, A (m); 8). Note that, in particular, this means that for the set A (m), a $)s-
lem of subsets MOAD m) c A (m), 5" =1,...,5, and A (m) € AV (m),
me MY (A (m)) is defined so that all the conditions stated above and below are valid
Jor How) (). 10 the role of H ¢, 5" in the role of s, and m in the role of my.

(d)

(m/ + B(R(”/))) Cc AW (m/), Jorany m' € MO(A), s <.
(mo +B(R™Y)) C A.

(e) For any n € A\ {my}, we have v(n) # v(mp). So, E© (my, A; 0) := v(my) is a sim-
ple eigenvalue of Hy . Let E©¥ (mg, A; €), & € R, be the real analytic function such that
E® (mg, A; €) € specHy , for any &, E© (mg, A; 0) = v(my). Similarly, for any m €
M(A), and n e A (m) \ {m}, we have v(n) # v(m). So, E© (m, AV (m); 0) :=
v(m) 15 a simple eigenvalue of H ), o Let E(m, A (m); €), € € R, be the
real analytic function such that B (m, A (m); &) € specH A (my.e JOr any &,
ES (n, AY (m); 0) = v(m). Set

E =&y — Z 8(()5), SZI

1<d<s

If s = 1, we will show in Proposition 3.3 that EV (mgy, A; €) can be extended analytically
i the disk || < €o. For s = 2, 1t 1s required by the current definition that _for all complex €,
le| < &g, we have

(3.11) 385" < [ED (m, AV (m); &) — B (g, AV (mo); €)| < 85 1= 8,/8.

We show in Proposition 3.3 that in this case, E® (mq, A; €) can be extended analytically
wn the disk |e| < &9. Using induction we prove in Proposition 3.3 that this s true_for all s.
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For s > 3, we require that for all € € G with |e| < &;_9, we have

380" < [E“7D (m, AP (m); &) — ECV (g, AUV (mo); €) | < 857,

Jor m# my,
312 % [EC (m, A () £) = €7D (mo, AP (mo)z )] < 87"
5 = , ; 05 my); 8)‘ < 0g )

Jors =1,...,5s—2.

() For s =1, we have |v(n) — v(my)| > S0/4 for every m # mo. For s > 2, we have
() — v(m)| = (80" for every n€ AN (U<yey Unensy A ().

In this case we say that Hy . belongs to the class N (mg, A; 80). We call my the principal
point. We set s(mg) = s. We call my the principal point. We call AV (mg) the (s — 1)-set for mg.

Remark 3.2. — Note that in particular
ko(RV) > 10g(8) 7, 89 < (89M)",  5Y <eo/2.

Proposition 3.3. — Let E®) (m, A (m); €) be the same as in Defination 3.1, m € M,
s =1,...,5— 1. The following statements hold:

(1) Define inductively the functions D(-; AV m), 1 <¢ <s—1,me M(),D(; A) by
setting for s =1, D(x; A) = 4log80_1forx € A\ {mo}, D(mp; A) :=4log(§V)~';
and by setting for s > 2, D(x; A) = D(x; AV (m)) if x € A (m) for some
s <s—1 and some m € M(5) \ {mo}, D(x; A) = D(x; A*"D(mp)) if x €
ACTD(mg) \ {mp}, D(mg; A) = 210g(8((f))_1, D(x; A) = 410g851 fxe A\
(U <v<s Unertey A (). Then, D(:; A (m) € Grirmyres 1 <5 <5 — 1,
m € M(), D(;A) € Garuy, T = 4iglogd;', max,s, D(x; A) <
410g(85 ™)1, Wewill denote by D(-; A\ {my}) the restriction of D(-; A) to A\ {my}.

(2) For s =1, the matrix (E — Hp\(ny).c) 15 tnoertible for any |e| < &g, |E — v(mp)| <
8o/4. For s > 2, |e| < &,_y, and |E — EC™D(my, ACD(my); €)| < 28577, the
matrices (. — Hyw),y ), § <s—1, me M m = my and the matrices (E —
Ha 0o moy.e)s (B — Ha\ugy,e) are invertible. Moreover,

-1
[[B = Hyr0,0) ™ 1G] = 500000012001 00000 (5:9),
-1
(3-13) ‘[(E - HA<~"“(mg)\{mo},8) ](XJ)‘ = SD(~;A(’*l)(mo)\{mo}),T,lcU,\SI;A(J*I)(mO)\{mg}(xay)’

‘[(E - HA\{mo},a)il](xa)))‘ = SD(‘;A\{mo}),T,Ko,|8|;A\{m0}(xa)))'

(8) Set A,y := A\ {mo}. The functions
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| _ ,
KO (m, n, Apyi €, E) = (E—Ha, )" (mn), mne A,

QY (my, A; e, E) = Z h(mo, m'; €) K (m, 05 A, €, E)A(n, mo; €),
<3.14) m €A

mg)

FO (g, n, Ay 8, E) = D KO (0, m, Ayyi &, EYa(m, mo; €),  n€ A,

meA mo

are well-defined and analytic in the following domain,

le| < &y, ‘E—v(m0)|<80/4, wmcase s =1,

(3.15) le| < &,_o:=8y — Z 59,

1<y <s—2
|E—EC (mo, A V(mo);e)| <2857, s>2.
The following estimates hold,
QY (o, A; 8, E) — Q™ (img, A" (mg); &, E)|
< 40e2 exp(—1RE™V) < [e] (857)"
Jor le] < &g, |[E— B (mg, A"V (my); &) | < 285", s> 2,

(3.16) 10:.Q" (o, Az e, B)| < [e]'?, [95Q" (mo, Az e, B)| < el
E— U(m0)| <80/8,
10.QY (mg, Az e, E)| <lel'?,  |05Q" (mo, A; 6, E)| < |e]

Jor oo <2 and any |€| < &,

Jora <2 and any |e| < &,_1, |E — ECD (my, A7V (my); €)| < 385" /2,

Tk
|F(‘)(m0, n, Aj e, E)| < 4|e|'/? exp(—?om - mol),

|F© (mo, n, A; €, E) — F¥7V (img, n, A®™V (my); &, E) |
<le|'? CXp(—KOR('Y_I)),
Jorlel < &g, |[E—ED (mg, A7V (mo); )| <2857, 5> 2,

7
(3.17) [FD (mg, n, As 6, B)| < 4le]'/? exp(—%m - mO|>,

|0.FV (mo, n, A; &, B)| <8, %, [82FV (mo, n, As &, B)| < |e]'?

E— U(mo)| < 30/8,

Jor oo <2 and any |€| < &,
|0.F (mo, n, Az e, )| <&, %, [02F (mg, n, A; e, E)| < |e|'/?

E —E“D (mo, A0 (mp); €) | < 385" /2.

Jora <2 and any €| < &,_1,
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(4)
(3.18)

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)
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For s=1 and |e| < &y, the equation
E=v(m) + QY (m, A; &, E)

has a unique solution ¥ = EV (my, A; &) in the disk |E — v(mg)| < 8,/8. For
5>2 and |e| < &,_,, Equation (3.18) has a unique solution E = E© (my, A; &)
in the disk |E — BV (my, A97D (mo); €)| < 385" /2. This solution is a simple
zero of det(E. — Hy ¢). Furthermore, det(E. — Hy o) has no other zeros in the disk
|E — EC"D(m, A"V (m); )| < 285", The function EY (my, A; €) is analytic in
the disk |e| < &, and obeys

|E© (o, As ) = B (mo, A (mo); €)| < lel (857"),
[EY (mo, A; £) — v(mo)| < [e].
Finally,
[v(mo) + QY (o, A; &, E) — EY (o, A; €)| < |e]|[E = EV(my, A; &)|.

For s =1, |g| < &, and ") < |E — EV(my, A; €)| < 8,/16, the matrix
(E —Hy ) is invertible. For s > 2, |e| < &,_, and (8")* < |E — EY (my, A; €)| <
238“”, the matrix (E. — Hy ) s tnvertible. Moreover,

‘[(E — HA,e)il](xJ)‘ < Sb(:A)Toko.lel: kA (X5 9).

The vector ¢ (A;€) := (9 (n, A; €))en, given by @ (mg, A;e) = 1 and
@Y (n, As €) = —FO(mg, n, A; €, EO (mo, A; €)) for n my, obeys

Ha 0V (A e) =EV (mg, A; )" (A €),

7
|0 (n, As €)| <4le|'? exp(—%m - m0|), n# my,

@ (my, Az &) =1.

Furthermore, let P(my, A; €) be the Riesz projector onto the one-dimensional subspace
Co Y (A;€) (see (3.58)), and let 8,y := 8y )sen- Then, ||P(mo, A; €)8,, 1l > 2/3.
Finally,

|00, As €) — 9“7 (n, AV (mo); €)] < 216l (857"), ne ATV (mo).

Progf: — The proof of (1)—(5) goes simultaneously by induction over s, starting
with s = 1.
We will prove now (1)—(5) in the case s = 1. Let E € C be such that

(3.24)

|E — v(mo)| < 80/4.
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Set

(3.25) H, =E—H,

m mg € *

Clearly, D(:; A,,) € Ga, Tuo- Set D(x; A) = D(x; A,,)) := 2logd; " if x € A,,, and
D(my; A) = 2log(8{")~". Due to condition (d) in Definition 3.1, one has 1, (m) > R®.
So,

D(mo; A) =2log(8") " = 2logexp((logR™)?) = (logR")* < (RM)"”?

< MA(mo)l/S-

Hence, D(-; A) € G 1.4,- This finishes the proof of (1) in case s = 1.
One has |H, . (n,n)| > 8p/4 for each n € A,,,. Due to Lemma 2.15, we have for
|8| = 5'_:0)

m

-1
‘HA’"() (m, n) } = SD(5 Aug) Tokoslels A (m, n).

Due to (2.30) from Lemma 2.9, one has Q" (mg, A; &, E)| < |¢]*2. It follows from
Cramer’s rule that K" (m,n, Ayy; e, E) is analytic wherever it is defined. Thus,
K (m, n, Ay e, E), Q(l)(mo, Aj; g, E) are analytic in the domain

(3.26) lel <&,  |E—v(m)|<d/4.

Using Cauchy estimates for analytic functions, one obtains

1 ,
(3.27) 0.0 (mo, A; 6, E)| < §ég'|s|5/2 < |e|'?,
provided

(3.28) le] < &0, |E — v(mp)| < 8/8.

The verification of the rest of (3.16) and (3.17) with s = 1 is completely similar. This
finishes the proof of (2) and (3) in the case s = 1.

Let [E — v(mg)| < 80p/4. Due to the Schur complement formula, H, :=E — Ha
1s invertible if and only if

(3.29) Hy=FE — v(m) — Z (—&h(mg, m))KD (m, n, A, €, E)

m,nEAm0

x (—&h(n,mg)) # 0.

Moreover,

—1 —1 Tr—1 —1 ] ~ 1
(3.30) %Xl _ HA],,O + Hf\@lrl’QHQﬂFQ’IHA’"O _HAW‘Q??QHQ '
—Hy Ty H, H;,
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In other words, if |E — v(my)| < 8y/4, then E € spec Hy . if and only if it obeys
(3.31) E=v(m) + Q" (my, A; &, E).

To solve the Equation (3.31), we invoke part (2) of Lemma 4.4 with

¢Po(2) =0, 20 =0, 0y = &o,
(3.32) Sz w) = QW (g, A; 2, v(mg) + w),
lw—¢o(2)| <80/4,  po=250/4.

Note that

(3.33) Sz, w)y=w ifandonlyif E=v(m)+ w obeys Equation (3.31).
One has

(3.34) I (2 w) — go(2)| = |Q (o, A; 2, v(mo) + w)| < ]2

for any |w — ¢o(2)| < 80/4.
Using Cauchy inequalities for the derivatives, one obtains
(3.35) |0uf (2o w)| < (80/8)"|e]* < 1/2  for any |w — @o(2)| < 80/8.
As in part (2) of Lemma 4.4, set

M, = sup|@o(2)| + po + sup|f (z, w)|,
K4 Z,W

_ 9% P
101°M3 (1 + log(max(100, M,)))?’

M, = max(1, M), £

We have My < I, M, = 1. This implies &, > 58 =gy > |¢|*?. On the other hand,
If (z, $0(2)) — ¢ (2)| < |&|*%. Thus, conditions («), (B) from the part (2) of Lemma 4.4
both hold. Therefore the equation f(z, w) = w has a unique solution w = w(z). Set
E® (mg, A; 2) := v(mg) + w(z). The function EV(my, A; 2) is defined and analytic for
|z — zo| < €9. Moreover,

v(my) + QY (mo, A; 2, EV (mo, A; 2)) = EV(my, A; 2),

(3.36) | » o
[ED (o, A 2) — v(mo)| < e < [e](8;”) "

Clearly, EV(mg, A;€) is a zero of det(E — Hy,,), and at ¢ = 0 it obeys
E® (mg, AV (mg); 0) = v(mg). Furthermore, det(E — H, ) has no other zeros in the
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disk |E — v(mp)| < 383" /2. Note that
|E — v(mp) — Q" (mo, A; 6, E)|
= w —f(e, w)| =|[w =/ (e, w)] = [wo —/ (&, wy)]|

1
(3.37) > mind, [w —f (&, w)]lw — wol = 5w — w|

! Q)]
= §|E —EY (mo, Aj €)

wozE(l)(mO,A;s)—v(mo), w=E—v(m).

Combining (3.30) with (3.37), one concludes that ||[(E — Ha,)7'|| < Cy,,|E —
E® (mg, A; €)|7'. Hence, |det(E — Hyo)|™' < Cu,,.|E — E® (mgy, A; €)|7!. Therefore,
E® (mg, A; €) is a simple zero of det(E — Hy ).

To verify (3.20) note that

(3.38) [v(mo) + Q" (mo, A; &, E) — EV (mo, A; 6)|
= Q" (my, A; £, E) — QP (my, A; &, EV (my, A £))]
< [sup}BEQl)(mo, A e, E)mE —EY(my, A; 8)|.

Recall that |3;Q" (mg, A; €, E)| < |&]| if [E—v(mp)| < 8/8. This proves (4) in case s = 1.
Let 5" < |[E — EV(my, A; €)| < 8,/16. To verify (5), we apply Lemma 2.14
with Ay :={my}, A, := A,,. One has

lv(me) — E| < [v(mg) — EP(mo, A; &) + |E = EV(mo, A; ©)|
<¢g + 80/16 < 30/8

Therefore, the matrix H,,, is invertible and

(3.39) [ Hx! (mm)| < sy Ty el

mg mo (m, n) :

Furthermore, using (3.20), one obtains
[Ho| = [H(mo, mo) — To 1 Hy! Tro| = |E = v(mo) — QW (mo, A; 6, B)|
> |E—EV(mo, A; )] — [v(mo) + QP (mo, A; &, E) — EV(my, A; 6)|

> |E—E® (mg, As &)| — |e]|E—EV(my, A €)|

(3.40) 1
> E}E —EO (mg, As &)

> (57)'/2,
|H,| ™" < 2exp(D(mg; A)).
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Thus, all conditions of Lemma 2.14 hold. So, H, is invertible and

(3.41) | H 3 (m, )| < 5p.7e.00:0 (2, 7).

This proves (5) in case s = 1.

Assume now that s > 2 and statements (1)—(5) hold for any matrix of class
N (m, A (m); 8) with 1 < s <s5— 1.

Note first of all the following. Let ¢, E € G be such that |¢] < ¢_9 and
IEC™D (mg, AYV(mp); €) — E| < 287V, Assume that s > 3. Let m € M~V be arbitrary,
m # my. Then, using (3.12) from condition (e) in Definition 3.1, one obtains

(3.42) [EC™D (m, AV (m);e) — B[ <8572 +2807" <2857,
. |E(S—1)(m, A(J—l)(m); 8) — E‘ > 38(()3'—1) _ 23((]3._1) _ 8(()5—1) . (8(()5_1))2.

Similarly, let 1 <§ <5 — 2, m € M(s') be arbitrary. Then, using (3.12) from condition
(e) in Definition 3.1, one obtains

(3.43) [EC (m, AV ) £) — B[ < 807" + 2570 < 380772,
. |E(S/) (m, A(-Y/)(m); 8) — E‘ - 5(()5’)/2 _ 23(.&—1) > 8(()5,)/4 - (3((]3,))2.

This means that the inductive assumption applies to H, ), . in the role of Hy . and to
the value E, so that (1)—(5) hold. In particular, each H , ¢).(, . := E—=Hy e, . m # mo
is invertible. Furthermore, obviously, the inductive assumptions apply to H 1 (). 10
the role of H, . and to the value E, so that (1)—(4) hold. In particular, H s g\ mote :=
E — H A6 (up)\pmo}.¢ 18 invertible. Moreover,

-1
}HA«-’um),s (x.9) { = DA ), Tkl Ay 60
(3.44)

—1
| H oyt o poge B = DA D G\ i T A6 D g o) (%5.9)

For s = 2, one arrives at the same conclusions using (3.11) instead of (3.12). Due to
(3.19), [EC~D(mgy, A6V (mg); &) —v(mp)| < |&| < 8y/64. Recall also that |v(n) — v(mg)| >
o/16 forany n€ AN\ (U, <y, U ery A (m)). This implies |E—v(n)| > 8,/32 > 87 for
any n€ A\ (U v, Upermis) A (m)) since |[ECD(my, A6V (my); €) — E| < 2807V <
80/64. Let again A,, = A \ {m}, D(x; A,,)) = D(x; A (m)) if x € A (m) for some
s <s5—1and some m € M(s'), m# my orif x € A"V (mp) \ {mo}, D(x; A,,) = 4log80_1;
otherwise just as in part (1) of the current proposition. Due to the inductive assumptions,
D(; AY(m)) € gAw)(m)YT,KO, 1<y <s—1,me M(), m=#mgy,and also D(-; A“"D(m) \
{m}) € GAC1(mp)\(mo) Toko- Due€ to Lemma 2.10, D(-; A,,) € QAMO,T,,(O. Due to condition
(d) in Definition 3.1, one has w, (mp) > R®. So,

1/5

D(mp; A) = 4log(80") ™ = 4logexp((logR®)?) = 4(logR¥)* < (RV)

< MA(mO)1/5-
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Hence, D(-; A) € Ga 1, Due to the inductive assumption, max,., D(x; A (m)) <
log4(8((f/_l))_1 for any § and any m € M(s'). Due to the definition, D(m; A® (m)) =
log 4(8 ")~V if m € M(s). Thus, max,.,, D(x; A (m)) <log4(8{")". This finishes
the proof of (1) and (2).

Due to Proposition 2.16, Ha, . =E —Hjy, . is invertible and

mg €

(3.45) ‘HXI (X,)/)| =D M), Tok0,203 Ay (65 0)-

mg €

Just like in the case s = 1 one concludes that

(3.46) QY (mo, As e, E)| < le]*?,  where
QY (my, Ase,E) =" > h(mg, MK (m, n, A, &, E)h(n, m),
m,neAnZO

KO (e, Agi 8, E) i=H) (x,9).
The functions K (m, n, A, e, E), Q(” (my, A; €, E) are analytic in the domain
(3.47) el <&, |ECTV(mo, ACTV(mp); €) — E| <287V,
To verify the first estimate in (3.16), we write

(3.48) Q“)(mo,A;s,E):zsz[Z—FZ—F oo+ Y :|/l(m0,m)

m,neN | m,n€No meN|,neNo meNo,neN
—1 .
X HAmO (m, n)h(n, mo) = Ql,l + QQ’Q + QLQ + Q?,l’

where A; := A D(my) \ {mo}, Ay := A,y \ Ay = A\ A“"D(my). We invoke the Schur
complement formula (2.3) with these A}, Ao,

L[ M MGG Ty H Y <M Y
Am0 _HglrleTI H;l .

For x,y € A, one has

-1 [yl
(3.49) HAmO () = A(J—D(mo)\{mo},e](x’y)
-1 -1 -1
+ [ A(”’l)(mo)\{m[)},ﬁF1’2H2 FQ’lHA(“’I)(MO)\{'"()}J](x’y)’
T, —1 .. .
where Hy := H o\ A6 (o) e — FQ,1HA(J_1>(WO)\{WO}’€F1,Q. This implies

(3.50) QY (mo, A; &, E) — Q™ (my, A“"V (mo); €, E)|

582 Z exp(—K0|m0—m| —K0|n—m0|)

m,nEN
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—1

X ‘[,HA(““(rrlo)\{m}»‘9
+ Qoo +1Qy 0 + [Qo.1]

=R+ 1Qool + Q)0 + Qo]

Once again, since all conditions of Lemma 2.14 hold, one can invoke (2.37).
Using the estimate (2.37), combined with the estimate (2.16), one obtains

F]qQHQ_IFQ’lHil ](m, ﬂ)‘

AG=D (mg)\{mo},&

(3.51) R <lel” Y exp(—kolmy — m| — ioln — my|)
m,neN|
X Z |8|q_1 Z WD,K()(V)
>3 rd.2)

Y€ D, T,k (mJquyA)

<lel* > exp(—rolmo — m| — koln—mol) Y le]”!

mneN| 7>3

15 —
X Z CXp(—EK()”)/” +maX(D()/)74TKo_l)>’

1,2
yeFE,.T,)KO (m,n5q, Apygy)

where Fg,’%)m(m, nk,A) =, Ff)ﬁ;%ﬁﬂ“ (m, n; k, A), Fg”%’z()(m, n; k, A) stands for the set

of all y € I'p 1, (m, n; k, A) such that y =y, Uy/U--- Uy, with y; € I'p, T (Ay),

¥/ € I'p, 1.4y (Ay), p # ¢. Note that for any m, n and any y € Fg”?m)(m, n; q, A,,), we have

D(y) < n;axD(x) < 10g4(8((f_1))_1 = (R(“_l))wr + 2log?2,
XFmg

lmo —m| + |7l + |7 — mo| > 21 pc—1 (g (o) > 2ROV

(the second estimate here is due to condition (d) in Definition 3.1). Combining these
estimates with (3.51), one obtains

15
3.52) Rio<lef? Jelr! 3 exp(—EKOH)/H)

9=3 y €l (mo,mo;q+2,A), [l |=2RC—D
|
2 —1 s— 1
<le| Z|g|q exp(—xoR"™) Z exp(—ZKQH)/”)
7>3 yel'(my,my;q+2,A)

< le? exp(—xkoRV) < el (857")"

(here we used (2.25) from Lemma 2.6 and |e| < &). The estimation of the rest of the
terms in (3.50) is completely similar. So, the first estimate in (3.16) holds. The second
estimate in (3.16) follows from the first one combined with the inductive assumption and
Cauchy estimates for analytic functions. This finishes the verification of (3).
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Let us turn to part (4). Suppose |[EC™V (mg, A“"V(mp); &) — E| < 28“7D. Due to
the Schur complement formula, H, := E — H, is invertible if and only if

(3.53) Hy=FE — v(m) — Z (—eh(mg, m))KY (m, n, A,,; €, E)

m,nEAmO

X (—&h(n, my)) # 0.

In this case,

Hy + HX;UFLQI:I;]FMHX] _HX:,OFL?I:IEI :|

3.54 7—[_1 = "o ol ~ m ~
( ) A { _H2 IFQ)I%AI H2 1

In other words, if |[E¢~P (mg, A¥"V (my); €) — E| < 8“7V, then E € spec Hp  if and only
if it obeys

(3.55) E =v(my) + QY (my, A; &, E).

To solve the Equation (3.55), we again invoke part (2) of Lemma 4.4. We set

¢o(2) :=ED (mo, AC V(o)1) —v(mg),  z:=e,  z0:=0,
w:=E—v(imy), 0y = &1,

S(zw) =QY (mg, As &, w~+ v(mp)),

|w—¢>o(z)| < 286D, po =807,

(3.56)

Note that due to Equation (3.18) with (s — 1) in the role of s and the first estimate in
(3.16), one has

I/ (z ¢0(2)) — ¢ (2)|
= [v(mg) + QY (mo, A; 2, ECV (mg, A"V (my); 2))
— B (g, AV (my); 2)|
= |v(mp) + Q" (mg, A; 2, EO7 (mg, A" (my); 2))
— [v(mo) + Q%™ (mg, A7V (mo); 2, EC™" (mg, AUV (my); 2)) ]|
< |8|(8é’_1))6.
As in part (2) of Lemma 4.4, set

M, = sup|o(2)| + po + sup|f(z, w)|,

92 9
04 Py

M, = 1, My), &= '
| = max( 0) ! 1019M? (1 + log(max(100, M))))?
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.. s67y5 -
One has My < ¢y + po + &9 < 1. This implies &, > 010—12) > (88 1))6. Due to part

(2) of Lemma 4.4, the equation f(z, w) = w has a unique solution, which we denote
by w = E®(mg, A; 2) — v(mg). The function E®(my, A; z) is defined and analytic for
|z — 20| < 09 — €1, and it obeys Equation (3.55). Note that oy — &, > ¢&,. Due to part (2)
of Lemma 4.4, one has

[EY (mo, A; 2) — ECD (mg, AV (my); 2)|
< 10*(1 4 log(max(100, M))))*[f (2, $0(2)) — do(2)| < lel(857")’.
This validates (3.19). Next,
(3.57) |v(m) + QY (my, As &, E) — E© (my, A; )]
= |QY(my, A; &, E) — QY (mo, A; &, EP(mg, A; ©))]
< [5up|8:QY (o, A: £, B)|]|E — E9 (1@, AV &)
< lel|[E—=EY (@, AY; )],

which validates (3.20).

The validation of part (5) goes just the same way as for s = 1. Thus, (1)—(5) hold
for any s.

We will now verify (6). Since E = E (m, A; ¢) is a simple zero of det(E — H, ),
the operator

(3.58) P(mo, A; &) := Res(E — Hy ,)

- |
E=E® (mg, A;¢)

is a one-dimensional projector on the eigenspace corresponding to E (my, A; €), which
is called Riesz projector. Due to (3.54), one has

(E—Ha) (1, mp)
=—H, T1.H,

mgy s€

.59 =— " Ml (0 mh(m, mo; ) (B = vimy) — QV(mo, As e, E))

me Ay
= —F(mg, 1, Ay €, E)(E — v(mo) — Q¥ (mo, A3 6, E)) ', n#my,
(E—Ha.) ™ (mo, mo) = (E — v(mo) — Q¥ (mo, A £, E)) .
Hence,
(3.60) P(mg, A; €)8,,.
= Res[(E — v(m) — QV(my, A; 6, E)) " 9V (As ¢, E)]

‘ E=E® (mp,A;e)’
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where @¥(Aje,E) = (9V(n, As &, E))uen, 9V (mo, Ase,B) =1, ¢V(n, A;e,E) =
—FY(mg, n, A; €, E), n # my. Recall that (E — v(my) — Q¥ (my, A;e,E))~" has a sim-
ple pole at E = E® (my, A; ). Therefore,

(3.61) P(mo, A €)8,,.

= Res[(E — v(mp) — QY (mg, A; &, E) DAz e),

—1
) ] ‘E:E(A)(m[),A;S)QD

where @@ (A;e) is defined as in part (6). Since Res[(E — v(m) — QY (my, A;
&, E)) Mgk (o p:6) 7 0, P(mo, A; €)8,,.. # 0. Hence, P(mg, A; €)8,,.. is an eigenvec-
tor of H, corresponding to E (my, A; €). Therefore, 9)(A; &) is an eigenvector of
H, . corresponding to E¢(my, A; €). The estimate in (3.22) follows from (3.17). The
identity in (3.22) is just the definition of @ (my, A; €). To verify || P(mq, A; €)8,, || > 2/3,
note that |95 (E — v(mp) — QY (mg, A; &, E))| < 3/2. Hence,

(3.62) [Res[(E — v(mg) — QY (my, A; €, E)

)_1] |E=E(5)(mg,1\;€)|
= (30 (E — v0mo) = Q7 (mo. Az e B)) [y nol > 2/3.

This implies the desired estimate. Finally, using (3.17) and (3.19), one obtains

(3.63) 0¥ (n, A &) — UV (n, ATV (my); €)|
< sup‘F(‘)(mo, n,A; e, E) — F(‘_l)(mo, n, A" V(my); e, E)‘
E

+ 25up|dpF| [ED (o, A; &) — BV (mg, AV (m); )|

< el exp(—koRV) + e (87 7") < 20el (87")
for any n € A“"V(my), as claimed in (3.23). 0

Using the notation of (3.1)~(3.4), assume that the functions A(m, n, €), m,n € A
depend also on some parameter k € (£, ky), that 1s, h(m, n; €) = h(m, n; €, k). Let
(3.64) Hy o := (h(m, n; &, k))m,neA'
Assume that H , ; belongs to the class N (mg, A; 8y). Denote by K (m, n, Ny &,k E),
Qf“) (mo, A; €, k, E), E¥(my, A; e, k) the functions introduced in Proposition 3.3 with
H, ¢ in the role of Hy .. Later in this work we will need estimates for the partial deriva-
tives of these functions with respect to the parameter £.

Lemma 3.4. — (1) Let Hy = (h(x,; k))syen be a matrix-function, k € (ki, ky). Let
EeC\ Uke(kl,kg) spec Hy, so that (E.— H,) ™" is well defined for k € (ki, ky). If Hy is C'-smooth,



260 DAVID DAMANIK, MICHAEL GOLDSTEIN
then (E. — Hy) ™" is a C'-smooth function of B, k
%(E—Hp ™' =(E—-Hy '9H(E—-H)™",
(3.65)
d(E—Hy)™'=—(E—-Hp™
IfH, is C2-smooth, then (E. — H;) ™" is a C*-smooth function of B, k and
3 (E—Hy ™' =2(E —Hy) ™ 9H(E — H) '8, Hy(E — Hy) ™'
+ (E—Hy ™9, H(E—-Hp) ™",
(3.66) d ((E—Hp) ™' =(E—-H) '9;Hy(E —Hp ™
+ (E—Hp) 7?8, H,(E —Hp) ™,
d(E—Hy ' =2E—Hy ™.
(2) Let Hy ¢ be as in (3.64). Assume that for any ¥, € (E/, E"), we have
(3.67) ‘(E - HA,s,k)_l(xJ))| < Spea), T el:a (6,0), %, 9 €A,

where D € G 14, Assume also that h(m, n; €, k) are C*-smooth functions that for m # n obey
|0%h(m, n; €, k)| < Boexp(—kolm — nl|) for |o| < 2. Furthermore, assume that there 1s my € A
such that |0*h(m, m; €, k)| < Boexp(kolm — mg|'®) for any m€ A, 0 < || < 2. Then, for any
multi-index | B| < 2, we have

(3.68) |07 (£ — Ha o)™ (m, )|
< (3By)# exp(|Bliolm — mol* YD 1o e (1 1)y mon € A;

see Lemma 2.20.

Proof: — (1) Let ky € (k, k) be arbitrary. For sufficiently small |k — 4|, one
has ||H; — Hy, || < M(ko) |k — k|, where M(ky) = 1 + ||0:Hylr=4 ||. In particular, ||H, —
H,, 11 (E — Hy,)) 7| < 1/2 for sufficiently small |k — &|. Hence,

(E—Hy~' — (B —Hy)™

=Y (E—Hy) '[(H, - H)E - H)™'|

>1

= (E—H,) "' (H;, —H)(E — H) ™' + Rk, ko),
(3.69) HR(/'C’ ko) ”
<3 N @® = H) T — H )
t>2

< @ = H) I = Hy 12 )27 < Clho) (k — ko),

>0
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where C(ky) = 2M(ko)?||(E — Hy,)7'||>. This implies the first identity in (3.65). The
derivation of the other identities is similar.

(2) This part follows from part (1) combined with Lemma 2.20 and with the defi-
nitions in (2.30) of Lemma 2.9. U

Lemma 3.5. — Assume that Hy ¢, € N'© (mg, A; 80). Then,

(1) If (m, n; &, k) are C'-smooth_functions of k, then K (m, n, Ny €,k E), Qfs)(mo, A;
e, k,E), E9(my, A; e, k) are C'-smooth Junctions of all variables involved.

(2) Assume that h(m, n; €, k) obeys conditions in part (2) of Lemma 3.4. Then, foro =1, 2,
we have

(3.70) ‘35@” (mo, A; &, k, E)| < B3B0)*1&1DD A\ tmgumo ). Tk e1: A\ o) 0
< (3By)*|e]*”,
(3.71) |87 EY (mo, Az &, k) — 8 v(mo, )| < (3Bo)*Je| "%,

Progf. — It follows from Lemma 3.4 that K (m, n, A, &k E) is a CG'-smooth
functions of all variables involved. Therefore, Qf’”)(mo, A e, k, E) is C'-smooth. Due to
the implicit function theorem, EY (my, A; €, k) is C'-smooth.

Using (3.65) from Lemma 3.4, (3.13) from Proposition 3.3, and (2.30) from
Lemma 2.9, one obtains

(3.72) 10,Q9 (mo, A; 6,k E)|

O Y hGmomize KB —Hy, o) (m,n)h(ny,ny; £, k)

m’,ﬂ’eAmo

5 3/2
=< 3BoD b a\mo)). Tuco. el A\ o} (720) < 3Bole]™".

This verifies (3.70) for « = 1. The verification for o = 2 is completely similar.
Differentiating Equation (3.18), one obtains

(3°73) [akE(j) (mO’ Aa g, k) - akv(mOa k)](l - aFQ,(J) (m07 A9 g, ka E)lE:E(f)(mo,A;é‘,k))
= BEQfS)(mO, A; e, k, E)|E:E<s)(m0,A;a,k)3kU(mo, k).

Combining (3.73) with (3.70), and taking into account the estimate for |9zQ“ (mg, A;

g, k, E)| from (3.16), one obtains the estimate (3.71) for « = 1. The derivation for @ = 2
1s completely similar. U

Let Hp e, j = 1, 2, be two matrices belonging to the class N (my, A, ) with
the same principal point my. Let v(n,7) be the diagonal entries of Hy, .. We assume that
v(n, 1) =v(n,2) forne Ay N Ay. Let E(J)(Aj; ¢) be the eigenvalue defined by Proposi-
tion 3.3 with Hy . in the role of Hy ¢, = 1, 2. One has the following:
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Corollary 3.6.
(3.74) [E© (o, A1; &) — B9 (g, As; ©)] < le](85) .

Proof: — Note first of all that my +B(R®) C Ay N A}. Let 9 (A; €) be the vector
defined in part (6) of Proposition 3.3 with Hy, . in the role of Hy .. Set ¢ (Ay; €)(n) =
PV (A; e)(n)ifne AyN AL, and @9 (Ag; €)(n) = 0 otherwise. Since my+B(RY) C AyN
A1, one obtains using (3.22) from Proposition 3.3, [[(E®(A}; &) — Ha, )@W(Ag; o) <
exp(—“2R"). This, along with (3.22) again for normalization purposes, implies

(3.75) dist(EY (o, Ay; €), specHa, ) < exp(—llc—gR(s)).

Recall that due to Definition 3.1 and (3.19) from Proposition 3.3, there exists Aj(-sfl) such
that H, v , € N0 (mg, AP, 8y), and

AP
(3.76) [EQ (o, A ) — ECD (mo, AV 6)| < el (857"), j=1,2.

Using induction and combining (3.75) with part (4) of Proposition 3.3 and with (3.76),
one obtains the statement. 0

4. Implicit functions defined by continued-fraction-functions

In this section and later in this paper we use the following notation:

(4.1) D(z".RY), V=" 4" ..., el j=1,2,.. .k
(0) ) ©) (V)]
(4.2) R”=(R",Ry",....R;”), R" >0

for the polydisk [T,_i, D(z”, R{"”) C G, where D({,) ={z€C': |z —¢| <1}, ¢ €
C!, r>0;

4.3) S(a, B; p) = {z €C':Reze(a, B),|Imz < ,0}, a<pB;p>0;
(4.4) L(g, p1, po) ={(z.w) € C”: z€ S(e, B; p1), |w — g(R2)| < po}
<4'5) LR@? pO):L(g’ L1, PO)H(RX R)’

where g(x) is a real function defined on the interval (&, 8) (Lr(g, po) obviously does not
depend on p));

(4.6) E(g,D,p):{(z,w)eCQ:zeD,|w—g(z)}<p},

where g(2) is a complex function defined on the domain D.
We start with the following quantitative version of the implicit function theorem
for complex analytic functions.
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Lemma4.1. — Let ¥(z, w) be an analytic function defined in the polydisk P (2, wo; 10, 10) :=
D(z0,10) X D(wo, ry). Assume that the following conditions hold: (a) F(zy, wy) =0, (b) T :=
|8wF|m),w0)| > 0. Setr =17 /(16My), 1 = ‘L'Tg/(QMO), where Mo := Supp . o0 [F (2 w)I.
Then, for any |z — zo| < r, there exists a unique w = ¢(2), |@(2) — wo| < 7" such that
F(z, ¢ (2)) = 0. Moreover, ¢ (z) is analytic in the disk D(zo, 1) = {2: |2 — 20| < 7}.

Progf. — Due to Cauchy estimates for the derivatives, one has |32 F| < 8Mgr;” for
any (z, w) € D(z0, 1) x D(wy, 19/2). This implies

‘F(ZO, w)} = ‘F(ZO, w) — F(zo, w0)|

1 ‘
= |8wF\<z(),w0>||w — wy| — 5( sup }Bin|>|w — wy|?

lw—wo|=ro/2
> T|w — wol/2
for any |w — wy| < t72 /2M,. This implies, in particular, that wy is the only root of F(z, -)
in the disk |w — wy| < T7;/2My. Once again, due to Cauchy estimates for the derivatives,

one has |0.F| < QMOrO_1 for any (z, w) € D(z0,10/2) x D(wy, 1p). Hence, for any |z —
20| < rand any |w — wy| = t72/(2My), one has

F(z, w) — F(z, w)| S( sup IBZFI)Iz—zol

|z=z0l<r0/2,lw—wo| =<7
< 9Myrry!
=1"/8
=1|w —wy|/4 < ‘F(zo, w)|/2 < |F(z0, w)‘.

Due to Rouché’s Theorem, the function F(z, -) has exactly one root in the disk |w —wy| <
112 /2M, for any |z — 20| < r. Denote this root by ¢(z). By the residue theorem with
¥ =112 /2M, one has

1 F,(z, w)

— —w T dw =
27 i UGy O

and the analyticity of ¢ (z) follows. O

We proceed with the derivation of a somewhat stronger version of this statement,
where condition (a) is being replaced by (a) |F(z0, wo)| < € with sufficiently small €. For
that we need the following version of the Harnack inequality.

Lemma 4.2. — Let [ (x) be analytic in D(z0, 10) and non-vanishing in D(z, 1) with 0 <
n < ry. Assume that

K:= sup{V(z)| 1 2€ D(z, ro)} < 00.
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Assume also that

4.7) )| 2 K.
T hen,

()| < exp@)]f (D]
Sor any z, ¢ € D(z0, 12), 12 = (1 4 log(max (100, K))) 7.

Proof. — Assume first that K > 100. The function u(z) :=logK — log |/ (2)| is har-
monic and non-negative in D(zo, 7). Applying Harnack’s inequality to it in D(z, 1)
yields

[1 —2(1 4+ 1ogK)*2](logK — logV(zO)‘)
<logK —log|f ()]
<[1+ 301 +1ogK) 2] (logK — log|f (20) )

for any z € D(z, r2). Hence, using (4.7) and K > 100, this implies that

—2 —log|f (20)| < —log|f ()| <2 —log|f (2)]

for any z € D(z, 79), and the lemma follows.
Assume now that K < 100. Set f(2) = Af(z) and A = 100/K, so that

K:= sup“?(z)| 1 2€ D(z, ro)} = 100.

Then, If (z0)] = 100/K2 > 1/100 = 1/K. Thus, f(2) obeys the condition of the lemma
with K = 100. By what we saw above, this implies

F(O)] < exp@|f(2)]

for any z, ¢ € D(z0, 1), r, = (1 +log 100)~?r,. Replacing heref(-) by Af(-), one obtains
the statement. ]

Corollary 4.3. — Let F(w) be an analytic function defined in the disk D(wo, ry). Assume that
7o := [0y}, | > 0. Assume also that My := supp_, ., [F(w)| < 0.

(1) If |Fwo)| < 7rn7t/(200(1 + log(max(100, My)))?), then there exists
w;, € D(wy, 2r) with r, = 100(1 + log(max (100, MO)))QTO_llF(w())| such that
F(w;) = 0.

(2) If |F(wo)| < (min(1,7))*(min(1, 79))?/(200max(1, My)(1 + log(max(100,
Mo)))?, then F(w) # O for any w € D(wy, ) \ {w}} with 7, = min(1, 7p) x
(min(1, 79))?/(8 max(1, My)). Moreover, wy, is a simple zero of F.
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Proof. — (1) Set r, = (1 + log(max(100, My))) 2. One has r; < ry/2, 1 < 1,/8.
Set Mjj = maxy_y=, [F(w)], M = max,,_y,=, [F(w)|. Due to the Cauchy inequality,
one has M| > ry7. So, |F(w;)| > n7, for some |w; — wy| = rp. Set Ag = (rp7oM}) /2,
g(w) ;== AoF(w). Then,

M, := sup |g(w)| = LMy,

weD(wo,m)

lgw))| = Aorto = 1/(AMj) = 1/M.
Note that,
g |[gwo)| ™" = |[Fw) ||[Fwe)| ™" > nwo|Fwe)| ™ =100 > exp(4).

Due to Lemma 4.2, g(w) must vanish at some point w;, € D(w,, ;). Clearly, w; €
D(wq, 2r1).

(2) Assume now that |F(wy)| < min(1,7)?min(1, 75)*(200max(1, My)(1 +
log(max(100, My))))~2. Then, 7, < /2. Using Cauchy inequalities, one gets for any
w € D(wy, 1)),

10, F] = |00 Fly=uy| — sup |3i,wF‘ lw — wo| > 79 — 41, Moy > 7/2
D(z0,70/2)

and
102 ,F| < 41" M.

Let |w’ — wy| < 7. One has
[F(w)| = [F(w’) = F(w)]

1
= |awF|w=w6||w/ - w(/)} — — sup |8
D(wo,7y)

2

w,w

2
F|w’ = w

M, 2
> 1o|w’ — wy|/2 — 7}w/ — wy|
0

- ’ / To MO,
> |w' —wy|( = — =1
2 7
0

> 0,

provided that w” # wy,. Moreover, this calculation shows that wy, is a simple zero of F. [
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Lemma 4.4. — (1) Let F(z,w) be an analytic function defined in the poly-disk
D(z0, wo; pos10) :={z2€ C:|z— 20| < po} X {we C:|w— wy| < r}. Assume that the
Jollowing conditions hold:

(a) 10 : =0, F

(b)

‘(50.11)0)| > 0’

le(min(l, 70))>

~ 10°M(1 + log(max(100, My)))?”

‘F(Zo, w0)| =€

71 = min(1, 79), M, = max(l, M), where M, := supp(mwo’pm))|F(z, w)|. Set r =
€ (min(1, po, 70))*/M,. Then, for any |z — 20| < r, there exists a unique ¢ (z) = w, |w — wy| <
7 := 400(1 + log(max(100, My)))*(t)) '€, such that F(z, w) = 0. For z = z, we have
|6 (20) — wo| < 400(1 + log(max (100, My)))?* (7)) ™" |F(z0, wo)|. Finally, ¢(z) is analytic in
the disk D(zg, 7).

(2) Let ¢po(2) be an analytic function defined in the disk D(zy, 00), 0 < 09 < 1, and let
S (z, w) be an analytic function defined in the domain L(¢py, D (20, 00), Po), 0 < po < 1. Assume
that the following conditions hold,

(@) sup,,, 1./1 < 1/2,

(B)

(702:03
= 1010M?(1 + log(max(100, M,)))?

[f(.z, ¢0(»€)) - ¢0(»€)| <€

Jor any z € D(zp, €0), where &y < 0y — py, M, :=max(1, M), My := sup. ldo(2)| + oo +

sup_ ,, [f (z, w)l.
Then, for any |z — zo| < €0, there exists w = ¢ (2),

|6(2) — ¢o(2)| < 10°(1 + log(max(100, M)))’|f (2, ¢0(2)) — ¢o(2)

l

such that f(z, $(2)) = ¢ (2). Furthermore, ¢ (2) is analytic in the disk D(zy, &9 — €1). Finally,
w # f(z,w) [z — 20| < €0, [W — Po(2)| < po and w # P (2).

Proof: — Let |z — 20| < r. Due to Cauchy inequalities, [0.F| < M, /po, |8§wF| <
M, /pory. This implies

|F(Z, wo)‘ <€ +M|z—2l/po < 2ey,

(4.8)
[0wF] el > 7o — M|z — 20l/poro > 11 /2.

Therefore, Corollary 4.3 may be applied and it follows that there exists w € D(wy, 27)
with 7= 100(1 4 log(max(100, My)))*(t1/2) "' |F(z, wo)| < r1/2 such that F(z, w) = 0.
Moreover, F(z, w’) # 0 for any w’ € D(wy, 7)) \ {w}, where 7, = (t,/2) min(1, r5)*/
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(8M,) > . Set ¢(z) = w. To finish part (1) we have to show that ¢ is analytic. By
the residue theorem,

1 Fy,(z, w)

— w dw =¢(2),
211 lw—wp|=n F(Z’ U)) d)( )

and analyticity follows.

To prove part (2), set F(z,w) := w — f(z,w). Then, |0,F| > 1/2 for any
(2, w). Furthermore, sup_,, [F(z, w)| < sup_|po(2)| + po + sup_,, |/ (z, w)| < M. Let
2 € D(20, &) be arbitrary, w), := ¢y (2,). For z € D(Z,, po/2), one has 3.¢o| < 205 ' M,
due to Cauchy estimates. Hence, |w — ¢o(2)| < [w — w| + |¢o(2) — ¢o(2)| < 0y, pro-
vided that |w — wy| < 0¢/2 =113, |2 — 25| < o9po/4M, =: p;,. So, the function F(z, w)
is well-defined and analytic in the poly-disk P(z;, wy, p5, 7). Due to condition (B), one
has |F(z), w()| < €;, where 7, = min(z, 1) > 1/2. Due to part (1) of the lemma, applied
to the function F(z, w) in the poly-disk D(z;, wy; pg, 1), for any |z — z5| < r with some
r > 0, there exists a unique w = ¢(z) such that ¢ (2) =f (2, ¢(2)) and [P (2) — wy| <
10°(1 4 log(max (100, M1)))?|f (2, ¢0(2)) — ¢o(2)|. Moreover, ¢ (z) is analytic in the disk
D(zy, r). Assume that w; = f(z, w;) for some |z — 20| < €9, |wW; — Po(2)| < py. Then

hm—¢&H=L/ Buf (22 w)dw
¢
1
= (sup|duf (2 W) [wi = )] = 5 |wi = ¢ (2)].
Hence, w; = ¢(2). This finishes part (2). ]

Let a (x, u), as(x, u), b(x, u), g(x) be real functions such that:

(i) g(x) is a C*-function on some interval (—ay, Qo).

(i) ay(x, u), az(x, u), b*(x, u) are C*-functions in the domain Lg(g, po), po < 1.
(111) a)(x, u) > as(x, u) for any (x, u); 6(0, u) =0 for any u € (g(0) — py, g(0) + po).
(1) |a;(x, u) — g(x)| < po/4, for any (x,u), 1 =1, 2; |b(x, u)| < po/4 for any x, u.
(v) |8,a] < 1/2 for any (x, u), i =1, 2; |3,6*| < |b|/4 for any (x, u).

Consider the following equation
(4.9) x (e u) = (u— a1 (v, ) (1 — ax(x, w)) — b(x, u)* = 0.

Lemma 4.5. — For any x € (—ag, oty), Equation (4.9) has exactly two solutions, {1 (x) and
¢_(x). The functions & (x), &_(x) are continuously differentiable on (—oy, &to) and obey

(4.10) max(al (x, §+(x)), as (x, §+(x)) + ‘b(x, §+(x)) ‘)
<6 < a0 &) + b(x £.(0)

b



268 DAVID DAMANIK, MICHAEL GOLDSTEIN

(4.11) as (%, £ (%)) — |b(x, £- ()|
< ¢_(®) < min(ay(x, - (%)), a1 (x, - () — [b(x, £+ () ])
(4.12) g(x) — po/2 < ¢+(x) < g(x) + po/2.

Progf: — Consider the following equations,
(4.13) u=(1/2)[a(x, u) + ar(x, w) + (@ (x, ) — a(x, w)* + 46 (x, w)) *],
(4.14) u=(1/2) [a1 (x, ) + as(x, u) — ((al(x, u) — as(x, u))2 + 45 (x, u))l/Q].

Note that x (x,u) = 0 if and only if (4.13) or (4.14) holds. Denote by ¢, (x, ) (resp.,
¢_(x, u)) the expression on the right-hand side of (4.13) (resp., (4.14)) and by 7(x, ) the
square root in (4.13) (and (4.14)). Note the following relations,

(4.15) max{(a (x, u) — ay(x, w)), 2|b(x, w)|}
<r(x,u) < (al(x, u) — ay(x, u) + 2|b(x, u) ),
(4.16) max{a (x, u), (1/2)[a1 (x, u) + ay(x, u) + 2| b(x, w)|]}
<@ (e u) < aly, w) + |b(x, v,
(4.17) ay(x, ) — [ b(x, )|

<@_(x,u) < min{ag(x, u, (1/2)[(a1(x, u) + ao (x, u)) — Q}b(x, u)H}

Assume that x (x, 4p) = 0 for some (xy, ug) € L(g, po). Then, either uy = ¢ (xy, u) or
Uy = @_(xo, up). Assume uy = @4 (xo, 4p). Then, due to (4.16) and conditions (i)—(v), we
obtain

(4.18) X |y = {(1 = B,a)) (w— @) + (1 = d,a9) (w— @) = 8,6}
> (1= 1/2)(@s — a) + (1 = 1/2)(@+ — a1) = [b1/4] sy
> (1/4) (a1 — a3) + 1b]) > 0.

Thus x (x, u) satisfies all conditions of the implicit function theorem in some neighbor-

(x0,u0)

hood of (xy, uy). Consider the equation
(4.19) u=a,(0, u),

u € (g(0) — po, £(0) + po). Due to condition (1v), a; (0, u) € Iy = [g(0) — po/4, 2(0) + po/4]
for any u € (g(0) — po, g(0) + po). Hence, u — 4, (0, ) maps I, into itself. Since |d,a,| <
1/2, this map is contracting. Therefore, the Equation (4.19) has a unique solution in I,
which we denote by ¢4 (0). Clearly, uy = ¢4 (0) satisfies 4y = ¢ (0, 4p). Due to (4.18), for
any x in some neighborhood of xy = 0, the Equation (4.9) has a unique solution ¢, (x)
belonging to some small neighborhood of uy. Clearly, £, (x) = ¢4 (x, {4 (x)).



ON THE INVERSE SPECTRAL PROBLEM 269

Assume that x (x1, 4;) = 0 for some (x1, u;) € Lr(g, (—ag, %), po). Then, due to
(4.16) and (4.17),

(4.20) ap (xy, uy) — ‘b(Xl» ul)‘ =wu =a(x,w)+ |b(X1, u1)|.
Combining (4.20) with condition (iv), we obtain

(4.21) g(x1) = po/2 < uy < g(x1) + po/2.

It follows from (4.21) and the above arguments that, given (x, ) € Lr(g, (—a, &), po)
such that u = ¢, (%, ), there exists a unique C'-function ¢, (x) defined on (—ay, ap)
such that x (x, {1 (x)) =0, {1 (x) = @4 (x, {+(x)), {4+ (x) = u. In a similar way we define
_(x), x € (—ag, ag). Let uy = £, (0) and uy = £_(0). Then, u; = ¢;(0, u;), : = 1, 2. Since
u — a;(0,u) 1s a contraction, |u; — uo| > |a;(0, u;) — a1(0, up)| = |uy — a1(0, ug)|. Due
to (1), a;(0, ug) > a9(0, u9) = uy. Therefore, uy > u, is impossible. So, ¢, (0) > ¢_(0).
Since ¢4 (0) # ¢_(0), ¢4 (x) # ¢_(x) for any x € (—ayp, ap). Hence, ¢4 (x) > ¢_(x) for any
x € (—ay, ap).

The estimates (4.10), (4.11) follow from (4.16) and (4.17). The estimate (4.12)
follows from (4.10), (4.11). U

Remark 4.6. — Yor our applications of Lemma 4.5 we need to generalize its state-
ment for some cases when the crucial conditions |d,4;| < 1/2 in (v), due to which we can
apply the implicit function theorem, fail. In Definition 4.9 below we introduce inductively
the classes of functions for which we need the statement. We need also to accommodate
the case when the functions depend on some parameter 6.

Before we proceed with the definition of the cases mentioned in the previous re-
mark we need the following lemma which solves the inequality | x (x, )| < € rather than
the equation x (x, ) = 0 from Lemma 4.5.

Lemma 4.77. — Let a) > ay and b be reals. Let u be a solution of the quadratic inequality

(4.22) (= a)(w—ay) — 0| < (@ — @) /4.
Let h = M) := (ay — ) *[(u—a) (u— ay) — 6%, ¥ =y () := (V1 + 4k — 1)/2. Either
(4.23) u>max{a; — y|(a) — a), (1/2)[a + a + 2|5]]}
> ag + (1/2)(ar — a9) + |0,
or
(4.24) u <min{ay + |y (@ — a»), (1/2)[ (a1 + a») — 2|5]]}

<a — (1/2)(a; — ay) — [b].
In any event, ay — |y (a1 — az) — |b] <u<a; + |y|(a; — a9) + |b].
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Progf: — One has
(4.25) w — (a) + a))u~+ ayay — 0> — AMay — ar)*> = 0.
Therefore, u obeys one of the following equations
(4.26) u=g,(,2) = (1/)[ar + a + (@ — @)*(1 +42) + 46°) 7],
(4.27) u=q@_(u, A) := (1/2)[011 +ay— ((a1 — a)(1 +42) + 4[)2)1/2]'

Note that (4.22) implies, in particular, that 1 4+ 44 > 0. One has

(4.28) max{a; +y (&) — @), (1/2)[a; + a2 + 2/5]]}
<S¢ Z<a+yla —a)+ b,
(4.29) ag —y(a —ag) — [b] < ¢
< minf{a; — ¥ (a1 — @), (1/2)[ (a1 + ar) — 2{4]]},
and the statement follows. U

Remark 4.8. — In the definition below we refer to the cases in the last lemma as
the 4--case and the —-case, respectively.

Definition 4.9. — (1) Let go(x) be a C>-function on (—ag, o). Let 0 < A < 1.
Let ay(x,u,0), ay(x,u,0), b*(x,u,0) be C?—functions which obey the conditions (i)—(iii) before
Lemma 4.5, po < 1/32 for each fixed 6 € ©. Assume in addition that |u — &, b, 19, ;" ail,
0,5 b°| < A/64 for any x, u, 0 and any |(ay, ap)| < 2. Set
b? b*
Su,0,1)=u—a — s Ju,0,2) =u—ay —

b
Uu— a u—a

(v, u) € Lr(g, po),
%;1<)1),t<1>,x(d1, ag, 52) = {f(,]) J=1, 2}, 9(1) ‘= &os o= Pos
WD = (4 — ay), 1D = (4= a), XVCD = DL,

T([("i))(xa U, 0) = al(x’ U, 9) - QQ(X, u, 0)’ l: la 2'

(4.30)

Here, £ (-, 1) is defined if u — as(x, u, 0) # 0, and (-, 2) if u— a;(x, u, ) # 0. Set&él()l) =

Uy a2 390) «wy (ar, a2, b*). With some abuse of notation we will write f € ng U fas b?)
Jor f € ng «(h, Nar, ag, b*) with f; = u — a;, i = 1, 2. Note here that we do not need g to be
dependent on 0. Furthermore, our “main” variables are x, u, and we view 6 as a parameter. Below

we will sometimes drop 0 from the notation. Requirements on 0-dependent quantities are then vmplicitly
assumed to hold for all 6.
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(2) Let go(x), g(x) be C*-functions on (—ag,op) and 0 < py < po. Assume that
Lxr(g0, po) D Lr(g1, p1). Assume also that go(0) = g,(0). Set g® = (g5, 21), t® = (po, p1).
Let f; € Fi0 (@1, @i, 07), 1= 1,2, Let b(-, 6) be C*-smooth in Lr(go, po). Assume that the
Jollowing conditions hold:

(@ x < xP forall (x,u) € Lr(g1, p1),

() il < (min; A" for all (x, u) € Lr(g1, p1),

(c) the inequality |(u — a; 1) (u — a;9) — b?| < (a1 — a;9)* /4, which holds for all x, u due
to condition (b)), is either in the +-case for all (x, u) € Lr(g, p1), 1= 1,2, or in the —-
case for all (x,u) € Lr(g, p1), i = 1, 2; furthermore, f; = (u — a;y) — b7 (u — a;9) "
in the 4--case, respectively, f; = (u — a;9) — b?(u —a;)) " for all (x,u) € Lr(g1, p1),
1=1,2, in the —-case,

d) 16| < (minjkr(ﬁ))lo, [0,6%], |090% < (minjkt@))lolbL 10267, |0gb? <
(min; AT for any (x, w) € Lr(g1, p1) and any 6,

(e) (0, u) =u—g(0), b0, u) =0 forany u, 1 =1, 2.

Set
b b
f(x,u,@,l):fl—f—Q, f(x,u,@,?)zfg—ﬁ,
4.31) T o, (i ) =/ j=1,2},
VD) = 0 ) p VG = B e KICD = e f( )

VOV u, 0) = x P — xN, i=1,2.

Letf €y o, iofos 07). Wesay that f € Fi L, (i fo b7, according to the dichotomy in (c).

Set Sﬁzim A Ufl Joub? Sifwi(z) L fas b*), Sii;),t(?),x = 3;2&;1(2&)» U 3;2&;)6?)@’ o(f)==x1y
S € S;Q(Q)itm NOE b*). We introduce also the following sequence 6 (f) := (o' (f)), consisting just of
one term.

(3) We define the classes of functions § ;l()@), , inductwely. Assume that Sg(),) are already defined for
t=1,...,4 — 1, where £ > 3. Let g/(x) be a C>~function on (—a, ap), 0 < py1 < p, < 1,
t=0,...,0 — 1. Assume that Lr(g_9, pr—2) D Lr(ge—1, pe—1). Set g = (g0,...,9-1),
W0 = (o, s pr)- Lot fi € Ty e, Ginoios b)), 1= 1, 2. Assume that the followwing con-
ditions hold: (a) xVV < x®, for all (x,u) € Lr(ge—1,pe—1), (b) |fil < (minj)\‘r@)'o Jor
all (x,u) € Lr(ge—1, pe—1), (c) with x Y% = u — a;j, the mequality |(u — a;)(u — a;9) —
w b?| < (a1 — a;9)*/4, which holds for all x,u due to condition (b), see the verification in
(4.36), is ether in the +-case for all (x,u) € Lr(g_1, pe—1), 1 = 1,2, or i the —-case for
all (x,u) € LrR(ge—1, pe—1), 1 = 1,2; furthermore, f; = fi| — bgﬁ}l in the +-case, respectively,
Ji=fio— b?azfllﬂ)mll (x, u) € Lr(ge—1, pe—1),1=1,2, in the —-case. (d) |b] < (Amin; )10,
10,6%1, 1096%| < (Amin; T9)!015], 9267, |050°| < (A min; 791 (e) 6 (/) = 6(f). Here
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D, o (f) and 6 (f) are defined inductively see part (4) below. Set

2 2

b b
9 7051 == __9 9 ,0!2 == __5
432 S0 D=fi= o S =f=

g“)cwu(ﬁ’fz’ A={rc.p:j=12}

We say that [ € S%ﬂw O fas ), according to the dichotomy in (c). Set Fe® =

MGRYGIN
Um 2 B, Uiofos 1), s;ém,kv,ﬁ, ) = Fio Uios 0 U Foi (hofos 07),
S( GRCE 3(6((?)@ A &( [GRICRE
(4) Let f € ng (a1, ay, b*). With f; := u — a;, we introduce for convenience x := f,,
u =10 :=1,0():=1,i=1,2.
Lelf € 3;@?;@ (fiofo, b). Set

. 2
WO iff ==k
(4.33) xV =uf,
7 = (P — x W)W,

o(f)==x0(f)) =x0(f) according tof € g;@f,)w,x(fl’ﬁ’ bQ).

The sequence 6 (f) is defined just by attaching o (f) to 6(f;) from the lefi, that is, 6(f) =
(0 (f), 6 (f)). Due to condition () in the definition in part (3), the result does not depend oni =1, 2.

Remark 4.10. — (1) The parameter A is introduced in the definitions above only
for the sake of stability under small perturbations which we establish in Lemma 4.16 at
the very end of this section. Clearly, 8’(5(5[; - 3(5(5[)1 Everywhere in this section, with the
exception of Lemma 4.16, we always assume A = 1 and we suppress A from the notation.

We remark here also that the quantities 0 < p,, ¢t =0,...,£ — 1 do not en-
ter any inequalities in Definition 4.9. Let 0 < p,; < p,, t =0,...,£ — 1 be such
that Lgr(g—2, pe—2.1) D Lr(g—1, pe—11). If f € 3;@?1(@,“ then also f e 3;(:1@ b
where t“Y = (po1, ..., p,_1.1). We suppress t® from the notation, everywhere except
Lemma 4.13. We will use it later on, starting from Section 6.

(2) Letf € 8( o (1,.fo, 6*). We remark here that Definition 4.9 implies in particular
that f; is a CQ—smooth function in Lr(gr_1, pe—1) X O.

(3) Once again, note we do not need g; to be dependent on 6 and, to simplify
notations, we suppress 6 wherever it does not cause ambiguity.
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Lemma 4.11. — Suppose f € Sg&) (H15.f25 b*). Then, the following statements hold:

(1) max; |f], [T, [nD], [x D] < 272 for all (x,u) € Lr(ge—1, pe—1). Furthermore,
x| < (min; [T for all (x, u,0) € Lr(ge—1, pe—1) X O.

(2) The functions ", x 9 are C*-smooth, 10* u"|, 8% x| < Q*QQ(H)H, loe] < 2.

(3) Let € > 2. Either f; € F0 i i fios 1), 1= 1,2, or fi € Fyl (nfoos B,
i =1,2. In the first case, xV > —(min, TW)8 (%2 — Uy, x> (1/2)(x %2 —
x iy + (]_[j WYINY2\by| for all (x,u) € Lr(ge—1, pe—1), i =1, 2. In the second case, x/» <
(minjf(];))g(x(ﬁi) _ X(ﬁ,l)), X(ﬁ,l) < _(1/2)()((}?‘2) _ X(ﬁ,l)) _ (l_[j/’L(fl’f))l/leilﬁr all (x, u) €
Lr(ge—1,pe-1),i=1,2.

(4) Let € > 2 and f; € 3 i foos 0. Then o () = o i), for any i, 7,5

5) o (o x P > (T?)? ,i=1,2.

(6) Assume x (xo, ug) = 0. Then, sgnfi (x0, )X |0 > (TV) L

(7) 2% > (1/2) (min; T9)* for all (x, u) € Lr(ge—1, Pe-1)-

8) Letf € FV(ay, ay, b*). Assume that the following condition () holds:

(k) 95a; > K, 8gay < —KV, |f)] < (K©)?/8, |892b2| < (K)?2/8, where kK > 0 is a con-
stant.

Then, 35 XD < —(KO2. Furthermore, assume in addition that x(x,u,0) =
X (x, u, —0),0 € @ = (=6, 0) U (0, 6y). Then,

(4.34) Wx? <—(K")0 Fo>0,  Bx">—(k9)6 i6<0.

(9) Let € > 2. Assume that |9gxP| > (z9)', i = 1,2, and sgn(dgx M) =
—sgn(px ®). Then, 892 x < —(min, 198, Furthermore, assume in addition that x V" (x, u, 0) =
X (x, u, —0),0 € ® = (=6, 0) U (0, 6y). Then,

8 8
(4.35) dox" < —(mjnz%>> 0 F60>0,  xV > —(mjnriﬁ>) 6 i <0.
J J

Progf: — (1) Let us first consider the case £ = 1 and assume [ € S;l()l)(al, as, b?). Tt
follows from Definition 4.9 that |fj| = |u — a;| < 1/16 = 2_22, [T, 1w, [xP) < 9~
for any (x,u) € Lr(g, po). Recall that by convention x% := f, t% := 1. Therefore,
|xP| < (miny; |9 )% obviously holds. Using the notation from Definition 4.9, assume
now that £ > 2 and /' € §\0, (/5 %), /5 € Fyay, i = 1, 2. Then, [f], [b] < (min;z%)'",
) < 2(max; |f]) (max; %)%, |uP| < (max; |[f]) (max; [uD])?, |x ] < (max;|xD])* +
|b|2(maxj- WD D2 | x P = |fil|u?] < (min; TWY 10 ). Using induction one obtains the
claim.

(2) For £ = 1, the statement follows from (4.30) and the conditions |3%a], |0%4%| <
1/64 for any x, « and any 1 < o < 2 in Definition 4.9. Using induction over £ =1, ...
and (4.33), one proves the claim for any £.
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(3) Due to Definition 4.9, 6 (f;) = 6 (f;). Due to the definition of the sequences
& (-) this implies that either f; € s“ig S 0, 1= 1,2, 0r f € Fis” G foas b)),
i=1,2. Assume £ > 2, f € F 0. 11)+)(]€ 1 fios 02), i=1,2. Recall that due to condition (b)
Ifil < (min; T%)'0 < (x %2 — X(f;l)) /4 for all (x, u) € Lr(g—1, pe—1),1=1,2. As in Def-
inition 4.9 set a;; = u — x 7). Since |V ||u%?||f; o] < 1, one has

(4.36) (@i, — a;9)* /4= (X(fi,z) 5 1)) /4
> |;,L(ﬁ~])||M(ﬁ-?)“ﬁ’2|(x(ﬁ.2) (/l)) /4

> |M(ﬁ'])||M(ﬁ'2)“ﬁ,2”ﬁ| — ‘X(ﬁ.l)x(ﬁa) _ 1_[“(/‘?1;')[)12

J

= |(u—a,)(u—a) — [ [n"8}|.
J

Due to Definition 4.9 we are in the +-case in Lemma 4.7. So, (4.23) applies. In par-
ticular, (4.23) implies x %V = u — a;) > —|y|(ai, — a;0) = —|y|(x "2 — xv), V2 =
u—aiy > (1/2)(aiy — a9) + ([T, n%)' 1o = (1/2) (x> = x U0y + ([T, w¥) 721l
for all (x,u) € Lr(g, pe), i =1,2. Here, y = (/1 +4% — 1)/2, A = (a;) — a;9) *[(u —
ai1)(u — a;9) — ]_[ ,u(fd)b2] One has due to conditions (b) and (d) in Definition 4.9
Al < (a1 — ai9)” 2(rrun T1/2 < (min; T8/ |yl < 2|A] < (min; 1%)8. This fin-
ishes the proof of the claim in the first case in (3). The verification for the second case is
completely similar. The verification in case £ = 1 is also completely similar and we omit
1t.

(4) Due to Definition 4.9 6 (f;) = 6 (f3). That implies the statement in part (4).

(5) The proof goes by induction over £ = 1.... Let f € FV(a;, a, b?), f =
(u— a) — b*(u — ay)~'. Then, by convention, f :==u — a;, x* :=f;, u? =1, 1% :=1,
o(f) =1,i=1,2. Hence, o ()3, x" =1 — 8,4; > 1/2 = (t9)?/2, as claimed. As-

sume that the statement holds for any % € S(t(),), l<t<{—1,¢>2. Assume, for in-

stance, [ € Sg(m(ﬁ,ﬁ, b, f € {S’gw,ll) (firs fios blg), ¢ =1, 2. Due to the inductive assump-
tion, o (f;)d,x%" > (t(fi))% i,j = 1,2. Due to (4), o (f;;) = o (fo;) for any i,j, 7,
Due to part (3), one has x %0 < —(1/2)(x %2 — %), y%2 < (minjt(}j))S(X(ﬁ,Q) _
x0) < (min; T9)®, i = 1,2. Due to part (1), [}, [n%7] < 272, due to part (2),
1999, 18 x )] < 2727 Finally, due to Definition 4.9, one has 5] < (min; 7%)!°,
|8ub?| < (min, t)1%|h,|. Using all these estimates, one obtains

(4.37) o (£)d.x" =0 (f)a, [ (i) y i) _Mgzl)uvz»blz]

= [0 @ux ") [=x "]+ [o ) (@ ") ] [=x "]
— [(auﬂ(ﬁ’l))ll(ﬁ'Q)b? + (amu(fi,z))'u(ﬁ,l)b? + (3u52)u(ﬁ*l)u(ﬁ’2)]
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> —[a(ﬁ,l)(auxw)](mjnfw>)8
J
+ [0 (i )dx B2 (x %2 — %) /2
|30 || 282 + [, 92 || 0| 2

+ 8ub?‘ ‘M(ﬂ,l) ‘ ‘Iu(fi,Q) H

—920=2) (. (fy K (fi.2) D) (+ i) 2
> -2 (m;nrf) +(X —X’)(rf)/Q
J

— 9" (ni (ﬁ;))G (o) _ 3 i) (76)2 4
2 (rr;jlnff > (32 — x60)(z62)?

> (x ¥ — Xo&,n)?(rg;,]))?(rm,z))? — (Tv;))?_

This finishes the proofin case f; € Sg([_ll’)_). The case f; € Sg([_ll’)Jr) is completely similar.
(6) Assume x(xp,u) = 0. Set @ = ug — xP(xp,u), ¢ = 1,2, b :=
(TT: x Y 2b(x0, up). Recall that x =[], uWf; — b* [, #". Due to part (4), [, ¥ # 0.
Hence one has (4y — a)(up — ay) — |b> = 0. One can apply Lemma 4.7. Assume for
instance 4y — a;(xo, p) > 0. Then (4.23) applies. Note that here A =0, y = 0. So,

X(ﬁ)(xo, uy) > 0, X(’fz)(xo,uo) > [(1/2)()((’[2)(%, uy) — X(ﬁ) + (Hl—)(w))l/2|b|]|xo,uo- From
this point, the derivation of the estimate in (7) goes exactly the same way as in (4.37).
The case uy — a;(xo, up) < 0 1s completely similar.

(7) Consider the case £ > 2. Due to part (5), |3,x?| > (t%?)?, sgn(d,x"") =
sgn(d,x ). Due to part (1), |x?| < (miny; |TP))1°. Due to part (2), [3%u], [3% x| <
9-2""V+3 || < 2. Finally, due to Definition 4.9, one has [8%4?| < (min; %)'°. Using

these estimates, one obtains

(4.38) an(f) > ‘3MX(/’1)HauX(f2)|
= {lasx [ + Joix®

x|+ |02 8]}

) 2 _ 9. ,22(5—2)+3< . ") )lO
= U(T ) —2-2 rrbln|1' 4 }
0(f—S P 10
69 (il )
¥

>(1/2) <min f(’j))4.

J

The estimation for £ = 1 is similar.
8) Let f € §V(a1, ag, b%), f = (u — ay) — b*(u — ay)~". By convention, f; := u — a;,
x" :=fifs— b>. Due to part (2), |33f;] < 1. Due to condition (), d4/; = —pa; < —k¥,
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Ogfo = —08pay > £V, and moreover, |f;| < (k©)?/8, |802b2| < (K™)%/8. One has
2 2
439) o < —2(0) + 93l16 + Al + [520] <~k
as claimed. Assume now in addition that x ) (x,u,0) = x (x, u, —0). This implies
gV vwo=0,and dgx " < —(k)?0if0 > 0, dpx ) > — (k)0 if 6 < 0.
(9) The estimation is similar to the one in (8). Recall that we assume here £ > 2.
Due to part (1), [x%| < (min; [t%])'. Due to part (2), [8*u?], 8% x| < 272"+,

la| < 2. Due to Definition 4.9, |3%4%| < (min; T UN)10 Using these estimates and the as-
sumption sgn(d x /) = — sgn(dy x **’), one obtains

(4.40) 2% < 2|99 x " |] 85 x 2|
{1020 [ 2| + |92 2| x D] + |82 [ 8] |}

— M\t ) _22(/472)_,_3( . 7 >6
< QU(I ) +2-2 min7?)

6
_92(£—2) 4 ¢ _92(£—2) 4 ¢ . ;
+6-272 F.977 +5-<m1n|r(5)|)
J

\8
< —(mint(ﬁ)) .

The second statement in (10) follows from the first one just like in (8). ]

We need the following elementary calculus statements.

Lemma 4.12. — Let f(u) be a C*~function, u € (fy — po, lo + po). Assume that oy =
inff” > 0.

(0) The function | has at most two zeros.

(1) Assume that sgn(f”(vy)) sgn(f”(ve)) > 0 for some v\ < vo. Then,

(Vo —v1)* < QUo_llf(Ul) _f(UQ)‘-

(2) Let vy — to| < 5. Assume —=3% < ["(vo) < 0. Then there exisls vy < uy < vy +
o, If (v0)| such ﬂzatf’(uo) = 0. Szmzlarl, fm > f"(vo) > 0, then there exists vy > uy >
Vg — 0, N7 (o) such that f/(uy) =

(3) Let |vg — tol < 2, 0 < p < py. Assume =22 < f(v5) <0, f'(vo) < 0, 0 =

256
min(oy, 1). Then there exzsts to — po < Vg — & < v < vy such that f(v) = 0. Simularly, assume

02';; <f(vo) <0,/ (vo) > 0. Then there exists vy <v < vo+ £ 2 <ty po such that f (v) = 0.

Assume in addition t/zat sup 1<l

(4) Let lvg — th] < 2,0 < p < po. Assume — 256 <f(v0) 0, — 236 <f’(v0) < 0.
Then there exist ly — poy < vo — g <V <V <V <Vy+ 2 £ <o+ po such that f(vy) =0,
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J=1,2. Simalarly, 215’(’5
vy — L <v <vy Sy <vg+ & <ly+ posuch that f(v;) = 0,5 =1,2.

2 2
(vo—vy)
(5) Iff has two zeros v, < vy, [v; — vo| < B, then —f' (v)), f'(v9) > 012%

Po <

Proof: — (0) Follows from Rolle’s Theorem.
(1) Assume f(v;) > 0,2=1, 2. Then,

S (vy) —f(v1)=/ f’(v)dv=/ [/ f”(x)dx+f’(v1)]dv

vg  pU
>O'0/ f dXdU:O'0(UQ—U1)2/2.
V] V]

Assume f"(v;) <0,:=1, 2. Then,
J(2) —f(v1) =/ f/(U)dU=/ [—/ f”(x)dx+f/(v2)]dv

V9 v
< —00/ f dxdv = —oy(vy — v1)2/2.
V] V]

(2) Let us verify the first statement. One has f"(x) > f"(vo) + oo(u — vo) > 0 if
vy + ao’llf’(vo)| < u < ty + po. Hence there exists vy < uy < vg + ogllf’(vo)l such that
S (up) = 0. The verification of the second statement is completely similar.

(3) Let us verify the first statement. Since /" (vy) < 0, integrating like in part (1),
one obtains f(x) > f(vy) + oo(u — v9)*/2 for ty — py < u < vy. So, f(vo — p/8) > 0.
Hence, there exists vy — p/8 < v < v, such that f(v) = 0. The verification of the second
statement is completely similar.

(4) Let us verify the first statement. Using the notation from part (2), one has
—010%/128 < f(vy) — oofllf’(vo)l < f(vo) — (uy — vo) < f(u) <0, since sup|f’| < 1.
Note also that uy < vy + cro_llf/(vo)| < vy + 01p*/256 < t) + 3300/64. Like in part (1),
one obtains f () > f(u) +00(u—up)*/2 > 0ifug+p/8 < u < ty+ po. Hence, there exists
Uy < Vg < g+ po/8 < tp + po such that f(vy) = 0. The existence of v, is due to part (3).
The verification of the second statement is completely similar.

(5) Since /" > 0, one has f'(v;) <0, f” (vz) > 0. Set p := vy — v;. Then, p < py.

It follows from part (4) that —f"(vy), f"(ve) > === 256 , since otherwise / would have at least
three zeros. O

Lemma 4.13. — Let f € 3’;2),t<m-

(1) For any x € (—ag, ), the equation x = 0 has at most two solutions £_(x) < 4 (x).
(2) Let € > 2. Assume that the following conditions hold:

() £,(0) and £_(0) exist, x (0, £, (0)) =0, x (0, ¢_(0) =
(b) 1x" (e, g1 G 1 2 (x, ge—1 ()| < (70)° oy for all x,
(©) 1] < (70)°pe_y for all x, u, where Ty := inf, ,(min; T7).
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Then, £, (x) and _(x) exist for all x € (—ag, o). The functions ¢ (x), ¢_(x) are C*-smooth on
(—ag, oty) and obey the estimates (4.10), (4.11), where a; = u — f;, and also the following estimates:

(4.41) 220 — g1 ()| < pe-1/2,

" <—(z7| )2 <0, 3,x" )2 >0,

> (z¥

duX

65— (%) 65— (%) %04 (%) %54 (%)

1 :
(%) — & (x) > g[_aux(j)}x,;,(x) +dux g){x,u(x)]’

X e DK g0 = 256 ’

X, 0| = min(%(u — )", %(u - <;+<x))2),
where o1 := (1/8) (inf, ,(min; T#))*.

Proof. — Due to part (7) of Lemma 4.11, 3?x? > 0 everywhere. Therefore, for
any x € (—ag, @), the equation x¥) = 0 has at most two solutions ¢, (x) and ¢_(x).
Assume £, (0) and ¢_(0) exist. Due to part (6) in Lemma 4.11, |9, |,y > O,
provided x Y (xg, uy) = 0. Therefore, ¢, (x) and ¢_(x) can be defined via continua-
tion and the standard implicit function theorem as long as the point (x, {+(x)) does
not leave the domain Lgr(g,_1, pe—1). Let us verify that as long as ¢, (x) and ¢_(x)
are defined, (4.41) holds. Recall that x = W x® — yuW ™2 Since |u?| < 1,
one has |x YV (x, Ce ()| x P (x, ¢2(x))| < (70)12,0371, due to (c) in the current lemma.
Hence, min(] x 7V (x, 22 ()|, | x P (x, ¢+ (x))]) < (70)°pr_1. Recall that due to part (5) of
Lemma 4.11, one has |3,x”| > (t"?)2. Combining this with condition (b) in the current
lemma, one concludes that (4.41) holds. Note that (4.41) says in particular that the point
(%, £+ (x)) does not leave the domain Lgr(g,_1, p¢—1) ever. Hence ¢, (x) and ¢_(x) exist
for all x € (—ay, o0p). Due to the standard implicit function theorem, the functions ¢, (x),
¢_(x) are C*-smooth. Recall that due to part (7) in Lemma 4.11, one has 83)((f) > 0.
Therefore, aux<f>|x,;_(x) <0, aux(f)|x,;+(x) > 0. On the other hand, due to part (6) in
Lemma 4.11, one has [, |,co00 > (TV)2|ccoco- Thus, 3,6V e < =) 5
XV Necr o > (r(/l‘))le,Q(x), that 1s, the first line in (4.42) holds. Due to part (2) in
Lemma 4.11, [32x | < 8 for any £. Therefore the second line in (4.42) holds. Recall
that due to part (7) in Lemma 4.11, 8’ x " > o, everywhere. Therefore the third line in
(4.42) holds due to part (4) of Lemma 4.12. Finally, the last line in (4.42) is due to part
(1) of Lemma 4.12.

Recall that 4 (x) obeys the equation (z — @) (u — ag) — b* = 0 with ¢; = u — x P,
1=1,2. Let

9. (e 1) = (1/D[ar + as + (a1 — a)* + 4;)2)1/2],

o_(x,u):=(1/2) [d1 + ag — ((Cll —a)’ + 4b2)1/2]
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be as in the proof of Lemma 4.5. Due to condition (a) in the current lemma, one con-
cludes that £,.(0) = a1(0, £(0)) = ¢4(0, £,.(0)), £-(0) = a2(0, £-(0)) = ¢_(0, ¢_(0)).
Note that due to part (2) in Lemma 4.11 the functions ¢4 (x, {;(x)) are continuous.
Since ¢, (x, u) > ¢_(x, u), by continuity, {4 (x) = @4 (x, {4 (x)) for all x. Now just as in the
proof of Lemma 4.5, one verifies that £, (x), {_(x) obey the estimates (4.10), (4.11). [

For our applications, we will also need a certain generalization of the last lemma
in the case when condition (c) fails, that is, 5| £ (t9)®p0¢_1. This happens when p;_; is
too small. The specific situation is as follows. Let g, +(x) be C2-functions on (—ayg, ),
O<pr1<p<1,t=0,...,€ — 1. Assume that g, _(x) < gt,+(x) for every x. Assume
that Lr(ge +, pe) D Lr(go+1,+, ,013'+1) ¢ =0,1,.... Set gi = (G045 -+ s Q-1,1). Usmg
these notations assume that / € F' (e)(f 2 J2. 0) and also feF (Z)(f .J2, b). This means in

particular that if (x, u) € Lr(gr—1.—, pe—1) N LrR(G—1.45 Pe—1), thenf(x w, fi, fa, b, and
also the rest of the functions involved in the definition are the same no matter which way
one defines them. We use the notation x(x, u) for the corresponding function. Note
that it is well-defined and smooth in Lr(g,—1._, pe—1) U Lr(g—1.+, Pe—1)-

Assume that the following conditions hold:

(o) |X(f)(x g—1+(0)]| < 283 , ", with o1 := (1/8)(inf, ,(min; ?))*, 0 < p < p,_1,
B) TLx"log 0 =0,

(V) g(71,+(x)_g€ 1, (X)+ 2’39 >m1n( [lauX(flxgg 1+(x)|+|aux(f|xgz1 (x)l] IOZ l)

®—g-1,-()* op? )
256 > 64 7°

U'iZ/JQ . 1 (QZ 1,4+
(8) 128 + mln(_aux |x,g(_|,_(x)9 auX |x,g4_|,+(x)) 2 mln(

Lemma 4.14. — For any x € (—ay, o), the equation x V) (x, u) = 0 has exactly two solu-
tions ¢_(x) < ¢_(x). The functions ¢, (x), £_(x) are C*-smooth on (—a, &tg), obey the estimates
(4.10), (4.11), where a; = u — f;, and also the following estimates,

o p’
(4.43) 66 = g1 < 7
dx” <—(") (. ¢-(0) <0,
<4.44) |x{ (x) ( ) ( )
8“X(j)|x§+(x) = (T(f)) (. £+(0)) > 0,
1
(4'45) é-—i-(x) - é'_(X) = mln(é[_aux(f) %C_ (%) + auX(f) x,{+(x)]’ 105—1>’
(07 () —-()? 0P’
(4.46) S L7 G Ny S I Zmln( ‘ o5 , 1‘28 )
(4.47) XD, w)| = min( (u—2¢ (x)) (u— £+ () )

§+(X)|

y‘min(|u— _

211 :
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Proof. — Note that x (0, g,_, +(0)) = Hix(ﬁ)long—l,i(O) = 0. So, £+(0) exist. Like
in the proof of Lemma 4.13, ¢4 (x) can be defined via continuation, starting at x = 0, and
the standard implicit function theorem, as long as the point (x, {4 (x)) does not leave the
domain Lr(gr—1.—, pe—1) U Lr(g—1.+, pe—1). Due to condition (8), (4.43) holds for |x|
sufficiently small.

Assume that ¢ (x) and ¢_(x) are defined and obey (4.43) for all x € [0, xp).
The standard implicit function theorem arguments apply to show that ¢, (x) are well
defined for x € [0, x;) with ¥, — xy > O being small. We claim that in fact (4.43),
(4.44) hold for any x € [0, x)). Let x € [0, x;) be arbitrary. Note first of all that since
¢_(0) < ¢4(0), the implicit function theorem arguments imply that {_(x) < ¢, (x) for any
x € [0, x1). Assume first g_ 4 (¥) — gr_1._(x) < 2p,_1. Then, xP(x,) is a C*-smooth
function defined in (g —(x) — pr—1, g—1.+(x) + pe—1). Due to part (7) of Lemma 4.11,
83 x> o, everywhere. Since x(x, L(x)) = 0, {_(x) < {4 (x), one concludes that
auxmh,;_(x) < 0, aux<f>|x,;+(x) > 0. Combined with part (6) of Lemma 4.11, this implies
(4.44). Furthermore, x(x,-) has exactly two zeros. Due to part (1) of Lemma 4.12,

one concludes that miny _ [{s(x) — g1 —(¥)| < (2(7_1|X(f)(x g1 (D < 62167/)14

Similarly, ming _ |4 (x) — g—1 - (x)| < 'f Assume first max; _ [¢_(x) — g—1.+(¥)] <

0,6 4 . 0.6 4
214/; . Then, g1 +(x) — g1 -(x) < QIT'Z. Due to condition (y), one obtains 212'2 >

0,6
gz—1+(x) — 8e—1,— (x) + 213'?, > 2" 3[|3 X(/ ||xé¢ 1+ () + |aqu)||Xée - (x)] In partlcular
ofip

6
> |0,xY ||w (v Since |82 )| < 8, one concludes |8u)((f e o < Ul— Due to

part (4) of Lemma 4.12, one concludes that ¢, (x) — ¢_(x) < 21 7. Since maxy _ |{_(x) —
616 ot

ge-1.+(0)| < T, (4.43) follows. Similarly, (4.43) follows if maxy _ [{y(x) — g1 +(0)] <

o 0.6 4

5T 180 — g1, 40| = 214'3 and max; _ |84 (x) — ge—1,+(0)] =

olpt . . o6t

L. Since ¢_(x) < 4 (x), 8- () < ge—1,+(x), ming _ |8 (x) — g 1+(X)| < 4,

6

ming _ [Ze(x) —ge—; —(x)] < 211 ,one concludes that [£4 (x) —go—1 +(x)| < 2“ . In partic-

ular, (4.43) holds. This finishes the proof of the claim in case gj— + (x) —ge—1. - (x) < 20—,
Assume now gy 4(x) — gg,l,,(x) > 2,05 1. In this case, due to condition (§),

i (2] 2] oip’
mln(_auX |X,g[,1.,(x)7 auX |x,g4gf1.+(x)) sl 128 Recall that |§:|:(x) gl—l :I:(x)l < 212 and

|8u2x(f)| < 8. This implies in particular —d,x "’ lv.c 9, O wx Y |M+(X) > % Combined

with part (6) of Lemma 4.11, this implies (4.44). Since gy +(x) — 81 (X)) = 2041, 1t
follows from part (1) of Lemma 4.12 that |4 (x) — g1 2+ (¥)| < 241 . Thus, (4.43) holds.
This finishes the verification of the claim.

It follows from the claim that ¢, (x) and ¢_(x) can be defined for all x. These func-
tions are C?-smooth and obey (4.43), (4.44). Let us verify (4.45). Assume first g,_; ; (x) —
-1 (%) < 2p,_1. Then, x¥(x,-) is a C?-smooth function defined in (g_, _(x) —
Pe—1, 1.+ () + pe_1). Therefore, (4.45) follows from (4.44) since [3?x"’| < 8. The
estimate (4.46) follows from part (5) of Lemma 4.12. The estimate (4.47) follows
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from part (1) of Lemma 4.12, and in fact, in this case it holds for any u. Assume
Gi—1.+(X) —go—1.-(x) > ng 1. In this case, (4.43) follows from (4.43). Above we verified

2
that —d,x " lec o> dux |v§+(x) > (;1—6 Note also that M This verifies

256 128
(4.46) for this case. Assume |u— {_(x)| < 211 . Then, 8,x"|,, < ‘— < 0. So, part (1)

in Lemma 4.12 applies and (4.47) follows. The case |u — £, (x)]) < Z2 s similar. ]

Lemma 4.15. — Let &1 be as in Lemma 4.13 or as in Lemma 4.14. If € =1, assume that
(4.34) from (9) of Lemma 4.11 holds. If € > 2, assume that (4.35) from (10) of Lemma 4.11 holds.
Then,

3¢y > (KO)'6, 8,0 <—(k0)6 ife=1,6>0,

(4.48) 5 ;

Bpls > (mjnz%>) 0, Bt < —(mjnrﬂﬁ)) 0 ift=>26>0.
J J

Progf: — Take an arbitrary xy and let 6 > 0. Set uy = ¢ (x0, €). Due to part (7) of
Lemma 4.11 one has 9,5 ],,.., > (t9)?|4..0 > 0. On the other hand, due to part (2) of
Lemma 4.11, one has |9% x| < 1 for all x, u, 6. Consider for instance the case £ > 2 and
6 > 0. Then the assumption is that for 8 > 0,

8
(4.49) x" < —(m_inr@“)) 6.
J

Hence,

0 1\ 8
(4.50) By, = — 2% (mint(f/)) 0,

0uX J
as claimed. The proof for the rest of the cases is similar. UJ

Lemma 4.16. — Using the notation _from Definition 4.9, assume | € Sg&)’ (i, 07). Let
1, B be C2—functions of (x, u) € Lr(ge—1, Pe—1)- Letﬁ =f+n, b2 = b2 + h2. Assume that the
Jollowing conditions hold for (x, u) € Lr(ge—1, Pe—1):
M) S <fo,
(i) [9%7], |0%R?| < minj-(é)»t(ﬁ))fj, 0<a<2,:=1,2, withsomed < (1 — L)/4A,
(i) A%(0, u) =

Setf =Ji = Pl Then, ] €30, s, G Jos 1), 70 > (1= 8)7.

Proof. — The proof goes by induction in £ = 2,.... Assume for instance
| € S;Q(;;r)k(f,f?,bQ) and 4 — a9 > 0, : = 1,2. One has in this case f; =f + 1 =
(u—ay) +n— bf(u - di,2)71 = (u—a,) — bf(u — )7, 4y = @y — T, Qg =

@9, T > — Inl > (1 —8)Th, < Ifl + 1l < min;(AT%)® 4+ min;(§AT%)° <
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min; ((1 + HATW)b < min; ((1 + 48)kt(f7))6. The verification of the rest of the condi-
tions (b)—~(d) in part (2) of Definition 4.9 is similar. Condition (a) is due to condition (i)
in the current lemma. Let / € 3( o A(fl,fz, ), >3, f¢€ S(Zw 11)) A(fl,fz, bf) Assume for

instance fio > 0, i =/ — bLfZ,Z—IQThen,f ﬁl—bjg,zl 1+717f2 =fio.

Since % < min;; %" one can verify all conditions in part (3) of Definition 4.9 just like

(£=1)
above. Induction is neededjust to make sure that f; € Sg@ b (le(fl,fg, b?). 0J

5. Matrices with ordered pairs of resonances

Let us now return to the setting of Section 3. Let A be a subset of Z". Let
v(n), n € A, hy(m,n), myn € A, m# n be some complex functions. Consider H, , =
(}l(mv n; 8))m,n€A> where ¢ € CJ

n(n,n; e) =v(n), ne A,
5.1
h(m, n; €) = ehy(m,n), m,n€ N, m#%n.

Assume that the following conditions are valid,

(9.2) v(n) = v(n),
(9.3) ho(m, n) = ho(n, m),
(5.4) |ho(m, )| < Byexp(—kolm —nl), m,neA, m#n,

where 0 < B; < 1,0 <k <1/2.

Defination 5.1. — Assume that Hp o obeys (3.1)+5.4). Assume also that there exist
my,my € N, my # my such that [v(ml) — v(my)| < 5(3) and |v(n) — v(mg)| = 8y for any
ne A\ {mg,my}. Assume also that

(5.5) (my +B(R™Y)) C A.

We say in this case that Hy . € OPR(I)(m(J{, my , s 8p).

Let s > 2. Let mf,my € N, mi # my. Assume that there exist subsets M) C A,
s =1,...,5—1, some of which may be empty, and a collection of subsets A (m)Cc A, me MY,
defined only for those s for which M # @. Assume that mS , my € M. Assume that all con-
ditions in Definition 3.1 hold with my := mg and with the following exception. The estimate (3.12)
holds for any m # my, , and moreover,

(5.6) 12(5(()5—1))1/8S |E(“_1)(m, A(.r—l)(m);g)_E(.r—l)( + A(‘_l)( 0) 8)‘

< 3(();—2)'
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Form= my , we have
5.7 B (. A () ) — B, A0 () )] < (357)'"
Assume also that

(5.8) (my +B(RY)) C A.

In this case, we say that Hy . belongs to the class OPRY (mar ,my , A 8). We set s(moi) =y We
call m¢, my the principal points. We call Ao~V (m7) the (s — 1)-set for m3..

Remark 5.2. — (1) We remark here thatif Hy . € OPR"Y (m, my, A; 8), then some
of the statements in Proposition 3.3 still hold for obvious reasons, the lower estimate
in (3.12) for m = m; does not affect these statements. In Proposition 5.3 below, these
statements are made explicit.

(2) Note that the classes OPR(S)(mar, my » \; 80) and N'© (mg, A; §y) may intersect
since (3.7) does not exclude such a possibility, that is, it is possible that one has

(5.9) 385" < [ECV (my, AV (my); 8) — BTV (mf, AYTD () 6) |
< (8871))1/8.

In fact, in Section 8 we will have examples for which this happens.

Proposition 5.3. — Let Hy . € OPRY (m}, my , A; 80). For any m € M) and n €
A (m) \ {m}), we have v(n) # v(m), s =1,...,5 — 1. So, E)(m, A (mm); 0) := v(m)
is a simple eigenvalue of Hyw)(, o Let EC (m, A (m); €) be the analytic function such that
E®) (m, AY (m); €) € spec Hp ) (. JOr any €, E® (m, AY (m); 0) = v(m).

(1) Define inductively the functions D(-; AV (m)), 1 <5 <s—1,me M(s), D(-; A),
by setting:

o firs=1,D(x;A) = 4log80_1,/ xe A\ {mi), /D(m(jf; A) :=4log(8M)~!,

o fors>1,D(x; A) =D(x; A (m)) if x € A (m) for some s’ < s — 1 and some m €
M)\ {mig), or if x € AV (i) \ (g}, Do A) = 41og(85") ™", D(x; A) =
410g80_1 ?fx €A \ (Ulg.y’fs—l UmeM(:’) A(Jb)(m))'

Then, D(; A (m)) € Garpmrags 1 <5 <5 — 1, me M(s), D(; A) € Ga s
T =4iologd; ", max, g, - D(x) < 4log(8;™") 7",

(2) If s=1, the matrnx (E — HA\{mg ) s wwertible for any complex |e| < &y, |E —
v(mg)| < 8o/4.

Let s > 2. For any complex €] < &,_o, |E — EC"D(mt, A~V (ml); e)| < 10(8)8,
each matrix (. — Hywyn o), S <s—1,me M m ¢ {m&, my} is invertible. The matrices
(E— HAO-U(mﬁ)\{m(?},g) and the matrix (E — HA\{mg ) are invertible. Here, EQ (m', A'; 0) :=
v(m') for any A" and any m' € A'. Moreover,

Mg 1€

Mg 1,8
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-1
|[(E —Hyorgny.e) ](x’y)‘ = DG A ), T el A () (6)
[[(E = Hponginpir.d) ™ 6]
<5.10) 0 0
= SD(-;A““l)(rrzg:)\{m(:)t}),T,/([),|s|;A(>‘—1)(ma:)\{m(:)t}(x’y),
-1
|[(E - HA\{mO*,mg},e) ](x,y)‘ = SD(.;A\{mO*,mg}),T,KO,|e|;A\{m0+,mg}(x»)))-

Lemma 5.4. — Using the notation_from Proposition 5.3, the following statements hold.

(1) The functions
K©Y(n,n, A;e,E)=E—-Hy , ) '(m, n),
7)]0 ,7110

m,n € Amg,mg =A\ {mar, ma},
QY (my, As e, E)
h(mg[, m'’; S)K(J‘) (m/, ;A e, E)h(n/, m(jf; 8),

Il
N

(5.11) Waeh

+ Z /L(ma—L, m'; 8)K(“) (m/, A e, E)/l(ﬂ/, mg; 8)

’ o
", EAma—,ma

are well-defined and analytic in the following domain,

le] <&, |E—v(m)| <8/4, incases=1,

el <ei=eo— Y &,
(5.12) 1</<m1
[ — B0, A6V (t): 6)| < 1060, 522,

g0:=80, B :=min(272 e, 82, 27100 (40 log 87) ).

The following estimates hold with 0 < o < 2:
|02[Q (mf, Az e, E) — QU (mf, AUV (mit): &, E)]|

< 4_|8|3/2 CXP(—%R(SI)) < |8|(3(()5_1))12’

05QY (my, As &, E)| < el
|8E‘G(“) (m(jf, ms, A e, E)|

K K
< 4e? exp(‘ZO g = mo\) < g™ exp(_ZOR“U)

<le](857")".

(5.13)
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For e, E € R, the following identities hold:

KY(m, n, A; e, E) =KO(n, m, A; ¢, E),

(5.14) QY (m, A; e, E) = QY (mt, A; e, E),

G(J)(mar’ mg A e, E) — G(S)(mo_, ma_A; g, E)

(2) Let |E — EC™D(mg, A"V (mp); )| < 489V, Set Hp :=E —Hy .. Let I:IQ be as
i the Schur complement formula with A, == A No:=A\Ay. Then,

4+ =
m() ,7’2[) b

5.13) detly = x (6. E) := (E = v(my) = Q" (mj . Az, E))
X (E — v(mg) — Qf”(mg, A e, E))
— G(J)(ma—’ ma’ A’ g, E)G(g)(ma’ ma" A’ g, E)

In particular, E € spec Hy , if and only if E. obeys
(5.16) x (e, E)=0.

Progf: — The proof of all statements in (1) is completely similar to the proof of
(3) in Proposition 3.3. The first identity in (5.14) is due to the fact that E—H, | _ is

my .ma
self-adjoint if ¢, E are real. Furthermore, one has

(5.17) QY (my, A; &, E)

= Z h(my , m'; €) KO (m/, s A; &, E)h(n', mg; €)

meEN + _
my smg

= Z h(my , m'; €) KO (m', /s A; e, E)h(n', mg; €)

meEN + _
mey g

=3 s )ROs As E) i)

meN + —
711() m[]

— QO A; . E).

This verifies the second identity in (5.14). The verification of the third identity in (5.14)

1s similar.
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Due to the Schur complement formula with A} = A+ ANo=A\A, Hpy =

my ,my >

E — Hj . 1s invertible if and only if

~ — Y _— OO (T . O (T — .
<5.18) H2 = [E U(mo) Q (m07A’ SsE)) G (m()sm()’Aa S,E) ]

—GYW(my,ms, A; e, E) E—v(my) — QY(my, A; &, E)

1s invertible. Note that det I:IQ = x(&,E). In particular, E € specH, , if and only if it
obeys (5.16). OJ

Defination 5.5. — Using the notation of Lemma 5.4, assume that for every € € (—&,_1, &5_1)
and every |E — ES~D (mt, AC"D(m1); €)] < 10(85")8, we have

(5.19) o(mit) + QY (. A: e, E) > v(my) + QY (my. As e, E) + 70,

where T > 0. Then we say that Hy, . € OPRY (m, my , A; 89, T). We always assume here for
convenience that T < (5(()371))3.

Proposition 5.6. — Assume Hy, . € OPRY (md, my, A; 8o, T®).
(1) Forg € (—&,_1, &,_1), |[E — EC"D(mf, A"V (md); )] < 8(85™")/8, the equation

(5.20) x(e,E):=(E—v(n)) — QY (m{, A; &, E))

x (E—v(my) — QY (my, A; &, E))

—|GY (mi, my, Ase, E)[*=0
has exactly two solutions . = E“F (mg, A; €), obeying B (my, A; &) < ECP(mf, Aje),
1/8

(5.21) ‘E(;,:I:)(mg-’ A: 8) _ E(;-_l)(mar’ A(;_l)(mau); 8)| < 4|8|(88“1))

The functions E("’i)(mar , \; &) are C*-smooth on the interval (—e,_;, &,_1).
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(2) The following estimates hold:

02x| <8, fora<2,  8ix>1/8,

O xlererot e < —(T?) 0 Ikl monoam > (£9)
ECH (m, Ase) —EC7 (mf, A €)
> é[_aEX le. £6o it sy T OEX e B it Az |5
= OEX |e 6 0t Ave)s OEX e BOb it Ace)
= S (B Ase) =B s e))’
B2 ke m|z gmin((E-E (g, Ae) (BB Ase))),
L1 ) 566, B,y
> ECD (mf, A ¢)
> max(a (¢, E), as (e, B) + |b(e, E)|) |0 o ey
[aa(e. B) = [be. B) ]| st e
<EC (mf, Ave)
< min(ay(e, B), a1 (e, E) = [b(8. E)[) [\ oy
where
@ (6. B) = v(mf) + Q0 (m . Ase. E).
a (e, E) =v(my) + QY (my, A; &, E),
b(e, E) = |bi(e, E)|, bi(e, E) =G (mi, my, As e, E).
(3) We have
specHp o N {E: [E—ECD (m, A0 (mi): )| < 8(587") ")
(5.23) ={E“ (m, As ), B (mf, As€)},
ECS (g, A5 0) = v ().
(4) Using the notation_from part (1) of Proposition 5.5, for any
1/8

B29 B A = () <E< B Ae) + (557)
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the matrix (F. — H A\t ), ¢) is wmvertible and

(9.25) ‘[(E - HA\{mg,mg},s)_l](x’)’)‘ = SD(5 A\ fmg ,ma}),T,KQ,|£|;A\{n'za',ma}(X’.y)'
If
(5.26) (85")" < min|E — E“9 (n, As )| < 6(557)"",

then the matrix (E. — Hy ) us tnvertible. Moreover,
(5.27) ‘[(E — HA,a)_l](X’_y)’ < SD(:A), Too Jel:hn, 1 (X,0).
Progf: — To prove (1), we apply Lemma 4.13. Consider the case s > 2. Set
B2
]72,
a(e) = E(‘_l)(mg, A(‘Y_l)(m:{); 8), o = 10(8((;._1))1/8’
Fi(e.E)=E — v(mf) — QO (mf . A (mf): 6. E).
Fi(e ) =E — v(m) — QO (my . A (i ): £, E)).

ﬁ:E_aia f:ﬁ_

We apply Lemma 4.13 to x) = (E — a)(E — a) — b*. We also verify that [ €
5;]()1>(f1, /2, b*). Let us verify conditions (i)—(iii) before Lemma 4.5. The functions a;, b are

analytic in the complex domain |e| < &,_,, [E—E¢~D(m, A0~V (m); £)] < 10(85~")/8,
due to Lemma 5.4. So, conditions (i) and (i) hold. Due to the second identity in
(5.14), g; assumes real values if ¢, E are real. Due to Definition 5.5, we have a,(¢, E) —
as(e,E) > 1@ for any ¢ € (—¢&,_1,&_y) and any E € (EC"V(ml, A" V(m);e) —
1085 ™) 8 ECD (mf, AV (mb); e) 4+ 10(857")8). One has also GO (mE, mT, A;
0, E) = 0. Thus, both requirements in condition (iii) hold. Due to (5.13), |[0fa;| < |e| <
1/64,i=1,2,a=1,2, 0| < 4|g|*? exp(—’fT“R(“_l)) < 1/64, a < 2. Furthermore,

ESEyal
< max|9[Q (mg, A; &, E) = QP (m, AV (my); &, B)]|

< 4|e]*? exp(—%R“‘“), a<2,

5.28 -
(9.28) Fe B0 (i A (mif):

fz(S,E(f‘l)(ma, A(;_l)(ma); g) =0,
E(s—l)(m(-;,-, A(x—l)(mg—); 8) i (3((;—1))1/8
< E(kl)(ma, A(ﬁl)(ma); 8) < E(ﬁl)(ma“, A(Sfl)(ma“); 8).

=0,

N—" =
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Here we used (5.13). Since |8E]~§ | <1, (5.28) implies in particular
(5.29) IE—al=fl <|E—E""(mf, AV (mf); €)| < po < 1/64.

Moreover, all conditions in Definition 4.9 hold, and hence f € SS()I) (1, for %), x = xV.
Lemma 4.13 implies parts (1), (2) of the current proposition.

The first identity in (5.23) follows from part (2) of Lemma 5.4. The second identity
in (5.23) follows from the first one since v(mg ), v(my ) are the only eigenvalues of Hy g
which belong to the interval in the first line, and v(m:)r )) > v(my ). This finishes part (3).

We will now verify (4). The estimate (5.25) is due to (3.13). For E in the domain
(5.26), we invoke Lemma 2.14 with Ay = {m, my }. We need to verify conditions (i), (ii)
in Lemma 2.14. Condition (i) holds due to (5.25). Let Hy := H,, — ['y, 17—[7\11F1 9. Recall
that det Hy = x (¢, E), due to part (2) of Lemma 5.4. Due to (5.22), one obtains

D, :=log| det Fl,| " =1log|x (¢, E)| ' < ~1log(8“™")™" + 31og?2

-[>|~

< D(m; A);

see the notation from part (1) of Proposition 5.3. Furthermore, due to condition (5.8),
U (moi) > R®. Due to Remark 3.2, one obtains Dy < [min(ua (mg ), a(mgy))]'°. Thus,
condition (ii) in Lemma 2.14 holds. Due to Lemma 2.14, (5.27) holds. This finishes the
case s > 2. The verification in case s = 1 is completely similar. U

Remark 5.7. — Here we want to comment on a stronger version of the estimate
(5.21) in the statement of the last proposition. Namely, in some of our applications we
will consider cases where some additional conditions hold. Namely, the sets A~D (m7)
will obey

(5.30) A" (mg) D my + B(R)
with R > R¢=Y Furthermore,
(5.31) [ECD (my, AV (my)s &) —ECV (m, AY" () €)| < exp(—R),

compare with (5.7). In this case, a revision of the proof of (5.21) shows that the following
stronger estimate holds,

(5.32) ‘E(Li)(mg', A; s) — E(s—l)( ,ACT 1) mo) | < 2l¢| exp(—ER)

Definttion 3.8. — Let Hy o be as i (3.1)+(5.4). Let s > 0, ¢ > 0 be wntegers. Assume
that the classes of matrices OPR""* )(mo iy s N; 80, To) are defined for s < s < s+ q — 1, starting
with OPR™ 3)(mo LMy A 8o, Tp) = OPR(‘)(m0 LMy A 80, To) being as in Definition 5.5. Let
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mi, my € A. Assume that there are subsets M© = {m":j €]}, MY = {m; e ],
A(‘)(er) = A(”(m ),J EJ(‘) with s <s' < s+ q— 1, and also subsets M), A(‘)(m) me
M1 < <s4q—1 such that the following conditions are valid:
@) my € M85 (50, by convention, 0 € JoT=) me A (m) C A for any m.
(1)
ME (AN MEVA)Y =@, for any possible superscript indices s' # 5",
A () 1 A () = 0,
:F

/ " / " / + "
unless s =", andm' =m’ or m =m;,m =m.

(i) For t@ > 0 and any mjr € M(X/’H s >, HA(A>(m+)8 € OPR(“)(m m;
A(“‘)(er) 80, T). For any m € M s Hyrome E/\/'(”(m A (m), 8).
(iv) Let 80 , R be as in Definition 3.1. Then,

(m/ + B(R(s’))) C A(A‘/) (m/>’ ﬁ?’ any m/, S/,
(" +BR)) € AV (). foramjs <5 <stg.
(m + BR™)) € A.

) Given m € MYD et B (mf, A () e), QY (", A (mF): e, ), ete.
be the functzons defined for the matrix H A ) e (Here, E i)(m A(‘) (m+) €) are
Just as in Proposztzon 5.6. Below n Proposztzon 5.9 we will give the construction of these
Sunctions for s' > s, which justifies the use of these functions i our inductive definition.)
Simalarly, given m € M et ES) (my, A (m); €) be the  functions defined for the matrix
Hy e € N (m, A9 (m), 8). For each m;r e MU, mf ¢ {m,my}, s <
S <s+q,anye € (—&_1,8&-1), we have

(H=D) _ ] N _
(5.33) 88, 1Y < [ECHTI (i ACHD (1) )
BT e, A ) )] 877
(5.34) 38077V < Bt (m, A0 (") 6)

— E(s‘+q*1,i) (m0+’ A($+Q*1)(mar); 8)‘,
()

539 = [ A0 ) )
— ECHID (4 ACHD (1) 6) | < 5((;’—1)’

Jors<s <s+q—1,
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"
5.36) B < B A () )
— E(x+qfl,i) (mg’ A(erqfl)(mar); 8)

Jors<s <s+q—1.

’

Furthermore, for anyme M, 1 <§ <s+q—1 andany & € (—e,_,, &,_,), we
have

/

(€] /
87 S ‘E(Y,) (m, A(Y’)(m); 8) _ E(S'H]_l,"r) (ma—, A(J-‘rq—l)(m(.;_); 8)} S 5(()5_1).

i) lv(r) —v(mg)| = 28] for any
ne A\([ U U A“’)(m)] u[ U U A(“/)(m;“)])
1<s/ <s+g—1 meM(s) 55 <stg—1 je)
(vii) In Proposition 5.9 we will show inductively that the functions
K" (m,n, A; e, E) = (E—Hy M)—1 (m, n),
myn€ N, o= A\ {m0+, mg},
(5.37) Q(s+q) (mg Ae, E)
= Z h(mg,m's &) KT (nd, s As e, E)h(n, mg; €)

mWeN + —
mo ,7)]0

are well-defined for any € € (—&,_1, &,_1) and any

Ee U(E(5+q—l,:|:) (mar’ A(s+q—1)(m8-); 8) _ 28(%&971)’
+
EGte—L%) (mg" A(s+q—1)(m3-); 8) + 2563‘+9*1)).

We require that for these &, B and with T from (iii), we have
5.38 v(m) + QU (mf, ALE) = v(m;) + Q9 (s A: £, E) + 0.

Then we say that Hy € OPR(“”)(mg, my , A; 8, 7). We set s(moi) =s+q. Wecall
mg, my the principal points. We call A=V (m3) the (s + g — 1)-set for my.

Proposition 5.9. — For each q and any Hy . € OPR“ (m, my , A3 85, T), one can
define the functions EST4E) (md | A; €) so that the following conditions hold.
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(0) ECT9 (mf, A; &) are C*-smooth in € € (—e,_y, &,_1).

(1) Let D(:; ADm), 1< <s+ g—1,me M pe defined as in Proposition 3.3.
Define inductively the functions D(-; A(j/)(mf)), s<s§<s+qg—1,5€]J), and
the function D(-; A) as _follows. For s = s, let D(+; A (m+)) be just D(+; A) from
Proposition 5.3 with A("/)(m}L) i the role of A and mj n the role of my. Simi-
larly, for s > s, let D(:; A (mf)) be just D(-; A) from the current proposition with
A (m*) in the role of A and mi" in the role of my . SetD(x' A) =D(x; AY (m)) if
X € A(‘)(m)forsomes <s-— 1 orif x € AV (m), m—m i EJ(‘) s>, m+ ¢
{m¥,my}. Set D(x; A) =4log8y " ifxe A\ ([U1<3,<3+q U per A )(m)] U
(Uozvzorget Uigenr AV GnN]). Finally, set D(mi; A) = Dy == 4log(8; )",

Then, D(+; A) € Garxyy T = 4icolog 8y ', and

max D(x) < 4log(3((f+q_l))7l, ma}\XD(x) < 410g(3((f+q))71
XE€

"¢{mo ) o}

Q) Let g > 1, LOV15) .= Lo (BECT15 (| ACH=D () €), 2807, For any
(¢,E) € LET=1D U LEF=17) the matrix (B — H\ (it g ).) 15 tnvertible. Moreover,

-1
(9.39) ‘[(E = Havpiig.e) ](x’y)‘ = SO0 ANy DT lels AN 1,93 (% 9)
(8) The functions

K(H‘q)(m, n, A, g, E) = (E — HA " _)—l(m’ ﬂ),
mo .ﬂ]o

mne N + ._A\{mg,mg},

my smg.

QU (my, A; &, E)

= Z h(ma—L, m'’; S)K(Hq) (m/, A e, E)/L(n/, m(jf; 8),
(5.40) m' ,n eAmat my
Gut? (mo .mg, A €, E)

= /z(ma—L, md, 8)

+ Z /z(mf, m'; 8)K“+9) (m’, ;A e, E)}z(n’, mg; s)
m’,n’eAmarvm[T

are well-defined and C?*-smooth in L4710 U LOY=17) These functions obey the fol-
lowing estimates for (&, E) € LOT=1 DU LOA1D and 0 < o < 2: 2 |]*/? and some
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more regarding G

QU (. A ) = BQUH D o A ). )|
< 4|8|3/2 CXp(—KoR(H_q_l)) < |8|(8és+q71))12’
102G+ (mE, T, A &, E) — 02 GO (i, mF AT (it 6, E)|

< 4]g|>2 exp(_KOR(erqfl)) < |8|(8és+q—1))12’

>4 05Q (i, A e, B)| < el
|E —v(m5) — Q™ (my, As &, E)| < el
|8§G(‘+7) (m(f, my, A €, E)|
<81l exp (=2 — i) = IG5 )
T he following identities hold:
(5.42) Qo (my, Az e, E) = QU (m, As e, E),

GOt (m:{, my, A €, E) = GU+D (ma, mg A €, E)
(4) Let (¢, E) € LOT=1D U LOM=17) Then, F € spec Hy , if and only if E obeys

(5.43) x(e,E):=(E—v(m)) — Q" (mf, A; &, E))

x (B () = Q"0 (mg, Ase, )
— G(H—‘]) (ma—’ m(;7 A, &, E)G(H_q) (ma’ ma_’ A’ & E) =0

(5) Fore € (—&,_1, &5_1), the equation
(5.44) x(,E)=0

has exactly two solutions ¥, = ECTE (md | A; €), obeying BT (mf, A; e) <
ECTe D (md, A; €) and

(5.45) ‘E(Hq,i)(mar’ A; 8) _ E(x+q*1,i)(m§’ A(erqfl)(mar); 8)‘ < |8|(8(()‘Y+q_1))3,

The functions EST (mt, A; &) are C*-smooth on the interval (—&,_y, &,_,). The_fol-
lowing estimales hold:
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02x| <8, fora<2, 8%y >1/8,
(0)? 0)\2
I X le bt Aze) < _(T ) ) OB X |e, BCHob it Aze) > (T ) ,

ECH (mf, A; 8) —E“* ) (mf, As €)
1 (544
. g—1)
> mm(§[—aEx |£,E(>‘~*)(m8ﬂA;8) + 9 x |s,E(-"v+>(mO+,A;£)]’ 28, ’
— O X |8,E(f+‘l~*)(m0+,A;s)’ de X |5,E(‘+‘iv+)(m3',A;s)

1 2 (877)?
> min(ﬁ(E(wq&) (m0+, A; g) — Rt (m0+, A; 8)) ’ 0 o1 —),

X, B)] = e min(E — B A )

(3+(1*1))2
erlP|E _ E(ﬁ-q,i)(ma-’ A: 8)‘ < 220 o0

ECHe D (mf, Ase) —v(my) — QY™ (my, As e, T (mf, A; €))

> max(‘l,'(o)/Q, |G(J‘+q) (m:{, my , Aj €, EGteH) (mar, A; 8)) ‘)
ECH ) (mf, Ase) —v(m)) — QY (mf, As e, ECT07) (mf, A; €))

< —max(t 972, | GO (i, A £, B (i, A )],
[al (e, E) + ‘b(g’ E) H |E=E(-“+'Iv+)(m0+,A;s)

> E&t+e® (mg’ A; 8)

> max(a (¢, E), as (e, E) + |b(e, E)|)
[d?(g’ E) - ‘b(g, E) H |E=E(-"+'1v+)(m0+,A;s)

< EG+e—) (mg’ A; 8)

<min(ay (e, E), a1 (¢, E) — |b(e, E)|)

}E:E“‘*qv‘*) (mg Ase)’

‘ E=EC+62) (mf, Aze)’

ai(e,E) =v(m}) + Q" (mf, A; &, E),
a>(e, E) = v(my) + Q" (my, As e, E),
b(e.B)=|bi(e,B)],  bi(e,E) =G " (uf, my, As e, E).
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(6)
specH 0 [ B minl B~ B9 (i, A0 )z )| < 8(57 "))
(5.47) — {E<s+q,+) (mg A: 8)’ EG+e) (mg A; 8)}
ECH) (ot A:0) = ().
Let
(5.48) (557")" < min|E — EC70 (g, A0 () ) |

<6572 EeR.
Then the matrix (. — Hj, ) is tnvertible. Moreover, with D(x; A) as in part (1),

(5.49) I[(E—=Ha) '] 2)| < Soesay oo jelinon(x,0).
(7) Set
ﬂi _ G(ur,[)(mozp’ m(:)l:’ A; g, E(Hrq,:t)(mg" A; g))
ECHeD (mg, As ) — v(mi) — QU+ (mf, A; &, B+ (mg, A €))

Pt (n, As €)

(5.50) =— > (B (mf, Ase) = Hyyi o) (%)
xeA\{ma',mo_}
X [iz(x, m(jf; 8) + h(x, mg; 8),3i], né¢ {mar, mg},
et (my, Ase) =1, et (m, A e) = B

Then the vector @ TP (A;e) = (9“8 (n, A;8))pen 15 well-defined and  obeys
Hy o0 15 (A ) = BP9 (mg, Az e)ptHH (Ase),

|0, As )|

7K 7K B
5.51) < |8|1/3|:exp<—?o‘n— m(ﬂ) +eXp(—?0|n— my, |)],

n¢ {mar ,my },
|t E T, Ay )| < 1.
Proof. — The proof of all statements goes simultaneously by induction over ¢ =

0,1,.... For ¢ =0, all statements except (7) are due to Proposition 5.3, Lemma 5.4,
and Proposition 5.6. We discuss (7) for ¢ > 1; the derivation for ¢ = 0 is completely



296 DAVID DAMANIK, MICHAEL GOLDSTEIN

similar. Let ¢ > 1. Assume that the statements hold for any ¢ < ¢ — 1 in the role of ¢.
The derivation of (1)—(4) is completely similar to the derivation of these properties in
Proposition 5.3, Lemma 5.4, and Proposition 5.6. We discuss the proof of these statements
very briefly. A very important difference in (5) is that this time we invoke Lemma 4.14

instead of Lemma 4.5.
Note first of all the following. Let (g, E) € LéT710) Let j € J6T=D\ {0} be arbi-
trary. Then, using conditions (5.33), (5.34) in Definition 5.8, one obtains

|E(s+q—1,+) (mj_, A(H—q—l)(m); 8) . E‘
< ‘E(s+qfl,+)(mj‘+’ A(erqfl)(m); 8) _ E(s+qf1,+)(m8L’ A(erqfl)(mar); 8)‘
+ |E(s+q—l,+) (m(-)l-’ A(J—H]—l)(m(-;—); 8) _ El
< 8(s+q—2) + 28(J+q—1) < 38(j+q_2)/2,
|E(s+q71,+) (mjr’ A(&+q71)(mj+); 8) _ E|
> ‘E(J—i-q—l,—t-)(?nj-’ A(A‘+q—1)(”§i-); 8) _ E(s‘+q—1,+)(m(-)|-, A(s‘—'rq—l)(mg-); 8)|
= B o, A ) ) ~
> 3§0T=D _ 9glte-D (3(s+q71))4’
10 o A o)) =
> ‘E(s+q—1,—) (mf, A(H—q—l) (mj—i-)’ 8) _ E(s+q—1,+) (m(-;—’ A(j+q_1)(7’)’lj—); 8)|
B o A ) ) 8

_ _ —_1\ 4
> ggtte—h _ 23(5+q DS (3(54-9 1)) .

(5.52)

Lets<s <s+4¢— 2,7 €] be arbitrary. Then, using conditions (5.35), (5.36) in Defi-

nition 5.8, one obtains
B o, A £) T}
< [ESD (mt, A my: £) — B9 o, ACHD (o) )|
B A0 o)) -
<8¢TD 4 ogtreh < 35(3'/_1)/2,
[ECD (m, A (m); €) — E|
(5.53) > |[ECD (mF, A (m); €) — BP0 (i ACHD (i) )|
)

_ |E(J+q71,+)(mg’ A(”q*l)(mg); 8) - E{ > 5

—98WH=D o (5(s’>)4’
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B A9z ) — B
= [ o A ) = B o A )|
EG+e—1.5) (mg’ A("+‘/_1)(m§); 8) _ E{

")
> % —986He=D o (5(5’))4.

Similar estimates hold if (&, E) € LT For this reason, the inductive assumption
applies to H A in the role of Hy . and to (&, E) so that (1)—(6) of the current proposi-
tion hold for H \ ) e In particular, for any (¢, E) € L6t U L6F0719) "each matrix
(E —Hj)(.,) Is invertible for any s <5’ < s+ ¢ — 2 and any m, m & {m;,m; }. The
matrix (E — Hyot-0 i)\t ) 18 also invertible. Furthermore,

|[(E - HA(J’)(m),a)_l](x’)’)‘ = SD(-;A(‘,)(m)),T,KO,|£|;A<’J)(m),9%(x’_y)’
(5.54) [ = Hycrmn gy puitoncre) ] (0)]

< o N o _
= SDCACHD (N (s )Tk el ACHD G\ it i}, 91 (%, 9).

Similar estimates can be shown for s’ < s and for s =s+ ¢ — 1.
Recall also that [v(r) — v(m)| > 28} for any

en\([ U U w]o[ U Uaen))

1<y <s+¢—1 me M(s) s<8/ Ss4q—1 ey

due to condition (vi) in Definition 5.8. This implies |E — v(n)| > §; for any such n.
Taking into account condition (iv) in Definition 5.8 and Remark 3.2, one ob-

tains D(mT) < T (mE)!'/?. Just as in the proof of Proposition 5.6, one concludes that

D(:; A) € Ga 1k Furthermore, due to Proposition 2.16, Hy , _:=E—H, , _.isin-

)lo ,mo 7710 mo
vertible. Moreover,

—1
(5.93) [HA )| < spea o Twoleia, - ().
my Mg 0 "0 070

Thus, in particular, parts (1), (2) of the current proposition hold.
The estimates in (5.41) are due to Lemma 2.21. This finishes the verification of

(H-@).
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As we have mentioned, to verify (5) we invoke Lemma 4.14. For (¢, E) €
LG+=L+) E(.H-q—l»i), set

(e, E) = v(ml) + Q"™ (mf, A; &, E),
as(e, E) = v(my) + Q" (my, As e, E),
bi(e,E) = G (mf, my, As &, E), b(e, E) = |bi(e, B)|,
fi=E—a,  f=f-0f"
2.:(8) =BT (mf ATV (mg)re),  pg =260,
Jo= = (i) = QU (i, A0 (), ),
jz =B () = QT g, AU () 6, ),
= |G (gt my, AT ()i 8 B (e, By =Jih — B

(5.56)

Due to (5.41), one has |dsql, |05, |61], 10601], [0511, |E — ] < 1/64. So, f €
(l)fl,fg,b),and alsofES(“)(f,fz,b),as required in Lemma 4.14. Note that x = x V.

Let us verify conditions (Ol) (8) needed for an application of Lemma 4.14. We set
p := py. Using (5.41), one obtains [0% x (g, E) — 8% x1 (e, E)| < 4[¢|(8)7")12, o < 2.
Recall that x, (e, ECTi 'i)(mo , NGt l)(m );€)) =0, and (5.46) applies to x; in the
role of x and ¢ — | in the role of ¢. This implies conditions (&), (¥), and (§) with
o1 := (1/8)(inf, ,(min, t#))* = 1/8. Note that x,(0, E) = x (0, E). This implies condi-
tion (B). Part (5) follows straight from Lemma 4.14 (the last two lines in (5.46) are due
to (4.10), (4.11), respectively).

(6) The proof of this part goes word for word as the proof of part (3) of Proposi-
tion 5.6.

(7) Let 0 < |[E—E&® (maL, Ase)| < (8(()5+q_1))1/2. We invoke the Schur complement
formula (2.2) with Hy = E—Hy ., Ay :={m},my}, A := A\ Ay. Provided x (¢, E) # 0,
one has (see (5.18))

HA == [IHA[ FI,Q ] )

FQ,I Hl\z
N 1
(5.57) Hy' =
x (e, E)
o[ E=vmg) = QU mg Ase E) —GOHO(my mg  Ase E)
—GUtD(my mi, Are, E)  (E—v(m)) — QYT (mf, As e, E)) |
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(E—Hao) ™' (nmy)
_[Hl_lrl,QI:IQ_I](n, m(“)—L)
: -1
= — X (8, E) Z (E — HA\{’ng*ma},S) (n’ x)

x€A\{m ,my '}
[ )5 o(0) — Q. s, 1)
+h(x,mg: )G (nf mi, Ase E)] g {mg . my )
(E—Hp.o) " (my, my)

(5.58)

=87 o) =~ (B o) - QO e ).
~ 1
(E—Hpo) ' (my, mf) = H;I(moi,m(f)sz(‘ﬂ)(mo,mo,A8E)

Note also that due to part (7) of Lemma 4.11, 9 x |E(:+q,j:)(mo+’A;8) # 0. Set

L BB A e) —vimi) — QU0 (mf, A; e, ENTP (g, A €))

e X |E(*‘+f1vi)(m0+,A;£)

(5.59) o

It follows from (5.46) that a® # 0, |8*| < 1. One has
Res[(E —Hy )™ (n My )]|1: ECH) (i}, Ase)

=—a* Y (B (g, Ave) = Hypne) (09
xeA\{my my'}
(5.60) x [h(x, mys &) + (v, i €) B5], - ne AN\ fmg, my ),
Res[(E —Ha )™ (m5, myy ):”h —ECHD) (i Ace) =a,
Res[(E —Ha )™ (m5, my ):”h —ECHD ot Ae) — B

Res[(E —Hp o) 7'6,¢] FeUT (L Ase).

|E EOH®) (md Aze) =
This implies Hy 0O (A; €) = ECTH (mf, A; )9 T+ (A; ¢). Combining (5.50)
with (5.39) and with the estimate (2.28) from Lemma 2.7, one obtains (5.51). O

Using the notation from Proposition 5.9, assume that the functions #(m, n, €),
m, n € A depend also on some parameter & € (ky, ko), that is, h(m, n; €) = h(m, n; €, k). As-
sume that Hy . 4 1= (h(m 1 &, k) ynen € OPRD (mt my , A 80, 7). Let QU+ (m, A;
e, k, E), GOS0 (mT, mT, A; e, k, E), BT (m’, A; e, k) be the functions introduced in
Proposition 5.9 with Hy ., in the role of Hy ..
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Lemma 5.10. — (1) If h(m, n; €, k) are C'-smooth functions of k, then Q(‘YJ“’)(moi, A;
e,k E), G(A‘“)(moi, my, A; €, k, ), and BT (mt | A; €, k) are C-smooth functions of all vari-
ables mvolved.
(2) Assume also that h(m, n; &, k) are C2-smooth_functions and for m # n obey |0%h(m, n
&, k)| < Boexp(—kolm — n|) for || < 2. Furthermore, assume that |0%h(m,m; e, k)| <
By exp(iolm — m |'/°) forany m e A, 0 < |a| < 2. Then, for |a| < 2, we have
|aa [(E - HA\{mg,ma},k)_l](xty”
= (3B0) QD(<;A\{7I2(:JE,7I2;}),T,K(),|£|;A\{ma—,mg}(x’y)’
QU o, A, )|
o o + +
= (3By) |8|©D(-;A\{mg,mg}),T,K0,|a|;A\{mg,mg}(mO ’ mo)
< (3By)*|el*?,
|0°GY*? (my, mg, As €, k, E)|
o o + F
= (3Bo) @D(.;A\{mﬁ,m;}),T,Ko,|s|;A\{m§,mg}(mO ’ mo)

< (3By)“le|'""* exp(—ko|my — my /16]),

(5.62) |“ECH"® (mf, A; e, k, E) — 8%v(mo, k)| < (3Bo)*|e]*”.
Here, ®¢ m ) is defined as in Lemma 2.9.

+
D(‘;A\{.W}),T,Ko,\8|;A\{m0+,m3}(mo ’

(5.61)

The proof of this statement is completely similar to the proof of Lemma 3.5 and
we skip it.

6. Self-adjoint matrices with a graded system of ordered pairs
of resonances

This section is to large extent an “upgrade” of Section 5. We explain only the new
ingredients. We skip the rest of the proofs because up to the new notation, they go almost
word for word as the proofs of the corresponding statements in Section 5. Lemma 6.4
explains how the main transition to the “upgraded” case goes. After that, ultimately the
main difference is that we use Lemma 4.13 instead of Lemma 4.5, and in Lemma 4.14,
we have this time £ > 1.

Definition 6.1. — Let s > 0, ¢ > 0 be integers and let T > (Séx+q71))1/ *. Using the notation
Jfrom Definition 5.8, assume that conditions (1)—(1v) and (vi) of Definition 5.8 hold. Assume also that
there exists mjg € MU=V such that
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(s+g—1)\ 1/2 s+q—1,+ s+q—1 .
(6.1) (8777) T = [T g, AT () )

— B (o, A () )| <8570, i,

(6.2) (87 < |[ECHID (e, ACTTD (m); )
— ECHI (4 ACHD () )| i,
(6.3) ‘E(S-&-fl—l,i)(mjo A(H—q 1)(m70) ) E(H—fl 1i)(m A(H—fl 1)(7710) 8)|

< (6(()5+q—1))5/8.

Assume that the rest of condition (v) of Definition 5.8 holds.
Due to Proposition 6.5 below, the functions

K(‘H'[[’i)(m’ n’ A; 8’ E) = (E - HA i i)il(m’ n)a

myne N, = i:—A\{mO, Jjo[}

77I ,m
(6-4) QU H (m, A e, E) = Z h(m, m'; ) KT (o, n'; A; e, E)
m’,n’EAmi o
0"%o
X /z(n’, m; 8), me {mar, m;}

are well-defined for any & € (—&,1 49, &514—2) and any
Ee gi(g) = (E(5+q—l,i) (m(—)i-’ A(H—q—l) (mo—i-), 8) . 28(().r+q—1)’
EGte—15) (mg-, AG+e=D (m(-)‘r)’ 8) + 28(()3+9*1)).

We requare that for all €, we have

(6'5> U(ma_) + Q—(H_q) (ma_’ A’ E) =V ( ](]) Q—(H_{]) (mi[) A €, E) + T
Ee&T(e),

o, alternatively,

(6.6) v(my) + QY (my, AL E) = v(m) + Q0 (m, As e, E) 4 ¢
E e & (e),

where TV > 0. We introduce the following notation:

m® = m = (g om; ). (mfm;)),

6.7
&7 s$O =y, sW=s44q, sV i=g:= (s, 5V), = (9, V).
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With some abuse of notation, we set
mti=m, mTi=ml  if (6.5) holds, or alternativel
=my, "% . 3 Ly

(6.8)
if (6.6) holds.

toa o~ -
m"i=my, moi=m

We say that Hy . € GSR® (m, m*, m™, A; 80, T) . We set s(m™) = sV, We call m*, m™ the
principal points. We call A () the (5D — 1)-set Sfor mE.

Remark 6.2. — We introduce the cases (6.5) and (6.6) to address all possible cases
for our applications in Section 10. In fact, in Section 10 these cases exclude each other.
This property is inessential for the development in the current section. For this reason, we
do not include it in the definitions, and we consider these two cases as two alternatives.

_Remark 6.3. — In the next statement we will use for the frst time part (5) of Defimition 2.2
with A # Z", see Remark 2.3. Here and later in this work, Gnr Ty = G 20 Tk - Recall
also that Gp i 1., C Ga&, T If A1 C AL

Lemma 6.4. — (1) Let Hp o, € OPR(”SJrq/)(mOJr, my , N'; 80, T). Assume that
BT < 7O, Lot Hyr i= B = Hure, Ay = A\ {mf,my ), Ao = {mi), Hy = Ha,,
ik, ©) = Do a,(k 0) i= H(k, 0), ke A,leA;. For |E—EHDml Ae)| <
(5(()5“/))1/4/8, the quantity i = Ay (mg, mT) = [Hy — Do Hy ' T1ol(md, mT) is well defined,
HE =E —v(ml) — QY (mT, A'; &, E), and

(6.9) L (T, mT) = (557) /4.

Furthermore, set D(x; A"\ {m(jf}) =Dy A), x € A\ {m],my}, where D(x; A’ \ {mS,my})
is defined as in Proposition 5.9 with N’ in the role of A, D(mi; A"\ {mT}) = 4log(8((f+q -
Then, D(-; A"\ {mi}) € QA/\{m(?},ZU\{mOi}’T,KO. The matrix £ — H %) is tnvertible and

(6.10) LB = Hanps.) " 1] < speavudn rclelan o (6.9)-
(2) Set
(6.11) QU+ (mf, s &, E)
= Z }l(m(j)t’ m; 8) (E— HA/\{mg},s)fl(m, n)/z(n, moi; 8)-
m.ne A'\my
T hen,
(6.12) QU+ (my, A e, E) = QU+ (my, A'; €, E)

|G+ (s, mT, N &, E)|?

T E v — QU (L AL e )
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(3) Using the notation _from part (2), set go(e, E) = gp. (¢, E) = E(A‘+‘/—Li)(m5r, Ase),
(s+¢=1)
0 — 230 >

fi(e,E)=E —v(mf) — Q""" (m, A’ e, E),
p s /. 2
(6.13) Ve, B) =[G (g, mi, A's e, B[
By =y (e By — 2D
&, = &, — .
’ S(e,E)
Then, [ € T o oo S s 0), T = 105 see Definition 4.9,

Proof. — (1) Let |JE—ECH D (mt, A's £)] < (88777)1/1/8. Due to part (2) of Propo-
sition 5.9, Qf“”f')(m A’; e, E) is well-defined. One can see that Hf =E — v(my) —
QU+ (my, A'; &, E). Due to (5.46) from Proposition 5.9, one obtains

~ () . _
(6.14) HY | oo ot aviey = B D (mf, Ay e) — v(my)

— Q) (my, Ay &, B (mf, Ay g)) = 7@)2.
Combining (6.14) with the estimates (5.41) from Proposition 5.9 and taking into account
that (Séﬁq))l/ * < 7@ one obtains (6.9) for I:IEL The derivation for I:IQ_ is completely
similar. Furthermore, due to (5.39) from Proposition 5.9, one has

-1

(6.15) ‘[(E — Hanpig g .e) ](X’J)‘ = DG AN i DT el AN Gy 58 (69

Due to Proposition 2.16, the estimate (6.10) follows from (6.9) combined with (6.153).
The case [E — B2 (mt, s )| < (807)1/4/8 is completely similar.

(2) One has
(6.16) QU (mE, A\ {mE); e, E)
DRSS IS } i)
m,neN m,neNg meN|,neNo meNo,neN
x (B = Hyn i) (o mh(nomge) =) &,
1<j<4

Using the Schur complement formula and the definition (5.40), one obtains
S, = Z h(moi, m; 8) [Hfl + H;lr‘]’QI:'I;l FQ!]HII](m, n)h(n, mat; 8),
m,neNq
(6.17) = QU (mE, A's e, E) + (FL(mT, mT)) ' 190, 2,
m, = Z h(moi, m; E)Hfl(m, n)/z(n, mg; 8);

m,neNq
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see Lemma 2.1. Similarly,

S, = (I:IZ(mojF, m?f))_l |/z(m(T, mgt; 8)|2,

(6.18) S,y = (Hy(mT, mT)) ™ O h(mT, m: 6),

6, = (I:IQ(m(T, m(f))_lﬂﬁlh(mi, my; €).
Due to (6.17), (6.18), and the definition (5.40), one has

(6.19) D 6,=Q"(m;, A's e, E)

1<j<4

+ (HQ(mo My )) ‘G(Hq)(mo cmg, Ay e, E)

as claimed in (6.12).

(3) Due to (5.38) in Definition 5.8, one has fi > /- for any ¢, E. It follows from
the estimates (5.41) in Proposition 5.9 that f € %’;1()1)’1 /9 (fi.f-, b*). Furthermore, due to
Definition 5.8, one has %) > 1. O

Proposition 6.5. — Using the notation_from Definition 6.1, the following statements hold.

(1) Let D(; A(m)) be as in Proposition 5.9. Set D(x; A) = D(x; A\ {m*,m™}) =
D A\ m) = D@x; A(m) if x € Am) \ m, D(x;A) = Dx; A\ {m",m™}) =
41og(8SH™ ) ifx e m\ {m*, m™Y, and D(x; A) = 41og(87") " if x € {m™, m™}. Then,
D(;A\m) e gA\m,T,Ko; D(; A\ {m*,m™}) e gA\{m*,m*},Z”\{m*,m*},T,Ko; D(;A) € gA,T,K[]'

(2) Set gy = ECV 1D (ot ACYD (mt); &) if (6.5) or (6.6) holds, respectively. Set

sD-1)y1/2
8
(6.20) L0600 .= {(s, E):ee(—¢,_ < %}
For any (¢, E) € LY, the matrix (E — Hp\ (ot o). is invertible and
(6-21) ‘[(E - HA\{m*,m*},s)_l](Xsy)‘ =< SD(<;A\{m+,m’}),T,K(),|£|;A\{m+,m*},93(x9y)'
(3) Set
QY (m*, As 6, E)

_ Z h(m*, m; €) (B — Hay o))~ Oy )h(n, m™*5 €),

m,ne A\{m+,m=}
(6.22) GO (m®, ™, A\ {m*,m” ) 6, E)
= /z(mi, mt; 8)

+ Z h(mi, m; 8)(E - HA\{m+,m—})_1 (m, n)/z(n, mr; 8).

m,n€ A\ {m*,m~}
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Let QU =D (m®, A=V (m*); &, E) be defined as in Lemma 6.4 with A' = A"~ (m®). Then,
Joro <2,

|agQ_(5(l))(mi, Ae, E) _ agQ’(S(l)_l)(m:t’ A(J.(l)_l)(m:t); e, E)|

M _ (D _1)y 12
<4e[’”? exp(—ioRY V) < e (85 V),

(6.23)
|8E‘G('Y(l))(m+, m , A\ e, E)| < 4|e]?? exp(—%‘nfr — m_‘>

S 4'8'3/2 eXp(_KOR(s(l)_l)) f |8|(8(()3(|)_1))12.
Furthermore, set py = 8§, py = (8 ")/8, go(e, B) = g +(e, ) = B2 (it
A(m*);€), o1(e, E) = g+ (e, E) = B2 5 (nt  A(m™); €) if (6.5) or (6.6) holds, respec-
tiely, and

Si(e,E)=E —v(n") — Q""" (m*, A; &, E),
S(e, E)=E —v(mn") — Q""" (m™, A; ¢, E),

(6.24) B (e, E) = |G(s(1>)(mi’ mT, A e, E) 2,
S, E)=fi(e E)—M
, =1\, ﬁ(é‘,E) :

Then, f € T3 (hi.fonb2) if (6.5) or (6.6) holds, respectively, T > 1©/2, ) >

9@ ,3/4
T (T ©)2/4; see Definition 4.9 .
4) Let (¢,E) € L6070, Then, E € spec Hy  if and only if E obeys

(6.25) x(&,E):=(E—v(n") = Q" (m*, A; &, E))
x (E—v(m) — Q(‘m)(m’, A; &, E))
— |G (mt, m™, As e, E)[* = 0.

(5) Let f be as in part (3) and let X" be as in Definition 4.9. Then, x (¢, E) = 0 if and only
o x D=0.Foree(—e_1,8e._1), the equation

(6.26) xP (e, E)=0
has exactly two solutions EC" Dt Az e) > EC Dt Ase),

(6.27) [EC" (i, Ase) — g1 < 4(85" )"
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The functions E¢V) (m*, A; &) are smooth on the interval (—e,_1, &,_1). The following estimates

hold:

(6.28)

where

(6)
(6.29)

Let
(6.30)

‘ag)((/)|§8 Jora <2, BEX(/)>1/8,
<= )

E6O ) (m+’ A: 8) B O (m+, A; 8)

) N2
8EX |E,E(‘(l)’_)(m+,A;8) E,E(“‘(l)'+)(7n+,A;£) > (T ) ’

1
g2, o ()
= 8[ I, X |8,E(f(1)~’)(7n+,A;8) + e X |8,E(f(1)v+)(m+,A;a)]’

_aa, a. ()
A X |8,E(’(l)f’)(m+,A;8)’aEX L,E(f(l)’*)(m*,A;e)

- %(E(S(l),+)(m+’ A, 8) _ E(s(l),f)(m+’ A, 8))2’

|xP(e, B)| > émin((E —EC" O (mt, Ase)), (BE—EC P (it Az e))?),
[a' (e, B) + |b(‘9’ E)H ‘E:E(‘(l)=+)(nz+,A;e) =z B¢ (m+, A 8)

Z max(al (8’ E)? a2(8’ E) +

b(e, E) |) ‘E:E(J“)’*)(m*,A;a)’
[a2(e. E) = [be. D ][ e pey SEC 7 (" Ase)
< min(ay (e, E), a1 (e, E) — |b(e, E)|)

{ E=E6WD. 9 ot Aze)?

a(e,E) = v(m*) + fo(l))(m+, A e, E)’
ay(e, E) = v(m”) + Q""" (m~, A &, E),
b(e, E) = |61 (e, B)|, bi(e,B) = G (m*,m™, As e, E).

speCHA,g N {E: ‘E _ E(J(l)—l)(ma-’ A(5<1)—1)(m0+); 8)‘ < 8(3((]5(1)_1))1/4}
= (B0 (i, Az ), ) (s Az e) L ECT P (md L A 0) = v(m).

(8(?(1)))4 - n}én‘E . E(s(l)’i) (m+’ A, 8)‘ < (8((;(1)—1))1/2’ EeR.

Then, the matrix (. — Hy ) ts tnwertible. Moreover,

(6.31)

‘[(E - HA,S)_I](X’J’)‘ < SD(: ). Toos ek A3 (X,0),

where D(x, A) s as i part (1).
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Proof. — (1) The verification of this part is the same as for part (1) of Proposi-
tion 5.9.

(2) Let (¢, E) € £8”~1 . Assume that (6.5) holds. If (6.6) holds, the arguments are
completely similar. Letj € J¢"*4=D\ {0, jy} be arbitrary. Then, using conditions (6.1) and
(6.2), one obtains

B A0 o)) B
S ‘E(X(l),1,+) (7’/lj+, A(S(l),l)(rﬂj); 8) _ E(j(1)71’+) (mg’ A(x(l),l)(mg); 8)|
B0 (i, AC D (it €) — B
- 8((;.(1)_2) i (8(()5(1)_1))1/2 < 280(1)_2)’
I _ M _
B o, A0 ) 6) < B
= [0 (" AT () ) — B0 (g AT () )|
_ |E(S(])_1’+) (m;)r, A(;.(l)—l)(mg-); 8) _ E|
- (8(5(])_1))1/2 . ((S(X(l)_l))l/Q/Q > (8(5(1)_1))4
0 0 0 ’
|E(5(1)_1,—)(7n;-’ A(s(n_l)(mf); 8) _ E|
> [EC 19 (o, A0 ()s 2) — B0 (i, ACUD () )|
— 0 g A i) B

S (58"

(6.32)

Due to part (6) of Proposition 5.9 applied to H, ) ,+) , In the role of Hy ., one has
i,

(6.33) I[E = Hprom.) ™ T | < Sheaimy. Lo el: A (.08 (H:9)

fory =s+¢—1and any m = mf,j € Jor=D\ {0, o). Similarly, (6.33) holds for any
s < s+ ¢g— 1. Note that

(6.34) [ — BT (g, A0 () )|
< [E— B0 (i A () )|
B0 (i ASD (i) ) — B0 (A0 () )|

Jo? Jo
< (6(()5(1)_1))1/2 + (8(()5(1)_1))5/8 < (8(()5(1)_1))1/4/2.

Due to (6.10) from Lemma 6.4 applied to H+s-1,#) . in the role of Hy/ ., one has
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—1
<6°35) H:(E - HA(s(l)—l)(mi)\{mi}) ](X,_)))|

= D0 AU D (N ), T s AP D i 2 (1 9)-

Recall that [v(n) — v(my)| > 283 for any n € A\ |, ,, A“”(m), due to condition (vi)
in Definition 5.8. This implies |E — v(n)| > 83 for any such n. Due to Proposition 2.16,
(6.21) follows from (6.33) and (6.35).

(3) The estimates in (6.23) follow from Lemma 2.21. Let f, / be as in (6.24).
Assume for instance that (6.5) holds. Due to part (3) of Lemma 6.4, one has f =

A (D ) _ 1 . +
E — v(m®) — QU 00m®, A () 6,8) € FiL1 e with gD = () =
(EC"1D x| ACTD (nE); 6)), & D := (2p0), and with 770 > @, Due to (6.3) in
Definition 6.1, this implies /* € Fi, ., , with g0 := () = (), v := (o). Due

to (6.23), one has [3°(f; — /D), 1096 — ) < 64" (min V™5, 0 < & < 2. It fol-
lows from Lemma 4.16 that ff € Fy, 55 T4 > 7¥/2. Due to (6.5), o —fi > V.
Due to (6.23), one obtains |6] < ((3/4) min,; 7¥)°,19,6?| < ((3/4) min; t%)°|4], |924?| <
((3/4) min; AT9)°, since T > 7072 > (85" ") Thus, £ € 85, (i /o B9, T =
T (7©)2/4, The case when (6.6) holds is completely similar. This finishes part (3).

(4) Follows from the Schur complement formula.

(5) It follows from Definition 4.9 that x (¢, E) = 0 if and only if x /) = 0. All state-
ments follow from Lemma 4.13.

(6) The proof is completely similar to the proof of parts (3) and (4) of Proposi-
tion 5.6. One can see that the proof of this part has nothing to do with the fact that we
use part (5) of the Definition 2.2 with A C Y A ]

Definition 6.6. — Assume that the classes of matrices GSR"® ’S/J(m, mt,m™, A\; 8, T) are
defined for sV < 5 < sV + ¢V — 1, ¢V > 0, starting with GSR[S‘S(D](m, mt,m, A; 8, T) :=
GSRY ](m, m*™,m~, A; 8o, T) being as in Definition 6.1. Let mf, my € N. Assume there are subsets

) — [t (") =) — . (€)) Dty = A () 4 " ,
MU ={m" ;€] M —{ng 1 §J 5, A (mj/)—A (m;),j €J), with s <
s <5V + ¢V — 1, and also subsets M, A (m), me M, 1 <5 <5+ q— 1 such that the
Jollowing conditions are valid:

D) omE e MO =1D 0 by convention, 1 € J6 D) me A(m) for any m.
1 7y Ly

(1) for any m, Hpqn.. belongs to one of the classes we have wtroduced before with m
being a principal point, s(m) < sV + ¢V — 1 (for the notation s(m), see Defini-
tions 3.1, 5.8, 0.1). Furthermore, HA(mT),s € GSR[g’S(U“(lLI](m, mi,my, A(m);
80, 'L').

() For any m, m', either A(m) N A(m') =@, or A(m) = A(m'), in which case m, m" are
the principal points for Hp oy e -

(iv) Let 8, R be as in Definition 3.1. Then, (m+BRE)) C A (m) for any A (m),
and (mE +BREH)) c A
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(v) Let EC”H(mt, A g) be as in Proposition 6.5. Below in Proposition 6.7 we define
inductively the functions ECYHD (7, A e). We require that for each mjr e MU,
mf ¢ lmtm}y,me MO(A),s<s <s+q, andany & € (—e,_\, &,_,), we have

(S(l)-i-(](l)—l) ((1)+ (1)7l,i) + ((1)+ (1),]) +\.
(6.36) 38, <|EVTH (m, ACTT0 () €)

_ E(A’(l)+q(1)—l,:|:) (mi’_, A(J.(l)+q(l)_1)(mi;_); 8)|

(5(1)4,‘](1),2)
<9,

il

(5D 440 —1) DD —1,5) + D4 1) +\.
(6.37) 35, < BT (e, A0 () 6)
— ECHUE (i ACTHT D () 6,
5"

(6.38) 5

< B0t A )
— EUte—1.D) (mii" AGteD (m—li_)’ 8)‘
<89V frs<d<s+q—1,

(")
(6.39) b [ECP (", A () ¢)

2
B, A ) )
fors<s <sV44M -1,

"
(6.40) 807 < [E9 (m, A (m); ¢)

— ECHID (i, ACHD (1) 6)| < 50D,

s <s.

Vi) |v(r) — v(m])| > 28¢ forany ne A\ U.«,ml\(‘/)(m)-
(vii) Due to Proposition 0.7, the functions

(6.41) QU (mE, A 6, E)

= Z h(m?:, m'; g) (E — HA\{m*—l,ml‘})_l (m/, n/)h(n/, m?:; 8)

m’,n/EA\{mfr,mf}

are well-defined for all &€ € (—&,_1, &-1),
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(D (D _
<6.42> E = U(E(.r(l)+q(1)_1,:|:) (mii,-, A(J(l)_;'_q(l)_l)(m?_); 8) _ 25(()5 +4 1),
+

((1)+ (1)—1,:|:) + (.(])+ (I)—I) +\. (5»(1)+(1(1),1)
D (mi, ACTHD (m); €) + 28, )-

We require that for these (¢, E),

(6.43) v(m" — 1)+ Q""" (mf, A, E)

> v(ml_) + Q(.;(I)Jrq(l))(ml_, A:e, E) + 7O,

Then we say that Hy . € GSRI="+1) (m, mfr, my , A\; o, D). We call mfr, my the prin-
cipal points. We set s(my) = sV + ¢V, We call A(’(l)*"’(l)_l)(mf) the (sV + ¢V — 1)-set_for
+

Proposition 6.7. — Using the notation_from Definition 6.6, the following statements hold:
(1) Define inductively D(x; A) :=D(x; A\ {mf, my }) :=D(x; A(m)) if x € A(m) with
(1 1
m & {m?, my}, and D(m; A) = 4log(8L" 1)1,
Then, D(-, A) [S gA,T’K[]’ D(; A \ {mT, m;}) (S gA\{mT’ml*}’T’KO.
(@) Lot LD i L@ Gt A0 )z ), 285,
Forany (¢,E) € LOVHV 1) e hage

(6.44) ‘[(E - HA\{mT,m?},a)il](x’.y)‘ = ‘YD(‘;A),T,KQ,\8|;A\{m|+,mr},m(x’y)'
(3) The functions

= Z h(m;:, m'; 8)(E — HA\{mT’ml—})_l(m, n)h(n/, mf; 8),
m/,n/eA\{mT,MI}
(6.45) GO (it ¥, AN [t m )5 6, E)
= /z(m;:, mf; 8)
+ h(mi,m; €) (B = Hyp b )~ (m, )h(n, T ; €)

m,nEA\{mT,ml_}
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are well-defined and C2-smooth in LTV =1H g L6741
|8E‘Q(“m+q(l))(mf, Are.E)— BE‘Q“H)“(U_D(mf, A("mﬂ(l)_l)(mf); L)
< 4]e[¥? exp(—/coR“(l)”(l)’l)) - |8|(3g<1)+9<1>_1))12’
9GO (i T, As e, B)
G T A ), )
(6.46) <4|g|*”? exp(—KoR(S(l)’Lq(l)_l)) < |8|(3(§5(1)+q(1)_1))12,
102QC" ) (mE, As e, E)| < el
E—v(mt) — Q"+ (mf, As e, E)| < el

9G4 . A, )|

BN T S

. My _ My
with a < 2. Furthermore, for ¢V > 0, set py = 8((f e 2), P = 83‘ +e 1), g0.+(&,E) =
g.+(e, B) := B0 (ot A () 6),
ROIC
Si(¢"; e, E)=E—v(mf) —Q" 7 (mf, A; &, E),

SilgVs e, B) =E—v(m) = Q" (my, As e, E),

(6.47) b?(q(l); e E) — |G(”(l>+q(]))(mf, T, A e, E) 2’
b*(¢"V; e, E)
). _ M. - 7
T

Then (see Definition 4.9) f(qV; ) € Fn ;0 g ) fo(gVs ), B (g V5 ), 7967 >
T =G, ¢"), 70 = D@ D)* (1 = &(s, ¢™))?, with A(s, ) = (1 +87F)A(s, g — 1),
A(s,0)=3/4,A(s,q) <1 forany s,q, 1 —&(s, ) = (1 =&(s, ¢ — 1))(1 = 870F9), £(5,0) =
0,1 —&(s,q) > 1/2 forany s, q.

(4) Let (g, E) € LOV+=10 y L6V =12 Then F € spec Hp ¢ if and only if E
obeys

(6.48) X(&,E):=(E—v(m" —1) = Q""" (m}, A; ¢, E))
x (E—v(m) = Q" (m;, Ase. E))
— G(’(I)Jrq(]))(mf, my, A €, E)G(’(I)Jrq(]))(ml_, m;r, Ase, E) =0.



312 DAVID DAMANIK, MICHAEL GOLDSTEIN
(5) fore € (—&,_1, &,_1), the equation
(6.49) x( E)=0

has exactly two solutions E. = E(é’(l)*'q(l)’i)(mf, Ase), E(A’(l)ﬂ(l)’_)(mf, Ase) < E¢V (mf,
Ase),

630 B, Ae) B, A ) )
< "y
[a1(e. E) + ‘b(& E)” |E:E<~‘(”+q(”~+>(mr,A;s)
> g+ (mf, A; €)

> max(a (¢, E), as (e, E) + |b(e, B)|)

‘ E=E6W+¢D .+ (mF . Aze)

(6.51)
[aa(e. B) — (e, B) || oo a0t pce)
<EC I (mf, A e)
< min(ay (e, E), a1 (e, E) — |b(e, E)|) \E:EO(I)H“),_)(MT,A;S),
where

a(e,E) = v(m;r) + Q(Am+q(1>)(mir’ A€, E),
ay(e, B) = v(ml_) + Q(A~(l>+q<1>)(m1—, A€, E),

e B)=|bieB).  bieB) =G (mf my, Ave, E).

) ) .
The functions EC 0% (mT, A; &) are smooth on the interval (—e,_y, &,_1).

(6)
(6.52) specHy . N {E . mim‘E _ RO ) (mfr’ A(s(1)+(1(1)71)(m?); 8)‘
< 8(3<«v<”+q“>—1>)1/4}
!
= (B0 (i, A ), BV (it Ace)).
I
(6.53) (8?(1)-'—9(1)))4 < Hltln‘E _ E(J(1)+q(1),l’i) (mar’ A<§(1)+q<1)71)(m;r); 8)|

<380 V9 EeR,
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then the matrix (E.— Hy ) us tnvertible. Moreover,

(6.54) ‘[(E — HA,s)_l](X,)})‘ < SD(A). T, lelih A2 (X59),

where D (x; A) 15 as i part (1).

The proof of each statement in this proposition is completely similar to the proof
of either a statement from Proposition 5.9 or a statement from Proposition 6.5. We skip
the proofs.

We need yet two more upgrades of the classes of matrices under consideration. We skip the proofs
Jor the first upgrade and most of the proofs for the second one since they are completely similar to the proof
of Proposition 5.9 and Proposition 0.5, respectively. Here ts the first one:

Definition 6.8. — Assume that the dlasses GSR="1(m® it m=, A; 8, t),
GSRI" "+l MmP mt, mm, A 8, tP) are defined for all h=1,...,£, £ > 2, starting with
GSR D ™, m, A; 8o, 1), GSRE 0D it = A; 8, tV) being as in Defini-
tion 6.1 and Definition 6.6, respectively. Here, m™ C A, [mW| = 21 5" = (5@ O 50
s eN, s® < sED AW = (O @) t® 5 c®D 50 Lot Hy, be as in (5.1)-(5.4)
and let 8, RY be as in Definition 3.1. Let q be such that T© > (8(()5“4(1_1)) YV Letm®,m™ € A.
Assume that there are subsets M C A, A(m) C A, m € M, such that the following conditions hold

(i) m* € M, me A(m) for any m.

(i) For any m € M, Hp(n. belongs to one of the classes we have introduced before with
s(m) < 59+ ¢'© — 1 (for the notation s(m), see Definitions 3.1, 5.8, 6.1, 6.6). Fur-
thermore, Ha ity e € GSRY (e)”(m’q_l](m([’i), A(m*); 8y, tO) with some m“H C
Aln®), m* € m© . Given m € M such that Hy e € GSRE" 1 (m®),
A(m); 8o, t©), we set s(m) 1= s + q , which s the largest integer mvolved in the
latter notation.

(1) For any m, m', either A(m) N A(m') =@, or A(m) = A(m'), in which case m, m" are
the principal points for Ha ... We use the notation m' = em for the latter case. In the
Jormer case we say that em does not exist and {m, em} = {m}. Finally, em™ # m", that
is, A(mT) # A(m).

(iv) Let m € M. There exists a unique real-analytic function E(m, A(m);€), € €
(—&5-1,621) such that E(m, A(m); ) s a sumple egenvalue of Hp, . and
E(m, A(m); 0) = v(m). Furthermore, let m € M\ {m*, em™, m™, em™} be arbitrary.
The following estimates hold:

655 (7)< min [B(n A(): ) — E(nl, AQ):e)] <00

m' €{m,om}

ifs(m) =5 +q—1,
(6.56) ‘E(m_’ A(m—); 8) _ E(m+, A(m+); 8)} < (8((;(()4-(]—1))5/8’
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S (()s(M))

< _min_ [E(i%, A(n):2) — Dot A )i )| <87

2 m' €{m,om}
if s(m) < 5O+ q— 1.
v)
(m+ B(RY™) € A(m).

Vi) |v(n) — v(mo)| = 284 for amy n € A\ U, e g A(m).
(vii) Due to the inductive argument from Proposition 6.9 below, for any € € (—¢&,_y, &,_1) and

any
637 Be(R(rAp)e) - ()"
B AGr)i)+ 65 ) ),
the functions
(6.58) QU e B)= 3 h(n®, s ) (B — Hayge )™ (o )

m' ;' € A\{m*,m~}
X /z(n/, m: 8)
are well-defined. We requare that for these &, F. and some TV > 0, we have

(6.59) v(m+) + Q(m-i-’ A, E) > v(m_) + Q(m_, A e, E) + ¢

. (e+1)
In this case we say that Hy . € GSR® ™ 1(m@ D A; 85, tD), mEH+D = [ J, m&H),

SO = (s D) (D = O g (D = (O 2D Y call m D the prin-

cpal set for Hy . and m™, m™ the principal points for Ha .. We set s(m*) = sV, We call
+

ACTO=D GuEY the (s(m™) — 1)-set for m*.

Proposition 6.9. — Using the notation_from Definition 6.8, the following statements hold:

(1) Define inductively D(x; A) = D(x; A\ {m*, m™}) = D(x; A\mE) =D(x; A(m))
ifx e A(m) \ m@D, D(x; A) = D(x; A\ {m*, m}) = 41og(8" D)1 if x € mED \
{(m*,m™}, and D(x; A) = 4log(8" )" if x € {m*,m~}. Then, D(; A \ m&D) e
Gavm@ Tougs D3 AN\ {mt, m™}) € Gavput ).zt ), Togs DG A) € G 1y -

(2) Set gy = E(m*, A"V (m*); &) and

h—1y . . 65<l+1)*1))1/2
(6.60) L =1, E):ee(—g0_1,&0_1), |E — & (8)‘ < f .

Forany (¢,E) € ﬁ(s(Hl)*l), the matrix (B — Ha\ it y,¢) 15 tnverlible. Moreover,

(6-61) ‘[(E - HA\{m‘*’,m_},é‘)_l](xa_y)‘ = 5D(~;A\{m+,m_}),T,Ko,|€|;A\{m+,m_},9‘§(xa_y)'
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(l+l)_1)
J

(3) Set for (s, E) € L
Q’('Y(Z+1)) (m:tv A; 89 E)

= Y k(o ms ) (B~ Haguron) ™ (my h(n, m*5 &),

m,ne A\{m*+,m=}
G(‘(HI))( mrT, A g, E)
= /L(mi, mt; 8)

+ > k(i e) (B = Hyye e~ (m, )h(n, ms ),

m,n€ A\ {m*,m~}
Q(mi, A(mi); g, E)
= Z h(m ms)(E Ha i\t .e) Yom, n)/z(nm 8)

m,ne A (m*)\ {m*}

(6.62)

The functions in (6.62) are well-defined and C*-smooth. For « < 2, we have
195QC ) (. A e, E) — 02O (*, A (m*): . E))|
< 4|8|3/2 CXp(—KoR(S([H)_l)) < |8|(8((;((+1)_1))12,

102G (", m™, A&, B)|

. 7
< 4|e]?? exp(—%‘nﬁ — m_|)

2 /¢ O+ _ e+ _ 12
< 4le* exp(—ieR D) < Jel (857 77)

(6.63)

Furthermore, set py = 6(3““)*1), Pi=po,g=g0,)=1,...,¢,
Si(e,E)=E — v(m+) — Q“(Hl))(ﬂﬁ, A e, E),
(6.64) Jole ) =E—v(m”) — Q‘M)(m‘, Ase.E),

‘ b (e, E)
(e B) = |GV mF Are B)[', (e E) =fi(e. ) — ———.
Then, f € Foil) i (iofos B9, 79 > 71072, 70 > <l wohore UM = 040 ()2 /4,
J =0, 7l .= T<O); see Definition 4.9.

4) Let (¢,E) € LD, Then, E. € spec Hy . if and only if E obeys

(6.65) x(&,E):= (E—v(m") = Q""" (m*, A; &, E))
x (E—v(m) — Q(‘(Hl))(m_, A; ¢, E))
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— |G (mt, m, As e, E)[P =0,
(5) Let f be as in part (3) and let X be as in Definition 4.9. Then, x (¢, E) = 0 if and only
if xP =0. Fore € (—&,_1, &,_1), the equation
(6.66) x"(,E)=0
has exactly two solutions E(m*, A; €) > E(m™, A; €), which obey

667 B0 )~ B A e)| <6

The functions E(m*, A; €) are C*-smooth on the interval (—&,0_,, &50_,). The following estimates
hold,

x| <8 fra<2,  Fx" >1/8,
agx(f)L,E(m*,A;s) < _(T(f))‘ ’ aE[X(f)|s,E(m+,A;@) > (T(f))Q’

1
E(m*, Ase) —E(m™, As ) > g[—aﬁX@‘g,Ew,A;@ + agxw‘s,E(mtA:w]’

1
o
&, E(m=,A;e)’ aEX |5,E(m+,A;s) = 914

(6.68)

—3y E(m", A:e) —E(m, A:¢))’,
E

XV (e, E)| > émin((E —E(n*, Ase))’, (E—E(m, Ase))?),
[d](s, E) + ‘b(g’ E)H |E=E(m+,A;s)

> E(m*, A; €) > max(ai (e, E), ax(e, E) + |b(e, E)|)

[02(5’ E) — ‘b(g, E)H |E=E(m+,A;s)
< E(m_, A; 5) =< min(dg(é‘, E), a (e, E) - }b(g’ E)‘) ‘E:E(m*,A;a)’

}E:E(mtA;s)’

(6.69)

where
a (e, By =v(m*) + Q""" (m*, A; 6, B),
ar(e, By =v(m™) + Q""" (m~, A; &, E),
b(e, E) = |bi (e, B)], bi(e,B) = G (m*,m™, As e, E).
(6)

e }

specHy . N {|E—E(m+,A(m+);8, E)| < 5

(6.70) = [E(m*. Ase). E(m. Ase)l,

E(m, A 0) = v(n®).
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Furthermore, let
trn_y)

(6.71) (85"")" <min[E—E(n*, Ase)| <26;""7", EeR

Then the matrix (E.— Hpy ) is tnvertible. Moreover,
<6-72) ‘[(E - HA,E)_I](XJ)‘ =< SD(.;A),T,KU,\s|;k,A,9%(X,y)-

Here s the second and last upgrade of the classes of matrices.

S(HD (D) | 7

Definition 6.10. — Let £ € N be fixed. Assume that the classes GSR! (mh,
m*,m™, N'; 8o, 8TV are defined for all ¢ =0, ..., g — 1, starting with GSR* (mED,
mt,m, A 8, t+D) = GSR[E(M)J(m(””, m*,m, N5 8y, t“TV) being as in Definition 6.8.
Let A and m*, m~ € A be given.

Assume that there are subsets M C A, A(m) C A, m € M, such that the following conditions

5(/é+l)’3.(/z+l)]

hold

(i) m* e M, me A(m) for any m, A(m*) = A(m™).

(i) For any m € M, Hp(m. belongs to one of the classes we have introduced before with
s(m) < 59+ ¢© — 1 (for the notation s(m), see Definitions 3.1, 5.8, 6.1, 6.6, 6.8).
Furthermore, Hp,+)e € GSR[ﬁ(HU"‘(HUJrq_I](m(“l), m*,m, A(m"); 8, tED)
with some m“TY C A(m™).

(1) For any m, m', either A(m) N A(m') =B, or A(m) = A(m'), in which case m, m" are the
principal points for Hp . We use the notation m' = em _for the latter case. In particular,
em™ = m~. In the former case we say that em does not exist and {m, em} = {m}.

(iv) Let m € M. There exists a unique real-analytic function E(m, A(m);¢€), € €
(—&5-1, &-1) such that E(m, A(m); ) s a simple egenvalue of Hpy . and
E(m, A(m); 0) = v(m). Furthermore, let m € M\ {m*, m~} be arbitrary. The fol-
lowing estimates hold:

m €{mt ,m=} m' €{m,om

3565(”14971) < min  min }‘E(m”, A(m"); €) = E(nl, A(m/); 8)}

m' €{mt,m=} m' €{m,em

< max min }‘E(m”, A(m"); &) — E(m/, A(nd); )|

(1) 4 .
< 6(()3 +¢—2) yrs(m) — S(Z-H) + q— 1,

8(()5(7&1))

< min  min |[E(w’, A(n"); &) — E(n/, A(n); )|

2 - w' €{mt ,m=} m' €{m,om}

< max min |E(w’, A(n"); &) — E(n/, A(n); )|

m e{mt,m=} m' €{m,om}

< 863‘(771)71) yps(m) < S(Z) + q— 1.
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m—+ B(R(K(’”))) C A(m)  for any A(m),
w4+ BRC ) C A

vi) |v(n) — v(mo)| = 28, for amy n € A\ |, cpq A(m).
(vii) Due to the inductive argument, for any € € (—&y0_y, £ _1) and any

(6.73) Ee U(E(mi, A(m+); 8) B 28((;<l+1)+q_1),
+

E(m*, A(m*);e) + 265" 7)Y,
the functions

(6.74) QY0 (1, As e, E)
= Z /L(mi, m'; 8)(E — H,\\{,,Z+ym—})_1 (m’, n')/z(n’, me 8)

' ' e A\{m+,m™}
are well-defined. We require that

(6.75) v(m®) + QY (mt, A, E)
> v(m_) + Q(“(HU”) (m_, A€, E) + D,

In this case we say that Hy . € GSRE D ot mm, A 8, tD). W call
m*, m™ the principal points. We set s(m*) = sV + q. We call A=V (m*) the (s(m™) — 1)-set
Sfor m®.

Theorem 6.11. — Let Hy, , € GPR® T (@D it = A3 85, D). The fol-
lowing statements hold:

(1) Define inductively D(x; A) = D(x; A\ {m*, m™}) = D(x; A\m“) =D(x; A(m))
. (t+1) + - (G e VN (t+1)
fxe A(m) \ mY D(x; A) =D(x; A\ {m", m™}) = 4log(8, ) fxem \

{+1

{m*,m™}, and D(x; A) = 4log(5é‘(+)+q))—l if x € {mT,m™}. Then, D(-; A \ m“*D) ¢
gA\m<k+l>,T,K0, DG A\ {m",m™}) e gA\{m+,m—},z"\{m+,m—},T,Ko, D(;A) € gA,T,Ko~

@) Let LOH1S = Lo (B, Aty ), 288 ). For any (6,B) €
£(.Y(Z+l)+q—1,:|:)

(6-75) ‘(E - HA\{7n+,7n_},8)_l (x,y)‘ = 5D(~;A\{m+,m—}),'1‘,,<o,\s|;A\{m+,m—},m(XJ)~
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(3) The functions
Q(y<e+1>+q) (m:I:’ A:e, E) — Z k(mj:’ m; 8)
mneA\fmt,m=}
x (E — HA\{,,,+,,,,7})_1 (m, n)h(ﬂ, m: 8),
GE 40 (mi, mv, A€, E) = /z(mi, mr; 8) + Z /l(mi, m; 8)

m,ne A\ {m*+,m}

X (E - HA\{m*,m’})i1 (m’ n)h(n’ m:F; 8)

6.77)

are well-defined and C*-smooth in the domain LT H-1H Yy ﬁ(ﬂ“)”*lﬁ),
|3EQ(5“+1>+4) (m*, Ase,E) — agQ(‘(Hl)”_l)(mi, INC E)}
< 4_|8|3/2 CXp(—KOR(’“H)*q*l)) < |8|(6(()5(€+1)+q_1))12’
|3gG(5w+l)+q) (mi, mY, A; e, E) — agG““”ﬂ—“ (mi, mT, A(m+); e, E)‘
< 4e[*? exp(—xkRY V) < el (88 T0)
(£+1) ) + .
6.78 |82QC " (w*, As e, E)| < el
( ) N CEDL (£ p
|E—v(ms) — Q' (m*, A; e, E)| < el
102G (mt mm, A 6, B)|

7K
=< 8|8|3/2 exp (-%‘,},ﬁ‘ _ m|> < |8|3/2 exp(_KOR(X(Z+1),1))
(£+1)_1 12
<lel(s5 V)"

Furthermore, set py = S(S(HI)W*I), Pi=po,g=g0,)=1,...,¢,

f1(€, E)=F— v(m+) _ Q(S(@+1)+q) (m+, Ae, E),
SE E)=E—v(m) = Q" " (m~, As &, E),

(6.79) B (s, E) = |G<.s<“1>+q>(mi, m¥, A; e, E) ’
B b’ (e, £)
f(‘g’ E) —ﬁ(&‘, E) _ﬁ(S, E) :

Then, | € S(;(le)) (s fos ), t® > /4 7 > /4 where T 45 the same as in
Proposition 6.9.
(4) Let (¢, E) € L& H715) Then F € spec Hp ¢ if and only if E obeys
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(6.80) x(& E) i= (E—v(m") — Q""" (m*, A; ¢, E))
% (E—v(m) — Q40 (m™ A e, E))
— |G (it m, Az e, E)[F =0,

(5) Let f be as in part (3) and let X" be as in Definition 4.9. Then, x (¢, E) = 0 if and only
i xP =0. Fore € (—eq0_1, &x0_1), the equation

(6.81) xP(,E)=0
has exactly two solutions E(m*, A; €) > E(m~, A; €), which obey

(6-82) [E(n*, Ase) = E(m*, A(n")i )| < Hel(a8 )",

[a:(e, E) + |b(e, B)|]
> E(m*, A; €) > max(ai (e, E), ax(e, E) + |b(e, E)|)
[ax(e, B — [be, )]y mie)
<E(m™, A;¢) <min(as(e, E), a1 (e, E) — |b(e, E)|)

| E=E(mt,A;e)

}E:E(m*,A;s) ’

(6.83)

‘E:E(m’,A;s) ’

where
a (e, B) = v(m*) + Q" (", A; 6, E),
ay(e,E) =v(m™) + Q(X(M)Jrq) (m™, As e, E),
be, B)=|bi(e, B)|,  bi(e,B) =G (it m7, As e, E).

The functions E(m*, A; &) are C?-smooth on the interval (—&y—1, €5y—1) and obey the esti-
mates (6.68).

(6)
(8(()5(Z+1)+q—1))1/2 }

specHy . N {|E—E(m+,A(m+);8, E)| < 5

(6.84) = {B(n*, Ase). B(m, Are)l,

E(mi, A; O) = v(mi).
Furthermore, assume

(6.85) (65" ")" < minfE — E(n*, Ase)| <28 ", EeR.

Then the matrix (E. — Hpy ) is tnvertible. Moreover,

(6.86) ‘[(E — HA,s)_l](xa)))| < SD(:A), Toos el A, 91 (X,0).
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(7) Let 9F (A; ) := @ (-, A; €) be the eigenvector corresponding to E(m™, A; &) and
normalized by & (m*, A; &) = 1. Then,

7
(#) . 1/2 )
™ (n, A e)| < el E ex <——K |n—m|>, n¢m®,
| | mem© " 8 0
(6.87)
|§0(i)(m, A; 8)| <l+ E 47" forany m e m®.

0<t<s®+tD4q

For any n € A(m™), we have
688 690 Ao — (o A () )] = lel(5 Y

Progf: — The proof of each of the statements (1)—(6) is completely similar to the
proof of either a statement from Proposition 5.9 or a statement from Proposition 6.5,
and we omit them. Let us prove (7). We discuss the cases £ < 2. For £ > 2, the proof
is completely similar. Let £ = 1. We follow for this case the notation from Proposi-
tion 5.9. In particular m’ = (mar ,my ). Due to part (7) in Proposition 5.9, the eigenvec-
tors ¢ (A; &), normalized by ¢ (mE, A;g) = 1, obey (6.87) with £ =1, ¢ = 0.
Let <,0(5(1)_1)(A(““)_l)(mar ; €) be the vector defined in part (6) of Proposition 3.3 with
H, (-1, in the role of Hy .. Set (n) = ¢ P (n, Ase), n € A" ~D(mg). Recall
that mi" + BR®"=Y) ¢ A" D(mb) and my ¢ A"~V (m}). Therefore, using (6.87),

one obtains

X ~ S_
(6.89) [(ECP(Are) = Hyoonge) )] < exp(—wR™ ).
It follows from part (4) of Proposition 3.3 that

(6.90) specHA(,(l)fl)(mg) N {|E(5<1>71)(m5r’ A(’“)fl)(mg); 8) _ E| - 8éj<1>_1)}

= (B (i, A () )]

Clearly, ||~V (-, A“"“D(m); &)|, 1@l = 1. Combining (6.89), (6.90) with standard
perturbation theory arguments, one concludes that there exists ¢ with || =1 such that

(6.91) Hf oA g )e)  §
' ot DAV (D) ) 19l

sO—1)

exp(—koR! ) Ko _

2 U <exp| ——R""V).
86 2

Note that ||<p(5(1)*1)(-, A(X(l)fl)(mar); &)l < 2. Since (p(f(l)*l)(mar, A(S(l)*l)(mar); g) =1,
@(mg) = 1, one concludes that ||(p(“(1)_1)(A('Ym_l)(mg); g) —¢| < eXp(—%R('Y(U_I)), as
claimed. This finishes part (7) for £ =1, ¢ =0. The case £ = 1, ¢ > 0 is similar.



322 DAVID DAMANIK, MICHAEL GOLDSTEIN

Let £ =2, ¢ = 0. Using the notation from Definition 6.1, assume that (6.5) holds,
mt = mg, m- = m; Recall that m® =m = ((m}, m;), (mjor, m];)). Due to Proposi-
tion 6.5, (6.21) holds. As above, (6.87) follows from (6.21) and Lemma 2.7. As in the

proof of part (7) of Proposition 5.9, one obtains

Res[(E —Hy) ™! (n, m™)]

|E=E(5(1)-i)(m0+,A;e)

= —ai Z (E(J“)’i) (m+, A, 8) - HA\{m*,m’})il(n’ X)

x€A\{m™*,m™}
X [h(x, m: 8) + h(x, mT; S)ﬁi], ne A\ {m+, m_},
Res[(E —Hy)™ (mi’ mi)] |E:E<~v<“i>(m+,A;s) =a”,

Res[(E —Hp) ™' (m™, m¥)]

(6.92)

ot
|E=E<f(”~i>(m+,1\;s) =atl

with 0 < |a®| < 1, |BE], |1F] < 1.In particular,
Hy o2 (A5 2) = B9 (", A e)p 2 (As ),
(6.93) P () =1, "B (A e () =,
" H (A e) = (@) (Res[(E — Hp) ' (n, m*)]

‘E=E<v(”-i>(m;,A;s))neA'
The rest of the arguments for part (7) is completely similar to case £ = 1. 0J
(e+1) e+
Remark 6.12. — Assume Hy, € GSRE™ 40 mED gt = A 8y, t0TD),
Definitions 6.8 and 6.10 do not require any upper estimate for the quantity diam(m“*"),

This estimate is needed for an effective application of the estimate (6.87) on |9® (n, A; &)
from Theorem 6.11. In applications we always assume the following condition,

|m+ _ m—| < R(S<e+l)+l)/4’

(6.94) mED U(md: + B(R(s‘(e+l)—1)/4)).
+ —

Although the first line implies the second one, it is convenient to keep it this way for the
sake of referring to them. Recall that due to Definition 6.10, (m* + B(R(s(““w)) C A.
Therefore, (6.87) combined with (6.94) yields

7
(6.95) [0, Az o) < el V22 exp<_§x0R“(Mm>,

ne A\ U(mi + B(R(X(Z+1)+[1)).
+.—
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Let Hy . € GSRET (MYt o, Aj; 8, tEr), =1, 2, with the same
principal set m“*! and with the same principal points m*, m~. We denote by v(n, )
the diagonal entries of Hy, .. We assume that v(n, 1) = v(n, 2) for n € Ay N A,. Let
E(m®*, A;; €) be the eigenvalue defined in Theorem 6.11 with Hy, . in the role of Hy ¢,
Jj=12.

Corollary 6.13. — Assume that condition (6.94) holds for A = A;,j =1, 2. Then,
(6.96) E(m*, Ay &) — E(m*, Ay )| < [el(85 7).

Proof. — The proof is similar to the proof of Corollary 3.6. However, since the
eigenvalues E(m*, Aj; €) are almost double degenerate, some additional arguments are
required. Let (p(i)(Aj; ¢) be the vector defined in part (7) of Theorem 6.11 with Hy, .
in the role of Hy . Set 9 (Ag; &)(n) = 9@ (A1;e)(n) if n € Ao N Ay, §E(Ag; €)(n) =0
otherwise. It follows from Remark 6.12 that

(6.97) [(E(m*, Arse) —Ha,o)@™|| < eXp(—%R(‘(M)JF”).
Since ||@%| > |@*(m*)| = 1, one has
(6.98) dist(E(m*, Ay €), specHy, ) < exp<_%R<ﬂ+l>+q>)_

Since the principal set m“* is the same for both A;, one can use induction, like in the
proof of Corollary 3.6, to verify that in fact

(6.99) dist(E(m*, Ay;€), {E(m", As; €), E(m™, Aos €)})
< exp<—%R("(M)+q)> :

If E(mt, Ay;e) — E(m™, Ags8) < exp(—%‘)R(“(HU*q)), then we are done. Assume
E(m*, As;e) — E(m,Ase) > exp(—2RC0) Assume  |[E(m*, Aje) —
E(m™, Ay; &) < exp(—=Z2RC*9). Since (9 (A5 €), 97 (A3 €)) = 0, it follows from
Remark 6.12 that (§* (As; €), 3~ (As; €))| < exp(=Z2RC*9). Since [|§*+(Ag; &) > 1,
combined with (6.97) this implies |[(specHa,.) N {|[E — E(m™, Ag;e)| <
exp(—2RC+0)}| > 2. However, E(m*, Ay; €) is the only eigenvalue of Hy, . differ-
ent from E(m~, Ag; e) that may belong to {|E — E(m™, As; 8)| < exp(—2RC0)},
This contradicts the assumption [E(m* Ay; &) — E(m™, Ag; €)] > exp(—2R"+9), Thus,
IE(m®, Az e) — E(m, Ay e)| < exp(—%R(f“)ﬂ)) is  impossible.  Similarly,
IE(n™, Ars &) — E(m™, Ag; €)] < exp(—Z2RC“*9) is impossible. Since E(m*, Aj; &) >
E(m™, Aj; ), the statement follows from (6.99). 0



324 DAVID DAMANIK, MICHAEL GOLDSTEIN

Using the notation from Theorem 6.11, assume that the functions #(m, n, €),
m,n € A, depend also on some parameter k € (£, ko), that is, i(m, n; €) = h(m, n; €, k).
Assume that Hy . := (h(m, 1; €, B))pnen € GSRE T H 0Dt e A3 8, tEHD)
for all £. Let Qf’(M)J’q)(mi, Aj; e, k, E) etc. be the functions introduced in Theorem 6.11
with Hy . in the role of Hy .

Lemma 6.14. — (1) If h(m, n; &, k) are C'-smooth_functions of k, then Q‘“H)ﬂ)(mi, A;
e, E) ete. are C'-smooth_functions of all variables involved.

(2) Assume also that h(m,n; e, k) are C*-smooth functions that for m # n obey
|0%h(m, n; €, k)| < By exp(—«o|m—nl) for |a| < 2. Furthermore, assume that |0%h(m, m; €, k)| <
Boexp(kolm — m™|'°) foranym € A, 0 < || < 2. Then, for |a| < 2, we have

|3a(E — HA\{m"’,m‘},/{)_l](x9_y)|

= (3B0)a©%(4;A\{m‘*’,m_}),T,K(),|€|;A\{m+,m_}(x’_y)’
|8“Q(°"+q) (mi, A e, k, E)‘

(6.100) =< 3B0)"1€1DD0; 4\ Lokl st (2 7)< (3Bo)*[e %,
|0°GY*? (m™, m™, As e, k, E)|
oo +
= (BBo) D aurt e Tokofelia e nm) (715 107
< (3By)%|e|'? exp(—K0|m+ — m_/16|),

6.101)  [9°E(nt, Ase, k E) — 0%v(n*, )| < (3B [el.

The proof of this statement is completely similar to the proof of Lemma 3.5 and
we skip it.

7. Matrices with inessential resonances associated with 1-dimensional
quasi-periodic Schrédinger equations

Let ¢(n), n e Z" \ {0} obey

c(n) =c(—n), neZ’,
(7.1)
|c(n)| < exp(—K0|n|), nel’,

where 0 < kg < 1/2 is a constant.
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Fix an arbitrary y > 1. Given y — 1 < |k| <y and € > 0, set A = 256y and
consider € with |¢| = A" 'e. With

v k) =2 + k), nel’,

ho(n, m) = X" e(n — m),
h(n,m;e, k) =v(n; k) ifm=n,
h(n, m; e, k) = ehg(n,m) ifm+~n,

consider H, ;, = (h(m, n; €, k)) .nez». This is consistent with the notation in (3.1)-(3.4) of
Section 3 with

(7.3) B =21".

We denote by Hy .. 4 the submatrices (h(m, n; €, k))paens A" C Z'. We assume that the
vector o satisfies the following Diophantine condition,

(7.4) |nw| > agln|™", neZ’\ {0},

with some 0 < qy < 1, v < by < 00. Just for the sake of normalization of some estimates

in this section, we assume that ||w|| < 1, so that |mw| < |m| for any m € Z".
Let ay, by be as in (7.4). Set by = 32by, B = bl_l = (32bp)~". Fix an arbitrary R,
with log R} > max(log(100a; "), 2B, ' logk; !). Fix also £ € R. Set

RO=R,, =6 =RV,
(7.5) 1 =57 =(RY)
50"V =exp(—(logR“™M)), w=2,3,...,  R@:=(sy"")".

Let us remark here that the definition (7.5) is consistent with (3.10). In particular, log8y' >
2% B8 Nog i, '. Another remark is that, due to the Diophantine condition, one has

(7.6) Imw| > ag|m|™" > ao(48R(u))_b0 > (R(u))_% = (‘S((Ju_l))l/m
if 0 < |m| <48R™.
Define
K= —% + 0 (m) with o (m) = 32(s5)"/°

.7 if 12RC) < |m| < 12RY and o (0) = 32(8") """,
KE=krxer Y ) s= k=

m,s m

r<s— 1,652 <0 (m)
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where R®™ := 0. Note the following identities,

K o= —kT, o = —kF .

—m,s

Lemma 7.1. — (1) For |m| < 12RW, the ml‘ervals (km o, kit o) are disjoint. We denote by

1;(s) the connected components of R\ U _p,r<10r0 Ky 415 o -
(2) For s > 2, each 1;(s) is a subinterval of some I;.(s — 1).

(3) Forj # k, dist(I(s), Li(s)) = 64(85~")"/°.
Progf: — All statements follow readily from the definitions (7.7). O

Lemma 7.2. — (1) Lt m € 27, 0 < § < 1/16 be arbitrary. If |v(m, k) — v(0, k)| < 8%,
then min(|mw|, |2k + mw|) < 328 if y < 4 and min(|mw|, |2k + mw|) < 2568° if y > 4.

(2) If min(|mw|, |2k + mw|) <& < 1, then |v(m, k) — v(0, k)| <.

Assume s > 2 and k € R\ Uy _ v <im0 by 5 k+ ). Then:

(3) If min(jmal, |2k + mo]) < 3268V 2, then k + mw € R\ Upi<iore Ky

kY ). Moreover, if in addition sgn(k —|- mw) = sgn k, then k, k + mw belong to the same connected

component of R\ U|m|<12R<s)( s 1, 1) In particular, if [v(m, k) —v(0, k)| < 8(’ b , then
k+ mw e R\ Ulm <190 Ko 15 Koy ,5_1).

(4) If0 < |m; —my| < 12RY, then max; |v(mj, k) —v(0, k)| > (852 for any |k —
k| < (882, In particular, if O < |my| < 12R©), then |v(my, ki) — v(0, ky)| > (852

Proof. — (1) One has |v(m, k) — v(0,k)| = A7 '|mw| - |2k + mw|. Hence
min(A ™2 |mw|, A"V?|2k + mw|) < 8. So, if y <4, A < 2!° and the claim holds. Assume
now y > 4. Assume for instance A~/%|2k + mw| < 8. In this case, |mw| > 2|k| — SA/? >
2y —2 —y'2 >y Hence, |2k + mw| < %|v(m, k) —v(0, k)| < 25682, If A=1?|mw| < 8,
then |2k +mw| > 2|/k| —8AY% > 2y —2—y /2 > y. As before it follows that |mw| < 2568.

(2) Assume that |mw| < 8. Then, since A > 4max(|£|, 1), one has

lv(m, k) — v(0, k)| < 27" (2]k] + 8)8 < 6.

This verifies (2) in this case. The verification in the second possible case is similar.
(3) Assume that [mo| < 32(85 ™), k € R\ Uy_pwi<1or0 (kry . £ ). Recall that

o(m') > 32850 > 32(85 )2 if 0 < |m'| < 12R©. Hence,

k+ mw e R\ U (/f + 32(5(f 1))1/2’ k;lr - 32(563*71))1/2)

m s
0<|m'|<12RG)
+
CR\ U (kmv l’km V—)
0<|n/|<12R®)

Assume that [(k + mw) — (—=k)] < 32852 Since —Uy_pi<ioro Ky k) =
Uo<pwi<ioro Gy, kb ), one has —k € R\ Uocpwi<ioro iy o k:nr,’s). Therefore, k + mw €

ﬂl 5
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R\ U0<|m/|512R(_g (ky 15 k;’,,s_l). Moreover, if sgn(k + mw) = sgnk, then £, k£ + mw be-
long to the same connected component of R\ U‘m,‘51 or0 (b 15 k:nr/,;_ﬂ- This finishes the
proof of the first statement in (3). The last statement in (3) follows from the first one with
part (1) of the current lemma taken into account.

(4) Recall that due to the Diophantine condition, |[(my — m))w| > ay(l +
lmog — my|)™% > o(mg — my). Let k€ R\ U0<|n‘512R@)(/€;§,k,;:). We prove (4) first
for k = k. Assume that max;|v(mj, k) — v(0,k)| < 9(8"")"/2. Then, due to part
(1), one has min(jmo|, |2k + mo|) < 32 - 385"+ < 128(85"")/*, j = 1,2. If
Imjw| < 128(85~")'/*, j = 1,2, then 256(8y ")+ > |(my — m))w| > o (my — m;). Due
to (7.7), this implies |my — m;| > 12R", contrary to the assumption in (4). Similarly, if
12k + mjw| < 128(36571))1/4,]' = 1,2, then |my — my| > 12R®. Assume now that, for in-
stance, |myw| < 128(85™")/* and |2k +myw| < 128(85")/*. Then, |2k 4+ (my —m))w| <
256(80"")* < o ((my — my)), since |my — my| < 12R©. Hence,

k e (_m2w _ 128(53571))1/4, _m_QCU + 128(8(()51))1/4)

mow o) mo o) _
c|—- — , — c(k, k'
(-5 - T2 - T i)

implies |#/] > 12R®. This contradicts |my — m;| < 12RY. Let now |k — k| < (85~")/2.
It follows from the above arguments that in any event |£ + mjw| < A + 1. In particular,
ANk + mow| + |k + miw|) < 5. Hence,

with m" = my — m;. Combined with the assumption £ € R\ UO<|m/|§12R(‘) (k,y s k;,s)i this

[vGmy, k) — 0, B = 27 1k = k(1€ + moo + by + mjoo]) < 5(850) 7,

[0(0, k) = v(0, B)] = A~ 1k — kil (Jk] + k1) < 3(85") ",
and the statement follows. O

Remark 7.3. — (1) Yor any A C Z”, the matrix H, ., obeys conditions (3.2)-(3.4)
from Section 3. Due to statement (1) of Lemma 7.2, Hy ., € NV (ng, A, ;) with &) =
8o(A, ng, k) := A~ [min, e p\ () min(|(m — no)w|, |2k + (m — ng)w|)]?, provided £ ¢ £z’
and ¢ 1s sufficiently small.

(2) For the rest of this work we use the notation y, A without reference to y > 1,
y — 1 <|k| <y, A =256y. Itis convenient for technical reasons not to assume here that
y 1s an integer.

We will repeatedly use the following basic properties of the matrices Hy ¢ ;.
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Lemma 7.4, — Let A CZ", m € Z" be arbitrary.

(1) Consider the map S : A — m~+ A, S(n) =n+m, n € A. Given ¥ (-) € G2, set
S* (W) = v —m), W' € (m~+ A). The map S* 1y — S*(¥) is a unitary
operator, which conjugates H,y o ¢ x with Hp ¢ jtme-

(2) Consider the map S : A — —A, S(n) = —n, n € A. Giwen Yy(-) € C», set
S*(W)() =Y (—n'), " € —=A. The map S* : y — S*(¥) is a unitary operator,
which compugates Hp ¢ with H_p ¢ ;.

(8) Using the notation from (1) and (2), one has for any ny € A, k ¢ %Z” and sufficiently

small &,
Q(S(n9), S(A); &, k, E) = Q(no, As €, k+ mw, E),
ED(S(ng), S(A); &, k) = EV (o, As €, k + mw),
Q(S(n), S(A); &, k, E) = Q(ng, A; &, —k, E),
ED(S(ng), S(A); 6, k) =EP (ng, A; &, —k).

(7.8)

Assume that Hp . with some given subsets MO A f=1,...,5—1,A(m) C A,
m e MY belongs to N, A, 8) (resp., Ha. € GSR! 540) Im@D | A; 8o, €D, Let my
be arbitrary. Then,

(4) The matrix Ha g e pmoew with the subsets M — e CA—my, s =1,...,5s—1,
A (m—my) == A (m) —my C A —my, me M belongs to N'© (n® —mq, A —
mo, 80) (resp., GSRE M| A; 8, D)), Furthermore, let EO (0, A; &, k)
(resp., E(m™, A; €, k)) be defined as in Proposition 3.3 (resp., Theorem 6.11) with H
i the role of Hy .. Then, E© (0, A; e, k) = EQ 0O — my, A — mo; &, k + myw)
(resp., E(m*, A; e, k) = E(m™ — mo, A —mg; €, k+ moa))).

(5) The matrix H_ . _; with the subsets —M") C —A, s = 1 ,s— 1, A (=m) =

—AYm) € =A, m € MY belongs to ./\/’(‘)( —n® A 8o) (resp., HA .
GSRE ™ m @D A; 8y, D). Furthermore, E© (n, A, g, k) = EO(—n, A;
&, —k) (resp., E(m*, A; &, k) = E(—m*, —A; &, —k)).

Progf- — (1) Both statements follow from the definition of the matrices Hy 4.

(2) The statements follow from the definition of the matrices Hy ., and the sym-
metry v(n, k) = v(—n, —k),ne Z", k€ R.

(3) Fork ¢ SZ",any A', nj € A', and sufficiently small e[, Ha' ¢ 4 € NO @y, A, 8))
with 8 = 8,(A', ny, k) := A~ [min,ean () min(|(m — np) |, |2k + (m — n))w|)]?. In par-
ticular, all functions in (7.8) are well-defined for sufficiently small |¢|. The identities in
(7.8) follow from Proposition 3.3 and (1), (2) of the present lemma.

(4)&(5) Assume that Hy . ; with some given subsets MO CAf=1,...,5—1,
AV (m) c A, me MO belongs to N'© (1, A, 8). Let my be arbitrary. We will ver-
ify that Ha e ftmoew € NOGO — mg, A — my, 8). The proof goes by induction over
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s=1,2,.... Note first that v(n, k) = v(n — my, k + myw) for any £, n, my. Further-
more, due to part (1), Hy ., and Ha_,, ¢ ftme are unitarily conjugate. In partic-
ular, these matrices have the same eigenvalues. Secondly, recall that since Hy ., €
NO@ED, A, 8), EO@RD, A;k, ¢) is the only eigenvalue of Hy ., which is analytic in
¢ and obeys EQ(n?, A; k,0) = v(n@, k). If Hy e hrmow € NV (0@ — mg, A — my, ),
then EO (n® —my, A —my; k+myw, €) is the only eigenvalue of Hx_,, ¢ f4my0 that is ana-
lytic in & and obeys E® (n® —my, A —mq; k+mow, 0) = v(n® —my, k+mpw) = v(n, k).
Since the matrices have the same eigenvalues, these two functions are equal. We use these
remarks for an induction argument over s =1,2,.... If Hp . s € NO@HO AL S,), then
Ha_g.ebtmw € NOGD —my, A —my, 8); see Definition 3.1. Assume that the statement
holds for s =1,2,...,s— 1 in the role of 5. Clearly, conditions (a), (b), (d), (f) of Defini-
tion 3.1 hold for Ha_ ¢ t+me since they hold for Hy . ;. Condition (c) of Definition 3.1
holds due to the inductive assumption applied to each Hxo ., with 7 < s — 1. Due to the
previous remarks, we see that condition (e) of Definition 3.1 holds for Ha ) ¢ t4me sincCe
it holds for Hy . ;. This finishes the proof of (4) in case Hy ., € NV, A, ;). The
proof of (5) in case Hy . € NV, A, §) is completely similar (of course, one should
again use the fact that the matrices have the same eigenvalues and are self-adjoint). The
proof of both (4) and (5) in case Hy, € GSR[E(M)](m(“l), A; 8o, t¢D) is completely

similar. O
Given two sets A’, A” C Z", we introduce the following relation:
(7.9) AQA" AN NA #Pand A'N(Z°\ A") # 0.
Set
AP©)=B(2RY), ke R\ U (o kbo).

0<|m/|<12RM

MY = {m: |vOm, k) —v(0, b)| < 8/16},

FeR\ U (b ki),

0<|n/|<12R®
ALy =m+ AL, 0, me M,
A{?(0) =B(3R?) \( U AD (m/)> |
' eM:AL o) TBER®))

M) = {m: [v(m, k) —v(0, k)| < 385" /4},

keR\ U (bbb

0<|m'|<12R®)
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APm)y=m+ AP (0), me M) ke R\ U (ko).

0<|m'|<12R®)

M = {me oG, k) — v(0,B)] < 38577 /4],

kER\ U (kmA I’k;nFs 1)

0<|m/|<12RG=D

(7.10) Mfﬁf?_s{mt\v(m,k)—v(o,k)| B8y — 3 s,

s/ <’ <s—1

m ¢ U U A/(f”)(m”)},l<s/§5—2,

1"
s <s’ <s— ln”eMu)

Ml = {m: |v(m, k) —v(0, k)| < (85/16) — Z 55,

I<s’<s—1
vt U U a060)
l<s"<s=1 » M(f/’)
/fGR\ U (k;m 1’/{;; 1)
0<|m'|<12RG=D
AV ) =m+ A (0)
k - k+mw ’
mE./\/l,Ef;)_l,/fER\ U (km A—l’k;’l_ s—1 )

0<|m/|<12RG=D

AY(0) = B(3R®)\< U U AV (m’)),

== lre MO A ) IBGRO))

peR\ U (i kl).

0<|m/|<12R©

Remark 7.5. — It follows from the definitions in (7.10) that

(a) 0 € M; ).

(b)/\/l,(fé) lﬁ./\/l ) =@foranys <5 <s—1.

(c) Due to (7.10), for any 7, we have B(2R®) c A’ (0) ¢ B(3R®). In particular,

A(S_l) 0) C A(“V)(O) Furthermore, we use the notation A,(;/)(m) and not A,(f;l] (m). This is

)

because if m € ./\/l for some 5; < s, the set m+ A/,

(0) 1s sull the same.
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dIfsy <s—1, me./\/l,“ |, then

o) - Y A

S+1<s"<s—1

< [v(m, k) —v(0, B)| < (385" /4) — 3 5,

s/<s’<s—1

Furthermore, it follows from the definition of the set M\'~ . ! and part (4) of Lemma 7.2
that for any m € ./\/l,(fg_lf \ {0} with |m| < 12RY, we have

(85 < [um, k) — v(0, b)| < 38572 /4.
Lemma 7.6. — Let s > 2 and k € R\ U _ v <jore-0 by 1 /fmf’kl). Then,

D) ffme M), 1<s<s—1,i=1,2 and m # my, then |m — my| > 12R®,
dist(AL” (m), AL (my)) > 6RV).
(2) Assume that for some my, mg € Z", 51 < $9, we have

o(mi, b —v(0. k)] < (385" /4)— > 8" i=1.2.

si<s"<s—1

T hen,

(7.11) v —my, k4 mow) = v(0, k+mw)| <35 /4= Y 80

s1<s’<s9—1

(3) Assume that for every 2 < s' < s — 1, the following condition holds:
(&) Ik € R\Uq_picrorer G oo kb o) € MED_ sy <5/ =1, || <
19R), then either A\ (my) € AL (0) or ALV (my) N AL (0) =
Then, for every s > 2, the following statement holds. Assume that for some sy < s — 1,
Im| < 12RY) we have

o, ) = w0, 0] = (85074 = 30 o

sp<s’<s—1

Then:
etther (o) my € A,(S'Q)(mg)ﬁ)r somes; < s <s—1,m € M;(fi)_l,
or (B) m € ./\/l,(:'s)_1 and A,(ij")(ml)) N A/(:Q)(H’ZQ) = for any my € /\/l,(;ﬁ)_l my #~
my with s; < s <s— 1.
In case (@), one has m; + A,(Ci)mm(O) C A,(f?)(mg).
(4) The condition (Gy) holds for each s =2, ..., s
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Progf. — (1) Since k € R\ U0<\m’\512R<»‘—1>(k;’,.s—l’ k;r’,g—l) CR\ U0<|m/|512R<r’J (kr;/,s”
/-c;;’s,), part (4) of Lemma 7.2 applies. Therefore, |m; — my| > 12R). It follows from the

definition of the sets A,(C') (m) that A,(Z) (m) C (m+ B(3R™)) for any m, . Thus the second
statement in (1) also holds.

(2) We have
(7.12) [v(my — my, k+ mow) — v(0, k+ myw)|
< [v(mi, ) — v(0, B)| + |v(0, k) — v(my, k)

<380 Va— Y sV ss e — > 80

s1<s<s—1 so<s<s—1
< 38(()51—1)/4_ _ Z 8(()r —l)’
s1<5"<s9—1
as claimed.
(3) The proof goes via induction over s = 2, 3, .... Note first of all that due to

part (3) of Lemma 7.2, £+ myw € R\ Uy _jicioron By 1 kb _1), 50 AL (0) is well-
defined in any event. Let s = 2. The only possibility here is s; = | and there is no room for
case (). Due to part (1) of the current lemma, one has dist(A/(fl)(ml), A/EI)(MQ)) > 6RV
for any my € ./\/l,(flf, my # my. This proves part (3) for s = 2. It is important to note here, for
the sake of the proof of (4), that for s = 2, the proof of (3) does not require any additional
condition; in particular, the condition (&) is not required. Let s > 2 be arbitrary. Assume
that (8) holds for any s’ < s in the role of s. Assume that («) fails. Then, m; € M,(:'S)_l,
just due to the definition (7.10). With part (1) of the current lemma taken into account,

it suffices to consider |m; — my| < 12R? with 5; < s <s—1,my € ./\/l,(fr)_1 Note that

(7.13) m —my & A2 (0).

(D) A,(fz)(mg), contrary to the assumption that
(o) fails for m;. Note also that due to part (3) in Lemma 7.2, £ + mow € R\
UOQmWiIQR(Q)(/{&,STI,/f;r,’sr]). Since |m; — my| < 12R"? and (7.11) holds, one can ap-
ply the inductive assumption for part (3) of the current lemma to £ + myw in the role of
k, (m; — my) in the role of m;, and s, in the role of s. So, either («) or (B8) hold. Con-
sider first case (&), that is, assume that m; — my € A,(Ci)mzw(m’) for some 51 < s < — 1,

Indeed, otherwise m; € (my + A2

m' € M/(cil»)mzw,szfl' The inductive assumption for the very last statement in part (3) implies

that in this case one has
(7.14) (m1 —my) + AL, (0) C AL, (n).

It follows from (7.13) that

(7.15) AL (m) L ALD,(0).
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It follows from (7.15) and condition (&,,) that
(7.16) AL () NA L (0)=0.
Combining (7.14) with (7.16), one obtains
(7.17) (1 + AL (@) N (2 + AL, (0) =6,

which is what is claimed for m; in (B). This finishes the proof if («) holds for m; — my.
Assume now that (8) holds for m; — my, that is,

(7.18) (Om1 = m) + AL, ) DAL, (m) =2

forany s <5 <5 —1,m € ./\/l,(f‘i)mzw,y?_l. Since |m; —my| < 12R"? and (7.11) holds, one
has (m — my) € M{L . Since (7.13) holds, condition (&,,) implies

(7.19) (G — mo) + AL, L(0) NALE L (0) =0

The relation (7.19) implies (7.17). This finishes the inductive verification of the di-
chotomy in (3). To finish part (3), assume that (o) holds for m,. So, m; € mg + A,(CELW(O)

for some §; < s <s—1, my € ./\/lyf)_l Recall that (7.11) holds. Due to the induc-
tive assumption, either (o) or (B) holds for (m; — my). Consider first the case (B).

Then, (m; — my) € M,ﬁiﬁnw’frl. Since (m; — my) € A,Eﬁ)mzw(()), due to condition (&,,),
one has (m; — my) + A/(cjl—)ml »(0) C A,(fj)mw(O). This implies the second statement in
part (3) in this case. Consider now case («), that is, m; — my € A/(C‘i)mzw(m/ ) for some
si<s <s—LmeM . Since (m —m)e A2 (0), due to condition (&,,),
one has A{) (m) C AL (0). Furthermore, |m — my| < 12R®) < 12R®. Due to

part (2) of the current lemma, (7.11) holds and one can apply the inductive assumption
for the second statement in part (3) of the current lemma with m; — my in the role of m,,
m' in the role of my, and s, in the role of s. Hence, (m; — my) + A,(;lr:mw(O) C A,(Lji)mzw(O).
This finishes the inductive proof of (3).

(4) Once again the proof goes via induction over s = 2, 3, .... Let us verify (G,).
The only possibility here is s = 1 and m; € ./\/l,(clf Assume A" (my) N AP (0) # @. Then,
clearly, A" (m;) NB(3R®) # @ Note that A'” (my) N (Z" \ B(3R®)) = @. Indeed, oth-
erwise A\ (m;) § B(3R®)). Since

(7.20) AP (0) = B(BR@))\ U Al (m/)>,

weMAL () IB(RD))

that would imply A,(fl)(ml) N A,(f)(O) = {J, contrary to the assumption. Let m’ be an ar-
bitrary vector in the union in (7.20). Since m, is not included in the union in (7.20),
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m’ # m;. Due to part (3) of the current lemma, A,(fl)(m’) N A,(Cl)(ml) = ). Combining this
fact with A" (m;) N (Z" \ B(3R®)) = @, one concludes that A" (m;) € A'”(0). This fin-
ishes the case s = 2. Assume that (&) holds for any s < s — 1. Let us verify (&;). Using
the notation from (&;), one can assume that (m; + Aif}r)mlw(O)) N A,(:)(O) # (. Since we
assume that (Sy) holds for any s < s — 1, we can apply part (3) to m,. Consider first the

case (B). In this case, m € M|, (m + AL, ,(0)) = A{ (m)). Recall that

(7.21) AP(0) = B(3R(”)\( U g AY (m/)).

r=hess=lre M AY () §B(BRO))

Clearly, this implies A" (m;) N B(3R®) # @. Note that A" (m;) N (Z” \ B(3RY)) = @.
Indeed, otherwise AL (m;) § B(3R®)). This would imply AL (m) N AL (0) = @, con-
trary to the assumption. Let m' be an arbitrary vector in the union in (7.21). Since m,
is not included in the union in (7.21), m’ # m;. Due to part (3) of the current lemma,
AV o) N ALY (my) = B Combining this fact with A (my) N (Z¥ \ B(3RY)) = @, one
concludes that A;S')(ml) C A,(f) (0). Consider now the case (o). Using the notation from

case (a), one has m; + A,({ﬂlrzrllw(O) C A,(f)(mg). Note that for my, case (B) takes place.

Clearly A/(:Q)(WZQ) N A,(:’)(O) =# (). Hence, A,(;z)(mg) C A,(f)(O) and we are done. O

Remark 7.7. — (1) We remark here that in the proof of part (3) in Lemma 7.6, we
did not use the definition of the set A/(f)(O) from (7.10). We did use the definition of the
sets A,(f,)(m’), s <s—1 from (7.10), part (1) of Lemma 7.6 and condition (&,_,) only.
We will invoke this fact in Remark 7.20. We use the latter in Sections 8 and 9.

(2) For technical reasons related to small values of |£|, we need to introduce for
those £ some auxiliary sets AV (m) C A,(f)(m), which give a very good “approximation”

k,sym
(m) — A(X)

k,sym

of A/(;)(m) and at the same time obey — AW

Fosom (m); see Lemma 7.18.

Lemma 1.8. — For any k € R, 1, s, we have MY = —M}f), A(_J)A(—m) = —A,(f) (m).

Progf: — One has v(—m, —k) = v(m, k) for any m, k. This implies the first state-
ment, MY}, = — M. Using this, one can easily verify the second statement using induc-
tion in s. O

To proceed with the definition of A'”

1.ym(m), we need some combinatorics.

Definition 7.9. — Let s > 0 be an arbitrary integer. Let A = (ay, ..., a,) be an arbitrary
word over the alphabet {1,2, ..., s}. We say that the word A is correct if it has no sub-word A =
(@, ...,a) withy <k, aj = a, and max; ;. a; < a;. Otherwise, the word s called incorrect. By
convention, each one letter word A = (ay) is correct. We denote by A(s) the collection of all words over
the alphabet {1,2, ..., s} and by A.(s) the collection of all correct words in A(s). We also say that
the word A = (ay, ..., a,) has length n.
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Lemma7.10. — IfA = (a, ..., a,) € A(s), thenn < 2" — 1.

Proof. — The proof goes by induction on s. For s = I, the only correct word is
A = (1). Assume that the statement holds for the alphabet {1,...,s — 1}. If ; < s for
every j, then A € A, (s — 1) and the statement holds due to the inductive assumption.
Assume that ¢; = 5 for some j. Then, @, < s for every k # j since otherwise A ¢ A.(s).
Let Ay = (a1, ..., a-1), Ay = (a1, ..., ). Then, clearly, A, Ay € A,(s — 1). Due to the
inductive assumption j — 1 < 2! — 1, n—; < 2! — 1. Hence, n < 2' — 1. OJ

Lemma 7.11. — Suppose A = (ay, ..., a,) ¢ A.(s). Let A= (@, ..., a) be a minimal
length incorrect sub-word of A. Then, a; = ay, a; < @ foranyj < i <kand k —j <29 — 1.

Proof, — Obviously, a minimal length incorrect sub-word A = (@, ...,q) ¢ A(s)
exists. Due to the minimality, the words A; = (a4, ..., ) and Ay = (@, ..., @) are
correct. On the other hand, A has a sub-word (@jte, - - ., @—y) such that gy = a;_,,
a; < aj;q for any j + £ < i < k — m. Since both A, and A, are correct, £ =0 and m = 0.
So, ¢ = &, a; < @ for any j <7 < k. In particular, A; € A,(¢). Due to Lemma 7.10,
k—j<29—1. ]

Definition 7.12. — (1) Consider arbitrary subsets A', A" C Z". Assume that N' N A" # @,
AN AN AN ¢_ AN, In this case, we say that A’ and A" are chained. A sequence N©, € =1,...,n
with n > 2 is called a chain if A© and ATV are chained for every £ =1, ...,n— 1.

(2) Let £ be a system of sets A CZ". Let t(A) be a_function A € £ with values in N. We
say that (£, 1) is a proper subtraction system if the following conditions hold:

(1) For any a € N, R,:= minA/,A//eg:t(,\/)za,t(A//):a,A/?ﬁAu diSt(A/, A”) > 0,
(i) Let A € £ be arbitrary, a = t(A) + 1.

There exist subsets E; C A, j =1, ... such that diam(E;) < 27°R,, A = U;E;,
Jor some A" € £, AN AN £, then E; NN # D for any .
(3) Let (£, t) be a proper subtraction system. Given an arbitrary set Ng o, C Z, we set

and if for some

(7.22) AW:AO,l_l\( U A)

AES:Angvg_l

Lemma 7.13. — Let (£, t) be a proper subtraction system.

(1) Lae A, N € £, ANN #D. Let a=t(A) + 1. For any x € A, we have dist(x, A") <
27R,.

(2) Letae N and let AO, =1, ...,nbeachain, A© € & t(AY)<a, t=1,...,n
Then, dist(AV, A®) < (n—1)27R,.
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Proof. — (1) Let E; C A,j =1, ... be as in (ii) of part (2) of Definition 7.12. Since
ANA #§,one has E; N A" # @ for any j. Given x € A, there exists j such that x € &;.
Since diam(&;) < 27“R,, the claim follows.

(2) The proof goes by induction in n=2,.... For n= 2, the claim 1s clear since
AD N A® £ @ Let n> 2. Assume the claim holds for any chain with n — 1 sets.
Clearly, A®, £ =1,...,n—11is a chain. Hence, dist(A", A" V) < (n—2)27“R,.. There-
fore there exist x € AV, y € A®V such that [x — y| < (n — 2)27°R,. By part (1) of
the current lemma, dist(y, A™) < 27°R,. Hence, dist(x, A®) < |x — y| + dist(y, A™) <
(n—1)27R,. 0J

Lemma 7.14. — Let Aoy be as in (7.22). Let
Ne={AeL:ANAge1 #J,AN(Z"\ Ag1) #0}.

(1) Assume that Moy # Nog—1, £ =1,...,€,. Let A € Ny,. There exists a chain A9,
0=0,..., 01 such that A" = Ao, AV = A, A© e Ny, £ =1,...,L,, and in particular,
AO £ AN e <0,

(2) Assume that s = sup o t(A) < 00. There exists £y < 2° such that Aoy = Ao, for
any £ > .

(8) Let £y be such that Ao ey+1 = Nog,. Then, for any A € £, we have either A C Ay 4, or
AC(Z'\ Agy).

Proof. — (1) The proof of the first statement goes by induction over £, =1, 2, ....
Assume that Ay # Ago. Then, 91, # Q. Just by the definition, A € 91, if and only if A
is chained with A . Assume that the statement holds for any £'=1,2,...,¢; — 1 in the
role of £,. Assume that A € 1;,. One has the following cases.

(O[): AN (ZV\Ao’gl_Q) ?é (. Since A € mgl, one has AmAO’gl_l ?é @, A mA()’gl_Q 75
@. Together with the assumption of the case, this implies A € 9, _;, which in turn implies
AN Agg,—1 =9, which contradicts A € 91,,. Thus, this case 1s impossible.

B): AN (UA’ewl-l A"\ A —9) # 9. In this case, there exists A" € ,,_; such
that A N A’ # @. Note that A C A’ is impossible, since in this case one would have
AN Ay =0, contrary to the assumption that A € 91,,. Assume that A" C A. Since
A €Iy, _y, this would imply A N Agg,—o D and A N (Z" \ Ay y,—2) # ¥. This means
A €Ny, . This is again impossible, since in this case one would have A N Ag - = @.
Thus, A is chained with A’. Applying the inductive assumption to A’, one obtains the
statement for A. Assume A®© = A ¢ < ¢. Then A® € M, and at the same time
A® € 9y . This is inconsistent with the definition of the sets Ag,_; and ;.

(2) Assume that Agy # Ao -1, £ =1,..., ¢, for some £, > 2°. Due to part (1)
of the current lemma, there exists a chain A, £ =0, ..., £, such that A© ¢ N, £ =
1,...,¢,. Consider the word A = (ay, ..., a), g = t(AY) over the alphabet {1, ..., s}.
Since £; > 2°, due to Lemma 7.10, A ¢ A.(s). Due to Lemma 7.11, A has a sub-word
A= (@, ..., a) such that ¢ = a;, ; < a¢; for any j <7 < kand £ —j < 29 — 1. Due to
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part (2) of Lemma 7.13, there exist x € AV*D, y € AV with |x —y| < (k—j — 2)279R,,.
Since AP N AT =£ @, due to part (1) of Lemma 7.13 one has dist(x, AY) < 279R,.
Similarly, dist(y, A®) < 27%R,. Hence dist(A?, AP) < (k —7)279R, < R,. On the
other hand, due to part (1) of the current lemma, A” # A®. Since t(A?) = {(A®) = a,
this contradicts the definition of the quantities R,. Thus, there exists £, < 2° such that
Nogy, = Nogo41- It follows from the definition (7.22) that Ay, = Ag,, for any £ > £,.

(3) This follows from the definition (7.22). O

Set S(n) = —n,neZ".

Lemma 7.15. — Let s > 2 and k € R\ Uy _ s 1<iore-n Ky 15 Ky 3-—1)- Assume k| <
50

(D) If[o(m, k) —v(0, k)| < 8, with 8822 < 8 < 1/64, then [v(S(m), k) — v(0, k)| <
48/3.

(2) Let s < s, ./\/l,” s J = 1,2, and assume that S(my) # my. Then,
dist(S(AL (m))), A;‘”(m?)) > 6R).

Progf: — (1) Note first of all that y =1, A = 256. Since |v(m, k) — v(0, k)| <4, it
follows from (1) in Lemma 7.2 that min(|mw|, |2k + mw|) < 328'/%. In particular, |mw| <
3282 + 2|k < 328'/? 4 28. One has

(7.23) [v(S(m), k) —v(0, b)| = |v(—=m, k) — v(0, k)| = 1~ |mw]|2k — mo|
< A7 mo| (12 + mo| + 41k])
= |v(m, k) — (0, k)| + 417" |mo| ||

<3 + o (3251/2 +25)(28) < 458/3.

(2) One has [v(m;, k) — v(0, k)| < 387" /4, j = 1,2. Note that 385" /4 >
8(()5_2)/2, since we assume s < 5. Due to part (1), one also obtains |v(S(my), k) —
v(0, 5| < 857", Due to part (4) of Lemma 7.2, one has |S(m) — ms| > 12R®?, since
S(my) # my. This implies dist(S(AL (m))), AL (my)) > 6R™. O

Definition 7.16. —Assumes > 2, |k| < 872, It follows. from (7.6) and (7.7) that k € R \
U <prisiori (.1 k1) Let £ e the collection of all sets A (m) := AP mUS (ALY (m)),
l<d<s—1,me /\/l,” 1 We say that A(my) «~ A(mg) if 51 = s9, and either my = my or
S(my) = my. Clearly, this is an equivalence relation on £'. Let I be the set of equivalence classes.
Clearly, each class has at most two elements in it. For each m € M, set A(m) = Almp)em A(my).

Set £={A(m):meM}. Let A(m) € &, A (m) US(AY (m)) € m. Set t(A(m)) = 5. This
defines an N-valued function on £. Set also ppy, = {m, S(m)}. Clearly, the set pe, depends only on m.
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Lemma 7.17. — Using the notation_from Definition 7.10, the following statements hold.

(1) For any A(wy) € £, = 1,2, such that 1(A(m;)) = {(A(my)), m; # My, we have
dist(A(m;), A(my)) > 6RUAMmD),

(2) For any m, we have

(7.24) LJ ((m+B@ROA™))) € Am) c | ((m+ B(BREA™7))).

MmepPm MEPm

Furthermore, A(m) = E(m) US(E(m)), where diam(E (m)) < 6RUAMD,
(3) Ifmy # m,, then A(my) # A(my).
(4) The pair (£, 1) is a proper subtraction system.
(5) For any m, we have A(m) = S(A(m)).

Progf: — (1) Let AY (m)) US(A®) (m)) € my,j = 1, 2. Since m, # M, prn, Npm, =
@. Therefore, dist(A® (my), AY (my)) > 6R), dist(S(AY) (m))), S(AY (my))) > 6R®).
Furthermore, due to part (2) of Lemma 7.15, dist(S(A®"(m;)), A“ (my)) > 6R",
dist(S(AY (my)), A" (m;)) > 6R®. This implies the statement in (1).

(2) Let A9 (') US(A®(m')) € m. One has

(7.25) (m/ + B(QR(f(A(m))))) C A (m/) C (m/ + B(SR(t(A(m)))))‘

Furthermore, {m', S(m)} = pn. This implies the first statement in (2). The second state-
ment in (2) follows from Definition 7.16.

(3) Letm; £ m,. If t(A(m,)) = t(A(my)), then (3) follows from (1). If /(A (m;)) #
(A (my)), then (3) follows from (2).

(4) Assume that ((A) = t(A”), A" # A”. Tt follows from (3) and (1) that
dist(A’, A”) > RUAD | So, (i) from part (2) of Definition 7.12 holds with R, > R@,
Let A(m) be arbitrary, and set a = t(A(m)) 4+ 1. Due to part (2), one has A(m) =
E(m) U S(E(m)) with diam(E(m)) < 6RUAM) — gRGE@=D ~ 9=«R@ < 979R . Fur-
thermore, let A(m’) be arbitrary. Assume A(m) N A(m’) # . Once again, due to
part (2), one has A(m’) = E(m’) U S(E(m')). This implies E(m) N A(m’) # ¥ and
S(E(m)) N A(m') # #. Hence, (ii) from part (2) of Definition 7.12 holds as well. This

finishes the proof of (4).
(5) This follows readily from the definition of the sets A (m). (l
Assume [k] <807 For£=1,2,..., set

B(s, 0) := B(3RY),
(7.26) B(s, £) = B(s, £ — 1)\( U A(m)).

meN:AmM))B(s,0—1)
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Lemma 71.18. — (1) There exists £y < 2° such that B (s, £) = B(s, £+ 1) forany £ > £,.
(2) For any A € £, we have either A C B (s, £y) or A C (Z" \ B(s, £p)).
(3) Set A (0) =B (s, £o). Then, for any A,(f)(m), we have either A,(f)(m) NAY. (0)=

k,sym k,sym
" (s)
@ or A}’ (m) C A/:W(O)

(4) S(B (s, £)) = B(s, £) for any £. In particular, S(A;f‘;m(O)) = A;f;,m(()).
(5) For any £ > 1, we have

(7.27) {neB(s, € —1):dist(n, 2"\ B(s, £ — 1)) = 6ROV}
CB(s,0) CB(s, £ —1).

In particular, BOR©) C AP (0) C B(3RY).

k,sym
(6) Ay, (0) C AL(0).

Proof: — Parts (1), (2) follow from Lemma 7.14.

Let A,(:/)(m) be such that A,(f,)(m) N B (s, £o) # B. Let m be the equivalence class
containing A\" (m) US(A' (m)). Then, just by definition, A'”(m) C A(m). In particu-
lar, A(m) N B (s, £y) # #. This implies A(m) C B (s, £,). Therefore, A" (m) C B(s, £).
This finishes the proof of (3).

To verify (4) note that S(B(s, 0)) = B(s, 0). Combining this with part (5) of
Lemma 7.17, one obtains T(®B(s, £)) =*B(s, £) for any £, as claimed.

Consider an arbitrary A (m). It follows from (7.24) and Definition 7.16 that there
exists m such that

A(m) C ((m+ B(6R"“™”))) U S((m + B(6RUA™7)).

Assume that A(m) § B (s, £ — 1). Due to part (4) of the current lemma, S(B(s, £ — 1)) =
B(s,£ —1). Hence,
{” €eB(s,L—1): dist(n, Z'\B(s, L — 1)) > 6R(.r—1)}
CB(s, £ — 1)\ A(m).

This implies (7.27). The second statement in (5) follows from (7.27) since £, < 2°.
Statement (6) follows from the definition of the sets A\ (0), A (0). O

k,sym

Proposition 7.19. — Let s> 1 and k € R\ Uy _<rono0 10 k5 1), 80 1= (85712
Let €y, & be as in Definition 3.1. For € € (—¢;, €,), the following statements hold.

(1) Fors=1and any 0 < |m| < 12RD |k, — k| < 8(1) := 28\, we have |v(m, ky) —
VO, k)l =80 I s22,0 <|ml < 12RY m¢ Uy o U yepror AL (), then
v (m, k) — v(0, k)| = 5.
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The matrix H belongs to N'© (0, A,(f)(()), 80). If s> 2 and |k| < 8(()5_2), then

AL (0),6,k

the matrix H AD (O).ek belongs to N'®)(0, A,(;)W(O), 80). We mtroduce an additional no-
sym 7

tation A,(CJZZ(O) which means A(S) 0) if |k] = 6, Y72 and either of A(“)(O) A/(cj‘)gym(O) if

|k| < 5(’ 2 Fors =2, the subsets from Definition 3.1 are as_follows: ./\/l(r) (A(J) 0)) :=
M,ﬁfﬁ_l NALY0), AV (), m e MDD _ (AL 0)), r=1,...,s— L.

Assume that k € R\ U|m\512R<f> (%, Y,/er) Then for any m € ./\/l o the matrix
Hy0 .0 ith the subsets m+ M W WAL (O, AV () i=m + A, (0),
r=1,...,5—1 belongs to N (m, A(S)( ),560)).

For |k — k1| < 8(1), the matrix Hyo,, ., belongs to the class N'V(0, AL (0), 8).
For s> 2,k € (k—8(s), k+ 8(5)) with 8(s) := 2857, the matrix H, 0, wilh
the subsets M} (A{(0)), Ay (m'), m' € M (AD(0)), r=1,...,5— 1 belongs
to the class N'© (0, A}(0), 8). Let Q¥ (0, A (0); &, ki, E), E9(0, Af(0); &, k)
be defined as in Proposition 3.3 with H AD Oy i therole of Hy .. The followmg estimates
hold for s =1, |ky — k| < 83" /4 or s > 2, |ky — k| < 8(5)/8:

|97 ED (0, ADL(0); &, k) — 37 (0, k)| < e/, a <2

7|k
(sgn k) EV (0, AL (0); 6, k) > Jk)jl, D<a<?

o 7kl .
(g ) HE? (0, AL O e k) = oo = D Jel(8"),

I~ (")
= 1:k1>85 /2

s>2 0<a <2,

‘E(”(O, A/(fl(oﬁ e, /f1) — E(S)(O, A,(f)a(O); g, k)‘ < 3|k — K.

Furthermore, if ky € (k— 8(s), k+ 8(s)) and ks € R\ U|m|<12Rm( s 19 Ko, Y_1) 50
that the current proposition applies to ko, then

[E©(0, AL (0); k1) —EV(0, AL (0); &, k)| < 3lel(8 ") .

Letky € (k—8(s), k+8(s)). Let Q¥ (0, AL (0); &, ki, E), (0, AL (0); e, k)

be defined as in Proposition 3.3 with H , ) Ot wn the role of Hy . Then, for |o| <2,
k & ’

87 EY (0, AP (0): e, k) — ZECTV(0, ALV (0); 8. k1) | < lel (857")

Here, EO(m/, A K, &) :=v(nl, k), as usual.
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6) Let 0O <k <K <y, k K eR\ UWE]ZR(_Y) (k> k' ). Define k ~, K if k, k' are in the

m,s? m,s

same connected component of R\ |y _ <100 Byp g K5 ), & g K otherwise.
Then, -

E(S) (0’ A/(:/)(O), e, k/) _ E(J) (O, A/(CV)(O)’ e, k) < %(/f/ — /f) + 3|8|(8(()S))5

Joramy O <k <K <y ifs=1, and for kK —k <87 if s> 2,
E(0, AP (0); 8, F) —EY(0, AP (0); &, k)

(7.33) o
() = k) = 3lel(8")" ifs=1,
| F =8 =3l if 5= 2and ke~ K,
T @ =R =8Il s G0
ifs>2and ko K.
(7)
E9(0, AP (0); &, £) = EV (0, AY,(0); &, —£),
(7.34 EV(0. A0z e.k) =EO(0. A" O): 6. ~h) if K. Ihi] < 57,

EY(0, A (0); 6, k) =EV(0, A (0); &, —k)

k,sym k,sym

ifs>2, k], k] <877 /2.

Progf: — In the proofs below we verify the statements for H AV O).ek° The verifi-

cation for H ¢ is completely similar. Let £ € R\ <1080 (§,,05 k) o) and sup-

AP (0).ek
pose |k — k| < 8(1). Consider m satisfying 0 < |m| < 12R™. Tt follows from part (4)
of Lemma 7.2 that |v(m, k) — v(0, k)| > (8”)"/? = 8. This verifies the first statement
in (1); see Definition 3.1. The second statement in (1) follows immediately from the
definition of the sets M _ .

The proof of parts (2)—(7) goes by induction in s =1,2,.... Let s =1 and let
ke R\ U,<10r0 (K05 k! o). First of all, part (5) is due to (3.71) from Lemma 3.5, part
(7) 1s due to part (5) of Lemma 7.4 and Lemma 7.8. It follows from part (1) that for
|k — k| < 8(1), the matrix HA?)(O)’E’,C1 belongs to the class N'V(0, A,El)(O), 8¢). This gives
the base of the induction for part (2) and for the first statement in part (4). The sec-
ond statement in part (4) is due to (3.71) from Lemma 3.5. Taking into account that
0 h(m, n; k, &) =0 1f m # n, and

|8 hom, ms k. £)] = 27" |k + moo| < Bexp(lm|'"),

so that By = 8 in the notation of the lemma, one obtains the estimate (7.28). As-
sume || < 6(()0)/2. Note that A,E”(O) = —A/(Cl)(O). Due to parts (4) and (7) of the cur-
rent proposition, the function EM(0, A,(Cl)(O); &, ki) is well defined, C*-smooth, obeys
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ED(0, AL (0); 6, k) = ED(0, A (0); 6, —k) for || < &) and 32EM(0, A} (0);
g, k) > 7/4x with A = 256. This implies (7.29). Assume 1 > £ > 8\”. Note that A = 256
in this case. Since EM (0, A,(Cl)(O); e, k) =ED(0, A,(ql)(O); €, k), one obtains using (7.28),

(7.35) 0y BV (0, A (0); 8, k1) = 9, 0(0, k) — el

- Tk .
= (2/Mk — |e'"0 > 4—; > (80)

for |k — k| < 8(()0)/4 in case £ > 0. A similar estimate holds for £ > 1 and for £ < 0. So,
(7.29) holds in any event. The estimate (7.30) follows from (7.28). The estimate (7.31) is
trivial for s = 1 since A[) (0) = A{”(0) = A} (0). This finishes part (4) for s = 1.
Assume that £ € R\ U|m|§12R<Q> (k.05 /f:;Q). Then, due to Lemma 7.2, £ + mw €
R\ U <im0 &, 15 ki) for any m € /\/l,(f; Therefore, due to part (2) of the current

lemma with s =1 and part (4) of Lemma 7.4, the matrix H belongs to the class

Dy e,k
ND(m, A,El)(m), dp). This is the base of the induction for part (3).
We will now verify (6). The upper estimate follows from (7.28). Let us ver-
ify the lower estimate. Let [/g,/;;/] be the connected components of the set R\
U0<‘m‘512R<1) (k,;j,kj;g), enumerated so that /f;/ < /f]@rl. Assume k. < k < K < k! for
some 7. Assume also that £/ — £ > 8(()0). Set 6, = k + t3(()0), 1 =0,...,¢ — 1, where
{=[6")""(K — k] -1, 6, =F. Combining (7.29) with (7.31), one obtains

(7.36) EM(0, A (0); 6,6,) — EV(0, A’ (0);€,6,-))

7 5
> 87(93 —60%)) = 3lel(8”)".

Adding up (7.36) over r =1, ..., ¢, one obtains

(7.37) ED(0, Ay s e, k) —EV(0, A}V (0); &, k)

7 / : / -
= (W) ) = 301l 60)

Recall that in (6) we assume £ < y. So, ¢’ < (830))_1. Hence, (7.37) implies in particular
the lower estimate in (7.33). The argument for the case £’ — £ < 560) is completely similar.
Consider now an arbitrary £+ y > £ > k. Recall that /f]f+1 — k]f’ > ming, <jorm 0 (m) >
4—8(;/ ? Let [£, £'] be arbitrary such that £ > £. It follows from the definitions in (7.7) that
(—8(()0), 8(()0)) C [, £]] for some £. Since £ belongs to one of the [k, k], one concludes
that £ > 8((,0) > 8(1)/2. Due to part (5), one has
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(7.38) ED (0, Ajjj (0): &, k,,) —EV(0, Ag,)(O); N
= [0(0,£,,) = v(0, K)] ~ 2le
= () - (),

Combining the estimates (7.38) with the estimates (7.37), and taking into account
k— K <1, one concludes that

(7.39) ED(0, AL (0); &, k) —ED(0, A}V (0); &, k)
> g(k’Q — ) —120el(8")".

So, the lower estimate in (7.33) holds in any event.

This finishes the case s = 1.

Let s > 2 be arbitrary. Once again, part (5) is due to (3.19) from Proposition 3.3
and part (7) 1s due to part (5) of Lemma 7.4. Assume that statements (2)—(4) hold for any
§=1,...,s = Lin the role of s. We will now verify that H,o, ., € N©(0, A’ (0), 8).

Condition (a) of Definition 3.1 holds. Due to the definition, one has M,(f) N ./\/l,(;) =
¢ if r <s. Due to Lemma 7.6, the second part in (b) of Definition 3.1 holds. To

verify condition (c) of Definition 3.1, note that £ € R\ g_py<iore Ky 15 kb)) C
R\ U0<|m/|§12R(g) (ko /-c;;’s,) for any s < s — 1. In particular, due to the inductive as-

sumption, part (3) of the current proposition applies with s’ in the role of 5. This im-
plies condition (c) of Definition 3.1 for s = s — 1. Let s/ < s — 1, m € M (AP (0)).
Then, [v(m, k) — v(0, )] < 8. Part (3) of Lemma 7.2 applies. So, k + mw € R \
Uo<pmi<12r) (/f,;/,s,fl,k;’x_]). Therefore, the inductive assumptions apply to £ 4+ mw in
A e €N O AL (0). 80).
Due to part (4) of Lemma 7.4, this implies condition (c) of Definition 3.1 for s'.
Recall that m’ + B(2R") € A”(n) for any m’ and r. Therefore, condition (d) in
Definition 3.1 holds.
Condition (f) in Definition 3.1 follows readily from the definition of the sets ./\/l,(:).
We will now verify condition (e) in Definition 3.1. Let s < s — 1 be arbitrary. Using

the role of £ and s" in the role of s. In particular, H

the inductive assumption, and combining the estimate of part (5) with 5" =4, ..., s —1
in the role of s, one obtains

(7.40) [ECD(0, ALTV(0); 6, £) — EC(0, AL (0); &, £)| < 21e1(8")
Letme ./\/lff,) be arbitrary. Due to part (4) of Lemma 7.4, one has

(7.41) EC (m, A (m); &, k) = E©(0, AL, (0); &, k+ mw).

k+mew
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Let us verify first the lower estimate in condition (e) in Definition 3.1. Consider the case
s' <s— 1. Recall that due to (d) in Remark 7.5,

(7.42) 11857/16 < (3857 /4) — > 85" <|v(m. k) — v(0, B)|
S+1<s’<s—1
<38V — > 8.
<5 <s—1

Note that £ + mw € R\ UO<|nz|<12R(5)(k Iy * ), due to Lemma 7.2. Note also that
|k +mow|, |k] € R\ UOdeZR(y)(k YA Y) By Lemma 7.1, ||, |k 4+ mw| belong to the
same connected component of R\ U‘m n<12r6 (B 15 km ,_1)- Using the inductive assump-
tion for parts (6), (7) of the current proposition, (7 42) and the fact that £, £+ mo belong
to the same connected component of R\ U\m’\SIQRU) (A /c;:,’.g_l), one obtains

(7.43) [EC (0, AL (0); &, k+ mw) —EC (0, AL (0); &, £)|
7 ,
> |Gk moo)? — ] = 120e] (8 )

= g‘v(m, k) - U(O, /f)‘ - 12|8|(8(()3/))4 > _75(()5/) _ 12|8|(8(()A/))4—

128
Combining (7.40) with (7.41) and (7.43), one obtains
(7.44) [ECD(0, ALV (0); 6, ) — EC (m, AL (m); &, £)|
77T (@) N s 8

> —94,

= Togdn — 120el(&”) = 20el(%7) > =

This verifies the lower estimate in condition (e) in Definition 3.1 for s < s — 1. The
derivation of the upper estimate is completely similar and we omit it. This finishes the
verification of condition (e) in Definition 3.1 for s < s — 1. The verification in case s =
s — 1 1s completely similar. So, we have HA/(C:)(O)’&/C e NO(0, A,(CS)(O), o), that 1s, part (2)
of the proposition holds.

The verification of part (8) is completely similar to the one in case s = 1.

We will now verify the first statement in (4), that 1s, for &) € (k — §(5), £+ 6(s)),
the matrix Hyo, ., with the subsets M (A(0)), A (), m' € MP(A(0)), 7 =
l,...,s — 1 obeys conditions (a)—(f) of Definition 3.1. Conditions (a), (b), (d) hold for
obvious reasons. Let s/ < s — 1, m € M("/)(A(A‘) (0)). Then, as we explained above, & +
mw € R\ U0<‘m,‘§12R@ (Y A * 1), and the inductive assumptions apply to k + mw
in the role of £ and ¢ in the role of 5. Since |(k + mw) — (k + mw)| < §(s) < 8(5),
H, ) o eiine € N, A (0),80). Due to part (4) of Lemma 7.4, H €

Fme (0):8,k1+mw AL (m),eh

k+maw
N (m, A (m), ), that is, condition (c) of Definition 3.1 holds. The verification of
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condition (e) is completely similar to the one we did for H Thus the first statement

in part (4) holds.
The estimate (7.28) is due to (3.71) from Lemma 3.5. Let us verify (7.29).
Assume k| < 8077 /2. Recall that AV (0) = —A!” (0). Due to parts (4) and (7)

k,sym k,sym
of the current proposition, the function E“(0, AY (0); &, k) is well defined, C2-

AL (0),6,k"

k,sym
smooth, obeys E©(0, A{’,,,(0); &, k) = EV(0, A}, (0); 6, k) for |k| < 8 and
92EV(0, AL (0); &, k) > 7/4. This implics (7.29) for || < 852 /2. Yor [k > 8072 /2,

(7.29) follows from the inductive assumption regarding (7.29) with s — | in the role of s
combined with part (5).

The estimate (7.30) follows from (7.28). The estimate (7.31) is due to Corol-
lary 3.6. This finishes the proof of part (4).

Let us verify part (6). The upper estimate follows from (7.28) and (7.31). Let
us verify the lower estimate. Let [/;; , /;;’] be the connected components of the set R\
Upmi<ioro iy ky 1), enumerated so that K< Ky Ik K €[k, K] for some j, then
the proof goes just as for s = 1 with use of (7.29). So, assume & € [k}, k], ¥ € [£, k],
¢ < m. Note first of all that

E(0, A (0); 8, £) — EV(0, A (0); &, k)

/C//

7 "\ : .
= (k)" = K) = 120e1(5)")',
EC(0, A (0); 6, k) = EV(0, AZ (0); &, £,)
7

> ()"~ (1))~ 1215

Using part (5) and the inductive assumption for part (6) with (s — 1) in the role of s, one
obtains

(7.46) EQ(0, AL (0); &, k,) —EY(0, Ap)(0); &, &)

/C//

(7.45)

> [E(J—l)( A(Y l)(O) e, k/) E(s—l)( A(r 1)(0) e, k//)]

P
—2le] (857"’
7

a((k/) ( Z)Q) — 20]e| Z (8(().;’))4 . 2|8|(3(()5—1))5'

¥ <s— 1k, k) >5%")

Combining (7.45) with (7.46), one obtains the lower estimate in part (6). 0J

Remark 7.20. — (0) Using the notation from the last proposition, let A,(;’l)(()) be
such that for any A,Ef/)(m) with 5 < 5, we have either A,(;,) (m) C A/(f’l)(O) or A,Ef/)(m) N
A%"l)(O) = (. Assume also that B(RY) C A,(;’l)(O). Then, Proposition 7.19 applies with
A (0) in the role of A (0). In particular, H,on, .0 €N (m, AV (m), 857).
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(1) Here we want to remark again that the condition |£| > (8(()0) )!/2 has not been
used anywhere except for part (6) of the last proposition.

(2) Let 12R“D < |m@ < 12R® be arbitrary, Assume that
k€ R\ U2 <198 st G 1 k' ._1). Then, obviously, Proposition 7.19 applies with
s — 1 in the role of s. Furthermore, let M,(:;)_I, A (m) be defined as in (7.10). Due to
part (2) of Remark 7.7, part (3) of Lemma 7.6 applies. Therefore, conditions (a)—(d) in
Definition 3.1 hold. The derivation of (7.43), (7.44) for s <s— 1, m # m” goes the
same way as in the proof of Proposition 7.19. Assume that m® € ./\/l,?r__lf Then, for
by — k| < 28077, we have

(7.47) [ECD (m®, AL (s 8, k) — EC0(0, ALV (0); 6, k)|
<3|k +m O] — Ihl] + (87")°

and

(7.48) [ECD (m @, AP (m®); e, k) —ECT0(0, ALV (0); 6, k)|
> é (b +mOw)” — K2 = 120el(557")".

(3) Note that Proposition 7.21 applies to £ = 0. For the proof of Theorem A in
Section 11, we also need to consider the matrices (Hy .o — E) with —8(1)/2 < E <0
see (3.9) in Definition 3.1. The analysis of these matrices goes almost word for word as
the one for the matrices in Proposition 7.19. Moreover, the same subsets A(()'Y)(O) can be
employed. In Proposition 7.21 we just state the result needed for the proof of Theorem A.
We omit the proof the proposition.

Proposition 7.21. — Let —e'2 < E <0 be arbitrary. For each s = 1,2, ..., the matrix

(H —E) belongs to N (0, AJ (0), 8).

INUOWN:

8. Matrices with an ordered pair of resonances associated with
1-dimensional quasi-periodic Schrédinger equations

Definition 8.1. — Let s> 1,¢>0ny € Z", 0 < |np| < 12RY if s =1, and 12R“7 <
Ino] < 12RY if's > 2. Assume that

8.1) (ko = 20 G0, by +200) R\ | (kg k)

0<|m'|<12RO) ! #ngy

with k,, = —nyw/2 and o (ny) as defined in (1.7). We set R (@, ng) := (kyy — 20 (n), kyy, +
20 (ng)).
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Remark 8.2. — (1) The intersection of R“*(w, ny) and R\ U0<|m,|512R(\) (ky 15

kY 1) is a non-empty set KO 1= (k,, — 20 (no), kyy, + 20 (no)) \ (k. 1. & ). In partic-

ular, Proposition 7.19 applies to £ € IC,(l‘(‘)). For technical reasons, we need to verify that in

fact Proposition 7.19 applies on a slightly bigger set; see part (3) of Lemma 8.4 below.
(2) If k€ R“)(w, ny), then —k € RE(w, —ny).

(3) Since |n| < 12R®, one has due to (7.6), |k, | > 1(85~")/1°.

Lemma 8.3. — Let k € RS (w, ny), 0 < |m| < 12RY, m £ ny. Then, ||k + mo| —
k|| > (857")1/16)2.

Proof. — Assume k,, > 0, £+ mw < 0. Then,

(8.2) |1k + mow| — k]| =12k + mw| > |(m — ng)w| — 2|k — k|
> (88" — o (m) > (857")"°)2.
The verification for the rest of the cases is similar. O

Lemma 8.4. — Let k € RY (w, ny). Then,

(0) npe M.
(1) The subsets in (7.10) are well-defined. For |k — k| < 28577, each matrix H

A (m).e k2
r <s— 1 belongs to the class NV (m, A,(f)(m), 8(()0) ).
_ —1 .
Q) Let m§ =0, my = ny. For |K — k| < (855, the matrices HA](:])(m),E,k' obey all

conditions stated in Definition 5.1 (except for the fact that the set A is not defined).
(3) Assume that |k — k| > (8¢~D)778. Let AV (0) be as in (7.10). Then, H

NO©, AY(0); 8y).

A/(f.\) (0), 8,k S

Progf- — Clearly, k € R\ Ug_pvj<iore-n iy 15 k:;,’s_l). One has
[now| < 21k + 1,
(8.3) [v(no, k) — v(0, B)| = 227 o] - [k — k| < 427" (21| + 1) (n9)

1/6

<256(85 V)" < 38577 /4,
which means ny € M,(CYA__?, due to the definitions in (7.10).

Part (1) is due to part (2) of Remark 7.20 after Proposition 7.19.

To prove (2), note that all conditions except (5.6) and (5.7) are due to part (2) of
Remark 7.20. Furthermore, due to part (2) of Remark 7.20, one has for any m € ./\/l,(f:]),
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(8.4) [EC™Y (m, ATV (m); &, K) — EC7V(0, APTP(0); &, )|
7

= | (K + mo)’ — (K)°| = 121e1(887")".

Take here m # 0, ny. Then, combining (8.4) with Lemma 8.3, one obtains condition
(5.6). Once again, due to part (2) of Remark 7.20, one has

(8.5) [EC™ (ng, Ay ™V (ng); &, K) = EC70(0, ALV (0); 8, &) |

(87")

(88;—1))5 < (8((].;—1)) 1/8’

< 3H/~c'+noa)| —

<60 (ny) + 6|K —

as required in condition (5.7).

Assume that |k — k, | > (8“7")7/%. To prove part (3), we need to verify the lower
estimate in the first line in condition (3.12) in Definition 3.1 only. Assume for instance,
k| < 1. In this case, A = 256. Recall that due to (7.6), |ngw| > (5°")"/'®. Due to part
(2) of Remark 7.20, one has

(8.6) [EC™Y (ng, A" (mg); &, k) — EC(0, ALV (0); &, £)|

Z 55050 |k + nw)® — K| = (807")” > 385"

= 525 2mellk — k| = (877")" > 387",

as required. The case |£| > 1 is completely similar. UJ

Remark 8.5. — From this point to the end of Proposition 8.11, we always assume
that £ € R“(w, ny); and moreover,

(8.7) |k — k| < (8“_1))

On the set (878 < |k — k,| < (8“"V)3* we will be able to apply both Proposi-
tion 7.19 and Proposition 8.11.

3/4

Let T be the reflection map T(n) = —n 4+ ny. For s > 1, due to Lemma 8.4,

the subsets in (7.10) are well-defined, and each matrix H ADeps TS5 = 1 be-

longs to the class N (m, A,(C") (m), 8(()0)). Assume that ny € A,(;) (0). Then, H

OPR“ (0, ny, AV (0); 8,). We will now re-define the set A\”(0) so that H, 04 €

OPR“ (0, ny, AY (0); 85, 7). To this end we will define the set A\’ (0) so that (A (0))
= A/(f) (0), where T'(n) = —n+ny. Provided that k # k,,, this symmetry will imply condition (5.19)
in Definition 5.5 with some T = 1@ (k) > 0. For s = 1, set

(8.8) A{’(0) =B(3RV) UT(B(3R™)).

AV ek €
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For s > 1, the “new” set A,(f) (0) will be a “relatively small perturbation” of the set

B(ny, ) :=B(3RY) UT(B(3RY)).

Lemma 8.6. — (1) If [u(m, k) — v(0, k)| < 8, with (8™ ")2/4 < 8 < 1/256, then
lv(T(m), k) — v(0, k)| < 48/3.

(2) Lets>2,1<s <s—1,mje ./\/l,(;;),l,]z 1, 2, and assume that T(m,) # my. Then,
dist(T(AY (m))), AY (my)) > 6R™.

Proof. — (1) Since k£ € R (w, ny), one has |nyw| < 2|k| + 1. Since |v(m, k) —
v(0, k)| < 8, it follows from (1) in Lemma 7.2 that |mw| < 2|k| 4+ 1. One has

(8.9) [v(T(m), k) — v(0, b)| < [v(T(m), k) — v(m, k)| + [v(m, k) — v(0, k)|
<! (|n0a)| + QIma)l)IQk + now| + 6
<81 Ik 4+ 1)(8“7")

s <483

(2) One has [v(mj, k) — v(0, k)| < 38~V /4 < (8“~)1/2/4, j =1, 2. Due to part
(1), one also obtains [v(T(m,), k) — v(0, k)| < (8¢ ~)/2. Due to part (4) of Lemma 7.2,
one has [T(m) — mo| > 12R®, since T(m;) # my. This implies dist(T(AY (my)),
A (my)) > 6RY. O

Definition 8.7. — Let & be the collection of all sets A(m) := A (m) U T(A (m)),
l<d<s—1,me ./\/l?;)_l We say that A(my) =~ A(my) if 51 = o, and either m; = my or
T(m) = my. Clearly, this s an equivalence relation on £'. Let M be the set of equivalence classes.
Clearly, each class has at most two elements in it. For each m € M, set A(m) = Almp)em A(my).
Set £={A(m) :meM}. Let A(m) € £, A (m) UT(AY (m)) € m. Set t(A(m)) = §. This
defines an N-valued function on L. Set also poy = {m, T(m)}. Clearly, the set py depends only on m.

Lemma 8.8. — Using the notation_from Definition 8.7, the following statements hold.

(1) For any A(wy) € £, = 1,2, such that 1(A(m;)) = {(A(my)), m; # My, we have
dist(A(m,), A(my)) > RUAMmO),

(2) For any m, we have

(8.10) U ((m-l— B(QR(t(A(m)))))) CA(m)C U ((m+ B(SR(t(A(m))))))_

mepm MmEPm

Furthermore, A(m) = E(m) U T(E(m)), where diam(E (m)) < 6RUA™D
(3) Ifmy #m,, then A(my) # A(my).
(4) The pair (£, t) 1s a proper subtraction system; see Definition 7.12.
(5) For any my, we have A(m) =T(A(m)).
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Proof.— (1) Let A (m)) UT(AY) (my)) € my,j = 1, 2. Since m, # M, pm, Npm, =
@. Therefore, dist(A“” (m;), AY (my)) > 6RY, dist(T(A® (m))), T(AY (mmy))) > 6R™.
Furthermore, due to part (2) of Lemma 8.6, dist(T(A“(my)), A®(my)) > 6R",
dist(T(A® (my)), A" (m;)) > 6R®. This implies the statement in (1).

(2) Let A () UT(A (') € m. One has

8.11) (nf + BZRCA™) € A9 (1) € (' + B(SRUA™)).

Furthermore, {m', T(m')} = pm. This implies the first statement in (2). The second state-
ment in (2) follows from Definition 8.7.

(3) Letm; #m,. If 1(A(m,)) = {(A(my)), then (3) follows from (1). If /(A (m,)) £
(A (my)), then (3) follows from (2).

Now we will verify (4). Assume that ¢{(A’) = t(A”), A" # A”. It follows from
(3) and (1) that dist(A’, A”) > R So, (7)) from part (2) of Definition 7.12 holds
with R, > R“. Let A(m) be arbitrary, @ = {(A(m) + 1. Due to part (2), one has
A(m) = E(m) UT(E(m)) with diam(Z(m)) < 6RUA™) = gR=D < 97¢R@ < 9=R
Furthermore, let A(m’) be arbitrary. Assume A(m) N A(m') # . Once again, due to
part (2), one has A(m) = E(m’) U T(E(m')). This implies E(m) N A(m’) # ¥ and
T(E(m)) N A(m’) # @. Hence, (ii) from part (2) of the Definition 7.12 holds as well.
This finishes (4).

Part (5) follows from the definition of the sets A (m). O

Set
B(n, 5) := B(3RY) UT(B(3R")),

(8.12) B (ng, 5, £) = By, 5, £ — D\( U A(m))

meNM:A(m) (B (ng,s5,L—1)

for{=1,2,....

Lemma 8.9. — (1) There exists £y < 2° such that B (ng, s, £) = B(ny, s, £ + 1) for any
=>4,

(2) For any A € £, we have either A C B (ny, 5, £y) or A C (Z" \ B(ny, 5, £p)).

(3) Set AUV (0) = B(ny, 5, Lo). Then, for any AV (m), we have cither A (m) N
ACY(0) =0 or A (m) € AVV(0).

(4) T(B(ny, 5, £)) =B (g, s, £) for any €. In particular, T(ALY (0)) = AP (0).

(5) Forany £ > 1, we have

(8.13) {n € B(ny,s,£—1): dist(n, 7\ B(ny, s, L — l)) > 6R(“_1)}
CB(ny, s, ) CB(ny,s, L —1).

In particular, BQ2RV) U (ny + B(2R®)) C A{"V(0) € B(3RY) U (ny + B(BRM)).
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Proof: — Parts (1), (2) follow from Lemma 7.14.

Let AY(m) be such that A (m) N B (ny, s, £y) # P. Let m be the equivalence class
containing A®”(m) U T(A®?(m)). Then, just by definition, A“?(m) C A(m). In partic-
ular, A(m) N B (ng, 5, €y) # P. This implies A(m) C B(np, s, £y). Therefore, A (m) C
B (no, s, £o). This finishes the proof of (3).

To verity (4) note that T(2B(ny, s, 0)) = B(ny, 5, 0). Combining this with part (5)
of Lemma 8.8, one obtains T(B(ny, s, £)) = B(ny, s, £) for any £, as claimed.

It follows from (8.10) that diam(A(m)) < 6R“™" for any m. Combining this
with (8.12), one obtains (8.13). The second statement in (5) follows from (8.13) since
Ly < 2°. O

Remark 8.10. — (1) If k € R“Y(w, ny), then —k € RO (w, —ny), | — k — k_p | =
|k — k|, and AYP(0) = =AU (0).

(2) Let (8“™D)78 < |k—k, | < (8“~1)%*. Due to part (3) in Lemma 8.4, the subset
A;” is well-defined by (7.10); moreover, H0) ., € N©(0, A;”(0); 8,). The notation

AP (0) is introduced to avoid ambiguity.

Proposition 8.11. — Assume that k € R (w, ny), |k — k| < (§41)%*,
Assume k,, > 0. Let €y, & be as in Definition 3.1. Let € € (—¢;, €;).

(1) If s=1, then for any 0 < |m| < 12RW, m % ny, and any |k, — k| < 8(1) :=
1£1(86™)°, we have [v(m, k) — v(0, k)| = 8. If s > 2, 0 < |m| < 12RY, m ¢
Uicret Unerar | AL @), then [oGm, k) = v (0, B)| = 80/2.

(2) For awy kyy < K < hyy + (8", we have Hye g, € OPR(0,mo, A"V (0);
80, ), 7 = [min(2e./*, k,, J256) K — b |. For any i, — (U <k <k,
we have H, o s € OPR® (ny, 0, AUV (0); 8, T©).

(3) For ky < K < ky 4+ (8“")¥* we denote by EC® (0, AV (0); 6, k) the fune-
tions defined i Proposition 5.6 with H ASD () 6.0 wn the role of Hp .. Simalarly, for

by — (86DYY < K < Ky, we denote by B (ng, AV (0); &, k) the functions defined
in Proposition 5.6. Then, with k¥ := min(sg/ ! kay/512), one has

no

agE(“*)(O, A;:’U(o); ek —+ 9) > (k(o))QQ, 0 >0,

(8.14) (
BECT(0, AP (0); 6,k +6) < —(K0)’0, 6 >0,
(8.15) EC(0, APP(0); 8, ky +60) = B2 (ng, APV (0); 8,k — ), 6 >0,
(8.16) 9,2 (0, APV (0); &, &, +0)| <2,
(8.17) [EC(0, AUV (0); 6, k1) — EC(0, AP (0); 6, k1) | < [e1(85),

0 < [k — kol < lel(871)™",
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8.18) ECD(0, APV (0); &, K) = B0, APV O)s 8, K) > (KK =k |)/2.
(4)
(8.19) (0, AUV (0); &, ) — ECD(0, AUV (0); &, K)| < 42l (857°) .
Here, EO(nl, A'; 8, K) := v(m', K'), as usual. In particular,
(8.20) (0, ALY (0); £, ) — ESP(0, ASV(0); £, )| < 91el(8¢7) ",

(5> Let k € R\ Ulm\leR(f),m;én(] (kr;,x’ km-‘_,s)i (8({_1))7/8 < |k - knol = (8(5_1))3/4- Then;
H,on ), € NOO, A (0); 80). Furthermore,

EY(0, APV (0); &, k)

_JECPO AP e k) i () <k =k, < (85D,
T ECDO AP O 8k i GO <k, — k< (897D

(6) For any by < K < kyy + (8°)""*, we have H, g, . € OPRY (0, no, AV (0);
80, 7). For any kyy — (V) <K <k, we have H g, o € OPR (o, 0,
A,(f) (0); 80, T©). Furthermore,

E(s,i) (O, A/(c.r,l) (0)’ e, k/) — E(S,i) (O, A/(C.r,l) (O), e, _k/)

Progf: — The verification of part (1) goes the same way as in Proposition 7.19.
It follows from (2) in Lemma 8.4 that HA?’”(O),&,/{ € OPRY(0, ny, A/(:,I)(O); 5).

Now we will verify (5.19) in Definition 5.5. As we mentioned before, the symmetry T(A,(f’l) 0) =
A,(f’l)(O) plays a crucial role for that matter. Set for convenience A = A,(f’l)(O), my =0,
my = n, Amar,ma = A,(f’l)(O) \ {0, 7p}. As in (5.11), consider the functions

KY(mn, As e,k +0,E) =B —Hy . _cp10)” (mn), mne Nz,
0°70

0
QY (my, A; &,k +6,E)
= > h(my.mie ky +0)KO (w0 A ek, +0,E)

!
mWeN + —
mey smg

(8.21) X h(n',mys €, ky +6),
G (my, mi, A; e, k, +6,E)
= h(moi, md s €, ky, + 9) + Z fz(moi, m'; &,k + 9)

m €N _
RORE)

x KO (nd, n's As e,k + 0, BNl mi s &,k + 0)
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with |0] < (857 ")%/*,
le| < ey, ‘E — v(mar)| < 8p/4, incases=1,

<8-22) |8| <& 9:=&)— Z 8(5’)’

1<d<s—2

|E—E (g, AL (md); &,k +0)| < po:=267", s>2.

One can estimate 3,QY(my, A; €.k, + 0,E), 9;,09(my, As ek, + 0,E) using

Lemma 3.5. Like in the proof of Proposition 7.19, taking into account that

Oph(m,n; e, k, +0)=0, ifm#n,
(8.23) |8phm, ms &, by + 0)| = 207" |k, + 0 + mo| < 8exp(|m|'?),
Ay h(m, m; &, kyy +0) = 207",

one obtains for a < 2,

09QY (m, As &, ky + 6, E)| < |e]* = (ex™)"",
|05QY (g, A &, kyy + 6, E) — 85Q (miy, A(miy); €, ki + 60, E)|

(8.24) <lel(87")",
|05 GY (my, mg, As &, k,y + 6, E)|

K _1\4/3 K
<|g|4/3exp(—z°|no|>=(ex Y exp(—zoln(ﬂ).

Now we invoke the symmetry T(A) = A. Note that T(my) = m]. In particular,
T(Am o -) = m iy . Note also that &(m, n; €, k) = ec(n — m) for m # n, that is, it does not
depend on k. Fmally, note that for /' = £,, + 6, we have — (k' + nyw) = (k,, — (K — k) =
ky, — 0. Using Lemma 7.4, one obtains

K (m, n, A €, ky, +0,E) =KV (T(m), T(n), A; &, k,, — 0, E),
m,n€ N, -,

QY (my, As &,k +60,E) =QY (mf, A; e, k, — 6, E),
GV (my, mg, A; e,k +60,E) =GV (mf,my, As e, k, —6,E).

(8.25)

Note also that v(my , k,, + 0) = v(m, k,, — 0).
Assume first £,, > 1. Note that k,, <y =1/256 < k,,+1 < 2k,,. For —(8"7")"/* <
0 < (87)3* we have
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(8.26) 1/64 > 227k, +2(847") " + g7
> 3y (v(m . ki +0) + QY (mf, As e, kyy + 6, E))
> 207y — 2(8970) 7 —6)? > 17512 = 2(8¢7 1) — g )?

> 1/1024.

So, for (8~D)¥* > 9 > 0, we have

(8.27) v(my, ky +0) + QY (mi, As e,k +6,E) —v(my , ki, +6)
— QY (my, A ek, +6,E)>06/512.

Taking here 6§ = k" — £,,, one concludes that condition (5.19) in Definition 5.5 holds
with HA/E"I)(O),a,k/ in the role of Hy .. Thus, HAEs,l)(O)!S’k, € OPRY) (0, ny, A;S>(0); 80, T if

by < K <k + S IEk,, — (89 D)* <K < k,,, one just has to switch the roles of

no
0 and ny.

Assume now 1 > &, > 256(2(8“")%* 4+ ¢,”*). Note that in this case, A = 256.
Like above, one concludes that

1/128 > 3y (v(m , ky, +6) + QY (mi, As &,k + 6, E))
> A"k, — 2(8(“”)3/4 _ 83/3 > 283/3’ 6] < (8(“‘1))3/4,

v(m, by +0) + QY (mg, As &, ky +60,E) —v(my, &y, +6)
— QW (my, As ek, +0,E) >2e)'0, 0<0 < (8"7")

(8.28)

3/4

Finally, assume 0 < £, < 256(2(80")** 4 ¢)/*). Once again, A = 256. Find r
such that (8)"/2 < k,, < (8Y")"/2. Note first of all that in this case (see Remark 8.2),

1/4

(8.29) Ino| > 12R, s>, ko > (857")

Let for instance £ > £,,, so that m0+ = 0. Recall that due to parts (2) and (4) of Propo-
sition 7.19, the function Q' (0, A”; ¢, k,, 4 0, E) is well defined for 0 < k,, < 877" /2,
0] < 8(()771). Furthermore, due to (8.24), one has
(8.30) 9; (v(0, &, +0) + Q" (0, AY; &, k,, +6,E))

>0 — (45)»‘1)4/3 > 1/256.

Recall also that v(0, #) + Q(0, AV &, k', E) = v(0, =) + QV(0, AV; &, =K, E). For
ky, + 6 > 0, this implies

no

8.31 3 (v(0, kyy +60) +QV(0, A”; &,k +6,E)) > (k, +0)/256.
0 k 0 0
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Now, we invoke the second estimate in (8.24), applied to Q" (0, A g, k., +0, E), with
7 in the role of s, running r, =7+ 1, ..., s. This yields

(8.32) 10,07(0, A &, kyy +0,E) — 3,QY(0, AY; &, &,y + 6, E)|
< 20e](80)” < (ky, +6)/512.
Combining (8.31) with (8.32), one obtains
3 (v(0, kyy +60) +Q(0, A; &, k, + 0, E)) > k,,/512,
6] < (5°0)",
v(mi, ky+0)+ QY (mi, Ay e,0,E) —v(my, k, +6)
— QY (my, A e,0,E) > £,0/256, 0<6 < (8°7")

(8.33)
3/4

This finishes the proof of part (2).
To prove part (3), recall that due to Proposition 5.6, E¢%)(0, A,(f’l)(O); e kK), K=
ky, + 0,6 > 0, are the solutions of the equation

(8.34) x(¢,0,E) := (E—v(ml, k, +6) — QY (mf, A; &, k,+06,E))
x (E—v(my, k, +6) — QY (my, A; &, k, +6,E))
—|GY (i, my, As e, ky +6,E)|* =0.

To proceed with the verification of (8.14)-(8.19), note first of all that part (4),
which is (8.19), is due to (5.21) from Proposition 5.6 combined with the fact that
H, o1, € OPRV (0, o, ACP(0); 80, T©).

To verify (8.14), we invoke Lemma 4.15 with £ = 1, a; = v(md, k,, + 0) +
QYV(ms, Ns e,k + 0,E), ay = v(md, k, — 0) + QV(mI, A; e,k — 0,E), b =
GY(mt,my, A ek, + 0,E), 6 < (8“7V)¥* For that we first invoke part (9) of
Lemma 4.11. Let us verify the validity of the needed conditions. First of all we need
the conditions |E — 41, 8, |93 al, |95 " 6*| < 1/64 from Definition 4.9. The condi-
tion |E — | < 1/64 is due to Proposition 5.6. The rest is due to (8.24) (note that
|0gv(my , k,y + 0)] < 1/256). Now we turn to the conditions of (9) in Lemma 4.11.
Due to (8.26), (8.28), (8.33), one has dya; < —min(88/4,knu/512) = —k?. Due to
(8.24), 192 |61*| < exp(—2|no|) < exp(—LRE™D) < (857 ")?, & < 2. Combining this with
kol > (857")2, one concludes that 326 < (K©)2/8. Recall also that ay(e, E, 0) =
a (e, E, —0), |b(e,E,0) = |b(e, E, —0)|. In particular, x (¢, E,0) = x (e, E, —60). Thus,
all conditions needed for (9) in Lemma 4.11 hold. Hence, (4.34) from (9) of Lemma 4.11
holds. Now (8.14) follows from Lemma 4.15.

The identity (8.13) is due to the symmetry (8.25). The estimate (8.18) follows
from (8.14).
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To verify (8.16) we invoke the following Feynman formula, well-known in the gen-
eral perturbation theory of Hermitian matrices. Let H(0) = (H(m, 1; 0),,.5en, |A] < 00
be a real analytic Hermitian matrix-function of 8 € (6,, 85). Let E,,(0), ¥,,(n; 0), m,n €
A, be a real analytic parametrization of the eigenvalues and normalized eigenvectors
of H(0), respectively. Due to Rellich’s Theorem, such a parametrization always exists.
Then,

(8.35) 9L, = Z|wm(n; 9)\239H(n, n 0).
neA
Thus,
(8.36) B (0, APV (0); &, kyy +6)
=[P 7 | s e, 0)] gv(n, ki + 6),
neA

where ¢“® (n; €, 0) stands for the eigenvector corresponding to E¢*)(0, A,(f’l) 0); &, kyy+
6). Due to (5.51) from part (7) of Proposition 5.9, one has [|¢“*| > 1 and

7 7
(8.37) ¥ (m; 8,0)| < el [exp(—%ln — 0|) + exp<—§|n — nolﬂ,

n & {0, ny}.

Note that [3gv(n, k,, + 0)| = 247k, + 0 + 00| =207 — by + 0 + (n — np)w| < 1 +
|n — ng|. Similarly, |9pv(n, £,, + 0)| < 1 4 |n]. Combining (8.36) and (8.37) with these
estimates and taking into account that |¢| < &y, one obtains (8.16).

The estimate (8.17) follows from Corollary 6.13.

Assume (8“7 < |k — k| < (8“"V)¥*. The proof of HA,ﬁ"")(O),s,k

N©(0, A,(;’l)(O); 3y) goes the same way as the proof of part (3) of Lemma 8.4; see also
part (0) of Remark 7.20. To finish (5), consider for instance the case k,, + (8“~")"/% <
k <k, + (8“7D)%*, Recall that due to (5.23) from Proposition 5.6, one has

S

speCH N {|E _ E(s—l)(o’ A/(;_l)(()); 8,/€)‘ < 8(8(()5—1))1/4}

ACY(©0),e.k
(8.38) = {E“P(0, APV (0); 6, k), ES7(0, AP (0); 6, ) ),
EG (0’ A,(f’l)(o); 0, k) =v(0, k), E¢™) (0, A,(Cj’l)(O); 0, k) = v(ng, k).

On the other hand, E© (0, A"V (0); €, k) is the only eigenvalue of H, 1., » which is an

analytic function of € and obeys E© (0, A" (0); 0, k) = v(0, k). Hence E¢ (0, AP (0);
e, k) =EY(0, A"V (0); &, k). This finishes the proof of (5) in this case. The proof for the
second possible case is completely similar.

The arguments for part (6) are completely similar to the arguments for part (7) of
Proposition 7.19 and we skip them. 0J
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Remark 8.12. — Assume that £ = £,,. Assume for instance £,, > 0. Proposition 8.11
says that for any k, < ¥ <k, +(8“"")"*, we have Hyo ) , . € OPRV(0, o, ASY(0);

80, ), and for any k,, — (8*~")¥* < ¥ < k,, we have H, oo, p € OPR" (ny, 0,

A(‘ Y(0); 8y, T@). Tt does not say anything about £ = £,,. The only reason for that is
that the expression on the left-hand side of (8.27) Vanlshes for 6 = 0. In fact, due to the
symmetry (8.23), one has

(8.39) v(mg . k) + QY (mg As &, ko B) = v(mg . ki) + QY (my , As €, by, E).
In Proposition 8.13 we analyze the case /' = £,, via the limit £ — £,, with &' # &,,.
Proposition 8.13. — Let € € (—¢,, €;).
(1) The limats

(8.40) EC® (0, A“) (0); &, k,) == lim E“*(0 ,Aii?) (0); &, k)

k— kﬂo
exist. Moreover,

(8.41) spec H CNECE—EC(0, AL 0); 6, k,)| <8(8577) )

Ap) (O).e.h
— [ECD(0. AL (0): 6.k, ). E“ (0. AL (0): 6. ) ).

Finally, E“P(0, AV (0); &, k,,) = E&(0, A(‘) (0); &, k).
(2) E=E“H(0, A,(CZ) (0); &, k) obeys the following equatzon,

(8.42) E —v(0, £,) — Q“(0, AZZ (0); &, E) F |G(0, np, Agj; (0);&,E)| =0,

where

QU (0, A (0): 6. E) := Q" (. Az e, . E),
(8.43) “ >
G

GY(0.m, A (0): £, E) 1= GO (mf , my . As £, k. E):

see (8.21).

Proof. — We will consider the case s > 2. For s = 1, the argument is completely
similar. Let, for instance, 0 < &,, < &' < k,, + (§“~")**. By Proposition 8.11, H

OPRY(0, ny, A;;f) (0); 80, 7). Due to part (3) of Proposition 5.6, one has

(5) S
Ay (0.8



358 DAVID DAMANIK, MICHAEL GOLDSTEIN

(8.44) spec H N{E:[E—E(0, AL ) 8,)] < 8(857")"")

AEZ) 0),6,%
_ (s,+) () . / (s,—) (s) . /
= {E“P(0, A (0); 6, K), E“7(0, A, (0); &, K) |
Due to Remark 7.20, E©=7(0, A;"P(0); &, &) is a C*-smooth function of ¥, [¥' — k,| <
256572). Clearly, H AD ).k is a C?-smooth matrix-function of #. Finally, recall that
ng T

E&(0, A(‘;)); g, k) > E&(0, A,(f;()) (0); &, £'). Combining all that, one concludes that part
(1) 1s valid (of course, only continuity of the functions involved matters here).
To prove part (2), recall that E¢#)(0, A/(C:) (0); &, k') are the only two solutions of

the Equation (8.34) with # = £,, + 6. Recall also that the functions Q¥ (i, A; €, k,, +
0,E), G(s)(ma—L,m(T, A ek, + 6,E) defined in (8.21) are C?%-smooth in the domain
0] < 8™ |E — BV, AUV () e, by + 0)| < 26077, Taking also into ac-
count (8.39), one concludes that E = E&*) (0, A,(;é (0); €, k,,) obeys the following equa-
tion,

(8.45) (E=v(0, k) — QV(0, AL (0); &, E))” = |G©(0, m, AL (0); 6, )| =0.
Recall now that due to part (2) of Proposition 5.6, one has with ' = £,, + 6,
(8.46) EC(0, A} (0); 6, K)
> v, ky) +Q (mo, AL (0); 6,0, E2(0, A (0); ¢, K))
+]GY(0, mo, A} (0); 8, E“2(0, A (0); 8, K)) .
Combining (8.45) with (8.46), one concludes that E = E®™(0, A,(;z (0); &, k,,) obeys
(8.42). The argument for E = E¢7(0, A,(;[)) 0); &, &,

) 1s similar. 0J

Remark 8.14. — Yor |k—k,,| — 0, we need a stronger version of the estimate (8.20)
in Proposition 8.11. For that we invoke Remark 5.7 from Section 5.

Corollary 8.13. — Using the notation_from Proposition 8.11, the following estimate holds,
(8.47) [ECP(0, AZP(0); 6, k) = EU7(0, AU (0); 6, k1) |

Ko
SQIEICXP<—§InoI>,

provided |ky — k| is small enough. In particular, using the notation_from Proposition 8.13, one has
(8.48) [ECP(0, ALY (0); &, k) = EC7(0, AP (0); 6,k )|

Ko
52|8|CXP<—§|710|)-
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Proof. — We consider the case s > 2. The case s = 1 is completely similar. Using the
subsets A,(f‘;;)(m) with s < s — 1, one can define a subset A’(0) so that the following condi-
tions hold: (i) Hyr(g).e.x € NY7D(0, A'(0); 8) if |k — k| < (8“~)¥*, (i) A’(0) = —A’(0),
(1) A'(0) D B(R), where |n]/8 < R < |ng|/4. Set A'(ny) = ny+ A’(0). Then, Hp () e €
NCD(ng, A'(ny); 80) if |k — k| < (897 D)%%, Furthermore, let E¢~1(0, A'(0); ¢, k),
ES™Y(ng, A’(ng); &, k) be the corresponding eigenvalues. Due to Lemma 7.4, one has
EC™D(0, A(0); &, &y, + 0) = EC"D(ng, A'(no); €, kyy — 6). In particular,

(8.49) [E“"D(0, A'(0); &, by + 0) — EC7V (ng, A (no); &, &y, + 6))|
<exp(—R),

provided 6 > 0 is small enough. Thus both conditions mentioned in Remark 5.7 hold.
This implies the claim. O

9. Matrices with ordered pairs of resonances associated with
1-dimensional quasi-periodic Schrédinger equations: general case

Let us start with the following

Lemma9.1. — Assume that g > 1 and k € R\ _ v < ore+i-
Then,

(0) k| > (86110 /4.

(1) Let 8 < 88" If [v(m, k) — v(0, k)| < 8, then either

(@) |mo| < 212815715 |2k + mo| > 8/1/4, |(k + mw) — ky| < 21281516 4 |k — k, |,

- +
D! #ng (km’,x+q—1 ’ km’,s—i—q—l)'

or
(0) |2 + moo| < 226", Jmeo| > 8'/1°/4, [(k + (m — n)w) — k| < 22611 +
3|k — Kyl

In both cases, ||k + mw| — |k, || < 2'28'5/'° + 3|k — k,, |. Finally, ny # +2m.
(1) Suppose |v(m, k) — v(0, k)| <8 < 85" In case (a), we have

lv(m+ ng, k) — v(0, B)| < 2°6""° + |k — k|,
9.1) |m+ no)oo| > (8572)""" /2,

[v(m — no, k) — v(0, b)| > (857)"""* /256,
and we have case (6) for m+ ny. In case (b), we have

lv(m — ng, k) — v(0, k)| < 2°8""° + |k — k|,
9.2) |2k + (m— )| > (887")" /2,

oG+ no, k) — (0, | > (8" /256,
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and we have case (a) _for m — ny.

(2) Assume |v(m, k) — v(0, k)] <8y ", 1 <5 <s— 1. Then, k + mw € R\
Uscpmicioren Gy ok o).

(3) Assume |v(m, k) — v(0, k)| < 8371), s <§ <s4q— 1. Then, in case (a), one has
|(/f+ma)) - k| < 4’(3(()Y —1))15/16) k+ma) € R\ UO<|m’|§lQR(”,),m’#n() (k;’,.r’—l ’ kr—:’,s’—l)‘ [n case (b)’
one has | (k+mw) — (k)| < 485 ™)1 k4 ma> € R\ Uy <1or ) wttg Fop g1 Ky 1)

@ 1< <s—1,0<|m —ml < 12RY, then max|v(m;, k) — v(0, k)| >
G2 Irs<s <s4+q—1, [vm, k) —v0,k)] < S ™% i=1,2 and 0 <
lm; — my| < 12RYY, then my — my € {ng, —no}. Furthermore, if we have case (a) for my, then
we have case (b) for my.

(4)" Assume |k — k| < 20 (ng). Then, k € R\ U0<|m,|§36R(,>’m/¢no (Kot g1 k;r,ﬁq_l).
Furthermore, if |v(m;, k) — v(0, k)| < 8™, 1 =1,2 and 0 < |my — my| < 36RO, then
my — my € {ny, —no}.

(5) Assume |k — ky| > (8D)/8. I [o(mi, k) — v(0,B)] <8 ", s<s <s+qg—1,
i=1,2, and mi # mo, then |my — my| > 12R©.

Progf. — (0) Recall that due to (7.6), we have |k,| > (8“~")/1®/2. This
implies (0).

(1) Assume |v(m, k) — v(0, k)| < 8 < 807". Due to part (1) of Lemma 7.2, one
has min(|mw|, |2k + mw|) < 3282 if y < 4, min(|mw|, |2k + mw|) < 2568 if y > 4.
Consider first the case ¥ < 4. Then A < 1024. Assume |mw| < 328'/2. Then, using (0),
one obtains |2k 4+ mw| > 2/k| — |mw| > (85)/1°/4, |mw| = Alv(m, k) — v(0, k)||2k +
mo|™' < 2128(8\")71/16 = 2125'5/16 a5 claimed in (1). Furthermore, |(k 4 mw) — k, | <
212§1/16 4 |k — £, |. This establishes all inequalities in case (a). The estimation in case (b)
1s completely similar. Note that (a) and (b) obviously exclude each other. Finally, assume
ny = £2m. Due to (7.6), one has |nyw| > (5(()3_1))1/16 > 82, Therefore, we cannot have
case (a). So, we must have case (b). Then, |4k + tnyw)| < §'/? for some ¢ € {—1, 1}. Re-
call that |2k + ngw| < 64(85")/5. Hence, |nw| < 82 + 64(85~")1/% < 65(85~")1/6.
This contradiction with (7.6) proves that ny = £2m is impossible. Consider now the
case ¥ > 4. Assume |mw| < 2568. Then, |2k + mw| > 2|k| — |mw| > 3k/2 > XA, |mw| =
Mv(m, k) —v(0, k)||2k + mw|™" < §. Furthermore, |(k + mw) — k,, | <8 + |k — k,,|. This
establishes all inequalities in case (a). The estimation in case (b) is completely similar.

The proof of the rest is completely similar to the case y < 4.
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(1)’ Recall first of all that A™'|k,, | < 1/256, A7 |k, | > 1/512 if |k, | > 1, A = 256
in case |k, | < 1. In case (a), one has

lv(m+ ng, k) — v(0, k)|

= 217 |mw + now| |k + (mw/2) — k,
lv(m — ng, k) — v(0, k)|

= 20" [mw — now| |k + (mw/2) — k,y + 2k, |

< (2°6"71° 4 |k — kyl),

> 2)\‘—1((683‘71))1/16 _ 212815/16)(2|/€n0| _ 212615/16 _ |k— kn(]l)
> (857")"" /256,

as claimed in (9.1). Furthermore, |(m + ng)w| > |now| — |mw| > (§¢~D)1/16 — §1/2 >
(8¢=D)I/16/9  Clearly, we have case (b) for m + ny. The verification of (9.1) in case (b)
goes in a similar way.

(2) Note that ke R\ U0<|m,|§12R<j,1) (ko1 k;lr,’s_l) since 1y > 12R¢~V . Therefore,
this part follows from part (3) in Lemma 7.2 .

(3) Assume |v(m, k) — v(0,k)| < 8", s <5 <s+4¢— 1. In case (a), one
has |(k + mw) — k| = |mw| < 4(8(()3/71))15/16. This implies, in particular, £ + mw €
R\ U0<‘m,‘§12R(y>,m/¢m k. k;:,’s,_l); see the definition (7.7). In case (b), one has |(k +

m',s'—1?

mw) — (—k)| = |2k+mo| < 4(8 ")'5/16. Note that —k € R\ R (i

m',s'—1°

kY ). This implies, in particular, £+ mw € R\ UO<|m/|512R(‘/),m’;éfﬂo (k, kY ). This

m', s m!,s'—1° ",
finishes part (3).
(4) The proof of the first statement in (4) goes the same way as the proof of part
(4) in Lemma 7.2 since £ € R\ U0<‘m,‘512R<5_1> (ko kY .. To prove the second state-

1> s

ment, assume, for instance, that we have case (a) for m; and case (b) for my. In this

case,
‘o . 'w .
(9.3) ke (_m _ (8(()s 1))1/4, _mow + (5(() 1))1/4)
2 2
mo o) mo o) -
. <_ 2 B 2 T 2 + 2 ) - (km’,g’—]’ krjl_’,;’— )9

where m' = my — my. Assume |m/| < 12R"). Then the only possibility is m' = ny, that is,
my — my; = ny. The proof for the rest of the cases is similar.

(4)’ Since |k —k,,| < 20 (ny), the first statement in (4)" follows from (7.7) combined
with (7.6). (If ¢ > 1, then R¢*#~D > 48R“ and therefore £ € R\ o< o <48RO g (RN
k;;_’y +,—1) without any additional condition for £.) Applying the same arguments as in part
(4), one obtains the second statement in (4)’.

(5) Assume |k — &y | > (8S0)78, Ju(mi, k) —v(0, k)| < 8 ™"), s <5 <s4+q—1,

t1=1,2 and my # my. Assume first that s < s < s+ ¢ — 1. To prove the statement in this
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case we again repeat the arguments from the proof of part (4) in Lemma 7.2. Note that
in this case, (8" ")1/2 < (8¢=1)7/3, So, the only possibility is [m; — my| > 12R). This
proves the statement for s’ > 5. Consider now the case s’ = s. If we have case (a) for both
my, my, then 213(85™")1/16 > | (my — m;)w|. Due to (7.6), this implies |my — m;| > 48R©.
Similarly, if we have case (b) for both m;, my, then |my — m;| > 48R“. Assume now, for
instance, that we have case (a) for m; and case (b) for my. Then, |mjo| < 2'2(85™")!1%/16,
|2k + mow| < 212(8(%&71))15/16. Assume also that |my —m| < 12R®. Then my = m; + ny, as
before. But this implies

|2+ myw| = |2k + miw + now| > 20k — k| — ol
- 2(8((;_1))7/8 _ 212(8((;—1))15/16 > (8((;—1))7/8.

This contradiction implies |my — m;| > 12RY, as claimed. O

Remark 9.2. — In this section and later in this work, when we refer to the cases (a)
and (b), we mean cases (a) and (b) of Lemma 9.1.

In this section we use the same notation as in Section 8. We always assume that
k€ R“(w, ny). In particular,

1/6

9.4) |k — k| <20 (ng) = 64(80_1))
Definition 9.3. — For ¢ > 0, let R0 (w, ny) be the set of
kER\ U (kr;/,s+q71’k;/,s+q71)’ 0 < |k_kn0| S 20(”0)-
0<|m'| <12RCHD mtng

Forl<r<s—1,FKeR"Nw,n), let A,(;)(O) be the sets from Proposition 7.19 (see also (7.10)
Jor the definitions). For O < |K — k,y| < (85~")/*, let AV (0) be the setfrom Proposition 8.11.
Let g > 2. Assume that the sets A,(; 1(0) are already defined for all s < 5’ < s+ q— 1, provided

< (8(%;7]))3/4 _4 Z (86,5))15/16

s—1<t<s'—1

(9.5) 0< |k =k,

and ¥ € R (w, ny). Assume also that the sets A,(j/) (0) are already defined for all 1 <5 < s+ q—
1, provided

9.6 (B 4 D @) < =k

s—l<ti<y

< 20 (np)

and ¥ € R (w, ny). Assume the same Jor —ng n the role of ny. Assume also that A,(jj)(()) -
A0 ifs <" <s+qg—1,and ASV(©0) C AP O) ifs<d < <s+g—1.
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(A) Assume that for K = k, we have (9.5) with s = s+ q and k¥ € R“*17V(w, ny). Assume
also that k & SZ7, so that |k + mw| # |k, | > 0, provided ng ¢ {2m, —2m}.

(1) Let m be such that |v(m, k) — v(0, k)| < 3857772 /4, |m| < 12R“HD . Assume also that
v(m, k) > v(0,k,) if v(0,k) > v(0, k,) (resp., assume that v(m, k) < v(0,k,) f v(0,k) <
v(0, &,)). Then we say that m € MY (resp, me MTELT). Combining (9.5) with (1),
(3) from Lemma 9.1 and with the fact that |k + mw| # |k, | > 0, unless ny ¢ {2m, —2m}, one
concludes that A,ﬁ::f;l’l)(O) is well-defined. We set A,(:'+q_l)(m) =m+ A,(Cf,z;l’l)(O).

(2) Gwen s <5 <s+ q— 2, assume that for any s < s" < s+ q — 1, the sets M,(;::;_l,
Agj:iq_l (m") are already defined. Let m be such that |v(m, k) — v(0, k)| < (387" /4) —

(=1 ‘ )
Zs’<s”§.§+(]—l 87V, Im| < 12RC*9 Assume also that m ¢ U5’<X”Sx+q—1 Um”e./\/l/(f‘”'*)] AL (.

s+q—

Then we say that m € M,Ei:;ﬁl if vim, k) > v(0,k,), v(0,k) > v(0,k,), respectively,
me MU ifu(m, k) < v(0, k), v(0, £) < v(0, k). Weset AL (m) = m+ AL (0). As
in (1) above, A,(fi’,}lgu(()) is well-defined.

(3) Given §' < s, assume that for any s' < 5" < s+ q — 1, the sets M;‘fgq_l, A,E‘fllq_l (m")
are already defined. Let m be such that [v(m, k) — v(0, B < (385" /4) = ooy i 85 .
Im| < 12RY*. Assume also that m & J,_oe,y, U, A,(fﬁ) (m"). Then we say that
m € ./\/l,(j;)Jrq_l and we set A" (m) = m + A,Ei)mw (0).

(4) For s < < s+ q— 1, we enumerate the points of M

"
€My ity

(%)

—+ . ./
fostg—1 A5 T, ] eJO). Set

_ {mjr +mny  fv(0,k) >v(0,£k,), sgn(k + mj«+a)) = —sgn(nyw),

I mjr —ny fv(0,k) >v(0,k,), sgn(k + mjra)) = sgn(nyw),
9.7 N m +no i v(0,k) <v(0, k), sgn(k 4 m; @) = — sgn(nyw),
m- =
J m; — ng yv(0, k) <v(0, k), sgn(k + m]_a)) = sgn(nyw),

O (=) — A () + (€ VI PO «,-)
A ("?' ) = (”?;‘ )’ Mipgr =M UM

J

(B) Let k be as in (9.6) with ' = 5 + g — 1. Then we define M)\, AL (") just as
in (7.10).

Remark 9.4. — (1) In the last definition and for the rest of this work, we do not use

(s+¢—1,1)
Ak

the notation (m) for any m except m = 0. This simplifies the statements in what

: s+g—1 Do .
follows. For m = 0, we use the notation A,(:Jrq P (m), which includes both possibilities. We
(',3)

k,s+q—1>
ambiguity since in the proofs, we always specify the cases the notation applies to.

use also the notation M which includes all possibilities. None of that will produce
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(2) If < s — 1, then B2R®) ¢ AY(0) € B(3R™). This property holds due
to (7.10). For r = s, we have

B(2R?”) U (n, + B(2R")) € A{""(0) € B(3R®) U (ny + B(3R?))
if sgn(k) = — sgn(nyw),
9.8) B(2R") U (—ny + B(2R")) € A{"Y(0) € B(38R™) U (—ny + B(3R"))
if sgn(k) = sgn(nyw),
B(2R") c A{”(0) C B(3R™) if part (B) in Definition 9.3 applies.

For r = s, the first two relations in (9.8), addressing the case |k — &, | < (8“7")%¥*
are due to part (5) of Lemma 8.9. The third one, addressing the case [k—k,,| > (§“~D)7/%,
is due to part (c) of Remark 7.5. For r > s, we will establish (9.8) inductively in the
corresponding domains of k. Note that (9.8) implies in particular A”(0) c A" (0),
AY(0) A,(:/)(O) forany s <r<7.

(3) M OME =0 MY M =0, M MY =0
v(0, k) > v(0, k), 51 < 5. Respectively, M7 AMPD =0, M M2 =
g, MEY N M =000, 8) < v(0, k), 51 < 5.

1) 0e MY 5 v(0, k) > v(0, k,); 0 € METE T i (0, k) < v(0, k). For
notational convenience, we assume that 0 € J¢+7=1,

(5) Let s < ', v(m, k) > v(0, k), v(0, k) > v(0, k,,), m € ./\/l,(f‘f;’:q)_l, or v(m, k) <
v(0, k), v(0, £) < (0, k), me M{;;)_ orlets <s,me M), . Then,

9.9) (3874 — Y &

S +1<s”<s+q¢—1

<o by —v(0, b < (385 V) = Y s,

s’<s‘”§s+q—1

(6) For any |n| < 5R“™ such that n ¢ U<, U
[v(n, k) — v(0, k)| = (80)*.

A
mem(f:d  Ap (m), we have

Remark 9.5. — In Lemma 9.1 and Definition 9.3 we assume that £ belongs to
the complement of U0<|m/|512R<f+q*1>,m’ Lo (ky ot —10 /fmﬁ,j n q_l) instead of the complement of
— + . .
U0<W‘ <19RCHD oty (ke b1 by +q—l) because of the further development in Section 10.
The latter condition is needed only in Proposition 9.16.

Lemma 9.6. — Assume that (9.8) holds for all r > s.
(1) me A (m) for any §' and any m € M,Efxﬁrqf].
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. . _ (s1) (s2)
(2) Letk be as in (915) withs' = s+ q. Then M’ ﬂ.&ik g1 = @jl?)r any 1 <51 <
< ML OMEED =0 foramy 1 <51 <5 < s, MR O MEED =0 for any

s <51 < So.

Proof. — (1). The statement follows from (9.8) and the definition (9.7).

(2) The statement follows from the condition m ¢ US,Q,,Sj I Um,,e M » A /(;”) (m")
in Definition 9.3 and part (1) of the current lemma. [
Lemma 9.7. — Assume that (9.8) holds for all r > s.
(1) Assume that for some my, we have
9.10) [v(m, k) —v(0. k)] < (385" /4)— > 8"
s/ <" <s+q—1
Let my € ./\/l,(f‘f;)Jrqfl Then, either m; € A( V(my)) N ./\/l,(;s)(l) .
36RO s = s and A\ (my) is defined as in (A)
(9.11) my — mg| > of Definition 9.3,
12RY)  otherwise.
(1) For any s" and any my, my, either A/c3+q (my) = ,”Jrq L (myg), or dlSt(Ak g L (my),
Ap) i (my)) > 5RY).
(2) Assume that for some 1 <51 < s < s+ q— 1, my, my, we have
9.12) oem k) — v (0, B < (3857 /) = Y 8TV i=12
si<s"<s+q—1
Then,
(9.13) V(1 — ma, k+ myw) — v(0, k+ mw)| < 385" /4 — Z 50,

s1<s’<s9—1

(3) Assume that for any s <s' < s+ q—1, the ﬁ)llowz'ng condition holds:

(&) Let k € R\ U c1or=0 prong 12 Ky s )y € M,ﬁ Dos <8 =1,
Imy| < 12R©). Then, cither A (my) € AL (0) or AV (my) N AL (0) =

Then, the following statement holds.

Assume that for some s < 51 < s+ q— 1, |mj| < 5RET we have

R O G ST B D

s1<s"<s+q—1



366 DAVID DAMANIK, MICHAEL GOLDSTEIN
7

—1)\ 3/4 15/16
(9.15) 0<lk—hl< (™) = S (")

s—1<t<s+q—1

then assume also that v(my, k) > v(0,k,) if v(0,k) > v(0, k,,), and respectively, v(m,, k) <
v(0, £,,) fv(0, k) <v(0, k). Then,

either () my € A,(:Q)(mg)for some sy <9 <s4+q—1,my € M,Efiiq_l,

or (B) my € M,Efilq_l and A\ (my) O A (my) = B for any my € M](x)_l my # my with
51 <8 <s—1.

Proof. — (1) Assume s > s. Consider the case when (9.15) holds, so that part (A)
in Definition 9.3 applies. Assume for instance v(0, k) > v(0, £,,). Due to Definition 9.3,
one can assume that AL (my) = my + ALY (0), with [k + mew| > [ngw! /2, [v(my, k) —
v(0,k)|) < 388/_1)/4. Due to part (4) of Lemma 9.1, either |m, — my| > C(s5)R"?, or
m; — mo € {0, ng, —ng}, where C(s") = 36 if ¥ = 5 and C(s') = 12 otherwise. Assume
my — my € {0, ng, —ng}. If m; = my, then we are done. Assume m; — my € {ng, —ny}. Note
that due to part (1) in Lemma 9.1, one has ||k 4 mio| — |k, || < 2'2(8%")1>/16 4 3|k —
k| < (83,71))1/ 2. Consider the case sgn(k + myw) = — sgn(nyw). Note that in this case,
|k 4+ mow — now| > |nyw|. This implies m; # my — no, that is, m; = my + ny. Due to (9.7),
(9.8), my +nyw € A (mp) "M P, The proof in case when (9.15) holds and sgn(k +
mow) = sgn(nyw) 1is similar. This finishes the case when part (A) applies and s' > s. The
verification for the rest of the cases follows straight from parts (4), (5) of Lemma 9.1.

(1)" This part follows from part (1) of the current lemma combined with (9.8)
and (9.7).

(2) The proof goes word for word as the proof of (2) in Lemma 7.6.

(3) With part (1) of the current lemma in mind, the proof goes word for word as
the proof of (3) in Lemma 7.6. O

Lemma 9.8. — Let 0 < |k — k, | < (8 ")1/16,

(1) If [o(m, k) —v(0, k)| < 8 with 8 > (8)'/*2, then |v(T(m), k) —v(0, k)| < 48/3.

Assume also that (9.8) holds for all s <r <s+¢q— 1.

(2) Lets' <5, m € ./\/l,(cf;qfl)j =1, 2. Then, either T(m;) = my or dist(T(A,(;)(ml)),
A () > 6RY). Lets < &, mye M), 1 j=1,2. Then, either T(A (m)) N AL (my) #
@ or dist(T(AL (m)), Ay (ma)) > SR In the former case, (A (m) N M), ) =
AP ) DM

Proof. — (1) The proof of this part is completely similar to the proof of part (1) of
Lemma 8.6.

(2) It follows from (1) of the current lemma that [v(T(m;), k) — v(0, k)|) < 85",
Applying part (1) of Lemma 9.7 to T(m;) and my, one obtains the statement. O
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Definition 9.9. — Assume 0 < |k — k)| < (BSH({_I))V 19, Using the notation_from Defini-
tion 9.3, assume that for any s < s’ < s+ q — 1, condition (&) holds. Let £ be the collection
of all sets A(m) := A (m) UT(A (m), 1 <5’ <s+g— 1, me M), . Wesay that
A(my) = A(my) if sy = 59, and A(my) N A(my) # D. 1t follows from part (3) of Lemma 9.7 and
part (2) of Lemma 9.8 that this is indeed an equivalence relation on £'. Let I be the set of equiv-
alence classes. 1t follows from part (2) of Lemma 9.8 that each class has at most two elements in 1.
For each m € N, set A(m) = UA("”)GmA(ml). Set £={A(m):meM}. Let A(m) € £,
A () UT(AL (mh)) € m. Set t(A(m)) = 5'. This defines an N-valued function on €. Set

also pmy = UA,?/)(m)em AV () N MY

ks(D—1°

In the next lemma we use Definition 7.12 from Section 7.

Lemma 9.10. — Using the notation _from Definition 9.9, assume i addition that condition
(9.8) holds. Then,

(1) For any A(wy) € £, 5= 1,2, such that {(A(m,)) = {(A(my)), m; # my, we have
dist(A(m;), A(my)) > RUAMmD),

(2) For any m,

(9.16) UJ ((m+B@ROA™))) € Am) c | ((m+ B(BREA™7))).

mepm MmEPm

(3) Ifmy #m,, then A(m,) # A(my).
(4) The pawr (£, t) 1s a proper subtraction system.
(5) For any m, A(m) ="T(A(m)).

Progf: — Note first of all that part (2) is just condition (9.8), which we assume in
this lemma. The proof of parts (1), (3), (4), (5) goes word for word as the proof of the
parts (1), (3), (4), (5) of Lemma 8.8. The only detail that has to be mentioned regarding
(3) 1s that T(nyp) =0 and T(B(R)) = ny — B(R) =ny + B(R) for any R. O

Using the notation from Definition 9.9, assume in addition that condition (9.8)
holds. For £ =1,2, ..., set

%(ﬂo, s+ q) = B(SR(H—([)) U (nO + B(gR(H—q)))’

9-17) B(no, s+ ¢, €) :=B(ng, s+ ¢, £ — 1)\( U A(m)).

meN:Am)YDB (ng,s+¢,£—1)

Lemma 9.11. — Using the notation_from the definition (9.17), the following statements hold.
(1) There exists £y < 2°T such that B (ng, s + q, £) = B(ng, s+ ¢, £+ 1) for any £ > €.
(2) Forany A € £, either A C*B(ny, s+ ¢, £o) or A C(Z" \ B (ny, s + ¢, £p)).
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(3) Set AUT(0) = B (no, s+ ¢, o). Then for any A (m), either A (m) N AT (0) =
@ or A (m) C A,(:H)(O).
4) T(B(no,s + ¢,0)) = B(ny,s + ¢,¢) for any £. In particula, T(A,(:Jrq)(O)) =
(s+9)
A, (0).
(5) Forany £ > 1,

(9.18) {n €B(ny,s+q,€£—1): dist(n, 7"\ B(ny,s, L — 1)) > ?)R(“””’_l)}
C %(”0,54‘(]’ e) C %(n()as—'_qve - 1)

Progf: — The proof of parts (1)—(5) goes word for word as the corresponding proof
of parts (1)—(5) of Lemma 8.9. O

Lemma 9.12. — Assume k € R (w, ny), ¢ > 1. Assume also that 0 < |k — k,| <
(s+9=Dy1/16
(8T, |
(1) Definition 9.3 and definition (9.17) inductively define the sets AL (0) fors' =s, ..., s+q,
50 that condition (Sy) holds for any s < s’ < s+ q— 1 and condition (9.8) holds.
(2) A,(f”)(ml) N A,(f?)(mz) =0 for anp m; € ./\/l,(:iqu,l, 1 = 1,2, unless 51 = 5o,
ALY m) = A (my).

Progf. — (1) For ¢ = 1, the condition (&;) holds due to part (3) in Lemma 8.9.
Therefore, part (3) of Lemma 9.7 applies with ¢ = 1. Furthermore, Definition 9.9 applies
and Lemma 9.10 applies. This defines A/(CSH)(O) via (9.17), and Lemma 9.11 applies.
Due to part (3) in Lemma 9.11, the condition (&) holds. These arguments define
A/(;Jrql)(O), ¢ =1,...,¢q. So, part (1) of the current lemma holds.

(2) Since condition (&) holds for s > s, part (2) follows from part (3) of
Lemma 9.7. ([l

Definition 9.13. — Using the notation fiom Definition 9.3, assume that (8- +)1/16 < |k —
Fo | < (3(()5+q/_1))1/16forsome ¢ < q. Define A,(:/)(O)fors <s <s+q viaLemma 9.11.If ¢ < ¢,
define A,(f/)(m) Jors+q¢d <5 <s+qg—1,and Af)(O) Jors+ ¢ < < s+ q, inductively as in
(7.10), that is, by setting

AP(0) = B(ng)\( U U AV (m,)>,
(9.19) r==le M, AL ) FBGRW))
Al({.r’) (m) =m+ Al(fi)ma) (0).

Lemma 9.14. — Assume k € R (w, ny), ¢ > 1. Assume also that 0 < |k — k,| <
20 (ﬂo)
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(1) Definition 9.3, Lemma 9.11 and Definition 9.13 inductively define the sets A\ (0) for
= , s+ q so that condition (Sy) holds for any s <s' <s+q— 1. If |k —k,| < (887))1/16,
< 8) holds, If 1k — k| = (8)16 then

(9.20) B(2R") c A”(0) C B(3R").

(2) A(”)(m) N A(”)(mg) =0 for ap m; € ./\/l,(;’sﬂ b 1= 1,2, unless 51 = 5o,
ALY m) = A (my).

Progf. — To prove both statements, we only need to verify condition (Sy). Due
to Lemma 9.12, this condition holds if [£ — k,| < (85")"/'°. Assume (85*")"/1° <
|k — no| < (80“1 VY16 for some ¢1 < ¢q. The verification goes by induction, starting
with s = 5 4 ¢;. Assume that condition (&) holds for any s 4 ¢; <s' < ¢ — 1. Then,
part (3) of Lemma 9.7 applies. Since A,(fﬂ) (0) 1s defined via (9.19), the verification of
condition (&,,,) goes the same way as in the proof of part (4) of Lemma 7.6. ]

Remark 9.15. — In Lemma 9.14, we assume that

kER\ U (k,; shg— 1»/5;: Js+q— 1)

0<|m/|<12RGHI=D) /Ly

inStead Of/f € R\ UO<\m/\§IQR('HFQ),m’;éno (km_/,ﬁ-q—l’ k+ V+C] 1)
Proposition 9.16. —
@D Set
L1 I\ 3/4 31/32
9.21) Z(s, q) := {k K = k| < (8570) - > (6) / }

s—1<t<s+q

Assume that k € R“*T(w, ng) N L(s, q). Let &g, €, be as in Definition 3.1. Let
€ €(—¢,,¢).

(1) If |k| > k|, then for any K € L(s, q) with |K| > |ky|, K — k| < 87",
one has HAE_H])(O),S,/;’ c OPR(A»,A.H)(O’ o, A/(;H)(O); 8o, ‘L'(O)), O — -L—(O)(k/) =
kg [1IET = 1| I 1] < Vo |, then for any K € L(s, q) with K| < |k,
K —k < 85", one has H , i+ e € OPRE (g, 0, A0 8, 7).

k 1Cy

(2) Let E(”q’i)(A/(fﬂ)(O); e, k) be the functions defined in Proposition 5.9 with

H in the role of Hy .. Assume that k,, > 0. Then, with KO =

/512), one has

A(f+f/) (0),8.
3/4 k

min(e, ', £y,

0.9 BEHD (0, ALV (0); 6,k +0) > (K)%0, 60,
(9.22)
B ECH (0, ATV (0); 6,k +6) < —(KV)'0, 6> 0,
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(9.23) ECH9 (0, AV (0); &, £,y +0)
=B (g, ATV (0); 8,k — ), 0 >0,
(9.24) |9 ECHE(0, A (0); &,k +0)] < 2,
(9.25) }E(Hfl,i) (0’ Afjﬂ)(O); e, /ﬂ) — EGted) (O, A/(;ﬂ—l)(o); e, /51)|

5 5
<lel(8™")".
10 < [k — k| < (85 )1/16 /9,

E(‘H_q’i) (0, Al(:+‘]) (0)’ g, kno + 9) = E(H-(I»:l:) (no, A/(:-H]) (O)a £, kﬂo - 0)9
(9.26)
0<6< (85”971))1/16/2-

() Assume that k € R (w, ny) and

9.27) )+ > B < k= k| < 20 (o).

s—1<t<s+q—1

Then, HA,(;+(1.1>(0)’8,/€ e N6+0(0, A/(Cs+q,1)(0); 80). Furthermore,

E¢+eH) (0, AE"“’”(O); e, k) k>ky,

E(H‘C{) 0’ A(H’(Isl) 0 ;8,k —
(0. A7z . ECH0, ATV (0); 6,0)  ifk <y

Proof: — The proof of (I) is completely similar to the proof of Proposition 8.11 and
we omit it. The proof of (II) is completely similar to the proof of Proposition 7.19 and we
omit it as well. 0J

We also need the following version of Proposition 8.13.

Proposition 9.17. — Let € € (—¢,, €,).
(1) The limits

(9.28) ECH (0, ALY (0): 6. k,) = lim ECH9(0, AL (0); &, b)

k] —>k"0
exist. Furthermore,

(9.29) spec H , ¢+

PRORY

0

N {E : rr£n|E — Elte-1H) (0’ A;(Ci:q_l)(O); €, k,m)‘ < 8(8(()"+q_1))1/4}

= {ECD(0, ALT(0); 6,k ), B0, AT (0); 6, k)
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s+q,+ (s+9) . s+q—1,+ (s+9) .
(9.30) [ECH (0, AT (0); e, k) — ECH1 (0, AL (0): . )|

< lel8y ™"

b

ECHD(0, AL (0)(0): €. k) = B0, AL (0): £, ).

()" Let ming |E — B0, A1 0): 6, k,)| < 28y The matrix (E —

H ) 15 wwertible. Moreover,

At O\{0.m0). ks

(9.31) ‘ [(E - HAZ;:;q)(0)\{0,n()},£,/f,,0 )71](’”’ n) |

3|e|'/? exp(—%K0|m —n|
< + 8k log 8y (min(u 0 (m), uCHO @) )  ifm#£ n,
2 exp(8icolog 8, (WO (m)'°)  if m=n,

PO (m) = distm, Z°\ [ALT (0) \ {0, mo} ).
(2) BE=ECH2(0, AT (0); &, k) obeys the following equation,

(9.32) E— (0, k,) — Q“*(0, A,(;:Q) (0); &, E)

T [G(0, mp, ALV (0); 6, E)| =0,

where
(™) (s+q) .
Q i (O’ Ak”o ! (O), €, E)
= Z h(mai m' e, kno) [(E - HAE;;q)(O)\{O,rzo},s,/cnO)_l] (m/’ ”/)
wl €A O\ (0.m0)
x h(n',my; &, k),
(9.33)

GU2(0, m, AT (0); ¢, E)

= h(moi, mBF, &, k,l[]) + Z h(m(:)t, ml; g€, kno)

wl €A O\ (0.m0)
_ —1 o7 / F.
X [(E HA(k;:q)(0)\{o,no},s,/c,,0) ](m 1 )h(” My 5 €, k,m).

Proof. — The proof of (1) goes just like the proof of (1) in Proposition 8.13. Let
us verify (1). Let, for instance, &, > 0. Due to part (I) of Proposition 9.16, one has
HA;;w(ow, € OPR“**(0, ny, Af;jj”(O); 80, 7©) for any 0 < ¥ — k,, < 807" Due to

part (2) of Proposition 5.9,
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(9.34) {[(E - HAE;;;‘”(0)\{0,710},5,/a)71](m’ ”)‘

< . :
= DG AT OMO0D. Tk el A O\ (0,100,927 1)

see (3.39). It follows from Lemma 2.7 that

9.35)

S 3 m,n
D(-;Ai;:”(m\{o,no}),T,xo,|s|;A,§;:"’<0>\{0,no},m( 1)

3|e|'/? exp(—%l{o|m —n|
< + 8icglog 8y ! (min(u 0 (m), w0 (m))P) if m#
2 exp(8iolog 8, (0 (m))' ) if m=n.

Taking £ — £,, in (9.34), one obtains (9.31). This verifies (1)". The verification of (2)
goes just like the one for (2) in Proposition 8.13. 0J

10. Matrices with a graded system of ordered pairs of resonances
associated with 1-dimensional quasi-periodic Schrodinger equations

Defimition 10.1. — Using the notation from Proposition 9.16, let ¢ > 2, n) € Z7,
12RCH=D < |ny | < 12RCHD be such that

(ki — 20 (1), ki + 20 (1)) N (kyy — 20 (n0), kyy + 0 (1)) # B,
(/fnl — 20 (”I)a knl + 20 (nl))

g R\ U (kr;’,qufl’ krj;’,x+qfl)'

RO <|nd | <12RC+D o' ¢{ng, 1}

(10.1)

Set s =5, sV =5+ ¢, 6V = (5O, sD). Let RE D (w, ny) be the non-empty set i the first
line of (10.1).

Lemma 10.2., — Letk € R(s(i)’x(l))(a), ni).
(1) The subsets M" A/(f)(m), s < sW — 1 fiom Definition 9.3 are well-defined. Fur-

ksh—15

thermore, H e N m, AV (m), 8") , s <s@ —1.1If

A (m) ek

(10.2) lhy =kl < (8577 =4 3 (8) =20,

5([))_15555(1)_2

then H € OPR(“/)(me, m; A/(:)(mf)v 3((]0), 1), 7O = 8(()0)|k — k| for any s < 5’ <
1 _ +
s 1 and any m;".

S S
(2) |/f— knnl - (8(() 1))1/15} 'L'(O) - (8(() 1))1/14‘

J
AV >(mj.+),s,k
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(3) Assume (10.2) holds. Then conditions (1)—(iv) and (vi) from Definition 5.8 hold. Fur-
thermore, n) € ./\/l/(;i]()])ilf, that is, n, € {mjg, m;, } for some jo € J¢"=V. Conditions (6.1)<6.3) fiom
Definition 6.1 hold. Finally, assume that |k — k| > (8(()5(1)_1))7/8. Let A,({X“))(O) be as in Defini-
tion 9.15. Then, HA € OPR(X(I))(O, 1o, A,(CH—q) (0), 8(()0), ), just as in Proposition 9.16.

1
D 0),6.

Progf: — (1) Clearly, £ € R\ U0<|m/|512R<f“)*1>, wi2m©® By s k;,‘;_/’x(l),l)' So, part
Proposition 9.16 applies to ¢ — 1 in the role of ¢. This implies all statements in (1).

(2) Using (7.6) and (7.7), one obtains |k — ky| > [k — k| — 268" D)1/ >
U 2O = 5Ok — > (8871 since 0 < |y — nol < 13RE™); see (7.6).

(3) Assume (10.2) holds. Conditions (1)—(iv) and (vi) from Definition 5.8 hold due
to Lemma 9.12 and Remarks 9.4 and 9.15. One has |k — &, | < |k, — k| + |k =k, | <
GOV 1k 4 ool — Tkl < 1kl = lhyll 4 118 = 1y Il < 65" ~")¥". Hence,
(g, k) — v(0, )] < 268" D)2k, + 11) < 388" ~?) /4. Similarly, [v(r; + no, k) —
v(0, B < 388" 7Y /4 if it is case (a) for m; and [v(n — no, £) — v(0, B)| < 3(6¢"~?) /4 if
itis case (b). This implies m; € M) Letme MU, AL (m) = m+ AL (0).
Assume for instance that it is case (a). Recall that |m| < 12R“*? and in particular

|mw| > (8(()5“)_1))1/16; see (7.6). Using (9.22) and (9.25) with ¢ — 1 in the role of ¢, one
obtains

(10.3) [EC" 1 (m, ACT D (m); 6, k) — ECU1D (0, AL (0); 6, B)|
= B0, AL O3 6k mo)
— B0 (0, AL (0); 6, 4)|
> [BC7 100, AL (0 6, k + moo)
— B0, AL (0); 6, 8)|
— [EC (0, AL (0) 6, k) — ECUE (0, ALTTR(0): 64 8) |
> 8" (14 meo] — 1H[)* = (85" ")’
=5 (jmal)” = (37 ") = (67 ")

(D _
> 860D,

This implies (6.1). The verification in case (b) is similar. The verification of (6.2), (6.3)
is similar. Finally, assume that |k — £, | > (8(()5(1)_1))7/ 8. Then an estimation like (10.3)
R OPR®"™(0, ny, AUY?(0), 8", ), just as in
Proposition 9.16. O

works for m = n;. This implies H
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Set
(10.4) Ty(n)=n —n, nelZ'

Lemma 10.3. — Assume |k — k,,| < (8(()‘“)_1))3/“'.

(1) If [o(m, B) — v(0, B)| < 8 with 8 > (85" ~V)V2 /4, then [v(T' (m), k) — v(0, )| <
48/3.

(2) Let m; € Mfiin_l, J= 12 Then ather Ti(AY(m)) N A (my) # O or
dist(T1 (A (m))), A (my)) > 5R). In the former case, T1(AY(m)) N M,ﬁfﬁn_l) =
A (m) N MY

kysD—1°

=)

Progf- — (1) The proof of this part is completely similar to the proof of part (1) of
Lemma 8.6.

(2) It follows from (1) of the current lemma that |v(T) (my), k) — v(0, k)|) < 85",
Applying part (1) of Lemma 9.7 to T (m;) and my, one obtains the statement. ]

Defination 10.4. — Assume that

0<lk—hl< (") = 32 ()"
(10.5) s—1<t<s4g—1

s 1)\ 3/4
k= k< (85 )",

Let £ be the collection of all sets A(m) := A (m) UT (A (m)), 1 <5 <s+qg—1,me
M,S;L,I_l. We say that A(m)) =~ A(mg) if 51 = 5o and A(my) N A(mg) # B. 1t follows from
part (3) of Lemma 9.7 and part (2) of Lemma 10.3 that this is indeed an equivalence relation on £'.
Let M be the set of equivalence classes. 1t follows from this definition and part (2) of Lemma 10.3
that each class has at most two elements in it. For each m € M, set A(m) = | Almp)em A(my).
Set £ ={A(m):meM}. Let A(m) € £, A (m) € m. Set t(A(m)) = 5. This defines an
N-valued function on £. Set also pem = A m)yn MY

AY) (m)em fysO—1°

Lemma 10.5. — (1) For any A(w)) € £, ) = 1,2, such that t(A(m,)) = ((A(my)),
m; # My, we have dist(A (m,), A(my)) > RUAMmD),
(2) For any m, we have

(10.6) U (m + B(QR(z(A(m))))) C A(m) C U (m + B(gR(z‘(A(m))))).

meEpm meEpm

(3) The pair (£, 1) is a proper subtraction system.
(4) For any m, we have A(m) =T (A (m)).
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Proof. — The proof is completely similar to the proof of Lemma 9.10. U

Set
B(n) :=B(BR) U (m + B(3R"™)),

%muaz%mhz—n\< U zumﬂ,

meN:A M) (B (n),£—1)

Lemma 10.6. — (1) There exists £y < 2" such that B(ny, L) =B(n, L — 1) for any
> 4.
- (2) For any A € £, we have either A C B (ny, £y) or A C(Z" \ B(ny, £y)).
(3) Set A,(:“)>(0) = B(ny, Ly). Then, for any A (m), we have either AY(m) N
A ) =0 or A (m) € AL (0).
4) Ty (B, ) = By, £) for any £. In particular; T (AL (0)) = A" (0).
(5) Forany £ > 1, we have

(10.8) [neB(u,t—1):dist(n,Z" \ B(n,, £ — 1)) > 3RV}
CBn, L) C By, L—1).

Proof. — The proof of parts (1)—(5) goes word for word as the proof of parts (1)—
(5) of Lemma 8.9. [

Proposition 10.7. — (1) Let k be as in (10.5). Set m"V := {0, ny, ny, n; — no},
s = (O, O) I 1K > Lk, then Hyo, € GSREm®, 0, m, AL (0); 8, t1),
k »Es
t0 = @, 70), 29 =% = |k, Ikl — 1k, I 1kl < |k, |, then H .
M X
GSR® (m® 0y, 0, Ay (0); 80, t).
(D) Let k € R\ [Ugo<pwi<ioresn.  wetmm) Fnsig1s Fovorg1) U gy Ky Y. One can
)
define Af{‘ )(0) s0 that HAEm)(O)’M
being either the principal point or one of the two principal points.
(IX1) Let k be as in part (11). There exists a unique real-analytic function E(O, AZ‘(I))(O); &, k)
of e € (—&,_1,6,_1) such that B0, AY""(0): &, ) is a simple eigenvalue of H

E(0, A,(;“))(O); &, k) = v(0, k). Moreover,

Doy €

belongs to one of the classes introduced in Sections 3, 5, 6 with 0

1 and
INSRIORY:

(10.9) E(0, ALY (0): £, £) = E(0, A%, (0); &, — k),
(10.10) (KO) k= k)? = 3lel(85") =101l Y (8)")

5’25563/) <min(k—kp, k1)
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<E(0, AL (0): 6, k) —E(0, AL (0); 8, 1)

2k SO_1)n1/8 FOINNG
<=k Y0 2el(8 ")+ 20l (8)

ki <an <k

O<hk<ky—1<k=<y.

where k© = min(sg/ ! w0/ d12) and y s the same as in the Definition (7.2).

Progf- — The proof of (I) is completely similar to the proof of Proposition 8.11 and
we omit it. The proof of (II) is completely similar to the proof of Proposition 7.19 and

we omit it as well. The existence of E(O, A,(f(l))(O); g, k), its analyticity and uniqueness
follows from part (II). The proof of (10.10) (III) is a simple combination of the (8.14)
from Proposition 8.11 and (7.33) from Proposition 7.19. 0J

Defination 10.8. — Set

T, = (kn _ (8(()5-))3/4, k4 (8(()3-))3/4) y(IQR(,y—I) <|n < IQR(.Y)’

(10.11)
R ={neZ’\{0}:keZ},  G={k:|R(k)|<o0}.

Let k € G be such that |R(k)| > 0. We enumerate the points of R(k) as n'(k), £ =0, ..., L(k),
1+ £(k) = |R(K)|, so that |n© (k)| < |n"“TV(k)|; see Lemma 10.9 below. Let s'° (k) be defined so
that 12RC7O=D < 5O (k) < 19RCV®) ¢ =0, ..., 0(k). Set

T,m)=m—n, mneZ’,
(10.12) m@ (k) = {0, 2" (b},
m@ k) =m“PEHUT,00 @ ®), €=1,....00k).

Lemma 10.9. — Assume my € R(k). Let 12R“ =D < |my| < 12RCV. Then,

(1) Imyeo] > )V, ] = (5)192,

(2) sgn(k) = —sgn(m w).

(3) If my € R(k), my # my, then |my| # |mo|. If |mi| < |myl, then, i fact, |my| >
R(JH-I)/Q.

Proof. — Part (1) follows from (7.6). Part (2) follows from (1), see (10.11). To prove
(3), one can assume that |my| > |m|. Since |2k + mw| < 2(857)%*, i=1,2 and |my| >
|my |, one has |myw —mow| < 4(8(()‘”))3/4. It follows from (7.6) that |m; — my| > RV, This
implies (3). O

Lemma 10.10. — Lt 70 € Z* \ {0}. Then, (1) 2 € Riko), (2) |n®] =
MaX,eR () |m|. In particular, ko € G, sCEO (£ o) = s(n?), where 19RO =D < [my| <

19R 6™
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Proof. — Statement (1) is obvious. Assume m € R(k,0), m # n”, |m| > [n”|. Then
|(m — 1| = ko — k| < ()**, where 12R¢™Y < |m| < 12R®. This contradicts
(7.6) since |m — n©| < 2|m| < 24RY. This proves the first statement in (2). The other
statements in (2) follow from this one. ]

In the next theorem we finalize the results on matrices associated with quasi-
periodic Schrodinger equations. We skip the proofs since they are completely similar to
those we have done before.

Theorem D. — (1) Let k € G\ $(Z \ {0}) be such that IR(k)| > 0. Let m©(k),

sOk), €(k) be as in Definition 10.8. Given q > 0, there exisls A,(f(uk))(k)ﬂ)(O) C 2V such that
(€O () 5O (D41 11 () I _ OB+ . ek)

H, g, € GSR (O (), ), ), AL (0): 80, 60 k),
tO%) = @V®), ... tO®), TO%) = |k, Ikl = |k, |1, m* (k) =0, m™ (k) = n“D (k) if
|kl > [kowl, m™ (k) =0, m* (k) = n'*® (k) Y1k < kol

(1) For each k € G and each s, there exists A,(;')(O) such that H A9 ©).e € NEH(0, A,(;‘)(O);
8) if R =B, Hyo,, € GSRE O 0m® )t k), m (), AL (0): 8y,

tCONk)) if R(k) # O and s = s (k) + q. Moreover, A/(f_l)(O) serves the role of the (s — 1)-
subset in the corresponding definition, see the definitions i Sections 3, 5, 6. Let —8(1)/ "< E <0 be
arbitrary. For each s =1,2, ..., the matrix (H — E) belongs to N9 (0, A((f) (0), 8¢), see
Proposition 7.21.

(IIl) Let k € G. There exists a umique real-analytic function E(0, A,(f)(O); e, k) of
e € (—&y/2,80/2) such that E(O, A/(;)(O);E,/f) is a simple egenvalue of HA,(;‘)(O),e,k and

E(O, A,(j) (0); &, k) =v(0, k). Moreover, the following conditions hold:

(€O (ky-+q)

AS )6,k

(10.13) |E(0, AP (0); &, k) — v(0, k)| < &',
(10.14) E(0, A} (0); &, k) = E(0, A%(0); &, —£),
(10.15) (KO (k= k)* = 3lel(8) =100 Y (8)

88 <min(k—ky )

<E(0, A (0); &, k) — E(0, A;(0); &, k)

Qk s(n)— 1/8 )\2
<—Gk=k)+ D 2el(&™") 7 +20el(8)

k1 <ky,<k,s(n)<s

0</f1</f, V—liklf%

where s(n) 1s defined via 12RC™®~D < |n| < 12RCW) O .= min(sé“, k0 /512) and y is the
same as i the Definition (7.2).
(IV) Let n'® € Z"\ {0} and s > s““O) | Assume, for instance, kyo > 0.
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(1) The limits

(10.16) EX(0, AL, (0); &, ko) = . J%ﬂE( AL (0); 8, k)

exist,

(10.17) 0 < E™(0, A,(jz()) (0); &, ko) — E7(0, A;‘?U) (0); &, k,0)
<2|¢| exp(—%|n(0)|).

Furthermore,

(10.18) spec H

A/(‘;)(O) (0),8,k,(0)
N{E: min[E — E*(0, A

k(on(o) g, knm))‘ <8(3(5 1))1/4}
{ ( 0. AV

(0);8,/@2(0)), ( A;(fzo) 0); &, kn(O))}

k(0
(10.19) [E(0. AL, (O & bo) = E5(0. AL O e )| < leldy ™",
E+(O A(S) (O)a g, kn(O)) Z Ei(o A(J) (O), &, kn(o))

k0 k(0

(2)  Provided ming|E — EE0,AY

oL Os e ko) < 2887V the  matrix
(E—H

AL ONOAOLe, kﬂ(o)) w5 wnvertible. Moreover,
n

(10.20) I[E— H%) (0)\{0’,!(0)}’8,/6"(0))*1](m, n)|
|e]'/? exp(—35k0lm — nl 4 8o log 85 (min(u ) (m), 119 (n)) ')

< ifm=#nand |m—n| > 2|n |,
2 exp(8iolog 8, (W (m))'°)  ifm=n,

w®(m) = dist(m, Z" \ A

k)

(0)). Finally, if

Ee (E7(0, A, (006 ko) +8,E7(0, AL (0); &, ko) —3),
6> 0, then
(10.21) [ - Hap) i) 100

exp(—%/{olm —al)  if|m—n| > 8max(|nV|,logs™"),
5! Jor any m, n.
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(3) E=E*(0, AY (0); ¢, ko) obeys the following equation

k.0)

(10.22) E—v(0, ko) —QW(0, AP (0);6,E) F|GY (0,27, AP (0);,E)| =0,

k(0 k,(0)

where

QY (0, A (0);e,E)

k)

— > h(0, m'; &, ko )[(E — Hyo o o) 10 )

7ol (s) (0)
m' 1 eAkn(O) (0)\{0,nV}

x h(n, 0; &, k),

(10.23) X s
GY(0,n?, A,Eﬂzo) (0); &, E)
= /L(O, n(O); e, /fﬂw)) + Z }l(O, m’; e, /f,l<o>)
m/,n/eAg‘)«)) (O\{0,7}
x [(E - HAY)(O) (O)\{O,n(O)},s,/zﬂ(o))_1] (m/’ n’)h(n’, n(O); e, k”(o))'
W) If

Ee (E(0, AY(0); &, 0) — &)/ /2, E(0, AY (0); &, 0) — 8),
0<8<e)?)2, then

10.24) (€= H,p, 0" Jonn)

exp(—3kolm —nl) i Im—n| > 8max(|n],logs~"),

— s Jor any m, n,
see Proposition 7.21.

11. Proof of the main theorems

Consider the Schrédinger operator
(11.1) [Hyl(x) := =" (x) + V(x)p(x), «x€ R!,

where V(x) 1s a quasi-periodic function,

(11.2) V= Y ewe™™, xeR

neZV\{0}

(11.3) w=(w,wy,...,0,)€R", v>2
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with
e(n) =c(—n), neZ'\{0},
(11.4)
|c(n)| < 8€Xp(—K0|n|), neZ’”\ {0},

where &, ko > 0. R
We denote by f (k) the Fourier transform of a function f(x),

(11.5) Tk = / ¢ (x)dx,
R

x, k € R. Let S(R) be the space of Schwartz functions f(x), x € R. Let g(k) be a measur-
able function that, for any a > 0, decays faster than |k|™ as |k| = oco. Let ¢ = g be its
inverse Fourier transform. Then ¥ belongs to the domain of H and the following identity
holds:

(11.6) Hy (k) = 2m) 229 (k) + Z c(—m) W (k + mw).
meZ\ {0}
In particular, this identity holds for any / € S(R). Set H;, = (h(m, n; k)) . nezv, where
h(n, m; k) = 27)(nw + £)?,  ifm=n,
(11.7)
h(n, m; k) = c(n —m), ifm+#n,

Clearly, for each &, the matrix H; defines a self-adjoint operator in £*(Z"). Due to (11.7),
one has for any m, n, £ € Z",

(11.8) Hyeo(m,n) = Hy(m+ €, n+ €).

Let £ > 0 be arbitrary. If £ > 3/4, pick an arbitrary y > | such that y — 1/4 <
<y —1/2.If0 <k < 3/4,set y = 1. For k < 0, we pick the same y as for |£|. Define
Hy = (h(m, 15 k)) . nezy similarly to (7.2) from Section 7, that 1s, set A = 256y and

v k) =2 + k), nel’,
(11.9) h(n,m; k) = v(n; k) ifm=n,
iz(n, m; k) =17 2m) 2e(n—m), ifm#n.

D~eﬁne also I:IQ/c = (iz(m, n; €, k) mnezy with 72(72, n; €, k) = 7[(71, n k), 72(72, m; €, k) =
e€h(n, m; k), it m = n.

Proof of Theorem C. — Using the notation from Theorem D, let £ € G \ $Z".
Note first of all that due to (7.5), the set & in Theorem C obeys & C G. This is be-
cause the intervals Z, in Definition 10.8 are smaller than the intervals J,; see (1.10),
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(7. 5) (7.6). By Theorem D, there exists &y = &y(ko, @) such that if €] < 2 and |¢| :=

A7le < gy, then for each s, there exists A()(O) such that H AV O) ek belongs to one of
the classes introduced in Sections 3, 5, 6 with 0 being either the principal point or one
of the two principal points. Moreover, AY~"(0) serves the role of the (s — 1)-subset

in the corresponding definition in Sections 3, 5, 6. Assume for instance H €

AV (0),e.k
GSRE k)51 MO k), mt k), m™(k), A/(:““”(k>+q)(0); 8o, t{O) (k) with s = s“® (k) + ¢,
¢g=1,...,m" (k) = 0; see the notation in Theorem D. Let E(0, A/(CJ)(O); €, k) be the eigen-
value from part (III) of Theorem D. Set E(O, A,(;) 0); k) = E(O, A,(Cx) (0); 1, k). Now we
invoke Theorem 6.11 from Section 6. Recall that due to part (5) of Theorem 6.11, one
has

(11.10) (0, AL (0); k) — E(0, AL (0); £) | < 4e(557") "
Therefore the limit
(11.11) E(k) = lim E(0, A} (0); £)

exists. Furthermore, using the notation of part (7) of Theorem 6.11, denote by
(p”)(A,(f) k) =@ P(, A,(;); k) the eigenvector corresponding to E(0, Af’)(O); k) and nor-
malized by ¢ (0, A,(;); k) = 1. Due to part (7) of Theorem 6.11, one has

|§0(+)(n, A/(Cs); k)| <le|'? Z exp(—%/coln— m|), n ¢ m® (),

(11.12) mem ) (k)
0 (m AR < 1+ Z 47" for any m € m“® (%),
O<i<s
AL13) [ (AL ) = o AL )] = 206l (571

It follows from (11.12) and (11.13) that for each n € Z", the limit
(11.14) @(n; k) = lim P (n, AY; k)

exists and obeys ¢(0; k) =1,

7
LIS eXp(——Koln — ml), n¢ m“ D k),
(11.15) e 8

|§0(m; /f)‘ <2 for any m € m“® (k).
It follows also from (11.12) and (11.13) that

(11.16) Hip(k) = E(Bp k).
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Note that H; = A(27)2H;. This implies
(11.17) H,p (k) = E(b)e(k).

with E(k) = A(QH)QE(k). This finishes the proof of part (1) of Theorem C.
(2) It follows from (10.14) and (10.15) in Theorem D that

(11.18) E(k) = E(—k),
(11.19) *OYk—r)*=10le] Y (8)

88 <min(k—ky k)

2k D\ 1/8
<E(H —Eh) < —(k—k)+2le] Y (65")",

k1 <ky<k

O<hky<hbky—1<k <y.

where s(n) is defined via 12R¢®=D < |5| < 12RO .= min(sg/A', k0 /512), and y is
the same as in the definition (7.2). Note that the quantity §(n) in (1.25) of Theorem C
obeys 8(n) > 2(8" V)18 It follows from the first inequality in (11.19) that

(Y (k = k)
5 .
Thus, (1.25) in Theorem C follows from (11.19). Finally, due to Lemma 7.4, one has

0@ (n, AV —k) = & (—n, AY; k). This implies ¢ (n; —k) = @(—n; k), as claimed. This
finishes the proof of part (2).

(3) We apply Theorem D. Let ¥ € Z" \ {0} and s > s“%©) Assume for instance
that ko > 0. Using (10.15), one has for 0 <6 < 8{",

(11.20) E(k) — E(k) >

(11.21) |E*(0, A;‘fo) (0); ko) —E(0, A

k()

(0); ko0 £0)|
< 2(Ikol +1)0 +21(58)’,
since the sum on the right-hand side of (10.15) is over the empty set. Due to (10.19),

(11.22) [E*(0, A

k,(0)

(0): ko) = EX(0, A7 (0): ko )| < 087"

Therefore the limit

(11.23) E* (ko) = lim EX(0, A}, (0); ko)
exists,
AL28)  [E*Gho) — E5(0, AL O )| < 268"
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Due to (10.15), one obtains also
(11.25) |E* (k,0) — E(ko £ 6)]

<2(k,, +1)0 + Z 28(865(11)—1))1/8.

n:k, is between £,y and £, %6

Assume now that E*(0; £,0) > E7(0; £,0) > 0. Let ET(0; £,0) > E > E~(0; £,0)
> 0. Let s > s“%©) be large enough so that o (E) := min(E*(0; £,0) — E,E —
E~(0; k) > 8. Then, due to (11.24), one has E*(0, A (0); k) — E, E — E~(0,

k (0)

AY (0); ko) > o (E) — p,, where p, — 0 as s — 00. Due to (10.18) in Theorem D, the

k)
matrix (E —H ) is invertible, moreover ||(E — H Y7 < 20(E)7,

) (s)
A 0),e,k Ay 0),&,k
kn(o)( ). €,k,(0) An(U)( ),€:k,(0)

provided o (E)/2 > p,. Since B(0,R®¥) € A'” (0) and R® — 400 with s — 400, one

k(0
has

ITE =y ) = E=Her) /] =0

for any / supported on a finite subset of Z”. Due to part (1) of Lemma 11.1, (E—H, )
1s invertible. Due to part (3) of Lemma 11.1, (E — H, ;) is invertible for any £ as claimed
in part (3) of Theorem C. U

Lemma 11.1. — (1) Let A, A, s =1, ... be self-adjoint operators acting in the Hilbert
space L, L respectively, L D L. Let Dn, Da, be the domains of the operators A and A, respectively.
Assume that (a) each A, 1s invertible, and moreover B := sup ||Ax_1 || < oo, (b) there exists a dense set
D C Dy such that for any | € D, there exists sy such that f € Da, for s > sy and ||(A—A)f]| — 0
as s — 00. Then A is invertible, and ||A~"|| < B.

(2) Using the notations of (1), assume in addition that the following conditions hold: (c) the
set D contains an orthonormal basis {g,}.en of the space L, (d) sup, (A gu, g} < p(m, n) with
S?:=sup,, >, p(m,n)? < oo. Then |{A™'g,, g.)| < p(m, n)_for any m, n.

(3) Assume that for some ky, E € R the operator (E — Hy,) us invertible. Then (E — Hy) s
wnvertible for every k.

Proof. — (1) One has |Af|| > B7!||f]| forany f € D, . This implies |Af] > B~'||f]|
for any f € D. Since D C Dy is dense, the statement follows.

(2) Recall that the set {x = (x,) € £*(N) : |x,| < €(n)} is || - ||-compact, provided
> €(n)? < co. With m being fixed, consider the sequence A 'g,, s=1,2,.... There-
fore, it follows from the condition (d) in (2) that this sequence has a || - ||-convergent
subsequence. Using a standard diagonalization argument, one concludes that there exists
a subsequence s; such that £, := limjgooA;lgm exists in the || - ||-sense for every m. Let
m, n,hs > 0 be arbitrary. Find j, such that ||4,, — A%lg,n|| < ¢ and [|Ag, — A%gnll < €. Then
one has
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(11.26) (A g1) = (@8 | = [ Ag) — (g0 20)
< |(A; g Ay &) — (@ @)
1 = AL g 1G] + A g 1Ag — Ay
< e|lAg.l + Se.

Hence, Ak, = g,, that is, k,, = A~'g,. Due to condition (d) one has

(11.27) (A g @)| = [ @) | = < p(m, n),

il e

as claimed.

(3) Recall that
(11.28) Hye0(m, n) =H, (m+ €, n+ £)

for any £. Given t € Z” and f(-) € £*(Z"), set Uf(n) :==f(n — t), n€ Z*. Clearly, U, is a
unitary operator. Furthermore, U,(a(m, n))m’ﬂezuU;I = (a(m+t,n+1)),.nczv for any self-
adjoint operator A = (a(m, n)),, .czv whose domain contains the standard basis vectors ¢,,
n € Z". Combining this with (11.28) one concludes that Hy 4, is unitarily conjugated
to Hy,. In particular, ||(E — Hy, 1¢,) "' = [[(E — Hy,)™"|| for any £. Given £, there exists a
sequence £, such that (k) 4+ €,)w — k. Then [|[(E — Hj 4¢,) — (E —Hy)]f|| = O for any
f supported on a finite subset of Z". Therefore the statement follows from part (1). [

To prove Theorem A we need the following lemma.

Lemma 11.2. — (1) Assume that for some E. € R, there exist y (E) > 0, B(E) < 00 such
that for any k, x,y € Z", we have

(11.29) |(E — Hp) ™" (x, )| < BE) exp(—y (E)]x — ).

Then, (E — H) s tnvertible.
(2) Let n'% € ZV \ {0}. Assume, for instance, ko > 0. Let

E* (ko) = lim E(k), fork, >0,
k—)kﬂ(o) :tO,/CE@\K:(w)

as in Theorem A. Assume E~ (k) < EX(k,0). Let E € (E~ (k) + 8, EY (ko) — 8), § > 0
arbitrary. Then, for every k, we have

(11.30) [[(E—=Hp ™" ](m, n)|

exp(—%l{olm— nl) i lm—n|> 8max(|n<0)|,log8*1),

8! Jor any m, n.
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(3) For every E € (E(0) — 8(1)/2/2, E(0)) and every k, we have
(11.31) [(E—H) ™ ]n,n)
exp(—%/colm —n|) flm—n|> 8max(|n?|, logS_l),
B Jor any m, n.
Progf: — (1) For any £, we have

> JE = Hy) (m, 0)||(E = H) ™' (x, )|

xeZv

< (k+ mw)*B(E) exp(—y (E)|m — )
+4"egB(E) (1 (B)) " exp(—nE)m—nl), m#n,
> |E = Hy(m, 0)||(E—H) ™ (v, m)]

xeZV

< (k+ mw)*B(E) + 4"B(E) (y1(E)) " exp(—yi (E)|m — nl),
> (E—H)(m, 0)(E = Hp) ™ (x,n) =8,

xeZV

(11.32)

where §,,, 1s the Kronecker symbol, y; (E) = % min(ko, ¥ (E)). In particular, for any £ and
for any bounded ¢ : Z" — G, we have

(11.33) Z(E —H)(m, x)(E—H) '(x, Y (n) =v(m), meZ’,
xeZv

and the series converges absolutely.
Let f € S(R") be arbitrary. Set

(11.34) gty = _"(E—H)™ (0, n)f (k + nw).

neZ’

Note that due to the identity (11.8), one has for any £ and any m, n, £ € Z",
(11.35) (E—H0) '(m,n) = E—H) '(m+ €, n+0).

Using (11.353), one obtains for any £ and any m € Z”,

(11.36) g+ mw) =Y (B = Hipo) ™ (0, 0)f (k + mo + nw)

neZv

= Z(E —Hy) ' om, n+ m)}\(/f + mw + nw)

nezZv
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= (E—Hy) " (m, n)f (k+ nw).

neZ’

Combining this with (11.33), one obtains for any £,

(11.37) > (B = H)(0, mg(k + mew) =1 (k).

meZv

It follows from the definition (11.34) that for any # € L*(R), one has

(11.38)

/ g(/c)/z(k)dk‘ < 2°BE) (v ®) 7], IAlo-
R

Hence, ||gllo < 2"B(E)(y (E))™" |[7||2. In particular, there exists the inverse Fourier trans-
form ¥ ;=g € L2R), ¥ 2 = llglls < M(E)||f]l2, where M(E) is a constant. Further-
more, sincej? € S(R), one obtains using condition (11.29), lim_, « |£|*|g(k)] = O for
any a > 0. Therefore, (11.6) holds. Combining (11.6) with (11.37), one obtains

1139)  [E—Hy]® =1k.
So,
1140)  E-Hy =/ [V <ME]/].

Since / € S(R) is arbitrary, (E — H) is invertible.
(2) Let
Ee (E7(0, A (0);e, ko) +8,E(0, A (0);e, ko) —38),

k() k0

3 > 0. Then due to (10.21) from part (IV) of Theorem D, one has

R N (O IR (0]

- exp(—é/{olm —an|) if |m— n| > 8max(|n?],logs "),
I for any m, n.

Since ||[(E — HA(k‘O )6k 0 ) — (E—=H; )l = 0 as s — oo, for any / supported on a
A0 !
finite subset of Z”, part (2) of Lemma 11.1 applies. Thus,

(11.42) ‘[(E - Hk,,(@))_l](m’ n)|

- exp(—%/{olm —nl) if |m— n| > 8max(|n”],logs™"),
N for any m, n.
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Let Uf(n) :=f(n — t), n € Z' be the unitary operator defined in the proof of
Lemma 11.1. Then, as we saw in the proof of Lemma 11.2, U,(E — H)U; ! = (E —
Hjt1). This implies U, (E — H/C)*IU;1 = (E—H;,,,)"". Hence,

= [(E—Hy) ™ n+t,n+0)
exp(—gkolm —n|) i |m — n| > 8max(|n”],logé™"),

B for any m, n.

Given £, there exists a sequence £, such that (k0 + £;,)w — k. Then [|[(E — Hk;n) +efw) —
(E = Hp]f |l = 0 for any / supported on a finite subset of Z". Therefore the statement
follows from part (2) of Lemma 11.1.

(3) The proof'is completely similar to the proof of (2) with part (V) of Theorem D
being invoked. 0J

Proof of Theorem A. — Given k € R and ¢(n) : Z" — G such that |p(n)| < C¢|n|*”*1 ,
where C, is a constant, set

(11.44) D) =Y pme((ne + k)x).

neZv

The function y, ;(x) satisfies Equation (1.7) if and only if

(11.45) Qm)’(nw + B’ + Y c(n—m)p(m) = Eq(n)

meZv\{0}

for any n € Z". Let E(k) and (¢ (n; £)),cz» be as in Theorem C. Then,

Yk x) = o ke((nw + k)x)

neZ’

obeys Equation (1.7) with E = E(k), that 1s,
(11.46) Hy = —y"(k, x) + V()Y (k, x) = EA) Y (k, x).

Due to (1) and (2) from Theorem C, conditions (a)—(c) in Theorem A hold. Due to part
(2) of Lemma 11.2, one has

specHN (Ei k), E+(/fm)) =0 ifE (k,) <E"(k,).
Due to part (2) in Lemma 11.2 one has

spec HN (E(0) — &,/*/2, E(0)) = 0.
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It is well-known that

specH C [0, 00) + {eV(x) : x e R}.

It is easy to see that |[V(x)| < (4/((;1)“. Hence, |g||V(x)| < 8(1)/2/4- for any x and any |&| <
&0, see the definition of ¢j in (3.9) from Definition 3.1. Thus, one concludes that

specH C [E(0), 00) \ U (B k), E* (k).

meZV\{0}:E~ (k) <E ()

Recall the following well-known general fact in the spectral theory of Sturm-
Liouville equations. If for some E € R, there exists a bounded smooth function which
obeys Equation (1.7), that is,

(11.47) —y" + V(x)p(x) = Ep(x),

then E € specH. For any k£ € G \ K(w), the function ¥ (%, x) is bounded. Hence, E(k) €
spec H. It follows from (11.19) that E(%) is continuous at each point £ € G \ K(w). It
follows also from (11.19) that E(%) is monotone for £ € G \ K(w), £ > 0. Recall also that
E(—k) = E(k). Finally, due to (10.13), E(k) — 0o when £ — 00. One concludes that

{E(h) : ke G\ K(w)} =[E(0), oo)\ U (E~(k), E* (k).

mEZV\{O}:E~ (k) <ET (ki)
Hence,
spec H D [E, oo)\ U (E_ (k) E+(km))'
MEZN{O}E (k) <E+ ()

This finishes the proof of Theorem A. U

Proof of part (1) of Theorem B. — Let n® € Z” \ {0} be arbitrary. We assume that

(02)‘” > 0. The case ko0 = —”(U;w < 0 1s similar. Due to (10.17) of part (4) of

Theorem D, one has

kn(o) =

(11.48) 0 <E*(0, As ko) —E7(0, As ko) <2 exp<_%|”(°)|),

where A =AY (0), s = 540 (k0), £ = (k). It follows now from (11.11) that

4(0)
(11.49) 0 <E" (ko) —E (ko) <2 exp(_% |2 \>,
as claimed in part (1) of Theorem B. U

To prove part (2) of Theorem B, it is convenient to establish a few lemmas first.
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Lemma 11.3. — Using the notation_from the proof of part (1) of Theorem B, for any n', the
Fourier coefficient c(n'™) obeys the following estimate,

(11.50) ()| < &5 " exp(io |n@]) (EF (A ko) — E7(A; ko))
+ Z () [3D:0 (040 T 2\ 10,0028 (77 7)

! ' e A\{0,n(D)}

X c(n’ — n(O))‘.

Here, as usual, T = 4icylog 8, "

Progf: — We use Equation (10.22) from part (IV) of Theorem D,
(11.51) [E —v(0, ko) — QY(0, A; &, ko, E)
F |GY(0,2, A; &, ko, E)|]

=0
‘E:Ei (A;S,k”(o) ’

where
QY (0, A: ko +6,E)
= Z }z(O, m'; kyo + 9) [(E — Ha\ 0,104 +9)—1] (m/’ n’)
! ;' € A\{0,n(D)}
x h(n, 0k, +6),
(11.52)

GY(0,2, A; ko +6,E)
= /z(O, n(O); ko + 9) + Z h(O, m'; ko + 9)

', e A\{0,n(D}

o [~ 100 0 )04 i +-6),

0<6< (3(()5))3/ *; see the notation in the proof of part (1) above. Set
a = v(0, ko +6) +QY(0, A; ko + 6, E),
(11.53) a = v(0, ko —0) + QY (0, A; ko — 0, E),
b=GY0, ny, A; k0 + 6, E),

fi=E—a,i=1,2,f=f — |b*;". Due to Proposition 6.9, f € S;@,l)!l(f,fz, b*), pro-
vided 6 > 0. Now we invoke Lemma 4.11. Due to part (2) of that lemma, the functions
uD, xD are C2-smooth, [3%u?|, |8*x | <1, |a| < 2. It follows from (11.51) that

(11.54) [fl(kn(u)a E) - |b(E) H ‘E:E+(A:/f,,(0))

— [, E) + |bko, B)|]| ik =0
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Hence,

(11.55) ‘b(kn(“) , E) | |E=E+(A;k”(o))

< Vl (ko , E) ‘E:E‘*‘(A;kn(o)) —h(ko, E) |E:E—(A;kn(0)) ‘
Recall that x % = u%£. One has
|M<fl)f1 (k0 , E) |E:E+(A;kﬂ(0)) s (f])fl (ko E) |E=E*(A?’%<O>) ‘
<E*(A; ko) —E7(As ko),
|Mm)f1 (k0 , E) |E:E+(A;kn(o)) —um ‘E:Eﬂf\?’%(onﬁ (k0 , E) ‘E:E*(A;k"(o))
<EY(A; ko) —E (A ko) + }M(fl)|E:E+(A;/€”(0))
— u |E=E*(A;kn(0))‘ sup[ﬂ(/fﬂm), E)‘

< 2(E+(A; ko) — E7(A; k,,(o))).

(11.56)

Recall also that due to part (4) in Lemma 4.11, one has |u%| > 9= Let
O (kw), £ =0, ..., =1~L(kwo) be as in Definition 10.8. Here n® (k,0) = 1, see Defi-
nition 10.8 and Lemma 10.10. By Theorem D, % = t© (k,0) = |kye—n ||| kx0 | — |hye—n]].
This implies || > &y exp(—xy|n”|). Therefore,

(11.57) |6y, B)|| s ok S €0 exp(io |1 |) (E¥(A; ko) — E7(A; ko).
Recall that
(11.58) b(kw, E) = c(n”) + Z c(m')[(E — H\(0.40).4 ) ) (!, )

m’,n’EA\{O,n(“)}
X c(n/ — n(o))
and also that
-1
(11.59) ‘[(E - HA\{o,n<0>},k”(0)) ](m, ﬂ)| = 5D(~;A\{O,n(o)}),'l',l(o,e;A\{O,n(o)},ER(m7 n).

Therefore, (11.50) follows from (11.57). U

It is convenient to introduce the following notation: A'(n?) = A \ {0, 2},
A" =2"\{0,n"},

SD(~;A(n(o))),T,KO,S;A(n(O)),SR(m/’ n), ifm',ne A/(ﬂ(o))»
(11.60) s(@V;m W) =130, ifm e An®)\ A'R?),
orn’ € A(n®)\ A’'(#?), or both.
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We re-write (11.50) in the following form,
(11.61) |o(n@)| < &5 " exp( Ko\n“’)\ E+(A; ko) — E7(A; ko))

+ Z (O) m,n’)‘c(n’ — n(o))|.

! ' e A(n®)

In the next lemma we recall the main properties of the sum s(z?; m’, n’) from
Section 2, stated in a form convenient for our goals.

Lemma 11.4. — Let s(n%; m/, ') be as in (11.60).

(1)
(11.62) s(Oimon) < > wao ),
}/EF”(O) (m,n)
w,0(y) = [1_[ w(n;, nj+1)} CXP( Z D,o (”j))~
1<j<k
Here w(m, n) := |c(n — m)|, ' yo (m, n) stands for a set of trajectories y = (ny, ..., n), k=

k(y)=1,m€ AR, ny =m, np =n, niy1 # nj, Dyo (x) > 0, x € 27\ {0, nO}. Moreover, the
Jollowing conditions hold:

(i) Do (x) < Tu,o@)'® for any x such that Dyo(x) > 4Tk U where w0 (x) =
min(|x|, |x — n?]), T = 4k, log 8, ',

(i)
(11.63) min(D,0 (2), Dyo (1)) < T||(aiy ..., n) | foranyi <
such that min(Dn(m (n;), D, (nj-)) > 4Tk, ', unlessj =1+ 1.
Moreover,
(11.64) ifmin(D,0 (1), Do (nis1)) > T|(n — nip)| ", for some i, then,

1/5

’

Do (1), Do () <T| @y, ..., 5

1/5

1/3

mln(
min(Dn(n) (n;), D, (n]//)) < TH (n;, .. nj//) ”
(

min Dn(o) (nj’)’ Dn(o) (ni—i-l)) = TH (n”’ s l+l) H

) 1/5
mln(Dn(n) (ni51), Do (njn)) < T” (nig1s .. myr) |

Joramj <i<i+1<j".

b

(2) Assume that for all n € Z", we have |c(n)| < Sexp( K|n|) with & < &y, K > Kq. Let
y=y,...,m) €0 = Umn [0 (m, n). Set M = 4TKO , D(y) = max; G D(ny), in(y) =
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%’ v, = ZO<5§£ 27, Then’
0 exp(=& |y || + k(y)M) fin(y) =5,

11.65 0 () =< c D '
( ) w,0 (¥) {gkm_lexp(_,{(l_%(y)+1)||y||+2D(y)) Jio(y)>5.

Furthermore, D()/) < 2T[min(|n |, 2@ — m D' + ||y I'/°].

In the next lemma we establish an estimate similar to (11.65) under a slightly
weaker condition on |¢(n)|, and also an estimate for the sum of such terms.

Lemma 11.5. — Let € < &g, K > 29, R} > QSO(KJIT)Q. Set R, =5R,_1/4, pi1 =
27 =2, .0, =)y, Po. Assume

g exp(—K|p|) 110 < |p| <Ry,
(11.66) lepy| < {5 PR o PO=hl=R

gexp(— (I —os)ilpl) Ry <|pl =R, 3 <1< 4.
For t > 1, let Fif(),) be the set of trajectories y = (ny,...,n) € I'yo with ||y| < 2R, and
max; |41 — nj| < Ryy1. Then, forany y € F’%) with t < fy — 1, we have

o 15 . _
(11.67) w,,«»(y) < g1 eXp(—l—6(1 — ng+4)K||)/ || + QD()/) + /f(V)M)
Furthermore,
(11.68) > w,o (y)

Y€ o) (m,n):k(y) =2,y | =Ry,
. (0) 1/5 15 ~
< exp(—QT(rmn(lml, }n — n‘) ) exp _E(l — O312)K|n—m| ).

Progf. — The proof of (11.67) goes by induction in t =1,2,.... Let y =
(ny,...,m) € Fi(lo)). Then, in particular, max; |71, — nj| < Ry. Due to (11.66), one has
w(nj, njy1) < € exp(—k|n;—ni41|). Hence (11.65) applies. Note that 1 — ()41 > 15/16.
This implies (11.67) for t =1 in both cases in (11.65).

Let Fig)’o be the set of trajectories y = (ny, ..., n) € F% with max; |nj; —n| <R,
L, =T\ TG,

Let y = (ny,...,m) € F:lff)) .- Then there exists jp such that [n,4; — n,| > R,.
Note that |nj, — ;| < R, for any’j # Jo, since ||y || < 2R,. Let yy = (ny, ..., 1), o =
(%41, - - - m). Note that ||yl + [|yell < R, < 2R, since |y || < 2R, and [nj,41 — ;| >
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R,. Therefore y,, y» € F;fo_) " Hence, the inductive assumption applies,

o 15 i i}
w,o () < &0-1g exp<—ﬁ(1 — o)yl +2D(y;) + /f()/z')M>,

1=1,2,

(11.69) w,0 (7)) = w0 (V) — my)[wyo (r2)

) 15 -
<& 1€Xp<—%(1 — oy )R (Il + llyall)

15 - _ _
- 1_6(1 — 03143)K 1 — miy | + 2D (1) + 2D(y2) + /f()/)M)-

Let D(n;) = [_)(yl«), 1 =1, 2. We have the following cases:
(a) Assume j; < jo. In this case due to (11.63), one has

. = P3i+4 ~
11700 2min(D0A), Do) < 2Ty I < ==& (vl + el + I = 151)

since ||y| > R, > 2%k ' T)2(5/4)""", t > 2. Combining (11.69) with (11.70), one ob-
tains (11.67).

(b) Assume jy + 1 < jo. Similarly to case (a), one verifies (11.67).

(c) Assume j; = jo, jo + 1 =jo. Let y{ = (ny, ..., n,—1), ¥y = (19, ..., m). Once
again, applying the inductive assumption, one obtains

~ ; 15 ~ / _ /
W, (Vi/) < 00T exp <_E(l — O341)K H Vi ” + QD()/Z-) + k(yi)M>,

1=1,2,

wn«»(y) = W, ()/1/) eXp(Dn«)) (ﬂj[))) |C(71J‘0+1 — nj-())‘ eXp(D,,(o) (nj()+1))wn<()> ()/Z/)

(11.71) o 15 N
<z exp _1_6(1 — o3 DR (Il + el

15 -
- 1_6(1 - 03z+3)K|ﬂJ‘0+1 - ﬂjo|
x CXP(QD(%) + 2D(y») + Do (1)) + D, (1) + k(y)M).

One has 2D,0 (y)) = 2min(D,0 (), Do () < 2Ty 7 < psak Qnall + lyvall +
|41 — nj, 1) /4. Similarly, 2D,0 (yy) < psipak (Iy1ll + lyell + 1m0 — n;,1) /4. Therefore,
(11.67) follows from (11.71).

Thus, (11.67) holds for y € ') | in any event. Let y = (ny, ..., ) € T . As-
sume || (n, ..., )] < 2R,_;. Recall that max; |nj; — m| <R, since y = (ny, . ..;nk) €
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F;%,o‘ Hence, in this case the inductive assumption applies and even a stronger es-
timate than (11.67) holds. Assume |[[(n,...,m)|| > 2R,_;. Then there exists j, such
that [|(ny, ..., )l < 2Ry, [y, o)l > 2Ry Let yy = (g, ... m), vo =
(41, -« s mp). Note that [|yell = Iyl — (G, ... i)l < 2R, — 2R, < 2R, since
R, < 2R,_;. Therefore y;, y» € F’(lf(; b, Hence, the inductive assumption applies,

o 15 ) 3
w,o (y,) < g1 eXp(—E(l — o3 )K|lvill +2D(y:) + k(Vi)M)’

=12,

(11.72) w0 (¥) = w0 (YD) e — 1) [w,o (1)

H)— 15 .
<& 16Xp<—ﬁ(1 — os DR (Il + llyall)

15

- 1_6(1 — 03043)K | mjy 11 — mjg| + 2D(y1) + 2D(y,) + /f()/)M)

Let D(n;) = D(y;), i = 1, 2. We have the following cases:
(o) Assume j; < jo. In this case, due to (11.63), one has

P Piei
(11.73) 2min(D(y1), D(y2)) < 2Ty ' < %K(Hyl I+ el + a1 — 1)

Combining (11.72) with (11.73), one obtains (11.67).

(B) Assume jy + 1 < jo. Similarly to case (o), one verifies (11.67).

(y) Assume j; =jo, jo + 1 =jo. Let y/ = (1, ..., m—1), ¥y = (Mjy49, ..., ). Once
again, applying the inductive assumption, one obtains

") < gkl 15 <l D(y/ !
w,0(y/) <& exp _E(l — o)k ||y | +2D(y)) + k(v/)M |,
1=1,2,
W, (V) = W, (yl/) ‘c(nj()—l - 7%)‘ CXp(D,l((J) (nj())) |C(ﬂi[)+1 - nj{))}

(l l .74> X eXp(Dn(o) (7%]'0—0-1)) |c(7%7'0+2 - njo-H) | W, (VQ/)

15
<20 o =20~ i1l + 1)

15 -
X CXP<—E(1 - Ust+3)K(|ﬂj0 — my—1| + [y — mjp| + |Rjg10 — i1 |))

x exp(2D(y}) + 2D () + Do (1) + Do (njy11) + k(y)M).
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One has 2D,0 (y{) = 2min(D,0 (), Do (1)) < 2Ty ['° < pspak Iy + Nysll +
njy+2 — mjy—11) /4. Similarly, 2D,0 (yy) < psirak (11l + 1yl + 7,41 — mi, ) /4. Therefore,
(11.67) follows from (11.74).

Thus (11.67) holds in any event. Recall that ]_)(]/) < 2T[(min(|m|, [n® — n)'/> +
Iy 1I'°1, ¥ € Tyo(m,n); see Lemma 11.4. Set w;(o)(y) = exp(—2T(min(|m|, |n® —
7)Y w,o0 (y). Note that 2Ty ||'° < pssk |y |/4 1f ||y || = R,. Recall also the elemen-
tary estimate of Lemma 2.6: for any o, £ > 0,

(11.75) Z exp(—allyll) < (8a7")

yel (mn;k,ZV)

(k—1v

Set 0, (m, n) = T, (m,n) NT'). Note that if y € [0 and |y || < Ry, then y € I
and (11.67) applies. Finally, ||y | > |z — m| for any y € I' 0 (m, n). Taking all that into

account, one obtains

(11.76) > w0 ()

Y€l ) (mn):k(y)=2, |y =Ry,

= Z Z w;(m()’)

i=to—1yerl () mn),k(y)=2,R;=|y =Rt

< M Z Z (eMg)k(V)—l

(=to—=1y€el o (mn)k(yY)=2,R=|ly [<Rs1
15 - -
X exp _ﬁ(l — o )K Y |+ pssicly 11/4

<M Z(gMg)/f—l

k>1

15 - ~
X exp(—g(l — O3 1)K | — m|) > exp(—psusak 7 11/4)

k(y)=k

15 . )" -
<M exp<—1—6(1 — O3442)K |1 — ml) Z(eMS)k 1(8a_1)(k ’

k>1

15 -
<exp| ——=(1 —o342)k|n —m| ).
16
Here, in the last step, o« = 3,45k /4, and we have used & < &. O

Proof of part (2) of Theorem B. — Set Ry = 230(K(;1T)2, R, =5R,_/4, p,_y = 271972

t1=2,...,0,= Zlgegz pe as in Lemma 11.5. Set also 8(()0) = exp(—2Ry). One can see

that 8(()0) < &4. Assume that

(11.77) EY(A; ko) —E (A5 ko) <P exp(—«@|n@|), foralln® € 2"\ {0},
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(0)

where ¢ < g,”, k@ > 4. We re-write (11.61) in the following form,

)= ) P
+ 2 b)) el = V).
' ;e A(n©)

Assume that with some (¢@)'? < & < 8(()0) and ko <k < k/2, we have |¢(p)| <

g exp(—k|p|) for [p| > 0. Set & = &/2, k = 7k /6. We claim that in this case, in fact,

& exp(—K|pl) if 0 < |pl =Ro,

11.79
W19 L= | e B0 oy TR, <l <R, 125

It 1s important to note here that &2 (l — 03,)K > ( )2 L@ := Lk, with L > 1. This allows
one to iterate the argument and Theorem B follows

The verification of the claim goes by induction in ¢, starting with the first line in
(11.79), and then with the help of Lemma 11.5. The idea is to run 2” in (11.78) and
to combine the inequalities which we have for different 2. To this end it is convenient
to replace 2 in the notation. To verify the first line in (11.79), we invoke (11.68) from
Lemma 11.5 with £ in the role of & and & in the role of k. Note that condition (11.66) of
Lemma 11.5 holds for any ¢ for trivial reasons. So,

(11.80) Z |c(m)|s(p; m, m)|c(p — )|

m,nEAp

) . 15 A
<g? Z exp(—K|m|) exp<—1—6(1 — O34 19)K |0 — m|

m,n€N,

. 1/5 .
+ 2T (min(|ml, |n— pl)) " ) exp(=R|p — nl).
Using the elementary estimates of Lemma 2.6, one obtains from (11.80) that

(11.81) 37 Jem|s(prm ) |e(p—m)| < 872 /4 <E(e”) /2 < (8/2) exp(—Ry).

m,n€N

It follows from (11.78) combined with (11.81) that for any [p| > 0, we have

(11.82) le(p)| < (6©)"" exp(—3kV1pl/4) + (/2) exp(—Ry) < & exp(—RRy).

This verifies the first line in (11.66).
Assume now that for some £ > 2, (11.66) holds for any 0 < |[p| <R, and any ¢ < £.
Let |g| > Ry be arbitrary. For ¢ > 1, let Ffit) be the set of trajectories y = (ny, ..., n) €,
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with ||y || < 2R, and max; |71, — 7| < R.y. Let F;‘) (m, n) = F;‘) NI, (m, n). We have

(11.83) Z |c(m)|5(q; m, n)}c(c] — n)‘
m,nEAq

<> Jem)|jeg—n] Y w, ()
m,n yerq(m,ﬂ)

ST AL +E= Y [dm)|g—n] D w,(y)

m,n:|m|,|n—ql<R¢ yEFéeiU(m,n)
+ ) Jetm]|etq = n)| > w()+ s
m,n y €l (m,n), [ly I>2R¢—)

Here the sum X5 is over the cases when ||y || < 2R,_; and either max(|m/|, |¢ — n]) > R,
ory = (ny, ..., n) obeys max; |nj;; — nj| > Ry, or both.

Using (11.68) from Lemma 11.5 with £ in the role of 4, and the inductive assump-
tion, one obtains

- 15 -
(11.84) ol SSQZexp(—l—6(l —ogg)/c|m|)

myn

15 ~ . 1/5
X exp<—1—6(1 — O3¢40)K|m — n| + 2T(m1n(|m|, lg — nI)) / )

15 .
X exp —1—6(1—035)K|q—n| .

Note that 2T (min(|m|, ¢ — 2[))'/°) < {psess(Iml + [m — nl + |g — ul) since |g| > Ry.
Estimating the sum in (11.84), one obtains (see Lemma 2.6)

B 15 1 -
(11.85) > 583/2€Xp<—1—6(1 —03e+2—1103£+3)/<|9|)-

To estimate the sum X, we use Lemma 11.5 with £ in the role of & and  in the
role of k:

(11.86) o< Y Jem||elg—n)| Y > w,(y)

1zt=1y el (mn),k(y)=2,R;=|ly <Ry

< Jem)||eq = w)| exp(2T (min(lml. g — nl))"")M

myn

<| )

y €T, mn) k(1) =2,2R¢—1 <|ly | <R¢
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DD M O

=t y el (mn) k(y)=2.Ri<|ly [ <R+

_1_5 _ s 1/5
x exp( == (1 = ou &y |+ 2T1 |

<& " exp(—&(|ml + |g — nl) + 2T (min(ml, |g — [)) )

15 .
X CXp(-E(l — O'gg+Q)K X (2R5_1)>

~3/2 15 1 .
<&’"exp T 1 — 03040 — gl KX (2R¢-1)

< 8% ex —E l—0o —l KR
9] 16 30+2 4pse+3 o+1 |-

Let us now estimate Xs. G_iven r,s € A, with |[s — 7| > Ry, denote by I, ; the set
of trajectories y = (ny, ..., n;) € ', with ||y || < 2R,_; and such that
(11.87) y=v Uy’

where 7 is the endpoint of y’ and s is the starting point of y”. Note that since ||y || <
2R¢_y, one has |nj;, — nj| < R, for all j with one exception when 7| =35, n; = 7. In
particular, the inductive assumption applies to y’, y”. Denote by X} the part of sum
Y3 with y € ', ; and with |m|, |§ — n| < Ry. Then just as in the above derivations, one
obtains

o 15 s
(11.88) ¥, <& Z exp<—1—6(l—0‘3g+2)lc|r|>‘c(7—s)‘

[r—s|>R¢
15 -
X exp _E(l — O3042)K g — 5] ).

The estimation of the rest of the sum X5 is similar. One has

~ 4 < 15 ~
(11.89) z, <& Z exp<—1—6(l —03g+2)/<|7|>‘c(r—5)‘

[r—s|>Rg

15 -
X CXP<—1—6(1 - 03£+2)K|q—5|)

3 15 ~
+ 953/ Z ‘C(,)‘ CXP<_E(1 — O3e42)K g — 7|>

Ir>Re
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- 15 ~
< g2 Z exp(—1—6(l —034+2)K|r|>|c(r—s)|

Re<|r—s|=Re41

15 -
X exp<—1—6(1 —Uae+2)’<|q—5|)

s 15 i
+ 28 Z {0(7)|6Xp —1—6(1—03z+2)’€|q—r|

Re<|r|=Re41

R 15 1 -
x 32 exp(—%<1 — 03049 — 1,03z+3>KR£+1>'

Now we invoke (11.78). For |¢| > Ry, one obtains

(11.90) o)) < (69) exp(—xVlgl/2) + Y =

1<i<3

< (e™)"" exp(—klql)

+53/2€Xp —1—5 1—03”2—1/)3“3 Klql
16 4

£3/2 _E — _l <R
+ 2&7" exp 6 1 — 03049 4/)3£+3 KRy

=3/2 15 ~
+3 > o~ = okl )|t =)

Re<|r—s|=<Re41

15 -
X CXp(—E(l - 0342+2)K|‘]—5|)

~3/2 15 ~
+ 2¢ Z |c(r)|eXp —E(1—034+2)K|q—f| .

Re<|r|<Re41

Here we have replaced «?/2 by & < k@ /2. Now we consider Ry < |¢] < Ryy1.
We replace Ryy; in the exponent by a smaller quantity |¢| and we obtain a self-
contained system of inequalities for |¢(¢)| with R, < |¢| < Ry4;. This allows us to iterate
(11.90). It is convenient to replace the multiple sums via summation over trajectories
y =(ng,...,n) €I'(0,¢q). Set

, , 15 1 -
&E =&, K :E 1—036+2—1,03£+3 K,
(11.91)

w'(m, n) = &’ exp(—«'|m — nl), w ((no, ... mp) = [ [w' G mys).
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Iterating (11.90) N times, one obtains

i ; 15 1 i
<11.92> ‘C(Q)| < 83/2< Z 4k8 A) CXp<—%<1 — O3¢49 — Z'OSHB))KRHI)

0<k<N
+(§ Z 4_/C8//r Z w/(y) +4’N8/N-
1<k>3N v el (0,9):k(y)=k

Taking here N large enough and evaluating the sums over y as before, one obtains

(11.66). O
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