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ABSTRACT

Models of spatially homogeneous walks in the quarter plane Z2
+ with steps taken from a subset S of the set of

jumps to the eight nearest neighbors are considered. The generating function (x, y, z) �→ Q(x, y; z) of the numbers q(i, j; n)
of such walks starting at the origin and ending at (i, j) ∈ Z2

+ after n steps is studied. For all non-singular models of walks,
the functions x �→ Q(x,0; z) and y �→ Q(0, y; z) are continued as multi-valued functions on C having infinitely many
meromorphic branches, of which the set of poles is identified. The nature of these functions is derived from this result:
namely, for all the 51 walks which admit a certain infinite group of birational transformations of C2, the interval ]0,1/|S|[
of variation of z splits into two dense subsets such that the functions x �→ Q(x,0; z) and y �→ Q(0, y; z) are shown to be
holonomic for any z from the one of them and non-holonomic for any z from the other. This entails the non-holonomy
of (x, y, z) �→ Q(x, y; z), and therefore proves a conjecture of Bousquet-Mélou and Mishna in Contemp. Math. 520:1–40
(2010).

1. Introduction and main results

In the field of enumerative combinatorics, counting walks on the lattice Z2 is
among the most classical topics. While counting problems have been largely resolved
for unrestricted walks on Z2 and for walks staying in a half plane [3], walks confined to
the quarter plane Z2

+ still pose considerable challenges. In recent years, much progress
has been made for walks in the quarter plane with small steps, which means that the set
S of possible steps is included in {−1,0,1}2 \ {(0,0)}; for examples, see Figures 1 and 10.
In [2], Bousquet-Mélou and Mishna constructed a thorough classification of these 28

walks. After eliminating trivial cases and exploiting equivalences, they showed that 79 in-
herently different walks remain to be studied. Let q(i, j; n) denote the number of paths in
Z2

+ having length n, starting from (0,0) and ending at (i, j). Define the counting function
(CF) as

Q(x, y; z) =
∑

i,j,n≥0

q(i, j; n)xiy jzn.

There are then two key challenges:

(i) Finding an explicit expression for Q(x, y; z);
(ii) Determining the nature of Q(x, y; z): is it holonomic (i.e., see [7, Appendix

B.4], is the vector space over C(x, y, z)—the field of rational functions in the
three variables x, y, z—spanned by the set of all derivatives of Q(x, y; z) finite
dimensional)? And in that event, is it algebraic, or even rational?

The common approach to treat these problems is to start from a functional equation for
the CF, which for the walks with small steps takes the form (see [2])
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FIG. 1. — Example of model (with an infinite group) considered here—on the boundary, the jumps are the natural ones:
those that would take the walk out Z2

+ are discarded

K(x, y; z)Q(x, y; z) = K(x,0; z)Q(x,0; z) + K(0, y; z)Q(0, y; z)(1.1)

− K(0,0; z)Q(0,0; z) − xy,

where

K(x, y; z) = xyz

[ ∑

(i,j)∈S
xiy j − 1/z

]
(1.2)

is called the kernel of the walk. This equation determines Q(x, y; z) through the boundary
functions Q(x,0; z), Q(0, y; z) and Q(0,0; z).

Known results regarding both problems (i) and (ii) highlight the notion of the group

of the walk, introduced by Malyshev [13–15]. This is the group

〈ξ, η〉(1.3)

of birational transformations of C(x, y), generated by

ξ(x, y) =
(

x,
1
y

∑
(i,−1)∈S xi

∑
(i,+1)∈S xi

)
, η(x, y) =

(
1
x

∑
(−1,j)∈S y j

∑
(+1,j)∈S y j

, y

)
.(1.4)

Each element of 〈ξ, η〉 leaves invariant the jump function
∑

(i,j)∈S xiy j . Further, ξ 2 = η2 =
Id, and 〈ξ, η〉 is a dihedral group of order even and larger than or equal to four. It turns
out that 23 of the 79 walks have a finite group, while the 56 others admit an infinite
group, see [2].

For 22 of the 23 models with finite group, CFs Q(x,0; z), Q(0, y; z) and
Q(0,0; z)—and hence Q(x, y; z) by (1.1)—have been computed in [2] by means of cer-
tain (half-)orbit sums of the functional equation (1.1). The 23rd model with finite group
is known as Gessel’s walk (see Figure 10); see [9, 11] and references therein for literature
on this quite interesting model. For it, the CFs have been expressed by radicals in [1]
thanks to a guessing-proving method using computer calculations; they were also found
in [12] by solving some boundary value problems. For the 2 walks with infinite group on
the left in Figure 2, they have been obtained in [17], by exploiting a particular property
shared by the 5 models of Figure 2 commonly known as singular walks. Finally, in [18], the
problem (i) was resolved for all 54 remaining walks—and in fact for all the 79 models. For
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FIG. 2. — The 5 singular walks in the classification of [2]

the 74 non-singular walks, this was done via a unified approach: explicit integral repre-
sentations were obtained for CFs Q(x,0; z), Q(0, y; z) and Q(0,0; z) in certain domains,
by solving boundary value problems of Riemann-Carleman type.

In this article we go further, since both functions x �→ Q(x,0; z) and y �→ Q(0, y; z)

are computed on the whole of C as multi-valued functions with infinitely many meromor-
phic branches, that are made explicit for all z ∈]0,1/|S|[. This result gives not only the
most complete continuation of these CFs on their complex planes along all paths, but
also permits to establish the nature of these functions, i.e., to solve Problem (ii).

Problem (ii) is actually resolved for only 28 of the 79 walks. All 23 finite group
models admit a holonomic CF. Indeed, the nature of Q(x, y; z) was determined in [2]
for 22 of these walks: 19 walks turn out to have a holonomic but non-algebraic CF,
while for 3 walks Q(x, y; z) is algebraic. As for the 23rd—again, Gessel’s model—, the
CF is algebraic [1]. Alternative proofs for the nature of the (bivariate) CF for these 23
walks were given in [5]. For the remaining 56 walks with an infinite group, not much is
known: in [17] it was shown that for 2 singular walks (namely, the 2 ones on the left in
Figure 2), the function z �→ Q(1,1; z) has infinitely many poles and, as a consequence [7,
Appendix B.4], is non-holonomic. Accordingly [7, Appendix B.4], the trivariate function
Q(x, y; z) is non-holonomic as well. It is reasonable to expect that the same approach
would lead to the non-holonomy of all 5 singular walks, see [16, 17]. As for the 51 non-
singular walks with infinite group (all of them are pictured on Figure 17), Bousquet-Mélou
and Mishna [2] conjectured that they also have a non-holonomic CF. In this article we
prove the following theorem.

Theorem 1. — For any of the 51 non-singular walks with infinite group (1.3), the set ]0,1/|S|[
splits into subsets H and ]0,1/|S|[\H that are both dense in ]0,1/|S|[ and such that:

(i) x �→ Q(x,0; z) and y �→ Q(0, y; z) are holonomic for any z ∈ H;

(ii) x �→ Q(x,0; z) and y �→ Q(0, y; z) are non-holonomic for any z ∈]0,1/|S|[\H.

Theorem 1(ii) immediately entails Bousquet-Mélou and Mishna’s conjecture:
the trivariate function (x, y, z) �→ Q(x, y; z) is non-holonomic since the holonomy is sta-
ble by specialization of a variable [7, Appendix B.4]. Further, Theorem 1(i) goes beyond
it: it suggests that Q(x, y; z), although being non-holonomic, still stays accessible for fur-
ther analysis when z ∈ H, namely by the use of methods developed in [6, Chapter 4],
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see Remark 16. This important set H will be characterized in two different ways, see
Corollary 15 and Remark 16 below.

The proof of Theorem 1 we shall do here is based on the above-mentioned con-
struction of the CF x �→ Q(x,0; z) (resp. y �→ Q(0, y; z)) as a multi-valued function,
that must now be slightly more detailed. First, we prove in this article that for any
z ∈]0,1/|S|[, the integral expression of x �→ Q(x,0; z) given in [18] in a certain do-
main of C admits a direct holomorphic continuation on C \ [x3(z), x4(z)]. Points x3(z), x4(z)

are among four branch points x1(z), x2(z), x3(z), x4(z) of the two-valued algebraic func-
tion x �→ Y(x; z) defined via the kernel (1.2) by the equation K(x,Y(x; z); z) = 0. These
branch points are roots of the discriminant (2.2) of the latter equation, which is of the
second order. We refer to Section 2 for the numbering and for some properties of these
branch points. We prove next that function x �→ Q(x,0; z) does not admit a direct mero-
morphic continuation on any open domain containing the segment [x3(z), x4(z)], but
admits a meromorphic continuation along any path going once through [x3(z), x4(z)]. This way,
we obtain a second (and different) branch of the function, which admits a direct mero-
morphic continuation on the whole cut plane C \ ([x1(z), x2(z)] ∪ [x3(z), x4(z)]). Next, if
the function x �→ Q(x,0; z) is continued along a path in C \ [x1(z), x2(z)] crossing once
again [x3(z), x4(z)], we come across its first branch. But its continuation along a path in
C \ [x3(z), x4(z)] crossing once [x1(z), x2(z)] leads to a third branch of this CF, which is
meromorphic on C \ ([x1(z), x2(z)] ∪ [x3(z), x4(z)]). Making loops through [x3(z), x4(z)]
and [x1(z), x2(z)], successively, we construct x �→ Q(x,0; z) as a multi-valued meromor-
phic function on C with branch points x1(z), x2(z), x3(z), x4(z), and with (generically)
infinitely many branches. The analogous construction is valid for y �→ Q(0, y; z).

In order to prove Theorem 1(ii), we then show that for any of the 51 non-singular
walks with infinite group (1.3), for any z ∈]0,1/|S|[\H, the set formed by the poles of all

branches of x �→ Q(x,0; z) (resp. y �→ Q(0, y; z)) is infinite—and even dense in certain curves,
to be specified in Section 7 (see Figure 11 for their pictures). This is not compatible with
holonomy. Indeed, all branches of a holonomic one-dimensional function must verify the
same linear differential equation with polynomial coefficients. In particular, the poles of
all branches are among the zeros of these polynomials, and hence they must be in a finite
number.

The rest of our paper is organized as follows. In Section 2 we construct the Rie-
mann surface T of genus 1 of the two-valued algebraic functions X( y; z) and Y(x; z)

defined by

K
(
X( y; z), y; z

) = 0, K
(
x,Y(x; z); z

) = 0.

In Section 3 we introduce and study the universal covering of T. It can be viewed as
the complex plane C split into infinitely many parallelograms with edges ω1(z) ∈ iR and
ω2(z) ∈ R that are uniformization periods. These periods as well as a new important
period ω3(z) are made explicit in (3.1) and (3.2). In Section 4 we lift CFs Q(x,0; z) and
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Q(0, y; z) to some domain of T, and then to a domain on its universal covering. In Sec-
tion 5, using a proper lifting of the automorphisms ξ and η defined in (1.4) as well as the
independence of K(x,0; z)Q(x,0; z) and K(0, y; z)Q(0, y; z) w.r.t. y and x, respectively,
we continue these functions meromorphically on the whole of the universal covering. All
this procedure has been first carried out by Malyshev in the seventies [13–15], at that
time to study the stationary probability generating functions for random walks with small
steps in the quarter plane Z2

+. It is presented in [6, Chapter 3] for the case of ergodic
random walks in Z2

+, and applies directly for our Q(x,0;1/|S|) and Q(0, y;1/|S|) if the
drift vector (

∑
(i,j)∈S i,

∑
(i,j)∈S j) has not two positive coordinates; see also [4]. In Sec-

tions 3, 4 and 5 we carry out this procedure for all z ∈]0,1/|S|[ and all non-singular
walks, independently of the drift. Then, going back from the universal covering to the
complex plane allows us in Subsection 5.2 to continue x �→ Q(x,0; z) and y �→ Q(0, y; z)

as multi-valued meromorphic functions with infinitely many branches.
For given z ∈]0,1/|S|[, the rationality or irrationality of the ratio ω2(z)/ω3(z) of

the uniformization periods is crucial for the nature of x �→ Q(x,0; z) and y �→ Q(0, y; z).
Namely, Theorem 7 of Subsection 5.3 proves that if ω2(z)/ω3(z) is rational, these func-
tions are holonomic.

For 23 models of walks with finite group 〈ξ, η〉, the ratio ω2(z)/ω3(z) turns out
to be rational and independent of z, see Lemma 8 below, that implies immediately the
holonomy of the generating functions. In Section 6 we gather further results of our ap-
proach for the models with finite group concerning the set of branches of the generating
functions and their nature. In particular, we recover most of the results of [1, 2, 5, 17].

Section 7 is devoted to 51 models with infinite group 〈ξ, η〉. For all of them,
the sets H = {z ∈]0,1/|S|[: ω2(z)/ω3(z) is rational} and ]0,1/|S|[\H = {z ∈]0,1/|S|[:
ω2(z)/ω3(z) is irrational} are proved to be dense in ]0,1/|S|[, see Proposition 14. These
sets can be also characterized as those where the group 〈ξ, η〉 restricted to the curve
{(x, y) : K(x, y; z) = 0} is finite and infinite, respectively, see Remark 6. By Theorem 7
mentioned above, x �→ Q(x,0; z) and y �→ Q(0, y; z) are holonomic for any z ∈ H, that
proves Theorem 1(i). In Subsections 7.1, 7.2 and 7.3, we analyze in detail the branches of
x �→ Q(x,0; z) and y �→ Q(0, y; z) for any z ∈]0,1/|S|[\H and prove the following facts
(see Theorem 17):

(i) The only singularities of the first (main) branches of x �→ Q(x,0; z) and y �→
Q(0, y; z) are two branch points x3(z), x4(z) and y3(z), y4(z), respectively;

(ii) All (other) branches have only a finite number of poles;
(iii) The set of poles of all these branches is infinite for each of these functions,

and is dense on certain curves; these curves are specified in Section 7, and in
particular are pictured on Figure 11 for all 51 walks given on Figure 17;

(iv) Poles of branches out of these curves may be only at zeros of x �→ K(x,0; z) or
y �→ K(0, y; z), respectively.

It follows from (iii) that x �→ Q(x,0; z) and y �→ Q(0, y; z) are non-holonomic for any
z ∈]0,1/|S|[\H.
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2. Riemann surface T

In the sequel we suppose that z ∈]0,1/|S|[, and we drop the dependence of the
different quantities w.r.t. z.

2.1. Kernel K(x, y). — The kernel K(x, y) defined in (1.2) can be written as

xyz

[ ∑

(i,j)∈S
xiy j − 1/z

]
= ã( y)x2 + b̃( y)x + c̃( y) = a(x)y2 + b(x)y + c(x),(2.1)

where

ã( y) = zy
∑

(+1,j)∈S
y j, b̃( y) = −y + zy

∑

(0,j)∈S
y j, c̃( y) = zy

∑

(−1,j)∈S
y j,

a(x) = zx
∑

(i,+1)∈S
xi, b(x) = −x + zx

∑

(i,0)∈S
xi, c(x) = zx

∑

(i,−1)∈S
xi.

With these notations we define

d̃( y) = b̃( y)2 − 4̃a( y)̃c( y), d(x) = b(x)2 − 4a(x)c(x).(2.2)

If the walk is non-singular, then for any z ∈]0,1/|S|[, the polynomial d̃ (resp. d ) has three
or four roots, that we call y� (resp. x�). They are such that |y1| < y2 < 1 < y3 < |y4| (resp.
|x1| < x2 < 1 < x3 < |x4|), with y4 = ∞ (resp. x4 = ∞) if d̃ (resp. d ) has order three: the
arguments given in [6, Part 2.3] for the case z = 1/|S| indeed also apply for other values
of z.

Now we notice that the kernel (1.2) vanishes if and only if [̃b( y) + 2̃a( y)x]2 = d̃( y)

or [b(x) + 2a(x)y]2 = d(x). Consequently [10], the algebraic functions X( y) and Y(x)

defined by
∑

(i,j)∈S
X( y)iy j − 1/z = 0,

∑

(i,j)∈S
xiY(x) j − 1/z = 0(2.3)

have two branches, meromorphic on the cut planes C \ ([y1, y2] ∪ [y3, y4]) and C \
([x1, x2] ∪ [x3, x4]), respectively—note that if y4 < 0, [y3, y4] stands for [y3,∞[∪{∞}∪
]−∞, y4]; the same holds for [x3, x4].

We fix the notations of the two branches of the algebraic functions X( y) and Y(x)

by setting

X0( y) = −̃b( y) + d̃( y)1/2

2̃a( y)
, X1( y) = −̃b( y) − d̃( y)1/2

2̃a( y)
,(2.4)

as well as

Y0(x) = −b(x) + d(x)1/2

2a(x)
, Y1(x) = −b(x) − d(x)1/2

2a(x)
.(2.5)
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FIG. 3. — Construction of the Riemann surface

The following straightforward result holds.

Lemma 2. — For all y ∈ C, we have |X0( y)| ≤ |X1( y)|. Likewise, for all x ∈ C, we have

|Y0(x)| ≤ |Y1(x)|.

Proof. — The arguments (via the maximum modulus principle [10]) given in [6,
Part 5.3] for z = 1/|S| also work for z ∈]0,1/|S|[. �

2.2. Riemann surface T. — We now construct the Riemann surface T of the alge-
braic function Y(x) introduced in (2.3). For this purpose we take two Riemann spheres
C ∪ {∞}, say S1

x and S2
x , cut along the segments [x1, x2] and [x3, x4], and we glue them

together along the borders of these cuts, joining the lower border of the segment [x1, x2]
(resp. [x3, x4]) on S1

x to the upper border of the same segment on S2
x and vice versa, see

Figure 3. The resulting surface T is homeomorphic to a torus (i.e., a compact Riemann
surface of genus 1) and is projected on the Riemann sphere S by a canonical covering
map hx : T → S.

In a standard way, we can lift the function Y(x) to T, by setting Y(s) = Y�(hx(s))

if s ∈ S�
x ⊂ T, � ∈ {1,2}. Thus, Y(s) is single-valued and continuous on T. Furthermore,

K(hx(s),Y(s)) = 0 for any s ∈ T. For this reason, we call T the Riemann surface of Y(x).
In a similar fashion, one constructs the Riemann surface of the function X( y), by

gluing together two copies S1
y and S2

y of the sphere S along the segments [y1, y2] and
[y3, y4]. It is again homeomorphic to a torus.
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FIG. 4. — Location of the branch points and of the cycles �0 and �1 on the Riemann surface T

Since the Riemann surfaces of X( y) and Y(x) are equivalent, we can work on a
single Riemann surface T, but with two different covering maps hx, hy : T → S. Then,
for s ∈ T, we set x(s) = hx(s) and y(s) = hy(s), and we will often represent a point s ∈ T
by the pair of its coordinates (x(s), y(s)). These coordinates are of course not independent,
because the equation K(x(s), y(s)) = 0 is valid for any s ∈ T.

2.3. Real points of T. — Let us identify the set � of real points of T, that are the
points s ∈ T where x(s) and y(s) are both real or equal to infinity. Note that for y real,
X( y) is real if y ∈ [y4, y1] or y ∈ [y2, y3], and complex if y ∈]y1, y2[ or y ∈]y3, y4[, see (2.2).
Likewise, for real values of x, Y(x) is real if x ∈ [x4, x1] or x ∈ [x2, x3], and complex if
x ∈]x1, x2[ or x ∈]x3, x4[. The set � therefore consists of two non-intersecting closed
analytic curves �0 and �1, equal to (see Figure 4)

�0 = {
s ∈ T : x(s) ∈ [x2, x3]

} = {
s ∈ T : y(s) ∈ [y2, y3]

}

and

�1 = {
s ∈ T : x(s) ∈ [x4, x1]

} = {
s ∈ T : y(s) ∈ [y4, y1]

}
,

and homologically equivalent to a basic cycle on T—note, however, that the equivalence
class containing �0 and �1 is disjoint from that containing the cycle h−1

x ({x ∈ C : |x| = 1}).

2.4. Galois automorphisms ξ, η. — We continue Section 2 by introducing two Ga-
lois automorphisms. Define first, for � ∈ {1,2}, the incised spheres

Ŝ�
x = S�

x \ ([x1, x2] ∪ [x3, x4]
)
, Ŝ�

y = S�
y \ ([y1, y2] ∪ [y3, y4]

)
.

For any s ∈ T such that x(s) is not equal to a branch point x�, there is a unique s′ 
= s ∈ T
such that x(s) = x(s′). Furthermore, if s ∈ Ŝ1

x then s′ ∈ Ŝ2
x and vice versa. On the other

hand, whenever x(s) is one of the branch points x�, s = s′. Also, since K(x(s), y(s)) = 0,
y(s) and y(s′) give the two values of function Y(x) at x = x(s) = x(s′). By Vieta’s theorem
and (2.1), y(s)y(s′) = c(x(s))/a(x(s)).

Similarly, for any s ∈ T such that y(s) is different from the branch points y�, there
exists a unique s′′ 
= s ∈ T such that y(s) = y(s′′). If s ∈ Ŝ1

y then s′′ ∈ Ŝ2
y and vice versa.
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On the other hand, if y(s) is one of the branch points y�, we have s = s′′. Moreover, since
K(x(s), y(s)) = 0, x(s) and x(s′′) the two values of function X( y) at y(s) = y(s′′). Again, by
Vieta’s theorem and (2.1), x(s)x(s′′) = c̃( y(s))/̃a( y(s)).

Define now the mappings ξ : T → T and η : T → T by

{
ξ s = s′ if x(s) = x(s′),
ηs = s′′ if y(s) = y(s′′).

(2.6)

Following [13–15], we call them Galois automorphisms of T. Then ξ 2 = η2 = Id, and

y(ξ s) = c(x(s))

a(x(s))

1
y(s)

, x(ηs) = c̃( y(s))

ã( y(s))

1
x(s)

.(2.7)

Any s ∈ T such that x(s) = x� (resp. y(s) = y�) is a fixed point for ξ (resp. η). To illustrate
and to get some more intuition, it is helpful to draw on Figure 4 the straight line through
the pair of points of �0 where x(s) = x2 and x3 (resp. y(s) = y2 and y3); then points s and
ξ s (resp. s and ηs) can be drawn symmetric about this straight line.

2.5. The Riemann surface T viewed as a parallelogram whose opposed edges are identified. —

Like any compact Riemann surface of genus 1, T is isomorphic to a certain quotient
space

C/(ω1Z + ω2Z),(2.8)

where ω1,ω2 are complex numbers linearly independent on R, see [10]. The set (2.8)
can obviously be thought as the (fundamental) parallelogram ω1[0,1] + ω2[0,1] whose
opposed edges are identified. Up to a unimodular transform, ω1,ω2 are unique, see [10].
In our case, suitable ω1,ω2 will be found in (3.1).

If we cut the torus on Figure 4 along [x1, x2] and �0, it becomes the parallelogram
on the left in Figure 5. On the right in the same figure, this parallelogram is translated to
the complex plane, and all corresponding important points are expressed in terms of the
complex numbers ω1,ω2 (see above) and of ω3 (to be defined below, in (3.2)).

3. Universal covering

3.1. An informal construction of the universal covering. — The Riemann surface T can be
considered as a parallelogram whose opposite edges are identified, see (2.8) and Figure 5.
The universal covering of T can then be viewed as the union of infinitely many such
parallelograms glued together, as in Figure 6.
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FIG. 5. — The Riemann surface C/(ω1Z + ω2Z) and the location of the branch points

FIG. 6. — Informal construction of the universal covering

3.2. Periods and covering map. — We now give a proper construction of the universal
covering. The Riemann surface T being of genus 1, its universal covering has the form
(C, λ), where C is the complex plane and λ : C → T is a non-branching covering map,
see [10]. This way, the surface T can be considered as the additive group C factorized
by the discrete subgroup ω1Z + ω2Z, where the periods ω1,ω2 are complex numbers,
linearly independent on R. Any segment of length |ω�| and parallel to ω�, � ∈ {1,2}, is
projected onto a closed curve on T homological to one of the elements of the normal
basis on the torus. We choose λ([0,ω1]) to be homological to the cut [x1, x2] (and hence
also to all other cuts [x3, x4], [y1, y2] and [y3, y4]); λ([0,ω2]) is then homological to the
cycles of real points �0 and �1; see Figures 5 and 7.

Our aim now is to find the expression of the covering λ. We will do this by finding,
for all ω ∈ C, the explicit expressions of the pair of coordinates (x(λω), y(λω)), that we
have introduced in Section 2. First, the periods ω1,ω2 are obtained in [6, Lemma 3.3.2]
for z = 1/|S|. The reasoning is exactly the same for other values of z, and we obtain that
with d as in (2.2),

ω1 = i

∫ x2

x1

dx

[−d(x)]1/2
, ω2 =

∫ x3

x2

dx

d(x)1/2
.(3.1)
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FIG. 7. — Important points and cycles on the universal covering

We also need to introduce

ω3 =
∫ x1

X( y1)

dx

d(x)1/2
.(3.2)

Further, we define

gx(t) =
{

d ′′(x4)/6 + d ′(x4)/[t − x4] if x4 
= ∞,

d ′′(0)/6 + d ′′′(0)t/6 if x4 = ∞,

as well as

gy(t) =
{

d ′′( y4)/6 + d ′( y4)/[t − y4] if y4 
= ∞,

d ′′(0)/6 + d ′′′(0)t/6 if y4 = ∞,

and finally we introduce ℘(ω;ω1,ω2), the Weierstrass elliptic function with periods
ω1,ω2. Throughout, we shall write ℘(ω) for ℘(ω;ω1,ω2). By definition, see [10, 20],
we have

℘(ω) = 1
ω2

+
∑

(�1,�2)∈Z2\{(0,0)}

[
1

(ω − �1ω1 − �2ω2)2
− 1

(�1ω1 + �2ω2)2

]
.

Then we have the uniformization [6, Lemma 3.3.1]
{

x(λω) = g−1
x (℘ (ω)),

y(λω) = g−1
y (℘ (ω − ω3/2)).

(3.3)

From now on, whenever no ambiguity can arise, we drop the dependence w.r.t. λ, writ-
ing x(ω) and y(ω) instead of x(λω) and y(λω), respectively. The coordinates x(ω), y(ω)

defined in (3.3) are elliptic:

x(ω + ω�) = x(ω), y(ω + ω�) = y(ω), ∀� ∈ {1,2}, ∀ω ∈ C.(3.4)
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Furthermore,

{
x(0) = x4

y(0) = Y(x4)
,

{
x(ω1/2) = x3

y(ω1/2) = Y(x3)
,

{
x(ω2/2) = x1

y(ω2/2) = Y(x1)
,

{
x([ω1 + ω2]/2) = x2

y([ω1 + ω2]/2) = Y(x2)
.

Let us denote the points 0,ω1/2,ω2/2, [ω1 + ω2]/2 by ωx4,ωx3,ωx1,ωx2 , respectively, see
Figures 5 and 7. Let

Lx3
x4

= ωx4 + ω1R, Lx2
x1

= ωx1 + ω1R.

Then λLx3
x4

(resp. λLx2
x1

) is the cut of T where S1
x and S2

x are glued together, namely, {s ∈
T : x(s) ∈ [x3, x4]} (resp. {s ∈ T : x(s) ∈ [x1, x2]}).

Moreover, by construction we have (see again Figures 5 and 7)

{
x(ω3/2) = X( y4)

y(ω3/2) = y4
,

{
x([ω1 + ω3]/2) = X( y3)

y([ω1 + ω3]/2) = y3
,

{
x([ω2 + ω3]/2) = X( y1)

y([ω2 + ω3]/2) = y1
,

and
{

x([ω1 + ω2 + ω3]/2) = X( y2)

y([ω1 + ω2 + ω3]/2) = y2
.

We denote the points ω3/2, [ω1 + ω3]/2, [ω2 + ω3]/2, [ω1 + ω2 + ω3]/2 by ωy4 , ωy3 , ωy1 ,
ωy2 , respectively. Let

Ly3
y4

= ωy4 + ω1R, Ly2
y1

= ωy1 + ω1R.

Then λLy3
y4

(resp. λLy2
y1

) is the cut of T where S1
y and S2

y are glued together, that is to say
{s ∈ T : y(s) ∈ [y3, y4]} (resp. {s ∈ T : y(s) ∈ [y1, y2]}).

The distance between Lx3
x4

and Ly3
y4

is the same as between Lx2
x1

and Ly2
y1

; it equals
ω3/2.

3.3. Lifted Galois automorphisms ξ̂ , η̂. — Any conformal automorphism ζ of the sur-
face T can be continued as a conformal automorphism ζ̂ = λ−1ζλ of the universal cover-
ing C. This continuation is not unique, but it will be unique if we fix some ζ̂ω0 ∈ λ−1ζλω0

for a given point ω0 ∈ C.
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According to [6], we define ξ̂ , η̂ by choosing their fixed points to be ωx2,ωy2 , re-
spectively. Since any conformal automorphism of C is an affine function of ω [10] and
since ξ̂ 2 = η̂ 2 = Id, we have

ξ̂ω = −ω + 2ωx2, η̂ω = −ω + 2ωy2 .(3.5)

It follows that η̂ ξ̂ and ξ̂ η̂ are just the shifts via the real numbers ω3 and −ω3, respectively:

η̂ ξ̂ω = ω + 2(ωy2 − ωx2) = ω + ω3,

ξ̂ η̂ω = ω + 2(ωx2 − ωy2) = ω − ω3.
(3.6)

By (2.6) and (2.7) we have

x(̂ξω) = x(ω), y(̂ξω) = c(x(ω))

a(x(ω))

1
y(ω)

,

x(̂ηω) = c̃( y(ω))

ã( y(ω))

1
x(ω)

, y(̂ηω) = y(ω).

(3.7)

Finally, ξ̂Lx2
x1

= Lx2
x1

, ξ̂Lx3
x4

= Lx3
x4

+ ω2 and η̂Ly2
y1

= Ly2
y1

, η̂Ly3
y4

= Ly3
y4

+ ω2.

4. Lifting of x �→ Q(x,0) and y �→ Q(0,y) to the universal covering

4.1. Lifting to the Riemann surface T. — We have seen in Section 2 that for any z ∈
]0,1/|S|[, exactly two branch points of Y(x) (namely, x1 and x2) are in the unit disc. For
this reason, and by construction of the surface T, the set {s ∈ T : |x(s)| = 1} is composed
of two cycles (one belongs to S1

x and the other to S2
x ) homological to the cut {s ∈ T :

x(s) ∈ [x1, x2]}. The domain Dx = {s ∈ T : |x(s)| < 1} is bounded by these two cycles,
see Figure 8, and contains the points s ∈ T such that x(s) ∈ [x1, x2]. Since the function
x �→ K(x,0)Q(x,0) is holomorphic in the unit disc, we can lift it to Dx ⊂ T as

rx(s) = K
(
x(s),0

)
Q

(
x(s),0

)
, ∀s ∈ Dx.

In the same way, the domain Dy = {s ∈ T : |y(s)| < 1} is bounded by {s ∈ T :
|y(s)| = 1}, which consists in two cycles homological to the cut {s ∈ T : y(s) ∈ [y1, y2]},
see Figure 8, and which contains the latter. We lift the function y �→ K(0, y)Q(0, y) to
Dy ⊂ T as

ry(s) = K
(
0, y(s)

)
Q

(
0, y(s)

)
, ∀s ∈ Dy.

It is shown in [18, Lemma 3] that for any z ∈]0,1/|S|[ and any x such that |x| = 1,
we have |Y0(x)| < 1 and |Y1(x)| > 1. Hence, the cycles that constitute the boundary of
Dx are


0
x = {

s ∈ T : ∣∣x(s)∣∣ = 1,
∣∣y(s)

∣∣ < 1
}
,


1
x = {

s ∈ T : ∣∣x(s)∣∣ = 1,
∣∣y(s)

∣∣ > 1
}
.
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FIG. 8. — Location of the domains Dx and Dy on the Riemann surface T

We thus have 
0
x ∈ Dy and 
1

x /∈ Dy, see Figure 8. In the same way, for any z ∈]0,1/|S|[
and any y such that |y| = 1, we have |X0( y)| < 1 and |X1( y)| > 1. Therefore, the cycles
composing the boundary of Dy are


0
y = {

s ∈ T : ∣∣y(s)∣∣ = 1,
∣∣x(s)

∣∣ < 1
}
,


1
y = {

s ∈ T : ∣∣y(s)∣∣ = 1,
∣∣x(s)

∣∣ > 1
}
.

Furthermore, 
0
y ∈ Dx and 
1

y /∈ Dx, see Figure 8.
It follows that Dx ∩ Dy = {s ∈ T : |x(s)| < 1, |y(s)| < 1} is not empty, simply con-

nected and bounded by 
0
x and 
0

y . Since for any s ∈ T, K(x(s), y(s)) = 0, and since the
main equation (1.1) is valid on {(x, y) ∈ C2 : |x| < 1, |y| < 1}, we have

rx(s) + ry(s) − K(0,0)Q(0,0) − x(s)y(s) = 0, ∀s ∈ Dx ∩ Dy.(4.1)

4.2. Lifting to the universal covering C. — The domain D lifted on the universal cov-
ering consists of infinitely many curvilinear strips shifted by ω2:

λ−1Dx =
⋃

n∈Z

�n
x, �n

x ⊂ ω1R + ]
nω2, (n + 1)ω2

[
,

and, likewise,

λ−1Dy =
⋃

n∈Z

�n
y, �n

y ⊂ ω1R + ω3/2 + ]
nω2, (n + 1)ω2

[
.

Let us consider these strips for n = 0, that we rename

�x = �0
x , �y = �0

y .

The first is bounded by 
̂1
x ⊂ λ−1
1

x and by 
̂0
x ⊂ λ−1
0

x , while the second is delimited by

̂0

y ⊂ λ−1
0
y and by 
̂1

y ⊂ λ−1
1
y .

Further, note that the straight line Lx2
x1

(resp. Ly2
y1

) defined in Section 3 is invariant
w.r.t. ξ̂ (resp. η̂) and belongs to �x (resp. �y).
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FIG. 9. — Location of � = �x ∪ �y

Then, by the facts that ξ
1
x = 
0

x and η
1
y = 
0

y , and by our choice (3.5) of the
definition of ξ̂ and η̂ on the universal covering, we have ξ̂ 
̂1

x = 
̂0
x and η̂ 
̂1

y = 
̂0
y . In

addition,

ξ̂ω ∈ �x, ∀ω ∈ �x, η̂ω ∈ �y, ∀ω ∈ �y.(4.2)

Moreover, since 
0
y ∈ Dx, 
1

y /∈ Dx and 
0
x ∈ Dy, 
1

x /∈ Dy, we have 
̂0
y ∈ �x, 
̂1

y /∈ �x and

̂0

x ∈ �y, 
̂1
x /∈ �y. It follows that �x ∩ �y is a non-empty strip bounded by 
̂0

x and 
̂0
y ,

and that

� = �x ∪ �y

is simply connected, as in Figure 9.
Let us lift the functions rx(s) and ry(s) holomorphically to �x and �y, respectively:

we put

{
rx(ω) = rx(λω) = K(x(ω),0)Q(x(ω),0), ∀ω ∈ �x,

ry(ω) = ry(λω) = K(0, y(ω))Q(0, y(ω)), ∀ω ∈ �y.
(4.3)

It follows from (4.1) and (4.3) that

rx(ω) + ry(ω) − K(0,0)Q(0,0) − x(ω)y(ω) = 0, ∀ω ∈ �x ∩ �y.(4.4)

Equation (4.4) allows us to continue functions rx(ω) and ry(ω) meromorphically on �: we
put

{
rx(ω) = −ry(ω) + K(0,0)Q(0,0) + x(ω)y(ω), ∀ω ∈ �y,

ry(ω) = −rx(ω) + K(0,0)Q(0,0) + x(ω)y(ω), ∀ω ∈ �x.
(4.5)

Equation (4.4) is then valid on the whole of �. We summarize all facts above in the next
result.
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Theorem 3. — The functions

rx(ω) =

⎧
⎪⎨

⎪⎩

K(x(ω),0)Q(x(ω),0) if ω ∈ �x,

−K(0, y(ω))Q(0, y(ω)) + K(0,0)Q(0,0)

+ x(ω)y(ω) if ω ∈ �y,

and

ry(ω) =

⎧
⎪⎨

⎪⎩

K(0, y(ω))Q(0, y(ω)) if ω ∈ �y,

−K(x(ω),0)Q(x(ω),0) + K(0,0)Q(0,0)

+ x(ω)y(ω) if ω ∈ �x,

are meromorphic in �. Furthermore,

rx(ω) + ry(ω) − K(0,0)Q(0,0) − x(ω)y(ω) = 0, ∀ω ∈ �.(4.6)

5. Meromorphic continuation of x �→ Q(x,0) and y �→ Q(0,y)
on the universal covering

5.1. Meromorphic continuation. — In Theorem 3 we saw that rx(ω) and ry(ω) are
meromorphic on �. We now continue these functions meromorphically from � to the
whole of C.

Theorem 4. — The functions rx(ω) and ry(ω) can be continued meromorphically to the whole

of C. Further, for any ω ∈ C, we have

rx(ω − ω3) = rx(ω) + y(ω)
[
x(−ω + 2ωy2) − x(ω)

]
,(5.1)

ry(ω + ω3) = ry(ω) + x(ω)
[
y(−ω + 2ωx2) − y(ω)

]
,(5.2)

rx(ω) + ry(ω) − K(0,0)Q(0,0) − x(ω)y(ω) = 0,(5.3)
{

rx(̂ξω) = rx(ω),

ry(̂ηω) = ry(ω),
(5.4)

{
rx(ω + ω1) = rx(ω),

ry(ω + ω1) = ry(ω).
(5.5)

For the proof of Theorem 4, we shall need the following lemma.

Lemma 5. — We have
⋃

n∈Z

(� + nω3) = C.(5.6)
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Proof. — It has been noticed in Section 4 that ξ̂ 
̂1
x = 
̂0

x ∈ �y. By (4.2), η̂ 
̂0
x ∈

�y ⊂ �, so that, by (3.6),


̂1
x + ω3 = η̂̂ξ 
̂1

x ∈ �.

In the same way, 
̂1
y −ω3 ∈ �. It follows that �∪ (�+ω3) is a simply connected domain,

see Figure 9. Identity (5.6) follows. �

Proof of Theorem 4. — For any ω ∈ �, by Theorem 3 we have

rx(ω) + ry(ω) − K(0,0)Q(0,0) − x(ω)y(ω) = 0.(5.7)

For any ω ∈ � close enough to the cycle 
̂1
x , we have that ξ̂ω ∈ �y since ξ̂ 
̂1

x = 
̂0
x ∈ �y.

Then ω + ω3 = η̂̂ξω ∈ �y by (4.2). We now compute ry(̂η̂ξω) for any such ω. Equation
(4.6), which is valid in � ⊃ �y, gives

rx(̂ξω) + ry(̂ξω) − K(0,0)Q(0,0) − x(̂ξω)y(̂ξω) = 0.(5.8)

By (3.7), x(̂ξω) = x(ω). For our ω ∈ �x, by (4.2) we have ξ̂ω ∈ �x, so that Theorem 3
yields

rx(̂ξω) = K
(
x(̂ξω),0

)
Q

(
x(̂ξω),0

) = K
(
x(ω),0

)
Q

(
x(ω),0

) = rx(ω).

If we now combine the last fact together with Equation (5.7), Equation (5.8) and identity
x(̂ξω) = x(ω), we obtain that

ry(̂ξω) = ry(ω) + x(ω)
[
y(̂ξω) − y(ω)

]
.

Since ξ̂ω ∈ �y, then by (4.2) we have η̂̂ξω ∈ �y. Equation (3.7) and Theorem 3 entail

ry(̂η̂ξω) = K
(
0, y(̂η̂ξω)

)
Q

(
0, y(̂η̂ξω)

)

= K
(
0, y(̂ξω)

)
Q

(
0, y(̂ξω)

) = ry(̂ξω).

Finally, for all ω ∈ � close enough to 
̂1
x we have

ry(̂η̂ξω) = ry(ω) + x(ω)
[
y(̂ξω) − y(ω)

]
.

Using (3.6), we obtain exactly Equation (5.2). Thanks to Theorem 3 and Lemma 5, this
equation shown for any ω ∈ � close enough to 
̂1

x allows us to continue ry meromor-
phically from � to the whole of C. Equation (5.2) therefore stays valid for any ω ∈ C.
The function ry(̂ηω) = ry(−ω + ωy2) is then also meromorphic on C. Since these func-
tions coincide in �y, then by the principle of analytic continuation [10] they do on the
whole of C. In the same way, we prove Equation (5.1) for all ω ∈ �y close enough to 
̂1

y .
Together with Theorem 3 and Lemma 5 this allows us to continue rx(ω) meromorphi-
cally to the whole of C. By the same continuation argument, the identity rx(ω) = rx(̂ξω)
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is valid everywhere on C. Consequently Equation (5.3), which a priori is satisfied in �,
must stay valid on the whole of C. Since x(ω) and y(ω) are ω1-periodic, it follows from
Theorem 3 that rx(ω) and ry(ω) are ω1-periodic in �. The vector ω3 being real, by (5.1)
and (5.2) these functions stay ω1-periodic on the whole of C. �

5.2. Branches of x �→ Q(x,0) and y �→ Q(0, y). — The restrictions of rx(ω)/

K(x(ω),0) on

Mk,� = ω1[�, � + 1[+ω2

[
k/2, (k + 1)/2

[
(5.9)

for k, � ∈ Z provide all branches on C \ ([x1, x2] ∪ [x3, x4]) of Q(x,0) as follows:

Q(x,0) = {
rx(ω)/K

(
x(ω),0

) : ω is the (unique) element of Mk,�(5.10)

such that x(ω) = x
}
.

Due to the ω1-periodicity of rx(ω) and x(ω), the restrictions of these functions on Mk,�

do not depend on � ∈ Z, and therefore determine the same branch as on Mk,0 for
any �. Furthermore, thanks to (5.4), (3.5) and (3.7) the restrictions of rx(ω)/K(x(ω),0)

on M−k+1,0 and on Mk,0 lead to the same branches for any k ∈ Z. Hence, the restrictions
of rx(ω)/K(x(ω),0) to Mk,0 with k ≥ 1 provide all different branches of this function.
The analogous statement holds for the restrictions of ry(ω)/K(0, y(ω)) on

Nk,� = ω3/2 + ω1

[
�, � + 1[+ω2]k/2, (k + 1)/2

]
(5.11)

for k, � ∈ Z, namely:

Q(0, y) = {
ry(ω)/K

(
0, y(ω)

) : ω is the (unique) element of Nk,�(5.12)

such that y(ω) = y
}
.

The restrictions on Nk,� for � ∈ Z give the same branch as on Nk,0. For any k ∈ Z+ the
restrictions on N−k+1,0 and on Nk,0 determine the same branches. Hence, the restrictions
of ry(ω)/K(0, y(ω)) on Nk,0 with k ≥ 1 provide all different branches of y �→ Q(0, y).

5.3. Ratio ω2/ω3

Remark 6. — For any z ∈]0,1/|S|[ the value ω2/ω3 is rational if and only if the
group 〈ξ, η〉 restricted to the curve {(x, y) ∈ C ∪ {∞}2 : K(x, y) = 0} is finite, see [6,
Section 4.1.2] and [18, Proof of Proposition 4].

The rationality or irrationality of the quantity ω2/ω3 is crucial for the nature of
the functions x �→ Q(x,0) and y �→ Q(0, y) for a given z. Indeed, the following theorem
holds true.
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FIG. 10. — Three famous examples, known as Kreweras’, Gessel’s and Gouyou-Beauchamps’ walks, respectively

Theorem 7. — For any z ∈]0,1/|S|[ such that ω2/ω3 is rational, the functions x �→ Q(x,0)

and y �→ Q(0, y) are holonomic.

Proof. — The proof of Theorem 7 is completely similar to that of Theorems 1.1 and
1.2 in [5], so here we just recall the main ideas. The proof actually consists in applying
[6, Theorem 4.4.1], which entails that if ω2/ω3 is rational, the function Q(x,0) can be
written as

Q(x,0) = w1(x) + �̃(x)φ(x) + w(x)/r(x),

where w1 and r are rational functions, while φ and w are algebraic. Further, in [5,
Lemma 2.1] it is shown that �̃ is holonomic. Accordingly, Q(x,0) is also holonomic. The
argument for Q(0, y) is similar. Notice that Theorem 4.4.1 in [6] is proved for z = 1/|S|
only, but in [5] it is observed that this result also holds for z ∈]0,1/|S|[. �

For all 23 models of walks with finite group (1.3), the ratio ω2/ω3 is rational and
independent of z. This fact, which is specified in Lemma 8 below, implies the holonomy of
the functions x �→ Q(x,0) and y �→ Q(0, y) for all z ∈]0,1/|S|[ by Theorem 7, and also
leads to some more profound analysis of the models with a finite group. This analysis is
the topic of the Section 6.

For all 51 non-singular models of walks with infinite group, ω2/ω3 takes rational
and irrational values on subsets H and ]0,1/|S|[\H, respectively, which are dense on
]0,1/|S|[, as it will be proved in Proposition 14 below. For any z ∈ H, x �→ Q(x,0) and
y �→ Q(0, y) are holonomic by Theorem 7. For all z ∈]0,1/|S|[\H, properties of the
branches of x �→ Q(x,0) and y �→ Q(0, y) (in particular, the set of their poles) will be
studied in detail in Section 7; the non-holonomy will be derived from this analysis.

6. Finite group case

Define the covariance of the model as

∑

(i,j)∈S
ij −

[ ∑

(i,j)∈S
i

][ ∑

(i,j)∈S
j

]
=

∑

(i,j)∈S
ij.(6.1)
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The equality above follows from the fact that for each of the 23 models with a finite group,∑
(i,j)∈S i = 0 or

∑
(i,j)∈S j = 0, see [2]. Lemma 8 below is proved in [18, Proposition 5].

Lemma 8. — For all 23 models with finite group (1.3), ω2/ω3 is rational and independent

of z. More precisely:

– For the walks with a group of order 4, ω2/ω3 = 2;

– For the walks with a group of order 6 and such that the covariance is negative (resp. positive),

ω2/ω3 = 3 (resp. 3/2);

– For the walks with a group of order 8 and a negative (resp. positive) covariance, ω2/ω3 = 4
(resp. 4/3).

In the sequel, we note ω2/ω3 = k/�; then, 2k is the order of the group. Since
kω3 = �ω2, we obviously always have

rx(ω + �ω2) − rx(ω) =
∑

1≤m≤k

rx(ω + mω3) − rx

(
ω + (m − 1)ω3

)
.

It follows from (5.1) and from properties (3.5), (3.6) and (3.7) of the Galois automorphisms
that

rx(ω + �ω2) − rx(ω) =
∑

1≤m≤k

(xy)(ω + mω3) − (xy)
(
η̂(ω + mω3)

)
(6.2)

=
∑

1≤m≤k

(xy)
(
(̂η ξ̂ )mω

) − (xy)
(̂
ξ (̂η ξ̂ )m−1ω

)
)

=
∑

θ∈〈̂ξ ,̂η〉
(−1)θxy

(
θ(ω)

)
,

where (−1)θ is the signature of θ ; in other words, (−1)θ = (−1)�(θ), where �(θ) is the
length of θ , i.e., the smallest � such that we can write θ = θ1 ◦· · ·◦θ�, with θ1, . . . , θ� equal
to ξ̂ or η̂. The same identity with the opposite sign holds for ry. The quantity (6.2) is the
orbit-sum of the function xy under the group 〈̂ξ, η̂〉, and is denoted by O(ω). It satisfies the
property hereunder, which is proved in [2].

Lemma 9. — In the finite group case, the orbit-sum O(ω) is identically zero if and only if the

covariance (6.1) is positive.

We therefore come to the following corollary.

Corollary 10. — In the finite group case, the functions x �→ Q(x,0) and y �→ Q(0, y) have a

finite number of different branches if and only if the covariance (6.1) is positive.
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After the lifting to the universal covering done in Theorem 4, results of [1, 2]
concerning the nature of the functions x �→ Q(x,0) and y �→ Q(0, y) in all finite group
cases can now be established by very short reasonings. For the sake of completeness, we
show how this works.

Proposition 11 ([1, 2]). — For all models with a finite group and a positive covariance (6.1),

x �→ Q(x,0) and y �→ Q(0, y) are algebraic.

Proposition 12 ([2]). — For all models with a finite group and a negative or zero covariance

(6.1), x �→ Q(x,0) and y �→ Q(0, y) are holonomic and non-algebraic.

Proofs of both of these propositions involve the following lemma.

Lemma 13. — Let ℘ be a Weierstrass elliptic function with certain periods ω, ω̂.

(P1) We have

℘ ′(ω)2 = 4
[
℘(ω) − ℘(ω/2)

][
℘(ω) − ℘

([ω + ω̂]/2
)]

× [
℘(ω) − ℘(ω̂/2)

]
, ∀ω ∈ C.

(P2) Let p be some positive integer. The Weierstrass elliptic function with periods ω, ω̂/p can

be written in terms of ℘ as

℘(ω) +
p−1∑

�=1

[
℘(ω + �ω̂/p) − ℘(�ω̂/p)

]
, ∀ω ∈ C.

(P3) We have the addition theorem:

℘(ω + ω̃) = −℘(ω) − ℘(ω̃) + 1
4

[
℘ ′(ω) − ℘ ′(ω̃)

℘ (ω) − ℘(ω̃)

]2

, ∀ω, ω̃ ∈ C.

(P4) For any elliptic function f with periods ω, ω̂, there exist two rational functions R and S
such that

f (ω) = R
(
℘(ω)

) + ℘ ′(ω)S
(
℘(ω)

)
, ∀ω ∈ C.

(P5) There exists a function � which is ω-periodic and such that �(ω + ω̂) = �(ω) − 1,

∀ω ∈ C.

Proof. — Properties (P1), (P3) and (P4) are most classical, and can be found, e.g.,
in [10, 20]. For (P2) we refer to [20, page 456], and for (P5), see [6, Equation (4.3.7)].
Note that the function � in (P5) can be constructed via the zeta function of Weierstrass. �
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Proof of Proposition 11. — If the orbit-sum O(ω) is zero, Equation (6.2) implies that
rx(ω) is �ω2-periodic. In particular, the property (P4) of Lemma 13 entails that there exist
two rational functions R and S such that

rx(ω) = R
(
℘(ω;ω1, �ω2)

) + ℘ ′(ω;ω1, �ω2)S
(
℘(ω;ω1, �ω2)

)
.(6.3)

Further, the property (P2) together with the addition formula (P3) of Lemma 13 gives
that ℘(ω;ω1, �ω2) is an algebraic function of ℘(ω)—we recall that ℘(ω) denotes the
Weierstrass function ℘(ω;ω1,ω2). Due to Lemma 13(P1), ℘ ′(ω) is an algebraic function
of ℘(ω) too, so that ℘ ′(ω;ω1, �ω2) is also an algebraic function of ℘(ω). Thanks to (6.3),
we get that rx(ω) is algebraic in ℘(ω). Since ℘(ω) is a rational function of x(ω), see
(3.3), we finally obtain that rx(ω) is algebraic in x(ω). Then qx(ω) = rx(ω)/K(x(ω),0) is
algebraic in x(ω), and so is qy(ω) in y(ω). �

Proof of Proposition 12. — In this proof we have � = 1, see Lemma 8. Thanks to
Lemma 13(P5), there exists a function � which is ω1-periodic and such that �(ω+ω2) =
�(ω) − 1. In particular, transforming (6.2) we can write

rx(ω + ω2) + �(ω + ω2)O(ω + ω2) = rx(ω) + �(ω)O(ω).

This entails that rx(ω) + �(ω)O(ω) is elliptic with periods ω1,ω2. In particular, for the
same reasons as in the proof of Proposition 11, this is an algebraic function of x(ω).
The function O(ω) is obviously also algebraic in x(ω). As for the function �(ω), it is
proved in [6, page 71] that it is a non-algebraic function of x(ω). Moreover, it is shown
in [5, Lemma 2.1] that it is holonomic in x(ω). Hence rx(ω) is holonomic in x(ω) but not
algebraic. The same is true for qx(ω) = rx(ω)/K(x(ω),0) in x(ω) and for qy(ω) in y(ω). �

7. Infinite group case

It has been shown in [18, Part 6.2] that for all 51 models with infinite group, ω2/ω3

takes irrational values for infinitely many z. The next proposition states a more complete
result.

Proposition 14. — For all 51 walks with infinite group, the sets H = {z ∈]0,1/

|S|[: ω2/ω3 is rational} and ]0,1/|S|[\H = {z ∈]0,1/|S|[: ω2/ω3 is irrational} are dense

in ]0,1/|S|[.
Proof. — The function ω2/ω3 is clearly real continuous function on ]0,1/|S|[. In

fact, it has been noticed in [18, Part 6.2] that the function ω2/ω3 is expandable in power
series in a neighborhood of any point of the interval ]0,1/|S|[. Thus it suffices to find
just one segment within ]0,1/|S|[ where this function is not constant.
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Proposition 25 below gives the asymptotic of ω2/ω3 as z → 0: for any of 51 models
there exist some rational L > 0 and some L̃ 
= 0 such that as z > 0 goes to 0,

ω2/ω3 = L + L̃/ ln z + O
(
(1/ ln z)2

)
.

This immediately implies that this function is not constant on a small enough interval in
a right neighborhood of 0 and concludes the proof.

Note however that there is another way to conclude the proof that does not need
the full power of Proposition 25: it is enough to show (as done in the proof of Proposi-
tion 25) that ω2/ω3 converges to a rational positive constant L as z → 0 for all 51 models.
Indeed, then, since ω2/ω3 necessarily takes irrational values for some z ∈]0,1/|S|[ (see
[18, Part 6.2]), there exists an interval within ]0,1/|S|[ where the ratio ω2/ω3 is not
constant. �

In Subsections 7.1, 7.2 and 7.3 we thoroughly analyze the branches of x �→ Q(x,0)

and y �→ Q(0, y) for z such that ω2/ω3 is irrational, and we prove in particular that their
set of poles is infinite and dense on the curves given on Figure 11, see Theorem 17. Then
the following corollary is immediate.

Corollary 15. — Let H = {z ∈]0,1/|S|[: ω2/ω3 is rational} and ]0,1/|S|[\H = {z ∈
]0,1/|S|[: ω2/ω3 is irrational}.

(i) For all z ∈ H, x �→ Q(x,0) and y �→ Q(0, y) are holonomic;

(ii) For all z ∈ ]0,1/|S|[\H, x �→ Q(x,0) and y �→ Q(0, y) are non-holonomic.

Proof. — The statement (i) follows from Theorem 7, and (ii) comes from Theo-
rem 17(iii) below as explained in the Introduction. �

Remark 16. — It follows from Remark 6 that H can be characterized as the set
of z ∈]0,1/|S|[ such that the group 〈ξ, η〉 restricted to the curve {(x, y) ∈ (C ∪ {∞})2 :
K(x, y; z) = 0} is finite. Then methods developed in [6, Chapter 4] specifically for the
finite group case should be efficient for further analysis of x �→ Q(x,0) and y �→ Q(0, y)

for any fixed z ∈ H.

The analysis of the poles being rather technical, we start first with an informal
study.

7.1. Poles of the set of branches of x �→ Q(x,0) and y �→ Q( y,0) for irrational ω2/ω3:

an informal study. — Let us fix z ∈]0,1/|S|[ such that ω2/ω3 is irrational. We first infor-
mally explain why the set of poles of all branches of x �→ Q(x,0) and y �→ Q(0, y) could
be dense on certain curves in this case. We shall denote by �ω and �ω the real and
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imaginary parts of ω ∈ C, respectively. Let �x and �y be the parallelograms defined by

�x = M0,0 ∪ M0,1 = ω1[0,1[+ω2[0,1[,
�y = N0,0 ∪ N0,1 = ω3/2 + ω1[0,1[+ω2]0,1],(7.1)

with notations (5.9) and (5.11). Function rx(ω) (resp. ry(ω)) on �x (resp. �y) defines the
first (main) branch of x �→ Q(x,0) (resp. y �→ Q(0, y)) twice via (5.10) (resp. (5.12)).

Denote by fy(ω) = x(ω)[y(−ω + 2ωx1) − y(ω)] the function used in the mero-
morphic continuation procedure (5.2). Assume that at some ω0 ∈ �y, ry(ω0) 
= ∞ and
fy(ω0) = ∞. Further, suppose that

�ω ∈ �y : �ω = �ω0, fy(ω) = ∞.(7.2)

By (5.2), for any n ≥ 1 we have

ry(ω0 + nω3) = ry(ω0) + fy(ω0) +
n−1∑

k=1

fy(ω0 + kω3).(7.3)

We have ry(ω0) + fy(ω0) = ∞ by our assumptions. If ω2/ω3 is irrational, then for any
k ≥ 1 there is no p ∈ Z such that ω0 + kω3 = ω0 + pω2. Function fy being ω2-periodic, it
follows from this fact and assumption (7.2) that fy(ω0 + kω3) 
= ∞ for any k ≥ 1. Hence
by (7.3), ry(ω0 + nω3) = ∞ for all n ≥ 1. Due to irrationality of ω2/ω3, for any n ≥ 1 there
exists a unique ωn(ω0) ∈ �y and p ∈ Z such that ω0 + nω3 = ωn(ω0) + pω2, and the set
{ωn(ω0)}n≥1 is dense on the curve

Iy(ω0) = y
({ω : �ω = �ω0, ω ∈ �y}

) ⊂ C ∪ {∞}.(7.4)

By definition (5.12), the set of poles of all branches of y �→ K(0, y)Q(0, y) is dense on the
curve Iy(ω0). The number of zeros of y �→ K(0, y) being at most two, the same conclusion
holds true for y �→ Q(0, y).

Let us now identify the points ω0 in �y where fy(ω0) is infinite. They are (at
most) six such points a1, a2, a3, a4, b1, b2 ∈ �y, which correspond to the following pairs
(x(ω0), y(ω0)):

a1 = (
x�,∞)

, a4 = (
x�, y�

)
, a2 = (

x�,∞)
, a3 = (

x�, y�)
,

b1 = (∞, y◦), b2 = (∞, y•).
(7.5)
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Here by (2.4) and (2.5)

x� = lim
y→∞

−̃b( y) + [̃b( y)2 − 4̃a( y)̃c( y)]1/2

2̃a( y)
,

x� = lim
y→∞

−̃b( y) − [̃b( y)2 − 4̃a( y)̃c( y)]1/2

2̃a( y)
,

y� = lim
x→x�

−b(x) + [b(x)2 − 4a(x)c(x)]1/2

2a(x)
,

y� = lim
x→x�

−b(x) + [b(x)2 − 4a(x)c(x)]1/2

2a(x)
,

y◦ = lim
x→∞

−b(x) + [b(x)2 − 4a(x)c(x)]1/2

2a(x)
,

y• = lim
x→∞

−b(x) − [b(x)2 − 4a(x)c(x)]1/2

2a(x)
.

where a, b, c, ã, b̃, c̃ are introduced in (2.1).
For most of 51 models of walks, assumption (7.2) holds true for none of these points,

so that the previous reasoning does not work: some poles of fy could be compensated in the
sum (7.3). Furthermore, it may happen for some of these points that not only fy(ω0) = ∞
but also ry(ω0) = ∞, and consequently fy(ω) + ry(ω) may have no pole at ω = ω0. For
these reasons we need to inspect more closely the location of these six points for each of
the 51 models and their contribution to the set of poles via (7.3).

7.2. Functions x �→ Q(x,0) and y �→ Q(0, y) for irrational ω2/ω3. — In addition to
the notation (7.4), define the curve

Ix(ω0) = x
({ω : �ω = �ω0, ω ∈ �x}

) ⊂ C ∪ {∞}.(7.6)

We now formulate the main theorem of this section.

Theorem 17. — For all 51 non-singular walks with infinite group (1.3) given on Figure 17

and any z such that ω2/ω3 is irrational, the following statements hold.

(i) The only singularities on C of the first branch of x �→ Q(x,0) (resp. y �→ Q(0, y)) are

the branch points x3 and x4 (resp. y3 and y4).

(ii) Each branch of x �→ Q(x,0) (resp. y �→ Q(0, y)) is meromorphic on C with a finite

number of poles.

(iii) The set of poles on C of all branches of x �→ Q(x,0) (resp. y �→ Q(0, y)) is infinite.

With the notations (7.6), (7.4) above and points a1, b1 defined in (7.5), it is dense on the

following curves (see Figure 11):



94 I. KURKOVA, K. RASCHEL

FIG. 11. — For walks pictured on Figure 17, curves where poles of the set of branches of x �→ Q(x,0) and y �→ Q(0, y) are
dense

(iii.a) For the walks of Subcase I.A in Figure 17: Ix(a1) and Ix(b1) for x �→ Q(x,0);

Iy(a1) and Iy(b1) for y �→ Q(0, y).

(iii.b) For the walks of Subcases I.B and I.C in Figure 17: Ix(a1) and R\]x1, x4[ for

x �→ Q(x,0); Iy(a1) and [y4, y1] for y �→ Q(0, y).
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(iii.c) For the walks of Subcase II.A in Figure 17: Ix(b1) and [x4, x1] for x �→ Q(x,0);

Iy(b1) and R\]y1, y4[ for y �→ Q(0, y).

(iii.d) For the walks of Subcases II.B, II.C, II.D and Case III in Figure 17: R\]x1, x4[
for x �→ Q(x,0); R\]y1, y4[ for y �→ Q(0, y).

(iv) Poles of branches of x �→ Q(x,0) and y �→ Q(0, y) out of these curves may be only at

zeros of K(x,0) and K(0, y), respectively.

Before giving the proof of Theorem 17, we need to introduce some additional tools.
If the value of ω2/ω3 is irrational, for any ω0 ∈ C and any n ∈ Z+, there exists a unique
ωy

n(ω0) ∈ �y (resp. ωx
n(ω0) ∈ �x) as well as a unique number py ∈ Z (resp. px ∈ Z) such

that ω0 + nω3 = pyω2 +ωy
n(ω0) (resp. ω0 + nω3 = pxω2 +ωx

n(ω0)). With these notations we
can state the following lemma.

Lemma 18. — Let z be such that ω2/ω3 is irrational.

(a) For all n 
= m, we have ωx
n(ω0) 
= ωx

m(ω0) and ωy
n(ω0) 
= ωy

m(ω0).

(b) The set {ωx
n(ω0)}n∈Z+ (resp. {ωy

n(ω0)}n∈Z+ ) is dense on the segment {ω ∈ �x : �ω =
�ω0} (resp. {ω ∈ �y : �ω = �ω0}).

Proof. — Both (a) and (b) are direct consequences of the irrationality of ω2/ω3. �

In the next definition, we introduce a partial order in �y.

Definition 19. — For any ω,ω′ ∈ �y, we write ω � ω′ if for some n ∈ Z+ and some p ∈ Z,

ω + nω3 = ω′ + pω2.

If ω � ω′ (and if ω2/ω3 is irrational), both n and p are unique and sometimes we shall
write ω �n ω′. In particular, for any ω ∈ �y, we have ω � ω, since ω �0 ω.

Definition 20. — If either ω � ω′ or ω � ω′, we say that ω and ω′ are ordered, and we

write ω ∼ ω′.

Let us denote by fx and fy the (meromorphic) functions used in the meromor-
phic continuation procedures (5.1) and (5.2), namely, by using (3.5):

fx(ω) = y(ω)
[
x(̂ηω) − x(ω)

]
, fy(ω) = x(ω)

[
y(̂ξω) − y(ω)

]
.

The following lemma will be the key tool for the proof of Theorem 17.

Lemma 21. — Let z be such that ω2/ω3 is irrational; let ω0 ∈ �y be such that ry(ω0) 
= ∞,

and let

A(ω0) = {
ω ∈ �y : �ω = �ω0, fy(ω) = ∞}

.

Assume that ω0 ∈ A(ω0) and that for some ω1, . . . ,ωk ∈ A(ω0):
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(A) ω0 �n1 ω1 �n2 · · · �nk
ωk ;

(B) limω→ω0{fy(ω) + fy(ω + n1ω3) + fy(ω + n2ω3) + · · · + fy(ω + nkωk)} = ∞;

(C) there is no other ω ∈ A(ω0) such that ω0 � ω.

Then the set of poles of all branches of x �→ Q(x,0) (resp. y �→ Q(0, y)) is dense on the curve Ix(ω0)

(resp. Iy(ω0)) defined in (7.6) (resp. (7.4)).

Proof. — By Equation (5.2) of Theorem 4, we have, for any n ∈ Z+ and any ω ∈ �y,

ry(ω + nω3) = ry(ω) + fy(ω) + fy(ω + ω3) + fy(ω + 2ω3) + · · ·(7.7)

+ fy
(
ω0 + (n − 1)ω3

)
.

Let ω0 be as in the statement of Lemma 21. Due to assumption (C), Lemma 18(a) and
the ω2-periodicity of fy, the set {ω0 + nω3}n>n1+···+nk

does not contain any point ω where
fy(ω) = ∞. Further, by the assumptions (A) and (C), Lemma 18(a) and also by the ω2-
periodicity of fy, the set {ω0 + nω3}0≤n≤n1+···+nk

contains exactly k + 1 poles of fy that are
ω0,ω0 +n1ω3, . . . ,ω0 +nkω3. Then, by (7.7), assumption (B) and the fact that ry(ω0) 
= ∞,
we reach the conclusion that for any n > n1 +· · ·+nk , the point ω0 +nω3 is a pole of ry(ω).

Due to Equation (5.3), any ω pole of ry such that x(ω)y(ω) 
= ∞ is also a pole
of rx. Define now B, the set of (at most twelve) points in �y where either x(ω) = ∞,
y(ω) = ∞, K(x(ω),0) = 0 or K(0, y(ω)) = 0. Introduce also M = max{m ≥ 0 : ω0 �m

ω for some ω ∈ B}—with the usual convention M = −∞ if ω0 � ω for none ω ∈ B. If
n > max(M, n1 +· · ·+ nk), the points ω0 + nω3 are poles of rx as well, and both K(x(ω0 +
nω3),0) and K(0, y(ω0 + nω3)) are non-zero. By Lemma 18(b) and definitions (5.10) and
(5.12), Lemma 21 follows. �

We are now ready to give the proof of Theorem 17.

Proof of Theorem 17. — Functions fy(ω) and y(ω) being ω2-periodic, it follows that
both of them have no pole at any ω with 0 ≤ �ω < ω1 and �ω /∈ {�a1,�a2,�a3,�a4,

�b1,�b2}. Then, by (5.2),

∀ω ∈
∞⋃

k=0

Nk,0 with �ω 
= {�a1,�a2,�a3,�a4,�b1,�b2}, ry(ω) 
= ∞.(7.8)

Function x(ω) being ω2-periodic, it has no pole at any ω such that 0 ≤ �ω < ω1 and
�ω /∈ {�b1,�b2}. Then Equation (5.3) and the fact that

⋃∞
k=1 Mk,0 ⊂ ⋃∞

k=0 Nk,0 imply
that

∀ω ∈
∞⋃

k=1

Mk,0 with �ω 
= {�a1,�a2,�a3,�a4,�b1,�b2}, rx(ω) 
= ∞.(7.9)

In order to prove Theorem 17(i), we shall prove the following proposition.
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FIG. 12. — Location of a1, a2, a3, a4, b1, b2 if y4 < 0 and x4 < 0, i.e., Subcase I.A

Proposition 22. — For all 51 models, for any ω ∈ M1,0 (resp. ω ∈ N1,0) with x(ω) 
= ∞
(resp. y(ω) 
= ∞) and �ω ∈ {�a1,�a2,�a3,�a4,�b1,�b2}, we have rx(ω) 
= ∞ (resp.

ry(ω) 
= ∞).

The proof of this proposition is postponed to the next subsection. By this propo-
sition, (7.8) and (7.9), the only singularities of the first branches of K(x,0)Q(x,0) (resp.
K(0, y)Q(0, y)) may be only among the branch points x1, x2, x3, x4 (resp. y1, y2, y3, y4). Let
us recall that the function x �→ Q(x,0) is initially defined as a series

∑
i,n≥0 q(i,0; n)xizn.

The elementary estimate
∑

i≥0 q(i,0; n) ≤ |S|n implies that for any z ∈]0,1/|S|[ and
x ∈ C with |x| ≤ 1 this series is absolutely is convergent. Since |x1| < 1, |x2| < 1, and since
also K(x,0) is a polynomial with (at most two) roots that are smaller or equal to 1 by ab-
solute value, the only singularities of the first branch of x �→ Q(x,0) are the branch points
x3 and x4, that are out of the unit disc. By the same arguments the analogous statement
holds true for y �→ Q(0, y). This finishes the proof of Theorem 17(i).

Since for any p ∈ Z+, there exist only finitely many ω ∈ ⋃p

k=1 Mk,0 (resp. ω ∈⋃p

�=1 N0,�) where fx(ω) = ∞ (resp. fy(ω) = ∞), Theorem 17(ii) immediately follows from
the meromorphic continuation procedure of rx and ry done in Section 5, namely Equa-
tions (5.1) and (5.2) as well as the definitions (5.10) and (5.12).

The following proposition proves Theorem 17(iii).

Proposition 23. — The poles of x �→ Q(x,0) (resp. y �→ Q(0, y)) are dense on the six curves

Ix(ω0) (resp. Iy(ω0)) with ω0 ∈ {a1, a2, a3, a4, b1, b2}. For any of 51 models, the set of these curves

coincide with the one claimed in Theorem 17(iii).

The proof of this proposition is postponed to the next subsection as well, it will be
based on Lemma 21 with ω0 appropriately chosen among a1, a2, a3, a4, b1, b2.

The last statement (iv) of the theorem follows immediately from (7.8) and (7.9),
Proposition 23 and Definitions (5.10) and (5.12). �

7.3. Proof of Propositions 22 and 23. — To start with the proofs of Propositions 22
and 23, we need to study closer the location of points (7.5) a1, a2, a3, a4, b1, b2 on �y. It
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depends heavily on the signs of x4 and y4, see Figures 12, 13, 14, 15 and 16. Let us recall
that 0 < x3 < ∞ and 0 < y3 < ∞, see Section 2.

If y4 < 0 (resp. x4 < 0), the point y = ∞ (resp. x = ∞) obviously belongs to the real
cycle ]y3,∞[∪{∞}∪]∞, y4[ (resp. ]x3,∞[∪{∞}∪]∞, x4[) of the complex sphere S. By
construction of the Riemann surface T and of its universal covering, the points a1, a2

(resp. b1, b2) then lie on the open interval {ω : ω ∈ Ly3
y4

+ ω2, 0 < �ω < ω1} (resp. {ω :
ω ∈ Lx3

x4
+ω2, 0 < �ω < ω1}). These points are symmetric w.r.t. the center of the interval,

namely ω1/2 +ω2 +ω3/2 (resp. ω1/2 +ω2). The points ω corresponding to a3 and a4 are
on the open interval {ω : ω ∈ Ly3

y4
+ ω2 − ω3, 0 < �ω < ω1} and are symmetric w.r.t. the

center ω1/2 + ω2 − ω3/2 as well. Furthermore, a4 + ω3 = a2 and a3 + ω3 = a1, so that
a4 �1 a2 and a3 �1 a1, see Figure 12. Finally, we have �a4 = �a2 
= �a1 = �3, hence for
any a ∈ {a2, a4} and any a′ ∈ {a1, a3}, a � a′ (in the sense of Definition 20).

If y4 > 0 or y4 = ∞ (resp. x4 > 0 or x4 = ∞), the point y = ∞ (resp. x = ∞) is
on ]y4,∞]∪{∞}∪]∞, y1[ (resp. ]x4,∞]∪{∞}∪]∞, x1[). Accordingly, the points a1, a2

(resp. b1, b2) and also a3, a4 are on the segment ]ω3/2,ω2 + ω3/2].Their location on this
segment will be specified latter.

Therefore, Propositions 22 and 23 must be proved separately for eight subclasses
of 51 models according to the signs of x4 and y4: these are those of the walks pictured on
Figure 17, Subcases I.A, I.B, I.C, II.A, II.B, II.C, II.D and Case III.

The following remark gives a geometric interpretation of this classification.

Remark 24. — Let 1(i,j) be 1 if (i, j) ∈ S , otherwise 0. Then x4 > 0 (resp. < 0, = ∞)
if and only if 12

(1,0) − 41(1,1)1(1,−1) > 0 (resp. < 0, = 0), see Equation (2.2). A symmetric
statement holds for y4.

As an example, Remark 24 implies that x4 < 0 if and only if (1,1) ∈ S and
(1,−1) ∈ S .

Case I: y4 < 0, Subcase I.A: x4 < 0. — This assumption yields x� 
= x�; x�, x� 
= ∞;
y 
= y•; y◦, y• 
= ∞; y�, y� 
= ∞. The location of the six points a1, a2, a3, a4, b1, b2 is already
described above and is pictured on Figure 12.

We first show that for all ω ∈ {ω : �ω = �a3, ωy1 ≤ �ω < ωy4 + ω2}, we have
ry(ω) 
= ∞. The proof consists in three steps.

Step 1. — Let us first prove that ry(a3) 
= ∞ and ry(a4) 
= ∞. If |y�| < 1, then
a3 ∈ �y (see Section 4 for the definition of �y) and it is immediate from Theorem 3 that
ry(a3) 
= ∞. If |y�| ≥ 1, then by Lemma 5 there exists n ∈ Z+ such that a3 − nω3 ∈ �, and
by Equation (5.2) of Theorem 4,

ry(a3) = ry(a3 − nω3) +
1∑

k=n

fy(a3 − kω3).(7.10)
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Introducing, for any ω0, the set

O�(ω0) = {ω0 − ω3,ω0 − 2ω3, . . . ,ω0 − nω0ω3},
nω0 = inf{� ≥ 0 : ω0 − �ω3 ∈ �},(7.11)

we can rewrite (7.10) as

ry(a3) = ry(a3 − na3ω3) +
∑

ω∈O�(a3)

fy(ω).(7.12)

In (7.12), the quantity ry(a3 − na3ω3) is defined thanks to Theorem 3. It may be infinite,
but only if y(a3 − na3ω3) = ∞. In this case we must have a3 − na3ω3 = a1 − ω2. But since
a3 + ω3 = a1, we then have (na3 + 1)ω3 = ω2 which is impossible, due to irrationality of
ω2/ω3. Hence ry(a3 − na3ω3) 
= ∞. Further, we immediately have (see indeed Figure 12)
that a2, a4, a2 − ω2, a4 − ω2 /∈ O�(a3). Moreover, since either �b1 
= �a3, or �b1 = �a3

but then a3 + ω3/2 = b1 (see again Figure 12), we also have that b1, b2, b1 − ω2, b2 − ω2 /∈
O�(a3). Finally a1 = a3 +ω3 /∈ O�(a3) and a1 −ω2 = a3 +ω3 −ω2 /∈ O�(a3), since ω2/ω3

is irrational. Thus fy(a3 − kω3) 
= ∞ for any k ∈ {1, . . . , na3}. Accordingly, ry(a3) 
= ∞ and
by the same arguments, ry(a4) 
= ∞.

Step 2. — We now show that ry(a1 − ω2) + fy(a1 − ω2) 
= ∞ and ry(a2 − ω2) +
fy(a2 −ω2) 
= ∞. By Equation (5.3), ry(a1 −ω2) = −rx(a1 −ω2)+K(0,0)Q(0,0)+ x(a1 −
ω2)y(a1 − ω2) and fy(a1 − ω2) = x(a1 − ω2)[y(a4) − y(a1 − ω2)]; hence

ry(a1 − ω2) + fy(a1 − ω2) = −rx(a1 − ω2) + K(0,0)Q(0,0)(7.13)

+ x(a1 − ω2)y(a4).

It follows from Equation (5.3) and from the first step that rx(a4) 
= ∞, since x(a4)y(a4) =
x�y� 
= ∞. Then, by (3.5) and (5.4) we get that rx(a1 − ω2) = rx(̂ξa4) = rx(a4) 
= ∞.
Furthermore, x(a1 − ω2)y(a4) = x�y� 
= ∞. Finally, thanks to (7.13), ry(a1 − ω2) +
fy(a1 − ω2) 
= ∞ and by the same arguments, ry(a2 − ω2) + fy(a2 − ω2) 
= ∞.

Step 3. — Let us now take any ω0 in {ω : �ω = �a3, ωy1 ≤ �ω < ωy4 + ω2}. If
ω0 ∈ �, then ω0 ∈ �y. Indeed, it is proved in Section 4 that the domain �y (resp. �x),
which is bounded by 
̂0

y and 
̂1
y (resp. 
̂0

x and 
̂1
x ), is centered around Ly2

y1
(resp. Lx2

x1
).

Furthermore, 
̂0
y ∈ �x and 
̂1

y /∈ �x (resp. 
̂0
x ∈ �y and 
̂1

x /∈ �y). It follows that for any
ω0 ∈ � \ �y, �ω0 < ωy1 . Then, by Theorem 3, ry(ω0) 
= ∞. If ω0 /∈ �, with (7.11) and
(7.12) we have

ry(ω0) = ry(ω0 − nω0ω3) +
∑

ω∈O�(ω0)

fy(ω).
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For the same reasons as in the first step, we have that a2, a4, a2 − ω2, a4 − ω2 /∈ O�(ω0).
If �ω0 < �a3, for obvious reasons O�(ω0) cannot contain a3. If �a3 ≤ �ω0 < ωy4 + ω2,
it can neither contain a3, since ωy4 + ω2 − �a3 = ω3, and hence �ω0 − ω3 < �a3. If
�b1 
= �a3, or �b1 = �a3 and �ω0 < �b1, it cannot contain b1. If �b1 = �a3 and �b1 ≤
�ω0 < ωy4 + ω2, then �ω0 − �b1 ≤ ωy4 + ω2 − �b1 = ω3/2 < ω3, and b1 /∈ O�(ω0).

If a1 − ω2 /∈ O�(ω0), then we have ry(ω0 − nω0ω3) 
= ∞ and fy(ω0 − kω3) 
= ∞ for
all k ∈ {1, . . . , nω0}, so that ry(ω0) 
= ∞ by (7.12).

If a1 − ω2 ∈ O�(ω0), then for some j ∈ {1, . . . nω0}, we have ω0 − jω3 = a1 − ω2.
Then ry(ω0 − nω0ω3) + ∑ j+1

k=n fy(ω0 − kω3) = ry(a1 − ω2) and thus by (7.12),

ry(ω0) = ry(a1 − ω2) + fy(a1 − ω2) +
1∑

k=j−1

fy(ω0 − kω3).

The first term here is finite by the second step and fy(ω0 − kω3) 
= ∞ for k ∈ {1, . . . , j −1}
by all properties said above, so that ry(ω0) 
= ∞.

So far we have proved that for all ω ∈ {ω : �ω = �a3, ωy1 ≤ �ω < ωy4 + ω2},
ry(ω) 
= ∞. In the same way, we obtain that ry(ω) 
= ∞ for ω ∈ {ω : �ω = �a4, ωy1 ≤
�ω < ωy4 + ω2}.

Since by (3.5),

η̂{ω : �ω = �a3, ωy1 ≤ �ω < ωy4 + ω2}
= {ω : �ω = �a4, ωy4 < �ω ≤ ωy1},

η̂{ω : �ω = �a4, ωy1 ≤ �ω < ωy4 + ω2}
= {ω : �ω = �a3, ωy4 < �ω ≤ ωy1},

Equation (5.4) implies that ry(ω) 
= ∞ on the segments {ω ∈ �y : �ω = a3, a4}, except for
their ends a1, a2. The segments {ω : �ω = a3, a4, ωx1 ≤ �ω ≤ ωx4 + ω2} do not contain
any point where y(ω) = ∞. It follows from Equation (5.3) that rx(ω) 
= ∞ on these seg-
ments except for points where x(ω) = ∞ if they exist. This last fact happens if and only
if �b1 = �a3 and only at the ends b1, b2 of the segments.

If �b1 
= �a3, we can show exactly in the same way that ry(ω) 
= ∞ on the two seg-
ments {ω ∈ �y : �ω = b1, b2} and that rx(ω) 
= ∞ on the segments {ω : �ω = b1, b2, ωx1 ≤
�ω ≤ ωx4 + ω2}, except for their ends b1, b2. This concludes the proof of Proposition 22.

We proceed with the proof of Proposition 23. Let us verify the assumptions of
Lemma 21 for ω0 = a3, a4, b1, b2. We have proved that ry(a3), ry(a4), ry(b1), ry(b2) 
= ∞,
a3 �1 a1, a4 �1 a2 and that the pairs {a1, a3} and {a2, a4} are not ordered. Let us now show
that for any k ∈ {3,4} and � ∈ {1,2}, it is impossible to have ak ∼ b�. If �b� 
= �a3,�a4, this
is obvious. If �b� = �a3, then it is enough to note that b� − a3 = ω3/2 and a1 − b1 = ω3/2
(see Figure 12). From the irrationality of ω2/ω3, it follows that b� � a1, a3 and in the same
way b� � a2, a4. Then there is no other ω ∈ �y except for a1 (resp. a2) such that a3 � ω
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(resp. a4 � ω) and fy(ω) = ∞. There is no ω ∈ �y such that b� � ω and fy(ω) = ∞,
� = 1,2. Hence, Lemma 21 could be applied to any of four points ω0 = a3, a4, b1, b2

if the assumption (B) of this lemma is satisfied for these points. It is then immedi-
ate that limω→b�

fy(ω) = limω→b�
x(ω)[y(̂ξω) − y(ω)] = ∞, � ∈ {1,2}, since x(ω) → ∞

and the other term converges to ±[y◦ − y•] 
= 0. Let us verify that limω→a3{fy(ω) +
fy(ω + ω3)} = ∞. We have

lim
ω→a3

{
fy(ω) + fy(ω + ω3)

} = lim
ω→a3

{
x(ω)

[
y(̂ξω) − y(ω)

]

+ x(̂η ξ̂ω)
[
y(̂ξ η̂ ξ̂ω) − y(̂η ξ̂ω)

]}

= lim
ω→a3

{
x(̂η ξ̂ω)y(̂ξ η̂ ξ̂ω) − x(ω)y(ω)

}

+ lim
ω→a3

{
x(ω)y(̂ξω) − x(̂η ξ̂ω)y(̂η ξ̂ω)

}
.

The first term above converges to x�y� − x�y�. By (3.7) the second term equals the
limit of the product y(̂ξω)[x(̂ξω) − x(̂η ξ̂ω)]. If ω → a3, then ξ̂ω → a2 − ω2 so that
the first term in the product converges to y(a2 − ω2) = y(a2) = ∞. The second term
of this product converges to x(a2 − ω2) − x(a1) = x� − x� which is different from 0
as x� 
= x�. Then assumption (B) is satisfied for ω0 = a3 and in the same way for
ω0 = a4. Lemma 21 applies to any of the four points ω0 = a3, a4, b1, b2. But by (3.7),
Ix(a3) = Ix(a4) = Ix(a1) = Ix(a2), Iy(a3) = Iy(a4) = Iy(a1) = Iy(a2), Ix(b1) = Ix(b2),
Iy(b1) = Iy(b2) so that poles of x �→ Q(x,0) are dense on the curves Ix(a1) and Ix(b1)

and those of y �→ Q(0, y) are dense on the curves Iy(a1) and Iy(b1). Proposition 23 is
proved.

Case I: y4 < 0, Subcase I.B: x4 = ∞. — This assumption implies that x� 
= x�;
x�, x� 
= ∞; y◦ = y• 
= ∞; y�, y� 
= ∞.

The points a1, a2, a3, a4 are located as in the previous case, see Figure 12. Conse-
quently we have the following facts: ry(ω) 
= ∞ on the segments {ω ∈ �y : �ω = a3, a4},
except for their ends ω = a1, a2; rx(ω) 
= ∞ on the segments {ω : �ω = a3, a4, ωx1 ≤ �ω ≤
ωx4 + ω2}. Lemma 21 applies to ω0 = a3, a4 as in the previous case, as x� 
= x�. Then the
set of poles of all branches of x �→ Q(x,0) (resp. y �→ Q(0, y)) is dense on Ix(a1) (resp.
Iy(a1)) where Ix(a1) = Ix(a2) = Ix(a3) = Ix(a4) (resp. Iy(a1) = Iy(a2) = Iy(a3) = Iy(a4)).

Since x4 = ∞, we have that b1 = b2 = ωx4 + ω2. Take any ω0 with �ω0 = 0 such
that ωy1 ≤ �ω0 ≤ ωy4 + ω2. Then y(ω0) 
= ∞. Let us show that ry(ω0) 
= ∞. If ω0 ∈ �,
then by the same reasons as in Subcase I.A ω0 ∈ �y and ry(ω0) 
= ∞. If ω0 /∈ �, consider
the set O�(ω0) defined as in (7.11) and (7.12). Clearly b1 − ω2 = ωx4 /∈ O�(ω0). Since
b1 + ω3/2 = ωy4 + ω2, we have ω0 − ω3 ≤ ωy4 + ω2 − ω3 < b1 and then b1 /∈ O�(ω0).
Hence O�(ω0) does not contain any point where y(ω) or fy(ω) is infinite. Thus by (7.12),
ry(ω0) 
= ∞.
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FIG. 13. — Location of b1, b2 if x4 > 0, Subcases I.C and II.C

We have η̂{ω : �ω = 0, ωy1 ≤ �ω0 ≤ ωy4 +ω2} = {ω : �ω = ω1, ωy4 ≤ �ω0 ≤ ωy1}.
Then by (5.4) and (5.5), we get that ry(ω) 
= ∞ for all ω ∈ �y with �ω = 0. The segment
{ω : �ω = 0, ωx1 ≤ ω ≤ ωx4 + ω2} does not contain any point with y(ω) = ∞. By (5.3)
this gives rx(ω) 
= ∞ for all ω on this segment except for the points where x(ω) = ∞ (that
is only at ω = ωx4 + ω2 = b1), and this concludes the proof of Proposition 22.

We have proved in particular that ry(ω0) 
= ∞ for ω0 = b1. Furthermore, there is
no ω ∈ �y such that b1 � ω and fy(ω) = ∞. Finally

lim
ω→b1

fy(ω) = lim
ω→b1

x(ω)
[
y(̂ξω) − y(ω)

]
(7.14)

= lim
ω→b1

x(ω)
[b(x(ω))2 − 4a(x(ω))c(x(ω))]1/2

a(x(ω))
,

where x(ω) → ∞ as x → b1. For all models in Subcase I.B deg a(x) = 2, deg b(x) = 1
and deg c(x) = 1, so that (7.14) is of the order O(|x(ω)|1/2). Thus limω→b1 fy(ω) = ∞. By
Lemma 21 with ω0 = b1, the poles of x �→ Q(x,0) and those of y �→ Q(0, y) are dense on
Ix(b1) = Ix(b2) and Iy(b1) = Iy(b2), respectively. They are the intervals of the real line
claimed in Theorem 17(iii). Proposition 23 is proved.

Case I: y4 < 0, Subcase I.C: x4 > 0. — The statements and results about a1, a2, a3, a4

are the same as in Subcases I.A and I.B, see Figure 12 for their location.
We now locate b1, b2. By definition (see Section 2), the values y1, y2, y3, y4 are the

roots of

d̃( y) = (̃
b( y) − 2

[
ã( y)̃c( y)

]1/2)(̃
b( y) + 2

[
ã( y)̃c( y)

]1/2) = 0.

Hence, for two of these roots b̃( y) = −2[̃a( y)̃c( y)]1/2 and then X( y) ≥ 0 (see (2.4)), and for
the two others b̃( y) = 2[̃a( y)̃c( y)]1/2 and then X( y) ≤ 0. But X( y2) and X( y3) are on the
segment [x2, x3] ⊂ ]0,∞[. Thus X( y1) ≤ 0 and X( y4) ≤ 0. Since x(b1) = x(b1 −ω2) = ∞,
x4 = x(ωx4) > 0 and X( y4) = x(ωy4) < 0, it follows that b1 −ω2 ∈]ωx4,ωy4[, in such a way
that b1 ∈]ωx4 +ω2,ωy4 +ω2[. Also, b2 = ξ̂ (b1 −ω2)−ω1 = 2(ωx4 +ω2)− b1 is symmetric
to b1 w.r.t. ωx4 + ω2. Since x(ωy1) = X( y1) ≤ 0 and x(ωx4 + ω2) = x4 > 0, it follows that
ωy1 < b2 < ωx4 + ω2, see Figure 13.

Now we show that for any ω0 with �ω0 = 0 and ωy1 ≤ �ω0 ≤ ωy4 +ω2, ry(ω0) 
= ∞.
Note that y(ω0) 
= ∞. If ω0 ∈ �, by the same arguments as in Subcase I.A, ω0 ∈ �y and
ry(ω0) 
= ∞. If ω0 /∈ �, then consider O�(ω0) with the notation (7.11).

Note that b1 − ω2 /∈ �. For this, it is enough to prove that b1 − ω2 /∈ �x and that
b1 − ω2 /∈ �y. First, b1 − ω2 /∈ �x, since x(b1) = x(b1 − ω2) = ∞. Furthermore, �y is
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FIG. 14. — Location of a1, a2, a3, a4 if y4 > 0, (x4,Y(x4)) 
= (∞,∞), Subcases II.A, II.B and II.C

centered w.r.t. Ly2
y1

, and ωy4 /∈ �y (since |y4| > 1). Hence the point b1 −ω2 < ωy4 cannot be
in �y.

Since �∩{ω ∈ C : �ω = 0} is an open interval containing ωy1 , and since b1 −ω2 <

ωy1 ≤ ω0, it follows that b1 − ω2 < ω0 − nω0ω3 (see (7.11)), so that b1 − ω2 /∈ O�(ω0).
Obviously b2 −ω2 /∈ O�(ω0). Furthermore, since ωy4 +ω2 − b2 = ω3/2+ωx4 +ω2 − b2 <

ω3/2 + ω3/2 = ω3, it follows that ω0 − ω3 < b2 < b1 for any such ω0. Hence b1, b2 /∈
O�(ω0). Thus for any ω ∈ O�(ω0), y(ω) 
= ∞ and fy(ω) 
= ∞. By (7.12), ry(ω0) 
= ∞.
This implies, exactly as in Subcase I.B—by (5.4) and (5.5)—, that ry(ω) 
= ∞ for all ω ∈
�y such that �ω = 0. By (5.3) this gives rx(ω) 
= ∞ for all ω with �ω = 0 and ωx1 ≤ �ω ≤
ωx4 + ω2, except for points ω where x(ω) = ∞ (that happens for ω = b2 only), and this
concludes the proof of Proposition 22.

In particular, we proved that ry(b1) 
= ∞ and also ry(b2) 
= ∞. Since y◦ 
= y•, we
have limω→b1 fy(ω) = ∞ and also limω→b2 fy(ω) = ∞ by the same arguments as in Sub-
case I.A. If b1 and b2 are not ordered, Lemma 21 applies to both of these points. If b1 � b2

(resp. b2 � b1), then there is no ω ∈ �y such that ω 
= b2 (resp. ω 
= b1), fy(ω) = ∞ and
b2 � ω (resp. b1 � ω). Hence Lemma 21 applies to ω0 = b2 (resp. ω0 = b1). Thus the set
of poles of all branches of x �→ Q(x,0) (resp. y �→ Q(0, y)) is dense on the curves Ix(b2)

and Iy(b2) (resp. Ix(b1) and Iy(b1)). We conclude the proof of Proposition 23 with the
observation that Ix(b2) = Ix(b1), while Iy(b2) = Iy(b1) are intervals of the real line as
claimed in Theorem 17(iii).

Case II: y4 > 0, location of a1, a2, a3, a4. — We first exclude Subcase II.D where x4 =
∞ and Y(x4) = ∞, and we locate the points a1, a2, a3, a4. In this case we have x� 
= x�.
Note that x1, x2, x3, x4 are the roots of the equation

d(x) = (
b(x) − [

a(x)c(x)
]1/2)(

b(x) + [
a(x)c(x)

]1/2) = 0.

Hence for two of these roots b(x) = −2[a(x)c(x)]1/2 and then Y(x) ≥ 0 (see (2.5)), and
for two others b(x) = 2[a(x)c(x)]1/2 and then Y(x) ≤ 0. But Y(x2) and Y(x3) are on the
segment [y2, y3] ⊂ ]0,∞[. Hence Y(x1) ≤ 0 and Y(x4) ≤ 0. If in addition x4 = ∞, then
Y(x4) equals 0 or ∞; note also that if Y(x4) = ∞ then necessarily x4 = ∞. But the case
when Y(x4) = ∞ and x4 = ∞ is excluded from our consideration at this moment. It
follows that ∞ ∈ [y4,Y(x4)[, and in fact ∞ ∈]y4,Y(x4)[, since the case y4 = ∞ is excluded
from Case II.

It follows from the above considerations that a1 ∈]ωx4 + ω2,ωy4 + ω2[, see Fig-
ure 14. In particular, we have a1 −ω2 ∈]ωx4,ωy4[ and a2 = η̂a1 −ω1 = −(a1 −ω2)+2ωy4 .
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This means that a1 − ω2 and a2 are symmetric w.r.t. ωy4 . Furthermore a2 ∈]ωy4,ωy1[,
but since y4 > 0 and Y(x1) ≤ 0, we have a2 ∈]ωy4,ωx1[. We must put a3 = ξ̂a2 − ω1 =
−a2 + 2ωx1 , in such a way that the points a2 and a3 are symmetric w.r.t. ωx1 . Fi-
nally, a4 = ξ̂ (a1 − ω2) − ω1 = −(a1 − ω2) + 2ωx1 = a3 + a2 − (a1 − ω2). Note that
ωx4 + ω2 − a4 = a1 − ω2 − ωx4 > 0. Furthermore, a1 − a3 = ω3 and a2 + ω2 − a4 = ω3, so
that a3 � a1 and a4 � a2.

Case II: y4 > 0, Subcase II.A: x4 < 0. — In this case we have y◦ 
= y•; y◦, y• 
= ∞;
x�, x� 
= ∞; y�, y� 
= ∞. The points b1, b2 are located as in Subcase I.A, see Figure 12.
Further, we can show as in Subcase I.A that ry(ω) 
= ∞ on the segments {ω : �ω =
b1, b2, ωy1 ≤ �ω ≤ ωy4 + ω2}, and we deduce that rx(ω) 
= ∞ on {ω : �ω = b1, b2, ωx1 ≤
�ω ≤ ωx4 + ω2} except for their ends b1, b2. Consequently, the set of poles of all branches
of x �→ Q(x,0) (resp. y �→ Q(0, y)) is dense on the curve Ix(b1) = Ix(b2) (resp. Iy(b1) =
Iy(b2)), as claimed in Proposition 23.

Consider now rx(ω) and ry(ω) for ω with �ω = 0. See Figure 14 for the location of
the points a1, a2, a3, a4.

We first prove that for

ry(ω0) 
= ∞, ∀ω0 ∈ {ω : �ω = 0, ωy1 ≤ ω0 ≤ ωy4 + ω2} \ {a1}.(7.15)

The proof consists in three steps.

Step 1. — We prove that ry(a3) 
= ∞ and ry(a4) 
= ∞.
If a3 ∈ �, then necessarily ry(a3) 
= ∞, since x�, y� 
= ∞. Otherwise |x�|, |y�| ≥ 1,

and then a2 = ξ̂a3 − ω1 /∈ �. Since a2 < ωx1 < a3, ωx1 ∈ � and a2, a3 /∈ �, it follows that
any ω ∈ O�(a3) must be in ]a2, a3[, hence fy(ω) 
= ∞, x(ω) 
= ∞ and y(ω) 
= ∞. Thus by
(7.12), ry(a3) 
= ∞.

We now show that ry(a4) 
= ∞. Suppose first that a1 − ω2 ∈ �. Then, since
a1 − ω2 /∈ �y, we have a1 − ω2 ∈ �x, so that rx(a1 − ω2) 
= ∞ by Theorem 3. Then by
Equations (5.4) and (5.5), rx(a4) = rx(̂ξ (a1 −ω2)−ω1) = rx(a1) 
= ∞. Since x�, y� 
= ∞, we
also have ry(a4) 
= ∞ by (5.3). Assume now that a1 − ω2 /∈ �. Since a1 − ω2 < ωx1 < a4,
then a1 − ω2 /∈ O�(a4). Furthermore a2 /∈ O�(a4) as a4 + ω3 = a2 + ω2 and ω3/ω2 is
irrational. Finally a4 − a3 < a1 − a3 = ω3, so that a3 /∈ O�(a4). It follows that for any
ω ∈ O�(a4), we have fy(ω) 
= ∞ and y(ω) 
= ∞. Hence ry(a4) 
= ∞.

Step 2. — We prove that ry(a2)+ fy(a2) 
= ∞ and that ry(a1 −ω2)+ fy(a1 −ω2) 
= ∞.
By Equation (5.3)

ry(a2) + fy(a2) = −rx(a2) + K(0,0)Q(0,0) + x(a2)y(a2)(7.16)

+ x(a2)
[
y(̂ξa2) − y(a2)

]

= −rx(a2) + K(0,0)Q(0,0) + x(a2)y(̂ξa2).
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Since ry(a3) 
= ∞ and since x�, y� 
= ∞, it follows from Equation (5.3) that rx(a3) 
= ∞.
Then by (5.4) and (5.5), rx(a2) = rx(̂ξa3 − ω1) = rx(a3) 
= ∞. Since x(a2) = x� 
= ∞ and
y(̂ξa2) = y� 
= ∞, (7.16) is finite. By completely analogous arguments we obtain that
ry(a1 − ω2) + fy(a1 − ω2) 
= ∞.

Step 3. — Let us now show (7.15). If ω0 ∈ �, then by the same arguments as in
Subcase I.A ω0 ∈ �y and then ry(ω0) 
= ∞ by Theorem 3. Otherwise, consider O�(ω0)

defined in (7.11). Note that

ω /∈ O�(ω0), ∀ω ∈]ωx4 + ω2 − ω3/2,ωy4 + ω2],(7.17)

since in this case ω0 − ω3 < ω. In particular, a4 /∈ O�(ω0). Furthermore, a3 ∈ O�(ω0)

implies that ω0 = a3 +�ω3 for some � ≥ 1. But a3 +ω3 = a1 
= ω0 and a3 +�ω3 > ωy4 +ω2

for any � ≥ 2. Hence a3 /∈ O�(ω0). Since a2 − (a1 −ω2) < ω3, it is impossible that both a2

and a1 − ω2 belong to O�(ω0). If none of them belongs to O�(ω0), then y(ω) 
= ∞ and
fy(ω) 
= ∞ for any O�(ω0), and then ry(ω0) 
= ∞. Suppose, e.g., that a2 ∈ O�(ω0). Then
for some � ≥ 1, ω0 = a2 + �ω3, and by (7.12), ry(ω0) = ry(a2) + fy(a2) + ∑1

k=�−1 fy(ω0 −
kω3). But ry(a2)+ fy(a2) 
= ∞ by the second step, and obviously

∑1
k=�−1 f (ω0 − kω3) 
= ∞

by all facts said above, so that ry(ω0) 
= ∞. The reasoning is the same if a1 −ω2 ∈ O�(ω0).
This concludes the proof of (7.15).

Applying (5.4) and (5.5) exactly as in Subcase I.B, we now reach the conclusion
that ry(ω0) 
= ∞ for all ω0 
= a2 = η̂a1 with �ω0 = 0 and ωy4 ≤ �ω0 ≤ ωy1 as well. Next,
exactly as in Subcase I.B, thanks to (5.3), we derive that rx(ω) 
= ∞ for all ω0 such that
�ω = 0 and ωx1 ≤ �ω ≤ ωx4 + ω2 except possibly for points where x(ω) = ∞. But these
points are absent on this segment in this case. This concludes the proof of Proposition 22.

For the same reason as in Subcase I.A, the fact that x� 
= x� gives limω→a4{fy(ω) +
fy(ω+ω3)} = ∞ and limω→a3{fy(ω)+ fy(ω+ω3)} = ∞. Further, a3 �1 a1 and a4 �1 a2. If
in addition a3 � a4, then due to the fact that a3 + ω3 = a1 we have a3 �1 a1 � a4 �1 a2.
There is no point ω ∈ �y \ {a2} such that a4 � ω and fy(ω) = ∞. Lemma 21 applies to
ω0 = a4. If a4 � a3, then also a4 �1 a2 � a3 �1 a1 and this lemma applies to ω0 = a3. If
a3 � a4, Lemma 21 can be applied to both a3 and a4. Since Ix(a3) = Ix(a4) = Ix(a1) =
Ix(a2) = [x1, x4] and Iy(a3) = Iy(a4) = Iy(a1) = Iy(a2) = R\]y4, y1[, the set of poles of
x �→ Q(x,0) (resp. y �→ Q(0, y)) is dense on the announced intervals and Proposition 23
is proved.

Case II: y4 > 0, Subcase II.B: x4 > 0 and exactly one of y◦, y• is ∞. — Assume, e.g.,
that y◦ = ∞ and y• 
= ∞. Then x� = ∞; y� = y• 
= ∞; x� 
= x� = ∞; y� 
= ∞. It follows
that b1 = a1 and b2 = ξ̂b1 − ω1 − ω2 = a4, while a1, a2, a3, a4 are pictured as previously, in
Subcase II.A, see Figure 14.

We first derive (7.15). By the same reasoning as in Subcase II.A, we reach the
conclusion that ry(a3) 
= ∞. Let us note that in this case a1 −ω2 /∈ �, as x(a1 −ω2), y(a1 −
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ω2) = ∞. Next, we derive as in Subcase II.A that ry(a4) 
= ∞ and that ry(a2)+ fy(a2) 
= ∞,
since x�y� 
= ∞. Finally, again by the same arguments as in Subcase II.A, we conclude
that for any ω0 
= a1 with �ω0 = 0 and ωy1 ≤ �ω0 ≤ ωy4 + ω2, the orbit O�(ω0) does
not contain a3 and a4. The orbit can neither contain a1 − ω2, since a1 − ω2 /∈ � and
a1 −ω2 < ωy1 < ω0, where ωy1 ∈ �. Since ry(a2)+ fy(a2) 
= ∞, then as in Subcase II.A we
have ry(ω0) 
= ∞.

It follows from (5.4) and (5.5) that ry(ω0) 
= ∞ for any ω0 such that �ω0 = 0 and
ωy4 ≤ ω0 ≤ ωy4 + ω2, except for a1 and η̂a1 − ω1 = a2. By (5.3), rx(ω0) 
= ∞ for any ω0

such that �ω0 = 0 and ωx1 ≤ ω0 ≤ ωx4 + ω2, except for points ω0 where x(ω0) = ∞ (this
is ω0 = a4 in this case). This finishes the proof of Proposition 22 in this case.

Since x� 
= x�, the same reasoning as in Subcase I.A gives limω→a4{fy(ω) + fy(ω +
ω3)} = ∞ and limω→a3{fy(ω) + fy(ω + ω3)} = ∞. The rest of the proof of Proposition 23
via the use of Lemma 21 with ω0 = a3 if a4 � a3 or with ω0 = a4 if a3 � a4, or with
indifferent choice of a3 or a4 if a3 � a4, is the same as in Subcase II.A.

Case II: y4 > 0, Subcase II.C: x4 > 0 and y◦, y• 
= ∞, or x4 = ∞ and Y(x4) 
= ∞. — In
this case, we have y◦, y• 
= ∞; x�, x� 
= ∞; x� 
= x�, y�, y� 
= ∞.

The points a1, a2, a3, a4 are pictured as in Subcases II.A and II.B, see Figure 14,
while b1, b2 are pictured as in Subcase I.B (where b1 = b2 = ωx4+ω2 ) or I.C, see Figure 13.
They are such that b1 
= a1 and b2 
= a4. In particular, b1, b2 ∈]ωx4 +ω2 −ω3,ωx4 +ω2[ and
are symmetric w.r.t. ωx4 +ω2; b1 = b2 is in the middle of this interval if and only if x4 = ∞.
Hence for any ω0 with �ω0 = 0 and ωy1 ≤ �ω0 ≤ ωy4 +ω2, we have ω0 −ω3 < b2 < b1, so
that b1, b2 /∈ O�(ω0). Furthermore, by the same arguments as in Subcase I.C, b1 − ω2 /∈
O�(ω0). Hence (7.15) proved in Subcase II.A stays valid in this case and by (5.4) and
(5.5), ry(ω) 
= ∞ for all ω with �ω = 0 and ωy4 ≤ �ω ≤ ωy4 + ω2, except for ω = a1, a2.
By the identity (5.3), rx(ω) 
= ∞ for all ω with �ω = 0 and ωx1 ≤ �ω ≤ ωx4 + ω2, except
for points ω where x(ω) = ∞, namely ω = b2. This concludes the proof of Proposition 22
and proves in particular that ry(ω0) 
= ∞ for any ω0 ∈ {a3, a4, b1, b2}.

Using x� 
= x�, we verify as in Subcase I.A that limω→a4{fy(ω) + fy(ω + ω3)} = ∞
and limω→a3{fy(ω)+ fy(ω +ω3)} = ∞. If x4 > 0, since y◦ 
= y•, we verify as in Subcase I.A
that limω→b1 fy(ω) = ∞ and limω→b2 fy(ω) = ∞. If x4 = ∞, then b1 = b2 and we verify as
in Subcase I.B that limω→b1 fy(ω) = ∞. If a3, a4, b1, b2 are ordered (e.g., a3 � b1 � a4 �
b2, then immediately a3 �1 a1 � b1 � a4 �1 a2 � b2), there is a maximal point in the sense

of this order. If the maximal element is b� for some � ∈ {1,2}, then there is no ω ∈ �y

with fy(ω) = ∞ such that b� � ω. If the maximal element is a3 (resp. a4), then there is no
ω ∈ �y except for a1 (resp. a2) with fy(ω) = ∞ such that a3 � ω (resp. a4 � ω). Lemma 21
applies with ω0 equal this maximal element since all assumptions (A), (B) and (C) are
satisfied. If a3, a4, b1, b2 are not all ordered, then it is enough to apply Lemma 21 to
the maximal element of any ordered subset. Finally Ix(ω0) = R\]x1, x4[ and Iy(ω0) =
R\]y4, y1[ for any ω0 ∈ {a3, a4, b1, b2}, hence the set of poles of x �→ Q(x,0) (resp. y �→
Q(0, y)) is dense on the announced intervals. Proposition 23 is proved.
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FIG. 15. — Location of a1, a2, a3, a4 if y4 > 0, x4 = ∞, Y(x4) = ∞, i.e., Subcase II.D

Case II: y4 > 0, Subcase II.D: x4 = ∞ and Y(x4) = ∞. — In this case x� = ∞; y� =
∞; x�, y� 
= ∞.

We have a1 = ωx4 + ω2, and a2 = η̂a1 − ω1 = ωx4 + ω3 is symmetric to a1 − ω2

w.r.t. ωy4 . Further, since y4 > 0 and Y(x1) ≤ 0, a2 ∈]ωy4,ωx1[. Then a3 = ξ̂a2 − ω1 =
ωx4 + ω2 − ω3 is symmetric to a2 w.r.t. ωx1 . Finally, a4 = ωx4 + ω2 = a1, b1 = b2 = a1,
a3 + ω3 = a1 and a1 + ω3 = a2 + ω2, so that a3 �1 a1 �1 a2, see Figure 15.

We prove (7.15). For this purpose, we first show that ry(a3) 
= ∞. If a3 ∈ �, x�, y� 
=
∞, then by Theorem 3, ry(a3) 
= ∞ If a3 /∈ �, consider O�(ω0). Since a3 +2ω3 = a2 +ω2,
a2 /∈ O�(ω0) by the irrationality of ω2/ω3. Obviously a1 −ω2 = ωx4 /∈ � and then it is not
in O�(ω0). Hence ry(a3) 
= ∞. Next we prove that ry(a2)+ fy(a2) exactly as in Subcase II.A
by using that x�y� 
= ∞.

For any ω0 
= a1 with �ω0 = 0 and ωy1 ≤ ω0 ≤ ωy4 + ω2, the orbit O�(ω0)

cannot contain a3, since a3 + ω3 = a1 and a3 + 2ω3 > ω0. It can neither contain
a1, since ω0 − ω3 < a1, nor obviously a1 − ω2 = ωx4 . If it does not contain a2, then
by (7.12), ry(ω0) 
= ∞. If it does, then exactly as in Subcase II.A, using ry(a2) +
fy(a2) 
= ∞, we prove that ry(ω0) 
= ∞ as well. This finishes the proof of (7.15).

By Equations (5.4), (5.5) and (5.3), we derive as in Subcase II.A that rx(ω0) 
= ∞
for all ω0 ∈ {ω : �ω = 0, ωx1 ≤ ω0 ≤ ωx4 + ω2} except for ω0 where x(ω0) = ∞, that is
for a1. This finishes the proof of Proposition 22 in this case.

To prove Proposition 23, we would like to apply Lemma 21 with ω0 = a3. We have
shown that ry(a3) 
= ∞, a3 �1 a1 = a4 = b1 = b2 � a2, so that there is no ω ∈ �y \ {a1, a2}
such that a3 � ω and fy(ω) = ∞. It remains to verify assumption (B) of Lemma 21 for
ω0 = a3, that is that fy(ω) + fy(ω + ω3) + fy(ω + 2ω3) converges to infinity if ω → a3. The
last quantity is the sum of

x(ω)
[
y(̂ξω) − y(ω)

] + x(̂η ξ̂ω)
[
y(̂ξ η̂ ξ̂ω) − y(̂η ξ̂ω)

]

+ x(̂η ξ̂ η̂ ξ̂ω)
[
y(̂ξ η̂ ξ̂ η̂ ξ̂ω) − y(̂η̂ξ η̂ ξ̂ω)

]
,

which equals

x(̂η ξ̂ η̂ ξ̂ω)y(̂ξ η̂ ξ̂ η̂ ξ̂ω) − x(ω)y(ω) + x(̂η ξ̂ω)
[
y(̂ξ η̂ ξ̂ω) − y(̂η ξ̂ω)

]
(7.18)

+ x(ω)y(̂ξω) − x(̂η ξ̂ η̂ ξ̂ω)y(̂ξ η̂̂ξω)

where we used (3.7). If ω → a3, then the first term in this sum converges to x�y� −x�y� = 0.
Next, η̂ ξ̂ω → a1, so that x(̂η ξ̂ω) → ∞. We can also compute the values of y(̂ξω) and
y(̂ξ η̂ ξ̂ω) as (−b(x) ± [b(x)2 − 4a(x)c(x)]1/2)/(2a(x)) with x = x(̂η ξ̂ω). Since for all of
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FIG. 16. — Location of a1, a2, a3, a4, b1, b2 if y4 = ∞, Case III

the 9 models composing Subcase II.D, deg a = deg b = 1 and deg c = 2, then y(̂ξω) and
y(̂ξ η̂ ξ̂ω) are of order O(|x(̂η ξ̂ω)|1/2), and their difference |y(̂ξω) − y(̂ξ η̂ ξ̂ω)| is not
smaller than O(|x(̂η ξ̂ω)|1/2) as ω → a3. Finally, x(ω), x(̂η ξ̂ η̂ ξ̂ω) → x� 
= ∞ as ω → a3.
Then as ω → a3 in the sum (7.18) the second term is of the order not smaller than
O(|x(̂η ξ̂ω)|3/2) while the first vanishes and the third has the order O(|x(̂η ξ̂ω)|1/2). This
proves the assumption (B) of Lemma 21 for ω0 = a3. By this lemma the poles of x �→
Q(x,0) and y �→ Q(0, y) are dense on the intervals of the real line, as announced in the
proposition.

Case III: y4 = ∞. — It remains here exactly one case to study, see Figure 17. It
is such that y4 = ∞, x4 = ∞ and X( y4) 
= ∞. Then x� = x� 
= ∞; y◦ = y• 
= ∞; y� =
y� 
= ∞.

The points b1 = b2 = ωx4 + ω2 are located as in Subcase I.B, a1 = a2 = ωy4 + ω2

and a3 = a4 = ωy4 +ω2 −ω3. In particular, a3 +ω3/2 = b1, b1 +ω3/2 = a1, see Figure 16.
We start by showing that ry(a3) 
= ∞. If a3 ∈ �, this is true thanks to (5.3) and

since x�, y� 
= ∞. If a3 /∈ �, consider the orbit O�(a3). It cannot contain a1 − ω2 since
a3 + ω3 = a1, neither b1, nor b1 − ω2 = ωx4 . It follows that ry(a3) 
= ∞.

Since x�, y� 
= ∞, it follows from Equations (5.3), (5.4) and (5.5) that rx(a1 − ω2) =
rx(̂ξ (a1 − ω2)) = rx(̂ξ (a1 − ω2) − ω1) = rx(a3) 
= ∞. Then, by (5.3), ry(a1 − ω2) + fy(a1 −
ω2) = −rx(a1 − ω2) + K(0,0)Q(0,0) + x(a1 − ω2)y(̂ξ (a1 − ω2)) 
= ∞.

Take any ω0 with �ω0 = 0 and ωy1 ≤ ω0 < ωy4 + ω2. If ω0 ∈ �, then by the same
arguments as in Subcase I.A, ω0 ∈ �y, so that ry(ω0) 
= ∞. Otherwise, we notice that
ω0 −ω3 < a3, so that no point—and in particular b1—of [ωy4 +ω2 −ω3,ωy4 +ω2[ belongs
to O�(ω0). Clearly b1 − ω2 = ωx4 /∈ O�(ω0). Since either a1 − ω2 /∈ O�(ω0) or a1 − ω2 ∈
O�(ω0) but ry(a1 − ω2) + fy(a1 − ω2) 
= ∞, and by the same reasoning as in Subcase I.A,
we derive that ry(ω0) 
= ∞. The rest of the proof of Proposition 22 in this case goes along
the same lines as in Case II.

Now note that b1 is not ordered with a1 and a3. Indeed, since b1 + ω3/2 = a1

and b1 − ω3/2 = a3, this would contradict the irrationality of ω2/ω3. Then there is no
ω ∈ �y such that b1 � ω and fy(ω) = ∞. We also have fy(ω) = x(ω)[y(̂ξω) − y(ω)] =
x(ω)[b2(x(ω)) − 4a(x(ω))c(x(ω))]1/2/a(x(ω)). If ω → b1, then x(ω) → ∞ and since
deg a = 2 and deg b = deg c = 1, we have fy(ω) → ∞. Lemma 21 applies with ω0 = b1

and proves Proposition 23.

7.4. Asymptotic of ω2(ω)/ω3(ω) as z → 0. — It remains to prove the following re-
sult announced at the beginning of Section 7.
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Proposition 25. — For all 51 non-singular walks having an infinite group, there exist a rational

constant L > 0 and a constant L̃ 
= 0 such that

ω2/ω3 = L + L̃/ ln(z) + O
(
1/ ln(z)

)2
.(7.19)

Proof. — In order to prove (7.19), we shall use expressions of the periods ω2 and
ω3 different from that given in (3.1) and (3.2). To that purpose, define the complete and
incomplete elliptic integrals of the first kind by, respectively,

K(k) =
∫ 1

0

dt

[1 − t2]1/2[1 − k2t2]1/2
,(7.20)

F(w, k) =
∫ w

0

dt

[1 − t2]1/2[1 − k2t2]1/2
.(7.21)

Then the new expressions of ω2 and ω3 are

ω2 = M�2, ω3 = M�3,(7.22)

where

�2 = K
(√

(x4 − x1)(x3 − x2)

(x4 − x2)(x3 − x1)

)
,(7.23)

�3 = F
(√

(x4 − x2)(x1 − X( y1))

(x4 − x1)(x2 − X( y1))
,

√
(x4 − x1)(x3 − x2)

(x4 − x2)(x3 − x1)

)
,(7.24)

and where (below, 1(i,j) = 1 if (i, j) ∈ S , otherwise 0)

M =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

2
z

1√
(1(1,0) − 41(1,1)1(1,−1))(x3x4 − x2x3 − x1x4 + x1x2)

if x4 
= ∞,

2√
(2z1(1,0) + 4z2[1(1,1)1(0,−1) + 1(1,−1)1(0,1)])(x3 − x1)

if x4 = ∞.

(7.25)

The expressions of ω2 and ω3 written in (7.22), (7.23), (7.24) and (7.25) are obtained from
(3.1) and (3.2) by making simple changes of variables.

We are now in position to analyze the behavior of ω2/ω3 (or equivalently, thanks to
(7.22), that of �2/�3) in the neighborhood of z = 0. First, with (2.2) and [19, Proposition
6.1.8], we obtain that as z → 0, x1, x2 → 0 and x3, x4 → ∞. For this reason,

k =
√

(x4 − x1)(x3 − x2)

(x4 − x2)(x3 − x1)
→ 1.(7.26)
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The behavior of X( y1) as z → 0 is not so simple as that of the branch points x� (indeed,
as z → 0, X( y1) can converge to 0, to ∞ or to some non-zero constant), but we can show
that for all 51 models,

w =
√

(x4 − x2)(x1 − X( y1))

(x4 − x1)(x2 − X( y1))
→ 1.(7.27)

Due to (7.26) and (7.27), in order to determine the behavior of �2/�3 near z = 0 it
suffices to know

(i) the expansion of K(k) as k → 1;
(ii) the expansion of F(w, k) as k → 1 and w → 1.

Point (i) is classical, and is known as Abel’s identity (it can be found, e.g., in [8]):
there exist two functions A and B, holomorphic at z = 0, such that K(k) = A(k)+ ln(1 −
k)B(k). Both A and B can be computed in an explicit way, see [8], and from all this we
can deduce an expansion of K(k) as k → 1 up to any level of precision. For our purpose,
it will be enough to use the following:

A(k) = (3/2) ln(2) + (
(k − 1)/4

)(
1 − 3 ln(2)

) + O(k − 1)2,

B(k) = −1/2 + (k − 1)/4 + O(k − 1)2.

As for Point (ii), we proceed as follows. We have F(w, k) = K(k) − F̃(w, k), with

F̃(w, k) =
∫ 1

w

dt

[1 − t2]1/2[1 − k2t2]1/2
.

Then, introduce the expansion 1/([1 + t]1/2[1 + kt]1/2) = ∑∞
�=0 μ�(k)(1 − t)�, so that

F̃(w, k) =
∞∑

�=0

μ�(k)

∫ 1

w

dt

[1 − t]1/2−�[1 − kt]1/2
.(7.28)

In Equation (7.28), all μ�(k) as well as all integrals can be computed. As an example (that
we shall use), we have

μ0(k)

∫ 1

w

dt

[1 − t]1/2[1 − kt]1/2

= 1
[2k(1 + k)]1/2

[
ln

{
(1 − k)/k1/2

} − ln
{−[

1 − (1 + k)w + kw2
]1/2

+ [
(k + 1)/2 − kw

]
/k1/2

}]
.
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FIG. 17. — Different cases considered in the proof of Theorem 17—they correspond to the 51 non-singular walks with
infinite group, see [2]

Moreover, it should be noticed that as k → 1 and w → 1, the speed of convergence to
zero of the integrals in (7.28) increases with �. This way, we can write an expansion of
F̃(w, k)—and thus of F(w, k)—up to any level of precision.

Unfortunately, the end of the proof cannot be done simultaneously for all
51 models, but should be done model by model. For the sake of shortness, we
choose to present the details only for one model, namely for the model with S =
{(−1,0), (−1,1), (0,1), (1,−1)} (which belongs to Subcase II.D of Figure 17). For this
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model, we easily obtain from (2.2) that

x1 = z − 2z2 + 3z3 + O
(
z4

)
,

x2 = z + 2z2 + 5z3 + O
(
z4

)
,

x3 = 1/
(
4z2

) − 1 − 2z − 8z3 + O
(
z4

)
,

x4 = ∞,

X( y1) = 0.

Then, with (7.26) and (7.27), we reach the conclusion that

k = 1 − 8z4 − 4z5 + O
(
z6

)
,(7.29)

w = 1 − 2z + z2 − (7/4)z3 − (65/8)z4 + (613/64)z5 + O
(
z6

)
.(7.30)

Then, using Points (i) and (ii) above, we obtain

�2 = −2 ln(z) − (1/4)z + (1/16)z2 + O
(
z3 ln(z)

)
,

�3 = −(1/2) ln(z) − (1/2) ln(2) + (1/4)z + (57/16)z2 + O
(
z3 ln(z)

)
,

so that

�2/�3 = 4 − 4 ln(2)/ ln(z) + O
(
1/

(
ln(z)

)2)
.(7.31)

The latter proves (7.19), and thus Proposition 25, with L = 4 and L̃ = −4 ln(2).
Making expansions of higher order of k and w in (7.29) and (7.30), we could obtain

more terms in the expansion (7.31) of �2/�3. A contrario, we could also be interested
in obtaining the first term only (the constant term L) in (7.31). (Indeed, we saw in the
proof of Proposition 14 that it was sufficient for our purpose, i.e., for proving that in
the infinite group case, the ratio ω2/ω3 is not constant in z.) To that aim, instead of
(7.29) and (7.30), we just need two-terms expansions of k and w, say k = 1 + αzp + o(zp)

and w = 1 + βzq + o(zq), with α,β 
= 0. Then with (i) and (ii) we deduce that �2 =
−(p/2) ln(z) + o(ln(z)) and �3 = −(q/2) ln(z) + o(ln(z)), in such a way that L = p/q,
which obviously is (non-zero and) rational. �
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