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ABSTRACT

We construct a representation of the affine W-algebra of glr on the equivariant homology space of the moduli
space of Ur-instantons, and we identify the corresponding module. As a corollary, we give a proof of a version of the AGT
conjecture concerning pure N = 2 gauge theory for the group SU(r).

Our approach uses a deformation of the universal enveloping algebra of W1+∞, which acts on the above homology
space and which specializes to W(glr) for all r. This deformation is constructed from a limit, as n tends to∞, of the spherical
degenerate double affine Hecke algebra of GLn.
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0. Introduction

In their recent study of N = 2 super-symmetric gauge theory in dimension four,
the authors of [1] observed a striking relation with two-dimensional Conformal Field
Theory. More precisely, they observed in some examples and conjectured in many other
an equality between the conformal blocks of Liouville theory associated with a punc-
tured Riemann surface and the group Ur on the one hand and the instanton part of the
Nekrasov partition function for a suitable four-dimensional gauge theory associated with
the group Ur on the other hand. Numerous partial results in this direction have been ob-
tained in the physics literature, see e.g., [13] and the references therein. In mathematical
terms, the AGT conjecture suggests in particular the existence of a representation of the
affine W-algebra of G on the equivariant intersection cohomology of the moduli space
of GL-instantons on R4 satisfying some extra properties (relating the fundamental class
and the Whittaker vector), see [7] and [18]. Here G, GL are a pair of complex reductive
groups which are dual to each other in the sense of Langlands. The purpose of this pa-
per is to give for the gauge group G = GL = GLr a construction of this action which is
inspired by our previous work [33]. It is based on degenerate double affine Hecke alge-
bras. For the same gauge group G = GLr , a construction of this action has been given by
Maulik and Okounkov using ideas from symplectic geometry, see [28].

Let us describe our main result more precisely. Let Mr =⊔n≥0 Mr,n be the moduli
space of rank r torsion free coherent sheaves on P2, equipped with a framing along P1

∞ ⊂
P2. For fixed n, Mr,n is a smooth symplectic variety of dimension 2rn. It is acted upon by
an r + 2-dimensional torus ˜D = (C×)2 ×D where (C×)2 acts on P2 and D = (C×)r acts
on the framing. When r = 1, the moduli space M1,n is isomorphic to the Hilbert scheme
Hilbn of n points on C2. In the mid 90s, Nakajima constructed a representation of the
rank one Heisenberg algebra on the space

˜L(1) =
⊕

n≥0

H∗(Hilbn)

by geometric methods, which identifies it with the standard level one Fock space, see [29]
and [20]. The case of the equivariant Borel-Moore homology

L(1) =
⊕

n≥0

H˜D∗ (Hilbn)

was considered later in [40]. For r ≥ 1 there is still a representation of a rank one Heisen-
berg algebra on the space

L(r) =
⊕

n≥0

H˜D∗ (Mr,n),



216 OLIVIER SCHIFFMANN, ERIC VASSEROT

but it is neither irreducible nor cyclic, see [3]. A construction of a representation of an
r-dimensional Heisenberg algebra on L(r) has also been given in [24]. Now, let

Rr = C[x, y, e1, . . . , er], Kr = C(x, y, e1, . . . , er)

be the cohomology ring of the classifying space of ˜D and its fraction field. The space L(r)

is an Rr-module. Set L(r)
K = L(r) ⊗Rr

Kr . We’ll abbreviate

κ =−y/x, εi = ei/x, ξ = 1− κ, i ∈ [1, r].
Let Wk(glr) be the level k affine W-algebra of glr . Recall that the cup product in equiv-
ariant cohomology yields a bilinear map

(•,•) : L(r)
K × L(r)

K → Kr

called the intersection pairing. Set 	e = (e1, e2, . . . , er), 	ε =	e/x and ρ = (0,−1,−2, . . . ,1− r).
Here is the main result of this paper.

Theorem. — (a) There is a representation of Wk(glr) of level k = κ − r on L(r)
K , identifying it

with the Verma module Mβ of highest weight β =−(	ε+ ξρ)/κ.

(b) This action is quasi-unitary with respect to the intersection pairing on L(r)
K .

(c) The Gaiotto state G =∑n≥0 Gn, Gn = [Mr,n], is a Whittaker vector of Mβ .

Parts (a) and (b) are proved in Theorem 8.33 and part (c) is proved in Proposi-
tion 9.4. Note that Wk(gl1) is a Heisenberg algebra of rank one. So the above theorem
may be seen as a generalization to higher ranks of the representation of the Heisen-
berg algebra on the equivariant cohomology of the Hilbert scheme. For instance, taking
r = 2 we get an action of the Virasoro algebra on the cohomology of the moduli space
of U2-instantons on R4. The relation with the AGT conjecture for the pure N = 2 su-
persymmetric gauge theory is the following. Recall that Nekrasov’s partition function is
the generating function of the integral of the equivariant cohomology class 1 ∈ H˜D∗ (Mr,n),
i.e., we have

Z(x, y,	e; q)=
∑

n≥0

qn
([Mr,n], [Mr,n]

)

.

The element G belongs to the completed Verma module

̂Mβ =
∏

n≥0

Mβ,n, Mβ,n = H˜D∗ (Mr,n)⊗Rr
Kr.

Let {Wd,l; l ∈ Z, d ∈ [1, r]} be the set of the Fourier modes of the generating fields of
Wk(glr). Then Mβ has a unique bilinear form (•,•) such that the highest weight vector
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has norm 1 and the adjoint of Wd,−l is Wd,l for l ≥ 0 (up to a sign). Then, the element G
is uniquely determined by the Whittaker condition and we have

Z(x, y,	e; q)=
∑

n≥0

qn(Gn,Gn).

Let us now explain the main steps of the proof. Since W-algebras do not possess,
beyond the case of gl3, a presentation by generators and relations, we cannot hope to
construct directly the action of Wk(glr) on L(r)

K by some correspondences. Our approach
relies instead on an intermediate algebra SHc, defined over the field F = C(κ), which
is interesting in its own right, and which does act on L(r)

K by some correspondences. The
actual definition of SHc is rather involved. Its main properties are summarized below.
Let SHn denote the spherical degenerate double affine Hecke algebra of GLn. Let �=
F[pl; l ≥ 1]. Let

H = 〈c0, bl; l ∈ Z〉
be the Heisenberg algebra of central charge c0/κ . The following is proved in Section 1
and Appendix F.

Proposition. — (a) The algebra SHc is Z-graded, N-filtered and has a triangular decomposition

SHc = SH> ⊗ SHc,0 ⊗ SH<, SHc,0 = F[cl; l ≥ 1] ⊗ F[D0,l; l ≥ 1].
Here F[cl; l ≥ 1] is a central subalgebra. The Poincaré polynomials of SH< and SH> are

PSH>(t, q)=
∏

r>0

∏

l≥0

1
1− trql

, PSH<(t, q)=
∏

r<0

∏

l≥0

1
1− trql

.

(b) Let SH be the specialization of SHc at c0 = 0 and cl =−κ lωl for l ≥ 1. For n ≥ 1 there

is a surjective algebra homomorphism 
n : SH → SHn with
⋂

n Ker
n = {0}.
(c) The part of order ≤ 0 for the N-filtration is SHc[≤0] =H ⊗ F[cl; l ≥ 2]. The algebra

SHc is generated by SHc[≤ 0] and D0,2.

(d) Let SH(1,0,...) be the specialization of SHc at c0 = 1 and cl = 0 for l ≥ 1. It has a faithful

representation in � such that H acts in the standard way and D0,2 acts as the Laplace-Beltrami (or

Calogero-Sutherland) operator

D0,2 = κ �= 1
2
κ(1−κ)

∑

l≥1

(l−1)b−lbl + 1
2
κ2
∑

l,k≥1

(b−l−kblbk+b−lb−kbl+k).

(e) The specialization of SH(1,0,...) at κ = 1 is isomorphic to the universal enveloping algebra of

the Witt algebra W1+∞.
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We do not give a presentation of SHc by generators and relations. We do not
need it. However, the subalgebras SH> and SH< have realizations as shuffle algebras,
see Theorem 4.7 and Corollary 6.4. The central subalgebra F[cl; l ≥ 0] is not finitely
generated, but only two of the generators are essential, i.e., the rest may be split off.

A construction of a similar limit SHc of the spherical double affine Hecke algebras
of GLn as n tends to infinity appears in [32]. The algebra SHc depends on two param-
eters t, q, and SHc may be obtained by degeneration of SHc as t → 1 and q → 1 with
t = q−κ , in much the same way as the trigonometric Cherednik algebra is obtained by
degeneration of the elliptic Cherednik algebra, see Section 7. In [33] it was shown that
SHc acts on the space

⊕

n≥0 K˜D(Mr,n), where K˜D is the equivariant algebraic K-theory.
Adapting the arguments of loc. cit. to the equivariant cohomology setup, we prove the fol-
lowing in Theorem 3.2, Corollary 3.3 and Lemma 8.34. Let SH(r)

K be the specialization
of SHc ⊗Kr to c0 = r and ci = pi(ε1, . . . , εr).

Theorem A. — There is a faithful representation ρ(r) of SH(r)
K on L(r)

K such that L(r)
K is generated

by the fundamental class of Mr,0.

This representation is given by convolution with correspondences supported on
the nested instanton spaces. In the proof of Theorem A an important role is played by
the commuting varieties

Cn =
{

(u, v) ∈ (gln)
2; [u, v] = 0

}

and the cohomological Hall algebra, which is an associative algebra structure on

C′ =
⊕

n≥0

HT(Cn), T = (C×)2.

Let U(Wk(glr)) be the current algebra of Wk(glr). We’ll use a quotient U (Wk(glr)) of
U(Wk(glr)) whose definition is given in Section 8.5. It is a Z-graded, N-filtered, degree-
wise topological associative algebra with 1 which is degreewise complete. Let U(SH(r)

K ) be
the degreewise completion of SH(r)

K , which is defined in Definition 8.8. Our main theorem
is a consequence of the following results, proved in Theorem 8.22 and Corollary 8.29,
and in Theorem 8.33 and Proposition 9.4. Put k = κ − r. First, we have

Theorem B. — There is an embedding of graded and filtered algebras

�(r) : SH(r)
K −→U

(

Wk(glr)
)

which extends to a surjective morphism U(SH(r)
K )−→U (Wk(glr)). The map �(r) induces an equiv-

alence between the categories of admissible SH(r)
K and U (Wk(glr)) modules.

This allows us to regard L(r)
K as a Wk(glr)-module. Then, we have the following.
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Theorem C. — The representation L(r)
K of Wk(glr) is a Verma module. It is quasi-unitary with

respect to the intersection pairing. The element G is a Whittaker vector for Wk(glr).

Theorem C is proved by some simple explicit calculation. Let us briefly indicate
how we prove Theorem B. Our approach rests upon the following crucial fact proved in
Theorem 7.9.

Proposition. — The algebra SHc is equipped with a topological Hopf algebra structure. The

comultiplication is uniquely determined by the following formulas

���(cl)= cl ⊗ 1+ 1⊗ cl, l ≥ 0,

���(b0)= b0 ⊗ 1+ 1⊗ b0 + ξc0 ⊗ c0, ���(bl)= bl ⊗ 1+ 1⊗ bl, l �= 0,

���(D0,2)= D0,2 ⊗ 1+ 1⊗D0,2 + κξ
∑

l≥1

lbl ⊗ b−l .

Using this coproduct, we equip the category of admissible SHc-modules with a
monoidal structure. In particular (L(1)

K )⊗r is equipped with a faithful representation of
SH(r)

K . We call it the free field realization representation. We then compare this free field
representation of SH(r)

K with the free field representation of Wk(glr) using some explicit
computations in the cases r = 1,2, the coassociativity of ��� and the fundamental result
of Feigin and Frenkel [14, 15] which characterizes Wk(glr) as the intersection of some
screening operators.

One remark about the Hopf algebra structure on SHc is in order. It was observed
in [38] that, under Nakajima’s realization of affine quantum groups in terms of equiv-
ariant K-theory of quiver varieties, the coproduct of the quantum groups could be con-
structed geometrically using some fixed subsets of the quiver varieties. In later works, a
geometric construction of tensor products of representations in terms of both cohomol-
ogy and K-theory of some quiver varieties was given in [26, 30]. In this paper, we do
not give a geometric interpretation of our map ���. In fact, we obtain it by degenerating a
similar coproduct on the algebra SHc. The existence of a Hopf algebra structure on SHc,
in equivariant K-theory, is not more natural than on SHc, in equivariant cohomology.
However, since SHc is identified with a central extension of the Drinfeld double of the
spherical Hall algebrâEEE of an elliptic curve over a finite field, see [33], and since this Hall
algebra has a coproduct,1 the algebra SHc is also equipped with a comultiplication. We
do not know, however, of a similar isomorphism involving SHc which would give directly
the comultiplication.

Some of the methods and results of this paper generalize to the case of the mod-
uli spaces of instantons on resolutions of simple Kleinian singularities, equivalently, the

1 The correct choice of coproduct on̂EEE here is not the standard one, but rather the standard one twisted by a Fourier
transform, see (7.50).
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s

FIG. 1. — The partition (5,42,2,1) and a box in it

Nakajima quiver varieties attached to affine Dynkin diagrams. We’ll come back to this
question elsewhere.

To finish, let us say a few words concerning the organization of this paper. The
construction and properties of the algebra SHc are given in Section 1. In Sections 2
and 3 we define some convolution algebra acting on the space L(r)

K and state our first main
result, Theorem 3.2, which claims that this algebra is isomorphic to SH(r)

K . In Section 4 we
introduce the commuting variety and its convolution algebra, the so-called cohomological

Hall algebra. The proof of Theorem 3.2 is given in Sections 5 and 6. Section 7 is devoted
to the construction of the Hopf algebra structure on SHc. Section 8 discusses the free
field realizations of SH(r)

K and Wk(glr), and compares them (first for r = 1 then r = 2
and then for arbitrary r). Theorem 8.22 is proved in Section 8.9, and part (a) of our main
Theorem is proved in Section 8.11, see Theorem 8.33. Finally, Section 9 is devoted to the
Whittaker property of the Gaiotto state, with respect to both SH(r)

K and Wk(glr). Several
technical lemmas are postponed to the appendices. In particular, the relation with W1+∞
is explained in Appendix F.

0.1. Notation. — We’ll use the continental way of drawing a partition λ = (λ1 ≥
λ2 ≥ · · · ), with rows going from the bottom up of successive length λ1, λ2, etc. If s is a
box in the diagram of a partition λ, we denote by x(s), y(s), l(s), a(s) the number of boxes
lying strictly to the west, resp. south, resp. north, resp. east, of the box s.

Example 0.1. — For the box s in the partition (5,42,2,1) depicted below we have
x(s)= 3, y(s)= 0, l(s)= 2 and a(s)= 1.

When we need to stress the dependance on the partition λ we will write aλ(s) and
lλ(s). This notation extends in an obvious way to boxes s which might lie outside of λ (in
which case, aλ(s) or lλ(s) could be negative). For instance, if λ= (5,42,2,1) as in Figure 1
above and x(s)= 4, y(s)= 2 then aλ(s)=−1 and lλ(s)=−2. We will occasionaly refer to
a box through its coordinates s = (x(s)+ 1, y(s)+ 1). As usual, the length of a partition λ

is denoted l(λ), and the conjugate partition is denoted λ′. Finally, if s is a box of a partition
λ then we denote by Rs and Cs, the set of all boxes of λ in the same row and same column
respectively, as s, with s excepted. We call r-partition of n an r-tuple of partitions with total
weight n. Given two r-partitions λ= (λ(1), λ(2), . . . , λ(r)) and μ= (μ(1),μ(2), . . . ,μ(r)) we
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write

λ⊂ μ ⇐⇒ λ(a) ⊂ μ(a), ∀a.

For any commutative ring A we set

(0.1) �n,A = A[X1, . . . ,Xn]Sn, �A = A[X1,X2, . . .]S∞ .

Note that �A is the Macdonald algebra of symmetric functions. Let πn be the obvious
projection

(0.2) πn :�A →�n,A.

For any ring A let δ be the map A → A⊗A given by

(0.3) δ(a)= a ⊗ 1+ 1⊗ a.

For r ≥ 1 let δr−1 : A → A⊗r be the map obtained by iterating r − 1 times the map δ. Let

(0.4)

el = el(X)= el(X1,X2, . . .),

pl = pl(X)= pl(X1,X2, . . .),

mλ = mλ(X)= mλ(X1,X2, . . . )

be the lth elementary symmetric function, the lth power sum polynomial and the mono-
mial symmetric function in �A, see e.g., [25, Chap. I]. Let

(0.5)

e
(n)

l = e
(n)

l (X)= el(X1, . . . ,Xn),

p
(n)

l = p
(n)

l (X)= pl(X1, . . . ,Xn),

m
(n)
λ = m

(n)
λ (X)= mλ(X1,X2, . . . ,Xn)

be the corresponding functions in �A,n. If no confusion is possible we abbreviate

(0.6) el = e
(n)

l , pl = p
(n)

l , mλ = m
(n)
λ .

We write also

(0.7)

Z2
0 = Z2 \ (0,0),

N2
0 = N2 \ (0,0),

E = {(ε, l); ε =−1,0,1, l ∈ Z≥0

} \ (0,0),

E + = {(ε, l) ∈ E ; ε ≥ 0
}

,

E − = {(ε, l) ∈ E ; ε ≤ 0
}

,
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1. The algebra SHc

1.1. The DDAHA. — We define

(1.1)

G = GLn, H = (C×)n, H+ = Cn, h= Lie(H),

C[H] = C
[

X±1
1 , . . . ,X±1

n

]

, C
[

H+]= C[X1, . . . ,Xn],
C[h] = C[x1, . . . , xn], C

[

h
∗]= C[y1, . . . , yn].

Here (y1, . . . , yn) is the basis dual to (x1, . . . , xn). The symmetric group Sn acts on H, h

and h∗. Let s1, . . . , sn−1 be the standard generators of Sn. For i �= j let sij be the trans-
position (ij). Finally, set F = C(κ) and A = C[κ]. The degenerate double affine Hecke algebra

(=DDAHA) of G is the associative F-algebra Hn generated by F[H], F[h∗] and F[Sn]
subject to the following set of relations

(1.2) sX±1
i = X±1

s(i) s, s ∈Sn,

(1.3) siy = si(y)si − κ〈xi − xi+1, y〉, y ∈ h
∗,

(1.4) [yi,Xj] =

⎧

⎪

⎨

⎪

⎩

−κXisij if i < j,

Xi + κ(
∑

k<i Xksik +∑k>i Xisik) if i = j,

−κXj sij if i > j.

Let S = 1
n!
∑

s∈Sn
s be the complete idempotent in C[Sn]. The spherical DDAHA of G is

(1.5) SHn = S ·Hn · S.
Let H+

n ⊂ Hn be the F-subalgebra generated by Sn and {yi,Xi; i ∈ [1, n]}. This is a defor-
mation of the algebra of polynomial differential operators on H. Similarly, let H−

n ⊂ Hn

be the subalgebra generated by Sn and {yi,X−1
i ; i ∈ [1, n]}. Write

(1.6) SH±
n = S ·H±

n · S, SH0
n = S · F

[

h
∗] · S.

Remark 1.1. — Formally setting κ = 0 in the relations of Hn yields a presentation
of the crossed product Diff(H)�Sn, with yi degenerating to Xi∂Xi

. The spherical DAHA
is a deformation of the ring Diff(H)Sn of symmetric differential operators on the torus H.

1.2. Filtrations on Hn and SHn. — We define the order filtration on Hn by letting yi be
of order 1 and s,X±1

i be of order 0. We define the rank grading on Hn by giving to s, yi the
degree 0 and to X±1

i the degree ±1. Let Hn[r,≤ l] be the piece of Hn of degree r and of
order ≤ l. The piece of degree r and of order ≤ l in SHn is

(1.7) SHn[r,≤l] = S ·Hn[r,≤l] · S = SHn ∩Hn[r,≤l].
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Similarly, we set

(1.8) SH+
n [r,≤l] = S ·H+

n [r,≤l] · S = SH+
n ∩Hn[r,≤l].

All the constructions given above make sense over the ring A. For instance, let Hn,A ⊂ Hn

be the A-subalgebra generated by Sn, A[h∗] and A[H], and put

(1.9)

SHn,A = S ·Hn,A · S = SHn ∩Hn,A,

Hn,A[r,≤l] = Hn,A ∩Hn[r,≤l],
SH+

n,A[r,≤l] = S ·H+
n,A[r,≤l] · S = SH+

n,A ∩Hn[r,≤l].
The PBW theorem for Hn,A implies that any element u of Hn,A has a unique decomposi-
tion of the form

(1.10) u =
∑

s∈Sn

hs(X)gs(y)s, gs(y) ∈ A
[

h
∗], hs(X) ∈ A[H].

Therefore, we have Hn,A ⊗A F = Hn. Since SHn,A is a direct summand of the A-module
Hn,A, we have also SHn,A ⊗A F = SHn. A similar argument yields

(1.11) Hn,A[r,≤l] ⊗A F = Hn[r,≤l], SHn,A[r,≤l] ⊗A F = SHn[r,≤l].
Let Hn,A and SHn,A be the graded A-algebras associated with the order filtrations on
Hn,A and SHn,A respectively. Let us state some useful consequences of the PBW theorem.
Whenever this makes sense we may abbreviate ad(z) for the commutator with z.

Proposition 1.2. — (a) An element u ∈ SHn,A is of order ≤ k if and only if

(1.12) ad(z1) ◦ · · · ◦ ad(zk)(u) ∈ S ·A[H] · S, ∀z1, . . . , zk ∈ S ·A[H] · S.
(b) The obvious maps yield A-algebra isomorphisms

A
[

H×h
∗]

�Sn = Hn,A, A
[

H×h
∗]Sn ·S = S ·A[H×h

∗] ·S = SHn,A.

Proof. — Let SHn,A[≤k] be the space of the elements of order ≤k in SHn,A. We
have

(1.13) Hn,A[≤k] =
{

∑

s

hs(X)gs(y)s;deg(gs)≤ k, ∀s

}

.

Let Uk be the set of elements of SHn,A satisfying (1.12). The inclusion SHn,A[≤k] ⊂ Uk

follows from (1.4). We prove the reverse inclusion by induction. For k = 0 there is nothing
to prove, so let us assume that Ul ⊂ SHn,A[≤ l] for all l < k. We have ad(p1(X))(yi)= Xi

for all i. From this and (1.13) we deduce that

(1.14)
{

u ∈ Hn,A;ad
(

p1(X)
)

(u) ∈ Hn,A[< j]}⊂ Hn,A[≤ j].
In particular, we have Uk ⊂ Hn,A[≤ k]. We are done. �
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Lemma 1.3. — The F-algebra SHn is generated by S · F[h∗] · S and S · F[H] · S. The

F-algebra SH+
n is generated by S · F[h∗] · S and S · F[H+] · S.

Proof. — First, we have an isomorphism

(1.15) SHn,A/(κ)� C
[

X±1
1 ,X1∂X1, . . . ,X±1

n ,Xn∂Xn

]Sn
.

A similar result holds for SH+
n,A = S ·H+

n,A · S. Next, the following is well-known.

Claim. — The algebra C[X±1
1 ,X1∂X1, . . . ,X±1

n ,Xn∂Xn
]Sn is generated by C[X±1

1 , . . . ,

X±1
n ]Sn and C[X1∂X1, . . . ,Xn∂Xn

]Sn . A similar result holds for C[X1,X1∂X1, . . . ,Xn,Xn∂Xn
]Sn .

We now prove the second statement of Lemma 1.3. We have

(1.16) SH+
n,A =
⊕

r≥0

⋃

l≥0

SH+
n,A[r,≤l]

and SH+
n,A[r,≤l] is a free A-module of finite rank such that

(1.17) SH+
n,A[r,≤l] ⊗A F = SH+

n [r,≤l],

because SH+
n,A[r,≤ l] is a direct summand in the A-module H+

n,A and H+
n,A ⊗A F = H+

n .
The claim above implies that SH+

n,A[r,≤ l]/(κ) is linearly spanned by a suitable set of
monomials in the elements Spl(X)S and Spl(y)S for l ≥ 0. Thus, by Nakayama’s lemma
and (1.17), we have that SH+

n [r,≤ l] is linearly spanned over F by the same set of mono-
mials. This proves the second statement in the lemma. The first one is now for instance a
consequence of the fact that any element of SHn belongs to (X1 · · ·Xn)

−l · SH+
n for l big

enough. �

The assignment Xi → X−1
i , yi → yi , s → s−1 extends to an algebra antiautomor-

phism π of Hn,A, as may be directly seen from the defining relations. It restricts to an
algebra antiautomorphism of SHn,A taking SH+

n,A to SH−
n,A. Thus SH−

n,A may be identi-
fied with (SH+

n,A)
op.

Remark 1.4. — Let A1 be the localization of A at the ideal (κ−1). We define Hn,A1

and SHn,A1 in the obvious way. Lemma 1.3 holds true with F replaced by A1. The proof
is similar to the proof of [4, Thm. 4.6]. It suffices to observe that the specialization of
SHn,A1 at κ = 1 is a simple algebra, because it is a (Ore) localization of a simple spherical
rational DAHA by [36, Prop. 4.1].
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1.3. The polynomial representation. — The tautological representation of Diff(H) �

Sn on C[H] can be deformed to a representation of Hn,A on A[H], see [10]. This repre-
sentation is defined by the following explicit formulas

(1.18)

ρn(s)= s,

ρn

(

X±1
i

)= X±1
i ,

ρn(yi)= Xi∂Xi
+ κ
∑

k �=i

1− sik

1−Xk/Xi

+ κ
∑

k<i

sik.

From now on we’ll write

(1.19) Wn,A = A[H], Vn,A = (Wn,A)
Sn .

We’ll abbreviate

(1.20) �=�F, �n =�n,F, Wn = Wn,F, Vn = Vn,F.

Theorem 1.5 (Cherednik). — The assignment ρn defines an embedding ρn : Hn,A →
End(Wn,A) which takes SHn,A into End(Vn,A).

The representation ρn is called the polynomial representation. The space �n,A is pre-
served by the action of the subalgebra SH+

n,A. Let ρ+
n denote the corresponding faithful

representation of SH+
n,A on �n,A. We set

(1.21) D̃(n)

0,l = S pl(y)S/l, l ≥ 1.

The elements D̃(n)

0,l generate a commutative subalgebra called the algebra of Sekiguchi op-

erators, see [34]. The joint spectrum in �n,A of the operators D̃(n)

0,l consists of the Jack

polynomials J(n)λ , for λ a partition with at most n parts, and their eigenvalues are described
by Lemma 1.6 below. We refer to Section 1.6 for more details on the notation for Jack
polynomials. Consider the generating function

(1.22) �n(u)= S
n
∏

i=1

(u+ yi)S =
n
∑

i=1

S eiS un−i.

Lemma 1.6 (Macdonald). — For l(λ)≤ n we have

�n(u) · J(n)λ =
n
∏

i=1

(

u+ λi + κ(n− i)
)

J(n)λ .

The above lemma only gives the eigenvalues of the elements S eiS for i ∈ [1, n], but
this is enough to determine the eigenvalues of all the operators D̃(n)

0,l . In fact, Lemma 1.6
has the following immediate corollary.
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Corollary 1.7. — For f ∈ C[y1, . . . , yn]Sn and l(λ)≤ n we have

Sf S · J(n)λ = f
(

λ1 + κ(n− 1), λ2 + κ(n− 2), . . . , λn

)

J(n)λ .

Since the joint spectrum of the D̃(n)

0,l is simple, the Jack polynomials {J(n)λ } are com-
pletely determined by Lemma 1.6, up to a scalar. Following Stanley [35] we normalize
this scalar by requiring that.

(1.23) J(n)λ ∈
⊕

(1n)<μ≤λ

Fmμ + |λ|!X1 · · ·Xn.

For future use, we state here the Pieri rules for Jack polynomials [35, thm 6.1]. For
a pair of partitions μ⊂ λ with |λ| − |μ| = 1 we write

(1.24) ψλ\μ =
∏

s∈Cλ\μ

hμ(s)

hλ(s)

∏

s∈Rλ\μ

hμ(s)

hλ(s)

where Cλ\μ and Rλ\μ are as in Section 0.1, and where for any box s of a partition λ, we
have set

(1.25) hλ(s)= κ lλ(s)+
(

aλ(s)+ 1
)

, hλ(s)= κ
(

lλ(s)+ 1
)+ aλ(s).

Theorem 1.8 (Stanley). — For l(μ)≤ n we have

(1.26) e1 J(n)μ =
∑

λ

ψλ\μ J(n)λ ,

where the sum ranges over all partitions λ of length at most n with μ⊂ λ and |λ| = |μ| + 1.

1.4. The normalized Sekiguchi operators. — The eigenvalues of the operators D̃(n)

0,l on
the Jack polynomial J(n)λ for l(λ) ≤ n do depend on n. In order to correct this, we will
introduce a new set of diagonalisable operators D(n)

0,l , whose eigenvalues on the J(n)λ ’s are
independent of n. We may think of these new operators as normalized Sekiguchi opera-
tors. We’ll use the following simple combinatorial lemma. Given a box s in the diagram
of a partition λ we’ll write

(1.27) c(s)= x(s)− κy(s).

Lemma 1.9. — For l ∈ N there exists a unique element B(n)

l ∈ A[y1, . . . , yn]Sn such that

B(n)

l (λ1 − κ,λ2 − 2κ, . . . , λn − nκ)=
∑

s∈λ
c(s)l, ∀ λ, l(λ)≤ n.
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Proof. — There exist polynomials Tr,i(z) ∈ A[z] such that for all l ≥ 0 we have

Tr,i(l)=
l
∑

j=1

(

(j − 1)− κ(i − 1)
)r
.

Then, for l(λ)≤ n, we have

∑

s∈λ
c(s)r =

n
∑

i=1

Tr,i(λi)=
n
∑

i=1

T̃r,i(λi − κ i), T̃r,i(z)= Tr,i(z + κ i).

The existence of B(n)
r will be proved if we can show that T̃r,i(z)− T̃r,j(z) ∈ A for any i, j

(as polynomials in z). For this, it is enough to show that for all i, j

(1.28) T̃r,i(z)− T̃r,i(z − 1)= T̃r,j(z)− T̃r,j(z − 1).

We have Tr,i(z)−Tr,i(z− 1)= (z− 1− κ(i− 1))r, since this holds for any z ∈ N. There-
fore T̃r,i(z)− T̃r,i(z − 1) = (z − 1 + κ)r for any i, from which (1.28) is immediate. The
unicity statement is clear. �

Now, we define the operators

(1.29) D(n)

0,l = SB(n)

l−1(y1 − nκ, y2 − nκ, . . . , yn − nκ)S, l ≥ 1.

By Corollary 1.7 and Lemma 1.9 we have,

(1.30) D(n)

0,l · J(n)λ =
∑

s∈λ
c(s)l−1J(n)λ , ∀λ, l(λ)≤ n.

In particular, we have D(n)

0,l(1)= 0 and the eigenvalues of D(n)

0,l are independent of n. It is
easy to see from the proof of Lemma 1.9 that

(1.31) B(n)

l−1 = pl/l + ql,

with ql a symmetric function of degree <l. Thus {B(n)
0 , . . . ,B(n)

n−1} is a system of generators
of the A-algebra A[y1, . . . , yn]Sn . Hence, we have the following.

Lemma 1.10. — The A-algebra SH0
n,A is generated by {D(n)

0,l ; l ≥ 1}.
Remark 1.11. — For each partition λ set n(λ)=∑i λ

′
i(λ

′
i − 1)/2, where as usual λ′

is the conjugate partition. The formula (1.30) yields

D(n)
0,2 · J(n)λ = (n(λ′)− κn(λ)

)

J(n)λ .

Thus, we have D(n)
0,2 = κ �n, where �n is the Laplace–Beltrami operator. See e.g., [25,

Chap. VI, Sect. 4, Ex. 3], where �n is denoted �κ−1

n .
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1.5. The algebras SH+
n and SH−

n . — Our aim is to construct some limit of the al-
gebra SHn and of the representation ρn as n tends to infinity. The algebras SHn do not
seem to form a nice projective system. Instead, our method is as follows

• first we define limits SH± for the subalgebras SH±
n ,

• then we define SH as some amalgamated product of SH+ with SH−.

To implement the second point, we first need to understand some relations between SH+
n

and SH−
n inside SHn. This is what we do in the present paragraph. For l ≥ 1 we set

(1.32)

D(n)
0,0 = nS,

D(n)

±l,0 = Sp
(n)

l

(

X±1
1 , . . . ,X±1

n

)

S,

D(n)

1,l =
[

D(n)

0,l+1,D(n)
1,0

]

,

D(n)

−1,l =
[

D(n)
−1,0,D(n)

0,l+1

]

.

By Lemma 1.3, the F-algebra SH±
n is generated by {D(n)

0,l , D(n)

±l,0; l ≥ 1}.

Definition 1.12. — Let SH>
n be the F-subalgebra of SH+

n generated by {D(n)

1,l ; l ≥ 0}. We

define the F-subalgebra SH<
n of SH−

n in a similar way.

Example 1.13. — The following identities hold

(1.33)

D(n)
1,1 = S
(

∑

i

Xiyi

)

S− κ(n− 1)D(n)
1,0/2,

D(n)
−1,1 = S

(

∑

i

yiX−1
i

)

S− κ(n− 1)D(n)
−1,0/2,

[

D(n)
1,1,D(n)

l,0

]= lD(n)

l+1,0,
[

D(n)

−l,0,D(n)
−1,1

]= lD(n)

−l−1,0, l ≥ 0.

The following is immediate.

Proposition 1.14. — For l ≥ 0 the following hold

(a) D(n)

l,0 ∈ SH>
n and D(n)

−l,0 ∈ SH<
n for l �= 0,

(b) for l(μ)≤ n we have

(1.34) D(n)

1,l · J(n)μ =
∑

λ

c(λ\μ)l ψλ\μ J(n)λ

where the sum ranges over all partitions λ with l(λ)≤ n, μ⊂ λ and |λ| = |μ| + 1.

Note that (1.34) and (1.30) imply that (1.32) holds also for l = 0. The next result
describes some of the relations between the three algebras SH>

n , SH0
n and SH<

n . As we
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will see in Proposition 1.26 below, these relations (which, thanks to the introduction of
D(n)

0,0, do not depend on n) are the only ones which survive in the limit n →∞. For l ≥ 0
we write

(1.35)

ξ = 1− κ,

G0(s)=− log(s),

Gl(s)=
(

s−l − 1
)

/l, l �= 0,

ϕl(s)=
∑

q=1,−ξ,−κ

sl
(

Gl(1− qs)−Gl(1+ qs)
)

.

Proposition 1.15. — The following relations hold in SHn

[

D(n)

0,l ,D(n)

1,k

]= D(n)

1,l+k−1,(1.36)
[

D(n)

0,l ,D(n)

−1,k

]=−D(n)

−1,l+k−1,(1.37)

(1.38)
[

D(n)

−1,k,D(n)

1,l

]= E(n)

k+l

where the elements E(n)

k+l are determined through the formula

(1.39)

1+ ξ
∑

l≥0

E(n)

l sl+1 = K
(

κ,D(n)
0,0, s
)

exp
(

∑

l≥0

D(n)

0,l+1 ϕl(s)

)

,

K(κ,ω, s)= (1+ ξ s)(1+ κωs)

1+ ξ s + κωs
.

Proof. — The first two relations are easily deduced from (1.30) and (1.34), and from
the faithfulness of the polynomial representation �n. The third relation is the result of a
direct computation, see Appendix B. �

From now on we’ll abbreviate ⊗=⊗F (the tensor product of F-vector spaces).

Proposition 1.16. — The multiplication map induces isomorphisms

SH>
n ⊗ SH0

n

∼−→ SH+
n , SH0

n ⊗ SH<
n

∼−→ SH−
n .

Proof. — By Lemma 1.3, the algebra SH+
n is generated by the pair of subalgebras

SH>
n , SH0

n . Next, (1.36) implies that [D(n)

0,l ,SH>
n ] ⊂ SH>

n for l ≥ 0. Thus we have SH0
n ·

SH>
n = SH>

n · SH0
n . The surjectivity of the multiplication map

(1.40) m : SH>
n ⊗ SH0

n→SH+
n

follows. To show that m is injective, we may use a degeneration argument similar to the
one in Lemma 1.3. We leave the details to the reader. �
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Corollary 1.17. — The multiplication map induces a surjective map SH>
n ⊗SH0

n ⊗SH<
n →

SHn.

Proof. — By Proposition 1.16 and Lemma 1.3, the F-algebra SHn is generated
by the triplet of subalgebras SH>

n , SH0
n , SH>

n , hence by the collection of genera-
tors {D(n)

1,l ,D(n)

0,l ,D(n)

−1,l}. We must check that any monomial in these generators may be
‘straightened’ into a linear combination of monomials in which the generators {D(n)

1,l ,
D(n)

0,l , D(n)

−1,l} appear in that fixed order. It is not difficult to see that relations (1.36)–(1.38)
enable one to do this. �

1.6. The algebra SH+. — Let us now address the problem of constructing a limit
SH+ of SH+

n . The following result is well-known, see e.g., [35, Prop. 2.5].

Lemma 1.18. — For l(λ)≤ n and for any positive integer m < n we have

J(n)λ (X1, . . . ,Xm,0, . . . ,0)=
{

J(m)

λ (X1, . . . ,Xm) if l(λ)≤ m,

0 if l(λ) > m.

This lemma allows one to define the limit of the symmetric polynomials J(n)λ as
n tends to infinity. We will write Jλ = Jλ(X) for this limit. It is called the integral form of

Jack’s symmetric function associated with the parameter α = 1/κ . It is denoted by the symbol
J(1/κ)λ in [25, Chap. VI, (10.22-3)]. The family {Jλ;λ ∈�} forms an F-basis of �, see [25,
Chap. VI]. The map πn : � → �n is given by πn(Jλ) = J(n)λ if l(λ) ≤ n and πn(Jλ) = 0
otherwise. The operators D(n)

l,0, for l ∈ N, being the multiplication in �n by symmetric
functions, obviously stabilize in the limit �, since � is a ring. For instance D(n)

1,0 is given
by the Pieri formula (1.26), whose coefficients are independent of n. In other words, we
have

(1.41) πn+1,n ◦D(n+1)
l,0 = D(n)

l,0 ◦ πn+1,n

where we have denoted by

(1.42) πn+1,n :�n+1 →�n

the projection maps. The kernels of the maps πn+1,n are linearly spanned by Jack poly-
nomials, and the operators D(n)

0,l are diagonalisable on the basis of Jack polynomials with
eigenvalues independent of n. This implies that for all n, l ≥ 1 we have

(1.43) πn+1,n ◦D(n+1)
0,l = D(n)

0,l ◦ πn+1,n.

Since the polynomial representation is faithful and since the F-algebra SH+
n is generated

by

(1.44)
{

D(n)

0,l , D(n)

l,0; l ≥ 1
}

,
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we deduce that the assignement

(1.45) D(n+1)
0,l → D(n)

0,l , D(n+1)
l,0 → D(n)

l,0

extends to a well-defined and surjective F-algebra homomorphism

(1.46) �n+1,n : SH+
n+1 → SH+

n .

This allows us to consider the following algebra.

Definition 1.19. — We define SH+ to be the F-subalgebra of
∏

n≥1 SH+
n generated by the

families D0,l = (D(n)

0,l) and Dl,0 = (D(n)

l,0) with l ≥ 1.

By construction, there are surjective maps

(1.47) �n : SH+ → SH+
n , D0,l → D(n)

0,l , Dl,0 → D(n)

l,0, l ≥ 1,

such that
⋂

n Ker(�n)= {0}. Further, we have the following.

Proposition 1.20. — There is a faithful representation ρ+ of SH+ on � such that, for l ≥ 1,

ρ+(D0,l)(Jλ)=
∑

s∈λ
c(s)l−1Jλ, ρ+(Dl,0)= multiplication by pl .

The map πn intertwines the representation ρ+ with the representation ρ+
n of SH+

n on �n.

Observe that {D0,l; l ≥ 1} generate a free commutative algebra which is isomor-
phic to �. The same holds for {Dl,0; l ≥ 1}. We define an N-grading on SH+, called the
rank grading, by putting Dl,0 in degree l and D0,l in degree 0. We define a N-filtration on
SH+, called the order filtration, such that an element u is of order ≤ k if

(1.48) ad(z1) ◦ · · · ◦ ad(zk)(u) ∈ F[Dl,0; l ∈ N], ∀z1, . . . , zk ∈ F[Dl,0; l ∈ N].
Let SH+[r,≤ l] the piece of degree r and order ≤ l. Note that any element of SH+ has
indeed a finite order. Consider the Poincaré polynomial

(1.49) PSH+(t, q)=
∑

r,l≥0

dim
(

SH
+[r, l]) trql, SH

+[r, l] = SH+[r,≤l]/SH+[r,<l].

Lemma 1.21. — The Poincaré polynomial of SH+ is given by

PSH+(t, q)=
∏

r,l

1
1− trql

, (r, l) ∈ N2
0.



232 OLIVIER SCHIFFMANN, ERIC VASSEROT

Proof. — By Proposition 1.2(b), the F-vector space

(1.50) SH
+
n [r, l] = SH+

n [r,≤l]/SH+
n [r,<l]

is isomorphic to the subspace of polynomials in

(1.51) F[X1, . . . ,Xn, y1, . . . , yn]Sn

of degree r in the Xi ’s and of degree l in the yi ’s. By Proposition 1.2(a) we have

(1.52) �n

(

SH+[r,≤l])= SH+
n [r,≤l].

Thus �n induces a surjective map

(1.53)
�n : SH

+ → SH
+
n , D0,l → p

(n)

l (y1, . . . , yn)/l,

Dl,0 → p
(n)

l (X1, . . . ,Xn), l ≥ 1.

Thus SH
+[r, l] is identified with the space of symmetric polynomials in infinitely many

variables

(1.54) F[X1,X2, . . . , y1, y2, . . . ]S∞

of degree r in the Xi ’s and degree l in the yi ’s. By Weyl’s theorem [41] the F-algebra (1.54)
is freely generated by the invariants

∑

k≥1 Xr
ky

l
k for r, l ≥ 0 and (r, l) �= (0,0). The result

easily follows. �

Remark 1.22. — The order filtration on SH+ is not the same as the filtration given
by putting Dl,0 of order 0 and D0,l of order ≤ l (see however Proposition 1.39).

Remark 1.23. — We have ρ+(D0,2)= κ �, where � is the Laplace-Beltrami oper-
ator in infinitely many variables, i.e., �=�κ−1 = lim←−�κ−1

n in Macdonald’s notations, see

Remark 1.11.

Remark 1.24. — There is a unique F-algebra homomorphism ε+ : SH+ → F such
that ε+(D0,l)= ε+(Dl,0)= 0 for l ≥ 1. Indeed, the sum of

⊕

r≥1 SH+[r] and of the aug-
mentation ideal of F[D0,l; l ≥ 1] is a two-sided ideal of SH+.

1.7. The algebra SH. — Our next objective is the construction of the limit of the
whole algebra SHn. We construct SH by ‘gluing’ together two copies of SH+, denoted
SH+ and SH−, with SH− = (SH+)op, along the subalgebra

(1.55) SH0 = F[D0,l; l ≥ 0].
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The extra generator D0,0, which accounts for the limit of the D(n)
0,0’s, may be considered

as a formal parameter. We’ll write ω = D0,0. For l ≥ 1 let D−l,0 ∈ SH− be the element
mapping to D(n)

−l,0 for any n. Consider the elements

(1.56) D1,l = [D0,l+1,D1,0], D−1,l = [D−1,0,D0,l+1], l ≥ 0.

Let SH> be the F-subalgebra of SH+ generated by {D1,l; l ≥ 0}. This is the limit of SH>
n

as n tends to infinity. Now put SH< = (SH>)op. We may view SH− and SH< as the limits
of SH−

n and SH<
n respectively. Note that SH< is the F-subalgebra of SH− generated by

{D−1,l; l ≥ 0}. We define

(1.57) SH>[r,≤l] = SH> ∩ SH+[r,≤l], SH>[r,≤l] = SH> ∩ SH+[r,≤l].

Definition 1.25. — Let SH be the F-algebra generated by SH>, SH0 and SH< modulo the

following set of relations

ω= D0,0 is central,(1.58)

[D0,l,D1,k] = D1,l+k−1, l ≥ 1,(1.59)

[D0,l,D−1,k] = −D−1,l+k−1, l ≥ 1,(1.60)

[D−1,k,D1,l] = Ek+l, l, k ≥ 0,(1.61)

where the elements Ek+l are determined through the formula

(1.62) 1+ ξ
∑

l≥0

El s
l+1 = K(κ,ω, s) exp

(

∑

l≥0

D0,l+1ϕl(s)

)

.

By Proposition 1.15, there are surjective maps

(1.63) �n : SH → SHn, D0,l → D(n)

0,l , D±l,0 → D(n)

±l,0, ω → nS, l ≥ 1.

As above, for each l ≥ 0 we write D0,l and D±l,0 for the families (D(n)

0,l) and (D(n)

±l,0) in
∏

n≥1 SHn. The definition of SH is justified by the following result.

Proposition 1.26. — (a) The multiplication map induces isomorphisms

SH> ⊗ SH0 � SH+ ⊗ F[ω], SH0 ⊗ SH< � SH− ⊗ F[ω],
SH> ⊗ SH0 ⊗ SH< � SH.

(b) The map
∏

n≥1 �n identifies SH with the F-subalgebra of
∏

n≥1 SHn generated by D0,l

and D±l,0 with l ≥ 0.
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Proof. — The surjectivity statements in (a) are proved as in Proposition 1.16 and
Corollary 1.17. To prove (a) it thus remains to show that the multiplication map

m : SH> ⊗ SH0 ⊗ SH< → SH

is injective. Consider the following commutative diagram

(1.64)

SH> ⊗ SH0 ⊗ SH<
m

�⊗3
n

SH

�n

SH>
n ⊗ SH0

n ⊗ SH<
n

m

SHn.

Let u ∈ Ker(m) and assume that u �= 0. There exist positive integers r1, r3, l1, l2, l3 such
that

u ∈ SH>[≤r1,≤l1] ⊗ SH0[≤l2] ⊗ SH<[≤r3,≤l3].
By Definition 1.19 we have

(1.65) SH> ⊂
∏

n≥1

SH>
n , SH< ⊂

∏

n≥1

SH<
n , SH0 ⊂

∏

n≥1

SH0
n .

Since we have

SH0
n = F
[

D(n)

0,l ; l ≥ 1
]

, SH0 = F[D0,l; l ≥ 0],
we have also an inclusion SH0 ⊂∏n≥1 SH0

n which identifies the element ω = D0,0 with
the family (nS). Thus, for n � 0 we have �⊗3

n (u) �= 0. By passing to the associated graded
and using the PBW theorem, we see that the restriction to

SH>
n [≤r1,≤l1] ⊗ SH0

n[≤l2] ⊗ SH<
n [≤r3,≤l3]

of the map m is injective for n � 0. But then �n ◦ m(u) �= 0, a contradiction. This
shows that Ker(m)= {0}. Our argument also implies that

⋂

n Ker(�n ◦ m)= {0}. Hence
⋂

n Ker(�n)= {0} because m is surjective. This implies the part (b). �

As a direct consequence of Lemma 1.21 and Proposition 1.26(a) we have the fol-
lowing.

Corollary 1.27. — The Poincaré polynomials of SH> and SH< are respectively given by

PSH>(t, q)=
∏

r>0

∏

l≥0

1
1− trql

, PSH<(t, q)=
∏

r<0

∏

l≥0

1
1− trql

.
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For a future use, let us mention also the following basic facts.

Proposition 1.28. — (a) The F-algebra SH is generated by the elements ω, D1,0, D−1,0, D0,2.

(b) There is a unique anti-involution π of SH such that π(D±1,l)= D∓1,l , π(D0,l)= D0,l .

Proof. — From (1.59)–(1.60) we see that D±1,l is an iterated commutator of D±1,0

and D0,2. From (1.61) we see that SH0 is generated by the commutators [D−1,k,D1,l] for
k, l ≥ 0. This proves (a). Part (b) is obvious. �

Remark 1.29. — Note that {Dl,0; l ∈ Z} generates a commutative subalgebra of SH
(use Proposition 1.26(b) and the commutativity of the elements D(n)

l,0, l ∈ Z, in SHn).

Remark 1.30. — In Corollary 6.4 we’ll give an explicit description of the subalgebra
SH> of SH+, as a certain shuffle algebra.

1.8. The algebra SHc. — Now, we define a central extension SHc of SH. To do
this, we introduce a new family c = (c0,c1, . . . ) of formal parameters, and for l ≥ 0 we
set

(1.66) φl(s)= slGl(1+ ξ s), SHc,0 = Fc[D0,l; l ≥ 0], Fc = F[cl; l ≥ 0].
Definition 1.31. — Let SHc be the Fc-algebra generated by SH>, SHc,0, SH< modulo the

following set of relations

[D0,l,D1,k] = D1,l+k−1, l ≥ 1,(1.67)

[D0,l,D−1,k] = −D−1,l+k−1, l ≥ 1,(1.68)

[D−1,k,D1,l] = Ek+l, l, k ≥ 0,(1.69)

where D0,0 = 0 and the elements Ek+l are determined through the formula

(1.70) 1+ ξ
∑

l≥0

El sl+1 = exp
(

∑

l≥0

(−1)l+1clφl(s)

)

exp
(

∑

l≥0

D0,l+1 ϕl(s)

)

.

Example 1.32. — A direct computation yields, see Section A,

E0 = c0, E1 =−c1 + c0(c0 − 1)ξ/2,

E2 = c2 + c1(1− c0)ξ + c0(c0 − 1)(c0 − 2)ξ 2/6+ 2κD0,1.

For l ≥ 2 we have also

(1.71) El = l(l − 1)κD0,l−1 mod SHc,0[≤l − 2]
where SHc,0[≤l − 2] is the space of elements of SHc,0 of order at most l − 2.
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Remark 1.33. — Given a family c = (c0, c1, . . . ) of elements in an extension of
the field F, let SHc be the specialization of SHc at c = c. The specialization at c = 0 is
canonically isomorphic to the specialization of SH at ω= 0. Next, a direct computation
shows that

K(κ,ω, s)= exp
(

∑

l≥0

(−1)l+1
(

δl,0 − κ lωl
)

φl(s)

)

.

Therefore, taking c0 = 0 and cl = −κ lωl in F(ω) for l ≥ 1, we get an F(ω)-algebra iso-
morphism SHc → SH such that D1,l → D1,l and D−1,l → D−1,l for each l ≥ 0.

Remark 1.34. — We abbreviate SHc0,c1 for the algebra associated with the family of
parameters (c0,c1,0, . . . ). By Appendix A, Remark A.1 there is an algebra isomorphism
SHc → SHc0,c1 ⊗ F[cl; l ≥ 2] such that D1,l → D1,l and D−1,l → D−1,l for each l ≥ 0. In
other words, the algebra SHc depends only on the parameters c0, c1 up to isomorphisms.

Proposition 1.35. — (a) The Fc-algebra SHc is generated by cl , D1,0, D−1,0, D0,2.

(b) There is a unique anti-involution π of SHc such that π(cl)= cl, π(D±1,l)= D∓1,l and

π(D0,l)= D0,l .

Proof. — Parts (a), (b) are proved as Proposition 1.28. �

The following specialization of the algebra SHc will be important for us.

Definition 1.36. — For a field extension F ⊂ K and an integer r > 0 let Kr = K(ε1, . . . , εr),

where ε1, . . . , εr are new formal variables. Consider the algebra homomorphism Fc → Kr , cl → cl =
pl(ε1, . . . , εr). We define the Kr -algebra SH(r)

K = SHc⊗Fc Kr . We write also SH(r),>
K = SH>⊗Kr

and SH(r),<
K = SH< ⊗Kr.

Like SH, the algebra SHc has a triangular decomposition. More precisely,

Proposition 1.37. — The multiplication map SH> ⊗ SHc,0 ⊗ SH< → SHc is an isomor-

phism.

Proof. — The injectivity follows from Corollary D.2 and the commutativity of the
diagram

(1.72)

SH(r),>
K ⊗ SH(r),0

K ⊗ SH(r),<
K SH(r)

K

(SH> ⊗ SHc,0 ⊗ SH<)⊗Kr SHc ⊗Kr
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for all r. The vertical maps are given by the specialization and the horizontal ones by the
multiplication. The proof of the surjectivity is similar to the proof of Corollary 1.17. Since
SHc is generated by SH>, SHc,0 and SH<, and since these subalgebras are respectively
generated by {D1,l; l ≥ 1}, {D0,l; l ≥ 0} and {D−1,l; l ≥ 0}, it suffices to prove that any
monomial Dx1 · · ·Dxs

may be expressed as a linear combination of monomials in which
the generators D1,l , D0,l , D−1,l appear in that fixed order. The relations (1.67)–(1.69)
allow one to do that. �

Remark 1.38. — There is a unique F-algebra homomorphism ε : SHc → F such
that ε|SH+ = ε+, ε|SH− = ε+ ◦ π and ε(cl) = 0 for each l ∈ N. Use Remark 1.24 and
Definition 1.31.

1.9. The order filtration on SHc. — In this section we extend the order filtration on
SH+ to SHc. Let SHc[s,≤ l] be the image by the multiplication map of the F-vector
space

(1.73)
∑

s1,s3,l1,l2,l3

SH>[s1,≤l1] ⊗ SHc,0[≤l2] ⊗ SH<[s3,≤l3].

The sum is over all tuples such that s1 − s3 = s and l1 + l2 + l3 = l. The F-subspaces
SH>[s1,≤ l1] and SH<[s3,≤ l3] are as in (1.57), and SHc,0[≤ l2] is the Fc-subalgebra of
SHc,0 spanned by the polynomials in the elements D0,l of order ≤ l2. By Proposition 1.37,
the F-algebra SHc carries a Z-grading and an N-filtration

(1.74)

SHc =
⊕

s∈Z

SHc[s], SHc =
⋃

l∈N

SHc[≤l],

SHc[s] =
⋃

l∈N

SHc[s,≤l], SHc[≤l] =
⊕

s∈Z

SHc[s,≤l].

We will prove that SHc, with this filtration, is a filtered algebra. This will imply that the
associated graded SH

c
is an algebra. Following (1.33), we define inductively the element

Dl,0 ∈ SHc so that D−1,0, D1,0 are as above and

(1.75) [D1,1,Dl,0] = lDl+1,0, [D−l,0,D−1,1] = lD−l−1,0, l ≥ 0.

In addition, for l, r ≥ 1, we set

(1.76) Dr,l = [D0,l+1,Dr,0], D−r,l = [D−r,0,D0,l+1].
This notation is compatible with the previous definition of D±1,l . The elements Dr,l satisfy
the following properties, see Lemma E.3,

(1.77) Dr,l ∈ SH>, D−r,l ∈ SH<, π(Dl,0)= D−l,0, [D0,1,Dl,0] = lDl,0.
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Proposition 1.39. — (a) The element Dr,d is of order d, i.e., we have

Dr,d ∈ SH>[≤d] \ SH>[<d], D−r,d ∈ SH<[≤d] \ SH<[<d], r ≥ 1.

The symbols of the elements D±r,d with (r, d) ∈ N2
0 freely generate SH

±
.

(b) The order filtration on SHc is determined by assigning to Dr,d , cl the orders d and zero.

(c) For l1, l2 ≥ 0 we have SHc[≤l1] · SHc[≤ l2] ⊆ SHc[≤ l1 + l2].
Proof. — It is known that D(n)

0,d is of order d in SH+
n for any n hence D0,d is of order d

in SH+. Similarly, Dr,0 is of order zero. It follows that Dr,d is of order at most d . Let D±r,d ,
(resp. D

(n)

±r,d ) be the symbol of the element D±r,d (resp. D(n)

±r,d ) in the associated graded SH
±

(resp. SH
±
n ). A direct computation shows that

(1.78) D
(n)

r,d = cr,d

∑

i

S X
r

i y
d
i S ∈ SH

+
n , cr,d ∈ F×.

This means that D(n)

r,d , hence also Dr,d , is of order d . Equation (1.78) also shows that the set

{D(n)

x ;x ∈ N2
0} generates SH

+
n , and therefore that {Dx;x ∈ N2

0} likewise generates SH
+

.
Comparing graded dimensions we get that these same generators freely generate SH

+
.

This proves (a) for SH+. The same proof works for SH−.
We now turn to part (b). Let SHc[�l] temporarily denote the degree at most l piece

of SHc with respect to the filtration defined by (b). By (a) we have SH±[� l] = SH±[≤ l]
for any l, and the same holds for SH>, SHc,0 and SH<. From the definition (1.73) we
immediately have SHc[≤l] ⊆ SHc[�l]. By construction, we have

(1.79) SHc[�l] = {u1u2 · · · us; ui ∈ SHεi [≤li], εi ∈ {>,0,<}, l1 + · · · + ls = l
}

.

Thus, in order to show the inclusion SHc[�l] ⊆ SHc[≤l], it is enough to prove that

(1.80) SHc[≤l1] · SHc[≤l2] ⊆ SHc[≤ l1 + l2],
which reduces to

(1.81) ad(Dr,d)
(

SHc[≤l])⊂ SHc[≤l + d].
Rather than using the elements Dr,d we introduce a more convenient set of elements. For
d ≥ 0 and r =−1,0,1 we set Yr,d = Dr,d and we define inductively, for r ≥ 2,

(1.82)

Yr,d =
{

[D1,1,Yr−1,d] if r − 1 �= d

[D1,0,Yr−1,d+1] if r − 1 = d,

Y−r,d =
{

[D−1,1,Y1−r,d] if r − 1 �= d

[D−1,0,Y1−r,d+1] if r − 1 = d.
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We have Yr,d ∈ SH> and Y−r,d ∈ SH<. One shows by arguments similar to those used in
(a) above that Yr,d is of order exactly d and that the symbols Yr,d freely generate SH

±
. We

will now prove that

(1.83) ad(Yr,d)
(

SHc[≤l])⊂ SHc[≤l + d].
Since ad(Yr,d) is an iterated commutator of operators ad(D0,l), ad(D±1,1),

ad(D±1,0), it is enough to prove (1.83) for each of those. For D0,l this comes from the
fact that SH± are filtered algebras. For the others it is enough to show that

(1.84) ad(D±1,1)(Y±r,l) ∈ SH±[≤l], ad(D±1,0)(Y±r,l) ∈ SH±[<l] r ≥ 0, l ≥ 0,

(1.85) ad(D±1,1)(Y∓r,l) ∈ SH∓[≤l], ad(D±1,0)(Y∓r,l) ∈ SH∓[<l] r > 0, l ≥ 0.

Both (1.84) and (1.85) easily follow from the inductive definition of Yr,d and from the
relations

[D−1,1,D1,1] = E2, [D−1,1,D1,0] = [D−1,0,D1,1] = E1.

Statement (c) was proved on the way. �

1.10. Wilson operators on SH>. — Recall that SH0 = F[D0,l; l ≥ 1]. By (1.67) the
commutator with D0,l preserves SH> and the operators ad(D0,l) commute with each
other. This extends uniquely to an action of the algebra SH0 on SH> satisfying

(1.86) D0,l • u = [D0,l, u], u ∈ SH>, l ≥ 0.

Recall that � carries a comultiplication given by

(1.87) �(pl)= pl ⊗ 1+ 1⊗ pl, l ≥ 1.

We’ll use Sweedler’s notation �(x)=∑ x1 ⊗ x2. We identify SH0 and � via D0,l → pl .
We hence have an action

(1.88) • :�⊗ SH> → SH>,

which we call the action by Wilson operators. For a field extension F ⊂ K let • denote again
the corresponding action of �K on SH>

K. The following lemma is left to the reader.

Lemma 1.40. — (a) The action of � on SH> preserves each graded piece of SH>,

(b) the action of � on the degree n part of SH> factors through �n,

(c) the Wilson operators are compatible with the coproduct, namely

x • (uv)=
∑

(x1 • u)(x2 • v), x ∈�, u, v ∈ SH>.
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1.11. The Heisenberg and Virasoro subalgebras. — For l ≥ 1 we define the following
elements

(1.89)

bl = κ−lD−l,0, b−l = Dl,0, b0 = E1/κ,

Hl = κ−lD−l,1/l + (1− l)c0ξbl/2, H−l = Dl,1/l + (1− l)c0ξb−l/2,

H0 = [H1,H−1]/2.

These elements will be important to define a Virasoro subalgebra in a completion of
SH(r)

K in Section 8.11. In Appendix E we prove the following.

Proposition 1.41. — For k, l ∈ Z we have

[bl, b−k] = l δl,k c0/κ,(1.90)

[H−1, bl] = −l bl−1, [H1, bl] = −lbl+1.(1.91)

Let H be the Heisenberg subalgebra of SHc generated by {bl; l ∈ Z} and c0.

2. Equivariant cohomology of the Hilbert scheme

In this section, we recall briefly the structure of the Hilbert scheme of points on
the complex plane C2, and we define a convolution algebra acting on its (equivariant,
Borel-Moore) homology groups. This is essentially a homology version of the K-theoretic
construction given in [33], to which we refer the reader for a more detailed treatment. All
the geometric properties of the Hilbert scheme which we use below may be found in [12,
40].

2.1. Equivariant cohomology and Borel-Moore homology. — Let G be a complex, con-
nected, linear algebraic group and let X be a G-variety, that is an algebraic variety
equipped with a rational G action. By a variety we always mean a complex quasi-
projective variety. Let Hi

G(X) and HG
i (X) be the equivariant cohomology group and

the equivariant Borel-Moore homology group of X, with C coefficients. We write

(2.1) HG(X)=
⊕

i

Hi
G(X), HG(X)=

⊕

i

HG
i (X).

Both of these spaces are graded modules over the graded ring RG = HG(•), where •
is a point with a trivial G-action. Recall that HG

i (X) = H−i
G (X, D) where D is the G-

equivariant dualizing complex, see [5, Def. 3.5.1] or [19, Sect. 5.8]. Recall that

(2.2) HG
i (X)= Hi+2 dim E−2 dim G(X×G E),

where E → E/G is a principal G-bundle such that Hj(E) = 0 for j = 1,2, . . . , i. The
cup product endows HG(X) with the structure of a graded commutative RG-algebra. We
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denote by [Y] ∈ HG(X) the fundamental class of a G-stable subvariety Y ⊂ X. If Y is
pure of dimension d then the class [Y] has the degree 2d . Let us now assume that X is
smooth and connected. Then the map α → α · [X], where · denotes the cap product,
defines a Poincaré duality isomorphism

(2.3) Hi
G(X)→ HG

2 dim X−i(X).

This allows us to define a product on HG(X), dual to the cup product on HG(X). If E is
a G-equivariant vector bundle over X then we write

ci(E) ∈ H2i
G(X), ci(E)= ci(E) · [X] ∈ HG

2 dim X−2i(X)

for the equivariant Chern classes of E. We write eu(E)= cr(E) where r is the rank of E.
We call eu(E) the Euler class of E. We have

c1

(

E⊕ E′)= c1(E)+ c1

(

E′), eu
(

E⊕ E′)= eu(E) eu
(

E′).

Fix a morphism f : X → Y of complex G-varieties. If f is a proper map there is a direct
image homomorphism

(2.4) f∗ : HG
i (X)→ HG

i (Y).

If f is a fibration or if X, Y are smooth complex G-varieties there is an inverse image
homomorphism (given, in the second case, by the Poincaré duality isomorphism and the
pull-back in equivariant cohomology)

(2.5) f ∗ : HG
i (Y)→ HG

i+2d(X), d = dim X− dim Y.

Note that if Y is smooth and Z ⊂ Y is closed then HG(Z)= HG(Y,Y \Z). So, if X, Y are
both smooth and Z ⊂ Y is closed then the pull-back in equivariant cohomology gives a
map

(2.6) HG(Z)= HG(Y,Y \ Z)→ HG

(

X,X \ f −1(Z)
)= HG
(

f −1(Z)
)

.

These maps fit into the commutative square

(2.7)

HG(Z) HG(f −1(Z))

HG(Y) HG(X).

Further, given a Cartesian square of smooth complex G-varieties

(2.8) Y′

i′

X′
g

i

Y X,
f
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where i, i′ are proper, we have the base change identity f ∗i′∗ = i∗g∗. If Y′, X′ are no longer
smooth but i, i′ are closed embeddings then the inverse morphism g∗ is still well-defined
and the base change identity above holds.

Example 2.1. — Assume that T is a torus and that X is a point. Then RT = S(t∗),
where t is the Lie algebra of T. Let E be a finite dimensional representation of T. Write
it as a sum of characters E = χ1 ⊕ · · · ⊕ χr with χa : T → C×. Then we have cl(E) =
el(dχ1, . . . , dχr) where dχa ∈ t∗ is the differential of χa. In particular,

(2.9) c1(E)=
∑

a

dχa ∈ R2
T, eu(E)=

∏

a

dχa ∈ R2r
T .

Note that, since the Euler class is multiplicative, we may consider the element eu(E) in
KT, the fraction field of RT, for an arbitrary virtual T-module E. For any characters χ ,
χ ′ of T, we may abbreviate χ∗ = χ−1 and χ ⊗ χ ′ = χ χ ′. If T = (C×)2 we get

(2.10) RT = C[x, y],
where x = c1(q)= dq, y = c1(t)= dt and q, t are the characters of T given by

(2.11) q(z1, z2)= z−1
1 , t(z1, z2)= z−1

2 .

2.2. Correspondences. — We can now define the convolution product in equivariant ho-
mology. Let X1,X2,X3 be smooth connected algebraic G-varieties. Let us denote by
πij : X1 ×X2 ×X3 → Xi ×Xj the projection along the factor not named. If X1,X2,X3

are proper, there is a map

(2.12)
� : HG(X1 ×X2)⊗HG(X2 ×X3)→ HG(X1 ×X3),

α⊗ β → π13!
(

π∗
12(α) · π∗

23(β)
)

.

If X1 = X2 = X3 = X then the map � equips HG(X×X) with the structure of an associa-
tive RG-algebra. If X1 = X2 = X and X3 = • then we obtain an action of the RG-algebra
HG(X×X) on the RG-module HG(X). If X1,X2,X3 are not proper but there is a smooth
closed G-subvariety Z ⊂ X1 × X2 such that the projection Z → X1 is proper then any
element z ∈ HG(Z) defines an RG-linear operator

(2.13) HG(X2)→ HG(X1), α → z � α = π1!
(

z · π∗
2 (α)
)

.

If the projection Z → X1 is not proper but i : Zc → Z is the inclusion of a smooth closed
G-subvariety such that π1◦ i is proper, then any element zc ∈ HG(Zc) defines an RG-linear
operator

(2.14) HG(X2)→ HG(X1), α → zc � α = π c
1!
(

zc · π c,∗
2 (α)
)

, π c
a = πa ◦ i,

and the projection formula implies that zc � α = i∗(zc) � α.
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Remark 2.2. — The RG-modules HG(X1), HG(X2) are graded by the homological

and cohomological degrees, for which HG
i (Xa) has the degree i and 2 dim Xa− i respectively.

Let deg denote the homological degree and cdeg the cohomological degree. Then, if
z ∈ HG

i (Z) then the convolution by z is a homogeneous operator for the (co-)homological
degrees, and we have

(2.15) deg(z � •)= i − 2 dim X2, cdeg(z � •)= 2 dim X1 − i.

2.3. The Hilbert scheme. — Let Hilbn denote the Hilbert scheme parametrizing
length n subschemes of C2. By Fogarty’s theorem it is a smooth irreducible variety of
dimension 2n. By associating to a closed point of Hilbn its ideal sheaf we obtain a bijec-
tion (at the level of points)

Hilbn(C)= {I ⊂ C[X,Y]; I is an ideal of codimension n
}

.

Let us denote by S = C[X,Y] the ring of regular functions on C2. The tangent space
TIHilbn at a closed point I ∈ Hilbn(C) is canonically isomorphic to the vector space
HomS(I,S/I).

2.4. The torus action on Hilbn. — Consider the torus T = (C×)2. The torus T acts
on A2 via (z1, z2) · (u, v)= (z1u, z2v). There is an induced action on S given by (z1, z2) ·
P(X,Y)= P(z−1

1 X, z−1
2 Y) and one on Hilbn such that

(2.16) (z1, z2) · I = {P(z−1
1 X, z−1

2 Y
);P(X,Y) ∈ I

}

, ∀I ∈ Hilbn(C).

This action has a finite number of isolated fixed points, indexed by the set of partitions of
the integer n. To such a partition λ � n corresponds the fixed point Iλ where

(2.17) Iλ =
⊕

s �∈λ
CXx(s)Yy(s).

When I = Iλ is a T-fixed point, there is an induced T-action on TIHilbn. In order to
describe this action, we fix a few notations concerning T. Consider the characters q, t as
in Example 2.1. For V a T-module let [V] be its class in the Grothendieck group of T.
We abbreviate Tλ = [TIλHilbn]. It is given by

(2.18) Tλ =
∑

s∈λ

(

tl(s)q−a(s)−1 + t−l(s)−1qa(s)
)

.

We set euλ = eu(T∗
λ).
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2.5. The Hecke correspondence Hilbn,n+1. — Let k ≥ 0. The nested Hilbert scheme
Hilbn,n+k is the reduced closed subscheme of Hilbn ×Hilbn+k parametrizing pairs of ideals
(I, J) where J ⊂ I. One defines the nested Hilbert scheme Hilbn+k,n in a similar fashion. Of
course Hilbn,n is simply the diagonal of Hilbn ×Hilbn. The schemes Hilbn,n+k are smooth
if k = 0 or k = 1, see [9]. The tangent space at a point (I, J) ∈ Hilbn,n+k is the kernel of
the obvious map

(2.19) ψ : HomS(I,S/I)⊕HomS(J,S/J)→ HomS(J,S/I).

When k = 1 the map ψ is surjective. The diagonal T-action on Hilbn ×Hilbn+k preserves
Hilbn,n+k. The fixed points contained in Hilbn,n+k are those pairs Iμ,λ = (Iμ, Iλ) for which
μ ⊂ λ. The character of the fiber at Iμ,λ of the normal bundle to Hilbn,n+1 in Hilbn ×
Hilbn+1 is

(2.20) Nμ,λ =
∑

s∈μ

(

tlμ(s)q−aλ(s)−1 + t−lλ(s)−1qaμ(s)
)

.

Of course, similar formulas hold for the nested Hilbert scheme Hilbn+1,n.

2.6. The tautological bundles. — Let �n ⊂ Hilbn ×A2 be the universal family and let
p : Hilbn × A2 → Hilbn be the projection. The tautological bundle of Hilbn is the locally free
sheaf τn = p∗(O�n

). The fiber of τn at a point I ∈ Hilbn(C) is S/I. The character of the
T-action on its fiber at the fixed point Iλ is

(2.21) τλ =
∑

s∈λ
ty(s)qx(s).

Next, let π1, π2 be the projections of Hilbn × Hilbn+1 to Hilbn and Hilbn+1 respectively.
Over Hilbn,n+1 there is a surjective map π∗

2 (τn+1)→ π∗
1 (τn). Over the point (I, J) it spe-

cializes to the map S/J → S/I. The kernel sheaf is a line bundle, which we call the tau-

tological bundle of Hilbn,n+1 and which we denote by τn,n+1. Over a T-fixed point Iμ,λ its
character is

(2.22) τμ,λ = ty(s)qx(s)

where s = λ\μ is the unique box of λ not contained in μ. Finally, let π1, π2 be the
projections of Hilbn × Hilbn to Hilbn. Over Hilbn,n we have the vector bundle τn,n =
π∗

2 (τn) = π∗
1 (τn). We call it the tautological bundle of Hilbn,n. Over a T-fixed point Iλ,λ its

character is τλ,λ = τλ.

2.7. The algebra˜E(1)
K and the˜E(1)

K -module˜L(1)
K . — Recall that

(2.23) RT = C[x, y], x = dq, y = dt.
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Consider the fraction field

(2.24) KT = Frac(RT)= C(x, y).

If no confusion is possible we abbreviate

(2.25) R = RT, K = KT.

By the Atiyah-Bott localization theorem, the direct image by the inclusion HilbT
n ⊂ Hilbn

yields a canonical isomorphism

(2.26)
⊕

λ�n

K[Iλ] = HT(Hilbn)⊗R K.

Similarly, there is an isomorphism

(2.27)
⊕

λ�n
μ�m

K[Iλ,μ] = HT(Hilbn ×Hilbm)⊗R K, Iλ,μ = (Iλ, Iμ).

So, we may define a K-algebra structure on

(2.28) ˜E(1)
K =
⊕

k∈Z

∏

n

HT(Hilbn+k ×Hilbn)⊗R K,

together with an action on the K-vector space

(2.29) ˜L(1)
K =
⊕

n

˜L(1)
n,K =
⊕

n

HT(Hilbn)⊗R K.

In (2.28), the product ranges over all values of n ≥ 0 such that n + k ≥ 0. The integer k

provides a Z-grading on ˜E(1)
K , and the N-grading on ˜L(1)

K turns it into a faithful graded
˜E(1)

K -module.

2.8. The algebra ˜U(1)
K . — Let i : Hilbn+1,n → Hilbn+1 ×Hilbn be the closed embed-

ding. For notational convenience, the pushforward i∗ c1(τn+1,n) of the Chern class of the
line bundle τn+1,n on Hilbn+1,n will simply be denoted by c1(τn+1,n). We will use similar
notation for the tautological bundles τn,n+1 on Hilbn,n+1 and τn,n on Hilbn,n. For l ≥ 0 we
consider the following elements in˜E(1)

K

(2.30) f1,l =
∏

n≥0

c1(τn+1,n)
l, f−1,l =

∏

n≥0

c1(τn,n+1)
l, e0,l =

∏

n≥0

cl(τn,n).

We used the convention that c0(τn,n) = n[Hilbn,n]. Let ˜U(1)
K be the K-subalgebra of ˜E(1)

K

generated by

{f−1,l, e0,l, f1,l; l ≥ 0}.
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Observe that since the e0,l ’s are supported on the diagonal of the Hilbert scheme, their
convolution product is given by the cup product in the equivariant cohomology groups of
the Hilbert scheme. Therefore, the subalgebra of ˜U(1)

K generated by {e0,l; l ≥ 0} is commu-
tative. Let us introduce another set of elements {f0,l; l ≥ 0} defined through the following
formula

(2.31)
∑

l≥1

f0,l s
l−1 =−∂s log

(

e(s)
)

, e(s)= 1+
∑

k≥1

(−1)ke0,ks
k, f0,0 = e0,0.

Under restriction, the canonical representation of ˜E(1)
K on ˜L(1)

K yields a faithful represen-
tation of ˜U(1)

K on˜L(1)
K . We call it the canonical representation of ˜U(1)

K on˜L(1)
K .

Remark 2.3. — Given a splitting into a sum of line bundles τn,n = φ1 ⊕ · · · ⊕φn, we
get

f0,l =
∏

n≥0

pl(α1, . . . , αn), αi = c1(φi), l ≥ 0.

2.9. From ˜U(1)
K to ˜SH

(1)
K . — Consider the inclusion

(2.32) F → K, κ → −y/x.

Let ˜SH
(1)
K be the specialization of SHc ⊗ K at c = (1,0, . . .). It can be viewed as a

specialization of the K1-algebra SH(1)
K at ε1 = 0. We set

(2.33) h0,l+1 = x−l f0,l, h1,l = x1−l yf1,l, h−1,l = x−l f−1,l, l ≥ 0.

We can now state our first result, compare [33, Thm. 3.1]. The proof is given in Section 5.
Recall the definition of E in (0.7).

Theorem 2.4. — There is a K-algebra isomorphism 
 : ˜SH
(1)
K → ˜U(1)

K such that Dx → hx

for x ∈ E .

We identify˜L(1)
K with �K by the K-linear map

(2.34) �K →˜L(1)
K , Jλ → [Iλ].

Corollary 2.5. — Under the map 
, the representation of ˜U(1)
K on ˜L(1)

K gives a faithful repre-

sentation ρ̃(1) of ˜SH
(1)
K on �K.

Proposition 2.6. — We have

(a) ρ̃(1)(b−l)= multiplication by pl and ρ̃(1)(bl)= lκ−1∂pl
for l ≥ 1,

(b) ρ̃(1)(D0,1)=∑i Xi∂Xi
and ρ̃(1)(D0,2)= κ�.
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Proof. — The representation ρ̃(1) extends the representation ρ+ in Proposition 1.20,
see the proof of Proposition 5.1 for details. Thus, for l ≥ 1, the operators ρ̃(1)(b−l),
ρ̃(1)(D0,1) and ρ̃(1)(D0,2) are as in the proposition above by Remark 1.23. Next, we have
ρ̃(1)(bl) · 1 = 0 and the map

(2.35) K[b−l; l ≥ 1]→�K, u → ρ̃(1)(u) · 1

is an isomorphism. Further, by Proposition 1.41 the elements bl , l ∈ Z, generate a Heisen-
berg algebra of central charge κ−1. This forces ρ̃(1)(bl) to be given by the formula
above. �

The representation ρ̃(1) extends both the representation ρ+ of SH+ in Proposi-
tion 1.20 and the standard Fock space of the Heisenberg algebra. We’ll call it the Fock
space of ˜SH

(1)
K .

3. Equivariant cohomology of the moduli space of torsion free sheaves

The Hilbert scheme of C2 is isomorphic to the moduli space of framed torsion free
rank one coherent sheaves on P2. We now generalize the considerations above to higher
ranks.

3.1. The moduli space of torsion free sheaves. — Fix integers r > 0, n ≥ 0. Let Mr,n be
the moduli space of framed torsion-free sheaves on P2 with rank r and second Chern
class n. More precisely, C-points of Mr,n are isomorphism classes of pairs (E,�) where E
is a torsion-free sheaf which is locally free in a neighborhood of �∞ and � : E |�∞ → Or

�∞
is a framing at infinity. Here �∞ = {[x : y : 0] ∈ P2} is the line at infinity. Recall that Mr,n is
a smooth variety of dimension 2rn which admits the following alternative description. Let
E be an n-dimensional vector space. We have Mr,n = Ms

r,E/GLE where Ms
r,E = Ns

r,E∩Mr,E,
with

(3.1)

Ns
r,E =
{

(a, b, ϕ, v) ∈ Nr,E; (a, b, ϕ, v) is stable
}

,

Mr,E =
{

(a, b, ϕ, v) ∈ Nr,E; [a, b] + v ◦ ϕ = 0
}

,

Nr,E = g
2
E ×Hom

(

E,Cr
)×Hom

(

Cr,E
)

.

The GLE-action is given by g(a, b, ϕ, v)= (gag−1, gbg−1, ϕg−1, gv). The tuple (a, b, ϕ, v)

is stable iff there is no proper subspace E1 � E which is preserved by a, b and contains
v(Cr). From now on we may abbreviate G = GLE and g= gE.

3.2. The torus action on Mr,n. — Put D = (C×)r and T = (C×)2. We abbreviate
˜D = D×T. Set also x = c1(q), y = c1(t) and ea = c1(χa) for a ∈ [1, r]. We have

(3.2) Rr = R
˜D = C[x, y, e1, . . . , er], Kr = K

˜D = C(x, y, e1, . . . , er).
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The characters q = χx, t = χy and χa = χea of ˜D are given by

(3.3) q(h, z1, z2)= z−1
1 , t(h, z1, z2)= z−1

2 , χa(h, z1, z2)= h−1
a , h = (h1, h2, . . . , hr).

We equip the variety Nr,E with the ˜D-action given by

(3.4) (h, z1, z2) · (a, b, ϕ, v)= (z1a, z2b, z1z2hϕ,vh−1
)

.

This action preserves Ms
r,E, descends to Mr,n, on which it has a finite number of isolated

fixed points which are indexed by the set of r-partitions of n. To the r-partition λ corre-
sponds a fixed point Iλ such that the character Tλ of the ˜D-module TIλMr,n is given by
[31, Thm. 2.11]

(3.5) Tλ =
r
∑

a,b=1

∑

s∈λ(a)

χaχ
−1
b tl

λ(b)
(s)q−a

λ(a)
(s)−1 +

r
∑

a,b=1

∑

s∈λ(b)

χaχ
−1
b t−l

λ(a)
(s)−1qa

λ(b)
(s).

3.3. The Hecke correspondence Mr,n,n+1. — Now, we assume that dim(E)= n+1. The
Hecke correspondence is the geometric quotient Mr,n,n+1 = Zs

r,E/G, where Zs
r,E is the variety

of all tuples (a, b, ϕ, v,E1) where (a, b, ϕ, v) ∈ Ms
r,E and E1 ⊂ Ker ϕ is a line preserved

by a, b. We define also

(3.6) Mc
r,n,n+1 =

{

(a, b, ϕ, v,E1) ∈ Zs
r,E; a|E1 = b|E1 = 0

}

/G.

Write E2 = E/E1 and consider the induced linear maps

(3.7) v̄ = π ◦ v, ā, b̄ ∈ gE2, ϕ̄ ∈ Hom
(

E2,Cr
)

.

Let π1, π2 be the projections of Mr,n×Mr,n+1 to Mr,n, Mr,n+1. The following is well-known.

Proposition 3.1. — (a) The variety Zs
r,E is a G-torsor over Mr,n,n+1.

(b) The variety Mr,n,n+1 is a smooth variety of dimension 2rn+ r + 1.

(c) The closed subvariety Mc
r,n,n+1 is also smooth.

(d) The map (a, b, ϕ, v) → (ā, b̄, ϕ̄, v̄), (a, b, ϕ, v) is a closed immersion Mr,n,n+1 ⊂
Mr,n ×Mr,n+1. The restriction of π2 to Mr,n,n+1 is proper. The restriction of π1 to Mc

r,n,n+1 is proper.

The pair Iμ,λ = (Iμ, Iλ) belongs to Mr,n,n+1 if and only if μ⊂ λ and the r-partitions
μ, λ have weight n, n+ 1 respectively. Let Nμ,λ be the character of the fiber at Iμ,λ of the
normal bundle (in Mr,n ×Mr,n+1) of Mr,n,n+1. We set also Nλ,μ = Nμ,λ. Finally, we define

(3.8) euλ = eu
(

T∗
λ

)

, euλ,μ = euλ euμ .
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3.4. The tautological bundles. — The tautological bundle of Mr,n is the ˜D-equivariant
bundle τn = Ms

r,E ×G E. The character of the ˜D-module τn|Iλ is given by [31, Thm. 2.11],
[37, Lemma 6]

(3.9) τλ =
∑

a

∑

s∈λ(a)

χ−1
a ty(s)qx(s).

Set v = (qt)−1. The characters Tλ and τλ are related by the following equation

(3.10) Tλ =−(1− q−1
)(

1− t−1
)

τλ ⊗ τ ∗λ + τλ ⊗W∗ + vτ ∗λ ⊗W,

where W = χ−1
1 + · · · + χ−1

r is the tautological representation of D. For μ⊂ λ we have
also

(3.11)

Nμ,λ =−(1− q−1
)(

1− t−1
)

τμ ⊗ τ ∗λ + τμ ⊗W∗ + vτ ∗λ ⊗W− v,

Nμ,λ =
∑

a,b

∑

s∈μ(a)

χaχ
−1
b t

l
μ(b) (s)q−a

λ(a)
(s)−1 +
∑

a,b

∑

s∈λ(b)

χaχ
−1
b t−l

λ(a)
(s)−1q

a
μ(b) (s) − v.

Over Mr,n,n+1 there is a surjective map π∗
2 (τn+1)→ π∗

1 (τn). The kernel sheaf is a
line bundle called the tautological bundle of Mr,n,n+1 which we denote by τn,n+1. Over Iμ,λ its
character is

(3.12) τμ,λ = χ−1
a ty(s)qx(s), μ⊂ λ.

Here s = λ(a)\μ(a) is the unique box of λ not contained in μ. We define the Hecke cor-
respondence Mr,n+1,n and the tautological bundle τn+1,n over it in the obvious way, so that
we get τλ,μ = τμ,λ.

3.5. The algebra E(r)
K and the E(r)

K -module L(r)
K . — Consider the graded Rr-modules

(3.13)

L(r)
n = H˜D(Mr,n), L(r) =

⊕

n≥0

L(r)
n ,

E(r)
n =
∏

k

H˜D(Mr,n+k ×Mr,k), E(r) =
⊕

n∈Z

E(r)
n ,

where the product ranges over all integers k ≥ 0 with n + k ≥ 0. They are known to be
torsion free. We abbreviate

(3.14)

H˜D(Mr,n ×Mr,m)K = H˜D(Mr,n ×Mr,m)⊗Rr
Kr,

E(r)
n,K =
∏

k

H˜D(Mr,n+k ×Mr,k)K, E(r)
K =
⊕

n∈Z

E(r)
n,K

L(r)
n,K = L(r)

n ⊗Rr
Kr, L(r)

K =
⊕

n≥0

L(r)
n,K.
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The variety Mr,n is not proper but it has a finite number of fixed points by the˜D-action. By
the Atiyah-Bott localization theorem, the direct image by the obvious inclusion M˜Dr,n →
Mr,n provides us with canonical isomorphisms

(3.15) L(r)
n,K =
⊕

λ

Kr[Iλ], E(r)
n,K =
∏

k

⊕

λ,μ

Kr[Iλ,μ],

where λ, μ run over the set of r-partitions of n+ k, k respectively. This allows us to define,
by convolution, an associative multiplication on E(r)

K and an action of E(r)
K on L(r)

K .

3.6. The algebras U(r)
K and SH(r)

K . — Consider the inclusion F ⊂ K in (2.32). For
l ≥ 0 we define the following elements in E(r)

K

(3.16) f1,l =
∏

n≥0

c1(τn+1,n)
l, f−1,l =

∏

n≥0

c1(τn,n+1)
l, e0,l =

∏

n≥0

cl(τn,n).

We define also the element f0,l through the relations (2.31). We abbreviate

(3.17) h0,l+1 = x−l f0,l, h1,l = x1−l yf1,l, h−1,l = (−1)r−1x−l f−1,l .

From (3.9) and the formulas above we get the following identity, compare (C.6),

(3.18) f0,l
([Iλ]
)=
∑

a

∑

s∈λ(a)

ca(s)
l [Iλ], ca(s)= x(s) x + y(s) y− ea.

Recall the field Kr = K(ε1, . . . , εr) from Definition 1.36. Write

(3.19) εa = ea/x, a ∈ [1, r].
We consider the Kr-subalgebras of E(r)

K given by

• U(r)
K is generated by {f−1,l, e0,l, f1,l; l ≥ 0},

• U(r),+
K by {e0,l, f1,l; l ≥ 0} and U(r),−

K by {f−1,l, e0,l; l ≥ 0},
• U(r),<

K by {f−1,l; l ≥ 0} and U(r),>
K by {f1,l; l ≥ 0},

• U(r),0
K by {f0,l; l ≥ 0},

Theorem 3.2. — The assignment Dx → hx for x ∈ E extends to a Kr -algebra isomorphism


 : SH(r)
K → U(r)

K which takes SH(r),>
K , SH(r),0

K , SH(r),<
K into U(r),>

K , U(r),0
K , U(r),<

K .

Corollary 3.3. — Under the map 
 , the representation of U(r)
K on L(r)

K gives a faithful repre-

sentation ρ(r) : SH(r)
K −→ End(L(r)

K ).

Proof. — The theorem is proved in Section 6. The faithfulness of ρ(r) is proved in
Section D.2. �
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Remark 3.4. — We have ρ(1)(D0,2) = x−1f0,1. Therefore, comparing Proposi-
tion 1.20 with (3.18) we get the following formula ρ(1)(D0,2)+ ε1ρ

(1)(D0,1)= κ �.

Remark 3.5. — Since L(r) is torsion free as an Rr-module, we can view it as an
Rr-submodule of L(r)

K . Since the projection π1 : Mr,n+1,n → Mr,n+1 is proper, we have
f1,l(L(r))⊂ L(r). Since

xy c1(τn,n+1) ∈ Im
{

H˜D∗
(

Mc
r,n,n+1

)→ H˜D∗ (Mr,n,n+1)
}

,

we have also xy f−1,l(L(r))⊂ L(r). Finally, we have f0,l(L(r))⊂ L(r). Therefore, the operators

(3.20) ρ(r)
(

xl−1y−1D1,l

)

, ρ(r)
(

xl+1yD−1,l

)

, ρ(r)
(

xlD0,l+1

)

, l ≥ 0,

preserve the lattice L(r). More generally, using (1.76), we get that the operators

(3.21) xd−1y−lρ(r)(Dl,d), xd−1+2l ylρ(r)(D−l,d), l ≥ 0

preserve also the lattice L(r).

Remark 3.6. — The Rr-module L(r) is bi-graded: it is first graded by the c2, for
which the degree n piece is L(r)

n,K, and then by the (co-)homological degree, for which
H˜Di (Mr,n) has the degree 4rn − 2i or 2i respectively. The operator ρ(r)(Dx) is homoge-
neous for the (co-)homological degrees. For x ∈ E with x = (ε, d) we have

(3.22) cdeg
(

ρ(r)(Dx)
)= 2ε(r + 1).

More generally, using (1.76), the formula (3.22) is again true for any ε ∈ Z.

3.7. The pairing on L(r)
K . — The cup product equips the Kr-vector space L(r)

K with a
Kr-bilinear form (•,•) such that for all r-partitions λ, μ we have

(3.23)
([Iλ], [Iμ]

)= δλ,μ euλ .

Let f ∗ denote the adjoint of a Kr-linear operator f on L(r)
K with respect to this pairing.

Using this anti-involution, we can prove the following.

Proposition 3.7. — The assignment h1,l → h−1,l and h0,l → h0,l for l ≥ 0 extends to an

algebra anti-involution U(r),+
K → U(r),−

K which takes U(r),>
K onto U(r),<

K .

Proof. — By (7.85), for any r-partitions λ, π such that λ⊂ π and |λ| = |π | − 1, we
have

(3.24)
([Iπ ], f1,l[Iλ]

)= c1(τλ,π )
l eu
(

N∗
λ,π

)= (f−1,l[Iπ ], [Iλ]
)

.
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Thus, we get the following

(3.25) f ∗1,l = f−1,l, h∗1,l = (−1)r−1xy h−1,l .

Clearly, we have also

(3.26) h∗0,l = h0,l .

The proposition follows. �

Proposition 3.8. — For (l, d) ∈ N2
0 we have ρ(r)(Dl,d)

∗ = (−1)(r−1)lxlylρ(r)(D−l,d).

Proof. — For (l, d) ∈ E this is (3.25), (3.26). The claim follows by applying (1.75),
(1.76). �

Remark 3.9. — The cup-product in cohomology gives a K-bilinear form (•,•) on
˜L(1)

K such that

(3.27)
([Iλ], [Iμ]

)= δλ,μ(−1)|λ|
∏

s∈λ

(

xa(s)− y
(

l(s)+ 1
))(

x
(

a(s)+ 1
)− yl(s)

)

.

Under the map (2.34) this pairing is taken to
⊕

n≥0(−y2)n(•,•)1/κ . Here (•,•)1/κ is the in-
ner product which has Jack polynomials as an orthogonal basis of �K. See [25, Chap. VI,
Sect. 10] for details.

3.8. Wilson operators on U(r),>
K and L(r)

K . — The product of the Rr-algebra homo-
morphisms

(3.28) R
˜G → H

˜D(Mr,n), e
(n)

l → cl(τn), n ≥ 0

gives an Rr-algebra homomorphism

(3.29) �Rr
→
∏

n

H
˜D(Mr,n), p → p(τ )= (p(τn)

)

.

Composing it with the cup product, we get a �Kr
-module structure • on L(r)

K which pre-
serves the direct summand L(r)

n,K for each n. The �Kr
-action on L(r)

n,K factors through a
�n,Kr

-action via the map πn. We define an action of �Kr
on End(L(r)

K ) by setting

(3.30) pl • u = [pl(τ ), u
]

, u ∈ End
(

L(r)
K

)

, l ≥ 1.

This action preserves each graded component of End(L(r)
K ). Note that the Kr-subalgebra

U(r),>
K of End(L(r)

K ) carries an induced N-grading with f1,l being of degree one for all l.
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Example 3.10. — The restriction of the Wilson operator pl to L(r)
n,K is the cup prod-

uct with

(3.31) pl(τn)= pl

(

c1(ρ1), . . . , c1(ρn)
)

,

if τn = ρ1 + · · · + ρn is a sum of invertible ˜D-equivariant bundles. Thus pl • f1,k is repre-
sented by the correspondence

∏

n≥0

c1(τn,n+1)
k
(

pl(τn+1)− pl(τn)
)=
∏

n≥0

c1(τn,n+1)
kpl(τn,n+1)=

∏

n≥0

c1(τn,n+1)
l+k

from which we get

(3.32) pl • f1,k = f1,l+k.

For r-partitions λ, μ with μ⊂ λ and for any p ∈�Kr
we write also

(3.33) τμ,λ = τλ − τμ, p(τμ,λ)= p
(

c1(ρ1), . . . , c1(ρn)
)

,

if τμ,λ = ρ1 + · · · + ρn is a sum of ˜D-characters.

The following lemma is left to the reader. We’ll use Sweedler’s notation �(a) =
∑

a1 ⊗ a2.

Lemma 3.11. — (a) The action of �Kr
on End(L(r)

K ) preserves U(r),>
K ,

(b) the action of �Kr
on the degree n part of U(r)

K factors through �n,Kr
,

(c) for a ∈�Kr
, u, u′ ∈ U(r),>

K and v ∈ L(r)
K we have

a • u(v)=
∑

(a1 • u)(a2 • v), a • uu′ =
∑

(a1 • u)
(

a2 • u′
)

,

(d) the Kr -algebra isomorphism 
 : SH(r),>
K → U(r),>

K intertwines the �Kr
-actions.

For an element u ∈ U(r),>
K and for r-partitions λ, μ let 〈λ; u;μ〉 be the coefficient

of [Iλ] in u([Iμ]). This coefficient is zero unless μ⊂ λ. For p ∈�Kr
we have

(3.34) 〈λ; p • u;μ〉 = p(τμ,λ)〈λ; u;μ〉.
We will say an element p ∈ Frac(�n,Kr

) is regular if it is regular at τμ,λ for any λ,μ with
|λ\μ| = n. If p is regular then its action on U(r),>

K is well-defined. Indeed, it is well-defined
on any operator γ ∈ End(L(r)

K ) satisfying

〈λ;γ ;μ〉 �= 0 ⇒ μ⊂ λ.

We now provide an explicit description of the action of some element of U(r),>
K on

L(r)
K in terms of Wilson operators. For this we define a surjective Kr-linear map

(3.35) ι : Kr[z1, . . . , zn]→ U(r),>
K , z

l1
1 · · · zln

n → f1,l1 · · · f1,ln
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and a twisted symmetrization map

(3.36) �n:
{

Kr[z1, . . . , zn]→ Kr(z1, . . . , zn)
Sn = Frac(�n,Kr

)

P(z1, . . . , zn) → SYMn(g(z1, . . . , zn)P(z1, . . . , zn))

where SYMn is the standard symmetrization map

(3.37) SYMn : Kr(z1, . . . , zn)→ Kr(z1, . . . , zn)
Sn, P →

∑

σ∈Sn

σ · P,

and where

(3.38) g(z1, . . . , zn)=
∏

i<j

g(zi − zj), g(z)= (z + x)(z+ y)

z(z+ x + y)
.

For n ≥ 1 consider the element γn in E(r)
n,K given by

(3.39) γn =
∏

μ⊂λ

aμ,λ eu−1
μ [Iλ,μ],

(3.40) aμ,λ = eu
(

(1− q)(1− t)
(

τ ∗μ,λ ⊗ τλ
)− τ ∗μ,λ ⊗W− nv−1

)

,

where the product ranges over all r-partitions λ, μ such that μ⊂ λ, |λ| = |μ| + n. This
element gives rise to an operator of degree n in End(L(r)

K ). Let γn denote also this operator.
It does not belong to U(r),>

K unless n = 1 (then it is the product of the fundamental classes
of the correspondences Mr,k,k+1 for k ≥ 0).

Lemma 3.12. — For P ∈ Kr[z1, . . . , zn] the element �n(P) is regular and ι(P)=�n(P) •
γn in End(L(r)

K ).

Proof. — See Appendix D.3. �

Proposition 3.13. — The action of �n,Kr
on the degree n part of U(r),>

K is torsion free.

Proof. — By Lemma 3.12, it is enough to show that the map

(3.41) �n,Kr
→ End
(

L(r)
K

)

, p → p • γn

is injective. Now, an element p ∈�n,Kr
annihilates γn if and only if

(3.42) μ⊂ λ, |λ\μ| = n, aμ,λ �= 0 ⇒ p(τμ,λ)= 0.

We claim that in fact aμ,λ �= 0 for any pair satisfying μ⊂ λ and |λ\μ| = n. This indeed
implies that any p which annihilates γn must be zero because the collection of possible
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values of (c1(ρ1), . . . , c1(ρn)) is Zariski dense in Kn
r . To prove the claim we must check

that the trivial representation does not appear in

(3.43) (1− q)(1− t)
(

τ ∗μ,λ ⊗ τλ
)− τ ∗μ,λ ⊗W.

Recall that

(3.44) τμ,λ =
r
∑

a=1

∑

s∈λ(a)\μ(a)

χ−1
a ty(s)qx(s).

The multiplicity of the trivial representation in (3.43) is a sum of contributions from each
box s ∈ λ\μ. It is easy to check using (3.44) that this contribution is precisely zero for
each box. We are done. �

4. Equivariant cohomology of the commuting variety

In this section we introduce an algebra SCo in the equivariant cohomology of the
commuting variety. Then we provide a description of SCo in terms of shuffle algebras. In
Section 6 we will construct an action of SCo on L(r) and we’ll compare SCo with SH>.

4.1. Correspondences in equivariant Borel-Moore homology. — Let G be a complex linear
algebraic group. Let P ⊂ G a parabolic subgroup and M ⊂ P a Levi subgroup. Fix an M-
variety Y. The group P acts on Y through the obvious group homomorphism P → M.
Let X = G×P Y be the induced G-variety. Now assume that Y is smooth. For any smooth
subvariety O ⊂ Y let T∗

OY be the conormal bundle to O. It is well-known that the induced
M-action on T∗Y is Hamiltonian and that the zero set of the moment map is the closed
M-subvariety

T∗
MY =
⊔

O

T∗
OY,

where O runs over the set of M-orbits. See e.g., [11, Prop. 1.4.8]. Further we have [33]

(4.1) T∗X = T∗
P(G×Y)/P, T∗

GX = G×P T∗
MY.

So the induction yields a canonical isomorphism

(4.2) HM
(

T∗
MY
)= HG
(

T∗
GX
)

.

We’ll call fibration a smooth morphism which is locally trivial in the analytic topology. Let
X′ be a smooth G-variety and V be a smooth M-variety. Fix M-equivariant homomor-
phisms

(4.3) Y V
p q

X′
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with p a fibration and q a closed embedding. Set W = G×P V and consider the following
maps

(4.4)
X W

f g

X′ ,

f : (g, v) mod P → (g, p(v)
)

mod P,

g : (g, v) mod P → gq(v).

Note that V, W, X, X′ are smooth. Further, the map f is a G-equivariant fibration, the
map g is a G-equivariant proper morphism, and the map f × g is a closed embedding
W ⊂ X×X′. See [33] for details. We’ll identify W with its image in X×X′. The G-variety

(4.5) Z = T∗
W

(

X×X′)

is again smooth and the obvious projections yield G-equivariant maps

(4.6) T∗X Z
φ ψ

T∗X′ .

We define the G-variety

(4.7) ZG = Z∩ (T∗
GX×T∗

GX′).

The following is immediate.

Lemma 4.1. — (a) The map ψ is proper, the varieties T∗X, Z and T∗X′ are smooth.

(b) We have φ−1(T∗
GX)= ZG and ψ(ZG)⊂ T∗

GX′.

We’ll abbreviate φG = φ|ZG and ψG = ψ |ZG. We have the following diagram of
singular varieties

(4.8) T∗
GX ZG

φG ψG

T∗
GX′ .

Since the map ψG is proper the direct image yields maps

(4.9) ψG,∗ : HG(ZG)→ HG
(

T∗
GX′).

Since Z, T∗X are smooth and φ−1(T∗
GX)= ZG, the pull-back by φ yields a map

(4.10) φ∗
G : HG
(

T∗
GX
)→ HG(ZG).

Composing ψG,∗ and φ∗
G we get a map

(4.11) ψG,∗ ◦ φ∗
G : HG
(

T∗
GX
)→ HG

(

T∗
GX′).
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By (4.1) the induction yields also an isomorphism

(4.12) HM
(

T∗
MY
)= HG
(

T∗
GX
)

.

Composing it by ψG,∗ ◦ φ∗
G we obtain a map

(4.13) HM
(

T∗
MY
)→ HG

(

T∗
GX′).

4.2. The commuting variety. — We’ll apply the general construction above to the
commuting variety. First, we fix some notation. Let E be a finite dimensional C-vector
space. Write

(4.14) gE = End(E), CE =
{

(a, b) ∈ gE × gE; [a, b] = 0
}

.

We may abbreviate G = GLE, g= gE and C = Cg = CE. Put˜G = T×G with T = (C×)2.

The group ˜G acts on C: the subgroup G acts diagonally by the adjoint action on g, while
T acts by (e, f ) · (a, b) = (ea, fb). We set Co′

E = H˜G(C). Let K
˜G be the fraction field of

R
˜G. Let Vn be the groupoid formed by all n-dimensional vector spaces with their isomor-

phisms and set V =⊕n≥0 Vn. An isomorphism E → E′ yields an R-module isomorphism
Co′

E → Co′
E′ . Let Co′ be the colimit of the system (Co′

E) where E varies in V . It is an
N-graded vector space. The piece Co′

n of degree n is the colimit over the groupoid Vn.

4.3. The cohomological Hall algebra. — Fix a flag of finite dimensional vector spaces

(4.15) 0 E1 E E2 0.

Set G = GLE, M = GLE1 × GLE2 and P = {g ∈ G; g(E1) = E1}. Let g, m and p be the
corresponding Lie algebras. Put Y =m, V = p, and X′ = g. The G-action on X′ and the
M-action on Y are the adjoint ones. Put

(4.16)
Cm = (m×m)∩C, Cp = (p× p)∩Cg,

˜Cm = {(d, a, b) ∈ p×m×m; dm = [a, b]},
where p : p→m, a → am is the canonical projection. We apply the general construction
in Section 4.1 to the diagram (4.3) equal to

(4.17) m p
p q

g,

where q is the obvious inclusion. The P-actions on p × p and on p × m × m are the
obvious ones. Further we identify g∗ = g and m∗ =m via the trace.
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Lemma 4.2. — (a) There are isomorphisms of G-varieties

T∗X = G×P ˜Cm, Z = G×P (p× p), T∗X′ = g× g.

(b) For a, b ∈ p we have

φ
(

(g, a, b) mod P
)= (g, [a, b], am, bm

)

mod P,

ψ
(

(g, a, b) mod P
)= (gag−1, gbg−1

)

.

(c) There are isomorphisms of G-varieties

T∗
GX = G×P Cm, ZG = G×P Cp, T∗

GX′ = Cg.

(d) The maps φ, ψ, φG, ψG in the following diagram are the obvious ones

G×P Cm G×P Cp

φG ψG
Cg,

G×P ˜Cm G×P (p× p)
φ ψ

g× g.

We define as in (4.13) an R-linear map

(4.18) H˜M(Cm)→ H˜G(Cg).

By the Kunneth formula, it can be viewed as a map

(4.19) Co′
E1
⊗R Co′

E2
→ Co′

E.

The following is proved as in [33, Prop. 7.5].

Proposition 4.3. — The map (4.19) equips Co′ with the structure of an R-algebra with 1.

We call the N-graded R-algebra Co′ the cohomological Hall algebra. Let SCo′ be
the R-subalgebra of Co′ generated by Co′

1. We’ll abbreviate SCo′
n = Co′

n ∩ SCo′ and
G = GLn. The direct image by the obvious inclusion Cg ⊂ g× g, which is a proper map,
yields an R

˜G-module homomorphism

(4.20) Co′
n → H˜G(g× g).

We conjecture that (4.20) is an injective map. Since the kernel of (4.20) is the torsion
submodule Cotor

n of Co′
n by the localization theorem, this conjecture is equivalent to the

following one.

Conjecture 4.4. — The R
˜G-module Co′

n is torsion-free.
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Let Con, SCon be the image of Co′
n, SCo′

n by (4.20) and set

(4.21) Co =
⊕

n≥0

Con, SCo=
⊕

n≥0

SCon.

We call SCo the spherical subalgebra of Co.

Proposition 4.5. — The map (4.20) yields surjective R-algebra homomorphisms Co′ → Co
and SCo′ → SCo.

Proof. — For E ∈ V let CoE be the quotient of Co′
E by its torsion R

˜GLE -submodule
Cotor

E . Given E1,E2,E as in (4.15), we must check that the map (4.19) fits into a commu-
tative square

(4.22)

Co′
E1
⊗R Co′

E2
Co′

E

CoE1 ⊗R CoE2 CoE.

Recall that CoE is identified with the image by the obvious map

(4.23) H˜G(Cg)→ H˜G(g× g).

Similarly, since ˜Cm is isomorphic to u×m×m as an ˜M-module, where u is the nilpotent
radical of p, we can identify CoE1 ⊗R CoE2 with the image of the direct image by the
obvious inclusion

(4.24) H˜M(Cm)→ H˜M(˜Cm).

So the proposition follows from the commutativity of the diagram

(4.25)

H˜G(G×P Cm)
φ∗G

H˜G(G×P Cp)
ψG,∗

H˜G(Cg)

H˜G(G×P ˜Cm)
φ∗

H˜G(G×P (p× p))
ψ∗

H˜G(g× g).
�

For any commutative ring extension R ⊂ L we abbreviate

(4.26) Co′
L = Co′ ⊗R L, SCo′

L = SCo′ ⊗R L, SCoL = SCo⊗R L, etc.
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4.4. The shuffle algebra. — Fix E ∈ Vn. Let G = GLn and let D ⊂ G be a maximal
torus. The Poincaré duality and the inverse image by the obvious inclusion {0}→ g× g

yield an isomorphism H˜G(g × g) = R
˜G. Composing it with (4.20) we get an R

˜G-linear
map

(4.27) γG : Co′
n → R

˜G.

Taking the tensor power over R, we define an R
˜D-linear map

(4.28) γD = (γC×)⊗n : (Co′
1

)⊗n → R
˜D.

Recall that there are obvious isomorphisms

(4.29) R
˜D = R[z1, z2, . . . , zn], R

˜G = R[z1, z2, . . . , zn]Sn .

Let K
˜D, K
˜G be the fraction fields and SYMn : K

˜D → K
˜G be the symmetrization operator.

Proposition 4.6. — We have the commutative diagram

(Co′
1)

⊗n
μn

γD

Co′
n

γG

R
˜D

νn

R
˜G,

where μn is the multiplication in Co′ and νn is given by

(4.30)

νn

(

P(z1, . . . , zn)
)= SYMn

(

k(z1, z2, . . . , zn)P(z1, z2, . . . , zn)
)

,

k(z)= z−1(x + y+ z)(x − z)(y− z),

k(z1, z2, . . . , zn)=
∏

i<j

k(zi − zj).

Proof. — Let d be the Lie algebra of D. Since Cd is a vector space, the R
˜D-module

H˜D(Cd) is spanned by the set

(4.31)
{

zm · [Cd];m ∈ Nn
}

, zm = z
m1
1 z

m2
2 · · · zmn

n , m = (m1,m2, . . .mn) ∈ Nn.

Here [Cd] is the fundamental class and · is the R
˜D-module structure on H˜D(Cd). Note

that

(4.32) γD

(

zm · [Cd]
)= zm.



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 261

Let B ⊂ G be a Borel subgroup containing T. Let b = Lie(B) and let n be its nilpotent
radical. We have

(4.33)
T∗

GX = G×B Cd, T∗X = G×B (n×Cd),

Cd = d× d, Z = G×B (b× b).

Let Ind denote the induction

(4.34) H˜D(•)= H˜B(•)→ H˜G(G×B •).
Consider the elements in H˜G(T∗

GX) given by

(4.35) αm = Ind
(

zm · [Cd]
)

, m ≥ 0.

For a future use, we consider also the following commutative diagram

(4.36)

T∗
GX

j

T∗
GX′ = Cg

T∗X Z
ψφ

T∗X′ = g× g

G/B

i

π {0}.
h

The vertical maps are the obvious inclusions. The multiplication (4.19) gives

(4.37) νn

(

zm
)= h∗ψ∗φ∗j∗(αm).

Now, we compute the right hand side of (4.37). We have

(4.38) j∗(αm)= Ind
(

zm eu
(

vn
∗) · [n×Cd]

)

.

Therefore we have also

(4.39) φ∗j∗(αm)= Ind
(

zm eu
(

vn
∗) · [b× b]).

Tensoring by K
˜G, the maps i∗, i∗ become invertible by the localization theorem. We have

(4.40) νn

(

zm
)= h∗ψ∗i∗ Ind

(

zm eu
(

vn
∗) eu
(

q−1
b
∗ + t−1

b
∗)−1 · [G/B]),

= h∗h∗π∗ Ind
(

zm eu
(

vn
∗) eu
(

q−1
b
∗ + t−1

b
∗)−1 · [G/B]),

= eu
(

q−1
g
∗ + t−1

g
∗) · π∗ Ind

(

zm eu
(

vn
∗) eu
(

q−1
b
∗ + t−1

b
∗)−1 · [G/B]),

= π∗ Ind
(

zm eu
(

vn
∗ + q−1

n+ t−1
n
) · [G/B]).



262 OLIVIER SCHIFFMANN, ERIC VASSEROT

Thus the integration over the set (G/B)
˜D yields the formula

(4.41) νn

(

zm
)= SYMn

(

k(z1, z2, . . . , zn) zm
)

. �

Now, we equip the R-module

(4.42) Sh=
⊕

n≥0

Shn, Shn = R[z1, . . . , zn]Sn

with the shuffle multiplication given by

(4.43) (P ·Q)(z1, . . . , zm+n)

= 1
n!m! SYMn+m

((

∏

i,j

k(zi − zj)

)

P(z1, . . . , zn)Q(zn+1, . . . , zn+m)

)

.

The product runs over all i, j with 1 ≤ i ≤ n < j ≤ n+ m. For dim E = 1 and l ≥ 0 let

(4.44) θl = zl · [CE].

The following direct consequence of Proposition 4.6 is the first main result of this chapter.

Theorem 4.7. — There is a unique R-algebra embedding SCo ⊂ Sh such that θl → (z1)
l ,

where z1 is viewed as an element in Sh1.

We state one useful consequence.

Corollary 4.8. — For u ∈ C the assignment θl →∑l

i=0

(

l

i

)

ul−iθi extends to an algebra auto-

morphism τu of SCo. We have τu ◦ τv = τu+v for u, v ∈ C.

Proof. — Under the embedding SCo ⊂ Sh the map τu is the restriction of the auto-
morphism induced by the substitution zi → zi + u. Observe that k(z1, . . . , zn) is invariant
under this substitution. �

4.5. Wilson operators on C and SCo. — The canonical R
˜GLn

-module structure on
Co′

n gives a graded �-algebra structure on Co′ and Co, which we will denote by •.

Lemma 4.9. — (a) The action of � on Co, Co′ preserves the spherical subalgebras SCo′,
SCo.

(b) The �-action on Co′
n, Con factors through �n.

(c) For p ∈� and u, v ∈ Co′ (or Co) we have p • (uv)=∑(p1 • u)(p2 • v).
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Proof. — Statement (b) is clear. Observe that pl • θk = θl+k , hence (c) implies (a).
Finally (c) is a consequence of the commutativity of the following diagram

(4.45)

�K

�

πn+m

�n+m,K R
˜GLn+m

�K ⊗K �K

πn⊗πm

�n,K ⊗K �m,K R
˜M

where M ⊂ GLn+m is the standard parabolic with Levi GLn ×GLm, and where the right-
most arrow is the restriction map. �

5. Proof of Theorem 2.4

5.1. Part 1: the positive and negative halves. — We define subalgebras ˜U(1),±
K ,˜U(1),>

K ,
˜U(1),<

K and ˜U(1),0
K of ˜E(1)

K in a way entirely similar to that used for the subalgebras
U(r),±

K ,U(r),>
K ,U(r),<

K and U(r),0
K of E(r)

K in Section 3.6. Our first task is to construct an iso-
morphism ˜U(1),+

K → SH+
K. For this, we will use the canonical representation of ˜U(1),+

K

on ˜L(1)
K . It is the restriction of the canonical representation of ˜U(1)

K on ˜L(1)
K considered in

Section 2.8.

Proposition 5.1. — (a) The map Dx → hx for x ∈ E + yields an algebra isomorphism 
+ :
˜SH

(1),+
K → ˜U(1),+

K which takes ˜SH
(1),>
K onto ˜U(1),>

K .

(b) The map (2.34) intertwines ρ+ with the canonical representation of ˜U(1),+
K on˜L(1)

K .

Proof. — First, we compare the action of Dx on �K with the action of hx on ˜L(1)
K ,

under the isomorphism (2.34). These actions are described by the formulas (1.30) and
(1.34) for Dx, and by the formulas (C.6) and (C.4) for hx. These formulas coincide, because
ψλ\μ = Lμ,λ. Since ρ+ is a faithful representation, see Proposition 1.20, this yields the
isomorphism 
+ above. �

Remark 5.2. — By Propositions 1.35 and 3.7, the K-algebras ˜SH
(1),−
K and ˜U(1),−

K

are isomorphic to the opposite K-algebras of ˜SH
(1),+
K and ˜U(1),+

K respectively. Thus, by
Proposition 5.1, the assignment Dx → hx for x ∈ E − extends to an algebra isomorphism

− : ˜SH

(1),−
K → ˜U(1),−

K .

5.2. Part 2: glueing the positive and negative halves. — We must prove that the two alge-
bra isomorphisms 
+, 
− glue together to an algebra homomorphism

(5.1) 
 : ˜SH
(1)
K → ˜U(1)

K .
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It suffices to check (1.69). The proof of this relation follows from Appendix D by set-
ting r = 1 and ea = 0 there. To finish the proof of Theorem 2.4, it remains to show that
the map 
 is an isomorphism. Since it is clearly surjective, we only have to check that
it is injective. Our argument is based on the existence of triangular decompositions for
˜SH

(1)
K and ˜U(1)

K . First, let us quote the following proposition whose proof is given in Ap-
pendix C.2.

Proposition 5.3. — The multiplication gives an isomorphism

m :˜U(1),>
K ⊗K ˜U

(1),0
K ⊗K ˜U

(1),<
K → ˜U(1)

K .

Let 
>, 
0, 
< be the restrictions of 
+, 
− to ˜SH
(1),>
K , ˜SH

(1),0
K and ˜SH

(1),<
K .

We have the following commutative diagram

(5.2)

˜SH
(1),>
K ⊗K ˜SH

(1),0
K ⊗K ˜SH

(1),<
K


>⊗
0⊗
<

m

˜U(1),>
K ⊗K ˜U

(1),0
K ⊗K ˜U

(1),<
K

m

˜SH
(1)
K



˜U(1)

K .

Further, we have the following isomorphisms

(5.3) ˜SH
(1),0
K = K[D0,l; l ≥ 1], ˜U(1),0

K = K[h0,l; l ≥ 1].

Thus, by Proposition 5.1 and Proposition 5.3, the top arrow and the right one are iso-
morphisms. The left arrow is surjective by Proposition 1.37. Thus the left arrow and the
bottom one are both isomorphisms. Theorem 2.4 is proved.

6. Proof of Theorem 3.2

6.1. Part 1: the positive and negative halves. — Given E1,E ∈ V with E1 ⊂ E, we write

(6.1)
E2 = E/E1, M = GLE1 ×GLE2, P = {g ∈ G; g(E1)= E1

}

,

X′ = g×Hom
(

Cr,E
)

, Y =m×Hom
(

Cr,E2

)

, V = p×Hom
(

Cr,E
)

.

Here p, m are the Lie algebras of P, M. Consider the obvious maps

(6.2) π : E → E2, p : V → Y, q : V → X′.
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For x ∈ p let xm be its projection in m, modulo the nilpotent radical u of p. Let X, W, Z,
ZG, φ, ψ be as in Section 4.1 and Mr,E, Nr,E be as in (3.1). Define

(6.3)

Nm = (gE1)
2 ×Nr,E2 =m

2 ×Hom
(

E,Cr
)×Hom

(

Cr,E
)

,

Mm = CE1 ×Mr,E2 =
{

(a, b, ϕ, v) ∈ Nm;0 = [a, b] + v ◦ ϕ
}

,

Np = p
2 ×Hom

(

E2,Cr
)×Hom

(

Cr,E
)

,

Mp = Np ∩Mr,E =
{

(a, b, ϕ, v) ∈ Np;0 = [a, b] + v ◦ ϕ
}

,

˜Nm = {(c, a, b, ϕ, v) ∈ p×Nm; cm = [a, b] + v ◦ ϕ
}� u×Nm.

We have the following technical lemma [33, Lem. 8.2].

Lemma 6.1. — (a) We have canonical isomorphisms of G-varieties

T∗X = G×P ˜Nm, Z = G×P Np, T∗X′ = Nr,E,

T∗
GX = G×P Mm, ZG = G×P Mp, T∗

GX′ = Mr,E.

(b) The maps φ : Z → T∗X and ψ : Z → T∗X′ in (4.6) are given, for (a, b, ϕ, v) ∈ Np,

by

φ
(

(g, a, b, ϕ, v) mod P
)= (g, [a, b] + v ◦ ϕ, am, bm, ϕ,π ◦ v

)

mod P,

ψ
(

(g, a, b, ϕ, v) mod P
)= (gag−1, gbg−1, (ϕ ◦ π)g−1, gv

)

.

(c) The inclusion T∗
GX ⊂ T∗X is induced by the inclusion Mm → ˜Nm, (a, b, ϕ, v) →

(0, a, b, ϕ, v). The inclusion ZG ⊂ Z is induced by the obvious inclusion Mp ⊂ Np. The inclusion

T∗
GX′ ⊂ T∗X′ is the obvious one.

Using this lemma, we can now prove the following.

Proposition 6.2. — There is a representation η′ of Co′ on L(r) such that η′(θl) = f1,l for

l ∈ N.

Proof. — To define η′ we consider the closed embeddings

(6.4) Np ⊂ Nr,E, Mp ⊂ Mr,E, (a, b, ϕ, v) → (a, b, ϕ ◦ π,v).

Then, we set

(6.5) Ns
p
= Ns

r,E∩Np, Ms
p
= Ms

r,E∩Mp, Zs = G×P Ns
p
, Zs

G = G×P Ms
p
.

Note that Ns
p
, Ms

p
, Zs, Zs

G are open in Np, Mp, Z and ZG. Next, the proper map ψ : Z →
T∗X′ restricts to a proper map ψs : Zs → Ns

r,E, because Zs = Z ∩ ψ−1(Ns
r,E). Finally, we
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have ψs(Zs
G)⊂ Ms

r,E, because Zs
G = ZG ∩ Zs. Thus, taking the direct image by ψs, we get

the commutative diagram

(6.6)

H˜G(Zs
G)

ψs,∗
H˜G(Ms

r,E)

H˜G(Zs)
ψs,∗

H˜G(Ns
r,E).

Now, set Ns
m
= (gE1)

2 ×Ns
r,E2

, Ms
m
= CE1 ×Ms

r,E2
, ˜Ns

m
=˜Nm ∩ (p×Ns

m
) and

T∗Xs = G×P ˜Ns
m
, T∗

GXs = G×P Ms
m
.

For (a, b, ϕ, v) ∈ Ns
p

we have (am, bm, ϕ,π ◦ v) ∈ Ns
m

. Thus the map φ : Z → T∗X re-
stricts to a map φs : Zs → T∗Xs. The varieties Zs and T∗Xs are both smooth and we have
φ−1

s (T∗
GXs)= Zs ∩ ZG = Zs

G. Hence the pull-back by φs gives the commutative diagram

(6.7)

H˜G(T∗
GXs)

φ∗s
H˜G(Zs

G)

H˜G(T∗Xs)
φ∗s

H˜G(Zs).

Set n1 = dim E1, n2 = dim E2 and n = n1 + n2. Since Ms
r,E2

is a GLE2-torsor over
Mr,n2 , by descent we have an isomorphism

(6.8) L(r)
n2
= H˜GLE2

(

Ms
r,E2

)

.

Here we used the symbol ˜GLE2 = GLE2 × T following the notation ˜G in Section 4.2.
We have also L(r)

n = H˜G(Ms
r,E). Finally, the induction and the Kunneth formula yield an

isomorphism

(6.9) Ind : Co′
n1
⊗R L(r)

n2
= H˜M
(

CE1 ×Ms
r,E2

)= H˜G
(

T∗
GXs
)

.

Thus, composing (6.9) with (6.6) and (6.7), we get a map

(6.10) ψs,∗ φ∗
s Ind : Co′

n1
⊗R L(r)

n2
→ L(r)

n .

The same argument as in the proof of [33, Prop. 7.9] implies that (6.10) defines an R-
linear representation of Co′ on L(r). Details are left to the reader. Let η′ denote this
representation.
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Now, we compute the image of the element θl ∈ Co′
1 by the map η′. To do so, we

change slightly the notation. Assume that E1 ∈ V1 and E ∈ Vn+1. Fix x ∈ L(r)
n and let y be

the image of θl ⊗ x by the map

(6.11) Co′
1 ⊗R L(r)

n → L(r)
n+1

given in (6.10). We must check that y is equal to the element

(6.12) c1(τn+1,n)
l · x = π1,∗

(

c1(τn+1,n)
l π∗

2 (x)
)

.

By definition of (6.10) we have

(6.13) y =ψs,∗φ∗
s Ind(θl ⊗ x).

The variety Zs
G is the set of all pairs ((a, b, ϕ, v),E1) where (a, b, ϕ, v) ∈ Ms

r,E, a, b ∈ p

and ϕ(E1) = 0. It is a smooth G-torsor over Mr,n+1,n. Hence, by descent we have an
isomorphism

(6.14) H˜G
(

Zs
G

)→ HT(Mr,n+1,n).

So we have the commutative diagram

(6.15)

H˜G(Zs
G)

ψs,∗
H˜G(Ms

r,E)

HT(Mr,n+1,n)
π1,∗

HT(Mr,n+1)

where both vertical maps are given by descent. Comparing (6.12), (6.13) and (6.15),
we see that it is enough to observe that the isomorphism (6.14) takes φ∗

s Ind(θl ⊗ x) to
c1(τn+1,n)

l π∗
2 (x). �

We can now prove the following.

Theorem 6.3. — The map η′ factors to a Kr -algebra isomorphism

(6.16) η : SCoKr
→ U(r),>

K , θl → f1,l, l ∈ N

which commutes with the action of �Kr
.

Proof. — Since the representation of U(r)
K on L(r)

K is faithful, the map η′ gives a
surjective Kr-algebra homomorphism

(6.17) η′ : SCo′
Kr
→ U(r),>

K , θl → f1,l, l ∈ N.
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First, we claim that η′ commutes with Wilson operators. It is enough to check it on gen-
erators by Lemma 3.11(c) and Lemma 4.9(c). Example 3.10 gives

(6.18) η′(pl • θk)= η′(θl+k)= f1,l+k = pl • f1,k = pl • η′(θk), l ≥ 1, k ≥ 0,

proving the claim. Next, by Proposition 3.13 the action of �n,Kr
on U(r),>

K [n] is torsion
free. Hence the map η′ factors to a surjective Kr-algebra homomorphism

(6.19) η : SCoKr
→ U(r),>

K

taking θl to f1,l . It remains to show that η is injective. Let x ∈ SCon,Kr
and assume that

η(x) = 0. If x �= 0 then, by the localization theorem, for any y ∈ SCon,Kr
there exists

p, p′ ∈�n,Kr
such that p • x = p′ • y. But, then, we have

(6.20) p′ • η(y)= η
(

p′ • y
)= η(p • x)= p • η(x)= 0.

It follows that η(y) is torsion, hence η(y) = 0 by Proposition 3.13. This contradicts the
surjectivity of η. We deduce that x = 0, i.e., that η is injective. �

Proposition 5.1 and Theorem 6.3 (for r = 1) yield the following.

Corollary 6.4. — There is a K-algebra isomorphism SCoK → SH>
K, θl → xlD1,l .

Remark 6.5. — Proposition 3.7 and Theorem 6.3 give a Kr-algebra homomor-
phism

(6.21) ηop : (SCoKr
)op → U(r),<

K , θl → f−1,l .

Proposition 1.35 and Corollary 6.4 give a K-algebra isomorphism

(6.22) (SCoK)
op → SH<

K, θl → xlD−1,l .

We define U(r),> and U(r),< to be the images of SCoRr
, (SCoRr

)op by the maps η and ηop.
We have Rr-algebra isomorphisms

(6.23) SCoRr
→ U(r),>, (SCoRr

)op → U(r),<.

6.2. Part 2: glueing the positive and negative halves. — Theorem 6.3, Corollary 6.4 and
Remark 6.5 give Kr-algebra isomorphisms

(6.24) 
> : SH(r),>
K → U(r),>

K , 
< : SH(r),<
K → U(r),<

K

such that 
>(D1,l)= h1,l and 
<(D−1,l)= h−1,l . Next, Appendix D gives the following.



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 269

Proposition 6.6. — The class [h−1,k, h1,l] is supported on the diagonal of Mr,n ×Mr,n and it

coincides, as an element of U(r)
K , with the operator Ek+l on L(r)

K given by

1+ ξ
∑

l≥0

El sl+1 = exp
(

∑

l≥0

(−1)l+1pl(εa)φl(s)

)

exp
(

∑

l≥0

h0,l+1 ϕl(s)

)

.

We can now prove Theorem 3.2. First, note that we have a Kr-algebra homomor-
phism

(6.25) 
 : SH(r)
K → U(r)

K , Dx → hx, x ∈ E .

Indeed, relation (1.69) follows from Proposition 6.6 and (1.67), (1.68) from Remark 2.3.
Thus, we are reduced to check that the representation ρ(r) is faithful. A proof is given in
Section D.2.

7. The comultiplication

So far, we have defined an algebra SHc and we have constructed a representation
ρ(r) of SHc in L(r)

K . In order to compare SHc with W-algebras, it is important to equip
it with a Hopf algebra structure. We do not know how to construct the (topological)
coproduct on SHc in an elementary algebraic way. Our argument uses our previous
work [33]. First, we prove that SHc can be regarded as a degeneration of the elliptic Hall
algebras which was studied there. This is Theorem 7.7. Next, using this result, we prove
that the coproduct of the elliptic Hall algebra degenerates and induces a coproduct on
SHc. This is Theorem 7.9.

7.1. The DAHA. — We’ll abbreviate A = C[q±1/2, t±1/2], K = C(q1/2, t1/2) and
v1/2 = (qt)−1/2. Fix an integer n > 1. The double affine Hecke algebra (=DAHA) of GLn is
the associative K-algebra ˜Hn generated by

(7.1) X±1
1 , . . . ,X±1

n ,Y±1
1 , . . . ,Y±1

n ,T1, . . . ,Tn−1

subject to the following relations [10, Sect. 1.4.3]

TiXiTi = Xi+1, T−1
i YiT−1

i = Yi+1,(7.2)

TiXj = XjTi, TiYj = YjTi, j �= i, i + 1,(7.3)
(

Ti + t1/2
)(

Ti − t−1/2
)= 0, TiTi+1Ti = Ti+1TiTi+1,(7.4)

TiTj = TjTi, j �= i − 1, i, i + 1,(7.5)

PXi = Xi+1P, PXn = q−1X1P, P = Y−1
1 T1 · · ·Tn−1, i �= n.(7.6)
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Let ˜H+
n be the K-subalgebra generated by

(7.7) X1, . . . ,Xn,Y±1
1 , . . . ,Y±1

n ,T1, . . . ,Tn−1,

and let˜S be the complete idempotent. We set

(7.8) ˜SHn =˜S˜Hn
˜S, ˜SH

+
n =˜S˜H+

n
˜S.

For x ∈ Z2
0 we define an element P(n)

x of ˜SHn as in [32, Sect. 2.2]. For l ≥ 1 we have

(7.9)
P(n)

l,0 = ql
˜Spl(X1, . . . ,Xn)˜S, P(n)

−l,0 =˜Spl

(

X−1
1 , . . . ,X−1

n

)

˜S,

P(n)

0,l =˜Spl(Y1, . . . ,Yn)˜S, P(n)

0,−l = ql
˜Spl

(

Y−1
1 , . . . ,Y−1

n

)

˜S.

There is a unique K-algebra automorphism [32, Sect. 3.1], [10, Sect. 3.2.2],

(7.10) σ : ˜SHn → ˜SHn, P(n)
x → P(n)

σ (x), σ (i, j)= (j,−i).

Let ˜Hn,A be the A-subalgebra of ˜Hn generated by (7.1) and set ˜SHn,A =˜S˜Hn,A˜S. Note
that

(7.11) ˜Hn = ˜Hn,A ⊗A K, ˜SHn = ˜SHn,A ⊗A K.

We have an A-basis of Hn,A given by [10]

(7.12)
{

XαYβTw;α ∈ Zn, β ∈ Zn,w ∈Sn

}

.

Consider the following K-vector spaces, see (1.19),

(7.13) ˜Wn = Wn,K, ˜Vn = Vn,K.

The K-algebra ˜Hn is equipped with a faithful representation [32, Sect. 4.1]

(7.14) ϕn : ˜Hn → End(˜Wn)

called the polynomial representation. The subalgebras ˜SHn and ˜SH
+
n act faithfully on the

subspaces ˜WSn
n and �n,K. For a partition λ with at most n parts let Jλ(X; q, t−1) be the

integral form of the Macdonald polynomial Pλ(X; q, t−1), see [25, Chap. VI, (8.3)]. We
abbreviate

(7.15) J(n)λ

(

q, t−1
)= Jλ
(

X1, . . . ,Xn; q, t−1
)

.

This yields the following K-basis of �n,K

(7.16)
{

J(n)λ

(

q, t−1
); l(λ)≤ n

}

.
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Finally, for x ∈ Z2
0 we define new elements u(n)

x , θ(u(n)
x ) of ˜SHn as follows. First, we set

(7.17) al =
(

ql − 1
)(

tl − 1
)

, l ≥ 1.

Next, for x = (i, j) and l = gcd(x), we set

(7.18) P(n)
x = (ql − 1

)

u(n)
x , θ

(

u(n)
x

)= tj(n−1)/2u(n)
x − δi,0

(

tjn − 1
)

/aj.

We have the following formula [33, Cor. 1.5]

(7.19) θ
(

u
(n)

0,l

) · J(n)λ

(

q, t−1
)=
∑

s∈λ
qlx(s)tly(s) J(n)λ

(

q, t−1
)

, l ≥ 1.

By [32], [33, Sect. 1.3] we have also

(7.20)
[

u
(n)

0,l , u
(n)

±1,k

]=± sgn(l) u
(n)

±1,k+l,

where

(7.21) sgn(l)= 1, sgn(−l − 1)=−1, l ≥ 0.

To unburden the notation, let ˜SHn denote also the smash product

(7.22) K
[

u
(n)
0,0

]⊗K ˜SHn,

where u
(n)
0,0 is a new formal variable and the commutator with u

(n)
0,0 is the K-derivation

(7.23)
[

u
(n)
0,0, u

(n)

i,j

]= iu
(n)

i,j .

The element u
(n)
0,0 acts on Vn as the grading operator. We’ll set θ(u(n)

0,0)= u
(n)
0,0.

7.2. The degeneration of ˜Hn. — Our aim is to construct a degeneration from ˜Hn to
Hn. The degenerations of ˜Hn have been extensively studied, see e.g., [39]. Here we only
need a very particular one introduced for the first time by Cherednik. We set

(7.24) K = F
(

(h)
)

, A = F
[[h]].

We refer to [23] for a reminder on topological A -modules (for the h-adic topology). Let
˜⊗ denote the topological tensor product of A -modules. An A -module is topologically free if it
is isomorphic to V[[h]] for an F-vector space V. Let F〈X〉 be the free F-algebra on X.
For a future use, recall that a complete separated A -algebra B is topologically generated by
a subset X if the obvious continuous map F〈X〉[[h]]→ B is surjective.

First, consider the algebra embedding A ⊂A given by

(7.25) q1/2 → exp(h/2), t1/2 → exp(−κh/2).
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Let I be the ideal of A given by I = (h) ∩ A. Let Bn ⊂ ˜Hn be the A-subalgebra generated
by ˜Hn,A and the elements (Yi − 1)/(q− 1) with i ∈ [1, n]. We set

(7.26) Hn,A = lim←−
k

(

Bn/IkBn

)

.

By (7.12) the A-algebra Bn is topologically linearly spanned by the elements of the form
Xαf (Y)Tw where α ∈ Zn, w ∈ Sn, and f (Y) ∈ A[Y±1

i , (Yi − qktl)/(q − 1)] for i ∈ [1, n]
and k, l ∈ Z. Consider the element yi in Hn,A given by

(7.27) yi =
∑

l≥1

(−1)l−1(Yi − 1)l/lh.

We have faithful representations, see Section 1.3,

(7.28) ϕn : ˜Hn → End(˜Wn), ρn : Hn → End(Wn).

From (7.25) we get inclusions

(7.29) ˜Wn ⊂ Wn

(

(h)
)

, End(˜Wn)⊂ End(Wn)
(

(h)
)

.

We abbreviate

(7.30) O
(

hl
)= hl Hn,A , Hn = Hn,A /hHn,A , l ∈ N.

Lemma 7.1. — The A -module Hn,A is topologically free. As a topological A -algebra it is

generated by the set {Tj,X±1
i , yi; i ∈ [1, n], j ∈ [1, n)}. We have

(7.31) X±1
i ∈ O(1), Tj ∈ O(1), Yi = 1+O(h), yi = (Yi −1)/h+O(h).

The map ϕn yields a continuous embedding ϕn : Hn,A → End(Wn)[[h]].
Proof. — The A -module Hn,A is topologically free because it is separated, com-

plete and torsion free. The other statements are easy and are left to the reader. �

Finally, we set

(7.32) Hn,K = Hn,A ⊗A K .

By base change, the map ϕn yields a continuous embedding

(7.33) ϕn : Hn,K → End(Wn)
(

(h)
)

.

The following is standard. The proof is left to the reader.
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Proposition 7.2. — (a) We have Hn,A = {x ∈ Hn,K ;ϕn(x) ∈ End(Wn)[[h]]}.
(b) The map ϕn factors to an injection ϕ′

n : Hn → End(Wn).

(c) There is a unique F-algebra isomorphism φn : Hn → Hn such that

φn

(

X±1
j

)= X±1
n+1−j, φn(yj)= yn+1−j − (n− 1)κ/2, φn(Ti)= sn−i.

(d) We have ϕ′
n = ρ ′

n ◦ φn, where ρ ′
n = w0ρnw0 and w0 ∈ Aut(Wn) is given by Xi →

Xn+1−i .

7.3. The degeneration of ˜SHn. — We now turn our attention to the spherical subal-
gebras. Set

(7.34) S Hn,A =˜S · Hn,A ·˜S, S Hn = S Hn,A /hS Hn,A .

The map ϕ′
n factors to an injective map

(7.35) ϕ′
n : S Hn → End(Vn).

For l ≥ 1 we consider the following elements

(7.36)
Q(n)

0,l = h1−l

l−1
∑

k=0

(

l − 1
k

)

(−1)kθ
(

u
(n)

0,l−1−k

)

,

Q(n)

l,0 = (−1)lκ lP(n)

l,0, Q(n)

−l,0 = P(n)

−l,0, Q(n)

1,l =
[

Q(n)

0,l+1,Q(n)
1,0

]

,

Proposition 7.3. — (a) For l ≥ 1 the elements Q(n)

±l,0 and Q(n)

0,l belong to S Hn,A .

(b) The map φn restricts to an F-algebra isomorphism S Hn → SHn such that we have P(n)

±l,0 →
D(n)

±l,0 and Q(n)

0,l → D(n)

0,l for l ≥ 1.
(c) The algebra S Hn,A is topologically generated by P(n)

±1,0 and Q(n)
0,2.

Proof. — We first prove (a). We have P(n)

±l,0 ∈ S Hn,A . We consider the inclusions
˜Vn, Vn ⊂ Vn,K associated with the obvious inclusion F ⊂ K and with the embedding
K ⊂K in (7.25). We have [25, Chap. VI, (10.23)]

(7.37)
(

1− t−1
)−|λ|

J(n)λ

(

q, t−1
)= J(n)λ mod hVn,A .

By (7.19), for l(λ)≤ n, we have

(7.38) Q(n)

0,l · J(n)λ

(

q, t−1
)= h1−l

∑

s∈λ

l−1
∑

k=0

(

l − 1
k

)

(−1)kq(l−1−k)c(s) J(n)λ

(

q, t−1
)

,

=
∑

s∈λ

(

qc(s) − 1
h

)l−1

J(n)λ

(

q, t−1
)

.
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By Proposition 7.2 the A -algebra S Hn,A is the subalgebra of

(7.39) S Hn,K = S Hn,A ⊗A K

which preserves the subspace Vn,A of Vn,K . It entails that Q(n)

0,l ∈ S Hn,A as wanted. We
now deal with (b) and (c). Note that

hHn,A ∩ S Hn,A = hS Hn,A .

Therefore the natural map gives an injection S Hn → Hn. Since S Hn,A =˜S · Hn,A ·˜S,
the map φn in Proposition 7.2 restricts to an injection

(7.40) φn : S Hn → SHn.

The equality φn(Q
(n)

0,l) = D(n)

0,l is a consequence of (1.30), (7.37) and (7.38). The equality
φn(P

(n)

±l,0)= D(n)

±l,0 follows from (1.32) and (7.9). The map φn in (7.40) is surjective because,
by Lemma 1.3, the F-algebra SHn is generated by {D(n)

±l,0, D(n)

0,l ; l ≥ 1}. Claim (c) is a
consequence of Nakayama’s lemma together with the fact that SHn is generated by D(n)

0,2

and D(n)
±1,0. �

Let S H>
n,A , S H<

n,A and S H0
n,A be the closed A -subalgebras of S Hn,A topologi-

cally generated respectively by the sets {Q(n)

1,l ; l ≥ 0}, {Q(n)

−1,l; l ≥ 0} and {Q(n)

0,l ; l ≥ 0}. We
abbreviate

(7.41)
S H>

n = S H>
n,A /h S H>

n,A , S H<
n = S H<

n,A /h S H<
n,A ,

S H0
n = S H0

n,A /h S H0
n,A .

Using Proposition 7.3, we get the following.

Corollary 7.4. — The map φn gives F-algebra isomorphisms

S H>
n → SH>

n , S H<
n → SH<

n , S H0
n → SH0

n

such that Q(n)

±l,0 → D(n)

±l,0, Q±1,l → D±1,l and Q(n)

0,l → D(n)

0,l for l ≥ 1.

Proof. — Let S H>
n,K be the closed K -subalgebra of S Hn,K generated by

{Q(n)

1,l ; l ≥ 0}. We have

(7.42) S H>
n,A ⊂ S H>

n,K ∩ S Hn,A ,

and the map φn yields an isomorphism

(7.43) S H>
n,K ∩ S Hn,A /h

(

S H>
n,K ∩ S Hn,A

)→ SH>
n .
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Since the induced map S H>
n,A → SH>

n is surjective, we deduce that

(7.44) S H>
n,A = S H>

n,K ∩ S Hn,A .

In particular, we have also

(7.45) S H>
n,A ∩ hS Hn,A = S H>

n,K ∩ hS Hn,A = hS H>
n,A .

This shows the existence of an F-algebra isomorphism

(7.46) S H>
n → SH>

n , P(n)

l,0 → D(n)

l,0,
[

Q(n)

0,l+1,P(n)
1,0

] → D(n)

1,l .

Since S H>
n,A is N-graded, there exists an automorphism of S H>

n,A sending P(n)

l,0 to Q(n)

l,0.
This proves the corollary for S H>

n . The other cases are similar. �

7.4. The algebra ˜SH
c
. — Consider the K-algebrâEEE in [33, Sect. 1] associated with

the parameters

(7.47) σ 1/2 = q−1/2, σ̄ 1/2 = t−1/2.

It is generated by elements ux, κx with x ∈ Z2
0, satisfying the relations in [33, Sect. 1.1].

For gcd(x)= 1 and l ≥ 1, we set

(7.48)

αl =
(

1− ql
)(

1− tl
)(

1− v−l
)

/l,

Plx =
(

ql − 1
)

ulx,
∑

l≥0

θlx sl = exp
(

∑

l≥1

αl ulx sl

)

.

Since ̂EEE is an extended Hall algebra in Ringel’s sense, see e.g., [22, Sect. 1.6], it admits a
topological coproduct �, which is given by the following formula, compare [8, Sect. 7],

(7.49)

�(κx)= κx ⊗ κx,

�(u0,l)= u0,l ⊗ 1+ κ0,l ⊗ u0,l, l �= 0,

�(u1,l)= u1,l ⊗ 1+
∑

k≥0

κ1,l−kθ0,k ⊗ u1,l−k, l ∈ Z.

The expression “topological coproduct” means that � maps into some completion of the
tensor square of̂EEE , see [8, Sect. 2] for details. By [8, Sect. 5], there is a unique K-algebra
automorphism

(7.50) σ :̂EEE →̂EEE, κx → κσ(x), ux → uσ(x).

Compare (7.10). We define a new topological coproduct on̂EEE by the formula

(7.51) σ�= (σ−1 ⊗ σ−1
) ◦� ◦ σ.
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Now, we fix a family of formal parameters cl with l ∈ Z and we set

(7.52) Kc = K[c̃l; l ∈ Z][c̃−1
0

]

, Ac = A[c̃l; l ∈ Z][c̃−1
0

]

.

Let EEE c be the specialization of̂EEE ⊗K Kc at κ1,0 = c0 and κ0,1 = 1. Let u0,0 be a new formal
variable, and consider the smash product

(7.53) ˜SH
c = K[u0,0] ⊗K EEE c,

where the commutator with u0,0 is the Kc-derivation on EEE c such that

(7.54) [u0,0, ui,j] = iui,j, (i, j) ∈ Z2
0.

The Kc-algebra SHc is Z2-graded with deg(ux)= x. It is equipped with the topological
coproduct

(7.55)

σ�(c̃0)= c̃0 ⊗ c̃0,

σ�(c̃l)= δ(c̃l) if l �= 0,
σ�(ul,0)= ul,0 ⊗ 1+ c̃l

0 ⊗ ul,0,

σ�(ul,1)= ul,1 ⊗ 1+ c̃l
0 ⊗ ul,1 +

∑

k≥1

c̃k+l
0 θ−k,0 ⊗ uk+l,1.

Let ˜SH
>

, ˜SH
c,0

and ˜SH
<

be the K-subalgebras generated respectively by

(7.56) {u1,l; l ∈ Z}, Kc ∪ {u0,l; l ∈ Z}, {u−1,l; l ∈ Z}.
The following holds.

Lemma 7.5. — (a) The multiplication yields an isomorphism ˜SH
> ⊗K ˜SH

c,0 ⊗K ˜SH
< →

˜SH
c
.

(b) We have ˜SH
c,0 = Kc[u0,l; l ∈ Z].

Proof. — Part (a) follows from [33, Sect. 1.1], which is proved using the formulas
[33, Sect. 1.2]

(7.57)

[u0,l, u±1,k] = ±sgn(l) u±1,k+l,

[u−1,k, u1,l] =
{

sgn(k + l) c̃sgn(k+l)

0 θ0,k+l/α1 if k + l �= 0,
(c̃0 − c̃−1

0 )/α1 else,

where sgn(l) is as in (7.20). Part (b) is [8, Sect. 4]. �
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Next, we consider the Ac-subalgebra ˜SH
c
A generated by the elements ux with x ∈

Z2. We have

(7.58) ˜SH
c = ˜SH

c
A ⊗Ac Kc.

Finally, let ˜SH
>

n and ˜SH
<

n be the subalgebras of ˜SHn generated by

(7.59)
{

u
(n)

1,l ; l ∈ Z
}

,
{

u
(n)

−1,l; l ∈ Z
}

.

By [32, Thm. 3.1], [33, Sect. 1.4] there is a unique surjective algebra homomorphism

(7.60) 
n : ˜SH
> → ˜SH

>

n , ux → θ
(

u(n)
x

)

.

The map 
 =∏n 
n is an embedding of ˜SH
>

into
∏

n
˜SH

>

n by [32, Thm. 4.6].

7.5. The degeneration of ˜SH
c
. — For x = (i, j) in Z2

0 and l ≥ 1 we define

(7.61)

uc
0,0 = u0,0, uc

x = ux + δi,0 cj/aj,

Q0,l = h1−l

l−1
∑

k=0

(

l − 1
k

)

(−1)kuc
0,l−1−k,

Ql,0 = (−1)lκ lPl,0, Q−l,0 = P−l,0,

Q1,l = [Q0,l+1,Q1,0], Q−1,l =−[Q0,l+1,Q−1,0].
We have an inclusion of F-algebras Ac ⊂A c, where A c = Fc[[h]], which is given by

(7.62)

q1/2 → exp(h/2), t1/2 → exp(−κh/2), c0 → exp(ξhc0/2),

cl → sgn(l)
∑

k≥0

(−lh)kck/k!, l �= 0.

Consider the ideal I = (h) ∩ Ac in Ac. Let Bc ⊂ ˜SH
c

be the Ac-subalgebra generated by
{Q±l,0,Q0,l; l ≥ 1}. We define an A c-algebra by setting

(7.63) S Hc
A = lim←−

k

(

Bc/Ik Bc
)

.

Let S H>
A and S H<

A be the closed A c-subalgebras of S Hc
A generated by the sets

{Q1,l; l ≥ 0} and {Q−1,l; l ≥ 0}. We write

(7.64) S H> = S H>
A /h S H>

A , S H< = S H<
A /h S H<

A , S Hc = S Hc
A /h S Hc

A .

Proposition 7.6. — (a) The A -modules S H>
A and S H<

A are topologically free.

(b) There are F-algebra isomorphisms φ : S H> → SH> and φ : S H< → SH< such that

we have φ(Q±l,0)= D±l,0 and φ(Q±1,l)= D±1,l for l ≥ 1.
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Proof. — Part (a) is obvious, because S H>
A and S H<

A are separated, complete and
torsion free. Now we prove (b). First, consider the map 
n. For l �= 0 we have θ(u

(n)

l,0)= u
(n)

l,0
by (7.18). Thus, by (7.18), (7.36), (7.48), (7.60) and (7.61) we have also

(7.65) 
n(Ql,0)= Q(n)

l,0.

Next, for l ≥ 1, the formulas (7.48), (7.57), (7.60) and (7.61) give

(7.66) 
n(Q1,l)= κ(1− q)h−l

l
∑

k=0

(

l

k

)

(−1)kθ
(

u
(n)

1,l−k

)

,

and by (7.18), (7.20) and (7.36) we have also

(7.67) Q(n)

1,l = κ(1− q)h−l

l
∑

k=0

(

l

k

)

(−1)kθ
(

u
(n)

1,l−k

)

.

Therefore, by (7.65), (7.67) the map 
n gives rise to a continuous A -algebra homomor-
phism

(7.68) 
n : S H>
A → S H>

n,A , 
n(Ql,0)= Q(n)

l,0, 
n(Q1,l)= Q(n)

1,l , l ≥ 1.

The map 
 is a closed embedding S H>
A →∏n S H>

n,A . By Proposition 1.15 and Corol-
lary 7.4, composing 
 and

∏

n φn we get a map

(7.69) φ′ : S H> →
∏

n

SH>
n , φ′(Ql,0)=

(

D(n)

l,0

)

, φ′(Q1,l)=
(

D(n)

1,l

)

.

By definition of SH>, there is an inclusion of F-algebras

(7.70) i : SH> →
∏

n

SH>
n , i(Dl,0)=

(

D(n)

l,0

)

, i(D0,l)=
(

D(n)

0,l

)

.

Thus, we have a surjective F-algebra homomorphism φ which is given by

(7.71) φ = i−1 ◦ φ′ : S H> → SH>.

We must prove that it is injective. We consider the partial order on Z2 given by

(7.72) (r, d)≤ (r′, d ′
) ⇐⇒ r ≤ r′ and d ≤ d ′.

The Z2-grading on ˜SH
c

yields a filtration on S H>
A such that the piece S H>

A [≤x] con-
sists of the elements whose Z2-degree is ≤ x. The A -module S H>

A [≤x] has a finite rank
and we have

(7.73)

S H>
A [≤x] ∩ h S H>

A = h S H>
A [≤x],

S H>
A [≤x]/h S H>

A [≤x] ⊂ S H> =
⋃

x

S H>
A [≤x]/h S H>

A [≤x].
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We define S H>
n,A [≤x] in an identical fashion. From Corollary 7.4, we get

(7.74) S H>
n,A [≤x]/h S H>

n,A [≤x] ⊂ SH>
n .

Next, given x, for n large enough the map 
n in (7.68) yields an isomorphism

(7.75) S H>
A [≤x]→ S H>

n,A [≤x].
Thus it factors to an isomorphism

(7.76) S H>
A [≤x]/h S H>

A [≤x]→ S H>
n,A [≤x]/h S H>

n,A [≤x].
Composing (7.76) with (7.74) we obtain an inclusion, for n large enough,

(7.77) S H>
A [≤x]/h S H>

A [≤x] ⊂ SH>
n .

We conclude that φ′ is injective. Hence φ is also injective. �

Let S H0,c
A be the closed A c-subalgebra of S Hc

A topologically generated by
{Q0,l; l ≥ 1}. By Lemma 7.6(b) we have an isomorphism

(7.78) S H0,c
A = Fc[Q0,l+1; l ≥ 0][[h]].

As above, we abbreviate S H0,c = S H0,c
A /hS H0,c

A . We can now prove the following theo-
rem.

Theorem 7.7. — (a) There is an F-algebra isomorphism φ : S Hc → SHc such that

φ(Q0,l)= D0,l, φ(Q±l,0)= D±l,0, φ(Q±1,l)= D±1,l, l ≥ 1.

(b) The algebra S Hc
A is topologically generated by Q−1,0, Q1,0 and Q0,2.

Proof. — By Proposition 1.35 the F-algebra SHc is generated by the elements cl ,
D±1,0 and D0,2. Thus, part (b) follows from (a). Now, we prove (a). We’ll identify the ring

(7.79) Ar = Z
[

q±1, t±1, χ±1
1 , . . . , χ±1

r

]

with the Grothendieck ring of the group ˜D as in (3.3). Let L(r)
K be the localized Grothendieck

group of the category of ˜D-equivariant coherent sheaves on
⊔

n≥0 Mr,n. The word localized
means that the ring of scalars is extended from the ring Ar to the field

(7.80) Kr = K(χ1, . . . , χr).

The set of fixed points {Iλ} of Mr,n for the ˜D-action gives bases in L(r)
K and L(r)

K . Set

(7.81) Kr = Kr

(

(h)
)

, Ar = Kr

[[h]].



280 OLIVIER SCHIFFMANN, ERIC VASSEROT

We have an embedding Kr ⊂Kr given by the following formulas, compare (7.62),

(7.82)
q = exp(h), t = exp(−κh), χa = exp(εah),

κ =−y/x, εa = ea/x.

Identifying the bases above, we get inclusions of L(r)
K =⊕λ Kr [Iλ] and L(r)

K =⊕λ Kr [Iλ]
into the Kr-vector space

(7.83) L(r) =
⊕

λ

Kr [Iλ].

Now, a representation of EEE ⊗K Kr in L(r)
K is constructed in [33, Sect. 8]. It can be

upgraded to a representation of SHc ⊗K Kr on L(r) in which u0,0 acts as the grading
operator. We have

(7.84)

c̃0 = v−r/2, c̃l = pl

(

χ−1
a

)

for l �= 0, uc
0,l = sgn(l) f0,l,

u1,l = v−1(q − 1)rx1−rf1,l−r, u−1,l = (−1)r−1det(W) c̃−1
0 (q − 1)−rxr−1f−1,l,

f1,l[Iλ] =
∑

λ⊂π

τ l
λ,π�
(

N∗
λ,π −T∗

π

) [Iπ ], f−1,l[Iλ] =
∑

σ⊂λ

τ l
σ,λ�
(

N∗
σ,λ −T∗

σ

) [Iσ ],

f0,l[Iλ] =
∑

a,s

χ−l
a qlx(s)tly(s)[Iλ].

Here l ≥ 0 and � is the Koszul complex and det(W) = (χ1χ2 . . . χr)
−1. On the other

hand, the representation ρ(r) is given by the following formulas, see Section 3.6 and Ap-
pendix D,

(7.85)

cl = pl(εa),

D1,l = x1−l yf1,l, D−1,l = (−1)r−1x−l f−1,l, D0,l+1 = x−l f0,l,

f1,l[Iλ] =
∑

λ⊂π

c1(τλ,π )
l eu
(

N∗
λ,π −T∗

π

) [Iπ ],

f−1,l[Iλ] =
∑

σ⊂λ

c1(τσ,λ)
l eu
(

N∗
σ,λ −T∗

σ

) [Iσ ],

f0,l[Iλ] =
∑

a,s

c1

(

χ−1
a qx(s)ty(s)

)l [Iλ].

The above formulas allow us to compare the action of Q±1,l, Q0,l and of D±1,l ,
D0,l . Write

(7.86) O
(

hl
)=
⊕

λ

hlAr [Iλ], l ∈ Z.
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Using (7.61), (7.84) and (7.85), we get

(7.87) Q0,l[Iλ] = D0,l[Iλ] + O(h), l ≥ 1.

Next, for σ ⊂ λ⊂ π such that |λ| = |σ | + 1 = |π | − 1 we have

(7.88) dim(Nλ,π −Tπ)=−r − 1, dim(Nσ,λ −Tσ )= r − 1.

Therefore, we have the following estimates in Kr

(7.89)
�
(

N∗
λ,π −T∗

π

)≡ (x/h)1+r eu
(

N∗
λ,π −T∗

π

)

,

�
(

N∗
σ,λ −T∗

σ

)≡ (x/h)1−r eu
(

N∗
σ,λ −T∗

σ

)

modulo lower terms for the h-adic topology. Finally, (7.61), (7.84), (7.85) and (7.89) give

(7.90) Q1,0[Iλ] = D1,0[Iλ] + O(h), Q−1,0[Iλ] = D−1,0[Iλ] + O(h).

By (1.67), (1.68) and (7.61) we have

(7.91)
D1,l = [D0,l+1,D1,0], D−1,l =−[D0,l+1,D−1,0],
Q1,l = [Q0,l+1,Q1,0], Q−1,l =−[Q0,l+1,Q−1,0].

Thus (7.87) and (7.90) imply that

(7.92) Q1,l[Iλ] = D1,l[Iλ] + O(h), Q−1,l[Iλ] = D−1,l[Iλ] + O(h).

Now, the algebra homomorphism Fc → Kr in Definition 1.36 yields an algebra homo-
morphism A c →Ar . Consider the algebras

(7.93) S H(r)

A = S Hc
A ⊗A c Ar, S H(r) = S H(r)

A /hS H(r)

A .

Note that the composed map Ac →A c → Kr is given by

(7.94) c̃0 = v−r/2, c̃±l =±pl

(

χ∓1
a

)

.

We define S H(r),>, S H(r),< and S H(r),0 in the same way, using S H>
A , S H<

A and S H0,c
A .

Formulas (7.87) and (7.92) imply that the Ac-subalgebra Bc ⊂ ˜SH
c

preserves the lattice
O(1). This yields a representation of S Hc

A on L(r) which preserves also O(1) and which
factors to a representation of S H(r) on O(1)/O(h)= L(r)

K . Since ρ(r) is faithful, this yields
also an algebra homomorphism

(7.95) S H(r) → SH(r)
K .

It is surjective, because SH(r)
K is generated by the elements D0,l+1, D−1,l and D1,l with

l ≥ 0.
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Now, the A -algebra embeddings of S H>
A , S H>

A and S H0,c
A into S Hc

A give obvi-
ous maps

(7.96) S H(r),>, S H(r),0, S H(r),< → S H(r).

Composing them with (7.95) we get Kr-algebra homomorphisms

(7.97) S H(r),> → SH(r),>
K , S H(r),< → SH(r),<

K , S H(r),0 → SH(r),0
K ,

which give the commutative square

(7.98)

S H(r),> ⊗Kr
S H(r),0 ⊗Kr

S H(r),<
m

S H(r)

SH(r),>
K ⊗Kr

SH(r),0
K ⊗Kr

SH(r),<
K

m

SH(r)
K .

Here m is the multiplication map.
Now, by Proposition 7.6 there are Kr-algebra isomorphisms

(7.99)
S H(r),> → SH(r),>

K , S H(r),< → SH(r),<
K ,

Q±l,0 → D±l,0, Q±1,l → D±1,l .

Further, by (1.66) and (7.78), we have a Kr-algebra isomorphism

(7.100) S H(r),0 → SH(r),0
K , Q0,l+1 → D0,l+1.

Thus the left vertical map in (7.98) is invertible. The bottom horizontal map is invertible
by Proposition 1.37. Thus the upper map m is injective. Therefore, to prove that the right
map is invertible it is enough to check the following.

Lemma 7.8. — The multiplication gives a surjective map

m : S H(r),> ⊗Kr
S H(r),0 ⊗Kr

S H(r),< → S H(r).

Proof. — It is enough to prove that

(7.101) [Q0,l,Q1,k] ∈ S H(r),>, [Q−1,l,Q0,k] ∈ S H(r),<, [Q−1,l,Q1,k] ∈ S H(r),0.

The first two relations follow from a simple computation, since (7.57) implies that

(7.102) [Q0,l,Q1,k] = Q1,l+k−1, [Q−1,l,Q0,k] = Q−1,l+k−1.

For the third one, we must check that [Q−1,l,Q1,k] belongs to S H0,c
A . First, by (7.57) we

have

(7.103) [Q−1,l,Q1,k] ∈ S H0,c
A ⊗A K .
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Next, one can check that [Q−1,l,Q1,k] lies indeed in S H0,c
A by looking at its image by ρ(r).

The details are left to the reader. �

We have proved that the assignment Q0,l → D0,l, Q±l,0 → D±l,0 extends to an
isomorphism of Kr-algebras S H(r) = SH(r)

K for any r. The theorem follows. �

7.6. The coproduct of SHc. — The F-algebra SHc carries a Z-grading SHc =
⊕

s∈Z SHc[s]. We consider the topological tensor product SHc
̂⊗SHc over F defined by

(7.104)

SHc
̂⊗SHc =

⊕

s∈Z

lim←−
N

(

⊕

t∈Z

(

SHc[s − t] ⊗ SHc[t])
)

/IN[s],

IN[s] =
⊕

t≥N

(

SHc[s − t] ⊗ SHc[t]).

We can now prove the following.

Theorem 7.9. — (a) The map σ� factors to an F-algebra homomorphism ��� : SHc →
SHc
̂⊗SHc which is uniquely determined by the following formulas

• ���(cl)= δ(cl) for l ≥ 0,

• ���(Dl,0)= δ(Dl,0) for l �= 0,

• ���(D0,1)= δ(D0,1),

• ���(D0,2)= δ(D0,2)+ ξ
∑

l≥1 lκ1−lD−l,0 ⊗Dl,0,

• ���(D1,1)= δ(D1,1)+ ξc0 ⊗D1,0 and ���(D−1,1)= δ(D−1,1)+ ξD−1,0 ⊗ c0.

(b) The algebra homomorphism ε : SHc → F in Remark 1.38 is a counit for ���.

For l ∈ Z we abbreviate O(hl)= hl S HA . First, let us quote the following formulas.

Lemma 7.10. — The following hold

(a) αl = κξ l2h3 + O(h4),

(b) θl,0 = αlul,0 + O(h3)= κξ |l|h2Pl,0 + O(h3) for l �= 0,

(c) Pl,1 = Pl,0 + O(h) for l �= 0.

Proof. — Part (a) follows from (7.48). Note that Pl,0 ∈ O(1) by definition of S Hc
A .

Thus, (b) follows from (7.48), which gives the following formulas for l ≥ 1

(7.105) P±l,0 =
(

ql − 1
)

u±l,0,
∑

l≥0

θl,0 sl = exp
(

∑

l≥1

αl ul,0 sl

)

.

Finally, for l ≥ 1, using (7.50), (7.57) we get

(7.106) u±l,1 =±[u0,1, u±l,0].
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From (7.61) we get also

(7.107) u0,1 = (q − 1)Q0,2 + u0,0 − c1/(q − 1)(t − 1).

Thus, part (c) follows from the following computation

(7.108) P±l,1 = (q − 1)u±l,1

=±(q − 1)[u0,1,P±l,0]/
(

ql − 1
)

=±(q − 1)2[Q0,2,P±l,0]/
(

ql − 1
)+ l(q − 1)P±l,0/

(

ql − 1
)

= P±l,0 + O(h). �

We can now turn to the proof of the theorem.

Proof. — We must prove that σ� preserves the lattice S HA and we must compute
the image of the elements Ql,0, Q0,1 and Q0,2. By (7.55) we have σ�(Pl,0)= δ(Pl,0) for all
l ∈ Z. Thus, we have also ���(Dl,0)= δ(Dl,0). Next, using (7.55) and (7.61), we get

Q0,1 = u0,0,
σ�(Q0,1)= δ(Q0,1).

This implies that ���(D0,1)= δ(D0,1). Finally, using (7.55) and (7.61) again, we get

(7.109)

Q0,2 = (q − 1)−1
(

uc
0,1 − u0,0

)

,

σ�(Q0,2)= δ(Q0,2)+ (q − 1)−1
∑

k≥1

θ−k,0 ⊗ uk,1.

Thus, by Lemma 7.10 we have

(7.110) σ�(Q0,2)= δ(Q0,2)+ κhξ
∑

k≥1

kP−k,0 ⊗ Pk,0 + O
(

h2
)

.

This implies that

(7.111) ���(D0,2)= δ(D0,2)+ ξ
∑

l≥1

lκ1−lD−l,0 ⊗Dl,0.
�

For future use, let us mention the following fact. For l ≥ 0 we put

(7.112) SH−[≤−l] =
⊕

s≥l

SH−[−s], SH+[≥l] =
⊕

s≥l

SH+[s]

where the grading is the rank mentioned above.

Lemma 7.11. — For l ≥ 1 we have ���(D0,l) = δ(D0,l) modulo SH−[≤ −1]̂⊗
SH+[≥1].
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Proof. — A simple computation shows that, modulo SH−[≤−1]̂⊗SH+[≥2], we
have

���(D1,l)=���
(

ad(D0,2)
l(D1,0)
)

(7.113)

= ad
(

δ(D0,2)+ ξ
∑

l≥1

lκ1−lD−l,0 ⊗Dl,0

)l
(

δ(D0,1)
)

= δ(D1,l)

+ ξ

l
∑

k=1

ad
(

δ(D0,2)
)k−1 ◦ ad(D−1,0 ⊗D1,0) ◦ ad

(

δ(D0,2)
)l−k(

δ(D1,0)
)

= δ(D1,l)+ ξ

l
∑

k=1

El−k ⊗D1,k−1.

Applying the commutator with ���(D−1,0), we get, modulo SH−[≤−1]̂⊗SH+[≥1],

(7.114) ���(El)= δ(El)+ ξ

l
∑

k=1

El−k ⊗ Ek−1.

It follows in particular that

(7.115) ���(D0,l) ∈ SHc,0 ⊗ SHc,0 + SH−[≤−1]̂⊗SH+[≥1].
Using (1.71), modulo the ideal SH−[≤−1]̂⊗SH+[≥1], we deduce from (7.114) the de-
sired estimate on ���(D0,l). �

8. Relation to Wk(glr)

8.1. Vertex algebras. — Fix a field k containing C. By a vertex algebra we’ll always
mean a Z-graded vertex k-algebra, i.e., a Z-graded k-vector space V with a vacuum
vector |0〉 and fields Y(v, z) =∑n∈Z v(n)z

−n−1 in (End V)[[z, z−1]] satisfying the usual
axioms, see [2, 16]. We’ll call the v(n)’s the Fourier coefficients of the field Y(v, z) (or, equiva-
lently, of v) and we call v(0) its residue. As usual, the symbol : : will denote the normal ordering

(from right to left).
Let U(V) be the current algebra of V, see [2, Sect. 3.11]. It is a degreewise complete

topological k-algebra. This means that it is a Z-graded k-algebra U(V) =⊕s∈Z U(V)[s]
which is equipped with a degreewise linear topology such that the multiplication U(V)[s] ×
U(V)[s′] → U(V)[s + s′] is continuous, and that each piece U(V)[s] is complete. We call
the degree with respect to this grading the conformal degree, and we call this degreewise
linear topology the standard degreewise topology. See [27, Sect. 1] and [2, Sect. A.2] for the
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terminology. The k-algebra U(V) is equipped with a degreewise dense family of elements
{v{n};v ∈ V, n ∈ Z}, see [2, Sect. 3.9, Prop. 3.11.1].

We define a V-module to be a U(V)-module. A V-module is admissible if it is a
Z-graded U(V)-module M =⊕s∈Z M[s] such that M[s] = 0 for s � 0. If M is an admis-
sible V-module the action U(V)[s] ×M[s′] → M[s + s′] is continuous with respect to the
topology on U(V)[s] and the discrete topology on M.

8.2. The vertex algebra Wk(glr). — Fix an integer r > 0 and an element k ∈ k. Let
Wk(slr)k be the W-algebra over k at level k associated with slr . We may abbreviate Wk(slr)=
Wk(slr)k. Recall that Wk(slr) is a Z-graded vertex algebra with quasi-primary vectors
˜W2, ˜W3, . . . , ˜Wr of conformal weight 2,3, . . . , r. The corresponding fields are

(8.1) ˜Wi(z)=
∑

l∈Z

˜Wi,l z−l−i, ˜Wi,l ∈ End
(

Wk(slr)
)

.

The vacuum |0〉 of Wk(slr) has the degree zero, and ˜Wi,l is an operator of degree −l. We
abbreviate ˜Wi,(l) = ˜Wi,l−i+1, so that we have ˜Wi = ˜Wi,(−1)|0〉. Then Wk(glr) is spanned,
as a k-vector space, by the elements

(8.2) ˜Wi1,(−l1)
˜Wi2,(−l2) · · · ˜Wit ,(−lt)|0〉, li ≥ 1, t ≥ 0.

The vertex algebra Wk(slr) admits a strict filtration, in the sense of [2, Sects. 3.4, 3.8], such
that the subspace Wk(slr)[≤d] is spanned by the elements (8.2) with i1, i2, . . . , it ≥ 2 and

(8.3) i1 + i2 + · · · + it ≤ d + t.

We’ll call it the order filtration. This filtration differs from the standard filtration on any con-
formal vertex algebra [2, Sect. 3.5, Rem. 4.11.3]. The associated graded Wk(slr) is a
commutative vertex algebra. Let Wi,l denote the symbol of ˜Wi,l in End(Wk(slr)). The
vectors ˜W2, . . . , ˜Wr generate a PBW-basis of Wk(slr), see [2, Sect. 3.6, Prop. 4.12.1]. This
means that the map

(8.4) k
[

wi,(−l); i ∈ [2, r], l ≥ 1
]→ Wk(slr), f (wi,(−l)) → f (Wi,(−l))|0〉

is invertible.
Let Wk(glr) be the W-algebra over k at level k associated with glr . It is the tensor prod-

uct of Wk(slr) with the vertex algebra associated with a free bosonic field of conformal
weight 1

(8.5) ˜W1(z)=
∑

l∈Z

˜W1,l z−l−1.

The results above generalize immediately to Wk(glr). In particular Wk(glr) admits a
strict filtration such that the subspace Wk(glr)[≤d] is spanned by the elements (8.2) with
i1, i2, . . . , it ≥ 1 as in (8.3). Finally, recall that ˜W2 is a conformal vector of central charge

(8.6) Ck = (r − 1)− r
(

r2 − 1
)

(k + r − 1)2/(k + r).
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In other words, the Fourier modes of the field ˜W2(z) satisfy the relations

(8.7) [˜W2,l, ˜W2,k] = (l − k)˜W2,l+k +
(

l3 − l
)

δl,−k Ck/12.

8.3. The current algebra of Wk(glr). — Let U(Wk(glr)) be the current algebra of
Wk(glr). We’ll abbreviate ˜Wi,l = (˜Wi){l+i−1}. Thus ˜Wi,l may be viewed both as a lin-
ear operator on Wk(glr) and as an element of U(Wk(glr)) of conformal degree −l. We
hope that this will not create any confusion. Note that the elements ˜Wi1,l1

˜Wi2,l2 · · · ˜Wit ,lt

with i1, i2, . . . , it ≥ 1 and l1 + l2 + · · · + lt = s span a dense subset of U(Wk(glr))[s]. Now,
the order filtration on Wk(glr) induces a filtration on U(Wk(glr)), called again the order

filtration. The element ˜Wi,l has order i − 1. Let Wi,l denote its symbol in the piece [2,
Thm. 3.13.3]

(8.8) U
(

Wk(glr)
)[i] = U

(

Wk(glr)
)[≤i]/U(Wk(glr)

)[<i].

The conformal weight yields a Z-grading on U(Wk(glr))[i] such that Wi,l has (conformal)
degree −l. Note that U(Wk(glr)) is also a degreewise complete topological k-algebra. It
is isomorphic to the standard degreewise completion of the algebra k[wi,l; i ∈ [1, r], l ∈ Z] as
a degreewise topological k-vector space. Here wi,l is given the degree −l.

8.4. The Wk(glr)-modules. — Now, let h be the Cartan subalgebra of glr . For β ∈ h,
the Verma module with the highest weight β is an admissible module Mβ with basis elements

(8.9) ˜Wi1,−l1
˜Wi2,−l2 · · · ˜Wit ,−lt |β〉, li ≥ 1, t ≥ 0.

Here |β〉 is the highest weight vector, see [2, Sect. 5.1]. We have the following relations

(8.10) ˜Wi,0|β〉 = ei(β)|β〉, ˜Wi,l|β〉 = 0, l ≥ 1,

where ei(β) is the evaluation of the ith elementary symmetric function at β .

Remark 8.1. — The order filtration on Wk(glr) induces a filtration on Mβ such that
Mβ[≤d] is spanned by the elements

(8.11) ˜Wi1,−l1
˜Wi2,−l2 · · · ˜Wit ,−lt |β〉, li ≥ 1, t ≥ 0,

with i1, i2, . . . , it satisfying (8.3). By [2, Prop. 5.1.1], the associated graded is a U(Wk(glr))-
module Mβ . The conformal weight yields a Z-grading on Mβ . As a graded vector space
Mβ is isomorphic to the polynomial ring k[wi,−l; i ∈ [1, r], l ≥ 1], where wi,−l is given
the degree l.
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8.5. The quantum Miura transform for Wk(glr). — Let b1, b2, . . . , br be a basis of h

and let b(1), b(2), . . . , b(r) be the dual basis. Let 〈•,•〉 denote both the canonical pairing
h∗ × h→ k and the pairing h∗ × h∗ → k such that (b(i)) is orthonormal. Fix κ ∈ k× and
fix r commuting boson fields b(1)(z), b(2)(z), . . . , b(r)(z) of level κ−1. Thus, we have

(8.12)
[

b
(i)

l , b
(j)

−h

]= lδi,jδl,h/κ, b(i)(z)=
∑

l∈Z

b
(i)

l z−l−1.

Let H (r) be the Heisenberg algebra generated by the elements b
(i)

l with i ∈ [1, r] and
l ∈ Z. For β ∈ h let πβ be the H (r)-module generated by the vector |β〉 with the relations

(8.13) b
(i)

l |β〉 = δl,0

〈

b(i), β
〉|β〉, l ≥ 0.

To avoid confusions we may write πβ = πβ,k. Consider the fields

(8.14) b(z)=
∑

i

b(i)(z) bi, h(z)=
∑

i

〈h, bi〉 b(i)(z), h ∈ h
∗.

We call π0 the Fock space. It has the structure of a conformal vertex algebra such that
Y(b

(i)
−1|0〉, z) = b(i)(z). As a vertex algebra π0 is isomorphic to the rth tensor power

Wκ−1(gl1)
⊗r . The Virasoro field has central charge r − 12〈h, h〉/κ and is given by

κ

2

∑

i:::b(i)(z)2::: + ∂zh(z). For each β the module πβ has the structure of a module over
Wκ−1(gl1)

⊗r .
Now, let h(1), h(2), . . . , h(r) be the weights of the first fundamental representation of

slr . Let also αi , ωi, with i = 1, . . . , r−1, be the simple roots and the fundamental weights
of slr , and ρ be the sum of the fundamental weights. Given Q ∈ k we define the fields
W1(z),W2(z), . . . ,Wr(z) in End(π0)[[z−1, z]] by the following formula

(8.15) −κ:::
r
∏

i=1

(

Q ∂z + h(i)(z)
)::: =

r
∑

d=0

Wd(z) (Q ∂z)
r−d .

Note that

r
∑

i=1

h(i) = 0, −
∑

i �=j

h(i) ⊗ h(j) =
r−1
∑

i=1

αi ⊗ωi =
r
∑

i=1

b(i) ⊗ b(i) − 1
r

J⊗ J,

J =
∑

i

b(i).
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Therefore, we have

(8.16)

W0(z)= 1,

W1(z)= 0,

W2(z)=−κ
∑

i<j

:::h(i)(z) h(j)(z)::: + κQ ∂zρ(z)

= κ

2

r−1
∑

i=1

:::αi(z)ωi(z)::: + κQ ∂zρ(z)

= κ

2

r
∑

i=1

:::b(i)(z)2::: − κ

2r
:::J(z)2::: + κQ ∂zρ(z).

For r ≥ 2 the field W2(z) is a Virasoro field of central charge [21, Prop. 4.10]

(8.17) CQ = (r − 1)− r
(

r2 − 1
)

κ Q2.

Although this notation is not compatible with (8.16), we’ll write

(8.18) W1(z)= J(z)=
r
∑

i=1

b(i)(z).

Comparing (8.6) and (8.17) we get Ck = CQ if

(8.19) Q =−ξ/κ, κ = k + r.

Recall that we put ξ = 1 − κ , see (1.35). We’ll always assume that (8.19) holds. Then, the
fields W1(z), . . . ,Wr(z) generate a vertex subalgebra of Wκ−1(gl1)

⊗r which is isomorphic
to Wκ−r(glr), see [16, Sect. 5.4.11]. In other words, there is a faithful representation of
Wκ−r(glr) in π0 which is given by the fields W1(z), . . . ,Wr(z). An explicit expression of
the field Wd(z) yields complicated formulas. The following is enough for our purpose.

Proposition 8.2. — For d �= 1, modulo lower terms in the order filtration of U(Wκ−1(gl1))
̂⊗r ,

Wd(z)=−κ

d
∑

s=0

(−r)s−d

(

r − s

r − d

)

∑

i1<i2<···<is

:::J(z)d−sb(i1)(z)b(i2)(z) · · · b(is)(z):::.

Proof. — Obvious because, modulo lower terms, we have

(8.20) Wd(z)≡−κ
∑

i1<i2<···<id

:::h(i1)(z) h(i2)(z) · · · h(id )(z):::.
�
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Since πβ is a module over the vertex algebra π0 = Wκ−1(gl1)
⊗r , it is also a module

over Wκ−r(glr). Let U (Wκ−r(glr)) denote the image of U(Wκ−r(glr)) in End(πβ). This
image may depend on the choice of β . We hope this will not create any confusion. We
have the following, see, e.g., [6].

Proposition 8.3. — The representation of Wκ−r(glr) on πβ is such that

Wd,0|β〉 =wd(β)|β〉, Wd,l|β〉 = 0, l ≥ 1,

w1(β)=
r
∑

i=1

〈

b(i), β
〉

,

wd(β)=−κ
∑

i1<i2<···<id

d
∏

t=1

(〈

h(it), β
〉+ (d − t) ξ/κ

)

, d ≥ 2.

8.6. The free field representation of SH(r)
K . — A composition ν of r is a tuple (ν1, ν2, . . . ,νd)

of positive integers summing to r. For each composition, we set

(8.21)
SHν

K =̂
⊗

1≤i≤d

SH(νi)

Kr
, Lν

K =
⊗

1≤i≤d

L(νi)

Kr
,

SH(νi)

Kr
= SH(νi)

K ⊗Kνi
Kr, L(νi)

Kr
= L(νi)

K ⊗Kνi
Kr.

Here, the symbol
⊗

denotes the tensor product over Kr and̂
⊗

is the topological tensor
product over Kr as in Section 7.6. For instance, for d = 2, we have

(8.22)

SHν
K =
⊕

s∈Z

SHν
K[s], SHν

K[s] = lim←−
N

(

⊕

s1+s2=s

⊗

i=1,2

SH(νi)

Kr
[si]
)

/

IN[s],

IN[s] =
⊕

s2≥N

⊗

i=1,2

SH(νi)

Kr
[si].

Taking only the terms in SH(νi)

Kr
[si] or SH(νi)

Kr
[≤ li] in the definition of SHν

K, we get the
subspaces

(8.23) SHν
K[s1, . . . , sd], SHν

K[≤l1, . . . ,≤ld].
For future use, let us quote the following easy fact.

Proposition 8.4. — The map ���d−1 factors to an algebra embedding ���ν : SH(r)
K → SHν

K and

���ν
(

SH(r)
K [s])⊂

⊕

s1,...,sd

SHν
K[s1, . . . , sd],

���ν
(

SH(r)
K [≤l])⊂

⊕

l1,...,ld

SHν
K[≤l1, . . . ,≤ld].
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Here the sums run over all tuples summing to s and l respectively.

Proof. — Since the coproduct ��� admits a counit ε, the map ���d−1 is an injection

(8.24) SHc → (SHc
)
̂⊗d
,

because ���d−1(x)= 0 implies that x = (ε̂⊗(d−1)
̂⊗ id)(���d−1(x))= 0. Here, the tensor prod-

uct is taken over the field F. Composing this map with the base change • ⊗Fc Kνi
and

the obvious inclusion Kνi
⊂ Kr for i ∈ [1, νi], we get an F-linear map SHc → SHν

K such
that cl → pl(ε1, . . . , εr) for each l ≥ 0, because ���(cl) = δ(cl). Therefore, by construc-
tion of the map Fc → Kr in Definition 1.36, it factors to a Kr-algebra homomorphism
���ν : SH(r)

K → SHν
K. This map is again injective. �

Definition 8.5. — We define a representation ρν of SH(r)
K on Lν

K by composing ���ν with the

representation of SHν
K on Lν

K in Corollary 3.3.

Corollary 8.6. — The representation ρν is faithful.

Proof. — Use Proposition 8.4 and Theorem 3.2. �

Remark 8.7. — We will mostly be interested in the case ν = (1r), where we abbre-
viate (1r)= (1,1, . . . ,1). In this case, we have

(8.25) L(1r)

K = (L(1)
Kr

)⊗r = L(1)
K ⊗K L(1)

K ⊗K · · · ⊗K L(1)
K ,

and the Kr-vector space structure is given by

(8.26) εi = 1⊗ 1⊗ · · · ⊗ 1⊗ ε1 ⊗ 1⊗ · · · ⊗ 1, i ∈ [1, r],
where ε1 is at the ith spot.

8.7. The degreewise completion of SH(r)
K . — We refer to [27, Sects. 1.1–1.4] for the

terminology concerning degreewise topological algebras. The Kr-algebra SH(r)
K carries a

Z-grading and an N-filtration inherited from SHc
K, see Section 1.8.

Definition 8.8. — The standard degreewise topology of SH(r)
K is the degreewise topol-

ogy defined by the sequence

(8.27) JN =
⊕

s∈Z

JN[s], JN[s] =
∑

t≥N

SH(r)
K [t − s]SH(r)

K [−t].

The standard degreewise completion of SH(r)
K is the Z-graded algebra given by

(8.28) U
(

SH(r)
K

)=
⊕

s∈Z

U
(

SH(r)
K

)[s], U
(

SH(r)
K

)[s] = lim←−
N

SH(r)
K [s]/JN[s].

The standard degreewise topology on U(SH(r)
K ) is the projective limit degreewise topology.
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The standard degreewise topologies on SH(r)
K and U(SH(r)

K ) are linear. They equip
U(SH(r)

K ) with the structure of a degreewise complete topological algebra and the canon-
ical map SH(r)

K → U(SH(r)
K ) is a morphism of degreewise topological algebras with a

degreewise dense image.

Definition 8.9. — A module M over SH(r)
K or U(SH(r)

K ) is admissible if M =⊕s∈Z M[s]
is Z-graded and M[s] = 0 for s large enough.

By an embedding of degreewise topological algebras we mean an injective mor-
phism of degreewise topological algebras. The following is an immediate consequence of
Corollary 8.6.

Proposition 8.10. — (a) The map ρ(1r) is a faithful admissible representation of SH(r)
K on L(1r)

K

which extends to an admissible representation of U(SH(r)
K ).

(b) The canonical map SH(r)
K → U(SH(r)

K ) is an embedding of degreewise topological algebras.

Remark 8.11. — If M is admissible then the actions

(8.29) SH(r)
K [s] ×M

[

s′
]→ M
[

s + s′
]

, U
(

SH(r)
K

)[s] ×M
[

s′
]→ M
[

s + s′
]

are continuous with respect to the standard topology on SH(r)
K [s], U(SH(r)

K )[s] and the
discrete topology on M[s′], M[s + s′].

Remark 8.12. — The order filtration on SH(r)
K induces a filtration on U(SH(r)

K )

called again the order filtration. By Proposition 1.39 it is determined by putting Dr,d in
degree d for any r, d .

8.8. From SH(1)
K to Wk(gl1). — In this section we set k = K1 and κ = k+ 1. Recall

that Wκ−1(gl1) = π0, the vertex algebra associated with the Heisenberg algebra H (1).
We abbreviate

(8.30) W1(z)= b(z)=
∑

l∈Z

bl z−l−1.

Thus Wκ−1(gl1) is spanned, as a vector space, by elements

(8.31) b−l1 · · · b−lt |0〉, li ≥ 1, t ≥ 0.

Definition 8.13. — The subspace Wκ−1(gl1)[�d] of standard order at most d is the span

of the elements in (8.31) with t ≤ d.

The standard filtration on Wκ−1(gl1) should not be confused with the order filtration.
The associated graded of Wκ−1(gl1) with respect to the standard filtration is a commu-
tative vertex algebra. The current algebra U(Wκ−1(gl1)) has a standard filtration as well,
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for which the elements bl are of standard order 1. Now, we consider the H (1)-module

(8.32) π(1) = πβ, β =−ε1/κ.

Recall that U (Wκ−1(gl1)) is the image of U(Wκ−1(gl1)) in End(π(1)). By Proposi-
tion 1.41 there is a unique isomorphism K1-vector space L(1)

K → π(1) such that [I∅] → |β〉
which intertwines the operator ρ(1)(b−l) = ρ(1)(ylDl,0) on L(1)

K with the operator b−l on
π(1). Following (2.34), we identify π(1) with �K1 in the usual way. This yields an isomor-
phism

(8.33) L(1)
K = π(1) =�K1 .

Our next result describes the action of the element Hl introduced in (1.89).

Proposition 8.14. — We have the following relation in End(π(1))

ρ(1)(Hl)= κ

2

∑

h∈Z

ρ(1)(:::bl−hbh:::), l ∈ Z.

Proof. — To unburden the notation we omit the symbol ρ(1) everywhere. We must
prove that

(8.34) H0 = κ
∑

l≥1

b−lbl + κb2
0/2, Hk = κ

∑

l∈Z

bk−lbl/2, k �= 0.

Recall that b−l acts on �K1 by multiplication by pl and that bl acts by the operator κ−1l∂pl
.

Next, the computation in the proof of [35, Thm. 3.1] implies that

(8.35) �(pλ)= κ−1ξn
(

λ′
)

pλ+ 1
2κ

∑

r �=s

λrλsp
−1
λr

p−1
λs

pλr+λs
pλ+ 1

2

∑

r

λr−1
∑

j=1

λrp
−1
λr

pjpλr−jpλ.

So we have the following formula

(8.36) �= ξ
∑

l≥1

(l − 1)b−lbl/2+ κ
∑

l,k≥1

(b−l−kblbk + b−lb−kbl+k)/2.

Now, Remark 3.4 yields

(8.37) D0,2 + ε1D0,1 = κ �.

Further, a direct computation (left to the reader) using (1.89), (8.36) and (8.37) gives

(8.38) [Hk, bl] = −lbl+k, [H−k, bl] = −lbl−k, l ∈ Z, k ≥ 1.

This implies the formula for Hk and k �= 0. Next, a direct computation using (1.89) yields

(8.39) H0 = D0,1 + κb2
0/2.
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Further, by Lemma E.3 we have [D0,1,Dl,0] = lDl,0 and by (3.18) we have D0,1([I∅])= 0.
This yields the following formula for D0,1, which implies the formula for H0,

(8.40) D0,1 = κ
∑

l≥1

b−lbl .
�

Equations (8.36), (8.37) and (8.40) give the expression for the action of D0,1 and
D0,2 on π(1). Since SH(1)

K is generated by {D0,2, bl; l ∈ Z}, the proof above also gives the
following.

Proposition 8.15. — There is an embedding �(1) : SH(1)
K → U (Wκ−1(gl1)), bl → bl

which intertwines the representations of SH(1)
K and U (Wκ−1(gl1)) on π(1).

Remark 8.16. — From (8.36), (8.37), (8.40) we get ρ(1)(D0,2)= V(1)+κξ
∑

l≥1
l b−l bl

2 ,
where V(1) = u(2) for some element u ∈ Wκ−1(gl1) of degree 3. Note that the infinite sum
∑

l≥1
l b−l bl

2 belongs to U (Wκ−1(gl1)).

Thanks to Proposition 8.15, we may speak of the standard order of an element of
SH(1)

K .

Proposition 8.17. — For d ≥ 1 we have

(8.41) ρ(1)(D0,d)≡ κd

d(d + 1)

∑

l0,...,ld

ρ(1)(:bl0bl1 · · · bld :).

The sum runs over all tuples of integers with sum 0. The symbol ≡ means that the equality holds modulo

the action of terms of standard order � d − 1.

Proof. — To unburden the notation we omit the symbol ρ(1) everywhere. Further,
for any integers m1, . . . ,md we abbreviate

(8.42) bm1,...,md
= ad(bm1) ◦ ad(bm2) ◦ · · · ◦ ad(bmd

).

Recall that :bm1 · · · bmd
: is the monomial obtained from bm1 · · · bmd

by moving all bmi
, mi < 0,

to the left of all bmj
with mj ≥ 0. First, we prove that for any m1, . . . ,md we have

(8.43) bm1,...,md
(D0,d)= (d − 1)! (m1m2 · · ·md) bm, m = m1 + · · · + md .

We proceed by induction on d . Note that (8.36)–(8.40) imply that

(8.44) D0,1 ≡ κ

2

∑

l0,l1

:bl0bl1 :, D0,2 ≡ κ2

6

∑

l0,l1,l2

:bl0bl1bl2 :,
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where the li ’s are integers which sum to 0. This implies the claim for d = 1,2. Assume
that (8.43) is proved for d . Applying ad(D1,1) to (8.43), the formula (1.91) gives

(d − 1)!(m1m2 · · ·md)mbm−1 = bm1,...,md
(D1,d)+

∑

i

mibm1,...,mi−1,...,md
(D0,d)

= bm1,...,md
(D1,d)+ (d − 1)!

∑

i

(mi − 1)(m1m2 · · ·md)bm−1.

This implies the formula

(8.45) bm1,...,md
(D1,d)= d!(m1m2 · · ·md)bm−1.

Similarly, we have

(8.46) bm1,...,md
(D−1,d)= κd!(m1m2 · · ·md)bm+1.

Next, we compute

(8.47) bm1,...,md+1(Ed+2)= bm1,...,md+1

([D−1,2,D1,d]
)

=
∑

i<j

[

bmi,mj
(D−1,2), bm1,...,̂mi,...,̂mj ,...,md+1(D1,d)

]

+
∑

i

[

bmi
(D−1,2), bm1,...,̂mi,...,md+1(D1,d)

]

,

where the symbol m̂i means that the index mi is omitted. Write m+ = m + md+1. The first
sum on the right hand side of (8.47) is equal to

∑

i<j

2κ li ljbmi+mj+1,m1,...,̂mi,...,̂mj ,...,md+1(D1,d)

= 2κd!(m1 · · ·md+1)
∑

i<j

(mi + mj + 1)bm+

= 2κd!(m1 · · ·md+1)
(

dm+ + d(d + 1)/2
)

bm+

while the second sum evaluates to

−d!
∑

i

(m1 · · · m̂i · · ·md+1)bm+−mi−1,mi
(D−1,2)

=−2κd!(m1 · · ·md+1)
∑

i

(

m+ − mi − 1
)

bm+

= 2κd!(m1 · · ·md+1)
(−dm+ + (d + 1)

)

bm+ .
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We obtain

(8.48) bm1,...,md+1(Ed+2)= κ(d + 2)!(m1 · · ·md+1)bm+ .

By (1.71) we have Ed+2 = κ(d + 2)(d + 1)D0,d+1 + u where u is a polynomial in
D0,1, . . . ,D0,d of order ≤ d . Thus, we have

(8.49) bm1,...,md+1(Ed+2)= κ(d + 2)(d + 1)bm1,...,md+1(D0,d+1).

From this we finally deduce relation (8.43) for d + 1. We are done.
Now, relation (8.41) follows from (8.43). Indeed, given integers l0, l1, . . . , ld we have

(8.50) ad(bm)(bl0bl1 · · · bld )=
m

κ

∑

li=−m

bl0 · · · bli−1bli+1 · · · bld ,

where the sum is over all i’s with li =−m. Thus, if l0, l1, . . . , ld sum to 0 we have

(8.51) bm1,...,md
(:bl0bl1 · · · bld :)= c bm,

for some constant c which is zero unless l0, l1, . . . , ld are equal to m,−m1,−m2, . . . ,−md ,
up to a permutation, and which, in this case, is equal to (m1 · · ·md)/κ

d times the num-
ber cl0,...,ld of permutations σ of {0,1, . . . , d} such that lσ(0) = m and lσ(s) = −ms for
s = 1,2, . . . , d . In other words, if l0, l1, . . . , ld are equal to m,−m1,−m2, . . . ,−md up to a
permutation, then we have

(8.52) bm1,...,md

(

D0,d − κd(d − 1)!
cl0,...,ld

:bl0bl1 · · · bld :
)

= 0.

Therefore, for any integers m1,m2, . . . ,md we have

(8.53) bm1,...,md

(

D0,d − κd

d(d + 1)

∑

l0,...,ld

:bl0bl1 · · · bld :
)

= 0.

The sum runs over all tuples of integers summing to 0. To conclude, we use the following
lemma.

Lemma 8.18. — Let u ∈ U(Wκ−1(gl1)) be annihilated by bm1,...,md
for any integers

m1, . . . ,md . Then u is of standard order � d − 1.

Proof. — We may express u as an infinite sum

(8.54) u =
∑

s≥0

∑

l1,...,ls

al1,...,ls :bl1 · · · bls :.

Now observe that

(8.55) s < t ⇒ bm1,...,mt
(:bl1 · · · bls :)= 0, bm1,··· ,ms

(:bl1 · · · bls :)= cm1,...,ms
,

where cm1,...,ms
�= 0 if and only if l1, . . . , ls are equal, up to a permutation, to −m1, . . . ,−ms.

The lemma follows easily. �
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8.9. From SH(2)
K to Wk(gl2). — We are interested in higher rank analogues of the

inclusion �(1). In this section we deal with the case r = 2. We set k = K2 and κ = k + 2.
We write

(8.56) π(12) = πβ,
〈

b(i), β
〉=−εi/κ + (i − 1)ξ/κ, i = 1,2.

Recall that U (Wκ−2(gl2)) is the image of U(Wκ−2(gl2)) in End(π(12)). The isomorphism
(8.33) yields an isomorphism L(12)

K = �⊗2
K2

. Composing it with the isomorphism �⊗2
K2

=
π(12) such that 1⊗ 1 → |β〉 which intertwines the operators b−l ⊗ 1, 1⊗ b−l on �⊗2

K2
with

the operators b
(1)
−l , b

(2)
−l on π(12), we get an isomorphism

(8.57) L(12)
K = π(12) =�⊗2

K2

which identifies [I∅]⊗2, |β〉 and 1⊗2. Using (8.57) together with Propositions 8.3 and 8.10
we get inclusions of U (Wκ−2(gl2)) and SH(2)

K into End(π(12)).

Proposition 8.19. — The representation ρ(12) yields an embedding of degreewise topological

K2-algebras �(2) : SH(2)
K →U (Wκ−2(gl2)).

Proof. — It is enough to check that ρ(12)(bl) and ρ(12)(D0,2) belong to U (Wκ−2(gl2)).
For bl , this follows from the easily checked relation

(8.58) ρ(12)
(

b(z)
)= J(z), b(z)=

∑

l∈Z

blz
−l−1 ∈ SH(2)

K

[[

z, z−1
]]

.

For D0,2, this is a consequence of the lemma below. �

Lemma 8.20. — There is a constant c such that

ρ(12)(D0,2)= κ

2

∑

l∈Z

:::W1,−lW2,l::: + κ2

24

∑

k,l∈Z

:::W1,−k−lW1,kW1,l:::

+ κξ

4

∑

l∈Z

(|l| − 1
):::W1,−lW1,l::: + ξW2,0 + c.

Proof. — First, note that (8.36), (8.37), (8.40) and Theorem 7.9 imply that

(8.59) ρ(12)(D0,2)= κ2

2

∑

k,l≥1

(

b
(1)
−l−kb

(1)
l b

(1)
k + b

(1)
−l b

(1)
−kb

(1)
l+k + b

(2)
−l−kb

(2)
l b

(2)
k + b

(2)
−l b

(2)
−kb

(2)
l+k

)

+ κξ

2

∑

l≥1

(l − 1)
(

b
(1)
−l b

(1)
l + b

(2)
−l b

(2)
l

)− κ
∑

l≥1

(

ε1b
(1)
−l b

(1)
l + ε2b

(2)
−l b

(2)
l

)

+ κξ
∑

l≥1

lb
(2)
−l b

(1)
l .
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Using ε1 =−κb
(1)
0 and ε2 = ξ − κb

(2)
0 , we can rewrite (8.59) in the following way

(8.60) ρ(12)(D0,2)= κ2

6

∑

k,l∈Z

:::b(1)−l−kb
(1)
l b

(1)
k + b

(2)
−l−kb

(2)
l b

(2)
k :::

+ κξ

4

∑

l∈Z

(|l| − 2
):::b(1)−l b

(1)
l + b

(2)
−l b

(2)
l ::: + κξ

4

∑

l∈Z

:::b(1)−l b
(1)
l − b

(2)
−l b

(2)
l :::

+ κξ
∑

l≥1

lb
(2)
−l b

(1)
l + c1

for some constant c1. Next, recall that

(8.61)
W1(z)= b(1)(z)+ b(2)(z),

W2(z)= κ

2
:::b(1)(z)2 + b(2)(z)2::: − κ

4
:::W1(z)

2::: − ξ ∂zρ(z).

This implies that

(8.62) W2,l =−κ

2

∑

k∈Z

:::b(1)l−kb
(2)
k ::: + κ

4

∑

k∈Z

:::b(1)l−kb
(1)
k + b

(2)
l−kb

(2)
k ::: + ξ

2
(l + 1)
(

b
(1)
l − b

(2)
l

)

.

Further, we have the following formulas

∑

k,l∈Z

:::W1,−k−lW1,kW1,l::: = 3
∑

k,l∈Z

:::b(1)−k−lb
(1)
k b

(2)
l + b

(2)
−k−lb

(2)
k b

(1)
l :::

+
∑

k,l∈Z

:::b(1)−k−lb
(1)
k b

(1)
l + b

(2)
−k−lb

(2)
k b

(2)
l :::

(8.63)

∑

l∈Z

|l|:::W1,−lW1,l::: = 2
∑

l∈Z

|l|:::b(1)−l b
(2)
l ::: +
∑

l∈Z

|l|:::b(1)−l b
(1)
l + b

(2)
−l b

(2)
l :::(8.64)

∑

l∈Z

:::W1,−lW2,l::: = −κ

4

∑

k,l∈Z

:::b(1)−k−lb
(1)
k b

(2)
l + b

(2)
−k−lb

(2)
k b

(1)
l :::

+ κ

4

∑

k,l∈Z

:::b(1)−k−lb
(1)
k b

(1)
l + b

(2)
−k−lb

(2)
k b

(2)
l :::

+ ξ

2

∑

l∈Z

:::b(1)−l b
(1)
l − b

(2)
−l b

(2)
l ::: − ξ
∑

l∈Z

l:::b(1)−l b
(2)
l :::.

(8.65)
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Therefore, we get

(8.66) ρ(12)(D0,2)− κ

2

∑

l∈Z

:::W1,−lW2,l::: − κ2

24

∑

k,l∈Z

:::W1,−k−lW1,kW1,l:::

− κξ

4

∑

l∈Z

|l|:::W1,−lW1,l:::

= −κξ

2

∑

l∈Z

:::b(1)−l b
(1)
l + b

(2)
−l b

(2)
l ::: + c1.

Next, observe that

(8.67)

W2,0 =−κ

2

∑

l∈Z

:::b(1)−l b
(2)
l ::: + κ

4

∑

l∈Z

:::b(1)−l b
(1)
l + b

(2)
−l b

(2)
l ::: + ξ

2

(

b
(1)
0 − b

(2)
0

)

,

∑

l∈Z

:::W1,−lW1,l::: = 2
∑

l∈Z

:::b(1)−l b
(2)
l ::: +
∑

l∈Z

:::b(1)−l b
(1)
l + b

(2)
−l b

(2)
l :::.

Therefore, we have

(8.68)
κξ

2

∑

l∈Z

:::b(1)−l b
(1)
l + b

(2)
−l b

(2)
l ::: = κξ

4

∑

l∈Z

:::W1,−lW1,l::: + ξW2,0 − ξ 2

2

(

b
(1)
0 − b

(2)
0

)

.

The lemma follows, the constant c being given by

(8.69) c = p3(	ε)/6κ + p2(	ε)ξ/4κ − p1(	ε)ξ 2/2κ + ξ 3/12κ. �

Remark 8.21. — Lemma 8.20 yields ρ(12)(D0,2) = V(12) + κξ
∑

l≥1 l W1,−lW1,l/2
where V(12) is a linear combination of Fourier coefficients of fields of the vertex algebra
Wκ−2(gl2). An easy computation using Theorem 7.9 yields

V(12) = V(1) +V(2) + κξ
∑

l∈Z

l b
(2)
−l b

(1)
l /2,

where V(i) denotes the operator V(1) in Remark 8.16 acting on the ith spot of π(12) =
π(1) ⊗ π(1). So, we have V(12) = v(2) for some element v ∈ Wκ−2(gl2) of degree 3. Finally,
note that the infinite sum

∑

l≥1 l W1,−lW1,l/2 belongs to U (Wκ−2(gl2)).

8.10. From SH(r)
K to Wk(glr). — Now r is arbitrary. We set k = Kr and κ = k + r.

We write

(8.70) π(1r) = πβ,
〈

b(i), β
〉=−εi/κ + (i − 1)ξ/κ, i ∈ [1, r].
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Recall that U (Wκ−r(glr)) is the image of U(Wκ−r(glr)) in End(π(1r)). We construct as in
(8.57) a Kr-linear isomorphism

(8.71) L(1r)

K = π(1r) =�⊗r
Kr

which identifies [I∅]⊗r , |β〉 and 1⊗r and which intertwines the operator b
(i)

−l on π(1r) with

(8.72) 1⊗ · · · ⊗ 1⊗ b−l ⊗ 1⊗ · · · ⊗ 1 (b−l is at the ith spot)

on �⊗r
Kr

and with the operator on L(1r)

K given by

(8.73) 1⊗ · · · ⊗ 1⊗ ρ(1)(Dl,0)⊗ 1⊗ · · · ⊗ 1.

Propositions 8.3, 8.10 then provide inclusions of U (Wκ−r(glr)) and SH(r)
K into End(π(1r)).

We equip SH(r)
K , U(SH(r)

K ) and U (Wκ−r(glr)) with the standard degreewise topologies.

Theorem 8.22. — The representation ρ(1r) yields an embedding of degreewise topological Kr -

algebras �(r) : SH(r)
K →U (Wκ−r(glr)) with a degreewise dense image. The morphism �(r) is com-

patible with the order filtrations.

The theorem is a direct consequence of Lemmas 8.23, 8.26 below. Note that the
map �(r) is homogeneous of degree zero relatively to the rank degree on SH(r)

K and the
conformal degree on U (Wκ−r(glr)).

Lemma 8.23. — (a) We have ρ(1r)(D0,2)= V(1r) + κξ
∑

l≥1 l W1,−lW1,l/2, where V(1r)

is a Fourier coefficient of a field of Wκ−r(glr).

(b) The representation ρ(1r) yields an embedding of degreewise topological Kr -algebras �(1r) :
SH(r)

K →U (Wκ−r(glr)).

Proof. — Part (b) is a consequence of (a), because SH(r)
K is generated by the elements

D0,2, bl , l ∈ Z, because the infinite sum
∑

l≥1 l W1,−lW1,l/2 belongs to U (Wκ−r(glr)) and
because ρ(1r) takes the formal series b(z) ∈ SH(r)

K [[z−1, z]] to W1(z), viewed as a field in
(Endπ(1r))[[z−1, z]].

Let us concentrate on part (a). The cases r = 1,2 have been considered in Re-
marks 8.16, 8.21. So, we may assume that r ≥ 2. Theorem 7.9 yields

ρ(1r)(D0,2)=
r
∑

i=1

D(i)
0,2 + κξ

∑

i<j

∑

l≥1

l b
(j)

−lb
(i)

l ,

where D(i)
0,2 is the operator ρ(1)(D0,2) acting on the ith spot of π(1r) = (π(1))⊗r . Let V(i) ∈

End(π(1r)) denote the operator V(1) in Remark 8.16 acting on the ith spot of π(1r) =
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(π(1))⊗r . Then, a short computation yields

(8.74)

ρ(1r)(D0,2)= V(1r) + κξ
∑

l≥1

l W1,−lW1,l/2,

V(1r) =
r
∑

i=1

V(i) + κξ
∑

i<j

∑

l∈Z

l b
(j)

−lb
(i)

l /2.

Recall that under the quantum Miura transform we can view Wκ−r(glr) as a vertex
subalgebra of Wκ−1(gl1)

⊗r. Set W[i] = Wκ−1(gl1)
⊗(i−1) ⊗Wκ−2(gl2)⊗Wκ−1(gl1)

⊗(r−i−1).
We have the following classical result due to Feigin and Frenkel.2

Theorem 8.24. — We have the equality Wκ−r(glr)=⋂r−1
i=1 W[i] in Wκ−1(gl1)

⊗r .

This is a direct corollary of the characterization of Wκ−r(glr) as the intersection
of screening operators associated with the simple roots of glr , see [15, Thm. 4.6.9]. The
above formulation appears in [16, Sect. 15.4.15].

Therefore, the part (a) is a consequence of the decomposition (8.74) and of the
following.

Claim. — There is an element w ∈⋂i W[i] such that V(1r) =w(2).

Note that

(8.75) V(1r) =
r
∑

i=1

V(i) + κξ
∑

i<j

∑

l∈Z

l:b(j)−lb
(i)

l :/2.

Using this expression and Remark 8.16 it is easy to see that there exists an element w ∈
Wκ−1(gl1)

⊗r such that V(1r) = w(2). This element is uniquely determined and admits a
unique expression of the form w = p |0〉 where p ∈ C[b(i)−k; k > 0, i ∈ [1, r]]. We must
check that w ∈⋂i W[i]. For each i we can write V(1r) = Ai + Bi with

(8.76)

Ai = V(i,i+1) +
∑

j �=i,i+1

xjκξ
∑

l∈Z

l

(

∑

i+1<j

b
(j)

−l

(

b
(i)

l + b
(i+1)
l

)+
∑

j<i

(

b
(i)

−l + b
(i+1)
−l

)

b
(j)

l

)

/

2,

Bi =
∑

j �=i,i+1

V(j) + κξ
∑

l∈Z

∑

j<k
j,k �=i,i+1

l b
(k)

−l b
(j)

l /2,

where V(i,i+1) denotes the operator V(12) in Remark 8.21 acting on the (i, i + 1)th spot.
Note that b

(i)
−1|0〉 + b

(i+1)
−1 |0〉 ∈ W[i]. Thus, we have Ai = v

(i,i+1)
(2) +∑j �=i,i+1(xj)(2) where

2 Feigin-Frenkel’s theorem is also used in the approach by A. Okounkov and D. Maulik, see [28, Sect. 19.2].
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the element v(i,i+1) is the element v from Remark 8.21 at the (i, i + 1)th spot and xj ∈
Wκ−1(gl1)

(j) ⊗Wκ−2(gl2)
(i,i+1). Similarly, we have Bi =∑j �=i,i+1 u

(j)

(2) +
∑

j<k, j,k �=i,i+1(xj,k)(2)

where the element u(i) is the element u from Remark 8.16 and xj,k ∈ Wκ−1(gl1)
(j) ⊗

Wκ−1(gl1)
(k). Therefore we have w ∈ W[i]. �

Remark 8.25. — Now, for each i ∈ [1, r) we consider the composition ωi =
(1, . . . ,1,2,1, . . . ,1) of r where 2 is at the ith spot. Let �[i] : SH(r)

K → SHωi

K be the
Kr-algebra homomorphism given by the iterated coproduct. We can identify π(1r) with
the tensor product π [i] = π(1) ⊗ · · · ⊗ π(1) ⊗ π(12) ⊗ π(1) ⊗ · · · ⊗ π(1) in the obvious way.
Let ρ[i] be the representation of SHωi

K on π(1r) given by ρ[i] = ρ(1) ⊗ · · · ⊗ ρ(1) ⊗ ρ(12) ⊗
ρ(1) ⊗ · · · ⊗ ρ(1). The coassociativity of the coproduct implies that ρ(1r) = ρ[i] ◦�[i]. By
Propositions 8.15, 8.19 the representations ρ(1) and ρ(12) give inclusions

(8.77) SH(1)
K ⊂U

(

Wκ−1(gl1)
)

, SH(2)
K ⊂U

(

Wκ−2(gl2)
)

.

Therefore, for each i, the decomposition ρ(1r) = ρ[i] ◦�[i] gives an inclusion SH(r)
K ⊂U [i]

where

(8.78) U [i] =U
(

Wκ−1(gl1)
)
̂⊗(i−1)
̂⊗U
(

Wκ−2(gl2)
)

̂⊗U
(

Wκ−1(gl1)
)
̂⊗(r−i−1)

.

Theorem 8.24 gives an inclusion U (Wκ−r(glr)) ⊂ ⋂r−1
i=1 U [i]. We do not know if this

inclusion is an equality. So, we can not deduce that SH(r)
K ⊂ U (Wκ−r(glr)) from this.

This explains the need for the more precise computations in the proof above.

Lemma 8.26. — The inclusion �(r) gives a surjective morphism of degreewise topological Kr -

algebras U(SH(r)
K )→U (Wκ−r(glr)) which is compatible with the order filtrations.

Proof. — By the universal property of completions, the inclusion SH(r)
K [s] →

U (Wκ−r(glr))[s], which is a continuous map, extends uniquely to a continuous map
U(SH(r)

K )[s] → U (Wκ−r(glr))[s], for each integer s. Taking the sum over all s we get a
map

(8.79) �(r) : U(SH(r)
K

)→U
(

Wκ−r(glr)
)

.

It is a morphism of degreewise topological Kr-algebras. We must prove that it is surjective.
We have already seen that �(r)(b(z)) = W1(z). We now consider the fields Wd(z) with
d > 1. The quantum Miura transform yields an embedding

(8.80) U
(

Wκ−r(glr)
)⊂U
(

Wκ−1(gl1)
)
̂⊗r
.

By Propositions 8.10, 8.15, the representation ρ(1r) yields a map U(SH(r)
K ) →

U (Wκ−1(gl1))
̂⊗r . Let U (SH(r)

K ) be its image. The standard filtration on U (Wκ−1(gl1))

introduced in Section 8.8 induces the standard filtrations

(8.81) U
(

SH(r)
K

)=
⋃

d

U
(

SH(r)
K

)[�d], U
(

Wκ−r(glr)
)=
⋃

d

U
(

Wκ−r(glr)
)[�d].
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Proposition 8.2 yields the following.

Claim 8.27. — For d �= 1, under the inclusion (8.80) we have

Wd(z)=−κ

d
∑

s=0

(−r)s−d

(

r − s

r − d

)

∑

i1<i2<···<is

:::J(z)d−sb(i1)(z)b(i2)(z) · · · b(is)(z):::

modulo terms of standard order � d − 1 in U(Wκ−1(gl1))
̂⊗r[[z, z−1]].

Recall the elements Yr,d defined in (1.82).

Claim 8.28. — For l, d with d ≥ 0 there is a constant c(l, d) �= 0 such that

(8.82) ρ(1r)(Yl,d)≡ c(l, d)

r
∑

i=1

∑

l0,...,ld

:b(i)l0
· · · b(i)ld

:.

The sum runs over all tuples of integers with sum −l. The symbol ≡ means that the equality holds

modulo terms of standard order � d in U(Wκ−1(gl1))
̂⊗r[[z, z−1]].

Proof. — First, we prove the following estimate

(8.83) ρ(1r)(Yl,d)≡ δr−1
(

ρ(1)(Yl,d)
)

.

Equation (8.83) is clear from the definition of the coproduct on SHc for d = 0,1 or for
l = 0, d = 2. Next, the operator ad(ρ(1r)(D0,2)) increases the standard order by at most
one, see e.g., formula (8.59) in the case r = 2. Hence using relations

(8.84) ad(D0,2)
d(D1,0)= D1,d, ad(D0,2)

d(D−1,0)= (−1)dD−1,d

we deduce (8.83) for l =±1. Likewise, the operator ad(ρ(1r)(D±1,1)) preserves the stan-
dard filtration and the operator ad(ρ(1r)(D1,0)) decreases the standard filtration by one.
This implies that (8.83) holds for l �= 0. Thus we have also

(8.85) ρ(1r)(Ed)≡ δr−1
(

ρ(1)(Ed)
)

.

This implies that (8.83) also holds for D0,d for any d .
Next, combining (8.83) and Proposition 8.17 yields (8.82) for l = 0 with

(8.86) c(0, d)= κd

d(d + 1)
.

Finally, acting by

(8.87)
ad
(

ρ(1r)(D±1,1)
)≡ ad
(

δr−1
(

ρ(1)(D±1,1)
))

,

ad
(

ρ(1r)(D±1,0)
)≡ ad
(

δr−1
(

ρ(1)(D±1,0)
))
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now yields (8.82) for all values of l, d . We are done. Note that, since (1.91) implies that

(8.88) [bl,D1,1] = lbl−1, [bl,D−1,1] = κ lbl+1,

we get

(8.89) c(1, d)= κd/(d + 1), c(−1, d)=−κd+1/(d + 1). �

By Lemma 8.23, we have Im(�(r))⊆U (Wκ−r(glr)). Using Claims 8.27 and 8.28
we see that the associated graded of Im(�(r)) and U (Wκ−r(glr)) with respect to the
standard filtration are equal. This implies that

(8.90) Im
(

�(r)
)=U
(

Wκ−r(glr)
)

.

To finish, we prove the compatibility of �(r) with the order filtration U (Wκ−r(glr))[≤ d]
defined in Section 8.3. Recall the filtration U (Wκ−r(glr))[� d] defined in (8.81). By
Claims 8.27 and 8.28, there exists for any l, d an explicit element

(8.91) ul,d ∈U
(

Wκ−r(glr)
)[≤d]

such that

(8.92) �(r)(Dl,d)− ul,d ∈U
(

Wκ−r(glr)
)[�d].

But from the definition of the filtrations, we have

(8.93) U
(

Wκ−r(glr)
)[�d] ⊆U

(

Wκ−r(glr)
)[<d].

By Remark 8.12, the order filtration on U(SH(r)
K ) is determined by putting Dr,d (or equiv-

alently Yr,d ) in degree d for any (r, d). Thus Lemma 8.26 is proved. �

Theorem 8.22 has the following consequence.

Corollary 8.29. — The pull-back by the morphism �(r) : SH(r)
K → U (Wκ−r(glr)) is an

equivalence from the category of admissible U (Wκ−r(glr))-modules to the category of admissible SH(r)
K -

modules. This equivalence takes π(1r) to ρ(1r).

Proof. — Since the image of SH(r)
K in U (Wκ−r(glr)) is degreewise dense, this functor

is fully faithful. Thus, it is enough to check that it is essentially surjective. To do that, let M
be an admissible SH(r)

K -module. View SH(r)
K as a degreewise dense degreewise topological

subalgebra of U (Wκ−r(glr)). Then, for any s, s′ the action map

(8.94) SH(r)
K [s] ×M

[

s′
]→ M
[

s + s′
]

extends uniquely to a continuous map

(8.95) U
(

Wκ−r(glr)
)[s] ×M

[

s′
]→ M
[

s + s′
]

.

This yields an admissible U (Wκ−r(glr))-module structure on M. The corollary follows. �
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8.11. The Virasoro field. — We set k = Kr and κ = k + r. Now, we describe the
preimage under the map �(r) in Theorem 8.22 of the Virasoro field W2(z). We keep all
the conventions of the previous section. We have introduced in (1.89) some elements bl ,
Hl . Consider the fields in SH(r)

K [[z, z−1]] given by

(8.96) H(z)=
∑

l∈Z

Hl z−l−2, b(z)=
∑

l∈Z

blz
−l−1.

Recall the field ρ(z) in End(π(1r))[[z−1, z]] given by

(8.97) ρ(z)=
r
∑

i=1

(r/2− i + 1/2) b(i)(z).

Proposition 8.30. — We have the following equalities

ρ(1r)
(

b(z)
)= J(z), ρ(1r)

(

H(z)
)= κ

2

∑

i

:::b(i)(z)2::: − ξ ∂zρ(z).

Proof. — The first claim is obvious. Note, indeed, that we have

(8.98) ρ(1r)(b0)=−p1(ε1, . . . , εr)/κ + r(r − 1)ξ/2κ =
r
∑

i=1

〈

b(i), β
〉

.

Let us concentrate on the second one. For k ≥ 1 we set

H′
k = Hk + (r − 1)(k − 1)ξbk/2, H′

−k = H−k + (r − 1)(k − 1)ξb−k/2.

We must prove the following formulas

(8.99)

ρ(1r)(H0)= κ
∑

i

∑

l≥1

b
(i)

−lb
(i)

l + κ
∑

i

(

b
(i)
0

)2
/2+ ξρ0,

ρ(1r)
(

H′
−k

)= κ
∑

i

∑

l

b
(i)

−k−lb
(i)

l /2− (k − 1)ξρ−k + (r − 1)(k − 1)ξ J−k/2,

ρ(1r)
(

H′
k

)= κ
∑

i

∑

l

b
(i)

k−lb
(i)

l /2+ (k + 1)ξρk + (r − 1)(k − 1)ξ Jk/2.

Write

(8.100) H(i)

k = 1⊗ 1⊗ · · · ⊗ 1⊗ ρ(1)(Hk)⊗ 1⊗ · · · ⊗ 1, i ∈ [1, r],
where Hk is at the ith spot. We have

(8.101) H′
k = κ−kD−k,1/k + (1− k)ξbk/2, H′

−k = Dk,1/k + (1− k)ξb−k/2.
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Thus, Theorem 7.9 yields

(8.102)

ρ(1r)
(

H′
−k

)=
∑

i

H(i)

−k + kξ
∑

i

(i − 1)b(i)−k,

ρ(1r)
(

H′
k

)=
∑

i

H(i)

k + kξ
∑

i

(r − i)b
(i)

k .

Proposition 8.14 now yields

ρ(1r)
(

H′
−k

)= κ
∑

i

∑

l �=0,−k

b
(i)

−k−lb
(i)

l /2+
∑

i

(−εi + k(i − 1)ξ
)

b
(i)

−k,

= κ
∑

i

∑

l

b
(i)

−k−lb
(i)

l /2+ (k − 1)ξ
∑

i

(i − 1)b(i)−k,

= κ
∑

i

∑

l

b
(i)

−k−lb
(i)

l /2− (k − 1)ξρ−k + (r − 1)(k − 1)ξ J−k/2,

ρ(1r)
(

H′
k

)= κ
∑

i

∑

l �=0,k

b
(i)

k−lb
(i)

l /2+
∑

i

(−εi + k(r − i)ξ
)

b
(i)

k ,

= κ
∑

i

∑

l

b
(i)

k−lb
(i)

l /2+ ξ
∑

i

(

(k − 1)(r − 1)

+ (k + 1)(r − 2i + 1)
)

b
(i)

k /2,

= κ
∑

i

∑

l

b
(i)

k−lb
(i)

l /2+ (k + 1)ξρk + (r − 1)(k − 1)ξ Jk/2.

(8.103)

We have [H(i)

k , b
(i)

l ] = −lb
(i)

k+l . Therefore, we get

ρ(1r)(H0)=
∑

i

H(i)
0 + ξ
∑

i

(i − 1)
[

H(i)
1 , b

(i)
−1

]

/2− ξ
∑

i

(r − i)
[

H(i)
−1, b

(i)
1

]

/2(8.104)

+ ξ 2
∑

i

(r − i)(i − 1)
[

b
(i)
1 , b

(i)
−1

]

/2

=
∑

i

H(i)
0 − (r − 1)ξ

∑

i

εi/2κ + ξ 2
∑

i

(r − i)(i − 1)/2κ

= κ
∑

i

∑

l≥1

b
(i)

−lb
(i)

l +
∑

i

(

εi − (i − 1)ξ
)(

εi − (r − i)ξ
)

/2κ

= κ
∑

i

∑

l≥1

b
(i)

−lb
(i)

l −
∑

i

b
(i)
0

(

εi − (r − i)ξ
)

/2

= κ
∑

i

∑

l≥1

b
(i)

−lb
(i)

l + κ
∑

i

(

b
(i)
0

)2
/2+ ξ
∑

i

b
(i)
0 (r − 2i + 1)/2

= κ
∑

i

∑

l≥1

b
(i)

−lb
(i)

l + κ
∑

i

(

b
(i)
0

)2
/2+ ξρ0.

�
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The fields W1(z) and W2(z) give two fields in End(π(1r))[[z−1, z]]. Let us denote
them again by W1(z) and W2(z). Consider the field L(z) in U(SH(r)

K )[[z−1, z]] given by

(8.105) L(z)= H(z)− κ

2r
:::b(z)2:::.

Proposition 8.30 and (8.16) imply that

(8.106) ρ(1r)
(

b(z)
)= W1(z), ρ(1r)

(

L(z)
)= W2(z).

Therefore, by definition of the map �(r), we have the following.

Corollary 8.31. — We have �(r)(b(z))= W1(z) and �(r)(L(z))= W2(z).

8.12. The representation π(r) of Wk(glr) on L(r)
K . — We set k = Kr and κ = k + r. Let

β be as in (8.70). The representation ρ(r) of SH(r)
K on L(r)

K is admissible.

Definition 8.32. — Let π(r) be the unique admissible representation of Wκ−r(glr) which is

taken to ρ(r) by the equivalence of categories in Corollary 8.29.

By Corollary 8.31 we have

(8.107) ρ(r)
(

b(z)
)= π(r)

(

W1(z)
)

, ρ(r)
(

L(z)
)= π(r)

(

W2(z)
)

.

Write |0〉 for the element [I∅] of L(r)
K . Write |β〉 for the rth tensor power of the element

[I∅] in L(1)
K . We view |β〉 as an element of L(1r)

K . The following is one of the main results
of this paper.

Theorem 8.33. — The representation π(r) of Wκ−r(glr) on L(r)
K is isomorphic to the Verma

module whose highest weight is given by the following rules

π(r)(Wd,0)|0〉 =wd |0〉, π(r)(Wd,l)|0〉 = 0, l ≥ 1,

w1 =
r
∑

i=1

〈

b(i), β
〉

, wd =−κ
∑

i1<i2<···<id

d
∏

t=1

(〈

h(it), β
〉+ (d − t)ξ/κ

)

, d ≥ 2.

This Verma module is irreducible. Further, for l ≥ 0 and d ∈ [2, r] we have

(8.108) π(r)(W1,−l)
∗ = (−1)rlπ(r)(W1,l), π(r)(Wd,−l)

∗ = (−1)rl+dπ(r)(Wd,l).

Proof. — The homomorphism �(r) : SH(r)
K →U (Wκ−r(glr)) is compatible with the

Z-gradings. Therefore L(r)
K is an N-graded U (Wκ−r(glr))-module. Thus |0〉 is a highest

weight vector of L(r)
K , because it has the degree 0. Next, we must prove that |0〉 is a

generator of L(r)
K over U (Wκ−r(glr)). Since L(r)

K is admissible and SH(r)
K is degreewise

dense in U (Wκ−r(glr)), it is enough to prove the following.
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Lemma 8.34. — We have L(r)
K = ρ(r)(SH(r)

K )|0〉.
Proof. — We must check that [Iλ] belongs to the right hand side for each λ. We

proceed by induction on the weight |λ| of the r-partition λ. Assume that |λ| = n and that
[Iμ] belongs to ρ(r)(SH(r)

K )|0〉 whenever |μ|< n. The formulas from Section D imply that
there is an r-partition μ of n− 1 such that the coefficient of [Iλ] in ρ(r)(D1,l)([Iμ]) is non
zero (in Kr ) for some l ∈ N. Next, we have

(8.109) ρ(r)(D0,l+1)
([Iλ]
)=
∑

a

∑

s∈λ(a)

(

ca(s)/x
)l [Iλ], l ≥ 0.

We can regard [Iλ] as the set

(8.110)
{

ca(s)/x; a = 1, . . . , r, s ∈ λ(a)
}

.

Then, the action of D0,l+1 on [Iλ] is simply the evaluation of the lth power sum poly-
nomial on the Kr-point [Iλ] of (Kr)

n/Sn. Since all these points are distinct, by Hilbert’s
Nullstellensatz, for each λ there is a polynomial f in the D0,l+1’s such that f ([Iλ])= 1 and
f ([Iσ ])= 0 for any r-partition σ of n different from λ. This finishes the proof. �

Next, the graded dimension of L(r)
K is given by the number of r-partitions. There-

fore, the previous arguments imply that L(r)
K is a Verma module with highest weight vector

|0〉. Now, let us compute the weight of |0〉. We claim that it is the same as the weight of
the element |β〉 in L(1r)

K . The later has been computed in Proposition 8.3 because L(1r)

K
is isomorphic to π(1r) as a Wκ−r(glr)-module by Corollary 8.29. So the claim implies the
first part of the theorem. To prove the claim observe first that we have

Lemma 8.35. — (a) We have ρ(r)(Dx)|0〉 = 0 for x ∈ E −.

(b) We have ρ(1r)(Dx)|0〉 = 0 for x ∈ E −.

Proof. — Part (a) follows from (3.18), and (b) from (a) and Lemma 7.11. �

Now, for each d ≥ 1, we fix an element W′
d,0 in U(SH(r)

K ) which is taken to Wd,0 by
the map �(r) in Lemma 8.26. We must prove that it acts in the same way on the vacua of
L(r)

K and L(1r)

K . By Proposition 1.37 the element W′
d,0 is an infinite sum of monomials

(8.111) Dk1,l1Dk2,l2 · · ·Dkr ,lr , (ks, ls) ∈ E , k1 + k2 + · · · + kr = 0,

where the D0,l ’s and the D−1,l ’s are on the right. Thus the claim follows from
Lemma 8.35.

Now, we must check that ρ(r) is irreducible. It is enough to check that L(r)
K is irre-

ducible as an SH(r)
K -module. The bilinear form (•,•) on L(r)

K is nondegenerate, because
the elements [Iλ] form an orthogonal basis. Further, by Lemmas 8.34 and 8.35, we have

(8.112) L(r)
K = Kr|0〉 ⊕ ρ(r)

(

SH(r),>
K

)|0〉.
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Thus, by Proposition 3.8, any element in L(r)
K which is killed by ρ(r)(SH(r),<

K ) is propor-
tional to |0〉. This implies that L(r)

K does not contain any proper SH(r)
K -submodule.

Finally, we must prove (8.108). By Proposition 1.35 there is a unique anti-involution

(8.113) ω : SH(r)
K → SH(r)

K , Dl,d → (−1)(r−1)lxlylD−l,d, d, l ≥ 0.

Further, by Proposition 3.8 we have

(8.114) ρ(r)(u)∗ = ρ(r)
(

ω(u)
)

, u ∈ SH(r)
K .

Next, recall that L(1r)

K = (L(1)
Kr
)⊗r and that L(1)

K is equipped with the pairing in (3.23). Thus
we can equip L(1r)

K with the unique Kr-bilinear form such that

(8.115) (u1 ⊗ · · · ⊗ ur, vr ⊗ · · · ⊗ v1)= (u1, v1) · · · (ur, vr), ui, vi ∈ L(1)
Kr
.

Let f ∗ denote the adjoint of a Kr-linear operator f on L(1r)

K with respect to this pairing.
Note that we used the same symbol for the adjoint with respect to the pairing on L(r)

K in
Section 3.7. We claim that

(8.116) ρ(1r)(u)∗ = ρ(1r)
(

�(u)
)

, u ∈ SH(r)
K ,

where � is the anti-involution

(8.117) � : SH(r)
K → SH(r)

K , Dl,d → xlylD−l,d, d, l ≥ 0.

Indeed, it is enough to prove (8.116) for u = Dl,0, D0,2. Then, it follows from the formulas

(8.118)

ρ(1r)(Dl,0)=
r
∑

i=1

ρ(1)(Dl,0)
(i),

ρ(1r)(D0,2)=
r
∑

i=1

ρ(1)(D0,2)
(i) + ξ
∑

l≥1

∑

i<j

lκ1−lρ(1)(D−l,0)
(i)ρ(1)(Dl,0)

(j)

which are proved in Theorem 7.9, and from the formulas

(8.119) ρ(1)(Dl,0)
∗ = xlylρ(1)(D−l,0), ρ(1)(D0,2)

∗ = ρ(1)(D0,2),

which in turn follow from (8.114). On the other hand, there is a unique anti-involution

(8.120)
� : U(Wκ−r(glr)

)→ U
(

Wκ−r(glr)
)

,

Wd,−l → (−1)l+dWd,l, W1,−l → (−1)lW1,l, d ≥ 2, l ≥ 0.

By (8.71) we have L(1r)

K = π(1r). Let π(1r) denote also the map U(Wκ−r(glr))→ End(π(1r)).
An easy computation using (8.15) yields

(8.121) π(1r)(u)∗ = π(1r)
(

�(u)
)

, u ∈ U
(

Wκ−r(glr)
)

.
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Finally, by Corollary 8.29 we have

(8.122) ρ(1r) = π(1r) ◦�(r), ρ(r) = π(r) ◦�(r),

and �(r) is compatible with the rank grading on SH(r)
K and the conformal grading on

U(Wκ−r(glr)). Therefore, comparing (8.114), (8.116) and (8.121), we get (8.108). �

9. The Gaiotto state

9.1. The definition of the element G. — Let [Mr,n] denote the fundamental class of
Mr,n. It is characterized, up to a scalar, by the fact that it lies in L(r)

n and has the co-
homological degree zero. Further, we have the following formula, consequence of the
Atiyah-Bott localization theorem

(9.1) [Mr,n] =
∑

λ

eu−1
λ [Iλ],

where the sum runs over all r-partitions of size n. We define an element in̂L(r)
K =∏n≥0 L(r)

n

by

(9.2) G =
∑

n≥0

[Mr,n].

Proposition 9.1. — The element G satisfies the following properties

(9.3) ρ(r)(D−l,d)(G)= 0, l ≥ 1, d ∈ [0, r − 2],

(9.4) ρ(r)(D−1,r−1)(G)= x−ry−1G, ρ(r)(D−l,r−1)(G)= 0, l ≥ 2,

(9.5) ρ(r)(D−1,r)(G)=−x−ry−1

(

∑

i

εi

)

G.

Proof. — See Appendix G. �

Remark 9.2. — It is not true that G is an eigenvector for the operators ρ(r)(D−1,l)

with l > r.

9.2. The Whittaker condition for G. — Now, we give a characterization of G us-
ing only the representation π(r) of Wκ−r(glr). Let χ be a character of the subalgebra
of U(Wκ−r(glr)) generated by Wd,l for l ≥ 1 and d ∈ [1, r].
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Definition 9.3. — An element v of ̂L(r)
K is a Whittaker vector for Wκ−r(glr) associated with

χ if

(9.6) π(r)(Wd,l)v = χ(Wd,l)v, d ∈ [1, r], l ≥ 1.

Proposition 9.4. — The element G is a Whittaker vector for Wκ−r(glr) associated with the

character χ given by

(9.7) χ(Wr,1)= y1−rx−1, χ(Wd,l)= 0 if d �= r or d = r, l �= 1.

It is characterized, up to a scalar, by this property.

Proof. — We will work in the representation L(r)
K and omit to write the symbol ρ(r)

to unburden the notations. Equation (9.3) implies that

(9.8) U
(

SH(r)
K

)[≤r − 2] ·G = 0.

By Lemma 8.26 the map �(r) gives a surjective morphism of degreewise topological Kr-
algebras �(r) : U(SH(r)

K )→ U (Wκ−r(glr)) which is compatible with the order filtrations.
This implies that

(9.9) U
(

Wκ−r(glr)
)[≤r − 2] ·G = 0.

Since Wd,l has order d − 1 by (8.3), this implies that

(9.10) Wd,l ·G = 0, d < r.

Let us now assume that d = r. It will be convenient to use the elements Yl,n from Sec-
tion 1.9. We have

(9.11) SH−
K[l,≤n] = SH−

K[l,<n] ⊕KrY−l,n

with Yl,n = Dl,n for l =−1,0,1 and

(9.12) Y−l,n =
{

[D−1,0,Y1−l,n+1] if l − 1 = n,

[D−1,1,Y1−l,n] if l − 1 �= n.

Assume first that r = 2. Then

(9.13) Y−2,1 ·G = [D−1,0,D−1,2] ·G = 0.

More generally, we have

(9.14) Y−l−1,1 ·G = [D−1,1,Y−l,1] ·G = 0
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for any l ≥ 2. Next, let us assume that r > 2. Then

(9.15)
Y−2,r ·G = [D−1,1,D−1,r] ·G = 0,

Y−2,r−1 ·G = [D−1,1,D−1,r−1] ·G = 0

and, acting by ad(D−1,1),

(9.16) Y−l,r ·G = Y−n,r−1 ·G = 0, 2 ≤ l ≤ r,2 ≤ n ≤ r − 1.

Therefore we have

(9.17) Y−r,r−1 ·G = [D−1,0,Y1−r,r] ·G = 0

from which we deduce, by acting by ad(D−1,1) again, that Y−l,r−1 · G = 0 for l > r. We
have thus proved that U(SH(r))[−l,≤ r − 1] ·G = 0 for l > 1, and hence that

(9.18) U
(

Wκ−r(glr)
)[l,≤r − 1] ·G = 0, l > 1.

In particular, we have Wr,l ·G = 0 for l > 1. To prove that G is a Whittaker vector, it now
remains to compute Wr,1 ·G. We will do this by expressing Wr,1 in terms of the elements
Dl,n up to terms of order < r − 1. We will use the representation ρ(1r) of SH(r). Let us
first introduce some notation. If f = f (z1, . . . , zr) =∑i aiz

i1
1 · · · zir

r is a polynomial then
we write

(9.19) :f (z): =
∑

i

ai:b(1)(z)i1 · · · b(r)(z)ir :.

Further, if u(z)=∑i uiz
−i−d is a field of conformal dimension d then we write (u(z))i = ui.

By Claim 8.27 we have, up to terms of order < r − 1 in the order filtration on
U(Wκ−r(gl1))

⊗̂r

(9.20) Wr(z)=−κ

r
∑

s=0

(−r)s−r:p1(z)
r−ses(z):

while by Claim 8.28 and (8.89) we have, again up to order < r − 1,

(9.21) ρ(1r)(D−1,d)=−y−1κd+1

d + 1

(:pd+1(z):
)

−1
, ρ(1r)(D0,d)= κd+1

d(d + 1)

(:pd+1(z):
)

0
.

Combining (9.20) and (9.21) and using the identity

(9.22)
(

pr, pr−s
1 es

)= δr,s(−1)r−1/r

from the theory of symmetric functions we deduce that, up to terms of order < r − 1,

(9.23) π(1r)(Wr,1)= (−1)r−1yκ1−rρ(1r)(D−1,r−1)+ u
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where u is a linear combination of monomials ρ(1r)(D0,d1 · · ·D0,ds
D−1,d) with d < r − 1.

Acting on G and using Proposition 9.1 we obtain

(9.24) Wr,1 ·G = y1−rx−1G.

To finish the proof of Proposition 9.4, we now show that there is, up to a scalar, at most
one Whittaker vector of Wκ−r(glr) in L(r)

K associated with the character χ . So, assume
that v =∑n≥0 vn is a Whittaker vector, with vn ∈ L(r)

n,K for all n. Assume also that we have
proved that for some n0 ≥ 1 we have vn = [Mr,n] for all n < n0. Then Equation (9.7) for G
and v gives the following identities in L(r)

n0−l,K for any l ≥ 1

(9.25) π(r)(Wd,l)
(

vn0 − [Mr,n0]
)= 0, d ∈ [1, r].

Since L(r)
K is irreducible as a Wκ−r(glr)-module, this implies that vn0 = [Mr,n0]. The propo-

sition follows easily. �
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Appendix A: Some useful formulas

In this section we gathered a few formulas concerning the functions Gl , ϕl and φl which
are used throughout the paper. Recall that, for l ≥ 0, we have

(A.1) G0(s)=− log(s), Gl(s)=
(

s−l − 1
)

/l, l �= 0,

ϕl(s)= slGl(1− s)+ slGl(1+ κs)+ slGl(1+ ξ s)− slGl(1+ s)(A.2)

− slGl(1− κs)− slGl(1− ξ s),

(A.3) φl(s)= slGl(1+ ξ s).

In particular, we have

(A.4)
ϕl(s)= (l + 2)(l + 1)κξ sl+3 + O

(

sl+4
)

,

φl(s)=−ξ sl+1 + (l + 1)ξ 2sl+2/2− (l + 2)(l + 1)ξ 3sl+3/6+ O
(

sl+4
)

.
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Note also that for each a, b we have

(A.5) log
(

1+ s(a + b)
)=
∑

l≥1

(−1)l+1(a + b)l sl/l =
∑

l≥0

(−1)l+1al sl Gl(1+ bs).

Remark A.1. — Note that for each l ∈ N there is a non-zero constant a ∈ F such
that φl+2 − aϕl is a formal series in ϕl+1, ϕl+2, . . . .

Appendix B: Proof of Proposition 1.15

B.1 The reduction. — We begin with the proof of the relation (1.38). We will use the
polynomial representation ρn of SHn in Vn in order to compute the expression (B.2) below.
However, because the theory of Jack polynomials is only well-behaved for symmetric
polynomials (as opposed to symmetric Laurent polynomials), we will need to somehow
restrict ourselves to the subspace �n. For this we will use the inner automorphism

σ = Ad(en) ∈ Aut(SHn), en = X1X2 · · ·Xn.

Note that Vn =�n[(en)
−1]

Lemma B.1. — Let U ⊂ SHn be a finite dimensional subspace which is stable under σ and let

u ∈ U. If u((en)
k�n)= {0} for some integer k then u = 0.

Proof. — For k ∈ Z let Zk ⊂ SHn be the annihilator of (en)
k�n. We have Zk ⊂ Zk+1

and σ(Zk)= Zk+1. Further, since ρn is faithful we have also
⋂

k Zk = {0}. Thus, since U is
finite dimensional, there exists l ∈ Z such that U ∩ Zl = {0}. But σ(U ∩ Zk)= U ∩ Zk+1

for all k. Thus, we have U∩ Zk = {0} for all k. �

For k ≥ 0 let A(k) be the subspace of elements of F[D(n)
0,1, . . . ,D(n)

0,k] of degree k.
Here D(n)

0,l is in degree l. Consider the following finite-dimensional subspace of SHn

B(k)= [D(n)
−1,0,
[

A(k),D(n)
1,0

]]+A(k).

We claim that

(B.1)
[

D(n)

−1,l,D(n)

1,k

]= [D(n)
−1,0,
[

D(n)

0,l+k+1,D(n)
1,0

]]

, ∀ l, k ≥ 0.

To see this, first observe that [D(n)
−1,0,D(n)

1,0] = 0. Applying ad(D(n)

0,l+1) and using (1.36),
(1.37) we get

(B.2)
[

D(n)

−1,l,D(n)
1,0

]= [D(n)
−1,0,D(n)

1,l

]

.
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We now prove (B.1) by induction on l + k. Fix r > 0 and assume that (B.1) holds for all
pairs (l, k) with l + k < r. Applying ad(D(n)

0,2) to the series of equalities

(B.3)
[

D(n)
−1,0,D(n)

1,r−1

]= [D(n)
−1,1,D(n)

1,r−2

]= · · · = [D(n)
−1,r−1,D(n)

1,0

]

yields
[

D(n)
−1,0,D(n)

1,r

]− [D(n)
−1,1,D(n)

1,r−1

]= · · · = [D(n)
−1,r−1,D(n)

1,1

]− [D(n)
−1,r,D(n)

1,0

]

.

Denote by u this common value. Adding all the above equalities together and using (B.2)
we get

ru = [D(n)
−1,0,D(n)

1,r

]− [D(n)
−1,r,D(n)

1,0

]= 0

hence u = 0. This implies that (B.3) holds with r in place of r − 1. The induction step is
completed and (B.1) is proved.

By (B.1) both sides of (1.38) belong to B(k + l). One checks that

σ(yl)= yl − 1, σ
(

D(n)
±1,0

)= D(n)
±1,0,

from which we see that the subspace B(k+ l) is stable under σ . By Lemma B.1 it is hence
enough to check (1.38) in (en)

k�n for some k ∈ Z. This is what we will do in the next
paragraphs.

B.2 The Pieri formula for e−1. — We state here a Pieri formula for the multiplication
of Jack polynomials by the elementary symmetric Laurent polynomial

(B.4) e−1 = X−1
1 + · · · +X−1

n .

Since the product e−1 · J(n)λ may not be a polynomial, we need to restrict the range of
application. For λ= (λ1, . . . , λn) we write

(B.5) λ− (1n
)= (λ1 − 1, . . . , λn − 1),

(

1n
)= (1,1, . . . ,1).

We’ll use the following result [35, Sect. 5]. Recall the definitions of hλ and hλ from (1.25).

Lemma B.2. — Let λ be a partition of length n. We have

J(n)λ = cλ(κ) en J(n)λ−(1n), cλ(κ)=
n
∏

i=1

hλ(i,1).

Thus, we have en�n =⊕λ FJ(n)λ , where the sum runs over the partitions of length n.
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Proposition B.3. — Let λ be a partition of length n. We have

e−1J(n)λ =
∑

μ⊂λ

φλ\μ J(n)μ

where the sum ranges over all μ⊂ λ with |μ| = |λ| − 1 and where

φλ\μ = 1
κ

hλ(1, j)

hμ(1, j)

∏

s∈Cλ\μ

hλ(s)

hμ(s)

∏

s∈Rλ\μ

hλ(s)

hμ(s)
, j = y(λ\μ)+ 1.

Proof. — We have

(B.6) e−1J(n)λ = cλ(κ) e−1 en J(n)λ−(1n) = cλ(κ) en−1 J(n)λ−(1n).

This allows us to use the Pieri formulas for the multiplication by e
(n)
n−1 given in [35,

Thm. 6.1], using the duality [35, Thm. 3.3]. Note that the inner product in [35] is given,
in our notation, by the following formula

〈

J(n)λ , J(n)μ

〉= δλ,μκ
−2|λ|∏

s∈λ
hλ(s)h

λ(s).

We leave the details to the reader. �

B.3 Proof of Proposition 1.15. — For a linear operator f on �n we define 〈μ; f ;λ〉
by

f
(

J(n)λ

)=
∑

μ

〈μ; f ;λ〉 J(n)μ .

Using the explicit expressions of the Pieri rules for e
(n)
±1 it is easy to check that

(B.7)
〈

μ; [D(n)
−1,0,
[

D(n)

0,l ,D(n)
1,0

]];λ〉= 0

for any μ �= λ with l(λ)= n, compare [33, App. A]. In the remainder of this paragraph,
we compute precisely the coefficient arising in (B.7) for μ= λ. We will use the following
notation introduced by Garsia and Tesler (Figure 2). Label the removable boxes of λ by
B1,B2, . . . ,Br from left to right, and the addable boxes A0, . . . ,Ar also from left to right.
Set I = {0, . . . , r}, J = {1, . . . , r} and

(B.8) ai = c(Ai), bj = c(Bj), i ∈ I, j ∈ J

where c(s) is defined in (1.27). Observe that we have

x(A0)= y(Ar)= 0, x(Aj)= x(Bj)+ 1, y(Aj−1)= y(Bj)+ 1, j ∈ J.
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B1

B2

B3 A3

A0

A1

A2

b3 = 3
b2 = 1− 2κ

a0 =−5κ

b1 =−4κ

a1 = 1− 3κ

a3 = 4
a2 = 2− κ

FIG. 2. — Garsia and Tesler’s variables

Example B.4. — Here is an example with λ= (4,22,12)

Let us begin by rewriting the expressions appearing in the Pieri rules in terms of
Garsia and Tesler’s notation. Let λ be a fixed partition and let Bj,Ai, ai, bj be associated
with λ as above. A direct computation yields

Lemma B.5. — For i ∈ I, j ∈ J we have

∏

s∈CAi

hλ(s)

hσ (s)

∏

s∈RAi

hλ(s)

hσ (s)
=
∏

j∈J

(ai − ξ − bj)
∏

k∈I\{i}

1
ai − ak

, σ = λ+Ai,

∏

s∈CBj

hλ(s)

hν(s)

∏

s∈RBj

hλ(s)

hν(s)
=−1

κ

∏

i∈I

(ai − ξ − bj)
∏

k∈J\{j}

1
bk − bj

, ν = λ− Bj .

Set I× = I \ {0}. The above lemma yields the following.

Corollary B.6. — If λ has length n then, for l ≥ 0, we have

(B.9)
〈

λ; [D(n)
−1,0,
[

D(n)

0,l ,D(n)
1,0

]];λ〉=
∑

i∈I×
al

i

∏

k∈I×\{i}

ai − ak + ξ

ai − ak

∏

j∈J

ai − bj − ξ

ai − bj

−
∑

j∈J

bl
j

∏

i∈I×

bj − ai + ξ

bj − ai

∏

k∈J\{j}

bj − bk − ξ

bj − bk

.

Note that in (B.9) the variable a0 never appears. In fact, we have a0 = −nκ since
l(λ)= n. Let us now form the generating series

X(n)(t)=
∑

l≥0

〈

λ; [D(n)
−1,0,
[

D(n)

0,l ,D(n)
1,0

]];λ〉 tl .
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By (B.9) we have

X(n)(t)=
∑

i∈I×

1
1− ait

∏

k∈I×\{i}

ai − ak + ξ

ai − ak

∏

j∈J

ai − bj − ξ

ai − bj

−
∑

j∈J

1
1− bj t

∏

i∈I×

bj − ai + ξ

bj − ai

∏

k∈J\{j}

bj − bk − ξ

bj − bk

.

Lemma B.7. — Given two disjoint sets of commutative formal variables {ai; i ∈ I×} and

{bj; j ∈ J} we have

∑

i∈I×

tξ

1− ait

∏

k∈I×\{i}

ai − ak + ξ

ai − ak

∏

j∈J

ai − bj − ξ

ai − bj

−
∑

j∈J

tξ

1− bj t

∏

i∈I×

bj − ai + ξ

bj − ai

∏

k∈J\{j}

bj − bk − ξ

bj − bk

=
∏

i∈I×

1− t(ai − ξ)

1− tai

∏

j∈J

1− t(bj + ξ)

1− tbj

− 1.

Proof. — Both sides of the equality are rational functions in t of degree 0, with at
most simple poles. One checks that the poles and residues are the same. This implies
the equality, up to a possible constant. But both sides vanish at t = 0. So this constant is
zero. �

The above lemma implies the equality

1+ tξX(n)(t)=
∏

i∈I×

1− t(ai − ξ)

1− tai

∏

j∈J

1− t(bj + ξ)

1− tbj

= exp
(

∑

l≥1

(

pl(ai)
× − pl(ai − ξ)× + pl(bj)− pl(bj + ξ)

)

tl/l

)

,

where

pl(ai)
× =
∑

i∈I×
al

i, pl(ai−ξ)× =
∑

i∈I×
(ai−ξ)l, pl(bj)=

∑

j∈J

bl
j , etc.

The last step is to identify the expression above with the eigenvalue of an element in SH0
n

on the Jack polynomial Jλ(X1, . . . ,Xn). From (1.30) we get

〈

μ;D(n)

0,l ;μ
〉=
∑

s∈μ
c(s)l−1.
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We’ll use the following notation

pl(ai)=
∑

i∈I

al
i,

pl(ai − ξ)=
∑

i∈I

(ai − ξ)l,

σl(x)= (x + 1)l − (x − 1)l + (x + ξ − 1)l − (x − ξ + 1)l + (x − ξ)l − (x + ξ)l.

Lemma B.8. — We have

(B.10) pl(ai)− pl(ai − ξ)+ pl(bj)− pl(bj + ξ)= (−1)l+1ξ l +
∑

s∈λ
σl

(

c(s)
)

.

Proof. — The proof is by induction on |λ|. If |λ| = 0 then r = 0 and a0 = 0. Assume
that (B.10) holds for all partitions of size at most m − 1 and let λ be a partition of size m.
Let μ⊂ λ be a subpartition of λ of size m−1, and set s = λ\μ. Let r, bj, ai and r′, b′j, a′i be
associated with λ and μ respectively. Note that we may have r′ = r, r′ = r−1 or r′ = r+1.
One checks that

pl(ai)− pl(ai − ξ)+ pl(bj)− pl(bj + ξ)

= pl

(

a′i
)− pl

(

a′i − ξ
)+ pl

(

b′j
)− pl

(

b′j + ξ
)+ σl

(

c(s)
)

,

which closes the induction step. We leave the details to the reader. �

Using Lemma B.8 and the fact that for l(λ)= n we have

a0 =−nκ =−κD(n)
0,0,

we get that the formal series 1+ ξ tX(n)(t) is equal to

exp
(

∑

l≥1

(−1)l+1ξ l tl/l

)

exp
(

∑

l≥1

(−1)l
((

ξ + κD(n)
0,0

)l − (κD(n)
0,0

)l)

tl/l

)

× exp
(

∑

l≥1

∑

s∈λ
σl

(

c(s)
)

tl/l

)

.

Now, from (A.5) we get

(B.11)
1+ at

1+ at + ξ t
= exp
(

∑

l≥0

(−1)lalφl(t)

)

.
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Using this, we may finally write

1+ ξ tX(n)(t)= K
(

κ,D(n)
0,0, t
)

exp
(

∑

l≥0

∑

s∈λ
c(s)l ϕl(t)

)

,

K(κ,ω, t)= (1+ ξ t)(1+ κωt)

1+ ξ t + κωt
= (1+ ξ t) exp

(

∑

l≥0

(−1)lκ lωlφl(t)

)

.

Therefore, by (1.30), we see that (1.39) holds when applied to Jλ. Since this is true for all
λ of length n, the identity (1.39) holds when applied to any v in enV+

n by Lemma B.2. But
then, by Lemma B.1, (1.39) holds unconditionally. This concludes the proof of Proposi-
tion 1.15.

Appendix C: Complements on Section 5

C.1 The canonical representation of ˜U(1),+
K on ˜L(1)

K . — In this section we describe the
canonical representation of ˜U(1),+

K on˜L(1)
K explicitly. The following lemma is well-known.

Lemma C.1. — (a) The convolution product gives [Iλμ][̇Iν] = δμ,ν euν[Iλ].
(b) For a T-equivariant vector bundle V over Hilbn of rank r we have

cl(V)=
∑

λ�n

eu−1
λ cl(V|Iλ)[Iλ], l ∈ [1, r].

From the above lemma we obtain the formulas

c1(τn,n+1)
l =
∑

μ⊂λ

c1(τμ,λ)
l eu
(

N∗
μ,λ

)

eu−1
μ,λ[Iμ,λ](C.1)

c1(τn+1,n)
l =
∑

μ⊂λ

c1(τλ,μ)
l eu
(

N∗
λ,μ

)

eu−1
λ,μ[Iλ,μ](C.2)

cl(τn,n)=
∑

μ�n

cl(τμ,μ) eu−1
μ [Iμ,μ],(C.3)

where the first two sums range over all pairs μ,λ with μ ⊂ λ and μ � n, λ � n + 1.
Combining the above (C.1)–(C.3) with the explicit expressions deduced from (2.18) and
(2.20)

euλ =
∏

s∈λ

(

l(s)y− (a(s)+ 1
)

x
)(−(l(s)+ 1

)

y+ a(s)x
)

eu
(

N∗
λ,μ

)= eu
(

N∗
μ,λ

)=
∏

s∈μ

(

lμ(s)y−
(

aλ(s)+ 1
)

x
)(−(lλ(s)+ 1

)

y+ aμ(s)x
)
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we get the following formulas

f1,l
([Iμ]
)= xl
∑

λ⊃μ

c(λ\μ)lLμ,λ(x, y) [Iλ],(C.4)

f−1,l

([Iλ]
)= xl
∑

μ⊂λ

c(λ\μ)lLλ,μ(x, y) [Iμ],(C.5)

f0,l
([Iλ]
)= xl
∑

s∈λ
c(s)l [Iλ].(C.6)

Here c(s) is defined in (1.27), we have

Lμ,λ(x, y)=
∏

s∈Cλ\μ

lμ(s)y− (aμ(s)+ 1)x
(lμ(s)+ 1)y− (aμ(s)+ 1)x

∏

s∈Rλ\μ

(lμ(s)+ 1)y− aμ(s)x

(lμ(s)+ 1)y− (aμ(s)+ 1)x

and the sum in (C.4) ranges over all λ containing μ satisfying |λ| = |μ| + 1. We set also

Lλ,μ(x, y)=
∏

s∈Cλ\μ

(lλ(s)+ 1)y− aλ(s)x

lλ(s)y− aλ(s)x

∏

s∈Rλ\μ

lλ(s)y− (aλ(s)+ 1)x
lλ(s)y− aλ(s)x

and the sum in (C.5) ranges over all μ which are contained in λ and satisfy |μ| = |λ| − 1.

C.2 The triangular decomposition of ˜U(1)
K . — We begin with the following lemma.

Lemma C.2. — There are one parameter subgroups τ±: C → Aut(˜U(1),±
K ) defined by

τ±u (f0,l)= τu(f0,l)=
l
∑

i=0

(

l

i

)

ul−i f0,i, τ±u (f±1,l)=
l
∑

i=0

(

l

i

)

ul−i f±1,i, l ≥ 0.

Proof. — It is enough to deal with τ+. By Theorem 6.3 there is an algebra isomor-
phism

η : SCoK → ˜U(1),>
K , θl → f1,l, l ≥ 0.

By Corollary 4.8, the assignment θl →∑l

i=0

(

l

i

)

ul−iθi extends to an automorphism of
SCoK. This shows that τ+u is well-defined on ˜U(1),>

K . Next, since ˜U(1),0
K = K[f0,l; l ≥ 1],

the map τ+u is well-defined on ˜U(1),0
K as well. To finish the proof, it remains to observe that

we have

(C.7) ˜U(1),+
K =˜U(1),0

K �˜U(1),>
K
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with respect to the adjoint action [f0,l, f1,n] = f1,l+n, and that

[

τ+u (f0,l), τ
+
u (f1,n)
]=

l
∑

i=0

n
∑

j=0

(

l

i

)(

n

j

)

ul+n−i−j[f0,i, f1,j]

=
l+n
∑

k=0

(

l + n

k

)

ul+n−kf1,k = τ+u (f1,n+l). �

We now turn to the proof of Proposition 5.3. It is adapted from the proof of [33,
Prop. 4.8]. The same argument as for SH implies that the multiplication map is surjective

m :˜U(1),>
K ⊗K ˜U

(1),0
K ⊗K ˜U

(1),<
K → ˜U(1)

K .

We only have to prove its injectivity. We argue by contradiction. Let x =∑i Pi ⊗Ri ⊗Qi

be a nonzero homogeneous element in Ker(m). We may assume that the elements Ri

are linearly independent polynomials in the f0,l ’s and that Pi,Qi �= 0. Multiplying by an
element of ˜U(1),>

K or ˜U(1),<
K if necessary, we may also assume that x is of degree zero. For

all partition λ we have

(C.8)
∑

i

Pi ◦Ri ◦Qi

([Iλ]
)= 0.

We’ll apply (C.8) to certain partitions. Given partitions λ1, λ2, . . . , λk and given an in-
teger n � |λ1|, . . . , |λk|, let the symbol λ1 � · · · � λk denote the following partition

λ1

λ2

λk

(n, kn− n)

(2n, kn− 2n)

(kn− n, n)

�

�

�

�

�

Note that λ1 � · · ·� λk is well-defined as soon as n > supi(l(λi), l(λ′i)). Put

(C.9) t = supi

(

deg(Pi)
)= supi

(−deg(Qi)
)

.



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 323

For an operator f on ˜L(1)
K we denote by 〈μ; f ;λ〉 the coefficient of [Iμ] in f ([Iλ]). For n

large enough we consider the coefficients

〈λ̄1 � λ2 � λ̄3;PiRiQi;λ1 � λ2 � λ3〉, λ̄1 ⊂ λ1, λ3 ⊂ λ̄3, |λ1\λ̄1| = |λ̄3\λ3| = t.

Since Qi is an annihilation operator and Pi is a creation operator, by (C.9) the only way
to obtain λ̄1 � λ2 � λ̄3 from λ1 � λ2 � λ3 is to use all of Qi to reduce λ1 to λ̄1 and to use
all of Pi to increase λ3 to λ̄3. Therefore we have

(C.10) 〈λ̄1 � λ2 � λ̄3;PiRiQi;λ1 � λ2 � λ3〉
= 〈λ̄1 � λ2 � λ̄3;Pi; λ̄1 � λ2 � λ3〉 〈λ̄1 � λ2 � λ3;Ri; λ̄1 � λ2 � λ3〉
× 〈λ̄1 � λ2 � λ3;Qi;λ1 � λ2 � λ3〉.

Note that (C.10) is zero unless deg(Pi)=−deg(Qi)= t.

Lemma C.3. — There are non-zero c, d ∈ K such that, for P ∈ ˜U(1),>
K [t] and Q ∈

˜U(1),<
K [−t],

〈λ̄1 � λ2 � λ3;Q;λ1 � λ2 � λ3〉 = c
〈

λ̄1; τ−2ny(Q);λ1

〉

,(C.11)

〈λ̄1 � λ2 � λ̄3;P; λ̄1 � λ2 � λ3〉 = d
〈

λ̄3; τ+2nx(P);λ3

〉

.(C.12)

Proof. — We prove (C.11). The proof of (C.12) is identical. If Q = f−1,kt
· · · f−1,k1

then

(C.13) 〈λ̄1 � λ2 � λ3;Q;λ1 � λ2 � λ3〉 =
∑

t
∏

i=1

c(si)
ki Lμi�λ2�λ3,μi+1�λ2�λ3(x, y).

In (C.13) the sum runs over all sequences

λ1 = μ1 � μ2 · · ·� μt+1 = λ̄1

and we have set si = μi\μi+1. For partitions α ⊃ β with |α| = |β| + 1 we have

Lα,β(x, y)=
∏

s∈Cα\β

(lα(s)+ 1)y− aα(s)x

lα(s)y− aα(s)x
·
∏

s∈Rα\β

lα(s)y− (aα(s)+ 1)x
lα(s)x − aα(s)y

.

Next, in (C.13) again, for a box s in μi we have x(s)= xλ1(s) and y(s)= yλ1(s)+2n, where
xλ1 and yλ1 denote the coordinate values when we place the origin at the bottom left
corner of λ1, i.e., at the point (0,2n), as opposed to the point (0,0) which is the origin of
λ1 � λ2 � λ3. Similarly, we have

R(s)= Rλ1(s), C(s)= Cλ1(s) %C′(s),
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C′(s)= {(x(s),0
)

, . . . ,
(

x(s),2n− 1
)}

.

Finally, observe that the armlength a(s) or the leglength l(s) are the same whether we
consider s as belonging to μi or to μi � λ2 � λ3. Now, write σi = μi � λ2 � λ3 and
σ = λ1 � λ2 � λ3. From the above formulae we deduce that

c(si)= cλ1(si)+ 2ny,

t
∏

i=1

Lμi�λ2�λ3,μi+1�λ2�λ3(x, y)

=
t
∏

i=1

Lμi,μi+1(x, y)
∏

s∈C′(si)

(lσi
(s)+ 1)y− aσi

(s)x

lσi
(s)y− aσi

(s)x
.

Note also that the quantity

t
∏

i=1

∏

s∈C′(si)

(lμi
(s)+ 1)y− aμi

(s)x

lμi
(s)y− aμi

(s)x
=
∏

s∈λ1\λ̄1

∏

u∈C′(s)

(y(s)− y(u)+ 1)y− aσ (u)x

(y(s)− y(u))y− aσ (u)x

is independent of the choice of the chain of subdiagrams (μi), and that

∑

t
∏

i=1

(

cλ1(si)+ 2ny
)ki Lμi,μi+1(x, y)= 〈λ̄1; τ−2ny(Q);λ1

〉

.

The lemma is proved. �

Using (C.10) and Lemma C.3, the linear relation (C.8) gives

(C.14)
∑

i

〈

λ̄3; τ+2nx(Pi);λ3

〉 〈λ̄1 � λ2 � λ3;Ri; λ̄1 � λ2 � λ3〉
〈

λ̄1; τ−2ny(Qi);λ1

〉= 0

for all λ1, λ̄1, λ2, λ3, λ̄3 as above and all large enough n. Since Pi,Qi �= 0, by Corollary 2.5
we may choose λ3, λ̄3 and λ1, λ̄1 such that

〈

λ̄3; τ+2nx(Pi);λ3

〉

,
〈

λ̄1; τ−2ny(Qi);λ1

〉 �= 0

for some i. Fix the integer n and let us vary the partition λ2. We abbreviate λ= ∅�∅�∅.
By (C.6) the matrix coefficient 〈λ̄1 � λ2 � λ3; f0,l; λ̄1 � λ2 � λ3〉 is equal to

〈

λ̄1; τ2ny(f0,l); λ̄1

〉+ 〈λ2; τnx+ny(f0,l);λ2

〉+ 〈λ3; τ2nx(f0,l);λ3

〉+ 〈λ; f0,l;λ〉.
Recall that Ri = Ri(f0,1, f0,2, . . .) is a polynomial in the operators f0,l . Set

R′
i =
〈

λ̄3; τ+2nx(Pi);λ3

〉 〈

λ̄1; τ−2ny(Qi);λ1

〉

Ri

(

τnx+ny(f0,1)+ α1, τnx+ny(f0,2)+ α2, . . .
)
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where

αl =
〈

λ̄1; τ2ny(f0,l); λ̄1

〉+ 〈λ3; τ2nx(f0,l);λ3

〉+ 〈λ; f0,l;λ〉, l ≥ 1.

We may rewrite (C.14) as

(C.15)
∑

i

〈

λ2;R′
i;λ2

〉= 0.

Since this holds for all λ2 with l(λ2), l(λ′2) < n and n is large enough, we deduce that
∑

i R′
i = 0. Remember that the Ri ’s were chosen to be linearly independent. Then the

R′
i ’s are also linearly independent and we arrive at a contradiction. This concludes the

proof of Proposition 5.3. �

Appendix D: Complements on Sections 3 and 6

D.1 Proof of Proposition 6.6. — The proof is adapted from the computations in [37,
Sect. 4.5]. First, we have the following formulas, compare (C.1), (C.2) and (C.3),

c1(τn−1,n)
l =
∑

σ⊂λ

c1(τσ,λ)
l eu
(

N∗
σ,λ

)

eu−1
σ,λ [Iσ,λ],(D.1)

c1(τn+1,n)
l =
∑

λ⊂π

c1(τπ,λ)
l eu
(

N∗
π,λ

)

eu−1
π,λ [Iπ,λ],(D.2)

cl(τn,n)=
∑

λ

cl(τλ) eu−1
λ [Iλ,λ].(D.3)

Here σ , λ and π are r-partitions of n − 1, n and n + 1 respectively. Now, assume that
λ, μ are r-partitions of n and that σ , π are r-partitions of n − 1, n + 1 respectively, with
σ ⊂ λ,μ⊂ π and λ �= μ. Then, the r-partitions σ , π are completely determined by λ,
μ and (3.9) gives the following identity

τλ + τμ = τσ + τπ .

Therefore, using the identities from Sections 3.4, 3.3, a short computation gives

(D.4) Nλ,σ +Nμ,σ −Tσ = Nπ,λ +Nπ,μ −Tπ .

Therefore, using (D.1), (D.2) and (3.12), (D.4) we get

(D.5) [h−1,k, h1,l]
([Iλ]
)= cλ,k+l [Iλ]
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for some constant cλ,k+l which remains to be computed. To do so, observe first that

f−1,kf1,l
([Iλ]
)=
∑

λ⊂π

c1(τλ,π )
k+l eu
(

N∗
λ,π +N∗

π,λ

)

eu−1
λ,π [Iλ],

f1,l f−1,k

([Iλ]
)=
∑

σ⊂λ

c1(τσ,λ)
k+l eu
(

N∗
λ,σ +N∗

σ,λ

)

eu−1
λ,σ [Iλ],

modulo [Iμ]’s with μ �= λ. Next, set Hλ = (1− q)(1− t)τλ −W. For λ⊂ π we have

(D.6)

Hλ = Hπ − (1− q)(1− t)τλ,π ,

Nλ,π −Tλ =−vτ ∗λ,πHλ − v

=−vτ ∗λ,πHπ + 1− q−1 − t−1,

Nπ,λ −Tπ = τλ,πH∗
π − v

= τλ,πH∗
λ + 1− q−1 − t−1.

Now, we consider the following sums

(D.7) Bλ =
∑

σ⊂λ

τσ,λ, Aλ =
∑

λ⊂π

τλ,π .

The proof of the following lemma is left to the reader, compare [37, Lem. 7].

Lemma D.1. — For each r-partition λ of n we have the equality of characters

Hλ = v−1Bλ −Aλ.

Thus, we get

N∗
λ,π +N∗

π,λ −T∗
λ −T∗

π = v−1
(

τλ,πA∗
λ + τ ∗λ,πBλ − 1

)− (τλ,πB∗
λ + τ ∗λ,πAλ − 1

)− q − t,

N∗
λ,σ +N∗

σ,λ −T∗
λ −T∗

σ = v−1
(

τσ,λA∗
λ + τ ∗σ,λBλ − 1

)− (τσ,λB∗
λ + τ ∗σ,λAλ − 1

)− q − t.

We get

(−1)rcλ,k xk =
∑

σ⊂λ

c1(τσ,λ)
k

eu(v−1τσ,λA∗
λ + v−1τ ∗σ,λBλ − v−1)

eu(τ ∗σ,λAλ + τσ,λB∗
λ − 1)

−
∑

λ⊂π

c1(τλ,π )
k

eu(v−1τλ,πA∗
λ + v−1τ ∗λ,πBλ − v−1)

eu(τ ∗λ,πAλ + τλ,πB∗
λ − 1)

.

Consider the formal series

C(s)=
∑

k≥0

cλ,k xksk.
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For u = x + y, we have

C(s)=−
∑

j∈J

1
1− bjs

∏

i∈I

bj − ai + u

bj − ai

∏

k∈J\{j}

bj − bk − u

bj − bk

+
∑

i∈I

1
1− ais

∏

k∈I\{i}

ai − ak + u

ai − ak

∏

j∈J

ai − bj − u

ai − bj

,

with

{bj; j ∈ J} = {c1(τσ,λ);σ ⊂ λ
}

, {ai; i ∈ I} = {c1(τλ,π );λ⊂ π
}

.

Thus, by Lemma B.7, we get the following equality

1+ usC(s)=
∏

i∈I

1− s(ai − u)

1− sai

∏

j∈J

1− s(bj + u)

1− sbj

=
∏

σ⊂λ

1− s c1(v
−1τσ,λ)

1− s c1(v−1τσ,λ)+ su

/
∏

λ⊂π

1− s c1(τλ,π )

1− s c1(τλ,π )+ su
.

Now, fix splitting sums of one-dimensional characters

τ ∗λ = φλ,1 + · · · + φλ,n, W∗ = χ1 + · · · + χr.

Set fλ,i = eu(φλ,i) and ea = eu(χa). Then, by Lemma D.1, we have

Hλ =
∑

σ⊂λ

v−1τσ,λ −
∑

λ⊂π

τλ,π =
∑

i

(1− q)(1− t)φ∗
λ,i −
∑

a

χ∗
a .

Therefore, we get

1+ usC(s)=
n
∏

i=1

1+ s(fλ,i + x)

1+ s(fλ,i − x)

1+ s(fλ,i + y)

1+ s(fλ,i − y)

1+ s(fλ,i − u)

1+ s(fλ,i + u)

r
∏

a=1

1+ s(ea + u)

1+ sea

.

Recall that u = xξ . Using (A.5) and (A.2), we finally get

1+ ξ
∑

k≥0

cλ,k sk+1 =
r
∏

a=1

1+ sεa + sξ

1+ sεa

exp
(

∑

l≥0

(−1)lpl(fλ,i) x−lϕl(s)

)

.

Now, Remark 2.3 gives

h0,l+1 [Iλ] = (−1)lx−lpl(fλ,i) [Iλ].
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Thus, we obtain
(

1+ ξ
∑

k≥0

cλ,k sk+1

)

[Iλ] =
r
∏

a=1

1+ sεa + sξ

1+ sεa

exp
(

∑

l≥0

h0,l+1 ϕl(s)

)

[Iλ],

= exp
(

∑

l≥0

(−1)l+1pl(	ε)φl(s)

)

exp
(

∑

l≥0

h0,l+1 ϕl(s)

)

[Iλ]

where pl(	ε)=∑a ε
l
a. Comparing this expression with (D.5), we get the proposition.

D.2 Proof of Corollary 3.3. — Now, we prove that the representation ρ(r) of SH(r)
K

on L(r)
K is faithful. For an operator f on L(r)

K and r-partitions λ, μ we denote by 〈μ; f ;λ〉
the coefficient of [Iμ] in f ([Iλ]). Given partitions λ1, λ2, . . . , λk and given an integer n �
|λ1|, . . . , |λk|, let the symbol λ1 � · · · � λk denote the r-partition whose first part is the
partition λ1 � · · ·� λk from Section C.2 and the r − 1 other partitions are empty. Given
a finite family of elements

Pi ∈ SH(r),>
K , Ri ∈ SH(r),0

K , Qi ∈ SH(r),<
K ,

we set x =∑i PiRiQi . Assume that ρ(r)(x) = 0. We may also assume that PiQiRi is ho-
mogeneous of degree 0 (for the rank grading) for each i. Then

∑

i

〈

μ;ρ(r)(PiRiQi);λ
〉= 0

for each r-partitions λ, μ. For n large enough we consider the coefficients

(D.8)

〈

λ̄1 � λ2 � λ̄3;ρ(r)(PiRiQi);λ1 � λ2 � λ3

〉

, λ̄1 ⊂ λ1, λ3 ⊂ λ̄3,

|λ1\λ̄1| = |λ̄3\λ3| = t

with t = supi(deg(Pi))= supi(−deg(Qi)). Since Qi is an annihilation operator and Pi is
a creation operator, the coefficient

(D.9)
〈

λ̄1 � λ2 � λ̄3;ρ(r)(PiRiQi);λ1 � λ2 � λ3

〉

factorizes as in (C.10), and it is zero unless deg(Pi) = −deg(Qi) = t. We claim that
(C.11), (C.12) hold again for some non-zero c, d ∈ Kr . Then (C.14) hold again for all
λ1, λ̄1, λ2, λ3, λ̄3 as above and all large enough n. If x �= 0 we may assume that the ele-
ments Ri are linearly independent polynomials in the f0,l ’s and that Pi,Qi �= 0. Then the
same argument as in Section C.2 yields a contradiction. The proof of the claim is the
same as the proof of Lemma C.3. It is left to the reader. �

The proof above has the following corollary.

Corollary D.2. — The multiplication map SH(r),>
K ⊗ SH(r),0

K ⊗ SH(r),<
K → SH(r)

K is injec-

tive.
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D.3 Proof of Lemma 3.12. — Fix r-multipartitions μ, λ such that μ ⊂ λ and
|λ\μ| = n. Let l1, . . . , ln be integers ≥ 0. We need to prove that

(D.10) 〈λ; f1,l1 · · · f1,ln;μ〉 =�n

(

z
l1
1 · · · zln

n

)

(τμ,λ) aμ,λ euμ .

Let s1, . . . , sn be the boxes of λ\μ. We have

(D.11) 〈λ; f1,l1 · · · f1,ln;μ〉 =
∑

σ∈Sn

〈

λσ,0; f1,l1;λσ,1
〉 · · · 〈λσ,n−1; f1,l1;λσ,n

〉

where λσ,0 = λ and λσ,i = λ\{sσ(1), . . . , sσ(i)} for i = 1, . . . , n. We set 〈λσ,i−1; f1,li;λσ,i〉 = 0
if λσ,i−1 or λσ,i is not a multipartition. We say that σ is admissible if λσ,1, . . . , λσ,n−1 are all
multipartitions. If n = 1 then we have

(D.12) 〈λ; f1,l;μ〉 = c1(τμ,λ)
l eu
(

N∗
λ,μ −T∗

λ

)= c1(τμ,λ)
laμ,λ.

Hence, if σ is admissible then

n
∏

i=1

〈

λσ,i−1; f1,li;λσ,i
〉= c1(τsσ(1) )

l1 · · · c1(τsσ(n)
)ln eu
( n
∑

i=1

N∗
λσ,i−1,λσ,i −T∗

λσ,i−1

)

.

Now let σ ∈ Sn be arbitrary. Using (3.10), (3.11), we get after a straightforward compu-
tation

(D.13)
n
∑

i=1

(

N∗
λσ,i−1,λσ,i −T∗

λσ,i−1

)= ((1− q)(1− t)
(

τ ∗μ,λ ⊗ τλ
)− τ ∗μ,λ ⊗W− nv−1

)

− (1− q)(1− t)
∑

i>j

τ ∗
λσ,i,λσ,i−1 ⊗ τλσ,j ,λσ,j−1 .

We have already seen in the proof of Proposition 3.13 that

aμ,λ = eu
(

(1− q)(1− t)
(

τ ∗μ,λ ⊗ τλ
)− τ ∗μ,λ ⊗W− nv−1

)

is nonzero and well-defined. A similar reasoning shows that

(D.14) eu
(

−(1− q)(1− t)
∑

i>j

τ ∗
λσ,i,λσ,i−1 ⊗ τλσ,j ,λσ,j−1

)

is well-defined and vanishes if σ is not admissible. Now note that

(D.15) eu
(

−(1− q)(1− t)
∑

i>j

τ ∗
λσ,i,λσ,i−1 ⊗ τλσ,j ,λσ,j−1

)

= g
(

c1(τsσ(1) ), . . . , c1(τsσ(n)
)
)

.
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It follows that
∑

σ∈Sn

c1(τsσ(1) )
l1 · · · c1(τsσ(n)

)ln eu
(

−(1− q)(1− t)
∑

i>j

τ ∗
λσ,i−1\λσ,i ⊗ τλσ,j−1\λσ,j

)

=
∑

σ∈Sn

c1(τsσ(1) )
l1 · · · c1(τsσ(n)

)ln g
(

c1(τsσ(1) ), . . . , c1(τsσ(n)
)
)

=�n

(

z
l1
1 · · · zln

n

)

(τμ,λ).

Lemma 3.12 is an easy consequence.

Appendix E: The Heisenberg subalgebra

In this section we prove the formula in Section 1.11.

Lemma E.1. — For k, l ≥ 0 we have [Dl,0,Dk,0] = [D−l,0,D−k,0] = 0.

Proof. — Follows from Remark 1.29. �

Lemma E.2. — For l ≥ 0 we have [Dl,0,D−1,0] = −E0 δl,1 and [D1,0,D−l,0] = −E0 δl,1.

Proof. — The proof is by induction on l. From (1.69) we have [D1,0,D−1,0] = −E0.
Next, we have

(E.1) [D1,1,Dl,0] = lDl+1,0, [D−1,1,D−l,0] = −lD−l−1,0.

Thus, using the induction hypothesis and (1.69), we get

(E.2) l[Dl+1,0,D−1,0] =
[[D1,1,Dl,0],D−1,0

]=−[Dl,0, [D1,1,D−1,0]
]= [Dl,0,E1].

Now, by definition, E1 is a central element. Thus, we have

[Dl,0,D−1,0] = 0, l ≥ 2.

The second identity follows from the first one by applying the anti-involution π . �

Lemma E.3. — For l ∈ Z we have [D0,1,Dl,0] = lDl,0.

Proof. — From the faithful representation of SH+ in the Fock space, see Proposi-
tion 1.20, we get

[D0,1,Dl,0] = lDl,0, l ≥ 1.

Now apply the anti-automorphism π . �
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Lemma E.4. — For l ≥ 2 we have [D1,1,D−l,0] = −κ lD1−l,0 and [D−1,1,Dl,0] =
κ lDl−1,0.

Proof. — The second relation follows from the first one and the anti-involution π

of SHc. Let us concentrate on the first relation. The proof is by induction on l. By (1.69)
and the induction hypothesis we have

[D1,1,D−l,0] =
[

D1,1, [D−1,1,D1−l,0]
]

/(1− l)

= [[D1,1,D−1,1],D1−l,0

]

/(1− l)+ [D−1,1, [D1,1,D1−l,0]
]

/(1− l)

=−[E2,D1−l,0]/(1− l)+ κ[D−1,1,D2−l,0].
Now, using (A.4), we get that the element E2 − 2κD0,1 is central. Therefore, by (E.1) and
Lemma E.3, we have

[D1,1,D−l,0] = −2κ[D0,1,D1−l,0]/(1− l)+ κ(2− l)D1−l,0

=−2κD1−l,0 + κ(2− l)D1−l,0

=−κ lD1−l,0. �

We now prove the formula (1.90), which is equivalent to (Il,k) below

(Il,k) [Dl,0,D−k,0] = AlE0 δl,k, Al =−lκ l−1, k, l ≥ 1.

For k = 1 or l = 1 this is Lemma E.2. Let us prove the formula (Il,k+1), assuming that we
have already proved (I•,k) and (Il′,k+1) for l ′ ≤ l. Using (Il,k) and Lemma E.4 we get

[Dl+1,0,D−k,0] =
[[D1,1,Dl,0],D−k,0

]

/l

=−[Dl,0, [D1,1,D−k,0]
]

/l

= κk[Dl,0,D1−k,0]/l

= κ(l + 1)AlE0δl+1,k/l.

We deduce that Al+1 = κ(l + 1)Al/l. Since A1 = −1 this shows that Al = −lκ l−1 as
wanted. �

Appendix F: Relation to W1+∞

Let W1+∞ be the universal central extension of the Lie algebra, over C, of regular dif-
ferential operators on the circle. To unburden the notation we’ll abbreviate W= W1+∞.
The aim of this section is to prove that the specialization at κ = 1 of SHc is isomorphic
to the enveloping algebra of W.
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F.1 The integral form of SHc. — Let SHc
A be the A-subalgebra of SHc generated by

the set {cl,D±1,0,D0,l; l ≥ 0}. From (1.33) and (1.56) it follows that SHc
A contains the ele-

ments Dl,0, D±1,l for any l ≥ 0. Let SH>
A , SHc,0

A and SH<
A be the A-subalgebras generated

by {D1,l; l ≥ 0}, {cl,D0,l; l ≥ 0} and {D−1,l; l ≥ 0} respectively. Recall (see Remark 1.4)
that we denoted by A1 the localization of A at the ideal (κ − 1). Replacing everywhere A
by A1 we obtain the A1-algebras SH>

A1
, SHc,0

A1
, SH<

A1
and SHA1 .

Proposition F.1. — (a) The A1-module SHc
A1

is free and we have SHc
A1
⊗A1 F = SHc.

(b) We have a triangular decomposition SHc
A1
= SH>

A1
⊗A1 SHc,0

A1
⊗A1 SH<

A1
.

Proof. — We claim that SH>
A1
, SHc,0

A1
and SH<

A1
are free over A1, and that

SH>
A1
⊗A1 F = SH>, SHc,0

A1
⊗A1 F = SHc,0, SH<

A1
⊗A1 F = SH<.

Thus, we have an isomorphism
(

SH>
A1
⊗A1 SHc,0

A1
⊗A1 SH<

A1

)⊗A1 F = SH> ⊗ SHc,0 ⊗ SH<.

Therefore, the multiplication map

SH>
A1
⊗A1 SHc,0

A1
⊗A1 SH<

A1
→ SHc

A1
,

being the restriction of a similar map over F, it is injective by Proposition 1.37. We only
need to show its surjectivity. The proof is the same as for SHc in Proposition 1.37. It is
based on the fact that D−1,l,D1,l ∈ SHc

A1
for l ≥ 0. Then, using the triangular decompo-

sition, we get that SHc
A1

is free as an A1-module and that

SHc
A1
⊗A1 F = SHc.

Now, we prove the claim. It is clear for SHc,0
A1

. The remaining two cases are similar,
we only deal with the first one. Recall that SH> carries an N-grading and an N-filtration,
with finite-dimensional pieces SH>[r,≤l]. Consider the A1-module

SH>
A1
[r,≤l] = SH>

A1
∩ SH>[r,≤l].

Since the tensor product commutes with direct limits, it is enough to check that

(F.1) SH>
A1
[r,≤l] ⊗A1 F = SH>[r,≤l]

and that the inclusion of A1-modules

(F.2) SH>
A1
[r,<l] ⊂ SH>

A1
[r,≤l]

is a direct summand. Now, for n large enough the map �n yields an isomorphism

SH>[r,<l]→ SH>
n [r,<l].
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By Remark 1.4, this map restricts to an isomorphism of A1-modules

SH>
A1
[r,<l]→ SH>

n,A1
[r,<l].

In particular, the left hand side is finitely generated and torsion free. Hence it is free.
Further, (F.1) holds by (1.11). Finally, to prove (F.2) it is enough to check that the inclusion
of A1-modules

SH>
n,A1

[r,<l] ⊂ SH>
n,A1

[r,≤l]
is a direct summand. This follows from the fact that the inclusions of A1-modules

H>
n,A1

[r,<l] ⊂ H>
n,A1

[r,≤l], SH>
n,A1

[r,≤l] ⊂ H>
n,A1

[r,≤l]
are direct summands, by the PBW theorem and formula

SH>
n,A1

[r,≤l] = S ·H>
n,A1

[r,≤l] · S. �

F.2 The Lie algebra W1+∞. — The Lie algebra W has the basis {C,wl,k; l ∈ Z, k ∈
N} and, given formal variables α, β, the relations are given by

(F.3)

wl,k = tlDk,
[

tl exp(αD), tk exp(βD)
]= (exp(kα)− exp(lβ)

)

tl+k exp(αD+ βD)

+ δl,−k

exp(−lα)− exp(−kβ)

1− exp(α + β)
C.

Example F.2. — The elements bl = wl,0 with l ∈ Z satisfy the relations of the
Heisenberg algebra with central charge C, i.e., we have [bl, b−k] = lδl,kC. Let H be
this Lie subalgebra.

Example F.3. — For β ∈ C, the elements Lβ

l =−wl,1 −β(l + 1)bl with l ∈ Z satisfy
the relations of the Virasoro algebra, i.e., we have

[

Lβ

l ,Lβ

k

]= (l − k)Lβ

l+k +
l3 − l

12
δl,−k Cβ, Cβ =

(−12β2 + 12β − 2
)

C.

In particular {L1/2
l ; l ∈ Z} generates a Virasoro algebra of central charge C such that
[

L1/2
l , bk

]=−kbl+k.

Example F.4. — We have the following formulas

[w0,2,wl,k] = 2lwl,k+1 + l2wl,k, [b1,wl,k] = −
k−1
∑

h=0

(

k

h

)

wl+1,h + δl,−1δk,0C.

In particular, we have [w0,2, bl] = −2lL1/2
l − lbl .
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Let W+,W>,W0 ⊂W be the Lie subalgebras spanned by

{C,wl,k; l, k ∈ N}, {wl,k; l ≥ 1, k ∈ N}, {C,w0,l; l ≥ 0}.
We define W− and W< in a similar fashion. The enveloping algebra U(W) carries a
Z-grading, called the rank grading, in which wl,k is placed in degree l and C is placed in
degree zero, and an N-filtration, called the order filtration, in which wl,k is placed in degree
≤ k. The order filtration may alternatively be described as follows: an element u is of
order ≤ k if

ad(p1) ◦ · · · ◦ ad(pk)(u) ∈ C[C,wl,0; l ∈ Z], ∀p1, . . . , pk ∈ U(H ).

Let U(W)[r,≤ k] stands for the piece of degree r and order ≤ k. The graded pieces
U(W>)[r,≤k] and U(W<)[r,≤k] are finite-dimensional and the Poincaré polynomials
of U(W>) and U(W<) with respect to this grading and filtration are given by

PW>(t, q)=
∏

r>0

∏

k≥0

1
1− trqk

, PW<(t, q)=
∏

r<0

∏

k≥0

1
1− trqk

.(F.4)

The proof of the following result is left to the reader.

Lemma F.5. — The following holds

(a) W is generated by b−1, b1 and w0,2,

(b) W>, W< are generated by {w1,l; l ≥ 0}, {w−1,l; l ≥ 0} respectively.

F.3 The Fock space representation of W1+∞. — For c, d ∈ C we set

Uc,d(W)= U(W)/(C−c, b0−d), Uc,d(H )= U(H )/(C−c, b0−d).

Let Sc,d be the irreducible vacuum module with level (c, d), see [17, Sect. 1]. It is the top of the
Verma module

Mc,d = IndW

W+(Cc,d),

where Cc,d is the one-dimensional W+-module given by

wl,k → 0, l, k ≥ 0, (l, k) �= (0,0), C → c, b0 → d.

We will mainly be interested in the pair η given by (c, d)= (1,−1/2).

Proposition F.6. — (a) The restriction of Sη to H is the level one Fock space of H .

(b) The action of Uη(W) on Sη is faithful.

Proof. — See [17, Thm. 5.1] for (a). Now, we prove part (b). Let I ⊂ Uη(W) be
the annihilator of Sη. Since Uη(H ) acts faithfully on Sη we have I∩Uη(H )= {0}. The
proposition is a consequence of the following lemma.
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Lemma F.7. — Let I be an ideal of U(W) such that I∩U(H )= {0}. Then I = {0}.

Proof. — Let I be as above, and let I0 ⊆ I1 ⊆ · · · be the filtration on I induced from
the order filtration on U(W). Assuming that I �= {0}, let n be minimal such that In �= {0}.
Since I0 = I∩U(H )= {0}, we have n ≥ 1. Moreover, since

ad(bl)
(

U(W)[≤n])⊂ U(W)[<n],
we have [In,U(H )] = 0. This contradicts the following claim.

Claim. — The centralizer of H in U(W) is CC⊕Cb0.

Proof. — For l ∈ Z we consider the map

σl = ad(bl) : U(W)[≤n]/U(W)[<n] −→ U(W)[≤n− 1]/U(W)[<n− 1].
The space U(W)[≤n]/U(W)[<n] is identified with the degree (•, n) part of the polyno-
mial ring C[wh,k; h, k]. One checks from the definition of W that σl acts as the derivation
satisfying

σl(wh,k)=
{

−klwl+h,k−1 if k ≥ 1
0 if k = 0

From this it is easy to check that
⋂

l Ker(σl)= {0} if n ≥ 1. This implies that the central-
izer of H in U(W) is contained into U(W)[≤0] = U(H ). The claim now follows from
the fact that the center of U(H ) is CC⊕Cb0. �

This finishes the proof of the lemma and of the proposition. �

Lemma F.8. — The element w0,2/2 acts in Sη as the Laplace-Beltrami operator specialized at

κ = 1, i.e., we have

ρ(w0,2)= 2�1 =
∑

k,l>0

(b−lb−kbl+k + b−l−kblbk),

where ρ : Uη(W)→ End(Sη)= End(C[bl; l < 0]) is the Fock representation.

Proof. — The free field formula for �1 is obtained by setting κ = 1 in Propo-
sition 8.14. Because Sη is cyclic over U(H ), the action of w0,2 on Sη is completely
determined by the commutation relations of w0,2 with {bl; l ∈ Z} and by the equation
w0,2 · 1 = 0. Hence it is enough to check that [ρ(w0,2), bl]/2 = [�1, bl] for all l, because
�1 ·1 = 0. Likewise, the actions of the Virasoro operators L1/2

l on Sη are fully determined
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by their commutation relations with the Heisenberg operators. More precisely, from the
relations, see Example F.3,

[

L1/2
l , bk

]=−kbl+k, L1/2
0 · 1 = 1/4

it follows that

ρ
(

L1/2
0

)=
∑

k≥0

b−kbk, ρ
(

L1/2
l

)=
∑

k∈Z

bl−kbk/2, l �= 0.

Now, one checks by a direct computation using Example F.4 that
[

ρ(w0,2), bl

]

/2 = ρ
([w0,2, bl]

)

/2 =−lρ
(

L1/2
l + bl/2

)

=−l

(

∑

k∈Z

bl−kbk + bl

)

/2 = [�1, bl

]

(recall that b0 =−1/2). The lemma is proved. �

F.4 The isomorphism at the level 1. — Let SH(1)
A1

be the specialization of SHc
A1

at
c = (1,0,0, . . . ). Recall the representation ρ : SH(1)

A1
→ End(�A1). We set

(F.5) SH(1)
1 = SH(1)

A1
⊗A1 C, �1 =�A1 ⊗A1 C

where A1 acts on C via κ → 1. We identify Sη and �1 via the assignment

(F.6) b−l1 · · · b−lr · 1 → pl1 · · · plr · 1, l1, . . . , lr ≥ 1.

This identification intertwines the actions of the Heisenberg generators bl in Uη(W)

with the Heisenberg generators D−l,0 in SH(1)
1 for l ∈ Z. It intertwines also the action

of w0,2/2 with that of D0,2 by Lemma F.8 and Remark 1.23, see also Proposition 2.6.
Since, by Lemma F.5 and Proposition 1.35, the algebras Uη(W) and SH(1)

1 are respec-
tively generated by {b−1,w0,2, b1} and {D−1,0,D0,2,D1,0}, and since by Proposition F.6
the representation on Sη is faithful we obtain in this way a canonical surjective algebra
homomorphism

(F.7) �1 : SH(1)
1 → Uη(W), D−l,0 → bl, D0,2 →w0,2/2, l ∈ Z.

Proposition F.9. — The map �1 is an algebra isomorphism.

Proof. — Set SH(1),0
1 = SH0

1/(c − c). We first show that �1 restricts to an isomor-
phism

(F.8) SH0
1 → Uη

(

W
0
)

.



DEGENERATE DAHA, W-ALGEBRAS AND INSTANTONS 337

By (1.67) we have D1,l = ad(D0,2)
l(D1,0) for l ≥ 0. So, a direct computation proves that

(F.9) �1(D1,l)= 2−lad(w0,2)
l(b−1) ∈ (−1)lw−1,l ⊕

l−1
⊕

k=0

Cw−1,k, l ≥ 0.

Thus, since El = [D−1,0,D1,l], we get

(F.10) �1(El)=
[

b1,�
1(D1,l)
] ∈ (−1)l+1lw0,l−1 ⊕

l−2
⊕

k=1

Cw0,k ⊕C, l ≥ 0.

Next, from (1.69) and (E.1), we have the following formula in SH(1)
1

(F.11) El ∈ l(l − 1)D0,l−1 +C[D0,1, . . . ,D0,l−2], l ≥ 2.

It follows that

(F.12) �1(D0,l) ∈ (−1)lw0,l/l +C[w0,1, . . . ,w0,l−1], l ≥ 1.

Thus �χ restricts to an isomorphism SHχ,0
1 → Uη(W

0). Next, observe that

(F.13) �1
(

SH>
1

)⊂ U
(

W
<
)

, �1
(

SH<
1

)⊂ U
(

W
>
)

.

Moreover, since

(F.14)
SH(1)

1 = SH>
1 ⊗ SH(1),0

1 ⊗ SH<
1 ,

Uη(W)= U
(

W
<
)⊗Uη

(

W
0
)⊗U
(

W
>
)

,

by Proposition 1.37. and the PBW theorem, and since �1 is surjective we deduce that

(F.15) �1 : SH>
1 → U
(

W
<
)

, �1 : SH<
1 → U
(

W
>
)

are surjective as well. It only remains to prove that they are isomorphisms. Both SH>
1

and U(W<) carry a Z-grading and an N-filtration. The map �1 is compatible with these
gradings and filtrations, i.e., we have

(F.16) �1
(

SH>
1 [r,≤l])= U

(

W
<
)[−r,≤l].

But by Corollary 1.27 and (F.4) these spaces have the same dimension. It follows that

(F.17) �1 : SH>
1 → U
(

W
<
)

is an isomorphism. The same holds for SH<
1 . We are done. �
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F.5 The isomorphism for a general level. — Now we construct a Z-algebra isomorphism

(F.18) � : SHc
1 → U(W)⊗ Z, Z = C[cl; l ≥ 1].

The construction of � is inspired by �1. Recall that (1.67), (1.68) yield

(F.19) D1,l = ad(D0,2)
l(D1,0), D−1,l = (−1)lad(D0,2)

l(D−1,0), l ≥ 0.

Thus, by Proposition F.9, the assignments

(F.20) D1,l → 2−lad(w0,2)
l(b−1), D−1,l → (−2)−lad(w0,2)

l(b1), l ≥ 0

extend to algebra isomorphisms

(F.21) � : SH>
1 → U
(

W
<
)

, � : SH<
1 → U
(

W
>
)

.

They coincide with the restrictions of �1. Next, we lift the map

(F.22) �1 : SH(1),0
1 → Uη

(

W
0
)

to a Z-algebra isomorphism

(F.23) � : SHc,0
1 → U

(

W
0
)⊗ Z.

For l ≥ 2 we have

(F.24)

El ∈ l(l − 1)D0,l−1 + Z[c0,D0,1, . . . ,D0,l−2],
[

b1,ad(w0,2)
l(b−1)
] ∈−(−2)l lw0,l−1 ⊕

l−2
⊕

k=1

Cw0,k ⊕CC⊕Cb0.

In particular, we have SHc,0
1 = Z[c0,El; l ≥ 1]. Thus, there is a unique Z-algebra isomor-

phism � as in (F.23) such that

(F.25) �(c0)= C, �(El)= 2−l
[

b1,ad(w0,2)
l(b−1)
]

, l ≥ 2.

We claim that the maps (F.21), (F.23) glue together into a Z-algebra isomorphism

(F.26) � : SHc
1 → U(W)⊗ Z.

By the triangular decomposition argument, it is enough to prove that � is an algebra
morphism, i.e., that relations (1.67)–(1.69) hold in U(W) ⊗ Z. This is clear for (1.67),
(1.68), because �1 is an algebra morphism and � is a lift of �1. The relation (1.69) holds
by construction, because

(F.27)

�
([D−1,0,D1,l]

)=�(El)=
[

b1,�(D1,l)
]

, l ≥ 2,

�
([D−1,0,D1,0]

)=�(c0)= C = [b1, b−1],
�
([D−1,0,D1,1]

)=�(−c1)= b0 +C/2 = [b1,L1/2
−1 + b−1/2

]= [b1,�(D1,1)
]

.

Therefore, we have proved the following.
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Theorem F.10. — There is a unique Z-algebra isomorphism � : SHc
1 → U(W)⊗Z satis-

fying

(F.28) �(c0)= C, �(D−l,0)= bl, �(D0,2)=w0,2/2, l �= 0.

Appendix G: Complements on Section 9

We freely use the notations of Appendices B, C and D. We begin by explicitly computing
f−1,d(G). By definition, we have f−1,d[Mr,n] = c[Mr,n−1] if and only if the quantity

(G.1) cμ =
∑

λ⊃μ
|λ\μ|=1

euμ eu−1
λ 〈μ; f−1,d;λ〉

is equal to c for any r-partition μ. Using (D.1) and (D.6) we have

(G.2) euμ eu−1
λ 〈μ; f−1,d;λ〉 = c1(τλ,μ)

d eu
(

N∗
λ,μ −T∗

λ

)

= (xy)−1c1(τλ,μ)
d eu
(

τ ∗λ,μHμ + 1
)

.

Furthermore, by Lemma D.1,

(G.3) τ ∗λ,μHμ + 1 = qt
∑

σ⊂μ

τ ∗λ,μτσ,μ −
∑

λ′⊃μ
λ′ �=λ

τ ∗λ,μτλ′,μ,

where in first sum |μ\σ | = 1 while in the second |λ′\μ| = 1. Setting aλ = c1(τλ,μ) and
bσ = c1(τμ,σ )+ x + y we obtain

(G.4) cμ = (xy)−1
∑

λ

ad
λ

∏

σ (bσ − aσ )
∏

λ′ �=λ(aλ′ − aλ)
.

Lemma G.1. — Let m ≥ 0, n = m + r and d ≥ 0. Let z1, . . . , zn, y1, . . . , ym be formal

variables. Then

(G.5)
∑

i

zd
i

∏

k(yk − zi)
∏

j �=i(zj − zi)
=

⎧

⎪

⎨

⎪

⎩

0 if d < r − 1
(−1)r−1 if d = r − 1
(−1)r
∑

k yk −∑i zi if d = r.

Proof. — Let Pd(z, y) be the left hand side of the above expression. It is a rational
function of degree d − r + 1 with at most simple poles along the divisors zi = zj . It is easy
to see that the residue of Pd(z, y) along each of these divisors is in fact equal to zero, so that
Pd(z, y) is a homogeneous polynomial of degree d − r + 1. This proves that Pd(z, y)= 0
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if d < r − 1. To compute the scalar Pr−1(z, y) we may set yk = 0 for all k and let z1 →∞.
To compute Pr(z, y) we may likewise consider the limits Pr(z, y)/zi,Pr(z, y)/yk as zi →∞
and yk →∞ respectively. �

Using Lemma G.1 together with the fact that for a given r-partition μ,

(G.6)
∑

σ

bσ −
∑

λ

aλ =−(e1 + · · · + er)

we deduce

(G.7) cμ =

⎧

⎪

⎨

⎪

⎩

0 if d < r − 1
(−1)r−1 if d = r − 1
(−1)r(e1 + · · · + er) if d = r

and thus that, for d < r − 1,

(G.8)

f−1,d(G)= 0, f−1,r−1(G)=−(1)r−1(xy)−1G,

f−1,r(G)= (−1)r

(

∑

i

ei

)

(xy)−1G.

This proves (9.3) for l = 1, the first part of (9.4) and (9.5). Relation (9.3) for l ≥ 1
and the second part of (9.4) follow since D−l,d is obtained from D−1,d and D−1,d+1 by
iterated commutators with D−1,0 or D−1,1. Proposition 9.1 is proved. �

Remark G.2. — The operator ρ(r)(xd−1+2l ylD−l,d) preserves the lattice L(r) by Re-
mark 3.5, and it has the cohomological degree 2(2l − rl + d − 1) by Remark 3.6. Thus
for l ≥ 1 and r ≥ 2 we may deduce directly that

(G.9) ρ(r)(D−l,d)
([Mr,n]
)= 0, ρ(r)(D−l,r−1)

([Mr,n]
) ∈ Kr [Mr,n−l], d < r − 1.
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