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ABSTRACT

Let E/F be a quadratic extension of number fields. We study periods and regularized periods of cusp forms and
Eisenstein series on GLn(AE) over a unitary group of a Hermitian form with respect to E/F. We provide factorization for
these periods into locally defined functionals, express these factors in terms of suitably defined local periods and character-
ize global distinction. We also study in detail the analogous local question and analyze the space of invariant linear forms
under a unitary group.
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0. Introduction

Let E/F be a quadratic extension of number fields with Galois involution τ and let
A= AF be the ring of adeles of F. Denote by η : F∗\A∗ → {±1} the quadratic character
associated to E/F by class field theory. Let G′ = GLn /F and let G be the restriction of
scalars from E to F of GLn /E. Let

X= {
g ∈G : tgτ = g

}
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be the F-subvariety of Hermitian matrices in G. Here tg is the transpose of a matrix g.

For x ∈X(F) denote by

Gx = {
g ∈G : tgτ xg = x

}

the unitary group (defined over F) determined by x. The unitary period integral Px(φ) of a
cusp form φ of G(A)(=GLn(AE)) is defined by

Px(φ)=
∫

Gx(F)\Gx(A)

φ(h) dh.

A cuspidal automorphic representation π of G(A) is called Gx-distinguished if there exists a
cusp form φ in the space of π such that Px(φ) �= 0. The study of unitary period integrals
has seen much progress in recent years. In particular, Jacquet showed that an irreducible
cuspidal automorphic representation π of G(A) is in the image of quadratic base change
bc if and only if π is Gx-distinguished for some x ∈X(F) [Jac05a]. In fact, it suffices to
take the quasi-split unitary group [Jac10]. In order to obtain these results, Jacquet, in
the course of many years, invented and developed the relative trace formula on G(A)

and together with his collaborators compared it to a Kuznetsov trace formula on G′(A)

(see [Ye88, Ye89, JY90, Jac92, JY92, Ye93, Ye94, Jac95, Ye95, JY96, Jac98, Ye98, JY99,
Jac01, Jac02, Jac03a, Jac03b, Jac04b, Jac05a, Jac05b, Lap06, Jac10]).

This comparison of trace formulas gives additional information about the period
integrals. To describe it, we first recall that by Arthur-Clozel, an irreducible cuspidal
automorphic representation π of G(A) is in the image of quadratic base change if and
only if π is Galois invariant [AC89]. In this case, π is the image of exactly two irreducible
cuspidal representations of G′(A) of the form π ′, π ′ ⊗η. We say that E/F splits at infinity
if every Archimedean place of F splits in E. When n= 3, x = e and E/F splits at infinity,
Jacquet showed in [Jac01, Theorem 1] that the period integral Px is factorizable on π

and that its local components are governed by certain identities between Bessel distributions

associated to the local components π ′
v of π ′ and πv of π . The restriction to the case n= 3

was made, since at the time, the necessary relative trace identity was only available in
that case. Based on recent developments (mainly [Jac03b, Jac04b, Jac05a, Lap06]), the
method and result of Jacquet can be generalized to any n and x (Theorem 10.2). We
can also remove the assumption that E/F splits at infinity, thanks to a recent result by
Aizenbud and Gourevitch [AG] extending smooth transfer to the Archimedean case.

As pointed out in [Jac01], the factorization of the global unitary period is far from
formal, since there is no multiplicity one for the local invariant functionals. For instance,
for a quadratic extension of p-adic fields, any irreducible unramified principal series rep-
resentation admits 2n−1 linearly independent invariant functionals with respect to a given
unitary group. The failure of multiplicity one reflects the fact that locally, quadratic base
change is not one-to-one, even up to a twist by η.

Along with the factorization we provide for any x ∈ X(F), a criterion for an irre-
ducible, Galois-invariant, cuspidal automorphic representation π = bc(π ′) of G(A) to be
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Gx-distinguished. Namely, π is Gx-distinguished except for purely local obstructions de-
pending on the (finitely many) local components of π ′ (rather than π ) at the places where
Gx is not quasi-split. (We recall that π ′

v is generally not determined by πv , even up to a
quadratic twist.) In the non-Archimedean case (for which non-quasi-split unitary groups
exist only for n even) the obstruction is that π ′

v � π ′
v ⊗ ηv . The Archimedean obstruction

is a little more complicated, but it is still given explicitly in terms of π ′
v . More precisely, let

w̃′(π ′
v) be the largest k such that we can write π ′

v = δ′ × σ ′ where δ′ is a representation
of GL2k(Fv) such that δ′ � δ′ ⊗ η and × denotes parabolic induction. Then we have the
following characterization.

Theorem 0.1. — Let x be a Hermitian form of rank n with respect to E/F and let π be an

irreducible cuspidal representation of GLn(AE). Then π is Gx-distinguished if and only if there exists a

cuspidal representation π ′ of GLn(AF) such that π = bc(π ′) (i.e., π is Galois invariant) and w̃′(π ′
v)

is not bigger than the Witt index of x with respect to Ev/Fv for all inert places v of F over which Gx is

not quasi-split.

In particular, with this criterion we may give examples, in the case where Gx is
not quasi-split, of cuspidal representations which are locally Gx(Fv)-distinguished for all
v, but not globally Gx-distinguished (see Section 12.3). (The notion of local distinction
is explained below.) At first glance this may look surprising since the special value of
the L-function appearing in the period factorization is always non-vanishing. The point,
however, is that the local functional dictated by the period integral may vanish, even if
the corresponding local representation is abstractly distinguished.

The local factor of the global period Px at a place v is determined by the local
component π ′

v of the essentially unique π ′ that base changes to π. One of our main goals
is to identify the local factors as local open periods (see below).

We recall that in many important cases of period integrals, the square of the absolute
value of the period admits (or is expected to admit) a factorization into a product of locally
defined positive semi-definite Hermitian forms on πv [Wal85, Ich08, II10]. Our context
is different in that the factorization is already for Px itself, but on the other hand, the local
factors (even up to a scalar) are not determined by πv itself.

As it turns out, for the local analysis it is extremely useful to study the continuous
part of the relative trace formula and to extend the factorization of unitary periods to
Eisenstein series. Of course, the period integral may not converge, but it is possible to
regularize it [LR03, LR01, JLR99]. On a formal level, the period of the Eisenstein series
induced from a parabolic subgroup P unfolds to a sum over the P-orbits in X. The reg-
ularized period is the contribution of the open P-orbit in X (whose F-points decompose
to infinitely many P(F)-orbits). The factorization of unitary periods of cusp forms, to-
gether with Fourier inversion, allows us to express the regularized period of an Eisenstein
series as a finite sum of factorizable, invariant linear forms. The procedure is reminis-
cent of the stabilization of the trace formula of SL(2) [LL79]. A special case of this was
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carried out in [LR00] and [Off07]. We can analogously apply a Fourier transform lo-
cally to obtain open local periods and Bessel distributions. The open local periods are
linear combinations of functionals considered in the generality of symmetric spaces by
Blanc, Brylinsky, Carmona and Delorme [BD92, CD94, BD08]. We establish explicit
local functional equations for the open local periods. This diagonalizes the vector-valued
functional equations of [CD94] (see Theorem 12.4).

The question of global distinction admits a local analogue. Suppose that E/F is a
quadratic extension of local fields. By abuse of language, we call a linear form on a rep-
resentation π of G(F)=GLn(E) that is invariant under a unitary group, a local unitary
period. We also say that π is locally Gx-distinguished if a non-zero local unitary period
with respect to Gx(F) exists. We may ask the following questions.

– What are the distinguished representations π of GLn(E)?
– What is the dimension of the space HomGx(π,C) of local unitary periods?
– Can one construct local unitary periods explicitly?

In the finite field case the answer has been known for a while. Namely, an irreducible
representation π of GLn(Fq2) admits a non-zero functional invariant under the unitary
group Un(Fq) if and only if π is equivalent to its twist under the non-trivial element of
Gal(Fq2/Fq) and in this case this functional is unique up to a scalar [Gow84]. More-
over, the Galois-invariant representations of GLn(Fq2) correspond bijectively, via charac-
ter identities, to the irreducible representations of GLn(Fq) [Shi76].

Suppose that F is p-adic. The case n= 3 is considered in [Jac01], where it is shown
by a simple globalization argument, together with the necessary condition for distinction
in the global case (both of which do not require any comparison of relative trace for-
mulas) that a distinguished supercuspidal representation is Galois invariant. Conversely,
using the relative trace formula, Jacquet shows that Galois-invariant supercuspidal rep-
resentations are distinguished by any unitary group, and a non-zero local unitary period
is

– unique up to scalar,
– can be obtained by integrating a matrix coefficient over Gx(F),
– arises as a local component of a non-vanishing global unitary period integral.

Once again, using the aforementioned recent developments on the relative trace formula,
the argument immediately extends to any n.

Jacquet further conjectured, in analogy with the global case, that in general, an
irreducible representation is distinguished with respect to the quasi-split unitary group if
and only if it is Galois invariant. Using the Geometric Lemma of Bernstein-Zelevinsky
(but once again, without appealing to the comparison of relative trace formulas) we show
the “only if ” part of this conjecture (Theorem 6.1, which also applies in the non-quasi-
split case). Using the local open periods that we define, we can prove in many cases the
“if ” part of the conjecture as well. Namely, we show that it holds if π is either unitariz-
able or generic, and in the latter case the dimension of HomGx(π,C) is bounded from
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below by the number of equivalence classes of representations π ′ such that bc(π ′) = π

up to a twist by η (Proposition 13.14). Moreover, this bound is tight if π is induced from
pairwise inequivalent essentially square integrable representations (the regular case). On
the other hand, in the non-regular case, a simple upper semicontinuity argument (see
Appendix D) gives a sharper lower bound in general. One may speculate that the latter
bound is actually tight.

Our results apply equally well in the non-quasi-split case. The only difference is in
the case where there is a unique π ′ such that bc(π ′) = π , in which case π is not distin-
guished with respect to the non-quasi-split unitary group. We will call π totally τ -isotropic
in this case. Equivalently, π is totally τ -isotropic if and only if π is Galois invariant and
the supercuspidal support of π consists of σ1 ⊗ · · · ⊗ σk (up to permutation) where no σi

is Galois invariant. This can happen only if n is even.
We summarize the main local results in the following

Theorem 0.2. — Let E/F be a quadratic extension of p-adic fields, x ∈ X(F) and π an

irreducible representation of GLn(E). Assume that π is distinguished by Gx. Then π is Galois invariant.

Conversely, assume that π is Galois invariant. If π is totally τ -isotropic then

dim HomGx(π,C)=
{

1 if Gx is quasi-split,

0 otherwise.

Otherwise,

(1) If π is generic then π is distinguished by Gx. More precisely, assume that π = δ1×· · ·×δk

where the δi ’s are essentially square-integrable. Let r be the number of i’s such that δi is Galois

invariant. (By assumption r > 0.) Then

(0.1) dim HomGx(π,C)≥ 2r−1

with equality if the Galois invariant δi ’s are distinct.

(2) If π is unitarizable (or more generally, π is fully induced from ladder representations—see

Definition 13.10) then π is distinguished by Gx.

We conjecture that in general equality holds in (0.1).
In the Archimedean case, an analogue of Theorem 0.2 is proved in Appendix B.
There are other methods to study local unitary periods, especially for supercusp-

idal representations. For instance, Hakim-Mao, and in a more general context, Hakim-
Murnaghan and Prasad, analyze unitary periods using the realization of a supercuspidal
representation as induced from a compact open subgroup modulo the center [BK93], to
reduce the problem to groups over finite fields [HM98, HM02b, Pra01]. In contrast, our
method, which gives sharper results, is entirely different and exploits the full force of the
relative trace formula and a global argument.
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Finally, let us describe the contents of the paper in more detail. The paper is di-
vided into three parts and four appendices. The first part is purely local. After introducing
relevant notation, we review some basic facts about representation theory of GLn, base
change and Bessel distributions. This enables us to formulate a certain identity of ap-
propriately normalized Bessel distributions for generic representations (Section 3). This
identity will eventually be proved in full generality in Section 12 and it serves to nor-
malize the local unitary period on the Whittaker model. The normalization of the Bessel
distribution is based on the standard inner product on the Whittaker model. For inductive
purposes it is useful to know that the inner product is compatible with parabolic induc-
tion, i.e., that the Jacquet integral is an isometry between an induced representation and
its Whittaker model. This is shown in Appendix A.

In Section 4, we define and start to analyze the main local objects—the open lo-
cal periods, following [LR00]. Eventually, they will show up as the local factors of global
unitary periods. A complementary set of invariant functionals on an induced represen-
tation supported on closed orbits is defined in Section 5. They play a role in the exact
characterization of global distinction. More precisely, they provide the missing link for
the Archimedean analysis.

In Section 6, we prove that local distinction implies Galois invariance in the p-adic
case (Theorem 6.1) answering positively the necessity part in Jacquet’s conjecture on dis-
tinction. We also reduce the study of local unitary periods in the p-adic case to the case
of representations which are subquotients of representations induced from a tensor prod-
uct of unramified twists of a single Galois-invariant supercuspidal representation. The
main tools are the geometric Lemma of Bernstein-Zelevinsky and a globalization argu-
ment which had been used by several authors (cf. [HM02a, Jac01]). The globalization
uses a “soft” version of the relative trace formula and does not require any comparison.
We also extend the formulation of Jacquet’s conjecture on local distinction to include the
non-quasi-split and the Archimedean cases.

In Section 7, we analyze the open periods in the split case and interpret them
in terms of intertwining operators. Using Shahidi’s expression for the local coefficients in
the context of GL(n) [Sha84, Sha90] we derive the local Bessel identities. The unramified
case is considered in Section 8 where we use explicit computations of Y. Hironaka [Hir99]
and the results of [Off09, Off07] to provide the Bessel identities at hand. The dependence
of our results on the choice of the additive character is analyzed in Section 9. This is
necessary in order to apply a global argument later on. Subsequently, in Appendix B by
Aizenbud and Lapid we analyze the Archimedean case. We give a necessary condition
(which is also conjectured to be sufficient) for distinction by a unitary group and an upper
bound on the dimension of invariant forms. In particular, we show that a distinguished
irreducible representation is Galois invariant.

In the second part of the paper we prove the main global results. In Section 10 we
prove, following Jacquet, the factorization theorem for cuspidal representations (Theo-
rem 10.2) and its corollaries for distinction. The factorization of unitary periods of Eisen-
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stein series after applying Fourier inversion is carried out in Section 11, following [LR00].
Along the way, we obtain identities of global Bessel distributions. The relative trace for-
mula will be reviewed in Appendix C.

In the last part of the paper, we apply the results of the first two parts to prove our
main local results. In Section 12, we prove the local functional equations for the open
local periods and the existence of Bessel identities (Theorem 12.4). We also obtain an in-
ductive description of the local factors of unitary periods in terms of the square-integrable
data of the local components of the representation. Alongside, we obtain the precise local
obstructions for global distinction by a given unitary group. In the final Section 13, we
use the functional equations to give upper and lower bounds on the dimension of local
unitary periods. In particular, we prove uniqueness of local unitary periods for square-
integrable representations, and more generally for a large class of representations named
ladder representations. This class includes the general Speh representations and was studied
in [LM]. In the regular case we compute the multiplicity of unitary periods precisely. We
conclude with a summary of what is known and still missing about distinguished rep-
resentations and the dimension of the space of linear forms invariant under a unitary
group. Finally, in Appendix D we give an upper semicontinuity result for multiplicities.
The argument, which is well known to experts, was kindly communicated to us by Joseph
Bernstein, Akshay Venkatesh and Nolan Wallach.

For the convenience of the reader we append an index of symbols at the end of the
paper.

Local theory

1. Notation and preliminaries

1.1. Groups and parabolic subgroups. — Throughout this part, let F be a local field of
characteristic zero with normalized absolute value |·|F. In the non-Archimedean case, let
OF be the ring of integers of F, �F a uniformizer and qF the cardinality of the residue
field. Let E be a quadratic étale algebra over F, i.e., E is either a quadratic field extension
of F (the inert case) or E = F⊕ F (the split case). Let x �→ xτ denote the non-trivial F-
automorphism of E. Thus, in the split case (x, y)τ = (y, x), x, y ∈ F. Denote by Tr(x) =
x+xτ the trace map, Nm(x)= x xτ the norm map and η the quadratic character attached
to E/F by class field theory. Thus η is the unique non-trivial character of Nm(E∗)\F∗ in
the inert case and η is the trivial character of F∗ in the split case. Throughout, we fix a
non-trivial character ψ ′ of F and let ψ = ψ ′ ◦ Tr . In the p-adic case, we say that ψ ′ is
unramified if its conductor is OF. We will usually suppress the dependence on ψ ′ from
the notation.

We will often use a boldface letter, e.g. Y, to denote an algebraic set defined
over F. We will use a plain letter, e.g. Y, to denote the set of F-points of an algebraic
set, i.e., Y= Y(F). Let G′ =G′

n denote the group GLn considered as an algebraic group
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defined over F and let G = Gn = ResE/F GLn where Res denotes restriction of scalars.
Thus, G′ =GLn(F) and G=GLn(E). The group G′ is viewed as a subgroup of G. Note
that in the split case, G = G′ × G′ and G′ embeds diagonally in G. Let e = In be the
identity element of G. Denote by tx the transpose of a matrix x. For a subgroup Q of G,
we denote by tQ its image under the transpose map.

Let

X=Xn =
{
x ∈G : txτ = x

}

be the symmetric space of Hermitian matrices in G with the right G-action given by

x • g = t gτ x g, g ∈G, x ∈X.

We denote by X/G the finite set of G-orbits in X. It is indexed by F∗/ Nm E∗ in the p-adic
case and by the possible signatures in the Archimedean case. For an algebraic subgroup
Q of G and any x ∈ X, let Qx denote the stabilizer of x in Q. In particular, Gx is the
unitary group, defined over F, associated with the Hermitian matrix x. For any x ∈X, we
denote by w(x) the Witt index of x, i.e., the F-rank of Gx.

The standard maximal compact subgroup of G (resp., G′) is denoted by K (resp.,
K′). Thus,

K′ =

⎧
⎪⎨

⎪⎩

GLn(OF) if F is p-adic,
O(n) if F=R,

U(n) if F=C,

K=

⎧
⎪⎨

⎪⎩

K′ ×K′ if E/F is split,
GLn(OE) if E/F is inert and p-adic,
U(n) if E/F=C/R.

We shall fix some further notation and conventions pertaining to the group G with the
inert case in mind; the corresponding notation for G′ will be appended by a prime. De-
note by Z the center of G. Let P0 = M0U0 be the standard Borel subgroup of G with
its standard Levi decomposition, so that P0 (resp., M0, U0) is the subgroup of upper
triangular (resp., diagonal, upper unitriangular) matrices in G. By a standard parabolic
subgroup of G we mean one that contains P0. Let κ = (n1, . . . , nt) be a composition of n,
i.e., n1, . . . , nt are positive integers with n= n1 + · · · + nt . We denote by Pκ =MκUκ the
standard parabolic subgroup of G of type κ with unipotent radical Uκ and Levi part

Mκ =
{
diag(g1, . . . , gt) : gi ∈Gni, i = 1, . . . , t

}
.

When κ is clear from the context (and in particular, throughout this section) we simply
write M=Mκ, U=Uκ and P=MU; similarly for M′, U′, P′. Let ←−κ = (nt, . . . , n1) be
the reverse composition. In particular P←−κ is the standard parabolic subgroup which is



ON REPRESENTATIONS DISTINGUISHED BY UNITARY GROUPS 193

conjugate to the opposite parabolic tP of P. For P=MU as above, we write
←−
P = P←−κ ,←−

M =M←−κ and
←−
U =U←−κ .

We also consider a composition γ = (γ1, . . . , γt) of κ , i.e., γi is a composition of
ni for i = 1, . . . , t. We think of γ as a composition of n refining κ . When γ is clear from
the context we write L=Mγ ⊆M and L′ =M′

γ ⊆M′. Usually, Q= LV is the standard
parabolic subgroup of G with Levi subgroup L and unipotent radical V.

We identify the Weyl group W of G with the permutation matrices, or with the
symmetric group Sn on the set [1, n], where for a, b ∈R such that b− a ∈N we write

[a, b] = {a, a+ 1, . . . , b}.
As a rule, we will use a superscript to refer to objects pertaining to a Levi subgroup
of G. For instance, we denote by �M

0 the set of simple roots of M with respect to its Borel
subgroup M∩P0, WM the Weyl group of M (identified with a subgroup of W) and wM

0 the
longest element in WM, i.e. such that wM

0 α < 0 for all α ∈�M
0 . Set w0 =wG

0 . Let WM(L)

be the set of all right WL-reduced elements w ∈WM such that wLw−1 is a standard Levi
subgroup of M and let wM

L denote the longest element of WM(L). Set W(L) = WG(L)

and wL =wG
L . Note that wM

0 =wM
M0

and w0 =wMwM
0 . Explicitly, for M=Mκ we have

wM =
⎛

⎜
⎝

Int

...
In1

⎞

⎟
⎠ .

We view any w ∈W(M) as the permutation of [1, t] (also denoted by w) such that

w diag(g1, . . . , gt)w
−1 = diag(gw−1(1), . . . , gw−1(t)).

Thus wMw−1 = Mwκ where wκ = (nw−1(1), . . . , nw−1(t)). In particular, wMκ =←−κ and
w−1

M =w←−
M .

For a τ -invariant subgroup Q of G denote by X∗(Q) the lattice of F-rational char-
acters of Q and let δQ be the modulus function of Q.1 Let a∗Q be the real vector space
X∗(Q)

⊗
Z R and let aQ be the dual space. If N is the Levi part of Q then we identify aQ

with aN and with aZ(N). We set a0 = aM0 and a∗0 = a∗M0
. The Weyl group W acts naturally

on a∗0 and a0. We identify a∗0 and its dual space with Rn in the usual way. The W-invariant
pairing 〈·, ·〉 : a∗0 × a0 →R is the standard inner product on Rn.

As before, let L⊆M be standard Levi subgroups of G. There is a natural embed-
ding of aM into aL. We denote by aM

L the orthogonal complement of aM in aL and use
similar notation for the dual subspaces so that we also have a∗L = a∗M ⊕ (aM

L )∗. For every
λ ∈ a∗0 we denote by λL, (resp. λM, λM

L ) its orthogonal projection to the space a∗L (resp.
(aM

0 )∗, (aM
L )∗).

1 The convention is that if dq is a right Haar measure then δQ(q)−1 dq is a left Haar measure. This is opposite to the
convention of Bourbaki.
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In particular, for M=Mκ we identify aM with Rt via

(λ1, . . . , λt)↔
(

n1︷ ︸︸ ︷
λ1, . . . , λ1, . . . ,

nt︷ ︸︸ ︷
λt, . . . , λt

) ∈ a0.

We will identify aM′ with aM.
For any real vector space a we denote by aC = a

⊗
R C its complexification. The

function H :G→ a0 is defined by

e〈χ,H(g)〉 = ∣∣χ(m)
∣∣
F
, χ ∈X∗(M0)

via the Iwasawa decomposition g = umk, u ∈ U0, m ∈ M0, k ∈ K. Note that with our
conventions we have H(g)= 2H′(g) for all g ∈G′. We let

ρ = ρn =
(

n− 1
2

,
n− 3

2
, . . . ,

1− n

2

)
∈ a

∗
0

be the half-sum of the positive roots of G with respect to P0. Note that

δQ∩M = e〈2ρM
L ,H(·)〉.

Denote by
(
a
∗
M

)
+ =

{
(λ1, . . . , λt) ∈ a

∗
M : λ1 > · · ·> λt

}

the positive Weyl chamber of a∗M.
Denote by 1� the characteristic function of a set �. For a group Q, let 1Q denote

the trivial character of Q. For every function f on Q and x, y, z ∈Q, we set
(
L(x)R(y)f

)
(z)= f

(
x−1zy

)
.

For an affine variety Y over F, we denote by S (Y) the space of Schwartz functions
on Y = Y(F). (We will only consider smooth varieties.) If F is p-adic, S (Y) is the space
of locally constant compactly supported functions. If F is Archimedean, S (Y) consists of
the restrictions to Y of Schwartz functions (in the usual sense) of the ambient affine space,
with the usual topology. (This does not depend on the embedding.) If H is a group then
S (H) is an algebra under the convolution ∗. Note that S (X) is a S (G)-module via the
convolution

f ∗�(x)=
∫

G
f (g)�(x • g) dg.

We denote by S∗(Y) the space of (Schwartz) distributions on Y, i.e. the (continuous) linear
forms on S (Y).
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1.2. Measures. — Recall that for any non-singular algebraic variety V over F of
dimension d with a gauge form ωV, the Tamagawa measure on V is defined by transfer-
ring the “standard” Haar measure on Fd to V using ωV. (See [Wei82]; the varieties that
we consider will always be groups or homogeneous spaces and the gauge forms will be
non-zero invariant differential forms.) For global reasons, we will multiply this measure
by λVc(ψ ′)d/2 where λV is a local factor described below and

c
(
ψ ′)=

⎧
⎪⎨

⎪⎩

qm if F is non-Archimedean and
the conductor of ψ ′ is � m OF,

|a|F if F is Archimedean and ψ ′(x)= e2π i TrF/R xa.

As a rule we take

ωResE/F V = p∗(ωV)

where p∗ is defined in [Wei82, p. 22]. (In the split case this becomes the product form.)
The invariant differential forms are chosen (up to a sign) as follows. We take ωU′ =

∏
dui,j where the product ranges over the non-constant coordinates of U′, ωG′ =

∏
dgi,j

det gn ,

ωM′ =∏t

i=1 ωG′
ni

and ωP′ which matches ωM′ and ωU′ in the sense of [Wei82, p. 24].

The forms on U, G, M, P are taken by the convention above. We also take ωX =
∏

i≤j dxi,j

det xn

(where for i < j the coordinates are in E and for i = j the coordinates are in F) and for
any x ∈X we take ωGx which matches ωG and ωX. For any M we take the product form
on XM =X∩M�Xn1 × · · · ×Xnt . We take ωMy , y ∈XM to match ωXM and ωM.

The factors λV will be 1 for unipotent groups. In particular the Haar measure
on F (resp. E) will be the self-dual Haar measure with respect to ψ ′ (resp. ψ ). We take
λG′ =∏n

i=1 L(i, 1F∗), λG =∏n

i=1 L(i, 1E∗), λX =∏n

i=1 L(i, ηi+1) and λGx =∏n

i=1 L(i, ηi)

where L(s, χ) is the local L-factor of Tate. The isomorphism X � ∐
ξ∈X/G Gξ\G is

compatible with the measures. Similarly, we take λM = ∏t

i=1 λGni
, λM′ = ∏t

i=1 λG′
ni

and λMy = ∏t

i=1 λG
yi
ni

for y = diag(y1, . . . , yt) ∈ XM. If F is p-adic and ψ ′ has con-
ductor OF then the measure on G′ gives vol(K′) = 1. If also E/F is unramified then
volG(K)= volX(X∩K)= 1.

Given a closed subgroup H′ ⊆H we will consider the ‘quotient measure’ on H′\H
which is strictly speaking not necessarily a measure but rather a continuous functional
on the space of continuous left (H′, δH′

δH
)-equivariant functions on G which are compactly

supported modulo H′. Thus
∫

H
f (h) dh=

∫

H′\H

∫

H′

δH

δH′

(
h′
)
f
(
h′x

)
dh′ dx

for any compactly supported continuous function on H.
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1.3. Representations and induced representations. — If F is p-adic then R(G) will denote
the category of admissible finitely generated smooth representations (with respect to the
discrete topology). In the Archimedean case, R(G) will denote the category of smooth
Fréchet representations (π, V) of moderate growth whose underlying (g, K)-module
VK is admissible and finitely generated, with continuous intertwining operators as mor-
phisms. (VK determines V up to isomorphism—see [Wal92, Chapter 11].2) In both cases,
any π ∈ R(G) is of finite length and can be realized as the smooth part of a Hilbert repre-
sentation (say, on H) on which K (but not necessarily G) acts unitarily. In the Archimedean
case, let K̂ be the unitary dual of K and let H= ⊕̂

γ∈K̂Vγ be the decomposition of H into

K-types. Let pγ : H→ Vγ , γ ∈ K̂ be the corresponding orthogonal projections. We fix
a norm on the Euclidean space spanned by the lattice of characters of a maximal torus
of K. For any γ ∈ K̂ let ‖γ ‖ be the norm of the highest weight of γ . Then V coincides
with the space of K-smooth vectors of H and the topology of V is given by the norms

∑

γ∈K̂

∥∥pγ (v)
∥∥

Vγ

(
1+ ‖γ ‖)n

, n ∈N.

(See e.g. [BK] for this and other basic facts about Harish-Chandra modules and their
globalizations.)

Let (π∗, V∗) be the representation on the topological dual of V and let (π∨, V∨) ∈
R(G) be the contragredient of π . As a representation space, V∨ is the linear span of
{� ◦ π(f ) : � ∈ V∗, f ∈ S (G)}. In the p-adic case V∨ is just the smooth part of V∗. In the
Archimedean case, suppose that π is realized as the smooth part of a Hilbert representa-
tion of G on H. Then V∨ is the smooth part of the dual Hilbert space of H (isomorphic to
the complex conjugate of H) with respect to the dual action. Thus, the Fréchet topology
on V∨ is given by the norms

� �→
∑

γ∈K̂

‖�|Vγ ‖(Vγ )∗
(
1+ ‖γ ‖)n

, n ∈N.

It will be useful to use different realizations of the contragredient representations.
To that end, we say that the data D = (π, π̂, (·, ·)) (or simply π, π̂ if (·, ·) is clear from
the context) is a dual couple with respect to G if π, π̂ ∈ R(G) and (·, ·) is a pairing (i.e. a
non-degenerate G-invariant bilinear form) on π × π̂ . This pairing gives rise to an equiv-
alence of representations �D : π∨ → π̂ , and conversely, any such equivalence defines a
dual couple.

By definition, an equivalence between the dual couples (π1, π̂1, (·, ·)1) and
(π2, π̂2, (·, ·)2) is a pair (A, Â) of equivalences of representations A : π1 → π2 and
Â : π̂1 → π̂2 such that (Av, Âv̂)2 = (v, v̂)1 for any v ∈ π1, v̂ ∈ π̂1. There is also an
obvious notion of a direct sum of dual couples.

2 Henceforth, equivalence of representations will always mean isomorphism as smooth representations.
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If π ∈ R(G) has a central character then we denote it by ωπ . Given a character
χ of E∗, we denote by the same letter its pullback to G via det. For any π ∈ R(G) we
set π · χ = π ⊗ (χ ◦ det). This representation is realized on the same space as π and
[π · χ ](g) = χ(g)π(g). In particular, we write π [s] = π · |det|s. For any isomorphism j

between two groups H1, H2 and (π, V) ∈ R(H1) we denote by (πj , V) ∈ R(H2) the
twist of π by j , i.e., πj(gj )= π(g), g ∈H1.

Let (σ, V) ∈ R(M) and let I(σ )= IG
M(σ ) be the space of smooth functions ϕ on G

with values in V such that

ϕ(umg)= δP(m)
1
2 σ(m)

[
ϕ(g)

]
, m ∈M, u ∈U, g ∈G.

We denote by ϕλ, λ ∈ a∗M,C the holomorphic section given by

ϕλ(g)= e〈λ,H(g)〉ϕ(g).

Let I(σ,λ)= IG
M(σ,λ) be the representation of G on the space I(σ ) given by
(
I(g, σ,λ)ϕ

)
λ
(x)= ϕλ(xg)

for x and g in G. This is the representation parabolically induced from σ [λ] := σ · e〈λ,H(·)〉

realized on the space I(σ ). (Occasionally, we omit σ from the notation if it is clear from
the context.) Whenever σ = σ1 ⊗ · · · ⊗ σt , σi ∈ R(Gni

) and λ= (λ1, . . . , λt) ∈ a∗M,C =Ct

we have

σ [λ] = σ1[λ1] ⊗ · · · ⊗ σt[λt].
It will sometimes be convenient to denote the induced representation I(σ, 0) by σ1 ×
· · · × σt.

We use IG
M as a functor. Thus, if σ,� ∈ R(M) and T : σ → � is an intertwining op-

erator then we write IG
M(T) : IG

M(σ,λ)→ IG
M(�,λ), λ ∈ a∗M,C for the intertwining operator

given by [IG
M(T)ϕ](g)= T[ϕ(g)], g ∈G, ϕ ∈ I(σ ).

More generally, if ν ∈ R(L) and μ ∈ a∗L,C, we denote by IM
L (ν,μ) ∈ R(M) the

parabolic induction from ν[μ] realized on the space IM
L (ν). The associated action of

m ∈M on IM
L (ν) is denoted by IM

L (m, ν,μ) and ϕμ = e〈μ,H(·)〉ϕ is the holomorphic section

associated with ϕ ∈ IM
L (ν). For ϕ ∈ IG

L (ν) we write ϕM = δ
− 1

2
P ϕ|M ∈ IM

L (ν) . With this
notation, transitivity of induction can be expressed as follows. Suppose that σ = IM

L (ν,μ).

For ϕ ∈ IG
L (ν) and ξ ∈ IG

M(σ ) we write ϕ
μ

� ξ if we have

ϕμ(g)= ξ(g)(e), g ∈G,

or equivalently,

(1.1)
(
ξ(g)

)
μ
(m)= δ

− 1
2

P (m)ϕμ(mg)= ([
I(g, ν,μ)ϕ

]
M

)
μ
(m).
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It will sometimes be convenient to write

�L,M(ν,μ)= �G
L,M(ν,μ) : IG

L (ν,μ+ λ)→ IG
M(σ,λ)

for the equivalence (for any λ ∈ a∗M,C) given by

(1.2) �G
L,M(ν,μ)ϕ(g)= [

I(g, ν,μ)ϕ
]

M
.

Thus,

ϕ
μ

��G
L,M(ν,μ)ϕ.

We will also denote the (normalized) Jacquet functor from smooth representations
of M to smooth representations of L by rL,M. The Jacquet functor from G to M will simply
be denoted by rM.

1.4. Jacquet integral, intertwining operators and gamma factors. — Let ψ ′
0 be the character

of U′
0 defined by

ψ ′
0(u)=ψ ′(u1,2 + · · · + un−1,n)

and let ψ0 be the character of U0 defined similarly with respect to ψ.

Henceforth we denote by � the set of equivalence classes of irreducible represen-
tations of G. We have

�cusp ⊆�sqr ⊆�gen ⊆�

where the notation stands for the subsets of (not necessarily unitary) supercuspidal (in the
p-adic case), essentially square-integrable and generic representations, respectively. We
also write �usqr ⊆ �temp ⊆ �gen for the subsets of (unitary) square-integrable and tem-
pered representations respectively. As usual, analogous notation for G′ will be appended
with a prime. We write �τ for the irreducible representations of G which are equivalent
to their Galois twist. Similarly for �τ

cusp, etc.
For π ∈ �gen denote by W (π) = W ψ(π) its Whittaker model with respect to

(U0,ψ0). For every g ∈ G denote by δπ
g the evaluation at g viewed as a linear form on

W (π) and let
(

W (g,π)W
)
(h)=W(hg), g, h ∈G, W ∈ W (π).

Let θ̃ = θ̃n be the involution of G given by g �→ w0
tg−1w0. It preserves U0 and we have

ψ0(u
θ̃ )=ψ0(u)

−1 for all u ∈U0. Given π ∈�gen we have an equivalence

(1.3) yπ : W ψ(π)θ̃ → W ψ−1
(π∨)

given by yπ(W)(g)=W(g θ̃ ), g ∈G.
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For P=MU as above we have θ̃ (U)=←−
U , wθ̃

M =w←−
M =w−1

M , H(g θ̃ )=−w0H(g),

g ∈G, and diag(m1, . . . , mt)
θ̃ = diag(m

θ̃ns
t , . . . , m

θ̃n1
1 ), mi ∈Gni

.
Let σ = σ1 ⊗ · · · ⊗ σt ∈�M

gen. We identify W (σ ) with W (σ1)⊗ · · · ⊗ W (σt). For
any λ ∈ a∗M,C and ϕ ∈ I(W (σ )) we denote by W(ϕ,σ,λ) the holomorphic continuation
of the Jacquet integral (see [Jac67])

W(g : ϕ,σ,λ)=WM(g : ϕ,σ,λ)=
∫

←−
U

δσ
e

(
ϕλ

(
w−1

M ug
))

ψ−1
0 (u) du.

We view W(σ,λ) as an intertwining operator from I(W (σ ), λ) to the space of Whittaker
functions on G. We also write

We(ϕ : σ,λ)=W(e : ϕ,σ,λ)

so that We(σ,λ) is a Whittaker functional on I(W (σ ), λ). If I(σ,λ) is irreducible then
I(σ,λ) ∈�gen and

W(σ,λ) : I(W (σ ), λ
)→ W

(
I(σ,λ)

)

is an equivalence of representations.
Let ←−σ = σt ⊗ · · · ⊗ σ1 ∈ �

←−
M
gen and define yσ : W ψ(←−σ )θ̃ → W ψ−1

(σ∨) by

yσ (W)(g) = W(g θ̃ ), g ∈ M. For any λ = (λ1, . . . , λt) ∈ a∗M,C we write
←−
λ = wMλ =

(λt, . . . , λ1) ∈ a∗←−
M,C

. Define

(1.4) �(σ,λ) : [I←−M
(

W ψ(←−σ ),
←−
λ

)]θ̃ → IM

(
W ψ−1(

σ∨),−λ
)

by �(ϕ)(g θ̃ ) = yσ (ϕ(g)), g ∈ G. Then �(σ,λ) is an intertwining operator and if π =
I(σ,λ) is irreducible then we have

(1.5) yπ ◦W←−
M(←−σ ,

←−
λ )=Wψ−1

M

(
σ∨,−λ

) ◦�.

Indeed, by a change of variable in the integral defining We we have

Wψ
e (ϕ : ←−σ ,

←−
λ )=

∫

U
δ
←−σ
e

(
ϕ←−

λ
(wMu)

)
ψ0(u)

−1 du

=
∫

←−
U

δ
←−σ
e

(
ϕ←−

λ

(
(w←−

Mu)θ̃
))

ψ0(u) du

=
∫

←−
U

δσ∨
e

(
(�ϕ)−λ(w←−

Mu)
)
ψ0(u) du

=Wψ−1

e

(
�ϕ : σ∨,−λ

)

for any ϕ ∈ I←−M(W ψ(←−σ )).
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If ν ∈�L
gen, μ ∈ a∗L,C and σ = IM

L (W (ν),μ) ∈�M
gen then using integration in stages

we obtain

(1.6) WL(ν,μ+ λ)=WM(σ,λ) ◦ IG
M

(
WM

L (ν,μ)
) ◦ �L,M

(
W (ν),μ

)
.

For any w ∈ W(M) denote by wσ the representation of Mwκ on V defined
by wσ(wmw−1) = σ(m). There is an intertwining operator M(w,σ,λ) : IM(σ,λ) →
IMwκ

(wσ,wλ) defined as the meromorphic continuation of the integral

(
M(w,σ,λ)ϕ

)
wλ

(g)=
∫

(Uwκ∩wUw−1)\Uwκ

ϕλ

(
w−1ug

)
du.

If σ ∈ �M
gen then we can identify wW (σ ) with W (wσ) by W → W(w · w−1). By

a slight abuse of notation, we write M(w, W (σ ), λ) for the intertwining operator
IM(W (σ ), λ)→ IMwκ

(W (wσ),wλ) obtained using this identification. For future record,
we note that for ϕ ∈ IM(W (σ ), λ) we have

[
�(σ,λ) ◦M

(
wM, W (σ ), λ

)
ϕ
]
−λ

(g)=
∫

←−
U

y←−σ
(
ϕλ

(
w−1

M ug θ̃
))

du(1.7)

=
∫

U
y←−σ

(
ϕλ

(
w−1

M uθ̃ g θ̃
))

du=
∫

U
y←−σ

(
ϕλ

(
wM

0
tu−1w0g θ̃

))
du

where for the first equality we identified yσ on W (←−σ )= W (wMσ) as y←−σ on wM W (σ ).
Denote by Rpi(G) the representations in R(G) which are parabolically induced

from an irreducible representation on a Levi subgroup of G. Let πi ∈ Rpi(Gni
), i = 1, 2

and recall the local Rankin-Selberg factors

γ (s,π1 × π2;ψ)= ε(s,π1 × π2;ψ)L(1− s,π∨
1 × π∨

2 )

L(s,π1 × π2)

defined by Jacquet, Piatetski-Shapiro and Shalika [JPSS83] in the non-Archimedean
case. In the Archimedean case they are defined via Langlands parameterization in terms
of representations of the Weil group (cf. [Sha85]). If π1 = σ1 × · · · × σt then we have

L(s,π1 × π2)=
t∏

i=1

L(s, σi × π2),

ε(s,π1 × π2;ψ)=
t∏

i=1

ε(s, σi × π2;ψ)

and therefore also

(1.8) γ (s,π1 × π2;ψ)=
t∏

i=1

γ (s, σi × π2;ψ).
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We recall Shahidi’s normalization for the intertwining operators. Let σ = σ1 ⊗
· · · ⊗ σt ∈ Rpi(M), w ∈W(M) (considered as a permutation of [1, t] as before) and λ=
(λ1, . . . , λt) ∈Ct = a∗M,C. Let

CM(w : σ,λ;ψ)=
∏

1≤i<j≤t
w(i)>w(j)

ωσj
(−1)ni γ

(
λi − λj, σi × σ∨

j ;ψ
)

and

(1.9) cs(σ,λ)=
∏

i<j

L
(
λi − λj + 1, σi × σ∨

j

)
.

Define the normalized intertwining operators

N(w,σ,λ)=CM(w : σ,λ;ψ) M(w,σ,λ) : IM(σ,λ)→ IwMw−1(wσ,wλ)

and (in the case σ ∈�M
gen)

N
(
w, W (σ ), λ

)=CM(w : σ,λ;ψ) M
(
w, W (σ ), λ

) : IM

(
W (σ ), λ

)

→ IwMw−1

(
W (wσ),wλ

)
.

Suppose that σ ∈�M
gen. It follows from the results of Shahidi (cf. [Sha90])3 that we

have the identity of meromorphic functions in λ ∈ a∗M,C

(1.10) W(wσ,wλ) ◦N
(
w, W (σ ), λ

)=W(σ,λ),

and in particular

We(wσ,wλ) ◦N
(
w, W (σ ), λ

)=We(σ,λ).

We also have

N(w2w1, σ,λ)=N(w2,w1σ,w1λ) ◦N(w1, σ,λ)

for any w1 ∈W(M) and w2 ∈W(w1Mw−1
1 ). In particular, for any w ∈W(M)

N(w,σ,λ)−1 =N
(
w−1,wσ,wλ

)
.

3 The representatives for W specified in [Sha90] are different from ours. We refer the reader to the earlier paper
[Sha84] where the case of GL(n) is considered.



202 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

1.5. Irreducibility of parabolic induction. — We recall the following basic and well-
known properties of γ -factors combining the results of [JPSS83, §8] and [MW89, §I.6].4

Lemma 1.1. — Suppose that δ = δ1 ⊗ δ2 ∈�M
usqr (M maximal). Then

(1) L(s, δ1 × δ∨2 ) and γ (s, δ1 × δ∨2 ;ψ)−1 are holomorphic for Re s > 0. Consequently,

γ (s, δ1 × δ∨2 ;ψ) is holomorphic for Re s < 1.

(2) L(s, δ1 × δ∨2 ), or equivalently, γ (s, δ1 × δ∨2 ;ψ)−1, has a pole, necessarily simple, at

s= 0 if and only if δ2 = δ1.

(3) M(wM, δ, λ) and N(wM, δ,−λ) are holomorphic for Re λ1 > Re λ2.

(4) Suppose that Re λ1 > Re λ2. Then π := I(δ, λ) is reducible if and only if γ (λ1 −
λ2, δ1 × δ∨2 ;ψ) = ∞, i.e., if and only if L(1 − λ1 + λ2, δ∨1 × δ2) = ∞. In this

case, at least in the p-adic and complex cases,5 π has length two and admits a unique

irreducible subrepresentation σ , which is generic. We have σ = Ker M(wM, δ, λ) =
Im N(wM, δ, λ)−1 = Im N(w−1

M ,wMδ,wMλ).

In particular, in the p-adic case, the following conditions are equivalent for σ1, σ2 ∈�cusp (not necessarily

unitary)

(1) γ (0, σ1 × σ2
∨;ψ)= 0.

(2) γ (1, σ1 × σ2
∨;ψ)=∞.

(3) σ2 = σ1.

By the Langlands classification, for any π ∈ � there exists a unique triplet
(M, σ,λ) (Langlands data) where σ ∈ �M

temp and λ ∈ (a∗M)+ such that π is the unique
irreducible quotient of I(σ,λ). We write π = LQ(σ,λ) in this case. Recall that CM(wM :
σ, ·;ψ)−1 is holomorphic at λ and

(1.11) π ∈�gen ⇐⇒ CM(wM : σ,λ;ψ)−1 �= 0 ⇐⇒ I(σ,λ) is irreducible.

See [CS98, §5] for a more general statement.
Alternatively, we can write any π ∈�gen as I(δ, λ) where δ ∈�M

usqr and λ ∈ (a∗M)+,
i.e., λ1 ≥ · · · ≥ λt .

Let π ∈�gen. Write π = σ1 × · · · × σt where σ1 ⊗ · · · ⊗ σt ∈�M
sqr. Then L(s,π ×

π∨)=∏
1≤i,j≤t L(s, σi × σ∨

j ). The latter is holomorphic at s = 1 by Lemma 1.1 and the
irreducibility of π . It follows that

(1.12) L(s,π × π∨) is holomorphic at s= 1 for any π ∈�gen.

We write �unr for the class of unramified representations in �, i.e., those which
admit a non-zero spherical (i.e., K-fixed) vector, which is necessarily unique up to a scalar.

4 Note the following typo in [JPSS83, Proposition 8.1]: L(s,π × σ) should be replaced by L(s,π × σ∨). Also note
that our convention for the normalized intertwining operator N is different from [MW89].

5 Probably also in the real case, but we haven’t been able to find a reference for that.
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Note that π ∈�unr if and only if π∨ ∈�unr. For any bi-K-invariant f ∈ S (G) and π ∈
�unr, we write f̂ (π) for the scalar by which π(f ) acts on the spherical vector. This is
called the Harish-Chandra transform. More explicitly, if π is the unramified subquotient
of I(1M0, λ) then

f̂ (π)=
∫

G
f (g)e〈ρ0+λ,H(g)〉 dg.

Suppose now that F is p-adic. For any π ∈� there exists M and σ = σ1 ⊗ · · · ⊗
σt ∈�M

cusp such that π is a subquotient of I(σ ). The multiset suppc(π) = {σ1, . . . , σt} is
determined by π and is called the supercuspidal support of π . We say that π is pure (of type
σ ) if there exists a divisor m of n and a representation σ ∈ �Gm

cusp such that suppc(π) ⊆
σ [Z] := {σ [k] : k ∈ Z}. Note that if π is pure of type σ then π ∈�τ if and only if σ ∈�τ .
This follows for instance from the Zelevinsky classification. We say that π1, π2 ∈� are
disjoint if the sets suppc(π2) and σ [Z] are disjoint for every σ ∈ suppc(π1). If π1, π2 are
disjoint then π1 × π2 is irreducible. Any π ∈� can be written as δ1 × · · · × δt where the
δi ’s are pure and pairwise disjoint. The δi ’s are unique up to permutation and are called
the pure components of π .

For any σ ∈�cusp and a, b ∈ Z with a≤ b the induced representation σ [a] × · · · ×
σ [b] admits a unique irreducible quotient �σ ([a, b]). We have �σ ([a, b]) ∈ �sqr. Con-
versely, any π ∈ �sqr is of the form above. Also, �σ1[a1, b1] = �σ2[a2, b2] if and only
if σ1[a1] = σ2[a2] and σ1[b1] = σ2[b2]. We have �σ ([a, b])τ = �στ ([a, b]) and therefore
�σ ([a, b]) ∈�τ

sqr if and only if σ ∈�τ
cusp.

Let σ ∈�Gd
cusp. The Jacquet module of �σ ([a, b]) was described by Zelevinsky as

follows [Zel80, §9.5]. Let M=Mκ where κ = (n1, . . . , nt). If d does not divide ni for some
i then rM(�σ ([a, b]))= 0. Otherwise,

(1.13) rM

(
�σ

([a, b]))=
t⊗

i=1

�σ

([ai, bi]
)

where b1 = b, d(bi − ai + 1)= ni, i = 1, . . . , t and bi+1 = ai − 1, i = 1, . . . , t − 1.
Let δi ∈ �

Gni
sqr , i = 1, 2. We write δ1 � δ2 if for some σ ∈ �cusp and integers a1 ≤

a2 ≤ b1 ≤ b2 we have δ1 = �σ ([a1, b1]) and δ2 = �σ ([a2, b2]). If moreover δ1 �= δ2 then
we write δ1 � δ2. It follows from the above description of the Jacquet module that δ1 � δ2

if and only if there exist Levi subgroups Mi of Gni
, i = 1, 2 (not necessarily proper) and

δ̃ ∈�sqr such that rM1(δ1) = δ̃ ⊗ · · · ⊗ · · · and rM2(δ2) = · · · ⊗ · · · ⊗ δ̃. Note that when
δ1 = δ2, this condition is only possible for M1 =M2 =Gn1 =Gn2 .

2. Bessel distributions

2.1. General setup and basic properties. — We first recall and slightly extend the notion
of Bessel distributions (cf. [JLR04, §4.1]). Let π ∈ R(G). The map � �→ (f �→ � ◦ π(f ))
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defines an equivalence of representations

π∗ �HomG

(
S (G)r,π∨)

where S (G)r stands for S (G) with the right G-action and G acts on the right-hand side
through its left action on S (G).

Let D = (π, π̂, (·, ·)) be a dual couple (see Section 1.3) and recall the ensuing
equivalence �D : π∨ → π̂ . For � ∈ π∗ and �̂ ∈ π̂∗ define

B
�,�̂

D (f )= �̂
(
�D

(
� ◦ π(f )

))
.

This is a distribution in f ∈ S (G), which we call the Bessel distribution (with respect to
D, �, �̂).

If D = (π, π̂, (·, ·)) is a dual couple then we define the opposite dual couple to be
D◦ = (π̂,π, (·, ·)◦) where (v̂, v)◦ = (v, v̂). If χ is a character of E∗ (viewed as a character
of G through det) then (·, ·) also gives a duality between π · χ and π̂ · χ−1. We write
D · χ = (π · χ, π̂ · χ−1, (·, ·)).

Given a dual couple D = (σ, σ̂ , (·, ·)) with respect to M we can define the induced
couple I(D, λ)= (I(σ,λ), I(σ̂ ,−λ), I(·, ·)) for any λ ∈ a∗M,C where

(ϕ, ϕ̂)I(·,·) =
∫

P\G

(
ϕ(g), ϕ̂(g)

)
dg.

(This depends implicitly on ψ through the measure on P\G.)
We record some simple formal properties of Bessel distributions in the following

Lemma.

Lemma 2.1. — Let D = (π, π̂, (·, ·)) be a dual couple and f ∈ S (G). Then

(1) Let f ∨(g)= f (g−1). Then

B
�,�̂

D ( f )=B
�̂,�

D◦
(

f ∨
)
.

(2) For any g, g′ ∈G we have

(2.1) B
�◦π(g),�̂◦π̂ (g′)
D ( f )=B

�,�̂

D
(
L(g)R

(
g′
)

f
)
.

(3) Similarly, for any f1, f2 ∈ S (G) we have

(2.2) B
�◦π( f1),�̂◦π̂ ( f2)

D ( f )=B
�,�̂

D
(

f1 ∗ f ∗ f ∨2
)
.

(4) For any character χ of E∗ we have

(2.3) B
�,�̂

D·χ( f )=B
�,�̂

D ( f · χ).
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(5) If (A, Â) : D1 → D2 = (π2, π̂2, (·, ·)2) is an equivalence of dual couples, � ∈ π∗
2 and

�̂ ∈ π̂∗
2 then

(2.4) B
�◦A,�̂◦Â
D1

=B
�,�̂

D2
.

(6) Suppose that π ∈�unr and let v0 and v̂0 be non-zero spherical vectors in π and π̂ respec-

tively. Then for any bi-K-invariant f we have

(2.5) B
�,�̂

D (f )= f̂ (π)
�(v0)�̂(v̂0)

(v0, v̂0)
.

We say that � ∈ π∗ is injective if for every non-zero v ∈ π there exists g ∈G such that
�(π(g)v) �= 0. In other words, the intertwining map π → C∞(G) given by the general-
ized matrix coefficients defined by � is injective. This is automatic if π ∈� and � �= 0.

Lemma 2.2.

1. Suppose that D = (π, π̂, (·, ·)) is a dual couple, 0 �= � ∈ π∗ and �̂ ∈ π̂∗ is injective.

Then B
�,�̂

D �≡ 0.

2. Suppose that Di = (πi, π̂i, (·, ·)i), i = 1, . . . , r are dual couples with pairwise inequiv-

alent π1, . . . , πr ∈ �. Let 0 �= �i ∈ π∗
i , 0 �= �̂i ∈ π̂∗

i , i = 1, . . . , r. Then the Bessel

distributions B
�i,�̂i

Di
, i = 1, . . . , r are linearly independent.

Proof. — To show the first part, take any f ∈ S (G) such that v∨ := � ◦ π(f ) ∈ π∨

is non-zero. Since �̂ ◦�D ∈ π∨∗ is injective, there exists g ∈ G such that B
�,�̂

D (R(g)f ) =
�̂(�D(π∨(g)v∨)) �= 0.

To show the second part, assume that
∑r

i=1 ai B
�i,�̂i

Di
= 0 with ai ∈ C. Let D =

(π, π̂, (·, ·))=⊕
Di , �=⊕r

i=1 ai �i ∈ π∗ and �̂=⊕r

i=1 �̂i ∈ π̂∗. Then �̂ is injective since

πi are irreducible and pairwise inequivalent and B
�,�̂

D =∑r

i=1 ai B
�i,�̂i

Di
= 0. By the first

part, �= 0 and therefore ai = 0 for all i. �

Suppose now that π is a unitary representation of G on a Hilbert space (H, (·, ·)).
Let V be the space of smooth vectors in H. Assume that V is of finite length. Let π̂ be the
representation on the conjugate Hilbert space Ĥ and let V̂⊆ Ĥ be the image of V under
the canonical conjugate-linear automorphism H→ Ĥ. Note that V̂ coincides with the
space of smooth vectors of π̂ . Let D = (π, π̂, (·, ·)) so that �D : π∨ → π̂ is the restriction
of the canonical isomorphism H∗ → Ĥ. We say that an orthonormal basis {ei} of H is
admissible if it is contained in V and for any v ∈V we have v =∑

i(v, ei)ei where the sum
has only finitely many non-zero terms in the p-adic case and

∑
i |(v, ei)|μ(ei) converges

for any continuous seminorm μ in the Archimedean case. For instance, the union over
γ ∈ K̂ of orthonormal bases of Vγ is an admissible orthonormal basis. Suppose that {ei}
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is an admissible orthonormal basis of H. We write {êi} for {ei} viewed as an orthonormal
basis of Ĥ. Then for any � ∈V∗, �̂ ∈ V̂∗ we have

B
�,�̂

D (f )=
∑

i

�
(
π(f )ei

)
�̂(êi)

where the sum converges absolutely. Indeed, {êi} is also admissible so that �D[�◦π(f )] =∑
i �(π(f )ei)êi in V̂. Applying �̂ we get the above.

Consider now a family of induced representations. Let σ ∈ R(M) and let V =
I(σ ). The map a∗M,C ×G×V→V given by (λ, g, v) �→ I(g, σ,λ)v is continuous, and is
analytic in λ. In addition, in the Archimedean case, for any compact set C⊆ a∗M,C and a
continuous seminorm ν on V there exists N such that

v �→ sup
λ∈C,g∈G

ν(I(g, σ,λ)v)

‖g‖N

is a continuous seminorm on V, where ‖g‖ = max(|gi,j|, |det g|−1). It easily follows that
for any f ∈ S (G) and v ∈ V the map a∗M,C → V defined by λ �→ I(f , σ,λ)v is analytic.
Moreover, for any � ∈V∗ the map λ �→ � ◦ I(f , σ,λ) ∈V∨ is analytic.

We say that a family �(λ) ∈ I(σ,λ)∗, λ ∈ a∗M,C is meromorphic if for any λ0 ∈ a∗M,C

there exists a connected neighborhood U and a non-zero analytic function p : U → C
such that for all v ∈V the function p(λ)�(λ)(v) is analytic on U.

Lemma 2.3. — Let D = (σ, σ̂ , (·, ·)) be a dual couple with respect to M and let �(λ)

(resp. �̂(λ)) be a meromorphic family in I(σ,λ)∗ (resp. I(σ̂ ,−λ)∗). Then for any f ∈ S (G) the

expression Dλ(f ) =B
�(λ),�̂(λ)

I(D,λ) (f ) is a meromorphic function of λ. Suppose further that Dλ is holo-

morphic at λ0 (i.e., for every f ∈ S (G), Dλ(f ) is holomorphic at λ0), �̂ is holomorphic at λ0 and

�̂(λ0) ∈ I(σ̂ ,−λ0)
∗ is injective. Then �(λ) is also holomorphic at λ= λ0.

Proof. — For the first part we may assume that �(λ) and �̂(λ) are analytic. By the
remarks above, the expression

�̂(λ2) ◦�I(D)

[
�(λ1) ◦ I(f , σ,λ3)

]= �(λ1) ◦�I(D◦)
[
�̂(λ2) ◦ I

(
f ∨, σ̂ ,−λ3

)]

is separately holomorphic in λ1, λ2, λ3. Therefore, by Hartogs’ Theorem, it is jointly
holomorphic in λ1, λ2, λ3, and in particular, holomorphic for λ1 = λ2 = λ3 = λ.

We prove the second part. Assume on the contrary that �(λ) is not holomorphic
at λ = λ0. Then for some generic direction μ ∈ a∗M,C, the linear form �(λ0 + sμ) is a
meromorphic function in s which is holomorphic at some punctured disc centered at
s = 0 and has a pole at s = 0. Therefore, there exists m > 0 such that sm �(λ0 + sμ) is
holomorphic near s = 0 and its value L at s = 0 is a non-zero element of V∗. However,
for any f ∈ S (G)
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B
L,�̂(λ0)

I(D,λ0)(f )= [
smDλ0+sμ(f )

]
s=0
= 0

since Dλ is holomorphic at λ= λ0. This contradicts Lemma 2.2. The lemma follows. �

2.1.1. Next we consider relative Bessel distributions on the symmetric space X. Let

EG

(
X,π∗)= {

α :X→ π∗ : αx•g = αx ◦ π(g) for all g ∈G and x ∈X
}
.

Here, the value of α at x ∈ X is denoted by αx. In particular, if α ∈ EG(X,π∗) then
αx ∈HomGx(π,C) for all x ∈X.

Definition 2.4. — We say that π ∈ R(G) is Gx-distinguished if HomGx(π,C) �= 0. The

elements of HomGx(π,C) are called (local) unitary periods.

Thus, an element of EG(X,π∗) is a compatible family of local unitary periods.
More precisely, for every x ∈X and g ∈G the map � �→ � ◦ π(g) defines an isomorphism

(
π∗)Gx =HomGx(π,C)�HomGx•g (π,C)= (

π∗)Gx•g

.

With these identifications, the map α �→ (αx)x∈X/G is an isomorphism

EG

(
X,π∗)�

⊕

x∈X/G

(
π∗)Gx

.

We can view EG(X,π∗) slightly differently as follows. For any α ∈ EG(X,π∗) and � ∈
S (X), let �� α ∈ π∨ be given by

(2.6) �� α(v)=
∫

X
�(x)αx(v) dx, � ∈ S (X), v ∈ π.

Then the map

α �→ (� �→�� α)

defines an isomorphism of vector spaces EG(X,π∗)→HomG(S (X),π∨) (with the right
action of G on S (X)), i.e.,

( f ∗�)� α = π∨(f )(�� α)

for any � ∈ S (X) and f ∈ S (G).
The above isomorphism is compatible with the identifications

EG

(
X,π∗)�

⊕

x∈X/G

(
π∗)Gx �

⊕

x∈X/G

HomG

(
S
(
Gx\G)

,π∨)

�HomG

(
S (X),π∨)
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where for the middle one, we use the identification
(
π∗)Gx � [

HomG

(
S (G)r,π∨)]Gx �HomG

(
S
(
Gx\G)

,π∨)

obtained by viewing S (Gx\G) as the left Gx-coinvariants of S (G).
If π1,π2 ∈ R(G), T : π1 → π2 is an intertwining operator and α ∈ EG(X,π∗

2 ) then
we write α ◦T ∈ EG(X,π∗

1 ) for the equivariant map x �→ αx ◦T.
The relative Bessel distribution associated with a dual couple D = (π, π̂, (·, ·)), a

linear form �̂ ∈ π̂∗ and α ∈ EG(X,π∗) is defined by

B̃
α,�̂

D (�)= �̂
(
�D(�� α)

)
, � ∈ S (X).

As before, for any g ∈G we have

(2.7) B̃
α,�̂◦π̂ (g)

D (�)= B̃
α,�̂

D
(
R(g)�

)

where R(g)�(x)=�(x • g). Similarly, for any f ∈ S (G) we have

(2.8) B̃
α,�̂◦π̂ (f )

D (�)= B̃
α,�̂

D (f ∗�).

Moreover, if (A, Â) : D1 → D2 = (π2, π̂2, (·, ·)2) is an equivalence of dual couples,
α ∈ EG(X,π∗

2 ) and �̂ ∈ π∗
2 then we have

(2.9) B̃
α◦A,�̂◦Â
D1

= B̃
α,�̂

D2
.

Finally, if π ∈�unr, F is p-adic, E/F is unramified and v0 and v̂0 are non-zero spherical
vectors in π and π̂ respectively, then

(2.10) B̃
α,�̂

D
(
f ∨ ∗ 1X∩K

)= volX(X∩K)f̂ (π)
αe(v0)�̂(v̂0)

(v0, v̂0)

for any bi-K-invariant f .
The relative Bessel distribution on X can be expressed as a sum over the G-orbits

in X of Bessel distributions on G as follows. For any � ∈ S (X) and x ∈ X there exists
f ∈ S (G) such that

�(x • g)=
∫

Gx

f (hg) dh, g ∈G.

In this case, we say that � is represented by f (or that f represents �) at x. We say that
the family f x ∈ S (G), x ∈X represents � if f x represents � at x for all x. In this case, for
any v ∈ π we have

(�� α)(v)=
∑

x∈X/G

∫

Gx\G
�(x • g)αx•g(v) dg
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=
∑

x∈X/G

∫

Gx\G

∫

Gx

f x(hg)αx

(
π(g)v

)
dh dg

=
∑

x∈X/G

∫

G
f x(g)αx

(
π(g)v

)
dg =

∑

x∈X/G

αx

(
π
(
f x

)
v
)
.

In particular, αx ◦ π(f x) does not depend on the choice of f x nor on the representative x.
It follows that

(2.11) B̃
α,�̂

D (�)=
∑

x∈X/G

B
αx,�̂

D
(
f x

)
.

We conclude from Lemma 2.2 that

(2.12) if π ∈� and α and �̂ are non-zero then B̃
α,�̂

D is non-zero.

2.2. Normalized Bessel distributions. — Define the Whittaker couple W(π) associated
to π ∈�gen by W(π) = (W ψ(π), W ψ−1

(π∨), [·, ·]ψπ ) where the pairing [·, ·] = [·, ·]ψπ is
defined in Appendix A. It will be useful to adopt the following notational convention.
Whenever an object is related to a contragredient representation (on G or M), the addi-
tive character which is used to define it is implicitly assumed to be ψ−1 (rather than ψ ).
Analogously for G′ and M′. Thus, W (π∨)= W ψ−1

(π∨), We(σ
∨, λ)=Wψ−1

e (σ∨, λ), etc.
Hopefully this abuse of notation will not create any ambiguity.

Given π ′ ∈�′
gen, we define the normalized local Bessel distribution Bπ ′ on G′ associated

to π ′ by

Bπ ′
(

f ′
)=B

δπ ′
w0

,δπ ′∨
e

W(π ′)
(

f ′
)
.

By (2.1), Bπ ′(f
′) belongs to the space S∗(G′)(tU′

0×U′
0,tψ ′

0×ψ ′−1
0 ) of distributions D′ on G′

satisfying

D′(L(u1)R(u2)f
′)= tψ ′

0(u1)ψ
′
0(u2)

−1D′( f ′
)

for any f ′ ∈ S
(
G′), u1 ∈ tU′

0, u2 ∈U′
0

where tψ ′
0 is the character on tU′

0 given by tψ ′
0(

tu)=ψ ′
0(u), u ∈U′

0.
More generally, for any σ ′ ∈�M′

gen define a holomorphic family of Bessel distribu-
tions

B
(

f ′ : σ ′, λ
)=B

W(w0:σ ′,λ),We(σ
′∨,−λ)

I(W(σ ′),λ)

(
f ′
)

f ′ ∈ S
(
G′), λ ∈ a

∗
M,C.

By Proposition A.2, we have an equivalence of dual couples

(2.13) �
(
σ ′, λ

)= (
W

(
σ ′, λ

)
,W

(
σ ′∨,−λ

)) : I(W(
σ ′), λ

)→W
(
I
(
σ ′, λ

))

whenever I(σ ′, λ) is irreducible.
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Applying the relation (2.4), we infer that

(2.14) B
(
σ ′, λ

)= BI(σ ′,λ)

provided that I(σ ′, λ) ∈�′.

Remark 2.5. — It is likely that even if I(σ ′, λ) is reducible, we still have B(σ ′, λ)=
Bπ ′ where π ′ is the generic subquotient of I(σ ′, λ). However, we will not discuss this
question here.

Let χ ′ be a character of F∗. We also view χ ′ as a character of G′ via the deter-
minant. For any function f ′ on G′ set f ′χ ′(g) = χ ′(g)f ′(g), g ∈ G′. For π ′ ∈�′

gen let Aπ ′
χ ′ :

W (π ′) · χ ′ → W (π ′ · χ ′) be the isomorphism defined by Aπ ′
χ ′(W)=Wχ ′, W ∈ W (π ′).

Then by (A.3), (Aπ ′
χ ′, Aπ ′∨

χ ′−1) :W(π ′) · χ ′ →W(π ′ · χ ′) is an equivalence. Thus, by (2.4)
we get

χ ′(w0)B
δπ ′
w0

,δπ ′∨
e

W(π ′)·χ ′ = Bπ ′·χ ′ .

Combined with (2.3), we infer that

(2.15) Bπ ′·χ ′
(

f ′
)= χ ′(w0)Bπ ′

(
f ′χ ′

)

for any f ′ ∈ S (G′).
Assume now that E/F is inert. Let

G′± = {
g ∈G′ : η(w0g)=±1

}

so that G′ is the disjoint union of the open cosets G′±. Thus,

S
(
G′)= S

(
G′+)⊕ S

(
G′−)

and

(2.16) S
(
G′±)= {

f ∈ S
(
G′) : fη =±η(w0)f

}
.

The following property of the support of the Bessel distribution will be useful for us.

Lemma 2.6. — For any π ′ ∈�′
gen we have Bπ ′ |S (G′+) �≡ 0. Moreover, Bπ ′ |S (G′−) ≡ 0 if

and only if π ′ � π ′ · η.

Proof. — If π ′ � π ′ · η then it follows from (2.15) and (2.16) that Bπ ′ |S (G′−) ≡ 0.
Since Bπ ′ �≡ 0, it remains to see that if π ′ �� π ′ · η then Bπ ′ is non-zero on each of
S (G′±). Since Bπ ′ and Bπ ′·η are linearly independent (Lemma 2.2) there exists f ′ ∈
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S (G′) such that Bπ ′(f
′) �= 0 and Bπ ′·η(f ′) = 0. By (2.15), Bπ ′(f

′
η ) = 0 as well. Then

f ′± := f ′ ± η(w0)f
′

η ∈ S (G′±) and Bπ ′(f
′
±)= Bπ ′(f

′) �= 0 as required. �

Finally, suppose that F is p-adic, π ′ ∈�′
gen,unr and ψ ′ has conductor OF. Then by

(A.4) and (2.5) we get

(2.17) Bπ ′(1K′)= L
(
1,π ′ × π ′∨)−1

.

3. Local identities of Bessel distributions

In this section, we describe a family of Gx-invariant linear forms characterized by
an identity of local Bessel distributions for matching functions. These Gx-invariant forms
will eventually appear as the local factors of the global unitary period integral.

We first recall the definition of functions with matching orbital integrals.

3.1. Matching of orbital integrals. — Denote by γ : M′
0 → {±1} the transfer factor

defined by

γ (a)= η(a1)η
2(a2) . . . ηn(an), a= diag(a1, . . . , an) ∈M′

0.

Note that this differs from the transfer factor defined by Jacquet in [Jac05a] by a factor
of ηn(a). This is motivated by [Off09, Theorem 10.1].

In the inert case, we say that � ∈ S (X) and f ′ ∈ S (G′) have matching orbital integrals

(or simply, � and f ′ match), and we write �←→ f ′, if for every a ∈M′
0 =X∩M0 we have

(3.1) γ (a)

∫

U′
0

∫

U′
0

f ′
(

tu1au2

)
ψ ′

0(u1u2) du1 du2 =
∫

U0

�(a • u)ψ0(u) du.

Similarly, for any x ∈ X we say that f ∈ S (G) and f ′ ∈ S (G′) have x-matching orbital
integrals and we write f

x←→ f ′ if for every a ∈M′
0 we have

γ (a)

∫

U′
0

∫

U′
0

f ′
(

tu1au2

)
ψ ′

0(u1u2) du1 du2

=
{∫

U0

∫
Gx f (hgu) dh ψ0(u) du if a= x • g for some g ∈G,

0 if a �∈ x •G.
(3.2)

In the split case, we write �←→ f ′ if �(tg, g) = f ′(g), g ∈ G′, so that (3.1) is satisfied.
Similarly, for any f ∈ S (G) and h ∈G′ we write

f
(h,t h)←→

(
g′ �→

∫

G′
f
(
y tg′, t(hy)−1

)
dy

)
.

Once again (3.2) is satisfied.
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Back in the general case, we observe that for every x ∈X and g ∈G we have

(3.3) L(g)f
x←→ f ′ if and only if f

x•g←→ f ′.

Let

X[x] = {
y ∈X : η(y)= η(x)

}

and

G′[x] = {
g ∈G′ : η(g)= η(x)

}
.

In the split case, η is trivial and therefore X[x] = X and G′[x] = G′ for all x ∈ X. In
the inert case, we get a bisection of both X and G′ into two open subsets. In particular,
f ′1G′[x] ∈ S (G′) whenever f ′ ∈ S (G′). Note that for any x ∈X

(3.4) f
x←→ f ′ =⇒ f

x←→ f ′1G′[x].

Observe that X[x] = x•G in the p-adic case, in the split case, and in the case where
E/F=C/R, n= 2 and Gx is quasi-split. Thus, in the split or non-Archimedean case, for
� ∈ S (X) represented by the family (f x)x∈X and f ′ ∈ S (G′) we have

(3.5) �←→ f ′ if and only if f x x←→ f ′1G′[x], ∀x ∈X.

However, this is not true in the case C/R, for which there are n+ 1 orbits of G on X,
according to signature.

We recall the following key results

Theorem 3.1 (See [Jac03b, AG, Jac05a]).

• Smooth transfer: For every � ∈ S (G) there exists f ′ ∈ S (G′) and for every f ′ ∈ S (G′)
there exists � ∈ S (X) such that �←→ f ′. Thus, for every x ∈ X and f ∈ S (G) there

exists f ′ ∈ S (G′[x]) such that f
x←→ f ′. Conversely, if X[x] = x •G then for every f ′ ∈

S (G′[x]) there exists f ∈ S (G) such that f
x←→ f ′.

• The Fundamental Lemma: Assume that F is non-Archimedean of odd residual character-

istic, E/F is unramified and ψ ′ has conductor OF. Suppose that f ∈ S (G) is bi-K-invariant

and let f ′ be the bi-K′-invariant function that is the image of f under the base change homo-

morphism of Hecke algebras. Then for x ∈X∩K we have f
x←→ f ′. In particular

(3.6) 1K
x←→1K′ .
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In the split case this is straightforward from the definitions. In the inert case, the
first part was proved by Jacquet in the non-Archimedean case [Jac03b, Theorem 3] and
by Aizenbud-Gourevitch in the Archimedean case [AG]. Note that the last assertion in
the first part follows by taking �←→ f ′ and any f representing � at x.

Along with the relations (3.1), analogous relations for the singular orbital integrals
are proved as well [Jac03a, AG].

The fundamental lemma was originally proved by Ngô in the case of positive char-
acteristic, first for the unit element [Châ99] and then in general [Ngô99]. Later on, by a
completely different approach, Jacquet gave a proof which is also valid in the character-
istic zero case, first for the unit element [Jac04b] and then in general [Jac05a].

Let S∗(X)(U0,ψ−1
0 ) denote the space of distributions on X which are right (U0,ψ−1

0 )-
equivariant. We say that D ∈ S∗(X)(U0,ψ−1

0 ) and D′ ∈ S∗(G′)(tU′
0×U′

0,tψ ′
0×ψ ′−1

0 ) match and we
write D←→D′ if D(�)=D′(f ′) whenever �←→ f ′. In the p-adic case, it follows from
smooth transfer and the principle of localization [GK75] that the relation D ←→ D′

defines an isomorphism of vector spaces

S∗(X)(U0,ψ−1
0 ) � S∗(G′)(tU′

0×U′
0,tψ ′

0×ψ ′−1
0 )

.

3.2. Quadratic base change. — We recall some properties of the functorial transfers
bc :�′ →�τ given by quadratic base change (cf. [AC89, Ch. 1, §§6, 7]) and ai :�Gn →
�′G′

2n given by automorphic induction (cf. [HH95, Hen10]).
For any π ′

i ∈�
G′

ni , i = 1, 2 we have

L
(
s, bc

(
π ′

1

)× bc
(
π ′

2

))= L
(
s,π ′

1 × π ′
2

)
L
(
s,π ′

1 × π ′
2 · η

)

and

ε
(
s, bc

(
π ′

1

)× bc
(
π ′

2

);ψ)= λ
−n1n2
ψ ′ ε

(
s,π ′

1 × π ′
2;ψ ′)ε

(
s,π ′

1 × π ′
2 · η;ψ ′),

where λψ ′ = λ(E/F,ψ ′) is Langlands’s constant. Consequently,

(3.7) γ
(
s, bc

(
π ′

1

)× bc
(
π ′

2

);ψ)= λ
−n1n2
ψ ′ γ

(
s,π ′

1 × π ′
2;ψ ′)γ

(
s,π ′

1 × π ′
2 · η;ψ ′).

Recall that bc is onto. For any π ∈�τ , we denote by B(π)= bc−1({π}) the fiber
of π under bc. The set B(π) is finite and we denote its cardinality by bπ . For any π ′ ∈�′

we have bc(π ′) = bc(π ′ · η) and therefore, the group {1F∗, η} acts on the set B(π). We
denote by [B](π) the set of {1F∗, η}-orbits in B(π) and by [b]π the cardinality of [B](π).

In the split case, bc(π ′)= π ′ ⊗ π ′ for any π ′ ∈�′ and in particular bc is one-to-
one. From now on, assume that E/F is inert.

Let δ ∈�τ
sqr. Then there exists δ′ ∈�′

sqr such that δ′ �� δ′ · η and B(δ)= {δ′, δ′ · η}.
In particular, bδ = 2 and [b]δ = 1. Moreover, in the p-adic case δ ∈ �cusp if and only
if δ′ ∈ �′

cusp. To describe the situation for tempered representations, we consider an-
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other example first. Let δ ∈ �sqr \ �τ
sqr. Then δ × δτ ∈ �τ

temp and B(δ × δτ ) is a sin-
gleton {δ′}, with δ′ ∈ �′

sqr. This δ′ is the automorphic induction of δ, denoted ai(δ). In
particular, ai(δ) � ai(δ) · η = ai(δτ ) and we have bδ×δτ = [b]δ×δτ = 1. Again, in the p-
adic case δ ∈�cusp if and only if ai(δ) ∈�′

cusp. In general, any π ∈�temp is of the form
δ1 × · · · × δt with δ1, . . . , δt ∈�usqr which are uniquely determined up to a permutation.
Thus any π ∈�τ

temp can be written as π = δ × σ × σ τ where δ = δ1 × · · · × δr ∈�Gl ,τ
temp,

σ = σ1 × · · · × σs ∈�Gk
temp with δ1, . . . , δr ∈�τ

usqr, σ1, . . . , σs ∈�usqr \�τ
usqr. The δi ’s and

the pairs {σj, σ τ
j }, j = 1, . . . , s are uniquely determined by π up to permutation. We call

the integer 0 ≤ k ≤ n/2 the τ -Witt index of π and denote it by w̃(π). Note that in the
Archimedean case, r + 2s = n, i.e., the δi ’s and σj ’s are characters of C∗, with δi unrami-
fied, and w̃(π)= s.

In analogy with quadratic forms, we say that π is totally τ -isotropic (resp., τ -
anisotropic) if w̃(π) = n/2 (resp., w̃(π) = 0). We have π ′ ∈ B(π) if and only if π ′ �
δ′ × ai(σ ) where ai(σ )= ai(σ1)× · · · × ai(σs) and δ′ ∈ B(δ), i.e. δ′ = δ′1 × · · · × δ′r where
δ′i ∈ B(δi), i = 1, . . . , r. Writing

δ =
k1︷ ︸︸ ︷

�1 × · · · ×�1×· · · ×
km︷ ︸︸ ︷

�m × · · · ×�m

with �i ∈�τ
usqr distinct and k1 + · · · + km = r and fixing a choice �′

i ∈ B(�i) for each i,
any δ′ ∈ B(δ) can be written uniquely as

j1︷ ︸︸ ︷
�′

1 × · · · ×�′
1×

k1−j1︷ ︸︸ ︷
�′

1 · η× · · · ×�′
1 · η×· · · ×

jm︷ ︸︸ ︷
�′

m × · · · ×�′
m

×
km−jm︷ ︸︸ ︷

�′
m · η× · · · ×�′

m · η
where 0≤ ji ≤ ki , i = 1, . . . , m. In particular bπ = (k1+1) . . . (km+1)≤ 2r . Thus, bπ = 2r

if and only if m = r, i.e., if and only if δ1, . . . , δr are distinct, and bπ = 1 if and only if
w̃(π)= n/2 (i.e. r = 0).

For any π ′ ∈�′
temp we define w̃′(π ′) (which we call the η-Witt index of π ′) to be

the maximal integer 0≤ k ≤ n/2 such that π ′ = ai(δ)×σ ′ where δ ∈�Gk
temp. In particular,

w̃′(π ′)= n/2 (and we say that π ′ is totally η-isotropic) if and only if π ′ � π ′ · η (in which
case n is even). In this case, π ′ = ai(δ) for δ ∈�

Gn/2
temp (not necessarily unique) and bc(π ′)=

δ× δτ . Conversely, if π = δ× δτ for some δ ∈�
Gn/2
temp then ai(δ) depends only on π and it

is the unique totally η-isotropic element π ′ ∈ B(π).
Note that for any π ∈�τ

temp we have

(3.8) w̃(π)= min
π ′∈B(π)

w̃
′(π ′).

Now let π ∈ �τ be of the form LQ(σ,λ) where σ ∈ �M
temp and λ ∈ (a∗M)+.

The uniqueness part of the Langlands classification implies that σ ∈ �M,τ . We have
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B(π) = {LQ(σ ′, λ) : σ ′ ∈ B(σ )} and in particular bπ = bσ = ∏t

i=1 bσi
where σ =

σ1 ⊗ · · · ⊗ σt and σi ∈�
Gni

,τ

temp , i = 1, . . . , t. Set w̃(π) := w̃(σ )=∑t

i=1 w̃(σi)—the τ -Witt
index of π . As before, we say that π is τ -anisotropic (resp. totally τ -isotropic) if w̃(π)= 0
(resp. w̃(π)= n/2). Once again, π is totally τ -isotropic if and only if bπ = 1. We denote
by �τ,ti (resp. �τ,an) the set of totally τ -isotropic (resp. τ -anisotropic) representations.

Analogously, we write

w̃
′(LQ

(
σ ′, λ

)) := w̃
′(σ ′)=

t∑

i=1

w̃
′(σ ′

i

)≤ n/2

and define totally η-isotropic and η-anisotropic in a similar vein. Thus, π ′ is totally η-
isotropic, i.e., w̃′(π ′) = n/2, if and only if π ′ � π ′ · η. Note that there exists a totally
η-isotropic π ′ ∈ B(π) if and only if the same property holds for σ1, . . . , σt and in this
case such π ′ is unique, indeed it is LQ(σ ′, λ) where σ ′ = σ ′

1 ⊗ · · · ⊗ σ ′
r and σ ′

i ∈ B(σi) is
the unique element such that σ ′

i � σ ′
i · η.

Lemma 3.2.

(1) Suppose that π = I(σ,λ) ∈ �τ
gen. Then for any σ ′ ∈ B(σ ), I(σ ′, λ) is irreducible.

Hence, B(π)= {I(σ ′, λ) : σ ′ ∈ B(σ )}.
(2) Any π ∈ �τ

gen can be written as π = δ × σ × σ τ where δ ∈ �τ
gen is τ -anisotropic,

σ ∈�Gk
gen and k = w̃(π). Moreover, δ and ai(σ ) (but not necessarily σ itself) are uniquely

determined by π .

(3) Similarly any π ′ ∈ �′
gen can be written as π ′ = ai(σ ) × δ′ where σ ∈ �Gk

gen, k =
w̃′(π ′) and δ′ is η-anisotropic. Moreover, δ′ and ai(σ ) (but not necessarily σ ) are uniquely

determined by π ′.

Proof. — The first part follows from (1.11) and (3.7). The remaining assertions are
straightforward. �

We observe that bc does not take �′
gen to �gen. For instance, bc(|·|F × η)= |det| 1

2
E .

We denote by �′
bc-gen the set of π ′ ∈ �′

gen such that bc(π ′) ∈ �gen. More explicitly,
�′

bc-gen consists of the irreducible generic representations of the form σ ′
1 × · · · × σ ′

k where
σ ′

1, . . . , σ ′
k ∈ �′

sqr are such that σ ′
i η × σ ′

j is irreducible for all i �= j or equivalently such
that bc(σ ′

i )× bc(σ ′
j ) is irreducible for all i �= j.

The following Lemmas are straightforward.

Lemma 3.3. — We have �unr ⊆�τ,an. In the Archimedean case, �unr =�τ,an.

Lemma 3.4. — Suppose that F is p-adic and let π ∈�τ . Then π ∈�τ,ti (resp. π ∈�τ,an)

if and only if suppc(π)∩�τ = ∅ (resp. suppc(π)⊆�τ ). It follows that
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(1) Any π1 ∈�τ,ti and π2 ∈�τ,an are disjoint.

(2) If π ∈�τ,an then all pure components of π are in �τ,an.

(3) π ∈�τ,ti if and only if we can write (non-uniquely) π = δ × δτ where δ ∈�Gn/2 and

δτ are disjoint.

(4) Any π ∈�τ can be written uniquely as π = π1×π2 where π1 ∈�τ,ti and π2 ∈�τ,an.

Moreover, we have bπ = bπ2 .

Finally, we mention the following property. For σ ′ ∈�G′
n , σ = bc(σ ′) and � ∈�Gm

we have

L
(
s, σ ′ × ai(�)

)= L(s, σ × �),

ε
(
s, σ ′ × ai(�),ψ ′)= λmn

ψ ′ ε(s, σ × �,ψ).

Hence,

(3.9) γ
(
s, σ ′ × ai(�),ψ ′)= λmn

ψ ′ γ (s, σ × �,ψ).

Note also that

(3.10) ωai(�) = ω�|F∗ηm.

3.3. The Bessel identities—B I . — Our goal is to define for any π ∈ �τ
gen and

π ′ ∈ B(π) a certain element απ ′ ∈ EG(X, W (π)∗), i.e., a compatible family of local uni-
tary periods on the Whittaker model of π . These local periods will turn out to be the
local components of global unitary periods. The definition is given implicitly via an iden-
tity of Bessel distributions which will only be established in full generality in Section 12.
Provisionally, we define a subset B Ix of �′

bc-gen for any x ∈ X as follows. Suppose that
π ′ ∈�′

bc-gen and let π = bc(π ′). Then by definition, π ′ ∈ B Ix if there exists a linear form
απ ′

x ∈ W (π)∗ (possibly zero, but necessarily unique by Lemma 2.2 and smooth transfer)
satisfying

B
απ ′

x ,δπ∨
e

W(π) (f )= Bπ ′
(
f ′
)

for any f ∈ S (G) and f ′ ∈ S (G′) such that f
x←→ f ′. For convenience, we set απ ′

x = 0 in
the (a posteriori empty) case π ′ �∈ B Ix. We also set

B I = B I G =
⋂

x∈X

B Ix.

In the split case, it follows from [Jac01, Lemma 2] that every unitarizable π ′ ∈�′
bc-gen =

�′
gen belongs to B I . The argument easily extends to any π ′ ∈ �′

gen—cf. Corollary 7.2
below. Eventually, we will show that B I = �′

bc-gen in the inert case as well—cf. Theo-
rem 12.4 below.
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Suppose that π ′ ∈ B Ix for some x ∈ X and let π = bc(π ′). Then it follows from
(3.3) and (2.1) that for any g ∈G we have π ′ ∈ B Ix•g and

(3.11) απ ′
x•g = απ ′

x ◦W (g,π).

In particular, απ ′
x ∈HomGx(W (π),C). Recall that by (2.1), for any � ∈HomGx(W (π),C),

B
�,δπ∨

e

W(π)(f ) is right (U0,ψ−1
0 )-equivariant and left Gx-invariant, and therefore, at least in

the p-adic case, it depends only on the orbital integrals of f .
Suppose that π ′ ∈ B I . It follows that απ ′ ∈ E (X, W (π)∗) (so that απ ′

x is Gx-

invariant for all x ∈ X). Therefore, by (2.7) we have B̃
απ ′ ,δπ∨

e

W(π) ∈ S∗(X)(U0,ψ−1
0 ) and by

definition we have

B̃
απ ′ ,δπ∨

e

W(π) ←→ Bπ ′ .

For a character χ of E∗ and π ∈ �gen, recall the equivalence Aπ
χ : W (π) · χ →

W (π · χ) defined by Aπ
χ (W)=Wχ , W ∈ W (π).

Lemma 3.5. — Suppose that π ′ ∈ B Ix for some x ∈ X and let π = bc(π ′). Then for any

character χ ′ of F∗ we have π ′ · χ ′ ∈ B Ix and

(3.12) απ ′·χ ′
x ◦Aπ

χ = χ ′(w0x) απ ′
x

where χ = χ ′ ◦Nm. In particular,

(3.13) απ ′·η
x = η(w0x) απ ′

x .

Proof. — Note that for f
x←→ f ′ we also have χ ′(x)fχ

x←→ f ′χ ′ and therefore

χ ′(x)Bαπ ′
x ,δπ∨

e

W(π) (fχ)= Bπ ′
(
f ′χ ′

)
.

Combined with (2.15) this gives

Bπ ′·χ ′
(

f ′
)= χ ′(w0x)B

απ ′
x ,δπ∨

e

W(π) ( fχ).

On the other hand, as in the proof of (2.15) we have

B
απ ′

x ,δπ∨
e

W(π) ( fχ)=B
απ ′

x ,δπ∨
e

W(π)·χ( f )

by (2.3), and then applying (2.4) to (Aπ
χ , Aπ∨

χ−1),

B
απ ′

x ,δπ∨
e

W(π)·χ =B
�,δ

π∨·χ−1
e

W(π ·χ)

where � ◦Aπ
χ = απ ′

x . Hence (3.12) follows. �
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For induction purpose, it will be useful to define more generally subsets B IM,x of
�M′

bc-gen for any M and x ∈X as follows. We write σ ′ ∈ B IM,x if there exists a meromorphic
family λ �→ αM,x(σ

′, λ) ∈ I(W (σ ), λ)∗ on a∗M,C such that

B
αM,x(σ

′,λ),We(σ
∨,−λ)

IG
M(W(σ ),λ)

(f )= B
(

f ′ : σ ′, λ
)

as meromorphic functions whenever f
x←→ f ′. Here, as usual, σ = bc(σ ′). We further set

B IM :=⋂
x∈X B IM,x.

Once again, it follows from (3.3) and (2.1) that if σ ′ ∈ B IM,x then σ ′ ∈ B IM,x•g for
all g ∈G and

αM,x•g

(
σ ′, λ

)= αM,x

(
σ ′, λ

) ◦ I
(
g, W (σ ), λ

)

where σ = bc(σ ′).

Lemma 3.6. — Let π ′ = I(σ ′, λ) ∈ �′
bc-gen and suppose that σ ′ ∈ B IM,x. Then

αM,x(σ
′, ·) is holomorphic at λ, π ′ ∈ B Ix and απ ′

x ◦W(σ,λ)= αM,x(σ
′, λ).

Proof. — The holomorphicity follows from Lemma 2.3 and smooth transfer. The
rest of the Lemma follows from (2.4) applied to the equivalence �(σ,λ) defined in (2.13)
and the identity (2.14). �

Lemma 3.7. — For σ ′ ∈ B IM and μ ∈ a∗M,C we have σ ′[μ] ∈ B IM and

αM

(
σ ′[μ], λ

)= αM

(
σ ′,μ+ λ

) ◦ A(σ,μ), λ ∈ a
∗
M,C

where σ = bc(σ ′) and

A(σ,μ)= I
(
Aσ [μ]

e−〈μ,H(·)〉
) : I(W

(
σ [μ]), λ

)→ I
(

W (σ ),μ+ λ
)

i.e., A(σ,μ)ϕ(g)= e−〈μ,H(·)〉ϕ(g), g ∈G.

Proof. — It is easy to see that (A(σ,μ), A(σ∨,−μ)) : I(W(σ [μ]), λ)→ I(W(σ ),

μ + λ) is an equivalence of dual couples and that We(σ
∨,−μ − λ) ◦ A(σ∨,−μ) =

We(σ
∨[−μ],−λ). Applying (2.9) we get that

B̃
αM(σ ′,μ+λ)◦A(σ,μ),We(σ

∨[−μ],−λ)

IG
M(W(σ [μ]),λ)

= B̃
αM(σ ′,μ+λ),We(σ

∨,−μ−λ)

IG
M(W(σ ),μ+λ)

.

It follows from (2.14) that B(σ ′[μ], λ) = B(σ ′,μ+ λ). Taking (2.11) into account, the
lemma follows. �

Assume that E/F is inert. Let

X+ =X[w0] and X− =X \X+.

From the support property of the normalized Bessel distributions (Lemma 2.6) we get the
following (partial) vanishing criterion.
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Lemma 3.8. — Assume that π ′ ∈�′
bc-gen and x ∈X. Then

(1) If x ∈X− and π ′ � π ′ · η then π ′ ∈ B Ix and απ ′
x ≡ 0.

(2) In the non-Archimedean case, if π ′ ∈ B Ix then απ ′
x ≡ 0 if and only if Gx is non-quasi-split

and π ′ � π ′ · η.

Proof. — If π ′ � π ′ ·η then by Lemma 2.6, Bπ ′ vanishes on S (G′−). It follows from
(3.4) that π ′ ∈ B Ix and απ ′

x ≡ 0 for x ∈X−.
Conversely, in the non-Archimedean case, (in which X[x] is a single G-orbit) for

any f ′ ∈ S (G′[x]) we can find f ∈ S (G) such that f
x←→ f ′. Thus, if π ′ ∈ B Ix and απ ′

x ≡ 0
then Bπ ′ vanishes on S (G′[x]). Applying Lemma 2.6 once again, we conclude that
x ∈X− and π ′ � π ′ · η. In particular, n is even and therefore Gx is non-quasi-split. �

In the p-adic case, once we show that �′
bc-gen = B I , Lemma 3.8 can be restated as

απ ′
x �≡ 0 if and only if w̃

′(π ′)≤w(x)

where we recall that w̃′(π ′) is defined in Section 3.2 and w(x) is the Witt index of x. As
we shall see later, this criterion holds in the Archimedean case as well.

We conclude this section with a computation for unramified data.

Lemma 3.9. — Assume that F is non-Archimedean of odd residual characteristic, E/F is un-

ramified and ψ ′ has conductor OF. Let π = bc(π ′) ∈ �gen,unr and Wπ
0 ∈ W (π) the spherical

Whittaker function normalized by Wπ
0 (e)= 1. Let x ∈X∩K and suppose that π ′ ∈ B Ix. Then

απ ′
x

(
Wπ

0

)= L(1,π × π∨)

L(1,π ′ × π ′∨)
= L

(
1,π ′ × π ′∨ · η).

Proof. — By (2.5) and (A.4) we have

B
απ ′

x ,δπ∨
e

W(π) (1K)= απ ′
x (Wπ

0 )

[Wπ
0 , Wπ∨

0 ]π
= απ ′

x (Wπ
0 )

L(1,π × π∨)
.

On the other hand, by (3.6), the defining property of απ ′
x , and (2.17) we have

B
απ ′

x ,δπ∨
e

W(π) (1K)= Bπ ′(1K′)= L
(
1,π ′ × π ′∨)−1

.

The Lemma follows. �

4. Open local periods

The local periods that we are going to study in this section were introduced in
[LR00] for principal series representations. They were further analyzed in [Off07]. Here
we introduce analogous objects for more general induced representations of finite length.
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Fix a standard parabolic P=MU. Note that P has an open orbit X◦ =X∩ tUMU
on X. While X◦ is not a single P orbit in general, any P orbit in X◦ intersects XM =X∩M
in a single M-orbit. Therefore, X◦/P is in bijection with the finite set XM/M. The P-orbits
in X◦ are the open orbits of P in X (in the usual topology).

Let νM = νG
M be either the character of M′ or the function on XM defined by

(4.1) νM(g)=
t∏

i=1

ηi−1(det gi), g = diag(g1, . . . , gt)

and set further ν0 = νM0 .

Let σ ∈ R(M) and let α ∈ EM(XM, σ ∗). For any x ∈ X, λ ∈ a∗M,C and ϕ ∈ I(σ )

consider the expression

(4.2) JM(ϕ : x, α,λ)=
∑

y

νM(y) e
1
2 〈ρM+λ,H(y)〉

∫

Py\Gy

αy

(
ϕλ

(
gιx

y

))
dg

where y ranges over a (finite) set of representatives of the M-orbits (M∩ x •G)/M in M∩
x •G and ιx

y ∈G is such that x= y • ιx
y. (See Lemma 4.3 below for geometric motivation.)

Proposition 4.1. — Let σ ∈ R(M) and α ∈ EM(XM, σ ∗). In the Archimedean case, assume

further that σ is unitarizable. Then

(1) The sum of integrals (4.2) is well-defined and absolutely convergent for λ= (λ1, . . . , λt) ∈
a∗M,C such that Re(λi − λi+1)� 0, i = 1, . . . , t − 1.

(2) For every x ∈X the linear form ϕ �→ JG
M(ϕ : x, α,λ) admits a meromorphic continuation

in λ ∈ a∗M,C (still denoted by J(x, α,λ)= JG
M(x, α,λ)). In the p-adic case, it is a rational

function in qλ
F = (q

λ1
F , . . . , q

λt

F ). In the Archimedean case, it has hyperplane singularities of

the form λi − λj = c.

(3) The map x �→ J(x, α,λ) is an element of EG(X, I(σ,λ)∗) which we denote by J(α,λ).

(4) Suppose that J(x, α, ·) is regular at λ. Then J(x, α,λ)≡ 0 if and only if αy ≡ 0 for all

y ∈M∩ x •G.

Proof. — We first check that the definition formally makes sense. If y =
diag(y1, . . . , yt) ∈XM then

Py =My = {
diag(g1, . . . , gt) : gi ∈Gyi

ni
, i = 1, . . . , t

}

is a product of unitary groups in the diagonal blocks of M. The measure on Py is the
product of the measures on Gyi

ni
according to our convention. It follows from the descrip-

tion of Py that H(m)M = 0 for all m ∈ Py. Furthermore, since αy is an My-invariant linear
form on σ we have

αy

(
ϕλ

(
mgιx

y

))= αy

(
σ(m)ϕλ

(
gιx

y

))= αy

(
ϕλ

(
gιx

y

))
, m ∈ Py, g ∈G
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and therefore, the integrand in (4.2) is indeed My-invariant. If ι ∈G is another element
such that x = y • ι then ι ∈ Gyιx

y and the Gy-invariance of dg shows that the integral
is independent of the choice of ιx

y. If m ∈ M then we can choose ιx
y•m = m−1ιx

y and the
equivariance of α gives that

e
1
2 〈ρM+λ,H(y•m)〉 αy•m

(
ϕλ

(
g m−1 ιx

y

))= e
1
2 〈ρM+λ,H(y)+2H(m)〉 αy

(
σ(m)ϕλ

(
g m−1 ιx

y

))

= e
1
2 〈ρM+λ,H(y)〉 αy

(
ϕλ

(
m g m−1 ιx

y

))

for all g ∈G. Since Gy•m = m−1 Gy m it follows, that

e
1
2 〈ρM+λ,H(y•m)〉

∫

My•m\Gy•m

αy•m

(
ϕλ

(
g ιx

y•m

))
dg

= e
1
2 〈ρM+λ,H(y)〉

∫

My•m\Gy•m

αy

(
ϕλ

(
m g m−1 ιx

y

))
dg

= e
1
2 〈ρM+λ,H(y)〉

∫

My\Gy

αy

(
ϕλ

(
g ιx

y

))
dg.

Since we also have νM(y•m)= νM(y), y ∈XM, m ∈M, we see that each summand in (4.2)
is independent of the choice of a representative y of the M-orbit and whenever absolutely
convergent, (4.2) is well-defined. Furthermore, for any h ∈ G we may choose ιx•h

y = ιx
y h.

Since

ϕλ

(
gιx

yh
)= (

I(h, σ,λ)ϕ
)

λ

(
gιx

y

)
,

it is also formal from the definition that whenever defined by an absolutely convergent
sum of integrals, we have

J(ϕ : x • g, α,λ)= J
(
I(g, σ,λ)ϕ : x, α,λ

)
, g ∈G.

Next, we justify the absolute convergence and meromorphic continuation. The absolute
convergence of integrals of the form

∫

My\Gy

αy

(
ϕλ(gι)

)
dg

in some positive cone and their meromorphic continuation (to a rational function in qλ
F in

the non-Archimedean case) was proved in a more general context of a reductive symmet-
ric space. In the Archimedean case this was done by Brylinski, Carmona and Delorme
([CD94, Proposition 2 and Theorem 3], cf. [BD92]) using a result of Flensted-Jensen,
Ōshima and Schlichtkrull [FJŌS88]. In the non-Archimedean case we refer to Blanc-
Delorme [BD08, Theorems 2.8 and 2.16].6 The result in [loc. cit.] is stated under an ad-
ditional assumption, but the latter is always satisfied thanks to a result of Lagier [Lag08,

6 Note that in the terminology of [loc. cit.], any P is a θy-parabolic subgroup of G where θy(g)= y−1(t gτ )−1y.
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Theorem 4(i)]. (Alternatively, one could also prove the rationality using Bernstein’s mero-
morphic continuation principle as in the proof of [LR00, Proposition 2]—cf. Remark 6.8
below.) The formal steps at the beginning of the proof are now justified.

For the last part, let G◦[x] = {g ∈ G : x • g−1 ∈ X◦} be the union of open double
cosets in P\G/Gx. One observes (cf. [CD94, Theorem 3, part 3]) that the restriction of
J(x, α,λ) to

{
ϕ ∈ I(σ ) : supp ϕ ⊆G◦[x]}

is non-zero if and only if there exists y ∈XM ∩ x •G such that αy �≡ 0. �

Corollary 4.2. — Let σ ∈ R(M), π = I(σ,λ) and x ∈X. In the Archimedean case assume

further that σ is unitarizable. Suppose that σ is My-distinguished for some y ∈M∩ x •G. Then π is

Gx-distinguished.

Proof. — The Corollary follows by taking α ∈ EM(XM, σ ∗) non-zero and supported
(as a function on XM) in the given M-orbit y •M and taking the leading term at λ of the
restriction of JM(x, α, ·) to a complex line through λ in general position. �

We may interpret and motivate the definition of the operation JM as follows. Recall
the isomorphism

EG

(
X, I(σ,λ)∗

)→HomG

(
S (X), I(σ,λ)∨

)

defined by (2.6). Similarly, for α ∈ EM(XM, σ ∗) we may define �� α by

(�� α)(v)=
∫

XM
νM(y)�(y)αy(v) dy, � ∈ S

(
XM

)
, v ∈ σ.

(Note that this is consistent with (2.6) when M = G.) Then α �→ (� �→�� α) defines
an isomorphism of vector spaces

EM

(
XM, σ ∗)→HomM

(
S
(
XM

)
, σ∨).

We also have a canonical isomorphism of vector spaces

EM

(
XM, σ ∗)→ EM

(
XM, σ [λ]∗)

for any λ ∈ a∗M,C given by α �→ α[λ] where

α[λ]y = e
1
2 〈λ,H(y)〉αy, y ∈XM.

The map α �→ JM(α,λ) (when defined) gives rise to a map

JM(λ) : EM

(
XM, σ ∗)→ EG

(
X, I(σ,λ)∗

)
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and therefore, via the identifications above, gives rise to a map

HomM

(
S
(
XM

)
, σ∨[−λ])→HomG

(
S (X), I(σ,λ)∨

)
.

By Frobenius reciprocity, we obtain a map

(4.3) HomM

(
S
(
XM

)
, σ∨[−λ])→HomM

(
rM

(
S (X)

)
, σ∨[−λ]).

For any � ∈ S (X) let �M be the smooth function on XM defined by

�M(y)= e
1
2 〈ρM,H(y)〉

∫

U
�(y • u) du.

In general, �M /∈ S (XM). However, we have �M ∈ S (XM) for any � ∈ S (X◦) where
we identify S (X◦) with the P-invariant subspace of S (X) consisting of functions which
vanish (together with all their derivatives in the Archimedean case) on the complement
of X◦. We get an M-equivariant map

(4.4) rM

(
S
(
X◦))→ S

(
XM

)
.

The alternative description of JM is as follows.

Lemma 4.3. — The composition of (4.3) with the restriction map

HomM

(
rM

(
S (X)

)
, σ∨[−λ])→HomM

(
rM

(
S
(
X◦)), σ∨[−λ])

coincides with the map

HomM

(
S
(
XM

)
, σ∨[−λ])→HomM

(
rM

(
S
(
X◦)), σ∨[−λ])

obtained by composition with the map (4.4) induced by � �→�M.

Proof. — Explicating the various identifications, the Lemma amounts to the relation

(
�� JM(α,λ)

)
(ϕ)=

∫

P\G

((
R(g)�

)M � α[λ])(ϕ(g)
)

dg

for any ϕ ∈ I(σ ) and � ∈ S (X◦).
To show this, we compute the left hand side as

∫

X
�(x)JM(ϕ : x, α,λ) dx

=
∫

X
�(x)

∑

y∈(x•G∩M)/M

νM(y) e
1
2 〈ρM+λ,H(y)〉

∫

Py\Gy

αy

(
ϕλ

(
gιx

y

))
dg dx
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=
∑

y∈XM/M

νM(y)e
1
2 〈ρM+λ,H(y)〉

∫

Gy\G
�(y • z)

∫

Py\Gy

αy

(
ϕλ(gz)

)
dg dz

=
∑

y∈XM/M

νM(y) e
1
2 〈ρM+λ,H(y)〉

∫

Py\G
�(y • g)αy

(
ϕλ(g)

)
dg

=
∑

y∈XM/M

νM(y) e
1
2 〈ρM+λ,H(y)〉

∫

M\G

∫

My\M
�(y • mg)αy

(
ϕλ(mg)

)
dm dg

=
∑

y∈XM/M

νM(y) e
1
2 〈ρM+λ,H(y)〉

×
∫

P\G

∫

U

∫

My\M
�(y • mug)αy

(
ϕλ(mug)

)
dm du dg

=
∑

y∈XM/M

νM(y) e
1
2 〈ρM+λ,H(y)〉

×
∫

P\G

∫

My\M
e−

1
2 〈ρM,H(y•m)〉(R(g)�

)M
(y • m)αy

(
ϕλ(mg)

)
dm dg

=
∫

P\G

∑

y∈XM/M

∫

My\M
νM(y) e

1
2 〈λ,H(y•m)〉(R(g)�

)M
(y • m)αy•m

(
ϕλ(g)

)
dm dg

=
∫

P\G

∫

XM
νM(y)e

1
2 〈λ,H(y)〉(R(g)�

)M
(y)αy

(
ϕλ(g)

)
dy dg

=
∫

P\G

((
R(g)�

)M � α[λ])(ϕ(g)
)

dg

where the integrals are absolutely convergent for � ∈ S (X◦). The lemma follows. �

It will be useful to normalize the functionals JM for σ ∈ Rpi(M) (assumed uni-
tarizable in the Archimedean case). The normalizing factor depends on an auxiliary
σ ′ ∈ Rpi(M′) (as well as on σ itself which will be omitted from the notation, since in
all cases at hand, σ will be determined by σ ′). More precisely, for λ ∈ a∗M,C set

n
(
σ ′, λ

)= nM′
(
σ ′, λ

)= CM(wM : σ,λ;ψ)

CM′(wM : σ ′, λ;ψ ′)

and define the normalized linear forms and equivariant maps

Jσ ′(x, α,λ)= n
(
σ ′, λ

)
J(x, α,λ), x ∈X

Jσ ′(α,λ)= n
(
σ ′, λ

)
J(α,λ).

By Proposition 4.1, these are meromorphic functions in λ (rational in qλ
F in the non-

Archimedean case) and lie in HomGx(I(σ,λ),C) and EG(X, I(σ,λ)∗) respectively. Sup-
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pose further that σ ′ ∈�M′
and σ = bc(σ ′). In this case, we may write

(4.5) nM′
(
σ ′, λ

)=
∏

1≤i<j≤t

λ
−ninj

ψ ′ ωσ ′j (−1)ni γ
(
λi − λj, σ ′

i × σ ′
j

∨ · η;ψ)
.

Note that it follows from (3.12) that in the notation of Lemma 3.7, for any σ ′ ∈�M′
bc-gen

we have

(4.6) Jσ ′[μ]
(
ασ ′[μ], λ

)= Jσ ′
(
ασ ′,μ+ λ

) ◦ A(σ,μ)

where σ = bc(σ ′) and μ, λ ∈ a∗M,C.
For inductive arguments, it will be useful to consider the open periods in the relative

situation for a pair L = Mγ ⊆ M = Mκ of standard Levi subgroups in G. Let νM
L (�) be

defined for � in either L′ or XL by

νL(�)= νM
L (�) νM(�).

For a representation � ∈ R(L) (unitarizable in the Archimedean case), y ∈ XM and α ∈
EL(XL, �∗), we define the linear form JM

L (y, α,μ) ∈HomMy(IM
L (�,μ),C) as the function

in μ ∈ a∗L,C given by the meromorphic continuation of the sum of integrals

JM
L (ϕ : y, α,μ)=

∑

z∈(L∩y•M)/L

νM
L (z) e

1
2 〈ρM

L +μ,H(z)〉
∫

Lz\Mz

αz

(
ϕμ

(
mιy

z

))
dm

for ϕ ∈ IM
L (σ ), where ιy

z ∈ M is a choice such that z • ιy
z = y. We denote by JM

L (α,μ) ∈
EM(XM, IM

L (σ,μ)∗) the associated equivariant map. Assume that � ∈ Rpi(L) and let �′ =
�′1 ⊗ · · · ⊗ �′t ∈�L′ where �′i is a representation of the Levi M′

γi
of G′

ni
(see Section 1 for

the notation). Let μ= (μ1, . . . ,μt) ∈ a∗L,C with μi ∈ a∗Mγi
,C and let w ∈WM(L). Writing

w = diag(w1, . . . ,wt) where wi ∈WGni (Mγi
), we set

CM′
L′

(
w : �′,μ;ψ ′)=

t∏

i=1

C
G′

ni

M′
γi

(
wi : �′i,μi;ψ ′),

CM
L (w : �,μ;ψ)=

t∏

i=1

C
Gni

Mγi
(wi : �i,μi;ψ),

and

n
M′
L′

(
�′,μ

)= CM
L (wL

M : �,μ;ψ)

CM′
L′ (w

L
M : �′,μ;ψ ′)

.
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It follows from the multiplicativity of γ -factors (1.8) that for any w1 ∈ W(M), w2 ∈
WM(L) we have

(4.7) CL′
(
w1w2 : �′,μ+ λ;ψ ′)=CM′

L′
(
w2 : �′,μ;ψ ′)CM′

(
w1 : IM′

L′
(
�′,μ

)
, λ;ψ ′)

as meromorphic functions in μ ∈ a∗L,C and λ ∈ a∗M,C. On IM
L (�) we set

J M
L,�′(x, α,μ)= n

M′
L′

(
�′,μ

)
JM

L (x, α,μ).

We now show that the open local unitary periods are compatible with transitivity
of induction.

Lemma 4.4. — Let L ⊆ M be Levi subgroups of G, � ∈ R(L), �′ ∈ �L′ and α ∈
EL(XL, �∗). In the Archimedean case, assume further that � is unitarizable. Then as a meromor-

phic function in λ+μ (in the p-adic case, rational function in q
μ+λ

F ) for μ ∈ a∗L,C and λ ∈ a∗M,C, we

have

(4.8) JG
L (x, α,μ+ λ)= JG

M

(
x, JM

L (α,μ),λ
) ◦ �L,M(�,μ)

and if � ∈ Rpi(L) then similarly

(4.9) J G
L,�′(x, α,μ+ λ)= J G

M,IM′
L′
(

�′,μ
)
(
x, J M

L,�′(α,μ),λ
) ◦ �L,M(�,μ).

The right-hand sides of (4.8) and (4.9) are defined by an absolutely convergent sum of integrals (also

in the Archimedean case) whenever λ and μ are sufficiently positive and by meromorphic continuation in

general.

Proof. — Since wL =wM wM
L , (4.9) follows from (4.7) and (4.8). To prove the iden-

tity (4.8) we may assume that Re μ and Re λ are sufficiently regular in the corresponding
cones. A set of representatives for (L ∩ x •G)/L can be chosen by first fixing a set {y} of
representatives for (M ∩ x •G)/M and then taking the union over all such y of a set of
representatives for (L∩ y•M)/L. By Proposition 4.1 for any ϕ ∈ IL(�), JG

L (ϕ : x, α,μ+λ)

is equal to

(4.10)
∑

y∈(M∩x•G)/M

∑

z∈(L∩y•M)/L

νL(z) e
1
2 〈ρL+μ+λ,H(z)〉

∫

Lz\Gz

αz

(
ϕμ+λ

(
gιx

z

))
dg

where the sum-integral is absolutely convergent. Since z ∈ y •M, we have

(4.11) νM(z)= νM(y).

Let ιy
z ∈M and ιx

y ∈G be chosen so that ιx
z = ιy

zι
x
y. Since z • ιy

z = y, we have

(4.12)
〈
ρL +μ+ λ, H(z)

〉= 〈
ρM

L +μ, H(z)
〉+ 〈

ρM + λ, H(y)− 2H
(
ιy
z

)〉
.
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Since (ιy
z)
−1Mzιy

z =My and (ιy
z)
−1Gzιy

z =Gy, by integrating in stages and performing the
change of variables g �→ ιy

zg(ι
y
z)
−1 we obtain

∫

Lz\Gz

αz

(
ϕμ+λ

(
gιx

z

))
dg =

∫

Mz\Gz

∫

Lz\Mz

αz

(
ϕμ+λ

(
mgιx

z

))
dm dg

=
∫

My\Gy

∫

Lz\Mz

αz

(
ϕμ+λ

(
mιy

zgι
x
y

))
dm dg.

Let ξ = �L,M(�,μ)ϕ, so that by (1.1) we have

ϕμ+λ

(
mιy

zgι
x
y

)= e〈ρM+λ,H(mι
y
z)〉(ξλ

(
gιx

y

))
μ

(
mιy

z

)
.

Since H(m) ∈ (aM
0 )∗ for m ∈Mz we deduce that
∫

Lz\Gz

αz

(
ϕμ+λ

(
gιx

z

))
dg

= e〈ρM+λ,H(ι
y
z)〉

∫

My\Gy

∫

Lz\Mz

αz

((
ξλ

(
gιx

y

))
μ

(
mιy

z

))
dm dg.

Plugging this into (4.10), taking into account (4.11) and (4.12), and changing the order
of summation over z with integration over My\Gy we obtain that

JG
L (ϕ : x, α,μ+ λ)=

∑

y∈(M∩x•G)/M

νM(y) e
1
2 〈ρM+λ,H(y)〉

×
∫

My\Gy

{ ∑

z∈(XL∩y•M)/L

νM
L (z) e

1
2 〈ρM

L +μ,H(z)〉

×
∫

Lz\Mz

αz

((
ξλ

(
gιx

y

))
μ

(
mιy

z

))
dm

}
dg,

where the right-hand side is absolutely convergent. Note that the term in curly brackets
equals JM

L (ξλ(gι
x
y) : y, α,μ) and therefore, this gives the identity (4.8). �

Remark 4.5. — Under the interpretation of Lemma 4.3, Lemma 4.4 reflects the
relation �L = (�M)L.

For future use, we define a meromorphic family of normalized relative Bessel dis-
tributions associated with a representation σ ′ ∈�M′

bc-gen (unitarizable in the Archimedean
case) by

(4.13) B̃
(
σ ′, λ

)= B̃
Jσ ′ (ασ ′ ,λ),We(σ

∨,−λ)

I(W(σ ),λ) , λ ∈ a
∗
M,C

where σ = bc(σ ′).
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5. Closed periods

Next, we consider invariant functionals arising from the closed orbits of a parabolic
subgroup on X. They are defined for induced representations in special position.

5.1. Definitions and properties. — Throughout this section, let L be a Levi subgroup
such that w0Lw0 = L. Thus, L is of type (n1, . . . , ns, m, ns, . . . , n1) where m is possibly
zero. We say that L is even symmetric if m = 0 and odd symmetric otherwise. In both
cases set k = n1 + · · · + ns so that n = 2k + m and let κ = (n1, . . . , ns) be the associated
composition of k. Let

XL =XG
L =X∩w0L.

It is an L-invariant subspace of X. Let θ = θk be the involution τ ◦ θ̃ of Gk where we
recall that θ̃ (g)=w0

t g−1w0. Also set

w∗ =wG
0 ·

⎛

⎝
1k

w
Gm

0

1k

⎞

⎠=
⎛

⎝
w

Gk

0

1m

w
Gk

0

⎞

⎠ .

(If m= 0 then w∗ =w0.) We have

(5.1) XL =
{
w∗ diag

(
g, y, θ

(
g−1

)) : g ∈Mκ, y ∈Xm

}�Mκ ×Xm

with the action of L given by

(5.2) w∗ diag
(
g, y, θ

(
g−1

)) • diag
(
h1, h, θ(h2)

)=w∗ diag
(
h−1

2 gh1, y • h, θ
(
h−1

2 gh1

)−1)

for any g, h1, h2 ∈Mκ, h ∈Gm, y ∈Xm. Consequently,

(5.3) Lw∗ diag(g,y,θ(g−1)) = {
diag

(
h1, h, θ

(
gh1g−1

)) : h1 ∈Mκ, h ∈Gy
m

}�Mκ×Gy
m.

Let pm :XL →Xm be the projection to the middle m× m block, i.e.,

pm

(
w∗ diag

(
g, y, θ

(
g−1

)))= pm

⎛

⎝

⎛

⎝
tgτw

Gk

0

y

w
Gk

0 g

⎞

⎠

⎞

⎠= y.

Lemma 5.1.

(1) The inclusion XL ⊆X induces an injection XL/L ↪→X/G. The image (i.e., the orbits in-

tersecting w∗L, or equivalently w∗Q) consists of the orbits of Witt index ≥ k. In particular,

in the even case the image is a singleton—the quasi-split forms.

(2) For any x ∈ XL, Qx is a parabolic subgroup of Gx with Levi decomposition LxVx and

opposite parabolic (tQ)x with respect to Lx.
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(3) The map pm :XL →Xm induces a bijection XL/L�Xm/Gm. In particular, in the even

case XL =w0 • L.

(4) Let Y be the space of n×n Hermitian forms whose entries are zero on the constant coordinates

of w∗V. Then for any x ∈XL, x •V= x+Y and x •V= x+Y.

Proof. — Part (1) follows from Witt’s cancellation theorem for Hermitian forms.
Let x ∈XL. Note that Q is invariant under the involution g �→ x−1 tτ(g)−1x. There-

fore, Qx, which is the subgroup of fixed points of that involution, is a parabolic subgroup
of Gx. The Levi decompositions Qx = LxVx, (tQ)x = Lx(tV)x follow from statement (14)
on [LR03, p. 178]. We deduce part (2). Part (3) follows from (5.2). The last part of the
lemma is straightforward. �

We will normalize the measures on Qx, x ∈XL by the recipe of Section 1.2. To that
end, we need to specify the gauge form ωQx and the scalar λQx . First, let ωLx = ωMκ

∧
ωGy

m
be the gauge form on Lx defined via the isomorphism (5.3), and let λLx = λMκ

λGy
m

where y = pm(x). For any x ∈ XL we take ωx+Y =∏
dxi,j where the product is over all

non-zero coordinates of Y such that i ≤ j (where the coordinates are in E if i < j and in F
if i = j) and take ωVx which matches ωV and ωx+Y. Finally, applying Lemma 5.1 (2), we
define ωQx to be matching with ωLx and ωVx , and take λQx = λLx .

We also define a gauge form on XL by ωXL = ωMκ
∧ ωXm via the isomorphism

(5.1) and the scalar λXL = λMκ
λXm . The isomorphism XL �∐

x∈XL/L Lx\L is compatible
with measures.

For a Levi subgroup M of G, an M-invariant subset C of X and σ ∈ R(M), let

EM

(
C, σ ∗)= {

β :C→ σ ∗ : βx•g = βx ◦ σ(g) for all x ∈C and g ∈M
}
.

Any w ∈W such that wMw−1 =M acts on a∗M and we define
(
a
∗
M

)w = {
λ ∈ a

∗
M :wλ= λ

}
.

We have

(
a
∗
L

)w∗ =
{
{(μ,←−μ ) : μ ∈ a∗Mκ

} m= 0,

{(μ, z,←−μ ) : μ ∈ a∗Mκ
, z ∈R} otherwise.

It follows from (5.3) and Lemma 5.1(2) that for x ∈XL we have

(5.4)
〈
λ, H(g)

〉= 0, g ∈Qx, λ ∈ (
a
∗
L

)w∗
C

.

For � ∈ R(L), β ∈ EL(XL, �∗), x ∈ X and λ ∈ (a∗L)
w∗
C define the closed period

Z(x, β,λ) = ZG
L (x, β,λ) as follows. If x •G ∩XL = ∅ we set Z(x, β,λ) = 0. Otherwise,

there exist y ∈XL and ιx
y ∈G such that x= y • ιx

y and we define

(5.5) Z(ϕ : x, β,λ)= e
1
2 〈λ,H(y)〉

∫

Qy\Gy

βy

(
ϕλ

(
hιx

y

))
dh, ϕ ∈ IG

L (�).
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In particular, if m= 0 then

(5.6) Z(ϕ : x, β,λ)=
{∫

Qw0\Gw0 βw0(ϕλ(hι
x
w0

)) dh if x=w0 • ιx
w0

,

0 if x /∈w0 •G,
ϕ ∈ IG

L (�).

Lemma 5.2. — The expression (5.5) is well-defined and holomorphic in λ ∈ (a∗L)
w∗
C . Further-

more, the map x �→ Z(x, β,λ) is an element of EG(X, IG
L (�,λ)∗) that we denote by Z(β,λ).

Moreover, for any λ ∈ (a∗L)
w∗
C , Z(x, β,λ) �≡ 0 if and only if there exists y ∈ x •G∩XL such

that βy �≡ 0.

In particular, for m= 0, Z(x, β,λ) �≡ 0 if and only if x ∈w0 •G (i.e., Gx is quasi-split) and

β �≡ 0.

Proof. — Recall that by [LR03, Proposition 4.3.2] we have δ
1
2
Q|Qy = δQy . Therefore,

it follows from the equivariance property of β , (5.4) and the fact that Qy is a parabolic
subgroup of Gy (Lemma 5.1(2)) that the integral in (5.5) is well-defined and holomorphic
in λ.

If x = y • ι2 for ι2 ∈G then ιx
yι
−1
2 ∈Gy and the change of variables h �→ h(ιx

yι
−1
2 )−1

shows that (5.5) is independent of the choice of ιx
y . If y′ ∈ XL is such that y •G= y′ •G

then it follows from Lemma 5.1(1) that there exists � ∈ L such that y′ = y • � and we may
therefore choose ιx

y′ = �−1ιx
y . Since

(5.7) e〈ρL,H(�)〉e
1
2 〈λ,H(y′)〉βy′

(
ϕλ

(
�−1g

))= e
1
2 〈λ,H(y)〉βy

(
ϕλ(g)

)
, g ∈G

and the change of variable h �→ �h�−1 transforms our measure on Qy\Gy to e−〈ρL,H(�)〉

times our measure on Qy′\Gy′ , this change of variables shows that (5.5) is independent of
the choice of y.

The equivariance property is trivial if x • G ∩ XL = ∅. Otherwise, it follows by
choosing ιx•g

y = ιx
yg for g ∈G.

For the non-vanishing criterion, the ‘only if ’ part is trivial. For the ‘if ’ part,
we may suppose that x = y ∈ XL and βx �≡ 0. Let v ∈ � be such that βx(v) �= 0. By
Lemma 5.1(2), we may replace the integration in (5.5) over Qy\Gy by integration over
(tV)y. Fix f ∈ C∞

c (tV) ≥ 0 with f (e) > 0 and let ϕ ∈ IG
L (�) be the section supported in

Q tV such that ϕλ(u) = f (u)v for u ∈ tV. Then up to a positive scalar, Z(ϕ : x, β,λ) is
given by βx(v)

∫
(tV)x f (u) du and hence it is non-zero. �

The map

S (X)→ S (XL)

which takes � to

�V(y)=
∫

Vy\V
�(y • v) dv, y ∈XL
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induces an L-equivariant map

(5.8) rL

(
S (X)

)→ S (XL).

On the other hand, we may identify

EL

(
XL, �∗

)�HomL

(
S (XL), �∨

)

and

EG

(
X, IG

L (�,λ)∗
)�HomG

(
S (X), I(�,λ)∨

)�HomL

(
rL

(
S (X)

)
, �∨[−λ])

(by Frobenius reciprocity, cf. the discussion before Lemma 4.3). For β ∈ EL(XL, �∗) let
β[λ] = (y �→ e

1
2 〈λ,H(y)〉βy) ∈ EL(XL, �[λ]∗).

Lemma 5.3. — Under the above identifications, the map β[λ] �→ Z(β,λ) becomes the map

HomL

(
S (XL), �∨[−λ])→HomL

(
rL

(
S (X)

)
, �∨[−λ])

obtained by composition with the map (5.8).

Proof. — If β ∈ EL(XL, �∗) is such that β[λ] corresponds to A ∈
HomL(S (XL), �∨[−λ]) then

A(#)(v)=
∫

XL

#(x)e
1
2 〈λ,H(x)〉βx(v) dx, # ∈ S (XL), v ∈ �

and we need to show that for � ∈ S (X) and ϕ ∈ I(�) we have
∫

X
�(x)Z(ϕ : x, β,λ) dx=

∫

Q\G
A
((

R(g)�
)

V

)(
ϕλ(g)

)
dg.

From the definition of Z we get
∫

X
�(x)Z(ϕ : x, β,λ) dx

=
∑

y∈XL/L

e
1
2 〈λ,H(y)〉

∫

Gy\G
�(y • g)

∫

Qy\Gy

βy

(
ϕλ(hg)

)
dh dg

=
∑

y∈XL/L

e
1
2 〈λ,H(y)〉

∫

Qy\G
�(y • g)βy

(
ϕλ(g)

)
dg

=
∑

y∈XL/L

e
1
2 〈λ,H(y)〉

∫

Q\G

∫

Qy\Q
�(y • qg)βy

(
ϕλ(qg)

)
δQ(q)−1 dq dg
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=
∑

y∈XL/L

e
1
2 〈λ,H(y)〉

∫

Q\G

∫

Ly\L

∫

Vy\V
�(y • vlg)δQ(l)−1βy

(
ϕλ(lg)

)
dv dl dg

=
∑

y∈XL/L

e
1
2 〈λ,H(y)〉

∫

Q\G

∫

Ly\L

(
R(g)�

)
V
(y • l)βy

(
ϕλ(lg)

)
δQ(l)−

1
2 dl dg

(5.7)=
∫

Q\G

∑

y∈XL/L

∫

Ly\L

(
R(g)�

)
V
(y • l)e

1
2 〈λ,H(y•l)〉βy•l

(
ϕλ(g)

)
dy dg

=
∫

Q\G

∫

XL

(
R(g)�

)
V
(x)e

1
2 〈λ,H(x)〉βx

(
ϕλ(g)

)
dx dg

=
∫

Q\G
A
((

R(g)�
)

V

)(
ϕλ(g)

)
dg.

The lemma follows. �

5.2. Further analysis. — Next, we would like to connect the closed periods above to
the open periods defined in Section 4 and to reduce the study of the closed periods to the
even symmetric case (m= 0).

Assume that m > 0. Let M=M(k+m,k) ⊃ L and introduce the pair of Levi subgroups
L̃ ⊆ M̃ where L̃ = M(m,κ,←−κ ) and M̃ = M(m,2k). Let P = MU, P̃ = M̃Ũ and Q̃ = L̃Ṽ be
the corresponding standard parabolic subgroups. Let also w = w

(m+k,k)

(m,k,k) ∈W(L̃), so that
L̃=w−1Lw, and set w̃∗ =w−1w∗w = diag(1m,w

G2k

0 ) .
Let XM̃

L̃
= w̃∗L̃∩XM̃ = w̃∗L̃∩X and note that y �→ y•w :XL →XM̃

L̃
is an isomor-

phism. Accordingly, for any � ∈ R(L̃) the map β �→wβ , where (wβ)y = βy•w for y ∈XL

defines an isomorphism EL̃(XM̃
L̃

, �∗)→ EL(XL, (w�)∗).
Note that

XM̃
L̃ =

{
diag(x1, x2) : x1 ∈Xm, x2 ∈XG2k

M(κ,←−κ )

}

and
(
a
∗
L̃

)w̃∗
C
= {

(z,μ,←−μ ) : z ∈C,μ ∈ a
∗
Mκ ,C

}=w−1
(
a
∗
L

)w∗
C

.

For any x= diag(x1, x2) ∈XM̃
L̃

we have Ũx = 1 and therefore, Q̃x ⊆ P̃x = M̃xŨx = M̃x. In
fact,

Q̃x = {
diag(g, p) : g ∈Gx1

m , p ∈ Px2

(κ,←−κ )

}�Gx1
m × Px2

(κ,←−κ )
.

We endow Px2

(κ,←−κ )
with a Haar measure as in the discussion following Lemma 5.1. This

gives rise to a Haar measure on Q̃x.
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For � ∈ R(L̃), β ∈ EL̃(XM̃
L̃

, �∗) and λ ∈ (a∗
L̃
)
w̃∗
C , let ZM̃(β,λ) be defined by

(5.9) ZM̃(ϕ : x, β,λ)=
{

e
1
2 〈λ,H(y)〉 ∫

Q̃y\M̃y βy(ϕλ(hι
x
y)) dh x= y • ιx

y, y ∈XM̃
L̃

, ιx
y ∈ M̃,

0 x �∈XM̃
L̃
• M̃,

for ϕ ∈ IM̃
L̃

(�) and x ∈ XM̃. Note that as in Lemma 5.2 (for the special case m = 0),

ZM̃(β,λ) is a well defined element of EM̃(XM̃, IM̃
L̃

(�,λ)), entire in λ and

(5.10) ZM̃(x, β,λ) �≡ 0 if and only if there exists y ∈XM̃
L̃ ∩ x •M̃ such that βy �≡ 0.

Proposition 5.4. — For any � ∈ R(L̃) and β ∈ EL̃(XM̃
L̃

, �∗) we have

(5.11) JM̃

(
ZM̃(β,λ), 0

) ◦ �L̃,M̃(�,λ)= η(−1)k Z(wβ,wλ) ◦M(w,�,λ)

as an identity of meromorphic functions in λ ∈ (a∗
L̃
)
w̃∗
C .

We first need some more notation. Let L1 = M(k,m,k) and L̃1 = M(m,k,k) =
w−1L1w =M ∩ M̃, so that L⊆ L1 ⊆M, L̃⊆ L̃1 ⊆ M̃ and w = wM

L̃1
. Let Q1 = L1V1 be

the corresponding standard parabolic subgroups of G. Also, let R be the non-standard
parabolic subgroup w−1Qw ⊆ P and let Ṽ1 =w−1V1w. Explicitly,

R=
⎛

⎝
Gm 0 ∗
∗ Pκ ∗
0 0 P←−κ

⎞

⎠ ; Q̃∩ L̃1 =
⎛

⎝
Gm 0 0
0 Pκ 0
0 0 P←−κ

⎞

⎠ ;

Ṽ1 =
⎛

⎝
Im 0 ∗
∗ Ik ∗
0 0 Ik

⎞

⎠ ; U∩ M̃=
⎛

⎝
Im 0 0
0 Ik ∗
0 0 Ik

⎞

⎠ .

Note that R= (Q̃∩ L̃1)� Ṽ1 and Q̃= (Q̃∩ L̃1)�(U∩M̃)Ũ. The following result follows
by straightforward verification.

Lemma 5.5. — Let y ∈XL and x= y •w ∈XM̃
L̃

. Then

Rx = (Q̃∩ L̃1)
x
� Ṽx

1 ⊃ Q̃x = (Q̃∩ L̃1)
x
� (U∩ M̃)x

so that

(5.12) Q̃x\Rx � (U∩ M̃)x\Ṽx
1.

Moreover, the projection of P onto M induces an isomorphism

(5.13) (U∩ M̃)x\Ṽx
1 →M∩ Ṽ1 =w−1(M∩V1)w.
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Transfer the measure on Qy (defined after Lemma 5.1) to Rx via the relation Rx =w−1Qyw. Transfer

the quotient measure on Q̃x\Rx to (U∩ M̃)x\Ṽx
1 via (5.12). Then under the isomorphism (5.13), the

measure on (U ∩ M̃)x\Ṽx
1 becomes e−

1
2 〈ρM̃,H(x)〉 times the measure on w−1(M ∩V1)w (which is the

transfer of our measure on M∩V1 via m �→w−1mw).

Proof of Proposition 5.4. — Fix x ∈X and write for simplicity

J= JM̃

(
x, ZM̃(β,λ), 0

) ∈HomGx

(
IM̃

(
IM̃

L̃ (�,λ), 0
)
,C

)
.

Note that if βy ≡ 0 for all y ∈ x • G ∩ XM̃
L̃

then (wβ)y ≡ 0 for all y ∈ x • G ∩ L and
both sides of (5.11) vanish (by (5.10) and Lemma 5.2). Assume therefore that there exists
y ∈ x •G ∩XM̃

L̃
such that βy �≡ 0. By meromorphic continuation, it suffices to consider λ

such that Re λM̃ ∈ (a∗
M̃

)+ is sufficiently regular. Note that J is defined in (4.2) as the sum
over (x •G∩ M̃)/M̃ of certain integrals and that y • M̃ is the only M̃-orbit in x •G∩ M̃
that has non-empty intersection with XM̃

L̃
. By (5.10), it follows that J equals the summand

parameterized by y•M̃. Without loss of generality, we may therefore assume that x ∈XM̃
L̃

.
Note that in this case νM̃(x) = η(−1)k . Let y = x • w−1 ∈ XL be as in Lemma 5.5. Fix
ϕ ∈ I(�) and let ξ = �L̃,M̃(�,λ)ϕ. We have

J(ξ)= η(−1)ke
1
2 〈ρM̃,H(x)〉

∫

M̃x\Gx

ZM̃
(
ξ(g) : x, β,λ

)
dg

= η(−1)ke
1
2 〈ρM̃+λ,H(x)〉

∫

M̃x\Gx

∫

Q̃x\M̃x

βx

(
ξλ(g)(l)

)
dl dg

where the integral is absolutely convergent (by our assumption on λ). By (1.1) and the
fact that H(M̃x)M̃ = 0 we get η(−1)ke

1
2 〈λ,H(x)〉 times

e
1
2 〈ρM̃,H(x)〉

∫

M̃x\Gx

∫

Q̃x\M̃x

βx

(
ϕλ(lg)

)
dl dg = e

1
2 〈ρM̃,H(x)〉

∫

Q̃x\Gx

βx

(
ϕλ(g)

)
dg.

By Lemma 5.5 this becomes

e
1
2 〈ρM̃,H(x)〉

∫

Rx\Gx

∫

Q̃x\Rx

δ−1
Rx (r)βx

(
ϕλ(rg)

)
dr dg

= e
1
2 〈ρM̃,H(x)〉

∫

Rx\Gx

∫

(U∩M̃)x\Ṽx
1

βx

(
ϕλ(ug)

)
du dg

=
∫

Rx\Gx

∫

M∩V1

βx

(
ϕλ

(
w−1uwg

))
du dg

=
∫

Rx\Gx

βx

((
M(w,�,λ)ϕ

)
wλ

(wg)
)

dg.
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By the change of variable g �→w−1gw, we get
∫

Qy\Gy

(wβ)y

((
M(w,�,λ)ϕ

)
wλ

(gw)
)

dg.

Altogether, we get J(ξ)= η(−1)kZ(M(w,�,λ)ϕ : x,wβ,wλ) as required. �

Suppose now that �= bc(σ ′)⊗ δ⊗←−δ τ where σ ′ ∈�
G′

m

bc-gen and δ = δ1⊗· · ·⊗ δs ∈
�Mκ . Let 2κ be the composition (2n1, . . . , 2ns) of 2k and set ai(δ)= ai(δ1)⊗· · ·⊗ai(δs) ∈
�M′

2κ . We write μ→ μ′ for the isomorphism a∗Mκ
→ a∗M′

2κ
obtained by their identification

with Rs.

Corollary 5.6. — Let λ= (z,μ,←−μ ) ∈ (a∗
L̃
)
w̃∗
C with z ∈C and μ ∈ a∗Mκ ,C and assume that

I(�,λ) is irreducible. Let β ∈ EL̃(XM̃
L̃

, �∗) and �′ = σ ′[z] ⊗ IM′
2κ

(ai(δ),μ′). Then

(5.14) J�′
(
ZM̃(β,λ), 0

) ◦ �L̃,M̃(�,λ) ◦N(w,�,λ)−1 = η(−1)kλ−mk

ψ ′−1Z(wβ,wλ).

Indeed, this follows from (5.11) by observing, using (4.5), (3.9), (3.10), and the fact
that λψ ′−1 = η(−1)λψ ′ , that

n
(
�′, 0

)= λ−mk

ψ ′−1CM(w : �,λ;ψ).

For the rest of this section, we assume that L is even symmetric, i.e., m= 0 in the
notation above.

Let � ∈ R(L) and β ∈ EL(XL, �∗). Let P = P(k,k), M = M(k,k) and QM = Q ∩M.
Recall that XL =w0 • L and similarly for M. For λ ∈ (a∗L)

w0
C and ϕ ∈ IM

L (�) let

(5.15) F (ϕ : x, β,λ)=
{∫

Q
w0
M \Mw0 βw0(ϕλ(hι

x
w0

)) dh x=w0 • ιx
w0

,

0 x •G∩XM = ∅.

Since λ ∈ (a∗L)
w0
C , it easily follows that 〈λ, H(Mw0)〉 = 0 and therefore,

F (ϕ :w0, β,λ)=
∫

Q
w0
M \Mw0

βw0

(
ϕ(h)

)
dh

is independent of λ.
Let ı : Gk → M be the embedding given by gı = diag(g, gθ ). Then Mw0 = Gı

k ,
Qw0

M = Pı
κ and Lw0 =Mı

κ . In particular, Qw0
M is a parabolic subgroup of Mw0 with δQ

w0
M
=

δ
1
2
QM
|Qw0

M
. Furthermore, 〈λ, H(h)〉 = 0 for all h ∈Qw0

M . It follows that the integral in (5.15)
is well defined and F (β,λ) ∈ EM(XM, IM

L (�,λ)∗) is holomorphic in λ.

Lemma 5.7. — Let � ∈ R(L), β ∈ EL(XL, �∗) and λ ∈ (a∗L)
w0
C . We have

ZG
L (β,λ)= ZG

M

(
F (β,λ), 0

) ◦ �L,M(�,λ).
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Proof. — Both sides are elements of EG(X, I(�,λ)∗) which are supported on w0 •G.
Therefore, it suffices to show that

ZG
L (w0, β,λ)= ZM

(
w0, F

(
β,λM

)
, λM

) ◦ �L,M(�,λ).

Note that Qw0 =Qw0
M Uw0 , Pw0 =Mw0Uw0 and δPw0 = δ

1
2
P |Pw0 . Thus, for any ϕ ∈ IG

L (�) we
have

F (ϕM :w0, β,λ)=
∫

Q
w0
M \Mw0

δ
− 1

2
P (h)βw0

(
ϕλ(h)

)
dh

=
∫

Qw0\Pw0

δ−1
Pw0 (p)βw0

(
ϕλ(p)

)
dp

where we recall that ϕM = δ
− 1

2
P ϕ|M ∈ IM

L (�). Therefore, by (1.2) and (5.6) we have

ZM

(
�L,M(�,λ)ϕ :w0, F (β,λ), 0

)

=
∫

Pw0\Gw0

F
([

I(h, �,λ)ϕ
]

M
:w0, β,λ

)
dh

=
∫

Pw0\Gw0

∫

Qw0\Pw0

δ−1
Pw0 (p)βw0

(
ϕλ(ph)

)
dp dh

=
∫

Qw0\Gw0

βw0

(
ϕλ(h)

)
dh

which, once again by (5.6), equals ZG
L (ϕ :w0, β,λ) as required. �

5.3. The normalized closed periods. — We continue to assume that L=M(κ,←−κ ) is even
symmetric and let M = M(k,k) as before. Recall that Lw0 = {diag(m, θ(m)) : m ∈ Mκ}.
Denote by �L,w0 the set of all � ∈�L that are Lw0 -distinguished. Concretely,

�L,w0 = {
σ1 ⊗ · · · ⊗ σs ⊗ σ τ

s ⊗ · · · ⊗ σ τ
1 : σi ∈�Gni

}
.

Let �L,w0
gen = �L,w0 ∩ �L

gen. Let $ be the involution diag(g1, g2)
$ = diag(g1, gτ

2 ) of
M (g1, g2 ∈Gk ).

For � ∈�L,w0
gen , we define the normalized closed period β� by

β
�

w0•l(W)= β
�$

0

((
W (�, l)W

)$)

where β
�$

0 is defined in (A.10) (except that now we use it with respect to E) and W$ ∈
W (�$) is given by W$(l$)=W(l), l ∈ L. Thus, 0 �≡ β� ∈ EL(XL, W (�)∗).
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Lemma 5.8. — Let � ∈�L,w0
gen , λ ∈ (a∗L)

w0
C and σ = IM

L (�,λ) ∈�M. Then σ ∈�M,w0
gen

and

βσ ◦WM
L (�,λ)= F

(
β�,λ

)
.

Proof. — It suffices to prove this equality at w0. This case amounts to Corollary A.5
upon applying $. �

For � ∈�L,w0
gen , we can now define the relative closed Bessel distribution

(5.16) D̃L(�,λ)= D̃(�,λ)= λk
ψ ′ B̃

Z(β�,λ),Wψ−1
e (�∨,−λ)

I(W(�),λ) , λ ∈ (
a
∗
L

)w0

C
.

It is holomorphic in λ. The factor λk
ψ ′ is needed for comparison with G′—cf. Section 9.

We may reduce the study of the closed Bessel distribution to the case L = M as
follows.

Proposition 5.9. — We have D̃L(�,λ)= D̃M(IM
L (�,λ), 0).

Proof. — Let σ = IM
L (�,λ). We will apply the relation (2.9) to the equivalence

(
A�(λ), A�∨(−λ)

)

of dual couples where

A�(λ)= IG
M

(
WM

L (�,λ)
)◦�G

L,M

(
W (�), λ

) : IG
L

(
W (�), λ

)→ IG
M

(
W (σ ), 0

)
.

Recall that by (1.6) we have

We(�,λ)=We(σ, 0) ◦ A�(λ).

On the other hand, by Lemmas 5.7 and 5.8 we have

ZL

(
β�,λ

)= ZM

(
βσ , 0

) ◦ A�(λ).

The Proposition follows. �

Corollary 5.10. — Let L1 ⊆ L be both even symmetric, σ ∈�L1,w0
gen and μ ∈ (a∗L1

)
w0
C be such

that �= IL
L1

(σ,μ) ∈�L. Then

D̃L(�,λ)= D̃L1(σ,μ+ λ), λ ∈ (
a
∗
L

)w0

C
.

Indeed, both sides are equal to D̃M(IM
L (�,λ), 0).
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6. Applications of the geometric lemma

In this section, we reduce the study of local unitary periods in the p-adic case to the
case of pure Galois-invariant representations (i.e., with supercuspidal support contained
in σ [Z] for a Galois-invariant supercuspidal representation σ ). Once the supercuspi-
dal case is settled, the main tool will be the geometric Lemma of Bernstein-Zelevinsky
[BZ77]. On the other hand, the supercuspidal case requires a global argument (which
however does not require the relative trace formula comparison).

Assume from now on that F is p-adic and E/F is inert. Our main goal in this section
is the following result.

Theorem 6.1. — Let π ∈� and x ∈X.

(1) If π is Gx-distinguished then π � πτ .

(2) If π is totally τ -isotropic (see Section 3.2) then EG(X,π∗) is one-dimensional and

dim HomGx(π,C)=
{

1 if Gx is quasi-split,

0 otherwise.

Consider first the supercuspidal case. We turn to a global setting. Assume that
E/F is a quadratic extension of number fields and v0 is an inert place of F such that
Ev0/Fv0 is isomorphic to our given quadratic extension of p-adic fields. Consider π ∈�

Gv0
cusp

and x ∈ Xv0 such that π is Gx
v0

-distinguished. After possibly twisting by an unramified
character, we may assume that π is unitary. By passing to a different representative in
the Gv0 -orbit, we may assume that x ∈ X. It follows from [HM02a, Theorem 1] that
there exists an irreducible cuspidal automorphic representation σ =⊗

v σv of GA which
is distinguished by Gx and such that σv0 � π . A well-known argument from [HLR86]
using strong multiplicity one (e.g., [Jac05a, Theorem 4]) yields that σ (and in particular
π ) is Galois invariant.

For the rest of the proof we return to the local setting. Recall the involution θ = θk

of Gk .
Let σ ∈ R(M) and π = I(σ, 0). By [BZ77, Theorem 5.2], for x ∈ X, π admits

a filtration by Gx-invariant subspaces which is parameterized by P\G/Gx. The succes-
sive quotients can be described in terms of induction and Jacquet functors. We study
Gx-invariant functionals on π through these subquotients.

6.1. P-orbits in X. — The P-orbits in X were analyzed in [LR03, Proposi-
tion 4.2.1] building on earlier results of Springer [Spr85]. (For a more general setup—cf.
[HW93].) To describe the results, fix M=Mκ where κ = (n1, . . . , nt), and let W2[M] de-
note the set of involutions w in W satisfying wα < 0 for all α ∈�M

0 , i.e., w is the longest
element in the double coset WMwWM. For w ∈W2[M] the group



ON REPRESENTATIONS DISTINGUISHED BY UNITARY GROUPS 239

M(w)=M∩wMw

is a standard Levi subgroup of M invariant under conjugation by w.

Lemma 6.2. — [LR03, Proposition 4.2.1]7 Every P-orbit x • P in X intersects wM(w) for

a unique w ∈W2[M]. We say that x (or its P-orbit) lies above w in this case. If x lies above w then

wM(w)∩ x • P is a single M(w)-orbit.

Thus, the P-orbits in X are parameterized by the disjoint union over all w ∈
W2[M] of the M(w)-orbits in wM(w) ∩X. Fix w ∈W2[M] and set L = M(w). Recall
that L = Mγ for a composition γ = (γ1, . . . , γt) of n refining κ , i.e., for all i = 1, . . . , t,
γi = (ki,1, . . . , ki,si

) is a composition of ni. Thus, the blocks of L are enumerated by the
linearly ordered set (I= I(w),≺) where

I= {
(i, j) : i = 1, . . . , t, j = 1, . . . , si

}

and ≺ is the lexicographic order. We write an element of L as diag(gı)ı∈I where gı ∈Gkı
.

Note that w defines an involution on I (also denoted by w) such that kw(ı) = kı ,

w diag(gı)ı∈I w = diag
(
w

Gkı

0 gw(ı)w
Gkı

0

)
ı∈I

and

(6.1) w(i, j + 1)≺w(i, j), i = 1, . . . , t, j = 1, . . . , si − 1.

In particular, for any i there is at most one j such that w(i, j) = (i, j). For m =
diag(mı)ı∈I ∈ L, the element wm ∈wL lies in X if and only if

mw(ı) = θ
(
m−1

ı

)
, ı ∈ I.

Furthermore, if wm ∈X and g = diag(gı)ı∈I ∈ L then

(wm) • g =w diag
((

θ
(
g−1
w(ı)

)
mıgı

)
ı∈I

)
.

Let Fw be the set of fixed points of w on I. We can choose g so that θ(g−1
w(ı))mıgı = e for all

ı /∈ Fw. Thus, the L-orbits in wL∩X are parameterized by the product over ı ∈ Fw of the
Gkı

-orbits on Xkı
or, what amounts to the same, the Gkı

-orbits on wıXkı
(where wı =w

Gkı

0 )
with respect to the twisted action (x′, g) �→ θ(g−1)x′g. Since we are in the p-adic case, they
are therefore parameterized by (F∗/ Nm E∗)Fw . The stabilizer Ly of a representative of
the form

(6.2) y=w diag
(
(mı)ı∈I

)
, mı = e for all ı /∈ Fw

7 In [ibid.], the left action g % y = g y θ(g−1) of G on Y = {g ∈ G : g = θ(g−1)} = Xw0 was considered instead of
our right action of G on X. Thus, to translate the results of [ibid.] to our setting, we identify Y and X via the map
y �→ x= (yw0)

−1.
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is the subgroup of elements g = diag(gı) such that for all ı ∈ I we have
{

gı ∈Gwımı

kı
if ı ∈ Fw,

gw(ı) = θ(gı) otherwise.

Remark 6.3. — The above analysis works over any F of characteristic 0. The only
difference is the description of Xk/Gk where the discriminant map Xk/Gk → F∗/ Nm E∗

may not be injective. In particular, in the case P= P0 there is no difference between the
p-adic case and the Archimedean case.

The open P-orbits in X are precisely those which lie above w = wM
0 . There are

exactly 2t open orbits and their representatives can be taken in XM/M. Recall that X◦ =
XM • P (the F-points of the Zariski open orbit X◦ of P on X) is the union of the open
P-orbits in X and for x ∈X we set

G◦[x] = {
g ∈G : x • g−1 ∈X◦}

which is the union of the 2t−1 open double cosets in P\G/Gx.

A P-orbit that lies above w =w0 is closed. There is a single orbit that lies above w0

if n is even and M⊆ Gn/2 ×Gn/2 and there are precisely two such orbits otherwise (one
in each G-orbit).

6.2. The geometric Lemma. — Suppose that (π, V ) is an induced representation
IG

M(σ ). For x ∈X we describe a filtration for the restriction of π to Gx.
We identify the double coset space P\G/Gx with the set (x • G)/P of P-orbits

on x • G via g �→ x • g−1. By [BZ76, §1.5], there is an ordering {εi}ki=1 of double coset
representatives of P\G/Gx such that

Yi =
i⋃

j=1

P εj Gx

is open in G for all i = 1, . . . , k. We take the first 2t−1 εi ’s to lie in G◦[x]. If x ∈w0 •G, we
also take εk such that x=w0 • εk . Let

Vi =
{
ϕ ∈ V : supp(ϕ)⊆ Yi

}
.

In particular,

V2t−1 = {
ϕ ∈ V : supp(ϕ)⊆G◦[x]}

and

Vk−1 = {ϕ ∈ V : ϕ|εkGx ≡ 0}.
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The sequence

0= V0 ⊆ V1 ⊆ · · · ⊆ Vk = V

is a filtration of V by Gx-invariant subspaces and the successive quotients are described as
follows (see [BZ77, Theorem 5.2]). Fix i = 1, . . . , k and choose y in the P-orbit of x • ε−1

i

and a representative ιx
y ∈ G such that x = y • ιx

y . Thus, ιx
y ∈ P εi Gx. For groups A ⊆ B, a

representation � of A and b ∈ B we let �b denote the representation of b−1Ab on the space
of � given by �b(b−1ab)= �(a), a ∈ A. Then

Vi/Vi−1 �Vσ
y [x] := indGx

Gx∩(ιxy )
−1Pιxy

([
σ · δ1/2

P |Py

]ιxy
)

(6.3)

= indGx

(ιxy)
−1Pyιxy

([
σ · δ1/2

P |Py

]ιxy
)� (

indGy

Py

([
σ · δ1/2

P |Py

]))ιxy

where ind denotes unnormalized induction with compact support. In particular, the Gx-
space Vσ

y [x] depends only on the orbit y • P and not on the choice of y or ιx
y.

Recall that by Lemma 6.2, any P-orbit O ∈X/P lies above some w ∈W2[M] and
we may choose a representative y ∈ O ∩wM(w). Recall that rL,M : R(M)→ R(L) is the
normalized Jacquet functor.

Lemma 6.4. — Let σ ∈ R(M) and let w ∈W2[M]. Set L=M(w) and let y ∈wL∩X.

Then there is an isomorphism of vector spaces

HomGx

(
Vσ

y [x],C
)�HomLy

(
rL,M(σ ),C

)
.

Proof. — Let Q = Pγ = LV with V = Uγ . Thus, Q ⊆ P. Let R be the unipotent
radical of Py and let projM : Py →M be the projection map to the Levi subgroup M of P.
Set also V1 = M ∩ V, so that V = V1U and LV1 is the standard Levi decomposition
of Q ∩M, which is a standard parabolic subgroup of M. By [LR03, Proposition 4.2.2]
(adapted to our setup) we have Py =Qy = Ly

� R and projM(R)= V1. Since wLw = L,
it follows from [ibid., Proposition 4.3.2] that δPy = δQy = δ

1/2
Q |Py . Therefore, by Frobenius

reciprocity and (6.3) we have

HomGx

(
Vσ

y [x],C
)�HomGy

(
Vσ

y [y],C
)�HomPy

(
σ · (δ 1

2
P δ

− 1
2

Q

)|Py,C
)

=HomLyV1

(
σ · (δ 1

2
P δ

− 1
2

Q

)|LyV1,C
)=HomLy

(
rL,M(σ ),C

)

where for the third isomorphism we used that projM(R) = V1 and the last equality fol-
lows from the definition of the normalized Jacquet functor. Altogether, we obtain the
Lemma. �

Definition 6.5. — We say that y ∈X (or y • P ∈X/P) is relevant for σ (or for π if P is

clear from the context) if HomGy(Vσ
y [y],C) �= 0 or equivalently, if HomGx(Vσ

y [x],C) �= 0 for some

x ∈ y •G.
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By Lemma 6.4, in its notation, we have

(6.4) y is relevant for σ if and only if rL,M(σ ) is Ly-distinguished.

For w ∈W2[M] set L=M(w) and let y ∈ wL ∩X be a representative as in (6.2).
With the notation of Section 6.1, an irreducible representation � =⊗

ı∈I(w) �ı of L is
Ly-distinguished if and only if for every ı ∈ I we have

(6.5)

{
�ı is (Gkı

)wımı -distinguished if w(ı)= ı,

�w(ı) � �τ
ı otherwise.

Definition 6.6. — We say that the unitary periods on π = I(σ, 0) are supported on open
P-orbits (or simply supported on open orbits if P is clear from the context) if the non-open orbits are not

relevant. Similarly, we say that the unitary periods on π = I(σ, 0) are supported on w0 • P if the only

possibly relevant orbit is w0 • P.

We can of course relate the open and closed local periods defined in the previous
sections to the geometric Lemma. Identify EM(M ∩ x •G, σ ∗) with the subspace of α ∈
EM(XM, σ ∗) such that αy ≡ 0 for all y ∈ XM \ x •G. Let J◦(x, α,λ) be the restriction of
J(x, α,λ) to V2t−1 . Note that for ϕ ∈ V2t−1 the integrands in (4.2) are compactly supported
and therefore the integral is convergent and J◦(x, α,λ) is entire in λ. It follows that

the map α �→ J◦(x, α, 0) defines an isomorphism(6.6)

EM

(
M∩ x •G, σ ∗)�HomGx(V2t−1,C).

Lemma 6.7. — Suppose that the unitary periods on π are supported on open P-orbits. Then

(1) The restriction map

(6.7) HomGx(π,C)→HomGx(V2t−1,C)

is an isomorphism for any x ∈X.

(2) For every α ∈ EM(XM, σ ∗), J(α,λ) is holomorphic at λ = 0 and α �→ J(α, 0) is a

vector space isomorphism between EM(XM, σ ∗) and EG(X,π∗).
(3) For every x ∈X, the map α �→ J(x, α, 0) is a vector space isomorphism between EM(M∩

x •G, σ ∗) and HomGx(π,C).

Proof. — By our condition, for any x ∈ X the quotients Vi+1/Vi , i ≥ 2t−1 admit
no Gx-invariant functionals. Hence HomGx(V /V2t−1,C) = 0, and it follows that (6.7)
is injective. Now let α ∈ EM(M ∩ x • G, σ ∗). By the support condition of unitary peri-
ods, J(x, α,λ) is holomorphic at λ = 0, for otherwise its leading term (along any line
through 0) would not be supported on open orbits. Combined with (6.6) this shows that
the restriction map is also surjective. The rest of the Lemma also follows from (6.6). �
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Remark 6.8. — More generally, we say that the unitary periods on IM(σ,λ) are
supported on open orbits if this holds for IM(σ [λ], 0). It is easy to see that this is the case
for generic λ ∈ a∗M,C, i.e. away from finitely many ‘hyperplanes’ of the form {λ : qλi−λj = c}
for 1≤ i < j ≤ t and c �= 0 (cf. [BD08]).

Lemma 6.9. — Suppose that the unitary periods on π = I(σ, 0) are supported on w0 • P. If

x ∈w0 •G then the map HomGw0 (Vσ
w0
[w0],C)→HomGx(π,C) given by � �→ � ◦ p ◦π(ιx

w0
),

where p : π →Vσ
w0
[w0] is the natural projection, is an isomorphism. On the other hand, if x /∈w0 •G

then HomGx(π,C) = 0. In particular, if in addition M is symmetric then β �→ Z(β, 0) is an

isomorphism EM(XM, σ ∗)→ EG(X,π∗).

Proof. — By our condition Vi+1/Vi admit no Gx-invariant functions unless i = k−1
and x ∈ w0 • G. The first part immediately follows. The second part now follows from
Lemma 6.4 (with w =w0 and L=M) and Lemma 5.2. �

In the case where σ ∈�M
sqr we can be more precise.

Lemma 6.10. — Let δ = δ1 ⊗ · · · ⊗ δt ∈�M
sqr. Assume that for no i < j we have δi � δτ

j .

(For instance, this is satisfied if δ ∈�M
cusp.) Suppose that w ∈W2[M] and y=w diag(y1, . . . , yt) ∈

wM(w) ∩X is relevant for I(δ). Then wMw =M and viewed as an involution on {1, . . . , t}, w

satisfies the following condition: for any i = 1, . . . , t,

(6.8)

{
δi is Gw0yi

ni
-distinguished if w(i)= i,

δw(i) � δτ
i otherwise.

In particular, if for no i < j we have δi � δτ
j then unitary periods on I(δ) are supported on open orbits.

Proof. — Let L=M(w). By (6.4) rL,M(δ) is Ly-distinguished, and in particular non-
zero. Recall that L is of type γ with indices as in the notation of Section 6.1. Note that

rL,M(δ)= rMγ1 ,Gn1
(δ1)⊗ · · · ⊗ rMγt ,Gnt

(δt)

and recall that

rMγi
,Gni

(δi)= δi,1 ⊗ · · · ⊗ δi,si
∈�

Mγi
sqr

(see (1.13) for the description of δi,j ). As before, view w as an involution on I(w). The
property (6.1) implies that there exists i0 such that w(1, 1)= (i0, si0).

Suppose first that i0 = 1. Then s1 = 1, for otherwise we would have δτ
1,1 � δ1,s1

by (6.5) which would contradict the description of rMγ1 ,Gn1
(δ1). Thus, y has the form

y= diag(y1, y′) for some y′ ∈Xn−n1 and by (6.5) δ1 is Gw0y1
n1

-distinguished.
Suppose now that i0 �= 1. Then, once again by (6.5) we have δτ

1,1 � δi0,si0
which im-

plies that δ1 �δτ
i1

. By our assumption on δ, we therefore have δ1 = δτ
i1

, and then necessarily
s1 = si0 = 1.
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Thus, whether or not i0 = 1, the induced representation �j �=1, i0 δj admits a relevant
orbit which is obtained from w and y by omitting the entry(ies) {1, i0}. By induction, it
follows immediately that w is an involution satisfying (6.8). �

We will also need the following variant of the previous Lemma.

Lemma 6.11. — Let δ = δ1 ⊗ · · · ⊗ δt ∈�M and let 1≤ k ≤ t. Assume that

(1) δi ∈�sqr for all i �= k; say δi =�σi
([ai, bi]) for σi ∈�cusp.

(2) There are no i < j different from k such that δi � δj .

(3) suppc(δk)∩ {σ1[b1], . . . , σk−1[bk−1], σk+1[ak+1], . . . , σt[at]} = ∅.

Then unitary periods on I(δ) are supported on open orbits.

Proof. — The Lemma is trivially true for t = 1. Suppose therefore that t > 1 and
that w ∈ W2[M] is relevant for δ. As before, we view w as an involution on the set
I(w). We have w(1, 1) = (i0, si0) for some i0 = 1, . . . , t and w(t, st) = (j0, 1) for some
j0 = 1, . . . , t. Suppose that k �= 1. As in the argument of the previous Lemma, we run
into a contradiction unless i0 = 1 and s1 = 1. Similarly, if k �= t then necessarily j0 = t and
st = 1. Hence, we can continue by induction on t. �

6.3. Proof of Theorem 6.1. — Suppose that π ∈� is Gx-distinguished. We want to
show that π ∈ �τ . We already treated the supercuspidal case (by a global argument).
Assume now that π ∈�sqr. Write π =�σ ([a, b]) with σ ∈�cusp. Then the induced rep-
resentation π̃ = σ [a] × · · · × σ [b] is also Gx-distinguished. It follows from Lemma 6.10
that unitary periods on π̃ are supported on open orbits. It therefore follows from (6.5)
that σ is distinguished by some unitary group. We now appeal to the supercuspidal case
to conclude that σ ∈�τ

cusp and therefore π ∈�τ
sqr.

Consider the general case. Assume that π is the unique irreducible quotient of
I(δ, λ) where δ = δ1⊗· · ·⊗δt ∈�M

usqr and λ ∈ (a∗M)+. By the uniqueness of the Langlands
data it follows that λ is uniquely determined by π and δ is uniquely determined up to
a permutation that fixes λ. Note that π is Galois invariant if and only if there exists an
involution ξ on the indices {1, . . . , t} such that λξ(i) = λi and δξ(i) � δτ

i for all i = 1, . . . , t.
If π is Gx-distinguished then so is I(δ, λ). It follows from the analysis of Section 6.2 that
there exists w ∈W2[M] and y=w diag(y1, . . . , yt) ∈wM(w)∩ x •G which is relevant for
I(δ, λ). The first part of Theorem 6.1 now follows from the square integrable case and
Lemma 6.10 applied to δ[λ].

To show the second part of the Theorem, suppose that π ∈�τ is totally τ -isotropic
(and in particular n is even). By Lemma 3.4, we can write π = σ × σ τ for some σ ∈
�Gn/2 such that σ and σ τ are disjoint. In particular, suppc(σ ) ∩ suppc(σ

τ ) = ∅. Let P
be the parabolic subgroup of type (n/2, n/2). We claim that the unitary periods on π

are supported on w0 • P. Recall that w0 • P is the only orbit above w0. Suppose that
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w0 �=w ∈W2[M]. Then as a permutation on [1, n], w necessarily has the form

w(i)=

⎧
⎪⎨

⎪⎩

n+ 1− i i = 1, . . . , k, n+ 1− k, . . . , n,

n/2+ k + 1− i i = k + 1, . . . , n/2,

3n/2+ 1− k− i i = n/2+ 1, . . . , n− k,

for some 0 ≤ k < n/2 and L := M(w) = Gk × Gn/2−k × Gn/2−k × Gk . If y lies above w

then Ly is isomorphic to the product of Gk (embedded twisted diagonally in the first
and last coordinate of L) and a product of two unitary groups (in each of the middle
coordinates). Observe that by the property of σ , for any irreducible subquotient σ1 ⊗ σ2

of the Jacquet module of σ with respect to a maximal parabolic of Gn/2 we have σ2 ��
σ τ

2 . Thus, rL,M(σ ⊗ σ τ ) is not Ly-distinguished by the first part of Theorem 6.1 already
proved. By (6.4) this affirms our claim.

The Theorem now follows from Lemma 6.4, Lemma 6.9, and the fact that

HomMw0

(
σ ⊗ σ τ ,C

)�HomGn/2

(
σ ⊗ σ θ̃ ,C

)�HomGn/2

(
σ ⊗ σ∨,C

)

is one-dimensional.

6.4. Further remarks. — It is easy to see that if suppc(π1) ∩ suppc(π
τ
2 )= ∅ then the

unitary periods on π1 × π2 are supported on open orbits. Therefore, by Lemma 6.7 and
Theorem 6.1, the study of EG(X,π∗) reduces to the case where π is pure and Galois-
invariant. Indeed, by Lemma 3.4, any π ∈ �τ can be written as π = π1 × π2 where
π1 ∈�Gn1 ,τ,ti and π2 ∈�Gn2 ,τ,an. Thus,

(6.9) EG

(
X,π∗)� EGn1

(
Xn1,π∗

1

)⊗ EGn2

(
Xn2,π∗

2

)� EGn2

(
Xn2,π∗

2

)

and

HomGx(π,C)�

⎧
⎪⎨

⎪⎩

HomGy
n2

(π2,C)

if ∃y ∈Xn2 such that x= diag(w
Gn1
0 , y) •G,

0 otherwise, i.e., n2 = 0 and x /∈w0 •G.

This reduces to the case where π ∈�τ,an. By decomposing π ∈�τ,an into its pure com-
ponents π1, . . . , πt (which are Galois invariant) we get similarly that

EG

(
X,π∗)� EM

(
XM,π∗

1 ⊗ · · · ⊗ π∗
t

)�
t⊗

i=1

EGni

(
Xni

,π∗
i

)

and for any x ∈X

HomGx(π,C)� EM

(
XM ∩ x •G,π∗

1 ⊗ · · · ⊗ π∗
t

)
.

In the quasi-split case, Theorem 6.1 and its converse were conjectured by Jacquet,
in analogy with the main global result of [Jac10].
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6.5. A general conjecture. — Combining Theorem 6.1 (for the p-adic case) and Ap-
pendix B (for the Archimedean case) we obtain that if π ∈ � is Gx-distinguished then
π ∈�τ and w̃(π) ≤ w(x). (We recall that w(x) is the Witt index of x and w̃(π) is the
τ -Witt index of π defined in Section 3.2.) We conjecture that the converse also holds. In
other words,

Conjecture 6.12. — Suppose that π ∈� and x ∈X. Then π is Gx-distinguished if and only

if π ∈�τ and w̃(π)≤w(x).

We will show this in Corollary 12.3 below for generic representations. Moreover,
we will show that π ∈ �τ

gen is distinguished by Gx if and only if there exists π ′ ∈ B(π)

such that απ ′
x �≡ 0 (Corollary 12.9). We will also show Conjecture 6.12 in the unitarizable

case.
We finish this section with a couple of instances of Conjecture 6.12 in the

Archimedean case. First note that for compact unitary groups (i.e., for x anisotropic)
the conjecture reduces to Lemma 3.3.

As was pointed to us by Aizenbud, the conjecture holds for finite-dimensional π .
Indeed,

Lemma 6.13. — Suppose that E/F=C/R and π ∈� is finite-dimensional and let x ∈X.

Then π is distinguished by Gx if and only if π ∈�τ if and only if π ∈�unr.

Proof. — The statement is evidently invariant under twisting by an unramified
character. Therefore we may assume that there exist algebraic irreducible representa-
tions σ1, σ2 of GLn /C such that π is the restriction of σ = σ1 ⊗ σ2 to G under the
embedding g �→ (g, gτ ). The condition on L ∈ π∗ to be invariant under Gx is that
L◦σ(g, (xg−1x−1)t)= L for all g ∈Gx. Since Gx is Zariski dense in GLn(C), the condition
becomes L′ ◦ σ(g, tg−1)= L′ for all g ∈G where L′ = L ◦ σ(1, tx−1). Such a non-zero L′

exists if and only if σ2 = σ1. This proves the first equivalence. The second equivalence
follows from the Cartan-Helgason Theorem. �

Finally,

Lemma 6.14. — Conjecture 6.12 holds for �unr.

Proof. — In the p-adic case, the statement follows from Corollary 4.2 and the fact
that every unramified representation is induced from an unramified character of a Levi
subgroup. (The latter follows from the Zelevinsky classification [Zel80].) Consider the
complex case. Suppose that π ∈�unr, i.e., π is distinguished by U(n). By [Bar89, p. 129]
there exists a parabolic subgroup P = MU, a finite-dimensional σ ∈ �M

unr with trivial
central character and λ0 ∈ a∗M,C such that π = I(σ,λ0). Let x ∈ X and suppose with-
out loss of generality that x ∈ M0. By Lemma 6.13, σ is Mx-distinguished. Therefore,
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there exists 0 �= α ∈ EM(XM, σ ∗) such that αy ≡ 0 for all y /∈ x • M. Since σ is finite-
dimensional we have σ = LQM(1M0,μ) for some μ ∈ (aM

0 )∗+. By Theorem B.7 we have
α ◦ p = JM

M0
(β,μ) for some β ∈ EM0(X

M0, 1∗M0
) where p : IM

M0
(1M0,μ) → σ is the nat-

ural projection. By the same Theorem J(β,λ + μ) is holomorphic and non-zero for
Re λ sufficiently regular in (a∗M)+ (i.e., when λ+ μ ∈ (a0)

∗
+). Therefore, by Lemma 4.4,

JM(α ◦ p, λ) = JM( JM
M0

(β,μ),λ) is holomorphic and non-zero for Re λ sufficiently posi-
tive, and meromorphic for λ ∈ a∗M,C. Note that JM(α ◦ p, λ)= JM(α,λ)◦ IG

M(p). Therefore
JM(α,λ) is also non-zero and meromorphic in λ. Arguing as in the proof of Corollary 4.2
this implies that I(σ,λ) is Gx-distinguished for all λ. �

7. Local Bessel identities—the split case

In this section we consider the split case. For g ∈G′ let gι = t g−1. Note that

X= {(
g, tg

) : g ∈G′}

is a single G-orbit and for every x= (h, th) ∈X we have

Gx = {(
g,

(
hgh−1

)ι) : g ∈G′}.

We first relate the relative Bessel distributions on X with the usual Bessel distribu-
tions on G′.

Lemma 7.1. — Let D′
i = (π ′

i , π̂ ′
i , (·, ·)′i) be dual couples of representations of G′ and let

�̂i ∈ π̂ ′∗
i , i = 1, 2. Let A : π ′

2 → π̂ ′ι
1 be an intertwining operator. Define α ∈ EG(X, (π ′

1 ⊗ π ′
2)
∗) by

α(g,t g)(v1 ⊗ v2)= (π ′
1(g)v1, Av2)

′
1, g ∈G′, v1 ∈ π ′

1, v2 ∈ π ′
2. Then

B̃
α,�̂1⊗�̂2
D′

1⊗D′
2
←→B

�̂1◦A,�̂2
D′

2
.

Proof. — We first observe that the statement of the Lemma is invariant under �̂i �→
�̂i ◦ π̂i(f

′
i ), i = 1, 2 for any f ′1 , f ′2 ∈ S (G′). Indeed, by (2.8) and (2.2) we have

B̃
α,�̂1◦π̂ ′1(f ′1 )⊗�̂2◦π̂ ′2(f ′2 )

D′
1⊗D′

2
(�)= B̃

α,�̂1⊗�̂2
D′

1⊗D′
2

([
f ′1 ⊗ f ′2

] ∗�
)

and

B
�̂1◦π̂ ′1( f ′1 )◦A,�̂2◦π ′2(f ′2 )

D′
2

(
f ′
)=B

�̂1◦A◦π̂ ′2(( f ′1 )ι),�̂2◦π ′2(f ′2 )

D′
2

(
f ′
)

=B
�̂1◦A,�̂2◦π ′2(f ′2 )

D′
2

((
f ′1
)ι ∗ f ′ ∗ (

f ′2
)∨)

where ( f ′1 )ι(g′)= f ′1 (g′ι) and (f ′2 )∨(g′)= f2(g
′−1). On the other hand, it is evident from the

definition of matching in the split case that
[
f ′1 ⊗ f ′2

] ∗�←→(
f ′1
)ι ∗ f ′ ∗ (

f ′2
)∨

whenever �←→ f ′.
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Thus, writing f ′ as a linear combination of f ′1 ∗ h′ ∗ f ′2 for some f ′1 , f ′2 , h′ ∈ S (G′),
we reduce the Lemma to the case where �̂i ∈ (π̂ ′

i )
∨, i = 1, 2. In other words, we may

assume that there exist u′i ∈ π ′
i such that �̂i(vi)= (u′i, vi)

′
i for all vi ∈ π̂ ′

i , i = 1, 2.
Fix �←→ f ′. Observe that � := � � α ∈ (π ′

1 ⊗ π ′
2)
∨ is given by �(v′1 ⊗ v′2) =

(v′1, Aπ ′
2(f

′)v′2)
′
1, v′i ∈ π ′

i , i = 1, 2. Indeed,

[�� α](v′1 ⊗ v′2
)=

∫

X
�(x)αx

(
v′1 ⊗ v′2

)
dx=

∫

G′
f ′(g)

(
π ′

1

(
t g
)
v′1, Av′2

)′
1

dg

=
∫

G′
f ′(g)

(
v′1, π̂ ′

1

(
gι
)
Av′2

)′
1

dg

=
∫

G′
f ′(g)

(
v′1, Aπ ′

2(g)v
′
2

)′
1

dg = �
(
v′1 ⊗ v′2

)
.

Thus

B̃
α,�̂1⊗�̂2
D′

1⊗D′
2
(�)= (�̂1 ⊗ �̂2)(�D′

1⊗D′
2
�)= �

(
u′1 ⊗ u′2

)= (
u′1, Aπ ′

2

(
f ′
)
u′2

)′
1
.

On the other hand,

[
�̂1 ◦A ◦ π ′

2

(
f ′
)](

u′
)= �

(
u′1 ⊗ u′

)
, u′ ∈ π ′

2,

so that

B
�̂1◦A,�̂2
D′

2

(
f ′
)= �̂2 ◦�D′

2

(
�̂1 ◦A ◦ π ′

2

(
f ′
))= [

�̂1 ◦A ◦ π ′
2

(
f ′
)](

u′2
)

= �
(
u′1 ⊗ u′2

)
.

The Lemma follows. �

Let π ′ ∈�′
gen and π = bc(π ′)= π ′ ⊗ π ′ ∈�τ

gen and recall that B(π)= {π ′} and
W(π)=W(π ′)⊗W(π ′). Recall also the definition of B I and απ ′ from Section 3.3. Tak-
ing D′

1 = D′
2 =W(π ′), �̂1 = �̂2 = δπ ′∨

e and A= yπ ′ ◦ W (w0,π ′) in the previous Lemma
we get

Corollary 7.2. — (Cf. [Jac01, Lemma 2]) We have B I =�′
gen. Moreover for any π ′ ∈�′

gen

we have

απ ′
(h,t h)

(
W′ ⊗W′′)= [

W
(
h,π ′)W′,yπ ′ ◦ W

(
w0,π ′)W′′]

π ′

for any h ∈G′, W′, W′′ ∈ W (π ′).
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7.1. Open periods. — Let P′ = M′U′ be a standard parabolic subgroup of G′ and
P=MU the corresponding parabolic subgroup of G. Let σ ′ = σ ′

1⊗· · ·⊗σ ′
t ∈�M′

gen. Next
we show that σ ′ ∈ B IM. To that end, we use the results of Shahidi on local coefficients.
Beforehand, we interpret the split open period in terms of the intertwining operator.

Recall the intertwining operator (1.4)

�
(
σ ′, λ

) : [I←−M ′
(

W ψ
(←−σ ′),

←−
λ

)]θ̃ → IM′
(

W ψ−1(
σ ′∨),−λ

)
.

Composing with translation by w0 we obtain an intertwining operator

�̃
(
σ ′, λ

) : I←−M ′
(

W ψ
(←−σ ′),

←−
λ

)→ [
IM′

(
W ψ−1(

σ ′∨),−λ
)]ι

.

By (1.5) we have

(7.1) We

(
σ ′∨,−λ

) ◦ �̃
(
σ ′, λ

)=W
(
w0 :wMσ ′,wMλ

)
.

Lemma 7.3. — Let σ ′ ∈�M′
gen, x= (h, th) with h ∈G′ and ϕ′, ϕ′′ ∈ I(W (σ ′)). As mero-

morphic functions of λ ∈ a∗M,C we have

J
(
ϕ′ ⊗ ϕ′′ : x, ασ ′, λ

)

= (
I
(
h, W

(
σ ′), λ

)
ϕ′, �̃

(
σ ′, λ

) ◦M
(
wM, W

(
σ ′), λ

)
ϕ′′

)
I([·,·]σ ′ )

and

Jσ ′
(
ϕ′ ⊗ ϕ′′ : x, ασ ′, λ

)

= (
I
(
h, W

(
σ ′), λ

)
ϕ′, �̃

(
σ ′, λ

) ◦N
(
wM, W

(
σ ′), λ

)
ϕ′′

)
I([·,·]σ ′ ).

Proof. — Since in the split case we have nM′(σ ′, λ)= CM′(wM : σ ′, λ;ψ ′), the sec-
ond equality is immediate from the first one. For x = (h, th) we may choose ιx

e = (h, e).
By Corollary 7.2, σ ′ ∈ B I M, and using the definition of J(ασ ′, λ), for Re λ sufficiently
positive J(ϕ′ ⊗ ϕ′′ : x, ασ ′, λ) is given by

∫

Pe\Ge

ασ ′
e

((
ϕ′ ⊗ ϕ′′

)
λ

(
gιx

e

))
dg

=
∫

M′\G′

[
ϕ′λ(gh),y←−σ ′

(
W M

(
wM

0 , σ ′)ϕ′′λ
(
gι
))]

σ ′ dg

=
∫

P′\G′

∫

U′

[
ϕ′λ(gh),y←−σ ′

(
W M

(
wM

0 , σ ′)ϕ′′λ
(
uι gι

))]
du dg

=
∫

P′\G′

∫

U′

[(
I
(
h, W

(
σ ′), λ

)
ϕ′

)
λ
(g),y←−

σ ′
(
ϕ′′λ

(
wM

0 uι gι
))]

du dg.

It remains to invoke (1.7). The Lemma follows by meromorphic continuation. �



250 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

Corollary 7.4. — For any σ ′ ∈�M′
gen we have the identity

(7.2) B̃
(
σ ′, λ

)←→ B
(
σ ′, λ

)

of meromorphic functions in λ ∈ a∗M,C. Thus, B IM′ =�M′
gen and we have

(7.3) αM

(
σ ′, λ

)= Jσ ′
(
ασ ′, λ

)
.

Proof. — Set D′
1 = D′

2 = I(W(σ ′), λ) and �̂1 = �̂2 = We(σ
′∨,−λ). Consider the

intertwining operator

A= �̃
(
σ ′, λ

) ◦N
(
wM, W

(
σ ′), λ

) : I(W
(
σ ′), λ

)→ I
(

W
(
σ ′∨),−λ

)ι
.

We have

�̂1 ◦A
(7.1)= W

(
w0 :wMσ ′,wMλ

) ◦N
(
wM, W

(
σ ′), λ

) (1.10)= W
(
w0 : σ ′, λ

)
.

Taking Lemma 7.3 into account, the identity (7.2) therefore follows from Lemma 7.1 and
the definition (4.13) of B̃(σ ′, λ). The last part of the Corollary is then immediate from
the definition of B IM′ and (2.11). �

7.2. Closed split periods. — Next we will show the Bessel identities for the closed
Bessel distributions. Let L be even symmetric.

Proposition 7.5. — Let � ∈ �L,w0
gen . Then for any λ ∈ (a∗L)

w0
C such that π = I(�,λ) is

irreducible we have

D̃(�,λ)←→ Bπ ′

where B(π)= {π ′}.

By Proposition 5.9 and (2.14) it is enough to prove the Proposition in the case
where L=M(k,k). This means that λ ∈ a∗G. We might as well assume (by translating by λ)
that λ = 0. We therefore analyze this case. Thus, for the rest of this section let n = 2k

and L=M(k,k) so that L�Gk ×Gk � (G′
k ×G′

k)× (G′
k ×G′

k). To avoid ambiguity when
considering representations of L, we will continue to use ⊗ for the tensor product of
representations with respect to the decomposition L=Gk ×Gk or L′ =G′

k ×G′
k and use

the symbol � to express the tensor product with respect to L= L′ × L′ or G=G′ ×G′.
Let �′j ∈ R(G′

k), j = 1, 2, �′ = �′1 ⊗ �′2,
←−
�′ = �′2 ⊗ �′1 and

�= �′ �
←−
�′ = (

�′1 ⊗ �′2
)
�

(
�′2 ⊗ �′1

)
.
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Assume further that �′j ∈ �
G′

k
gen. It is immediate from the definitions that for any W′ ∈

W (�′) and Z′ ∈ W (�′∨) we have

(7.4)
[
W′, Z′]

�′ = βw0

(
W′ � y�′Z′).

We can identify

I(�, 0)= I
(
�′, 0

)
� I

(←−
�′ , 0

)

and

δ�
e = δ�′

e � δ
←−
�′
e

on W (�). Therefore,

(7.5) We(�, 0)=We

(
�′, 0

)
� We

(←−
�′ , 0

)
.

Consider the intertwining operator

�̃
(
�′, 0

) : I(W
(←−
�′

)
, 0

)→ I
(

W
(
�′∨

)
, 0

)ι
.

Recall that

(7.6) We

(
�′∨, 0

) ◦ �̃
(
�′, 0

)=W
(
w0 : ←−�′ , 0

)
.

Lemma 7.6. — With the above notation, let ϕ = ϕ′�ϕ′′ ∈ I(W (�)) where ϕ′ ∈ I(W (�′))
and ϕ′′ ∈ I(W (

←−
�′ )). Then for g ∈G′ and x= (g, tg) ∈X we have

Z
(
ϕ : x, β�, 0

)= (
I
(
g, W

(
�′

)
, 0

)
ϕ′, �̃

(
�′, 0

)
ϕ′′

)
I([·,·]�′ ).

Proof. — It suffices to prove this for g =w0, so that x= (w0,w0). We have

Z
(
ϕ : x, β�, 0

)=
∫

Q′\G′
βw0

(
ϕ
(
h, hθ̃

))
dh=

∫

Q′\G′
βw0

(
ϕ′(h) � ϕ′′

(
hθ̃

))
dh

=
∫

Q′\G′
βw0

(
ϕ′(h) � y�′

(
�̃

(
�′, 0

)
ϕ′′(hw0)

))
dh

=
∫

Q′\G′
βw0

(
ϕ′(hw0) � y�′

(
�̃

(
�′, 0

)
ϕ′′(h)

))
dh.

The Lemma now follows from the relation (7.4). �

Finally, we can go back to the proof of Proposition 7.5.
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Proof of Proposition 7.5. — Recall that we can assume that L=M(k,k) and λ ∈ a∗G. We
identify D1 = I(W(�), 0) with D2 = D′

1 � D′
2 where

D′
1 = I

(
W

(
�′

)
, 0

)
and D′

2 = I
(
W

(←−
�′

)
, 0

)
.

More precisely we identify π1 = I(W (�), 0), with π2 = π ′
1 � π ′

2 where π ′
1 = I(W (�′), 0)

and π ′
2 = I(W (

←−
�′ ), 0) and we identify π̂1 = I(W (�∨), 0) with π̂2 = π̂ ′

1 � π̂ ′
2 where

π̂ ′
1 = I(W (�′∨), 0), and π̂ ′

2 = I(W ((
←−
�′ )

∨
), 0). Under these identifications α1 = Z(β�, 0)

becomes α2 ∈ EG(X,π∗
2 ) given by

(α2)(g,t g)

(
ϕ′1 � ϕ′2

)= (
π ′

1(g)ϕ
′
1, �̃

(
�′, 0

)
ϕ′2

)
D′

1

(by Lemma 7.6) and �̂1 =We(�
∨, 0) becomes �̂2 = �̂′1 � �̂′2 where

�̂′1 =We

(
�′∨, 0

)
and �̂′2 =We

((←−
�′

)∨
, 0

)

by (7.5). Thus

D̃(�, 0)= B̃
α2,�̂′1��̂′2
D′

1�D′
2

.

It therefore follows from (7.6) and Lemma 7.1 that

B
α2,�̂′1��̂′2
D′

1�D′
2
←→ B

(←−
�′ , 0

)
.

By assumption, π ′ � I(
←−
�′ , 0). The Proposition now follows from (2.14). �

8. Local Bessel identities—the unramified case

For principal series representations the sought-after Bessel identities were obtained
in [Off07, Theorem 3] using results of Hironaka on spherical functions on X [Hir99].
Actually the results of [Off07] are only up to a possible twist by η in the transfer factor
γ , but this was subsequently determined in [Off09, Theorem 7.1]. From these results we
will deduce the necessary identities for unramified data.

Throughout this section assume that F is p-adic, p �= 2, E/F is either split or un-
ramified (i.e., η is unramified) and ψ ′ is unramified.

8.1. Recollection of the results of [Hir99] and [Off09]8. — Let � = (�1, . . . , �n) ∈�M0
unr

be an unramified character of M0. Throughout we denote by ϕ0 = ϕ0,� the standard

8 Note that the notational conventions in [Off09] are slightly different.
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spherical section of I(�) normalized by ϕ0(e)= 1. Let �′ = (�′1, . . . , �′n) ∈ B(�)(⊆�
M′

0
unr).

Then �′ ∈ B I M0 and according to our normalization, the linear forms α�′
y , y ∈XM0 =M′

0

on W (�)=C are given by multiplication by L(1, η)n η(det y) �′(y) and EM0(X
M0, W (�)∗)

is the span of {α�′ : �′ ∈ B(�)}. Let E1 be the kernel of Nm :G1 →G′
1 considered as an

algebraic group over F, so that E1 = {x ∈ E∗ : x xτ = 1} and let

M1 =
{
diag(a1, . . . , an) ∈M0 : ai ∈ E1

}
.

Note that Py

0 = M1 for y ∈ XM0 and therefore the linear form J(x, α�′
y , λ) on IG

M0
(�) is

given by the meromorphic continuation of the sum of integrals

J
(
ϕ : x, α�′

y , λ
)

= L(1, η)n η(det x)
∑

y∈(M′
0∩x•G)/M0

(
ν0�

′)(y)e
1
2 〈ρ+λ,H(y)〉

∫

M1\Gy

ϕλ

(
gιx

y

)
dg.

Up to the factor L(1, η)n, this is also the “stable intertwining period” considered in
[Off07]. (The terminology comes from the analogy with the stabilization of Labesse-
Langlands [LL79].) The normalized open periods are closely related to Hironaka’s spher-
ical functions on X (cf. [Off07, §3.2]). Using this relation, (4.6) and the explicit formulas
of [Hir99] one gets

(8.1) J�′
(
ϕ0 : x, α�′, λ

)= L(1, η)n
∏

i<j

L(1− (λi − λj), �′j(�
′
i)
−1η)

L(1+ λi − λj, �′i(�
′
j)
−1)

for x ∈X∩K= e •K [Off09, (7.13)].
Let H = H(G, K) = S (K\G/K) (resp. H′) be the spherical Hecke algebra of G

(resp. G′). The homomorphism bc : H → H′ defined by b̂c(f )(π ′)= f̂ (bc(π ′)) is injec-
tive and identifies H′ as an H-algebra which is free of rank 2n. Let M = S (X/K). It is
naturally an H-module via convolution. Hironaka defined in [Hir99] a spherical Fourier
transform � �→ �̂ on M. In terms of the local open periods it is given by

�̂
(
π ′)= J1M′0

(
ϕ0 : e, α

1M′0 , λ
)−1

∫

X
�(x)J1M′0

(
ϕ0 : x, α

1M′0 , λ
)

dx

where ϕ0 ∈ I(1M0) is the standard spherical section and π ′ = I(1M′
0
, λ).

By [Hir99, Theorem 2] we have an isomorphism of H-modules between H′ and
M given by f ′ �→� if f̂ ′ = �̂.

Recall that We(ϕ
′
0 : �′, λ)= cs(�′, λ)−1 where ϕ′0 ∈ I(�′) is the standard spherical

section and cs was defined in (1.9) [CS80]. Taking our normalization into account we
recall the following result.
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Theorem 8.1.

(1) We have �
M′

0
unr ⊆ B IM′

0
and for any �′ ∈�

M′
0

unr we have

(8.2) αM0

(
�′, λ

)= J�′
(
α�′, λ

)

as meromorphic functions in λ ∈ a∗M0,C.

(2) Assume that π ′ = I(�′, λ) ∈�unr,bc-gen. Then π ′ ∈ B I and we have

(8.3) απ ′ ◦W(�,λ)= J�′
(
α�′, λ

)
.

In particular, J�′(α
�′, ·) is holomorphic at λ.

(3) For any f ′ ∈ H′ and � ∈ M such that �̂ = f̂ ′ we have �←→ f ′. Moreover, for any

�′ ∈�
M′

0
unr we have the identity

B̃
(
� : �′, λ

)= B
(

f ′ : �′, λ
)

of meromorphic functions in λ ∈ a∗M,C.

(4) Suppose that μ ∈ (aM
0,C)∗ and σ ′ = IM′

M′
0
(�′,μ) ∈�M′

unr,bc-gen and let σ = IM
M0

(�,μ).

Then as rational functions in qλ
F, λ ∈ a∗M,C we have

(8.4) JM,σ ′
(
ασ ′, λ

) ◦ IG
M

(
WM

M0
(�,μ)

) ◦ �G
M0,M(�,μ)= JM0,�′

(
α�′, λ+μ

)
.

Moreover σ ′ ∈ B IM′ and

(8.5) α
(
σ ′, λ

)= JM,σ ′
(
ασ ′, λ

)
.

Proof. — By Lemma 3.7 and (4.6) we may reduce the first part to the case where
�′ = 1. This case is [Off09, Theorem 7.1]. The second part follows from Lemma 3.6.
The third part follows from [Off09, Theorem 10.1] and the first part.

To show the last part, observe that (8.4) follows from (8.3) and (4.9). Let
A = IG

M(WM
M0

(�,μ)) ◦ �G
M0,M(�,μ) and Â = IG

M(WM
M0

(�∨,−μ)) ◦ �G
M0,M(�∨,−μ). Then

(A, Â) : I(W(�),μ + λ) → I(W(σ ), λ) is an equivalence of dual couples (Proposi-
tion A.2). It follows from (1.6) that WM(σ∨,−λ) = WM0(�

∨,−μ − λ) ◦ Â−1. By part
(1) of the Theorem, (2.9) (applied to (A−1, Â−1)) and (2.11) we have σ ′ ∈ B IM′ and
α(σ ′, λ)= α(�′,μ+ λ) ◦A−1. Therefore (8.5) follows from (8.2) and (8.4). �

Finally, we provide an explicit formula for the open period for general M and
unramified data.

Lemma 8.2. — Assume that σ ′ = σ ′
1 ⊗ · · · ⊗ σ ′

t ∈ �M′
unr,bc-gen and let σ = bc(σ ′) and

ξ0 ∈ IG
M(W (σ )) be the spherical section normalized by [ξ0(e)](e)= 1. For x ∈ e •K we have

JG
M

(
ξ0 : x, ασ ′, λ

)=
[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
]∏

i<j

L(λi − λj, σ ′
i × σ ′

j
∨ · η)

L(1+ λi − λj, σ ′
i × σ ′

j
∨
)
.
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Proof. — Write σ ′ = IM′
M′

0
(�′,μ) and note that ξ0 = csM(�,μ)IM(WM

M0
(�,μ)) ◦

�G
M0,M(�,μ)ϕ0 where ϕ0 is the standard section of IM0(�). Therefore by (8.4) JG

M(ξ0 :
x, ασ ′, λ) equals

n
G′
M′

(
σ ′, λ

)−1 JM,σ ′
(
ξ0 : ασ ′, λ

)

= n
G′
M′

(
σ ′, λ

)−1
cs

M(�,μ)JM0,�′
(
ϕ0 : α�′, λ+μ

)
.

On the other hand, from the identity (8.1) JM0,�′(ϕ0 : α�′, λ+μ) equals

L(1, η)n csM(�,wM
0 μ)

csM′
(�′,wM

0 μ)csM′
(�′,μ)

∏

1≤i<j≤t

L(1− (λi − λj), σ ′
i
∨ × σ ′

j · η)

L(1+ λi − λj, σ ′
i × σ ′

j
∨
)

.

The lemma follows from the easily verified identities

L(1, η)n csM(�,wM
0 μ)csM(�,μ)

csM′
(�′,wM

0 μ)csM′
(�′,μ)

=
t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)

and

n
G′
M′

(
σ ′, λ

)−1 ∏

1≤i<j≤t

L(1− (λi − λj), σ ′
i
∨ × σ ′

j · η)

L(1+ λi − λj, σ ′
i × σ ′

j
∨
)

=
∏

1≤i<j≤t

L(λi − λj, σ ′
i × σ ′

j
∨ · η)

L(1+ λi − λj, σ ′
i × σ ′

j
∨
)
.

�

8.2. Closed periods and Bessel distributions. — Denote by M0,k the standard minimal
Levi subgroup of Gk . We have the following identity.

Lemma 8.3. — Let n= 2k, σ ′ = 1M′
0,k
⊗ η1M′

0,k
and λ ∈ (a∗M0

)
w0
C . Let ϕ0 ∈ I(1M0) be the

standard spherical section. Then for x ∈X∩K we have

(8.6) Jσ ′
(
ϕ0 : x, ασ ′, λ

)= Z
(
ϕ0 : x, β1M0 , λ

)
.

Furthermore,

B̃
(
1X∩K : σ ′, λ

)= D̃(1X∩K : 1M0, λ).
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Proof. — First note that both sides of (8.6) are independent of x ∈X∩K since they
are K-invariant and X∩K= e •K. We have λn+1−i = λi for all i where λ= (λ1, . . . , λn).
By (8.1) for �′ = σ ′ the left-hand side of (8.6) is equal to

L(1, η)n

[ ∏

1≤i<j≤k

L(1− (λi − λj), η)

L(1+ λi − λj, 1F∗)

L(1− (λj − λi), η)

L(1+ λj − λi, 1F∗)

]

×
[ ∏

1≤i,j≤k

L(1− (λj − λi), 1F∗)

L(1+ λj − λi, η)

]
.

The non-diagonal terms cancel out and we remain with L(1, η)kL(1, 1F∗)
k = L(1, 1E∗)

k .
On the other hand, by (5.6) the right-hand side of (8.6) is equal to β1M0,k ((ϕ0)λ(e))

since Gw0 = Pw0
0 Kw0 . By our normalization of the inner product on the Whittaker model

(on 1M0,k
) we get L(1, 1E∗)

k once again. We infer (8.6).
The second part follows from (8.6) and the definitions of the normalized Bessel

distributions using (2.10) applied to v0 = v̂0 = ϕ0 ∈ I(1M0). �

Corollary 8.4. — Let M be even symmetric and � ∈�M,w0
unr,gen. Let λ ∈ (a∗M)

w0
C be such that

I(�,λ) is irreducible and let π ′ ∈ B(I(�,λ)) be such that π ′ = π ′ ·η. (Recall that this π ′ is unique.)

Then

Bπ ′(1K′)= D̃(1X∩K : �,λ).

Proof. — There exists μ ∈ (a∗M)
w0
C such that � = IM

M0
(1M0,μ). Then π ′ �

IG′
M′

0
(ν ′,μ+ λ) where ν ′ = 1M′

0,k
⊗ η1M′

0,k
. It follows from Corollary 5.10 that

D̃(�,λ)= D̃(1M0,μ+ λ)

and from (2.14) that

Bπ ′ = B
(
ν ′,μ+ λ

)
.

The Corollary therefore follows from Lemma 8.3. �

9. Dependence on additive character

So far we fixed a non-trivial character ψ ′ of F. In this section we examine the
dependence on ψ ′ of the various objects and identities. To indicate the dependence on
ψ ′ in the notation (which was mostly suppressed so far) we append it as a superscript.

For the rest of this section fix a ∈ F∗ and let ψ ′
a =ψ ′(a·).

Firstly, for πi ∈ Rpi(Gni
), i = 1, 2 we have

ε(s,π1 × π2;ψa)= |a|n1n2(s− 1
2 )

E ωn2
π1

(a)ωn1
π2

(a) ε(s,π1 × π2;ψ),
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γ (s,π1 × π2;ψa)= |a|n1n2(s− 1
2 )

E ωn2
π1

(a)ωn1
π2

(a) γ (s,π1 × π2;ψ).

Thus, for σ = σ1 ⊗ · · · ⊗ σt ∈ Rpi(M), λ= (λ1, . . . , λt) ∈ a∗M,C and w ∈W(M) we have

CM(w : σ,λ;ψa)= |a|−
1
2
∑

i<j:w(i)>w(j) ninj

E

[ ∏

1≤i<j≤t
w(i)>w(j)

ωσi[λi](a)
nj ωσj [λj ](a)

−ni

]
(9.1)

×CM(w : σ,λ;ψ).

In particular

(9.2) CM(wM : σ,λ;ψa)= |a|−
1
2 dim U

F

[∏

i<j

ωσi[λi](a)
nj ωσj [λj ](a)

−ni

]
CM(wM : σ,λ;ψ).

The measure on F satisfies dψ ′
ax = |a| 1

2
F dψ ′

x. Accordingly, for any algebraic variety
Y over F with a fixed gauge form ωY and constant λY, the measure dy on Y satisfies

dψ ′
a y= |a| 1

2 dim Y
F dψ ′

y. It follows that

Mψa(w,σ,λ)= |a| 1
2 (dim(Uwκ∩wUw−1)\Uwκ )

F Mψ(w,σ,λ)

= |a|
1
2
∑

i<j:w(i)>w(j) ninj

E Mψ(w,σ,λ)

and combined with (9.1) we get

Nψa(w,σ,λ)=
[ ∏

1≤i<j≤t
w(i)>w(j)

ωσi[λi](a)
nj ωσj [λj ](a)

−ni

]
Nψ(w,σ,λ).

For π ∈ R(G) and α ∈ EG(X,π∗) the notation �� α implicitly depends on the
choice of ψ ′ through the measure on X. Specifically

(9.3) ��ψ ′
a α = |a| 1

2 n2

F ��ψ ′
α.

Let ta = ta,n = diag(an−1, . . . , a, 1) and note that (ψa)0 = ψ0(ta · t−1
a ). Thus, for

π ∈�gen and W ∈ W ψ(π) we have W(ta·) ∈ W ψa(π). Furthermore,

(9.4)
[
W(ta·), W∨(ta·)

]ψa = |a|(
n
3)+ 1

2(
n
2)

E

[
W, W∨]ψ

, W ∈ W ψ(π), W∨ ∈ W ψ−1(
π∨).

The identity follows by making a change of variable p �→ t−1
a p in the integral (A.1) defining

I(W(ta·), W∨(ta·), s) and noting that the Jacobian is δQn
(ta)

−1δP0(ta)= |a|(
n+1

3 )−(n
2)

E = |a|(
n
3)

E ,



258 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

while the measure changes by the factor |a| 1
2(

n
2)

E . Let Aψ,a
π : W ψ(π)→ W ψa(π) be defined

by

Aψ,a
π W=Wa = |a|− 1

2(
n
3)− 1

4(
n
2)

E W(ta·).
Then by (9.4) (Aψ,a

π , Aψ−1,a

π∨ ) :Wψ(π)→Wψa(π) is an equivalence of dual couples. It is
also clear that

δπ,ψa

g ◦Aψ,a
π = |a|− 1

2(
n
3)− 1

4(
n
2)

E δπ,ψ
tag .

The analogous property with respect to F together with the relation (2.4) imply that for
π ′ ∈�′

gen we have

Bψ ′
π ′ = |a|(

n
3)+ 1

2(
n
2)

F B
δ
π ′,ψ ′a
t−1
a w0

,δ
π ′∨,ψ

′−1
a

t−1
a

Wψ ′a (π ′) .

Note that

δ
π ′,ψ ′

a

t−1
a w0

= δπ ′,ψ ′
a

w0
◦ W ψ ′

a
(
w0t−1

a w0,π ′)= δπ ′,ψ ′
a

w0
◦ W ψ ′

a
(
z−(n−1)

a ta,π ′)

where za is the central element of G′ with a in the diagonal. Hence, taking into account

an extra factor of |a| 1
2 n2

F which comes from the change of measure on G′, it follows from
(2.1) that

(9.5) Bψ ′
a

π ′
(

f ′a
)= ωπ ′(a)

n−1 |a| 1
2(

n+1
2 )−(n

3)
F Bψ ′

π ′
(

f ′
)

for every f ′ ∈ S (G′) where

f ′a (g)= f ′
(
t−1
a gt−1

a

)
.

For � ∈ S (X) we have

(9.6) �
ψ ′←→ f ′ if and only if �a

ψ ′
a←→ f ′a

where �a(x) = �(x • t−1
a ). Indeed, by performing a change of variables (u1, u2) �→

(t−1
a u1ta, t−1

a u2ta) the orbital integral of f ′a with respect to ψ ′
a at t ∈M′

0 is δP′0(ta)
−2|a|dim U′

0
F

times the orbital integral of f ′ with respect to ψ ′ at t−2
a t. Analogously, the orbital integral

of �a behaves in a compatible way.
Let π ′ ∈ �′

bc-gen, π = bc(π ′) and α ∈ EG(X, W ψ(π)∗). Define αa ∈
EG(X, W ψa(π)∗) by αa

x(W
a) = αx(W), W ∈ W ψ(π). Then as in the derivation of (9.5)

we have

B̃
αa,δ

π∨,ψ
−1
a

e

Wψa (π)
(�a)

(2.9)+(9.3)= |a| 1
2 n2

F |a|−(n
3)− 1

2(
n
2)

F B̃
α,δ

π∨,ψ−1
ta

Wψ (π)
(�a)

(2.7)= |a| 1
2(

n+1
2 )−(n

3)
F B̃

α,δ
π∨,ψ−1
e

Wψ (π)
(�).
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Hence, using (9.5) and (9.6), π ′ ∈ B I ψ ′
x if and only if π ′ ∈ B I ψ ′

a
x and we have

(9.7) απ ′,ψ ′
a

x

(
Wa

)= ωπ ′(a)
n−1 απ ′,ψ ′

x (W), W ∈ W ψ(π).

More generally, for σ ∈�M
gen let Aψ,a

σ : W ψ(σ )→ W ψa(σ ) be defined by

Aψ,a
σ W=WM,a = |a|− 1

4
∑t

i=1 (
ni
2)− 1

2
∑t

i=1 (
ni
3)

E W
(
tM
a ·

)
, W ∈ W ψ(σ )

where tM
a = diag(ta,n1, . . . , ta,nt

). Then (Aψ,a
σ , Aψ−1,a

σ∨ ) :WM,ψ(σ )→WM,ψa(σ ) is an equiv-
alence of dual couples.

Set further Aψ,a(σ )= |a|− 1
4 dim U

F IM(Aψ,a
σ ). More explicitly,

Aψ,a(σ )(ϕ)(g)= ϕa(g) := |a|− 1
4 dim U

F ϕ(g)M,a = |a|− 1
4(

n
2)− 1

2
∑t

i=1 (
ni
3)

E ϕ(g)
(
tM
a ·

)
.

Then (Aψ,a(σ ), Aψ−1,a(σ∨)) : Iψ(Wψ(σ ),λ)→ Iψa(Wψa(σ ), λ) is an equivalence of dual

couples for every λ ∈ a∗M,C. (The factor |a|− 1
4 dim U

F compensates for the change of measures
on P\G.)

Define the element zM
a := tM

a w−1
M t−1

a wM.

Lemma 9.1. — Let σ ∈�M
gen.

(1) We have zM
a = diag(a−l1In1, . . . , a−lt Int

) where lj = n1 + · · · + nj−1. In particular, zM
a

is central in M.

(2) For any σ ′ ∈ B(σ ) we have

(9.8)
ωσ [λ](zM

a ) ωI(σ ′,λ)(a)
n−1 e−〈λ,H(tMa )〉

[∏i<j ωσ ′i [λi](a)nj ωσ ′j [λj ](a)−ni ] ∏t

i=1 ωσ ′i (a)
ni−1

= 1.

(3) We have

Wψa(σ,λ) ◦Aψ,a(σ )= ωσ [λ]
(
zM

a

)
e−〈λ,H(tMa )〉 Aψ,a

I(σ,λ) ◦Wψ(σ,λ)

whenever I(σ,λ) ∈�gen. In particular,

Wψ−1
a

e

(
σ∨,−λ

) ◦Aψ−1,a
(
σ∨)(9.9)

= ωσ [λ]
(
zM

a

)−1
e〈λ,H(tMa )〉 |a|− 1

4(
n
2)− 1

2(
n
3)

E Wψ−1(
ta : σ∨,−λ

)
.

Proof. — The first two parts are straightforward computations. For the last part, for
any ϕ ∈ I(W ψ(σ )) we have
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Wψa
(
g : ϕa, σ,λ

)=
∫

U←−κ
δσ,ψa

e

[(
ϕa

)
λ

(
w−1

M ug
)]

(ψa)
−1
0 (u) dψau

=
∫

U←−κ
δσ,ψa

e

[(
ϕa

)
λ

(
w−1

M ug
)]

ψ−1
0

(
taut−1

a

)
dψau.

By a change of variable this is

δ−1
P←−κ (ta)

∫

U←−κ
δσ,ψa

e

[(
ϕa

)
λ

(
w−1

M t−1
a utag

)]
ψ−1

0 (u) dψau

which is equal to

δ−1
P←−κ (ta)|a|−

1
4(

n
2)− 1

2
∑t

i=1 (
ni
3)

E

×
∫

U←−κ
e〈λ,H(w−1

M t−1
a utag)〉δσ,ψ

tMa

[
ϕ
(
w−1

M t−1
a utag

)]
ψ−1

0 (u) dψau.

This is

δ−1
P←−κ (ta)|a|−

1
4(

n
2)− 1

2
∑t

i=1 (
ni
3)

E δ
1
2
P

(
w−1

M t−1
a wM

)
e〈λ,H(w−1

M t−1
a wM)〉

×
∫

U←−κ
e〈λ,H(w−1

M utag)〉δσ,ψ

zM
a

[
ϕ
(
w−1

M utag
)]

ψ−1
0 (u) dψau.

Since zM
a is central in M and

δP

(
w−1

M t−1
a wM

)= δP←−κ (ta)

we get

δ
− 1

2
P←−κ (ta)|a|−

1
4(

n
2)− 1

2
∑t

i=1 (
ni
3)

E e〈wMλ,H(t−1
a )〉ωσ

(
zM

a

)

×
∫

U←−κ
δσ,ψ

e

[
ϕλ

(
w−1

M utag
)]

ψ−1
0 (u) dψau

which is equal to

δ
− 1

2
P←−κ (ta)|a|−

1
2
∑t

i=1 (
ni
3)

E e−〈λ,H(tMa )〉ωσ [λ]
(
zM

a

)|a| 1
2(

n
3)

E |a| 1
2 dim U←−κ
F

×AI(σ,λ)

[
Wψ(ϕ,σ,λ)

]
(g).

It remains to verify (by a straightforward calculation) that

|a|(
n
3)

E |a|dim U←−κ
F = δP←−κ (ta)|a|

∑t
i=1 (

ni
3)

E .

Finally, the relation (9.9) follows immediately. �
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For any α ∈ EG(X, I(W ψ(σ ),λ)∗) let αa ∈ EG(X, I(W ψa(σ ), λ)∗) be given by
αa

x(ϕ
a)= αx(ϕ), x ∈X. Applying (2.9), (9.3) and (9.9) we get

B̃
αa,Wψ

−1
a

e (σ∨,−λ)

I(Wψa (σ ),λ)
= |a| 1

2(
n+1

2 )−(n
3)

F ωσ [λ]
(
zM

a

)−1
e〈λ,H(tMa )〉

B̃
α,Wψ−1

(ta,σ
∨,−λ)

I(Wψ (σ ),λ)
.

Therefore using (2.7), (2.14), (9.5) and (9.6) we get

Lemma 9.2. — Let σ ′ ∈�M′
bc-gen. Then σ ′ ∈ B I ψ ′

M′ if and only if σ ′ ∈ B I ψ ′
a

M′ and then

(9.10) α
ψ ′

a

M

(
σ ′, λ

) ◦Aψ,a(σ )= ωσ [λ]
(
zM

a

)
ωI(σ ′,λ)(a)

n−1 e−〈λ,H(tMa )〉 α
ψ ′
M

(
σ ′, λ

)
.

We turn to study the open periods. Note that for y ∈ XM we have dim Gy −
dim My = n2 −∑t

i=1 n2
i = 2 dim U′ and therefore by our choice of measures we have

Jψ ′
a

M (x, α,λ)= |a|dim U′
F Jψ ′

M (x, α,λ).

Together with (9.2) we deduce that

(9.11) J ψ ′
a

σ ′ (α,λ)= |a| 1
2 dim U′
F

[∏

i<j

ωσ ′i [λi](a)
nj ωσ ′j [λj ](a)

−ni

]
J ψ ′

σ ′ (α,λ).

In particular, using (9.7) we obtain

J ψ ′
a

σ ′
(
ασ ′,ψ ′

a, λ
) ◦Aψ,a(σ )(9.12)

=
t∏

i=1

ωσ ′i (a)
ni−1

[∏

i<j

ωσ ′i [λi](a)
nj ωσ ′j [λj ](a)

−ni

]
J ψ ′

σ ′
(
ασ ′,ψ ′

, λ
)
.

We note that

B̃ψ ′(
� : σ ′, λ

)

(2.7)= B̃
J ψ ′

σ ′ (ασ ′,ψ ′ ,λ),Wψ−1
(ta,σ

∨,−λ)

I(Wψ (σ ),λ)
(�a)

= |a|− 1
2 n2

F ωσ [λ]
(
zM

a

)
e〈−λ,H(tMa )〉 |a| 1

2(
n
2)+(n

3)
F

t∏

i=1

ωσ ′i
(
a−1

)ni−1

×
[∏

i<j

ωσ ′i [λi](a)
−nj ωσ ′j [λj ](a)

ni

]
B̃ψ ′

a
(
�a, σ ′, λ

)

(9.8)= ωπ ′(a)
1−n|a|(

n
3)− 1

2(
n+1

2 )
F B̃ψ ′

a
(
�a : σ ′, λ

)

where π ′ = I(σ ′, λ) and the second equality follows from (9.3), (2.9), (9.12) and (9.9).



262 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

Remark 9.3. — It follows from (9.10), (9.12) and (9.8) that (8.5) holds with respect
to any ψ ′ without restriction on its conductor.

Finally, we study the closed periods. Recall the map yπ : W (π)θ̃ → W ψ−1
(π∨)

defined in Appendix A.4. We have

(9.13) ωπ(a)n−1Aψ−1,a

π∨ ◦ y
π,ψ = y

π,ψa ◦Aψ,a
π .

Suppose that n= 2k, Q= P(k,k), L=M(k,k) and V= U(k,k). Let � ∈�L
gen and β ∈

EL(XL, �∗). Since dim Qw0\Gw0 = dim Q′\G′ = dim V′ = k2 it follows from (5.6) that

(9.14) Zψ ′
a(β, 0)= |a| 1

2 k2

F Zψ ′
(β, 0)

for any a ∈ F∗. Now assume that � = σ ⊗ σ τ with σ ∈ �Gk
gen and let �′ = ai(σ ). The

definition of β� together with (9.13) and (9.4) imply that

β�,ψa ◦Aψ,a
� = ωσ (a)k−1β�,ψ .

From this relation and (9.14) we deduce that

Zψ ′
a
(
β�,ψa, 0

) ◦Aψ,a(�)= ωσ (a)k−1Z
(
β�,ψ, 0

)
.

Together with (9.3) and (9.9) we can apply (2.9) with the equivalence of dual couples
(
Aψ,a(�), Aψ−1,a

(
�∨

))

to infer that D̃ψ ′
a(�a : �, 0) is equal to

|a| 1
2 n2

F η(a)kω�

(
zL

a

)−1 |a|− 1
2(

n
2)−(n

3)
F ωσ (a)k−1

B̃
Zψ ′ (β�,ψ ,0),Wψ−1

(ta:�∨,0)

I(Wψ (�),0)
(�a).

Here we also used the fact that λψ ′
a
= η(a)λψ ′ .

We have

ω�

(
zL

a

)= ωσ (a)−k.

On the other hand,

ωσ |F∗ = ηkω�′ .

Furthermore, clearly

Wψ−1(
ta : �∨, 0

) ◦ I
(
t−1
a , W

(
�∨

)
, 0

)=Wψ−1

e

(
�∨, 0

)
.

Using (2.7) with g = t−1
a we obtain

(9.15) D̃ψ ′
a(�a : �, 0)= ω�′(a)

n−1|a| 1
2(

n+1
2 )−(n

3)
F D̃ψ ′

(� : �, 0).
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Now let κ = (n1, . . . , ns) be a composition of k and let n = 2k, Q = P(κ,←−κ ), L =
M(κ,←−κ ) and V = U(κ,←−κ ). Let � ∈ �L

gen and β ∈ EL(XL, �∗) and λ = (μ,←−μ ) ∈ (a∗L)
w0
C .

Assume that � = σ ⊗←−σ τ with σ = σ1 ⊗ · · · ⊗ σs ∈ �Mκ
gen and let �′ = ai(σ ). Let also

μ′ ∈ a∗M′
2κ

be as in Section 5.2. Applying Proposition 5.9 and (9.15) we obtain

(9.16) D̃ψ ′
a(�a : �,λ)= ωI(�′,μ′)(a)

n−1|a| 1
2(

n+1
2 )−(n

3)
F D̃ψ ′

(� : �,λ).

Global theory

10. Factorization of unitary periods—cuspidal representations

We now turn to the global case and prove our main global results on factorization
of periods of cusp forms and Eisenstein series. In this section and the next E/F will be a
quadratic extension of number fields.

10.1. Notation. — Let A = AF denote the ring of adeles of F and let A∗ be the
group of ideles. For every place v of F let Fv be the completion of F with respect to v and
set Ev = Fv

⊗
F E. For a finite place v of F we will abbreviate by setting Ov = OFv

. Let τ ,
Tr and Nm be as in the local case and let η=⊗

v ηv be the quadratic character attached
to E/F by class field theory, i.e., the unique non-trivial character of F∗ Nm(A∗E)\A∗. Here
and elsewhere the product is taken over all places v of F. We fix a non-trivial character
ψ ′ =⊗

v ψ ′
v of A trivial on F and let ψ = ψ ′ ◦ Tr . As usual, we suppress ψ ′ from the

notation if it is clear from the context.
For an F-variety Y set Yv = Y(Fv) for every place v of F, Y= Y(F) and YA = Y(A).

Let G′, G, X, Z, P0 =M0U0 and Pκ =MκUκ (for a composition κ of n) be defined as
in the local case. For every x ∈XA let Gx

A be the stabilizer of x in GA. It is the restricted
direct product of Gxv

v .
We shall fix some further notation and conventions pertaining to the group G;

the corresponding notation for G′ will be appended by a prime. Let K=∏
v Kv be the

standard maximal compact subgroup of GA where Kv is the standard maximal compact
subgroup of Gv (see Section 1.1).

For a subgroup Q of G denote by X∗(Q) the lattice of F-rational characters of Q
and let δQ be the modulus function of QA. Let a∗Q be the real vector space X∗(Q)

⊗
Z R

and let aQ be the dual space.
The function H :GA → a0 is defined by

e〈χ,H(g)〉 =
∏

v

∣∣χv(mv)
∣∣
v
, χ ∈X∗(M0)

via the Iwasawa decomposition g = umk, u ∈ U0,A, m = (mv)v ∈ M0,A, k ∈ K where χv

is the extension of χ to M0(Fv) for any place v of F. Note that with our conventions
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H(g) = 2H′(g) for all g ∈ G′
A. Let E∞ =∏

v|∞ Ev = E⊗Q R and embed R+ ↪→ E∗∞ via
x �→ 1 ⊗ x. Let AG be the subgroup of ZA consisting of scalar matrices which are the
identity at the finite places and the scalar x at the infinite part for some x ∈R+. Note that
H restricts to an isomorphism between AG and aG.

For an affine variety Y over F we define S (YA) =⊗′ S (Yv) where the restricted
tensor product is with respect to the characteristic function of Y(Ov) (defined for almost
all v).

10.2. Measures. — For Y = G, G′, M, M′, U, U′ or X we take the Tamagawa
measure on YA with respect to the convergence factors chosen in Section 1.2. This is
the product of the local measures defined there with respect to ψ ′

v . Discrete groups are
always endowed with the counting measure.

In particular, AF is endowed with the self-dual Haar measure with respect to ψ ′

and vol(F\AF)= 1. The product measure on XA is compatible with the isomorphism
∐

ξ∈XA/GA

Gξ

A\GA �XA

where the measure on Gξ

A is the product measure.

10.3. Global Bessel distributions. — For our purposes, in the global case we will
consider admissible representations of GA of the form π = ⊗

πv (restricted tensor
product with respect to ev ) where πv ∈ R(Gv) and πv is an unramified principal se-
ries with a choice of a non-zero unramified vector ev for almost all v. We can speak
about dual couples (π, π̂, (·, ·)) and define Bessel distributions, ordinary and relative,
in the global setting in a way similar to the local case. Thus, a dual couple D gives
rise to an equivalence �D : π∨ := ⊗

v πv
∨ → π̂ , and for any � ∈ π∗ and �̂ ∈ π̂∗

we set B
�,�̂

D (f ) = �̂[�D(� ◦ π(f ))], f ∈ S (GA). Similarly, if α ∈ EGA(XA,π∗) (i.e., if

αx•g = αx ◦ π(g) for all g ∈ GA, x ∈ XA) we set B̃
α,�̂

D (�) = �̂[�D(� � α)], � ∈ S (XA)

where �� α = ∫
XA

�(x)αx dx ∈ π∨.
Suppose that D =⊗

v Dv where Dv = (πv, π̂v, (·, ·)v) and (ev, êv)v = 1 for almost
all v. Let � =⊗

v �v , �v ∈ π∗
v and �̂ =⊗

v �̂v , �̂v ∈ π̂∗
v be factorizable functionals with

�v(ev)= �̂v(êv)= 1 for almost all v. Then

B
�,�̂

D (f )=
∏

v

B
�v,�̂v

Dv
(fv)

for f =⊗
fv .

We write C for the set of cuspidal automorphic representations of GA whose central
character is trivial on AG. Implicitly, any π ∈ C is realized on a space of (smooth) cusp
forms of G\GA.
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Given π ∈ C , let Aπ be the dual couple (π, π̂, (·, ·)AGG\GA) where π̂ ∈ C is realized
on the space {φθ̃ : φ ∈ π} with φθ̃(g)= φ(g θ̃ ) (where we recall that g θ̃ =w0

tg−1w0) and

(φ, φ̂)AGG\GA =
∫

AGG\GA

φ(g)φ̂(g) dg, φ ∈ π, φ̂ ∈ π̂ .

We denote by Wπ(φ) the ψ0-th Fourier coefficient of a cusp form φ on GA, i.e.,

Wπ(g : φ)=
∫

U0\U0,A

φ(ug)ψ−1
0 (u) du

where ψ0 is defined as in the local case. Also, let Wπ
e (φ) =Wπ(e : φ) be the associated

Whittaker functional. As in the local case, by abuse of notation Wπ̂ and Wπ̂
e will be

defined with respect to ψ−1. We will use similar notation for G′.
Given π ′ ∈ C ′ define the global standard Bessel distribution

Bπ ′ =B
Wπ ′ (w0),Wπ̂ ′

e

Aπ ′ .

We will factorize it according to the factorization of the inner product in the following
manner (cf. [Jac01], [LO07, §2.2]9). Suppose that S is a finite set of places, containing the
Archimedean ones, such that π ′

v is unramified and ψ ′
v has conductor Ov for all v /∈ S. For

a right K′S =∏
v �∈S K′

v-invariant cusp form φ′ in the space of π ′ which is a factorizable

element of π ′ �⊗
v π ′

v (resp. φ̂′ ∈ (π̂ ′)K′S
) write Wπ ′(g : φ′) =∏

v W′
v(g) (resp. Wπ̂ ′(g :

φ̂′) =∏
v Ŵ′

v(g)) where W′
v ∈ W ψ ′

v (π ′
v) (resp. Ŵ′

v ∈ W ψ ′
v
−1

(π̂ ′
v) = W ψ ′

v
−1

(π ′
v

∨
)) and for

all v �∈ S the elements W′
v , Ŵ′

v are spherical and normalized by W′
v(e)= Ŵ′

v(e)= 1. We
have

(
φ′, φ̂′

)
AGG′\G′

A
=Ress=1 LS

(
s,π ′ × π ′∨)∏

v∈S

[
W′

v, Ŵ′
v

]
π ′v

(10.1)

= rl
′π ′ ∏

v

(
rl
′π ′v
v

)−1[
W′

v, Ŵ′
v

]
π ′v

where rl
′π ′ =Ress=1 L(s,π ′ × π ′∨) and rl

′π ′v
v = L(1,π ′

v × π ′
v

∨
).

Let W(π ′) be the dual couple (
⊗

v W (π ′
v),

⊗
v W (π̂ ′

v), rl
′π ′ ·⊗v((rl

π ′v
v )−1[·, ·]π ′v )).

Then by the factorization (10.1) (Wπ ′,Wπ̂ ′) :Aπ ′ →W(π ′) is an equivalence. Let δπ ′
g be

the evaluation map at g on
⊗

v W (π ′
v). Applying the global analogue of (2.4) we get

Bπ ′ =B
δπ ′
w0

,δπ̂ ′
e

W(π ′) . Thus, for f ′ =⊗
v f ′v ∈ S (G′

A) we have

(10.2) Bπ ′
(

f ′
)= 1

rl
′π ′

∏

v

rl
′π ′v
v Bπ ′v

(
f ′v
)
.

9 Note the different convention of measures in [loc. cit.].
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We can also write this as

Bπ ′
(

f ′
)= Bπ ′S(f

′
S)

Ress=1 LS(s,π ′ × π ′∨)

whenever f ′ = f ′S⊗1(K′)S and f ′S =
⊗

v∈S f ′v ∈ S (G′
S). Here Bπ ′S(f

′
S)=∏

v∈S Bπ ′v (f
′

v ). Recall
that by (2.17) this factorization is consistent with enlarging S.

10.4. An extension of Jacquet’s factorization Theorem. — For π ∈ C and an automor-
phism j of G we denote by πj ∈ C the representation realized on the space of functions
φj where φ is in the space of π and φj(gj ) = φ(g). In particular πτ is the Galois twist
of π .

Denote by C τ the subset of C consisting of the τ -invariant representations. We have
a functorial transfer bc from C ′ to automorphic representations of GA [AC89]. If π ′ ∈ C ′

and π ′ �= π ′ · η then bc(π ′) ∈ C τ and conversely, every π ∈ C τ is the image under bc of
π ′ ∈ C ′ which is unique up to twist by η and we have π ′ �= π ′ · η.

For any automorphic form φ and x ∈X denote by Px(φ) the unitary period integral

Px(φ)=
∫

Gx\Gx
A

φ(g) dg

whenever absolutely convergent. We say that π is (globally) Gx-distinguished if Px is not
identically zero on the space of π .

Our goal is to extend Jacquet’s Factorization Theorem [Jac01, Theorem 1] and
provide a criterion for a cuspidal representation to be Gx-distinguished.

Definition 10.1. — Let π =⊗
v πv ∈ C . We say that unitary periods factorize compatibly

on π if at every place v of F there exists αv ∈ EGv
(Xv,π∗

v ) such that for every x ∈X and every pure

tensor φ =⊗
v φv in the space of π we have

Px(φ)=
∏

v

αv
x (φv)

where almost all the factors are 1.

We recall the elements απ ′v ∈ EGv
(Xv,π∗

v ) defined for any place v in Section 3.3.

Theorem 10.2. — Let π = bc(π ′) ∈ C τ . Then unitary periods factorize compatibly on π .

More precisely for any x ∈X we have

Px(φ)= 2 L
(
1,π ′ × π ′∨ · η)

∏

v

(
L
(
1,π ′

v × π ′
v

∨ · ηv

)−1
απ ′v

x (Wv)
)

(10.3)

= 2 LS
(
1,π ′ × π ′∨ · η)

∏

v∈S

απ ′v
x (Wv)
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where φ is a cusp form in the space of π which is a pure tensor and Wπ(φ)=∏
v Wv. Here S is a

finite set of places, containing the Archimedean and the even places, such that for all v �∈ S, v is either

split or unramified in E, ψ ′
v has conductor Ov, π ′

v is unramified, xv ∈ Kv and Wv is spherical and

normalized by Wv(e)= 1. If moreover π is Gx-distinguished then π ′
v ∈ B Ix for all places v of F.

Proof. — We will prove Theorem 10.2 following closely the method of [Jac01].
Let f ′ =⊗

v f ′v ∈ S (G′
A) and � =⊗

�v ∈ S (XA) be matching functions, i.e., such that
�v←→ f ′v for all v. For every y ∈XA let f y =⊗

v f y
v ∈ S (GA) be such that (f y)y∈XA repre-

sents �. (Definition as in the local case.) Let απ ∈ EGA(XA,π∗) be given by

απ
x (φ)=

{
Py(π(g)φ) if x= y • g, y ∈X, g ∈GA,

0 otherwise.

It follows from the relative trace formula identity (see Theorem C.3) that

B̃
απ ,Wπ̂

e

Aπ
(�)= Bπ ′

(
f ′
)+Bπ ′·η

(
f ′
)
.

Using the global analogue of (2.11) we can write this identity as

(10.4)
∑

y∈X/G

B
Py,Wπ̂

e

Aπ

(
f y
)= Bπ ′

(
f ′
)+Bπ ′·η

(
f ′
)
.

Fix x ∈ X and let f ∈ S (GA). By Theorem 3.1 there exists f ′ ∈ S (G′
A) such that

f ′v ∈ S (G′
v[x]) for all v and f

x←→ f ′. Since x is a rational point, we have f ′ = (η ◦ det)f ′.
The factorization (10.2) together with (2.15) imply that Bπ ′·η(f ′)= Bπ ′(f

′). For any y ∈
x •GA choose g ∈GA such that y= x • g and let f y = L(g)f . Set f y = 0 if y /∈ x •GA. Then
the family (f y)y∈XA represents a function � such that �←→ f ′. It therefore follows from
(10.4) that

(10.5) B
Px,Wπ̂

e

Aπ
(f )= 2 Bπ ′

(
f ′
)
.

Assume first that π is Gx-distinguished and fix a place v0. As in [Jac01, Lemma 1], we
show that π ′

v0
∈ B Ixv0

. By (a global analogue of) Lemma 2.2 there exists f
v0

0 such that

fv0 �→ B
Px,Wπ̂

e

Aπ
(fv0 ⊗ f

v0
0 ) is a non-zero distribution on Gv0 . On the other hand, taking

f ′ = f ′v0
⊗ f ′0

v0 such that fv0 ⊗ f
v0

0
x←→ f ′ as above, it follows from (10.2) and (10.5) that

(10.6) B
Px,Wπ̂

e

Aπ

(
fv0 ⊗ f

v0
0

)= 2 Bπ ′
(

f ′
)= c Bπ ′v0

(
f ′v0

)

for some constant c �= 0.
Define Ax : W (πv0)→ W (πv0)∗ by

Ax(W)(ξ)= Px ◦
(
Wπ

)−1
(W⊗ ξ), W ∈ W (πv0), ξ ∈ W

(
πv0

)
.
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Note that Ax ◦ W (h,πv0) = Ax for all h ∈ G
xv0
v0 since Px is G

xv0
v0 -invariant. Define �0 ∈

W (πv0)
∗ by

�0(W)= δπv0∨
e ◦�W(πv0 )

(
Ax(W) ◦ W

(
f

v0
0 ,πv0

))

where we write W(π)=W(πv0)⊗W(πv0) and correspondingly �W(πv0 ) : W (πv0)
∨ →

W (πv0∨). Then �0 is G
xv0
v0 -invariant, since Ax is, and we have

B
Px,Wπ̂

e

Aπ

(
fv0 ⊗ f

v0
0

)=B
�0,δ

π∨v0
e

W(πv0 )(fv0).

Together with (10.6), it follows that π ′
v0
∈ B Ixv0

and α
π ′v0
xv0
= c−1�0. This shows the last

part of the Theorem.
By Lemma 3.9 we may define the linear form P on the space of π by

P(φ)=
∏

v

L
(
1,π ′

v × π ′
v

∨ · ηv

)−1
απ ′v

xv
(Wv)

whenever Wπ(φ) = ∏
v Wv. For matching functions f

x←→ f ′ as before, the identities
(10.2), (10.5) and the defining property of απ ′v

x yield

B
Px,Wπ̂

e

Aπ
(f )= 2

(
rl
′π ′)−1 ∏

v

rl
′
v

π ′vB
α

π ′v
x ,δπ̂v

e

Wψv (πv)
(fv).

On the other hand, as in (10.2), the analogue for G of the relation (10.1) implies that

B
P,Wπ̂

e

Aπ
(f )= (

rl
π
)−1 ∏

v

rl
πv

v

L(1,π ′
v × π ′

v
∨ · ηv)

B
α

π ′v
x ,δπ̂v

e

Wψv (πv)
(fv)

= (
rl

π
)−1 ∏

v

rl
′
v

π ′vB
α

π ′v
x ,δπ̂v

e

Wψv (πv)
(fv).

Using these two equations we obtain that

B
Px,Wπ̂

e

Aπ
(f )= 2 L

(
1,π ′ × π ′∨ · η)B

P,Wπ̂
e

Aπ
(f ).

By (a global analogue of) Lemma 2.2 and the irreducibility of π we infer (10.3) and the
Theorem under the assumption that π is Gx-distinguished.

Finally, suppose that π is not Gx-distinguished. If there exists a place v such that
π ′

v �∈ B Ix then by definition απ ′v
x ≡ 0 and therefore the identity (10.3) is trivial. Otherwise

π ′
v ∈ B Ixv

for all places v of F. The argument above is still applicable and shows (10.3). �

The factorization theorem immediately provides a criterion for distinction by any
unitary group.
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Corollary 10.3. — Let x ∈X and π = bc(π ′) ∈ C τ . Then

(1) π is Gx-distinguished if and only if απ ′v
x �≡ 0 for every place v of F.

(2) In particular, if there exists a place v of F such that x ∈X−
v and π ′

v � π ′
v · ηv then π is

not Gx-distinguished.

(3) For the converse direction, suppose that E/F splits at infinity, i.e., every real place of F splits

in E. Then π is Gx-distinguished (and consequently, πv ∈ B Ix and απv
x �≡ 0 for all v)

provided that for any place v of F such that x /∈X+
v we have π ′

v �� π ′
v · ηv .

(4) Similarly, suppose that n= 2 and x ∈X+
v for all v|∞ inert. Then π is Gx-distinguished

(and consequently, πv ∈ B Ix and απv
x �≡ 0 for all v) provided that for any finite place v of

F such that x /∈X+
v we have π ′

v �� π ′
v · ηv .

Proof. — The first statement immediately follows from (10.3). The second state-
ment follows from Lemma 3.8. Now suppose that E/F splits at infinity and π is not Gx-
distinguished. For every f ′ =⊗

v f ′v with f ′v ∈ S (G′
v[x]) there exists f

x←→ f ′. It follows
from the global Bessel identity (10.5) that Bπ ′(f

′) = 0 for all such f ′. The factorization
(10.2) therefore implies that there exists a place v such that Bπ ′v |S (G′

v[x]) ≡ 0. It now follows
from Lemma 2.6 that x ∈X−

v and π ′
v � π ′

v · ηv .
The same argument works in the case n = 2 since Xv[x] = x •Gv for all v|∞ by

our assumption on x. �

Remark 10.4. — In particular if E/F splits at infinity and n is odd then any π ∈ C τ

is Gx-distinguished for all x ∈ X. Note that in this case Gx is automatically quasi-split.
More generally, without an assumption on E/F and n, Jacquet showed that any π ∈ C τ is
Gx-distinguished when Gx is quasi-split [Jac10]. In Corollary 12.9 we will further extend
this to give an explicit criterion for the non-vanishing of απ ′v

x .

11. Factorization of unitary periods—Eisenstein series

In this section we extend the global results of [LR00] and [Off07] from the case of
Hecke characters of the diagonal torus to cuspidal automorphic representations on any
Levi subgroup. We define global “open periods” and obtain their meromorphic continu-
ation and functional equations. Using them we also obtain global Bessel identities.

11.1. Factorization of Bessel distributions for G′. — First we discuss the global analogue
of the normalized Bessel distributions B(σ ′, λ) on G′.

Let M = Mκ and σ ∈ C M. Denote by Aσ = AG
M,σ the space of smooth functions

ϕ :UAM\GA →C such that for any g ∈GA the function δ
− 1

2
P ϕ(·g) on M\MA belongs to

the space of σ . For ϕ ∈ Aσ we write ϕλ = e〈λ,H(·)〉ϕ for any λ ∈ a∗M,C. Let I(σ,λ) be the
representation of GA on Aσ given by [I(g, σ,λ)ϕ]λ(x) = ϕλ(xg), x, g ∈ GA. For ϕ ∈ Aσ
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denote by E(ϕ,λ) the Eisenstein series defined as the meromorphic continuation of the
sum

E(g, ϕ,λ)=
∑

δ∈P\G
ϕλ(δg).

(Cf. [Lap08] for the meromorphic continuation in this context.) More generally, for ν ∈
C L, ϕ ∈ AG

L,ν and λ ∈ a∗L,C we denote by EP(ϕ,λ) the meromorphic continuation of

EP(g, ϕ,λ)=
∑

δ∈Q\P
ϕλ(δg).

The Fourier coefficient W(ϕ,σ,λ) of the Eisenstein series is given by (the mero-
morphic continuation of) the integral

W(g : ϕ,σ,λ)=
∫

U0∩←−M\(U0)A

ϕλ

(
w−1

0 ug
)
ψ−1

0 (u) du

=
∫

U0∩←−M\(U0)A

ϕλ

(
w−1

M ug
)
ψ−1

0 (u) du.

We set

We(ϕ : σ,λ)=W(e : ϕ,σ,λ).

We write A(σ,λ) for the triple (I(σ,λ), I(σ̂ ,−λ), (·, ·)AMMUA\GA) where

(ϕ, ϕ̂)AMMUA\GA =
∫

AMMUA\GA

ϕ(g)ϕ̂(g) dg, ϕ ∈ Aσ , ϕ̂ ∈ Aσ̂ .

Given σ ′ = σ ′
1 ⊗ · · · ⊗ σ ′

t ∈ C M′
define

(11.1) B
(

f ′ : σ ′, λ
)=B

W(w0:σ ′,λ),We(σ̂
′,−λ)

A(σ ′,λ)

(
f ′
)
, f ′ ∈ S

(
G′

A

)
, λ ∈ a

∗
M,C.

As in the local case set

cs
(
σ ′, λ

)=
∏

i<j

L
(
λi − λj + 1, σ ′

i × σ ′
j

∨)
.

We have a factorization

W
(
g : ϕ,σ ′, λ

)= cs
(
σ ′, λ

)−1 ∏

v

csv

(
σ ′

v, λ
)
W

(
gv :Wϕv

, σ ′
v, λ

)

for ϕ =⊗
v ϕv ∈ Aσ ′ and λ ∈ a∗M,C where Wϕv

∈ IG
M(W (σ ′

v)) are such that

(11.2) WM′(
I(g, σ, 0)ϕ

)=
∫

(U′
0∩M′)\(U′

0∩M′)A

ϕ(ug)ψ−1
0 (u) du=

∏

v

Wϕv
(gv)(e), g ∈G′

A.
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Thus, if we define

W
(
g : σ ′, λ

)= cs
(
σ ′, λ

)−1 ⊗

v

csv

(
σ ′

v, λ
)
W

(
gv : σ ′

v, λ
)

on I(W (σ ′), λ) then using the above and the analogue of (10.1) for M′ together with the
global analogue of (2.4) we get

B
(

f ′ : σ ′, λ
)=B

W(w0:σ ′,λ),W(e:σ̂ ′,−λ)

I(W(σ ′),λ) .

Therefore

(11.3) B
(

f ′ : σ ′, λ
)= rl

′(σ ′, λ
)−1 ∏

v

rl
′(σ ′

v, λ
)

B
(
f ′v : σ ′

v, λ
)

where

rl
′(σ ′, λ

)= rl
′σ ′ ∏

i �=j

L
(
λi − λj + 1, σ ′

i × σ ′
j

∨)

= rl
′σ ′

cs(σ,λ)cs
(
σ∨,−λ

)
, rl

′σ ′ =
t∏

i=1

rl
′σ ′i ,

and

rl
′
v

(
σ ′

v, λ
)= L

(
1, I

(
σ ′

v, λ
)× I

(
σ ′

v

∨
,−λ

))

=
∏

i,j

L
(
λi − λj + 1,

(
σ ′

i

)
v
× (

σ ′
j

)∨
v

)

= rl
′
v

σ ′vcs
(
σv,λ

)
cs

(
σ∨

v ,−λ
)
.

11.2. Periods of Eisenstein series and Fourier inversion. — We will now apply Fourier
inversion in the spirit of the stabilization of the elliptic part of the trace formula of SL(2)

due to Labesse-Langlands [LL79] to write the (regularized) unitary period of any cuspidal
Eisenstein series as a finite sum of factorizable invariant linear forms.

Let ' = F∗/ Nm(E∗) and for every place v of F let 'v = F∗v/ Nm(E∗v). Thus 'v

is a group of order 2 with dual group '∨
v = {1F∗v , ηv} if v is inert and 'v is the trivial

group if v is split. By class field theory, ' embeds in 'A :=⊕
v 'v = A∗/ Nm(A∗E) and

the cokernel is a group of order 2 whose dual ('A/')∨ = {1A∗, η} is the subgroup of '∨
A

consisting of the characters of 'A that are trivial on '.

Fix a positive integer t. Let f ∈ L1('t
A) (with respect to the counting measure) and

let f̂ be the Fourier transform defined by

f̂ (ν)=
∑

ξ∈'t
A

ν(ξ)f (ξ), ν ∈ (
'∨

A

)t = (
't

A

)∨
.
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Similarly we define the Fourier transform in the local case with respect to 't
v . The follow-

ing is a simple consequence of a finite Fourier inversion formula (cf. [LR03, Lemma 2]).

Lemma 11.1. — Let f ∈ L1('t
A). Then

2t
∑

ξ∈'t

f (ξ)=
∑

ν∈(('A/')∨)t

f̂ (ν).

Furthermore, if there are functions fv on 't
v such that for any ξ = (ξv)v ∈'t

A the product
∏

v fv(ξv)

converges to f (ξ) then for all ν ∈ (('A/')∨)t f̂ (ν) is given by the convergent product
∏

v f̂v(νv)

where νv is the restriction of ν to 't
v.

By abuse of notation we also treat an element ν = (ν1, . . . , νt) ∈ ('∨
A)t as a charac-

ter of M′
A or alternatively as a function on XA ∩MA via

ν(y)=
t∏

i=1

νi(det yi), y= diag(y1, . . . , yt), yi ∈Xni
or yi ∈G′

ni
.

Similarly, for the local components. We also set for convenience

ην = (ην1, . . . , ηνt).

Now let σ ∈ C M,τ . The fiber B(σ ) of quadratic base change at σ is a torsor of the
group (('A/')∨)t. Thus, fixing a base point σ ′ = σ ′

1 ⊗ · · · ⊗ σ ′
t ∈ B(σ ) we have

(11.4) B(σ )= {
σ ′ · ν : ν ∈ (

('A/')∨
)t}

where we set σ ′ · ν = σ ′
1 · ν1 ⊗ · · · ⊗ σ ′

t · νt .
Recall that by Theorem 10.2 the unitary periods, factorize compatibly on σ . More

precisely, for any factorizable automorphic form φ in the space of σ we have

(11.5)
∫

My\My

A

φ(m) dm= 2t

[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
]∏

v

α̃
σ ′v
y (Wv)

where

Wσ (φ)=
∏

v

Wv, Wv ∈ W ψv(σv)

and

(11.6) α̃
σ ′v
y =

[ t∏

i=1

L
(
1,

(
σ ′

i

)
v
× (

σ ′
i

∨)
v
· ηv

)−1
]

ασ ′v
y .
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For x ∈X, σ ∈ C M and ϕ ∈ Aσ the intertwining period

(11.7) J(ϕ : x, σ,λ)=
∑

y∈(XM∩x•G)/M

∫

My\Gy

A

ϕλ

(
gιx

y

)
dg

is defined by an absolutely convergent sum-integral for λ ∈ a∗M,C with Re λ sufficiently
regular in the positive Weyl chamber (cf. [LR03, Theorem 5.2.1 and Lemma 5.2.1(2)]).
Here, as before, ιx

y ∈ G is such that x = y • ιx
y. Note that J(ϕ : x, σ,λ) vanishes unless

there exists y ∈XM ∩ x •G such that σ is My-distinguished, and in particular, σ ∈ C M,τ .
Moreover, in [LR03] the regularized period integral

Px(φ)=
∫ ∗

Gx\Gx
A

φ(g) dg

is defined for an automorphic form φ on G\GA under a certain open condition on the
exponents of φ and by [ibid., Theorem 9.1.1] we have

Px

(
E(ϕ,λ)

)= J(ϕ : x, σ,λ)

for ϕ ∈ Aσ and Re λ sufficiently positive. By [Lap06, p. 290] Px ◦ E(·, λ) ∈ I(σ,λ)∗.
The infinite sum on the right-hand side of (11.7) can be viewed as a sum over the

P-orbits in the intersection of the G-orbit of x with (the F-points of) the unique Zariski
open P-orbit in X. The individual summands are (factorizable) Gx

A-invariant linear forms,
defined for Re λ� 0 by convergent integrals, but are not expected to admit a meromor-
phic continuation. We will show that, in fact, the resulting sum can be written as a finite

sum of factorizable terms. To that end, we use the local invariant functionals defined in
Section 4 to define for any σ ∈ C M,τ , σ ′ = σ ′

1 ⊗ · · · ⊗ σ ′
t ∈ B(σ ), a factorizable element

ϕ =⊗
v ϕv ∈ Aσ and x ∈XA

Jst
(
ϕ : x, σ ′, λ

)=
[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
]

×
∏

v

[ t∏

i=1

L
(
1,

(
σ ′

i

)
v
× (

σ ′
i

)
v

∨ · ηv

)−1
]

× J
(
Wϕv

: xv, ασ ′v , λ
)

where Wϕv
∈ IG

M(W (σv)) are as in (11.2). It follows from Proposition 4.1 and Lemma 8.2
that the product defining Jst(ϕ : x, σ ′, λ) converges for Re λ � 0 and admits a mero-
morphic continuation to λ ∈ a∗M,C. In fact, whenever holomorphic at λ the map x �→
Jst(x, σ ′, λ) is an element of EGA(XA, I(σ,λ)∗) which we denote by Jst(σ ′, λ).

We also write

(11.8) Jst
(
ϕ : x, σ ′, λ

)= j
(
σ ′, λ

)∏

v

jv
(
σ ′

v, λv

)−1
J
(
Wϕv

: xv, ασ ′v , λ
)



274 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

where

j
(
σ ′, λ

)=
[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
]

×
∏

i<j

L(λi − λj, σ ′
i × σ ′

j
∨ · η)

ε(λi − λj, σ ′
i × σ ′

j
∨ · η)L(1+ λi − λj, σ ′

i × σ ′
j
∨
)

and

jv
(
σ ′

v, λv

)= j
ψ ′

v
v

(
σ ′

v, λv

)=
[ t∏

i=1

L
(
1,

(
σ ′

i

)
v
× (

σ ′
i

)
v

∨ · ηv

)]

×
∏

i<j

L(λi − λj, (σ ′
i )v × (σ ′

j )v
∨ · ηv)

ε(λi − λj, (σ ′
i )v × (σ ′

j )v
∨ · ηv;ψ ′

v)L(1+ λi − λj, (σ ′
i )v × (σ ′

j )v
∨
)
.

Recall that by Lemma 8.2 almost all the factors in (11.8) are 1.

Theorem 11.2. — Let σ ∈ C M,τ , ϕ ∈ Aσ and x ∈X. Then as meromorphic functions in λ

we have

(11.9) Px

(
E(ϕ,λ)

)= J(ϕ : x, σ,λ)=
∑

σ ′∈B(σ )

Jst
(
ϕ : x, σ ′, λ

)
.

Proof. — We prove the identity for Re λ� 0. The Theorem then follows by mero-
morphic continuation. Let S∞ be the set of inert real places of F. For every place v of F
the determinant map induces a surjection Xv/Gv →'v and the map is a bijection if and
only if v �∈ S∞. The Hasse principle for Hermitian forms implies that for any x ∈ X we
have

x •GA ∩X= x •G

and furthermore, X •GA =XA ∩Ker η, an open subspace of XA. It follows that X/G is
in bijection with the following subset of (XS∞/GS∞)×':

�G =
{
(z •GS∞, ξ) : z ∈XS∞, ξ ∈', det zv ∈ ξ for all v ∈ S∞

}
.

Denote the bijection by ιG : X/G → �G. Then ιG(x) = (x • GS∞, det x Nm(E∗)). Simi-
larly, the assignment

diag(y1, . . . , yt) �→ (det y1, . . . , det yt)

defines surjective maps dv :XMv
v /Mv → 't

v for every place v of F and d :XM/M→ 't.

Again dv is bijective if v �∈ S∞ and d is finite-to-one. We set
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�M =
{
(z •MS∞, ξ) : z ∈XS∞ ∩MS∞, ξ ∈'t,

dv(zv •Mv)= ξ for all v ∈ S∞
}

and let ιM :XM/M→�M be the associated bijection. Note that for any ξ ∈'t we have

(11.10) ιM

(
d−1(ξ)

)= {
(z, ξ) : z ∈ (XS∞ ∩MS∞)/MS∞, dv(zv)= ξ for all v ∈ S∞

}
.

Fix σ ′ ∈ B(σ ), a factorizable section ϕ = ⊗
v ϕv ∈ Aσ and Re λ � 0. For y ∈

XMv
v /Mv let

hv(y)=

⎧
⎪⎨

⎪⎩

νMv
(y) e

1
2 〈ρMv+λ,H(y)〉 ∫

My
v\Gy

v
α̃

σ ′v
y ((Wϕv

)λ(gι
x
y)) dg

if y ∈ (x •Gv ∩Mv)/Mv

0 otherwise

where α̃
σ ′v
y is defined by (11.6). For ξ ∈'t

v let

fv(ξ)=
∑

y∈d−1
v (ξ)

hv(y).

In particular, for v �∈ S∞ we have hv = fv ◦ dv. Set f S∞ = ∏
v �∈S∞ fv and f = ∏

v fv . It
follows from [LR03, Theorem 5.2.1] that the product is absolutely convergent and that
f ∈ L1('t

A).
We get from (11.5) and (11.7) that

J(ϕ : x, σ,λ)= 2t

[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
] ∑

y∈(XM∩x•G)/M

∏

v

hv(y).

Summing in stages we have
∑

y∈(XM∩x•G)/M

∏

v

hv(y)=
∑

ξ∈'t

f S∞(ξ)
∑

y∈d−1(ξ)

∏

v∈S∞

hv(y).

Applying (11.10) we get that
∑

y∈d−1(ξ)

∏

v∈S∞

hv(y)=
∑

z∈(XS∞∩MS∞ )/MS∞

∏

v∈S∞

1d−1
v (ξ)(zv)hv(zv)=

∏

v∈S∞

fv(ξ)

and therefore

J(ϕ : x, σ,λ)= 2t

[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
]∑

ξ∈'t

f (ξ).
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It now follows from Lemma 11.1 that

J(ϕ : x, σ,λ)=
[ t∏

i=1

L
(
1, σ ′

i × σ ′
i

∨ · η)
] ∑

ν∈(('A/')∨)t

∏

v

f̂v(νv)

and the product on the right-hand side converges. Finally, we observe that by (3.13) we
have

α̃
σ ′v ·νv

y = νv

(
wM

0 y
)
α̃

σ ′v
y , y ∈XMv

v

and therefore

f̂v(νv)= νv

(
wM

0

)
J
(
ϕv : x, α̃

σ ′v ·νv , λ
)
.

Since globally ν(wM
0 )= 1 we get that

∏

v

f̂v(νv)=
∏

v

J
(
ϕv : x, α̃

σ ′v ·νv , λ
)
.

Together with (11.4) and the fact that
∏t

i=1 L(1, σ ′
i ×σ ′

i
∨ ·η) is independent of σ ′ ∈ B(σ ),

this gives (11.9) for Re λ� 0. �

11.3. Factorization of Bessel distributions. — We retain the notation of the previous
section.

Observe that by applying the functional equations

L
(
λi−λj, σ ′

i ×σ ′
j

∨ ·η)= ε
(
λi−λj, σ ′

i ×σ ′
j

∨ ·η)L(
1−λi+λj, σ ′

i

∨×σ ′
j ·η

)

we get

j(σ ′, λ)

cs(σ∨,−λ) rl
σ =

[∏t

i=1 L(1, σ ′
i × σ ′

i
∨ · η)][∏1≤i<j≤t

L(1−λi+λj ,σ
′
i
∨×σ ′j ·η)

L(1+λi−λj ,σ
′
i×σ ′j

∨
)
]

rl
σ

cs(σ∨,−λ)
(11.11)

= rl
′(σ ′, λ

)−1
.

Similarly, for all v

jv(σ
′
v, λ)

csv(σ∨
v ,−λ) rl

σv

v

n
(
σ ′

v, λ
)= rl

′
v

(
σ ′

v, λ
)−1

.

Using (11.11) and the discussion of the previous section we now obtain a factorization of

B̃
(
σ ′, λ

) := B̃
Jst(σ ′,λ),We(σ̂ ,−λ)

A(σ,λ)
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as

(11.12) rl
′(σ ′, λ

)−1 ∏

v

rl
′
v

(
σ ′

v, λ
)
B̃
(
σ ′

v, λ
)

where B̃(σ ′
v, λ) is defined in (4.13) and for almost all v we have rl

′
v(σ

′
v, λ)B̃(1Xv∩Kv

:
σ ′

v, λ)= 1.
It now follows from Theorem 11.2 and the definition of α(M,σ )

x in (C.1) that

α(M,σ )
x (ϕ,λ)=

{∑
σ ′∈B(σ ) Jst(ϕ : x, σ ′, λ) x ∈X •GA,

0 otherwise.

In other words, we have

B̃(σ,λ)=
∑

σ ′∈B(σ )

B̃
(
σ ′, λ

)

where the left-hand side is defined in Appendix C. We claim that for any σ ∈ C M,τ we
have

(11.13)
∑

σ ′∈B(σ )

B̃
(
σ ′, λ

)←→
∑

σ ′∈B(σ )

B
(
σ ′, λ

)
.

Indeed, it follows from Theorem C.3 that this holds up to a constant c depending only
on κ . Choosing an everywhere unramified quadratic extension E/F that splits at infinity
and at the even places and σ ∈ C M,τ everywhere unramified, it follows from the local
identities provided by Proposition 7.5 in the split places and (8.5) for unramified data
together with Remark 9.3 that c= 1.

Assume now that E/F splits at infinity. Then we can view the summands on the
left-hand side of (11.13) as distributions on G′

A via smooth matching. Let S be a finite
set of places of F containing the Archimedean and the finite places with ramified data
with respect to either E/F, ψ ′ or σ . Fixing any f ′S ∈ S (G′

S), each distribution on G′
A can

be restricted to a linear form on H′S =⊗′
v /∈S H(G′

v, K′
v). Using part (3) of Theorem 8.1

the restriction of B̃(σ ′, λ) is proportional to f ′S �→ f̂ ′S(I(σ ′S, λ)). Therefore, by linear
independence of characters we get

Proposition 11.3. — Assume that E/F splits at infinity. Then for every σ ∈ C M,τ , σ ′ ∈ B(σ )

and λ ∈ a∗M,C we have

B̃
(
σ ′, λ

)←→ B
(
σ ′, λ

)
.

Eventually, we will remove the assumption on E/F in Corollary 12.5 below.
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11.4. Global closed Bessel distributions. — Let θ be the involution on GA defined, as
in the local case, by gθ = w0τ(tg−1)w0 and let π ∈ C . If φ is a factorizable element of
π such that Wπ(φ)=∏

v Wv , Wv ∈ W ψv(πv) and φθ ∈ π̂ τ is defined by φθ(gθ )= φ(g),
g ∈GA then

(11.14) Wπ̂ ,ψ−1(
φθ

)=
∏

v

yπv
(Wv)

τ .

Let C¬τ = C \ C τ . Recall the automorphic induction map ai : C Gn,¬τ → C G′
2n satis-

fying bc(ai(σ ))= I(σ ⊗ σ τ , 0) [AC89].
Let κ = (n1, . . . , ns) be a composition of k and set n= 2k, M=M(κ,←−κ ) and XM =

X∩w0M. Suppose that �i ∈ C Gni
,¬τ , i = 1, . . . , s and let

�= �1 ⊗ · · · ⊗ �s ⊗ �τ
s ⊗ · · · ⊗ �τ

1 ∈ C M.

We define β� ∈ EMA((XM)A, �∗) by

β�
w0•g(φ)=

∫

(AM∩M
w0
A )Mw0\Mw0

A

φ(mg) dm, g ∈MA.

Every element of Mw0
A is of the form diag(h, hθ ) where h ∈ (Mκ)A. If h= diag(h1, . . . , hs)

with hi ∈ (Gni
)A then hθ = diag(hθ

s , . . . , hθ
1). It follows from (11.14) and (10.1) that we

have

(11.15) β�
x (φ)= rl

�
∏

v

(
rl

�v

v

)−1
β�v

x (Wv), x ∈ (XM)A

where

W�(φ)=
∏

v

Wv, Wv ∈ W ψv(�v).

For λ ∈ (a∗M)
w0
C define Z(�,λ) ∈ EGA(XA, IM(�,λ)∗) by Z(x, �,λ) = 0 if x • GA ∩

w0M= ∅ and

Z(ϕ : x, �,λ)=
∫

P
w0
A \Gw0

A

β�
w0

(
δ
− 1

2
PA

IM

(
hιx

w0
, �,λ

)
ϕ|MA

)
dh, ϕ ∈ A�

if x=w0 • ιx
w0

for some ιx
w0
∈GA. Note that by (11.15) and (5.6) we have

Z(ϕ : x, �,λ)= rl
�
∏

v

(
rl

�v

v

)−1
Z
(
Wv : xv, β�v , λ

)

where

WM(ϕ,λ)=
∏

v

Wv, Wv ∈ I
(

W ψv(�v)
)
.
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As before we will obtain a factorization of Bessel distributions. We write λ =
(λ′,

←−
λ ′), �′ = ai(�), i.e., �′ = �′1 ⊗ · · · ⊗ �′s where �′i = ai(�i). Note that

rl
�

cs(�∨,−λ)
= rl

′(�′, λ′
)−1

and for all v

rl
�v

v

csv(�∨v ,−λ)
= rl

′
v

(
�′v, λ′

)−1
.

Therefore, the distribution

D̃(�,λ) := B̃
Z(�,λ),We(�̂,−λ)

A(�,λ)

factorizes as

(11.16) rl
′(�′, λ′

)−1
[⊗

v

rl
′
v

(
�′v, λ′

)
D̃(�v, λ)

]

where D̃(�v, λ) is defined in (5.16). (Evaluating at � =⊗
v �v ∈ S (XA) almost all the

factors are 1.)
Assume now that x=w0 • ιx

w0
. Then in the notation of Appendix C we have

α(M,π)
x (ϕ,λ)=

∫

P
w0
A \Gw0

A

∫

(AM∩M
w0
A )Mw0\Mw0

A

ϕλ

(
mhιx

w0

)
dm dh.

It follows that

α(M,π)
x (ϕ,λ)= Z(ϕ : x, �,λ).

In other words, we have

B̃(�,λ)= D̃(�,λ).

It follows from Theorem C.3 that

D̃(�,λ)←→ cκB
(
�′, λ′

)

where cκ depends only on κ .

Lemma 11.4. — We have cκ = 1, i.e.,

(11.17) D̃(�,λ)←→ B
(
�′, λ′

)
.
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Proof. — Choose an everywhere unramified quadratic extension E/F that splits at
infinity and at the even places and take � to be everywhere unramified. Let S be a fi-
nite set of places of F, containing the Archimedean places, such that ψ ′

v has conductor
Ov for all v �∈ S. For every finite place v ∈ S let av ∈ F∗v be such that ψ ′

v(a
−1
v ·) has con-

ductor Ov . For v �∈ S set av = 1. For every finite place v of F let f ′v = (1K′
v
)av

and let
�v = (1Xv∩Kv

)av
. It follows from Proposition 7.5, Corollary 8.4, (2.14), (9.5), (9.6) and

(9.16) together with the factorizations (11.3) and (11.16) that for every pair of matching
functions

⊗
v|∞ f ′v ←→

⊗
v|∞�v at the Archimedean places we have

D̃
(⊗

v

�v : �,λ

)
= B

(⊗

v

f ′v : �′, λ′
)

.

Thus cκ = 1. �

Local applications

12. Local Bessel identities and functional equations—the general case

In this section we obtain the local Bessel identities introduced in Section 3, i.e.,
we show that B I = �′

bc-gen. More generally, we show that B IM = �M′
bc-gen for any Levi

subgroup M. We also deduce functional equations for the local open periods. The Bessel
identities generalize (and refine) the main local results of [LR00] and [Off07] which treat
the case M′ =M′

0. New identities are also obtained for the closed periods. The proof is by
global means using ideas originated in [LR00] and applying the Bessel identities obtained
in Section 7 in the split case, Section 8 for unramified data and Section 11 in the global
setting. In order to use the global result we first give a standard globalization argument.
Many variants of this are known in the literature. For completeness we provide a proof.
In order to simplify notation, for this lemma only G=GLn over the number field F.

Lemma 12.1. — Let S be a finite set of finite places of F and let u /∈ S be an auxiliary finite

place. Let US be a non-empty open subset of i
∏

v∈S a∗G and δS ∈�GS
usqr. Suppose that there exist two

distinct places u1, u2 ∈ S such that δui
∈�

Gui
cusp, i = 1, 2. Then there exists π ∈ C which is unramified

outside S∪ {u} and μ ∈ US such that πS � δS[μ].
Proof. — We first remark that we can assume without loss of generality that US =

i
∏

v∈S a∗G. Indeed, granted the Lemma in that case, we can always find a unitary Hecke
character χ : F∗\A∗F → C∗ which is unramified outside u, and such that χS = e〈μ,H(·)〉

where μ lies in a prescribed open set of i
∏

v∈S a∗G (cf. [LR00, Corollary 2]).
Henceforth, assume that US = i

∏
v∈S a∗G. We apply Arthur’s trace formula for f =⊗

v fv ∈ C∞
c (GA) (or rather, its restriction to Ker |det|) where fv are chosen as follows.

For v ∈ S we take fv to be the product of the characteristic function of Ker |det|v by
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a pseudo matrix-coefficient of δv (cf. [DKV84]). Thus Tr σv(fv) = 0 for any irreducible
representation σv of Gv which is either an induced representation from a proper parabolic
subgroup or a discrete series representation which is not an unramified twist of δv . For
v|∞ we take fv = gv ∗gv

∨ where gv ∈C∞
c (Gv) is any non-zero bi-Kv-invariant function. At

u we take fu to be the characteristic function of a sufficiently small compact open subgroup
of Gu. At all other places we take fv = 1Kv

. By our choice of f and the assumption on δS,
the spectral side of the trace formula applied to f is

∑
Tr(σ (f )) where σ ranges over

the cuspidal representations of GA which are unramified outside S∪ {u} and such that σS

is an unramified twist of δS. On the geometric side, note that if f (g−1γ g) �= 0 for some
g ∈GA and γ ∈G then the coefficients of the characteristic polynomial of γ are adelically
bounded and u-adically close to those of (t − 1)n (because of the choice of fu). Thus γ is
unipotent. It follows from Arthur’s description of the geometric side of the trace formula
[Art86] that only the unipotent conjugacy classes contribute. Suppose that γ is a non-
trivial unipotent element of G. Then there exists a proper parabolic subgroup P such that
the class of γ intersects U in a Zariski open dense subset. The invariant unipotent orbital
integral of fv at γ is given by

∫
Pv\Gv

∫
Uv

fv(g
−1ug) du dg [LM09b, Lemma 5.3]. Therefore

it vanishes for v = u1, u2 since δui
is supercuspidal.10 Hence, by Arthur’s description of

the unipotent contribution [Art85], the non-trivial unipotent contributions vanish as well
and the geometric expansion reduces to vol(AGG\GA)f (e). It remains to recall that for
all v ∈ S, fv(e) is the formal degree of δv , and therefore f (e) �= 0. �

12.1. The main local results. — We turn back to the local inert case. For the next
result let δ′ ∈�′

sqr and δ = bc(δ′). Recall that δ ∈�sqr if and only if bδ > 1 if and only if
δ′ �� δ′ · η. In the Archimedean case this is further equivalent to the condition n= 1.

Proposition 12.2. — Let δ′ ∈�′
sqr and δ = bc(δ′). Then δ′ ∈ B I and the following condi-

tions are equivalent for any x ∈X.

(1) δ is Gx-distinguished.

(2) αδ′
x �≡ 0.

(3) Gx is quasi-split or δ ∈�sqr.

More generally, suppose that δ′ ∈�M′
sqr and let δ = bc(δ′)= δ1 ⊗ · · · ⊗ δt . Then δ′ ∈ B I M and the

following conditions are equivalent for any x ∈X.

(1) There exists λ ∈ a∗M,C such that JM(x, αδ′, λ) �≡ 0.

(2) There exists λ ∈ a∗M,C such that Jδ′(x, αδ′, λ) �≡ 0.

(3) JM(x, αδ′, λ) �≡ 0 whenever holomorphic.

(4) There exists y ∈M∩ x •G such that αδ′
y �≡ 0.

(5) There exists y ∈M∩ x •G such that δ is My-distinguished.

10 Actually, this vanishing holds for all v ∈ S.



282 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

(6) There exists y= diag(y1, . . . , yt) ∈M∩ x•G such that Gyi
ni

is quasi-split except possibly

(in the p-adic case) for a single index i0 for which δi0 ∈�sqr.

(7) w̃(δ)≤w(x).

(8) In the p-adic case: Gx is quasi-split or bδ > 1. In the Archimedean case: dimaM
0 ≤w(x).

Proof. — We begin with the first set of equivalences. Suppose first that bδ = 1 and
Gx is not quasi-split. Then δ is not Gx-distinguished. In the p-adic case this follows from
Theorem 6.1. In the real case this is because Gx is conjugate to K and δ is not unramified.
It further follows from the first part of Lemma 3.8 that δ′ ∈ B Ix (with αδ′

x ≡ 0).
For the first part of the proposition, it remains to see that if δ′ ∈�′

sqr and Gx is quasi-
split or bδ > 1 then αδ′

x �≡ 0 (and δ′ ∈ B Ix). We may assume without loss of generality
that δ′ ∈ �′

usqr. We use a global argument, starting with the p-adic case. Switching the
notation, we consider now a quadratic extension of number fields E/F which is split at
infinity and a place v1 of F such that Ev1/Fv1 is our given local extension. Let y ∈Xv1 and
if δ′ � δ′ · η assume further that Gy

v1
is quasi-split (i.e., y ∈X+

v1
since n is even). Let v2 �= v1

be an additional auxiliary finite inert place of F. Fix δ′v2
∈�

G′
v2

usqr such that δ′v2
�� δ′v2

· η (for
instance the Steinberg representation). Take yv2 ∈ Xv2 such that ηv2(w0yv2) = ηv1(w0y).
Then there exists x ∈ X which is contained in the local orbits y • Gv1, yv2 • Gv2 and
w0 •Gv for all v �= v1, v2. By Lemma 12.1, there exists π ′ ∈ C ′ such that π ′

v1
� δ′[s1] and

π ′
v2
� δ′v2

[s2] for some s1, s2 ∈ iR. Note that π = bc(π ′) is cuspidal thanks to our choice
of δ′v2

and that Gx
v is quasi-split for all v �= v1, v2. It follows from part (3) of Corollary 10.3

that π is Gx-distinguished and that π ′
v ∈ B Ix and απ ′v

x �≡ 0 for all v. By (3.11) and (3.12)
we therefore get that δ′ ∈ B Iy and αδ′

y �≡ 0.
Consider now the case C/R. In this case n ≤ 2. The case n = 1 is trivial and we

treat the case n = 2 by using the quadratic extension E/F = Q[√−1]/Q. Let y ∈X∞.
Note that δ′ � δ′ · η for any δ′ ∈ �′

sqr and therefore we only need to consider the case
y ∈X+

∞. Since n= 2, we have X+
∞ = w0 •G∞ and X−

∞ = (±e) •G∞. Let D be the mul-
tiplicative group of the quaternion algebra which ramifies at {3,∞}. Take any infinite-
dimensional irreducible automorphic representation σ of DA which is trivial at 3 and up
to an unramified twist transfers to δ′ via the Jacquet-Langlands correspondence at ∞.
Then the Jacquet-Langlands transfer π ′ of σ satisfies the following conditions:

(1) π ′ ∈ C ′,
(2) π ′

∞ is an unramified twist of δ′,
(3) π ′

3 is the Steinberg representation.

As before π = bc(π ′) is cuspidal (since 3 is inert). It follows from the last part of Corol-
lary 10.3 that π is Gw0 -distinguished, π ′

∞ ∈ B Iw0 and α
π ′∞
w0 �≡ 0. As before, it follows that

δ′ ∈ B Iy and αδ′
y �≡ 0. This completes the proof of the first statement.

As for the second statement, the first four conditions are clearly equivalent by part
(4) of Proposition 4.1. The other conditions are equivalent by virtue of the first part and
the structure of M∩ x •G. �
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Corollary 12.3. — Let π ∈�τ
gen and x ∈ X be such that w̃(π) ≤ w(x). Then π is Gx-

distinguished. Thus, Conjecture 6.12 holds for generic representations. In particular, π ∈�τ
gen is Gx-

distinguished if Gx is quasi-split or if π ∈�τ,an (and in particular, by Lemma 3.3 if π ∈�unr).

Proof. — There exists δ′ ∈�M′
sqr, δ = bc(δ′) such that π = I(δ). Since w̃(π)= w̃(δ),

the corollary follows from the second part of Proposition 12.2 together with Corol-
lary 4.2. �

We also remark that in the p-adic case, if δ ∈�M,τ
sqr and � is a set of representatives

(of size 2t−1) for [B](δ) then

(12.1)
{
αδ′ |x•G∩M : δ′ ∈ �

}
are linearly independent in EM

(
x •G∩M, δ∗

)
.

This follows immediately from the non-vanishing of αδ′
x and the relation (3.13) (for

G=M).
We are now ready to state and prove the main local result. Recall the distribution

B̃(σ ′, λ) defined in (4.13).

Theorem 12.4. — Let E/F be a quadratic extension of local fields. Then for all M′ we have

�M′
bc-gen = B IM. In particular, �′

bc-gen = B I . Moreover, for any n there exists a sign υn = υn(E/F)=
±1 depending only on E/F with υ1 = 1 and with the following properties. Fix M′ and σ ′ ∈�M′

bc-gen.

Then

(1) As an identity of meromorphic functions in λ ∈ a∗M,C we have

(12.2) α
(
σ ′, λ

)= υκ Jσ ′
(
ασ ′, λ

)

and

(12.3) B̃
(
σ ′, λ

)←→ υκB
(
σ ′, λ

)

where υκ = υn∏t
i=1 υni

. In particular, B̃(σ ′, λ) is entire.

(2) Jσ ′(α
σ ′, ·) is holomorphic at any irreducibility point of I(σ ′, λ) and we have

(12.4) αI(σ ′,λ) ◦W(σ,λ)= υκ Jσ ′
(
ασ ′, λ

)
.

(3) If E/F is unramified then υn = 1 for all n.

(4) For any w ∈W(M) we have

(12.5) Jwσ ′
(
αwσ ′,wλ

) ◦N
(
w, W (σ ), λ

)= Jσ ′
(
ασ ′, λ

)
.

Proof. — First note that the relations (12.2) and (12.3) are equivalent from the
definitions of α(σ ′, λ), B̃(σ ′, λ) and B(σ ′, λ).
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We begin with the p-adic case. We first prove that �M′
sqr ⊆ B IM and that (12.2)

holds for σ ′ = δ′ = δ′1 ⊗ · · · ⊗ δ′t ∈�M′
sqr for some sign υM. The relation (12.4) would then

follow from Lemma 3.6. By Lemma 3.7, we may assume without loss of generality that
δ′ ∈�M′

usqr.
Let δ = bc(δ′). By Proposition 12.2 we have δ′ ∈ B I M. As in the proof of Propo-

sition 12.2 we switch to global notation. Thus, assume that δ′ ∈ �M′(k′)
usqr and δ = bc(δ′)

with respect to a quadratic extension k/k′ of p-adic fields. Choose a quadratic exten-
sion of number fields Ẽ/F̃ which splits at infinity and such that at some place v0 of F̃
we have Ẽv0/F̃v0 � k/k′. We can choose a different quadratic extension F of F̃ which
splits at v0 and such that Fv � Ẽv at all places v �= v0 of F̃ which are inert in Ẽ and
are even or ramified at Ẽ. Let v1, v2 be the places of F above v0. Then E = ẼF is a
quadratic extension of F which splits at infinity and such that Evi

/Fvi
� k/k′, i = 1, 2

and all other inert places of E/F are odd and unramified. Let u, u1, u2 be three auxiliary
finite places of F which split in E and let U ⊆ (ia∗M)2 be an arbitrary non-empty open
set. Denote by StM′

v2 = St′n1
⊗· · · ⊗ St′nt

the Steinberg representation of the group M′
v2

. It
follows from Lemma 12.1 that there exists σ ′ = σ ′

1 ⊗ · · · ⊗ σ ′
t ∈ C M′

unramified outside
{v1, v2, u, u1, u2} such that σ ′

v1
� δ′[μv1] and σ ′

v2
� StM′

v2 [μv2] for some (μv1,μv2) ∈ U . In
particular, σ ′

i �= σ ′
i · η for all i = 1, . . . , t since the same holds for the Steinberg represen-

tation. Therefore σ = bc(σ ′) is also cuspidal. Applying Proposition 11.3 and comparing
the factorizations (11.3) and (11.12) we obtain that for every place v, σ ′

v ∈ B IMv
and

there is a non-zero meromorphic function υM,v(σ
′
v, λ) such that

α
(
σ ′

v, λ
)= υM,v

(
σ ′

v, λ
)

Jσ ′v
(
ασ ′v , λ

)

and moreover
∏

v υM,v(σ
′
v, λ)= 1. Note that by (9.10), (9.12) and (9.8) υM,v(σ

′
v, λ) does

not depend on ψ ′
v . Taking into account (7.3) in the split case and (8.5) and Remark 9.3

in the unramified case we infer that

υM,v1

(
σ ′

v1
, λ

)
υM,v2

(
σ ′

v2
, λ

)= 1.

By Lemma 3.7 and (4.6) we have δ′ ∈ B IMv1
and

υM,v1

(
σ ′

v1
, λ

)= υM,v1

(
δ′, λ+μv1

)
.

Similarly StMv2 ∈ B IMv2
and

υM,v2

(
σ ′

v2
, λ

)= υM,v2

(
StM′

v2 , λ+μv2

)
.

We infer that

υM,v1

(
δ′, λ+μv1

)
υM,v2

(
StM′

v2 , λ+μv2

)= 1.
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Since (μv1,μv2) ∈ U and U was an arbitrary open set we infer that

υM,v1

(
δ′, λ+μ1

)
υM,v2

(
StM′

v2 , λ+μ2

)= 1

for all μ1, μ2. Hence υM,v1 = υM,v1(δ
′, λ) is independent of both δ′ and λ. Moreover,

taking δ′ = StMv2 , we infer that υM,v1 = υM,v2 is a sign depending only on M and the local
quadratic extension. Switching back to the local notation, we simply denote it by υM.
This shows (12.2) in the square-integrable case up to the determination of the sign.

Consider the general case of σ ′ ∈�M′
bc-gen. Let L′ be a Levi subgroup of M′, δ′ ∈�L′

sqr

and μ ∈ a∗L,C be such that σ ′ � IM′
L′ (δ

′,μ). Applying the above argument for δ′ with
respect to both G′ and M′ and using Lemmas 4.4 and 3.6 we obtain

(12.6) υM
L α

(
σ ′, λ

)= υL Jσ ′
(
ασ ′, λ

)
.

In particular, (12.2) holds whenever σ ′ (resp. σ ) is a principal series representa-
tion of M′ (resp. M) with proportionality constant υM0/υM

M0
. Using Lemma 12.1, and

a global setting as before, this time for S = {v1, u1, u2}, we immediately obtain that
υM = υM0/υM

M0
. Thus υM = υn∏

i υni

where we set υn = υG
M0

. Hence υM = υκ , and it also

follows that υLυM
L = υM. We obtain (12.2) from (12.6).

For E/F unramified it now follows from (8.5) that υn = 1.
We turn to the Archimedean case. Consider first the case where δ′ ∈�M′

usqr. Take
E/F = Q(

√−1)/Q. Choose a globalization σ ′ = σ ′
1 ⊗ · · · ⊗ σ ′

t of δ′ such that at the
prime 2 (denoted by the place v2) we have (σ ′

i )v2 �� (σ ′
i )v2 · ηv2 for all i and set σ =

bc(σ ′). (For existence of such σ ′ we may argue as in the Archimedean part of the proof
of Proposition 12.2.) It follows from Lemma 2.2 and strong multiplicity one that the
distributions

⊗
p<∞ rl

′(σ ′′
p , λ) B(σ ′′

p , λ), σ ′′ ∈ B(σ ) are linearly independent. It further
follows from the result already established in the p-adic case that

⊗

p<∞
rl
′(σ ′′

p , λ
)

B̃
(
σ ′′

p , λ
)←→ υM,v2

⊗

p<∞
rl
′(σ ′′

p , λ
)

B
(
σ ′′

p , λ
)
.

The factorizations (11.3) and (11.12) together with the global identity (11.13) imply that

B̃
(
δ′, λ

)←→ υM,v2B
(
δ′, λ

)
.

In particular, υM,v∞ = υM,v2 is independent of δ′ and λ. Back in a local Archimedean
setting, arguing as before in the p-adic case, one now proves the identities (12.2) for any
σ ′ ∈�M′

bc-gen with υn,v∞ = υn,v2 .
Finally, we show that (12.5) follows from (12.4). Indeed, since π ′ := I(σ ′, λ) �

I(wσ ′,wλ) and υwκ = υκ , applying (12.2) to (wσ ′,wMw−1) we get

απ ′ ◦W(wσ,wλ)= υκ Jwσ ′
(
αwσ ′,wλ

)
.
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Composing this with N(w, W (σ ), λ) and using the functional equation (1.10) we obtain

απ ′ ◦W(σ,λ)= υκ Jwσ ′
(
αwσ ′,wλ

) ◦N
(
w, W (σ ), λ

)
.

Using (12.4) once again we infer (12.5). �

From (11.13) we now deduce

Corollary 12.5. — Proposition 11.3 holds for any quadratic extension of numbers fields E/F
(not necessarily split at infinity). Moreover,

∏
v υn(Ev/Fv)= 1.

Remark 12.6. — In order to determine the signs υn it is necessary to have more in-
formation about the matching at the ramified places. For instance, a factor η(−1) cannot
be discerned at the split or unramified places, and can be incorporated into the transfer
factor at will, resulting in a possible sign change in the α’s.

12.2. Bessel identities for closed Bessel distributions. — Next, we prove a similar relation
for the closed periods. Recall the distribution D̃L(�,λ) defined in (5.16).

Proposition 12.7. — For any k ≥ 0 and a local extension of quadratic fields E/F there exist

signs ςk with the following property. Let n= 2k, κ a composition of k, L=M(κ,←−κ ) an even symmetric

Levi and �= σ ⊗←−σ τ ∈�L,w0
gen . Then for any λ= (μ,←−μ ) ∈ (a∗L)

w0
C such that I(�,λ) is irreducible

we have

(12.7) απ ′ ◦W(�,λ)= ςkλ
k
ψ ′Z

(
β�,λ

)

where π ′ = I(ai(σ ),μ′) (with μ′ ∈ a∗M′
2κ ,C as in Corollary 5.6) is the unique element of B(I(�,λ))

such that π ′ · η= π ′. Equivalently,

(12.8) D̃(�,λ)←→ ςkBI(ai(σ ),μ′).

Proof. — The equivalence of (12.7) and (12.8) follows from the definition (5.16) of
D̃ and the relation (2.9) applied to the equivalence

(
W(�,λ),W(�∨,−λ)

) : I(W(�), λ
)→W

(
I(�,λ)

)
.

By Corollary 5.10 and (2.14) we reduce (12.8) to the case where σ = δ1 ⊗ · · · ⊗ δs ∈
�Mκ

usqr. In this case we argue exactly as in the proof of Theorem 12.4. First note that by
(2.14), (9.5), (9.6) and (9.16) the identity (12.8) is independent of ψ ′. In the p-adic case,
switching to a global (split at infinity) setting, we globalize δi to �i ∈ C Gni

,¬τ , i = 1, . . . , s (by
using an auxiliary split place). By (11.17) we get (12.8) up to a constant. The argument
in the proof of Theorem 12.4 using Proposition 7.5 and Corollary 8.4 shows that the
proportionality constant is a sign which depends only on k. For the real case we argue
once again as in Theorem 12.4 applying (11.17) to Q[√−1]/Q. �
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Now let L=M(κ,m,←−κ ) be odd symmetric. We will use the setup of Proposition 5.4
and its notation. Namely, let w = w

(m+k,k)

(m,k,k) , L̃ = w−1Lw = M(m,κ,←−κ ), M̃ = M(m,2k), w̃∗ =
diag(1m,w

G2k

0 ).
Let � = σ ⊗ δ ⊗ ←−

δ τ ∈ �L̃,w̃∗
gen with σ ∈ �Gm,τ

gen and δ ∈ �Mκ
gen. For any α ∈

EGm
(Xm, W (σ )∗) and β ∈ EM(κ,←−κ )

(XG2k

M(κ,←−κ )
, W (δ⊗←−δ τ )∗) define α⊗β ∈ EL̃(XM̃

L̃
, W (�)∗)

by

(α⊗ β)diag(x1,x2) = αx1 ⊗ βx2, x1 ∈Xm, x2 ∈XG2k

M(κ,←−κ )
.

We will view w(α ⊗ β) as an element of EL(XM(k,m,k)

L , W (w�)∗) by identifying wW (�)

with W (w�) (as in our convention for the intertwining operators N(w, W (�), λ)).

Proposition 12.8. — With the notation above, for any λ= (z,μ,←−μ ) ∈ (a∗
L̃
)w̃

C with z ∈C,

μ ∈ a∗Mκ ,C such that I(�,λ) ∈�gen and for any σ ′ ∈ B(σ ) we have

(12.9) αI(�′,0) ◦W(w�,wλ)= υm+2k

υmυ2k

ςkλ
(1−m)k

ψ ′−1 Z
(
w
(
ασ ′ ⊗βδ⊗←−δ τ )

,wλ
)

as elements of EG(X, I(W (w�),wλ)∗) where �′ = σ ′[z] ⊗ I(ai(δ),μ′) ∈�M̃′
gen.

Proof. — First note that by (1.10) and (1.6) we have

W(w�,wλ)=W(�,λ) ◦N
(
w, W (�), λ

)−1

=WM̃

(
IM̃

L̃ (�,λ), 0
) ◦ IM̃

(
WM̃

L̃ (�,λ)
)

◦ �L̃,M̃

(
W (�), λ

) ◦N
(
w, W (�), λ

)−1
.

Recall that bc(�′) = I(�,λ) = IM̃(IM̃
L̃

(�,λ), 0). Thus, by (12.4), the left-hand side of
(12.9) is

υm+2k

υmυ2k

J�′
(
α�′, 0

) ◦ IM̃

(
WM̃

L̃ (�,λ)
) ◦ �L̃,M̃

(
W (�), λ

) ◦N
(
w, W (�), λ

)−1
.

Note that α�′ = ασ ′[z] ⊗αI(ai(δ),μ′). Therefore we infer from (12.7) that

J�′
(
α�′, 0

) ◦ IM̃

(
WM̃

L̃ (�,λ)
)= ςkλ

k
ψ ′J�′

(
ZM̃

(
ασ ′ ⊗βδ⊗←−δ τ

, λ
)
, 0

)
.

The proposition therefore follows from (5.14) since λψ ′−1 = η(−1)λψ ′ . �

The following Corollary strengthens Corollary 12.3 (taking into account the rela-
tion (3.8)).

Corollary 12.9. — Let π ′ ∈�′
bc-gen. Then απ ′

x �≡ 0 iff w̃′(π ′)≤w(x). In particular, in the

p-adic case απ ′
x �≡ 0 unless Gx is not quasi-split and π ′ � π ′ · η.
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Proof. — The p-adic case follows from Lemma 3.8 (and will also follow from the
argument below).

By Lemma 3.2 we can write π ′ = σ ′ × ai(�) where � ∈ �Gk
gen, k = w̃′(π ′) and

w̃′(σ ′) = 0. By (12.9) the non-vanishing of απ ′
x is equivalent to the non-vanishing of

Z(x,w(ασ ′ ⊗β�⊗←−� τ

), 0). In view of Lemma 5.2 and Lemma 5.1 part (1), it suffices to
prove the Corollary for σ ′. That is, we may assume that w̃′(π ′)= 0.

Suppose therefore that w̃′(π ′) = 0. We have to show that απ ′
x �≡ 0 for all x. We

reduce the statement further to the tempered case. Write π ′ as π ′ = I(σ ′, λ) where
σ ′ ∈ �M′

temp and λ = (λ1, . . . , λt) ∈ (a∗M)+. By Theorem 12.4 the non-vanishing of απ ′
x

is equivalent to that of Jσ ′(x, ασ ′, λ). Recall that CM(wM : σ, ·;ψ) is holomorphic and
non-zero at λ (1.11) and therefore the same is true for CM′(wM : σ ′, λ;ψ ′). Hence, the
non-vanishing of Jσ ′(x, ασ ′, λ) is equivalent to that of J(x, ασ ′, λ). In turn, the latter con-
dition is equivalent to the existence of y ∈ M ∩ x • G such that ασ ′

y �≡ 0. Therefore it
suffices to prove the corollary for σ ′.

Hence, we can assume that π ′ ∈�′
temp and w̃′(π ′) = 0. Thus π ′ is induced from

δ′ = δ′1 ⊗ · · · ⊗ δ′t ∈ �M′
usqr with δ′i �� δ′j · η for any i, j. Let δ = bc(δ′) ∈ �M

usqr. It follows
from Lemma 1.1 that nM′(δ′, λ) is holomorphic and non-zero at λ = 0. By the same
argument as before, the non-vanishing of απ ′

x follows from the analogous statement in the
square-integrable case. The latter follows from Proposition 12.2. �

Remark 12.10. — The Corollary gives an alternative proof of a result of Jacquet on
the non-vanishing of απ ′

x in the quasi-split case [Jac10].

Combining Corollaries 10.3 and 12.9 we obtain Theorem 0.1.

12.3. An example. — We finish this section with the following example which
shows that in general, local distinction does not imply global distinction. Let Ẽ/F be
a quadratic extension of number fields with Galois involution τ̃ and corresponding
quadratic character η̃ : F∗\A∗F → {±1}. Let G̃n = ResẼ/F GLn. Suppose that σ ∈ C G̃n,¬τ̃

and let π ′ = aiẼ/F(σ ) ∈ C G′
2n so that π ′ = π ′ · η̃. Let E/F be another quadratic exten-

sion such that π ′ �= π ′ · η. (For instance, this is the case if Ev/Fv is ramified at a place
where π ′

v is unramified.) Thus, π = bc(π ′) ∈ C G2n . Let x ∈ X2n and let Sx be the (finite)
set of places of F which are inert in E and such that x is not quasi-split with respect to
Ev/Fv . Assume that for any v ∈ Sx πv is unramified and Ẽv/Fv � Ev/Fv . Then by Corol-
lary 12.3 π is locally Gx(Fv)-distinguished for all v. On the other hand, by Corollary 10.3
π is not globally Gx-distinguished unless x is quasi-split with respect to E/F (i.e., unless
Sx = ∅). For otherwise, if v ∈ Sx then π ′

v = π ′
v · ηv since η̃v = ηv and hence απ ′v

x ≡ 0 by
Corollary 12.9. There is of course no difficulty in choosing x which is not quasi-split and
satisfying the properties above since Ẽv/Fv � Ev/Fv for infinitely many inert places v of F.
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13. Multiplicity of unitary periods

In this section we study the space of local unitary periods. Let E/F be a quadratic
extension of p-adic fields. For simplicity of notation, in the following we will identify all
generic irreducible representations with their Whittaker models.

13.1. The supercuspidal case. — The following Theorem of Jacquet describes the
space of local unitary periods in the supercuspidal case. It was proved in [Jac01, §5] for
the case n= 3 and x= e. Recall the notation B(π) and [B](π) from Section 3.2.

Theorem 13.1 Jacquet. — Let π ∈ �τ
cusp. Then for any x ∈ X we have

dim HomGx(π,C)= 1 and moreover, there exists v∨ ∈ π∨ such that

v �→
∫

Gx

v∨
(
π(g)v

)
dg

is a non-zero element in HomGx(π,C).

Proof. — Since B(π) = {π ′,π ′ · η} for some π ′ �� π ′ · η in �′
cusp, it follows from

Proposition 12.2 that π is Gx-distinguished (and in fact απ ′
x �≡ 0). Without loss of gener-

ality we may further assume that π is unitary. The rest of the proof follows [Jac01, §5]
verbatim. �

Corollary 13.2. — Let σ = σ1 ⊗ · · · ⊗ σt ∈�M,τ
cusp with σ1, . . . , σt distinct. Then for every

σ ′ ∈ B(σ ) and x ∈ X, the linear form J(x, ασ ′, ·) on I(σ ) is holomorphic at 0. Furthermore, if �

is a set of representatives (of size 2t−1) for [B](σ ) then the set {J(x, ασ ′, 0) : σ ′ ∈ �} is a basis of

HomGx(I(σ ),C).

Proof. — Recall that by (12.1) the set {ασ ′ |x•G∩M : σ ′ ∈ �} is linearly independent
in EM(x •G ∩M, σ ∗). On the other hand, by Lemma 6.10, unitary periods on I(σ ) are
supported on open orbits. It therefore follows from Theorem 13.1 that {ασ ′ |x•G∩M : σ ′ ∈
�} is a basis for EM(x •G∩M, σ ∗). The lemma now follows from Lemma 6.7. �

13.2. The square-integrable case. — Next we study the essentially square-integrable
case.

Proposition 13.3. — For any δ ∈�sqr and x ∈X we have dim HomGx(δ,C)≤ 1.

Proof. — Suppose that δ = ��([a, b]) for � ∈ �Gd
cusp and let P = MU be the

parabolic subgroup of type (d, . . . , d) (t = b− a+1 times). If � /∈�τ then δ /∈�τ . Hence,
by Theorem 6.1 we may assume that �= bc(�′) for some �′ �� �′ ·η ∈�

G′
d

cusp, in which case
δ = bc(δ′) where δ′ =�′

�′([a, b]). Set σ = �[a] ⊗ · · · ⊗ �[b] and σ ′ = �′[a] ⊗ · · · ⊗ �′[b]
so that δ is the unique irreducible quotient of I(σ ). Let p : I(σ )→ δ be the projection.
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For k = 1, . . . , t − 1 let wk ∈W(M) be the permutation associated with the simple
reflection (k, k + 1) when identifying W(M) with the symmetric group on [1, t]. The
operator M(wk,wkσ,wkλ) is holomorphic at λ= 0 and the image of M(wk,wkσ, 0) is a
proper submodule of I(σ ). Let

V :=
t−1∑

k=1

Im M(wk,wkσ, 0)⊆Ker p.

(In fact, it is known that equality holds but we do not need to know this a priori.)
It follows from (12.5) that for every k = 1, . . . , t − 1 and ν = (ν1, . . . , νt) ∈'t we

have the functional equation

Jσ ′·ν
(
x, ασ ′·ν, λ

) ◦M(wk,wkσ,wkλ)

=CG
M(wk :wkσ,wkλ;ψ)−1 Jwk(σ

′·ν)

(
x, αwk(σ

′·ν),wkλ
)

as rational functions in qλ
F. In terms of the unnormalized functionals this relation becomes

J
(
x, ασ ′·ν, λ

) ◦M(wk,wkσ,wkλ)

= c γ
(
λk+1 − λk + 1, �′ × �′∨ · νk+1ν

−1
k ;ψ ′)−1

× γ
(
λk − λk+1 − 1, �′ × �′∨ · νkν

−1
k+1η;ψ ′)−1

J
(
x, αwk(σ

′·ν),wkλ
)

where c �= 0 is a constant. Since �′ �� �′ · η, it follows from Lemma 1.1 that the product

γ
(
λk+1 − λk + 1, �′ × �′∨ · νk+1ν

−1
k ;ψ ′)−1

× γ
(
λk − λk+1 − 1, �′ × �′∨ · νkν

−1
k+1η;ψ ′)−1

is holomorphic at λ = 0 and it is non-zero there if and only if νk �= νk+1. Recall that by
Corollary 13.2, J(x, ασ ′·ν, λ) is holomorphic at λ = 0. Thus, for any ν ∈ 't there is a
scalar ck(ν) ∈C such that

(13.1) J
(
x, ασ ′·ν, 0

) ◦M(wk,wkσ, 0)= ck(ν) J
(
x, αwk(σ

′·ν), 0
)

and

(13.2) ck(ν) �= 0 if and only if νk �= νk+1.

(Note that for ν = 1 this implies that J(x, ασ ′, 0) factors through I(σ )/V , which as was
pointed out before, is in fact isomorphic to δ.)

We will prove the Proposition by showing that for any � ∈ HomGx(δ,C), � ◦ p ∈
HomGx(I(σ ),C) is proportional to J(x, ασ ′, 0).
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Let � ∈HomGx(δ,C). By Corollary 13.2 there exist complex numbers {aν}ν∈'t :ν1=1

such that

� ◦ p=
∑

ν∈'t :ν1=1

aν J
(
x, ασ ′·ν, 0

)
.

Since � ◦ p is trivial on V , for any k = 1, . . . , t − 1 we have
∑

ν∈'t :ν1=1

aν J
(
x, ασ ′·ν, 0

) ◦M(wk,wkσ, 0)≡ 0.

Together with (13.1) we get
∑

ν∈'t :ν1=1

aν ck(ν) J
(
x, αwk(σ

′·ν), 0
)≡ 0.

By (13.2) and Corollary 13.2 (applied to wkσ
′) we conclude that aν = 0 for all ν ∈ 't

such that ν1 = 1 and νk �= νk+1. Applying this to all k, we infer that � ◦ p is proportional
to J(x, ασ ′, 0) as required. �

Remark 13.4. — In its notation, the proof shows that J(x, ασ ′, 0) factors through
δ as a non-zero multiple of αδ′

x (since the latter is non-zero). The same is true for
Jσ ′(x, ασ ′, 0) by (4.5) and Lemma 1.1.

It is also possible to generalize the second part of Theorem 13.1 to the square-
integrable case. However, we will not discuss this aspect here.

From Theorem 6.1 and Propositions 13.3 and 12.2 together with the fact that
bδ = 2 for δ ∈�τ

sqr we infer

Corollary 13.5. — For any δ ∈�sqr and x ∈X we have

dim HomGx(δ,C)=
{

1 δ ∈�τ
sqr,

0 otherwise.

As in Corollary 13.2 we now get

Corollary 13.6. — Let δ = δ1 ⊗ · · · ⊗ δt ∈�M,τ
sqr with no i < j such that δi � δj . Then for

every δ′ ∈ B(δ) and x ∈ X the linear form J(x, αδ′, ·) on I(δ) is holomorphic at 0. Furthermore, if

� is a set of representatives (of size 2t−1) for [B](δ) then the set {J(x, αδ′, 0) : δ′ ∈ �} is a basis of

HomGx(I(δ),C).

We also have the following property.
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Lemma 13.7. — Let δ ∈�M,τ
usqr and δ′ ∈ B(δ). Then Jδ′(α

δ′, λ) is holomorphic for Re λ ∈
−(a∗M)+.

Proof. — By Theorem 12.4, B̃(δ′, λ) is entire. Suppose that Re λ ∈ −(a∗M)+. Then
by [JS83] We(δ

∨,−λ) ∈ I(δ∨,−λ)∗ is injective. Hence, the Lemma follows from (4.13),
Lemma 2.3 and (2.11). �

Definition 13.8. — Let π ∈�. Assume that π is the unique irreducible quotient of I(δ, λ)

where δ = δ1 ⊗ · · · ⊗ δt ∈ �M
usqr and λ ∈ (a∗M)+. We say that π has regular parameters if

δ1[λ1], . . . , δt[λt] are pairwise non-isomorphic. We write

�τ
reg =

{
π1 × π2 : π1 ∈�τ,ti,π2 ∈�τ,an,π2 with regular parameters

}
.

Proposition 13.9. — For any π ∈ �τ
reg and x ∈ X we have dim HomGx(π,C) ≤ [b]π .

(Recall that [b]π = 1
2bπ as long as π �∈�τ,ti.)

Proof. — By (6.9) and the fact that bπ = bπ2 we reduce to the case where π ∈�τ,an.
In this case π is the Langlands quotient of I(δ, λ) with δ = δ1 ⊗ · · · ⊗ δt ∈ �M,τ

usqr and
λ= (λ1, . . . , λt) ∈ (a∗M)+. By the regularity condition on π we have δi[λi] �� δj[λj] for all
i �= j. Hence, the Proposition follows from Corollary 13.6 applied to δ[λ] together with
the injectivity of the natural map HomGx(π,C)→HomGx(I(δ, λ),C). �

13.3. Ladder representations. — We can extend the uniqueness result of Proposi-
tion 13.3 to a wider class of representations.

Definition 13.10. — Let σ ∈�Gd
cusp and let a1 > · · · > at , b1 > · · · > bt be integers such

that ai ≤ bi for i = 1, . . . , t and bi+1 ≥ ai − 1, i = 1, . . . , t − 1. Let �i =�σ ([ai, bi]). (Thus,

�i ×�i+1 is reducible for all i = 1, . . . , t − 1.) The Langlands quotient π of �1 × · · · ×�t will

be called a (proper) ladder representation11 and will be denoted by L(�1, . . . ,�t).

Important special cases of ladder representations are the Speh representations
u(δ, t) for any δ ∈ �usqr and t ≥ 1 which comprise the building blocks for the unitary
dual of GLn [Tad86]. By definition u(δ, t) is the Langlands quotient of δ[(t − 1)/2] ×
· · · × δ[(1− t)/2]. The class of ladder representations is closed under Zelevinsky involu-
tion. This follows from the combinatorial description of the latter [MW86].

Theorem 13.11. — For any ladder representation π = L(�1, . . . ,�t) and x ∈X we have

dim HomGx(π,C)≤ 1

and equality holds if and only if π ∈�τ .

11 There is an unrelated, much earlier notion of ladder representations for unitary groups.
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Proof. — The proof of the first part is similar to the proof of Proposition 13.3. Note
that πτ = L(�τ

1, . . . ,�τ
t ) and therefore by uniqueness of Langlands data, if π ∈�τ then

�i ∈�τ and therefore σ ∈�τ . Thus, we can assume that σ = bc(σ ′) for some σ ′ ∈�′

with σ ′ �� σ ′ · η.
Let δ =�1⊗· · ·⊗�t ∈�M where P=MU is the corresponding parabolic. Thus,

π is the Langlands quotient of I(δ). Let wk ∈W(M), k = 1, . . . , t − 1 be as in the proof
of Proposition 13.3 and let

V :=
t−1∑

k=1

Ker M(wk, δ, 0)=
t−1∑

k=1

Im N
(
w−1

k ,wkδ, 0
)⊆Ker M(wM, δ, 0)

where the second equality (and the holomorphy of N(w−1
k ,wkδ,wkλ) at 0) follow from

Lemma 1.1. We recall that the projection p : I(δ) → π is essentially the intertwining
operator M(wM, δ, 0), so that Ker M(wM, δ, 0) is the unique maximal submodule of I(δ).
Let

δ′ =�′
σ ′
([a1, b1]

)⊗ · · · ⊗�′
σ ′
([at, bt]

)
.

It follows from (12.5) that for every k = 1, . . . , t − 1 and ν = (ν1, . . . , νt) ∈ 't we have
the functional equations

(13.3) J
(
x, αδ′·ν, λ

) ◦N
(
w−1

k ,wkδ,wkλ
)= cck(ν,λ) J

(
x, αwk(δ

′·ν),wkλ
)

where c �= 0 is a constant and

ck(ν,λ)= γ (λk+1 − λk, δ′k
∨ × δ′k+1 · ηνkν

−1
k+1;ψ ′)

γ (λk − λk+1, δ′k × δ′k+1
∨ · ηνkν

−1
k+1;ψ ′)

.

It follows from Lemma 1.1 and the assumption on π that ck(ν,λ) is holomorphic at λ= 0,
and writing ck(ν)= ck(ν, 0) we have

(13.4) ck(ν) �= 0 if and only if νk = νk+1.

Let � ∈HomGx(π,C). By Corollary 13.6, there exist complex numbers {aν}ν∈'t :ν1=1

such that

� ◦ p=
∑

ν∈'t :ν1=1

aν J
(
x, αδ′·ν, 0

)
.

Since � ◦ p vanishes on V , we have
∑

ν∈'t :ν1=1

aν J
(
x, αδ′·ν, 0

) ◦N
(
w−1

k ,wkδ, 0
)≡ 0, k = 1, . . . , t − 1.
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Using the functional equations (13.3) we get
∑

ν∈'t :ν1=1

aνck(ν)J
(
x, αwk(δ

′·ν),wkλ
)|λ=0 ≡ 0.

Recall that by (12.1) the set {αwk(δ
′·ν) |x•G∩M : ν ∈ 't, ν1 = 1} is linearly independent

in EM(x • G ∩ M, δ∗). Let J◦(x, αwk(δ
′·ν),wkλ) be the restriction of J(x, αwk(δ

′·ν),wkλ) to
sections supported on G◦[x] = {g ∈ G : x • g−1 ∈ X◦} (the open orbits). Recall that
J◦(x, αwk(δ

′·ν),wkλ) is holomorphic in λ and by (6.6) the set {J◦(x, αwk(δ
′·ν), 0) : ν ∈ 't,

ν1 = 1} is linearly independent. Also,
∑

ν∈'t :ν1=1

aνck(ν)J◦
(
x, αwk(δ

′·ν), 0
)≡ 0.

We therefore get by (13.4) that aν = 0 whenever νk = νk+1. Since this holds for all k we
infer that � ◦ p is proportional to J(x, αδ′·νM, 0) where νM is as in (4.1). The first part
follows.

To prove the second part, we use the fact proved in [LM] that V is in fact equal to
the kernel of M(wM, δ, 0). Therefore, it suffices to show that J(x, αδ′·νM, 0) vanishes on V ,
i.e., that J(x, αδ′·νM, 0) ◦N(w−1

k ,wkδ, 0)= 0 for all k. We will write the right-hand side of
(13.3) for ν = νM differently as

γ
(
λk − λk+1, δ′k × δ′k+1

∨;ψ ′)−1

× JMk

(
x, J Mk

L,wk(δ
′·νM)

(
αwk(δ

′·νM), (wkλ)
Mk

L

)
, (wkλ)Mk

)

where Mk is the Levi of type (n1, . . . , nk−1, nk + nk+1, nk+2, . . . , nt) and L= wkMw−1
k . By

Lemma 1.1 and the assumption on π we have γ (0, δ′k × δ′k+1
∨;ψ ′) =∞. On the other

hand, by Lemma 13.7

J Mk

L,wk(δ
′·νM)

(
αwk(δ

′·νM), (wkλ)
Mk

L

)

is holomorphic at λ= 0 and we can apply Lemma 6.11 and Lemma 6.7 (with respect to
Mk and δ1 ⊗ · · · ⊗ δk−1 ⊗ δk × δk+1 ⊗ δk+2 ⊗ · · · ⊗ δt ) to infer that

JMk

(
x, J Mk

L,wk(δ
′·νM)

(
αwk(δ

′·νM), (wkλ)
Mk

L

)
, (wkλ)Mk

)

is holomorphic at λ= 0. Our claim follows. �

Corollary 13.12. — Conjecture 6.12 holds for any irreducible representation induced from ladder

representations. In particular, it holds for any unitarizable representation.

Proof. — We already know the necessity part of the Conjecture (in general). The
sufficiency part follows from the previous Theorem using Corollary 4.2. The last part
follows from the description of the unitary dual of G [Tad86]. �
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Remark 13.13. — In the complex case, every unitarizable representation is parabol-
ically induced from a character. Therefore, Conjecture 6.12 holds for unitarizable repre-
sentations in the Archimedean case as well.

13.4. Generic representations.

Proposition 13.14. — Let π ∈�τ
gen. Then the elements {απ ′ : π ′ ∈ B(π)} of EG(X,π∗)

are linearly independent and hence dim EG(X,π∗) ≥ bπ . Moreover, for any x ∈ X and a set � of

representatives for [B](π), the non-zero elements in
{
απ ′

x : π ′ ∈ �
}

are linearly independent in HomGx(π,C). Thus dim HomGx(π,C)≥ [b]π − δ(x,π) where

δ(x,π) =
{

1 if Gx is not quasi-split and π = δ× δτ for some δ ∈�gen,

0 otherwise.

Proof. — By Lemma 2.2 the distributions {Bπ ′ : π ′ ∈ B(π)} are linearly indepen-

dent. By Theorem 12.4 and smooth transfer, we infer that B̃
απ ′ ,δπ∨

e

Wψ (π)
, π ′ ∈ B(π) are also

linearly independent. Hence, the linear independence of {απ ′ : π ′ ∈ B(π)} follows from
(2.12).

To prove the second part, let ε = η(xw0) so that x ∈Xε and let

[B]ε(π)=
{
{[π ′] ∈ [B](π) : π ′ �� π ′ · η} ε =−1,

[B](π) ε = 1.

Choose a set of representatives �ε for [B]ε(π). Since there is at most one π ′ ∈ B(π) such
that π ′ � π ′ · η, we have |�ε| = [b]π − δ(x,π).

By Lemma 3.8 and Theorem 12.4, απ ′
x �≡ 0 if and only if [π ′] ∈ Bε(π).

We claim that the restrictions of the distributions Bπ ′ , π ′ ∈ �ε to S (G′ε) are linearly
independent. Indeed, otherwise there would exist a non-trivial linear combination

∑

π ′∈�ε

aπ ′ Bπ ′
(

f ′ + ε f ′η
)= 0 ∀f ′ ∈ S

(
G′).

By (2.15) it follows that
∑

π ′∈�ε

aπ ′ Bπ ′ +
∑

π ′∈�ε

ε aπ ′ Bπ ′·η = 0.

This contradicts the linear independence of Bπ ′ , π ′ ∈ B(π).
As before, using in addition the property (3.5) we infer (using smooth transfer) that

the distributions B
απ ′

x ,δπ∨
e

Wψ (π)
, π ′ ∈ �ε on G, and hence the functionals {απ ′

x : π ′ ∈ �ε}, are
linearly independent. The Proposition follows. �
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Corollary 13.15. — Let π ∈�τ
gen,reg and x ∈X. Then

dim HomGx(π,C)=
{

0 if bπ = 1 and x ∈X−,

[b]π otherwise.

This follows from Theorem 6.1 and Propositions 13.14 and 13.9, by noting that if
π ∈�τ

reg then δ(x,π) = 0 unless bπ = 1 and x ∈X−.
Recall that any π ∈�τ

gen can be written in the form

π � σ1 × · · · × σt

where σi is the base-change of an essentially square integrable representation, and the
σi’s are unique up to permutation. Denote by r = r(π) the number of indices i such that
σi is itself essentially square integrable. Clearly bπ ≤ 2r and [b]π ≤ 2max(r−1,0). If π ∈�τ

reg
then equalities hold. In general however, [b]π may be much smaller. For instance, if π is
induced from the trivial character of M0 then r(π)= n whereas [bπ ] = & n

2' + 1.
We apply Lemma D.1 and Corollary 13.15 to improve the lower bound obtained

in Proposition 13.14 on the dimension of the space of local unitary periods of generic
representations. For convenience, set

2i
x =

⎧
⎪⎨

⎪⎩

2i if i ≥ 0,

1 if i =−1 and x ∈X+,

0 if i =−1 and x ∈X−.

Corollary 13.16. — Let π ∈�τ
gen and x ∈X. Then

(13.5) dim HomGx(π,C)≥ 2r(π)−1
x .

Moreover, equality holds if π ∈�τ
reg.

Conjecture 13.17. — For any π ∈�τ
gen and x ∈X we have an equality in (13.5)

13.5. Further remarks. — In the non-regular case, the naive upper bound on
dim HomGx(π,C) obtained from the Geometric Lemma is much coarser than the ex-
pected bound. For instance, in the case where π is the principal series representation
induced from the trivial character of M0, all P0-orbits are relevant their number is∑

w∈Sn:w2=1 2|Fw |−1
x which is of course much larger than 2n−1. (Recall that Fw is the set

of fixed points of w.)
The following remark was communicated to us by Yiannis Sakellaridis. Suppose

that E/F is unramified. Then it follows from Hironaka’s results [Hir99] that Conjec-
ture 13.17 holds for unramified (generic) representations. Indeed, Hironaka showed that
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S (X)K = S (X/K) is a free module of rank 2n over the Hecke algebra H = H(G, K)=
S (K\G/K) [ibid., Theorem 2]. Therefore, for any π ∈�unr we have

EG

(
X,π∗)=HomG

(
S (X),π∨) ι−→HomH

(
S (X)K,

(
π∨)K)

�HomH
(

H2n

,
(
π∨)K)�C2n

.

Note that the restriction map ι is injective since if f : S (X) → π∨ is a non-zero inter-
twining map then f is onto, and therefore by averaging over K, ι(f ) is also onto. Thus,
dim EG(X,π∗) ≤ 2n. Using (13.5) and Corollary 13.16 we get that if in addition π is
generic then ι is an isomorphism, dim EG(X,π∗)= 2n and dim HomGx(π,C)= 2n−1 for
all x ∈X. It would be interesting to generalize this type of argument to any generic rep-
resentation.

13.6. Conclusion. — Let us summarize the main results obtained so far about the
spaces EG(X,π∗) and HomGx(π,C) and what still remains to be seen. The study of the
space EG(X,π∗) reduces to the case where π is pure and Galois invariant. For irreducible
representations of the form π = δ1 × · · · × δk ∈�τ with δi essentially square integrable
we expect that

dim EG

(
X,π∗)= 2#{i:δi∈�τ },(13.6a)

dim HomGx(π,C)=
{
( 1

2 dim EG(X,π∗)) if Gx is quasi-split,
& 1

2 dim EG(X,π∗)' otherwise.
(13.6b)

This is known if E/F and π are unramified or if the Galois-invariant δi ’s are distinct in
which case an explicit basis for EG(X,π∗) is given by {απ ′ : π ′ ∈ B(π)}. In general we
know the inequalities ≥ (even if δi are ladder representations) although it is not clear how
to construct, even conjecturally, a nice basis for EG(X,π∗) if π /∈�τ

reg.
Note that (13.6a) and (13.6b) hold at least if we twist the Galois-invariant δi ’s by

|det ·|λi for λi ’s outside finitely many ‘hyperplanes’ of the form qλi−λj = c.
One may even wonder whether in general EG(X,π∗

1 × π∗
2 ) � EGn1

(Xn1,π∗
1 ) ⊗

EGn2
(Xn2,π∗

2 ) for any πi ∈ �Gni
,τ , i = 1, 2. Again, this holds upon twisting π1 (or π2)

by |det ·|s for qs outside a finite set and the inequality

dim EG

(
X,π∗

1 × π∗
2

)≥ dim EGn1

(
Xn1,π∗

1

)
dim EGn2

(
Xn2,π∗

2

)

always holds.
Another aspect not discussed here is the computation of the local open periods on

special vectors (such as new vectors). This will be useful to the analysis of the growth
of unitary periods (cf. [LO07, Sar04]) as well as for possible arithmetic applications
(cf. [CO07]).
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Appendix A: Inner product for induced representations of GLn, by Erez
Lapid and Omer Offen

In this section let G= GLn(F) where F is a local field and let Q = Qn be the mirabolic
subgroup of G, i.e., the stabilizer of (0, . . . , 0, 1) under the right action of G on row
vectors.

A.1 Canonical inner product. — Fix a non-trivial character ψ of F and let π ∈�gen.
Recall that for simplicity we write W (π)= W ψ(π) and W (π∨)= W ψ−1

(π∨). It follows
from the theory of Rankin-Selberg integrals developed by Jacquet, Piatetski-Shapiro and
Shalika [JPSS83, JS90, Jac09] that the integral

I
(
W, W∨, s

)= L(n, 1F∗)

∫

U0\Qn

W(p)W∨(p)|det p|s dp,(A.1)

W ∈ W (π), W∨ ∈ W
(
π∨)

converges for Re s � 0 and admits a meromorphic continuation. Here, L(·, 1F∗) is the
Tate local L-factor attached to the trivial character of F∗, which is included because
of our measures convention. In the p-adic case, Bernstein showed that I(W, W∨, s) is
holomorphic at s = 0 and its value defines a non-degenerate G-invariant pairing [·, ·] =
[·, ·]π between W (π) and W (π∨) [Ber84]. This was a consequence of his result that any
Qn-invariant pairing is G-invariant and the fact that the Kirillov model of π contains
the space of compactly supported functions on U0\Qn. These results were subsequently
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proved in the Archimedean case by Baruch and Jacquet respectively ([Bar03],12 [Jac10,
Proposition 5]). Therefore, [·, ·] is defined in the Archimedean case as well.

Note that the Rankin-Selberg zeta integral

Z
(
W, W∨,�, s

)=
∫

U0\G
W(g)W∨(g)�

(
(0, . . . , 0, 1)g

)|det g|s dg,

� ∈ S
(
Fn

)

can be written as

L(n, 1F∗)
−1

∫

Qn\G
I
(

W (g,π)W, W
(
g,π∨)W∨, s− 1

)
�

(
(0, . . . , 0, 1)g

)

× |det g|s dg.

In particular, since
∫

Qn\G �((0, . . . , 0, 1)g)|det g| dg = L(n, 1F∗)�̂(0) we get

Z
(
W, W∨,�, 1

)= [
W, W∨]�̂(0).

Note also that in the case where π ∈�gen is unitarizable we have W (π∨)= {W :
W ∈ W (π)} where W(g)=W(g), g ∈G. In this case we have

[W, W]π = L(n, 1F∗)

∫

U0\Qn

∣∣W(p)
∣∣2

dp

where the integral converges.

A.2 A remark by Jacquet on the square-integrable case. — In the case where π ∈�sqr the
integral

(
W, W∨)=

∫

ZU0\G
W(g)W∨(g) dg

converges, and by uniqueness, it is proportional to [W, W∨]. For completeness, we include
the following result which was kindly communicated to us by Jacquet. (We will not use
this result in the sequel.)

Lemma A.1 Jacquet. — With our normalization of measures, we have

[
W, W∨]= 1

n
γ
(
0,π∨, Ad;ψ−1

)
ωπ(−1)n−1L(1, 1F∗)

(
W, W∨)

for any π ∈�sqr and any W ∈ W (π), W∨ ∈ W (π∨).

12 See [AG09b] for a stronger statement.
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Proof. — Consider the local functional equation

Z
(
Wθ̃ , W∨θ̃

, �̂, 1− s
)= ωπ(−1)n−1γ

(
s,π × π∨;ψ)

× Z
(

W (w0,π)W, W
(
w0,π∨)W∨,�, s

)

where Wθ̃ (g)=W(w0
tg−1w0). Write

γ
(
s,π × π∨;ψ)= γ (s,π, Ad;ψ)γ (s, 1F∗;ψ).

Thus, Z(Wθ̃ , W∨ θ̃
, �̂, 1) is equal to

ωπ(−1)n−1γ (0,π, Ad;ψ)γ ′(0, 1F∗;ψ)

×Ress=0 Z
(

W (w0,π)W, W
(
w0,π∨)W∨,�, s

)
.

To compute the residue of the Rankin-Selberg integral at 0 we first recall the Tate integral

Z (φ, s)=
∫

F∗
φ(t)|t|s d∗t, φ ∈ S (F)

which converges for Re s > 0 and admits a meromorphic continuation with
lims→0 sZ (φ, s)= L(1,1F∗ )

γ ′(0,1F∗ ;ψ)
φ(0). We can write

(A.2) Z
(
W, W∨,�, s

)=
∫

ZU0\G
W(g)W∨(g)Z (φg, ns)|det g|s dg

where φg(t)=�((0, . . . , 0, t)g). Note that |sZ (φg, ns)||det g|s is bounded near s= 0 by a
constant multiple of es〈�,H(g)〉 where � is the fundamental weight corresponding to the
parabolic QnZ. On the other hand by easy estimates on the Whittaker function (e.g.,
[LM09a, Wal92]) the integral

∫

U0\G

∣∣W(g)
∣∣2

es〈�,H(g)〉 dg

converges in a neighborhood of s= 0. Therefore, we can take the residue at s= 0 inside
the integral of (A.2) to obtain

Ress=0 Z
(
W, W∨,�, s

)= L(1, 1F∗)

nγ ′(0, 1F∗;ψ)
�(0)

∫

ZU0\G
W(g)W∨(g) dg.

Thus,

[
Wθ̃ , W∨ θ̃

]= 1
n
γ (0,π, Ad;ψ)ωπ(−1)n−1L(1, 1F∗)

× (
W (w0,π)W, W

(
w0,π∨)W∨).
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Since (W (w0,π)W, W (w0,π∨)W∨)= (W, W∨)= (Wθ̃ , W∨θ̃
) we get

[
Wθ̃ , W∨ θ̃

]= 1
n
γ (0,π, Ad;ψ)ωπ(−1)n−1L(1, 1F∗)

(
Wθ̃ , W∨θ̃

)
.

This is equivalent to the statement of the Lemma. �

A.3 Let us analyze a few properties of [·, ·]. Clearly,

(A.3)
[
W · χ, W∨ · χ−1

]
π ·χ =

[
W, W∨]

π

for any W ∈ W (π), W∨ ∈ W (π∨) and a character χ of F∗.
Suppose now that π ∈ �unr and ψ has conductor OF. Let Wπ

0 ∈ W (π) be the
spherical Whittaker function normalized by Wπ

0 (e)= 1. Then we have [JS81b]

(A.4)
[
Wπ

0 , Wπ∨
0

]
π
= L

(
1,π × π∨).

We will now study the behavior of [·, ·] with respect to induction. Let P=MU be a
standard parabolic subgroup of G, σ ∈�M

gen and λ ∈ a∗M,C. Let (·, ·)M = IM([·, ·]σ ) be the
pairing between the induced representations I(W (σ ), λ) and I(W (σ∨),−λ) given by

(
ϕ,ϕ∨

)
M
=

∫

P\G

[
ϕ(g), ϕ∨(g)

]
σ

dg

where [·, ·]σ is defined with respect to M. Let W(ϕ,σ,λ) be the Jacquet integral defined
in Section 1.4 and recall the convention W(ϕ∨, σ∨,−λ) = Wψ−1

(ϕ∨, σ∨,−λ) for ϕ ∈
I(W (σ∨))= I(W ψ−1

(σ∨)).

Proposition A.2. — We have

(A.5) (ϕ,ϕ∨)M =
[
W(ϕ,σ,λ),W

(
ϕ∨, σ∨,−λ

)]

for all ϕ ∈ I(W (σ )), ϕ∨ ∈ I(W (σ∨)) and λ ∈ a∗M,C such that I(σ,λ) is irreducible.

Remark A.3. — In the principal series case (i.e., when P is the Borel subgroup) this
follows by analytic continuation from [LO07, Proposition 1]. The extension to the gen-
eral case provided here follows the same reasoning, but is technically more complicated.

Proof. — We first reduce to the case where σ is unitarizable (or even, σ ∈ �usqr

is square integrable). Indeed, suppose that σ = IM
L (δ,μ) where δ ∈ �L

usqr. Let ξ ∈
IM(W (σ )) and ξ∨ ∈ IM(W (σ∨)). We may write ξ =WM(ϕ, δ,μ) where ϕ ∈ IL(W (δ)).
Similarly, write ξ∨ = WM(ϕ∨, δ∨,−μ) where ϕ∨ ∈ IL(W (δ∨)). Thus, WM(ξ, σ,λ) =
WL(ϕ, δ,μ+ λ) and WM(ξ∨, σ∨,−λ) =WL(ϕ∨, δ∨,−μ− λ). By assumption (applied
to δ and M instead of G) we have

[
ξ(g), ξ∨(g)

]
σ
=

∫

Q\P
δP(p)

−1
[
ϕ(pg), ϕ∨(pg)

]
δ
dp
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for all g ∈G. Hence,

(ξ, ξ∨)M =
∫

P\G

[
ξ(g), ξ∨(g)

]
σ

dg =
∫

P\G

∫

Q\P
δP(p)

−1
[
ϕ(pg), ϕ∨(pg)

]
δ
dp dg

=
∫

Q\G

[
ϕ(g), ϕ∨(g)

]
δ
dg = (

ϕ,ϕ∨
)

L
.

Once again by assumption (applied to δ and G) this equals
[
W(ϕ, δ, λ+μ),W(ϕ∨, δ∨,−λ−μ)

]= [
W(ξ, σ,λ),W

(
ξ∨, σ∨,−λ

)]

as required.
From now on, suppose that σ ∈�M

gen is unitarizable. In this case W (σ∨) = {W :
W ∈ W (σ )} where W(m) = W(m) for all m ∈ M and I(W (σ∨)) = {ϕ : ϕ ∈ I(W (σ ))}
where ϕ(g)= ϕ(g). Thus, we can take ϕ∨ = ϕ. Note that W(ϕ,σ,λ)=W(ϕ∨, σ∨, λ̄).

We first observe that the right-hand side of (A.5) is holomorphic whenever I(σ,λ) is
irreducible. Indeed, it is known that Z(W(ϕ,σ,λ),W(ϕ∨,σ∨,−λ),�,s)

L(s,I(σ,λ)×I(σ∨,−λ))
is entire in (λ, s) ∈ a∗M,C ×C

[JPSS83, Jac04a]. In particular, it follows from (1.12) that Z(W(ϕ,σ,λ),W(ϕ∨, σ∨,−λ),

�, s) is holomorphic at (λ, 1) whenever I(σ,λ) is irreducible. However, Z(W(ϕ,σ,λ),

W(ϕ∨, σ∨,−λ),�, 1) is �̂(0) times the right-hand side of (A.5). Our claim follows.
By analytic continuation, it is enough to consider the case λ ∈ ia∗M. In fact, by

twisting σ we can also assume without loss of generality that λ= 0.
By induction on n, we will reduce further to the case where P is maximal and at

the same time to the existence of a positive constant cG
M depending only on normalization

of measures, so that

(A.6)
(
ϕ,ϕ∨

)
M
= cG

M

[
W(ϕ, 0),W

(
ϕ∨, 0

)]
.

Let Q be a maximal parabolic containing P and let δ = IL
M(W (σ )). Let ϕ ∈ IM(W (σ ))

and let ξ =WL(ϕ,σ, 0). Then ξ ∈ IL(W (δ)) and WL(ξ, δ, 0)=WM(ϕ,σ, 0). We have

(
ϕ,ϕ∨

)
M
=

∫

P\G

[
ϕ(g), ϕ∨(g)

]
M

dg

=
∫

Q\G

∫

P\Q
δQ(q)−1

[
ϕ(qg), ϕ∨(qg)

]
M

dq dg.

By induction hypothesis, the inner integral is

cL
M

[
ξ(g), ξ∨(g)

]
δ
.

Thus,
(
ϕ,ϕ∨

)
M
= cL

M

(
ξ, ξ∨

)
L
= cL

M cG
L

[
W(ξ, δ, 0),W

(
ξ∨, δ∨, 0

)]

= cL
M cG

L

[
W(ϕ,σ, 0),W

(
ϕ∨, σ∨, 0

)]
,
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where for the second equality we used the assumption for the maximal parabolic case.
Thus, knowing (A.6) for a maximal parabolic implies it for a general parabolic and im-
plies further that whenever P⊆Q⊆G we have

cG
M = cL

M cG
L .

By [LO07, Proposition 1] we know that cG
M0
= 1. We therefore obtain cG

M = cG
M0

(cM
M0

)−1 = 1
for all M. For the rest of the proof we do not need to worry about normalization of
measures.

Suppose now that P is maximal of type (n1, n2). We will prove the assertion by
applying Fourier transform n1 times to functions on n2-dimensional vector spaces. Write
M=M1×M2 where M1 �GLn1 in the upper diagonal block and M2 �GLn2 in the lower
diagonal block. Let w = w−1

M = ( In1
In2

)
and let P′ = M′U′ be the maximal parabolic

of type (n2, n1) so that M′ = w−1Mw = M′
2 × M′

1 where M′
i = w−1Miw, i = 1, 2. Let

U′
i be the group of upper unitriangular matrices in M′

i , i = 1, 2 and Q̃′
i the mirabolic

subgroup of M′
i , i = 1, 2. We similarly define the analogous subgroups Ui =wU′

iw
−1 and

Q̃i =wQ̃′
iw

−1 of Mi , i = 1, 2.
We can identify U′ with the additive group of matrices of size n2 × n1. For i =

n2 + 1, . . . , n let

Ci = {In + ξ : ξ a column vector of size n2 in the i-th column} ⊆U′

and let Xi =Ci+1 · · ·Cn, i = n2, . . . , n. In particular, Xn2 =U′. Similarly, let

Ri = {In + ξ : ξ a row vector of size n2 in the i-th row} ⊆ tU′

and Yi =Rn2+1 · · ·Ri−1. We have a pairing between Ci and Ri−1.
Note that Xi and Yi are both normalized by M′

2U′
1 and [Xi−1, Yi] ⊆U′

1. In partic-
ular, Vi =U′

1XiYi and V′
i =U′

1Xi−1Yi are unipotent groups.
Define the groups

Si =
{

M′
2Vi i > n2,

Q̃′
2U′

1U′ i = n2.

Note that for i > n2, the modulus function δi of Si is |det|n+n2+1−2i . For i > n2 let ψi be the
character on Vi which is trivial on XiYi and coincides with ψ on U′

1. We also define

S′i =M′
2V′

i, i > n2

so that S′i = CiSi for i > n2 and S′i = Ri−1Si−1 for i > n2 + 1. It follows that the modulus
function δ′i on S′i satisfies δ′i |Si

= δi|det| for i > n2 and δ′i |Si−1 = δi−1|det|−1 for i > n2 + 1.
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Write σ = σ1 ⊗ σ2 with σi ∈�
Gni
gen and view σ2 also as a representation of M′

2. We
define representations of Qn as follows

Ai =
{

L2- IndQn

Si
(W (σ2)⊗ψi) i = n2 + 1, . . . , n,

L2- IndQn

U0
ψ i = n2,

where W (σ2) denotes the completion of W (σ2) with respect to the inner product
‖W‖2

W (σ2) = [W, W]σ2 and the prefix L2 indicates L2-induction. Thus, for i > n2

Ai =
{

ϕ : Qn → W (σ2) measurable : ϕ(mvg)

=ψi(v)

(
δi(m)

|det m|
) 1

2

W (σ2)(m)
[
ϕ(g)

]

for all g ∈ Qn, m ∈M′
2, v ∈Vi,

‖ϕ‖2
i :=

∫

Si\Qn

∥∥ϕ(g)
∥∥2

W (σ2)
dg <∞

}/{‖·‖i = 0
}
.

The smooth part of Ai is contained in the smooth induction IndQn

Si
(W (σ2)⊗ ψi) con-

sisting of smooth functions ϕ with values in W (σ2) satisfying the equivariance property
above [Pou72]. Similarly for i = n2.

Using induction by stages we have

Ai =L2- IndQn

S′i

(
L2- Ind

S′i
Si

(
W (σ2)⊗ψi

))
, i > n2,(A.7)

Ai−1 =L2- IndQn

S′i

(
L2- Ind

S′i
Si−1

(
W (σ2)⊗ψi

))
, i > n2 + 1,(A.8)

An2 =L2- IndQn

S′n2+1

(
L2- Ind

S′n2+1

U0
ψ

)
.(A.9)

For any i > n2 the restriction to Ci identifies L2- Ind
S′i
Si
(W (σ2)⊗ψi) with L2(Ci, W (σ2)).

Similarly for any i > n2 + 1 the restriction to Ri−1 identifies L2- Ind
S′i
Si−1

(W (σ2)⊗ ψi−1)

with L2(Ri−1, W (σ2)).

Lemma A.4. — Under these identifications, the Fourier transform

L2
(
Ci, W (σ2)

)→ L2
(
Ri−1, W (σ2)

)

induces a unitary equivalence of representations

Fi : L2- Ind
S′i
Si

(
W (σ2)⊗ψi

)→ L2- Ind
S′i
Si−1

(
W (σ2)⊗ψi−1

)
, i > n2 + 1.
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Similarly, for i = n2 + 1 we have a unitary equivalence of representations

Fn2+1 : L2- Ind
S′n2+1

Sn2+1

(
W (σ2)⊗ψn2+1

)→ L2- Ind
S′n2+1

U0
ψ0

given by

[Fn2+1ϕ](vm)=ψ0(v)|det m| 1
2 ϕ̂(χm)(m), m ∈M′

2, v ∈V′
n2+1 =U′

1U′

where χm is the character of Cn2+1 given by χm(c)= ψ(mcm−1), and ϕ̂(χm)= ∫
Cn2+1

ϕ(c)χm(c) dc

denotes the Fourier transform of ϕ.

Proof. — Consider first the case i > n2+1. Suppose that f1 ∈ L2- Ind
S′i
Si
(W (σ2)⊗ψi)

and f2 ∈ L2- Ind
S′i
Si−1

(W (σ2)⊗ ψi−1) are such that the Fourier transform of f1|Ci
is f2|Ri−1 .

We have to check that for any s ∈ S′i the Fourier transform of f s
1 := f1(·s) (as a function

of Ci ) is f s
2 := f2(·s) (as a function on Ri−1). We check this separately for the cases s ∈Xi ,

s ∈ Yi−1, s ∈ U′
1, s ∈ Ci , s ∈ Ri−1 and s ∈ M′

2. In the first three cases f s
1 = f1 and f s

2 = f2
because ψi−1 is trivial on [XiU′

1, Ri−1] and ψi is trivial on [U′
1Yi−1, Ci]. In the case s ∈Ci ,

f s
1 is the translate of f1|Ci

by s and f s
2 (r) = ψi−1([r, s])f2(r) for any r ∈ Ri−1. Similarly, in

the case s ∈ Ri−1, f s
1 (c) = ψi([c, s])f1(c), c ∈ Ci and f s

2 is the translate of f2 by s. Finally,
for s ∈M′

2, f s
1 (c)= |det s|− 1

2 σ2(s)f1(s
−1cs) and f s

2 (r)= |det s| 1
2 σ2(s)f2(s

−1rs). Thus, all cases
follow from standard properties of the Fourier transform.

In the case i = n2+1, in order to check that Fn2+1 is an isometry (and well-defined)
we compute

‖Fn2+1ϕ‖2
L2(U′

2\M′
2)
=

∫

U′
2\M′

2

∣∣ϕ̂(χm)(m)
∣∣2|det m| dm

=
∫

Q̃′
n2
\M′

2

∫

U′
2\Q̃′

n2

∣∣ϕ̂(χm)(pm)
∣∣2|det m| dp dm

=
∫

Q̃′
n2
\M′

2

∥∥σ2(m)ϕ̂(χm)
∥∥2

W (σ2)
|det m| dm

=
∫

Q̃′
n2
\M′

2

∥∥ϕ̂(χm)
∥∥2

W (σ2)
|det m| dm

=
∫

Cn2+1

∥∥ϕ(r)
∥∥2

W (σ2)
dr = ‖ϕ‖2.

Finally, it is straightforward to check that Fn2+1 is an intertwining map of representations
of S′n2+1. �

In view of (A.7), (A.8) and (A.9) we conclude that the map Fi induces a unitary
equivalence of representations

Bi : Ai → Ai−1.
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Note that if ϕ is a smooth vector in Ai then for any g ∈ Qn the Fourier transform of ϕ(·g)
(a function on Ci ) is Biϕ(·g) (as a function of Ri−1).

We can now complete the proof of Proposition A.2. Let ϕ ∈ I(W (σ )) and let ϕn :
Qn → W (σ2) be given by

ϕn(p)= δ1
e ϕ(wp), p ∈ Qn

where δ1
e : W (σ1⊗σ2)→ W (σ2) denotes the evaluation map at e in the first variable. We

claim that ϕn ∈ An and
(
ϕ,ϕ∨

)
M
= ‖ϕn‖2

n .

Indeed,

‖ϕn‖2
n =

∫

M′
2U′

1Yn\Qn

∥∥ϕn(p)
∥∥2

W (σ2)
dp

=
∫

U′
1\(Qn∩M′

1)

∫

U′

∥∥ϕn

(
u′m′

1

)∥∥2

W (σ2)
du′ dm′

1

=
∫

U1\Q̃n1

∫

U′

∥∥δ1
e ϕ

(
m1wu′

)∥∥2

W (σ2)
δP′

(
w−1m1w

)
du′ dm1

=
∫

U1\Q̃n1

∫

U′

∥∥δ1
m1

ϕ
(
wu′

)∥∥2

W (σ2)
du′ dm1 =

∫

U′

∥∥ϕ
(
wu′

)∥∥2

W (σ1⊗σ2)
du′

= (
ϕ,ϕ∨

)
M

.

Define ϕi ∈ Ai , i = n − 1, . . . , n2 recursively by ϕi = Bi+1ϕi+1. In view of the above we
have

(
ϕ,ϕ∨

)
M
= ‖ϕn2‖2

n2
=

∫

U0\Qn

∣∣ϕn2(g)
∣∣2

dg.

It remains to see that ϕn2 is the Jacquet integral W(ϕ,σ, 0) of ϕ. To show this, observe
first that ϕ �→ ϕn2 is an intertwining map with respect to Qn. Since ϕ is smooth, so is ϕn.
Thus, ϕ �→ ϕn2(e) is a Whittaker functional on I(σ ). By uniqueness, we necessarily have
ϕn2 = cW(ϕ,σ, 0) for some scalar c. To determine c, it is enough to verify that ϕn2(e) =
W(e : ϕ,σ, 0) for any ϕ of our choice such that W(e : ϕ,σ, 0) �= 0. We will show this for
ϕ that is supported in the big cell MwU′. Fix such ϕ. By descending induction on i we
show that for any i > n2 and u′ ∈U′ we have

ϕi

(
u′
)=

∫

Xi

ϕn

(
uu′

)
du=

∫

Xi

δ1
e ϕ

(
wuu′

)
du.

This follows immediately from the definition of Bi in view of the fact that in our case ϕi

is compactly supported on U′ and therefore the Fourier transform with respect to Ci is
given by a convergent integral. By the same reasoning we get
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ϕn2(e)=
∫

U′
δσ2

e ϕn

(
u′
)
ψ−1

(
u′
)

du′ =W(ϕ,σ, 0).

The proposition follows. �

A.4 Finally, we reinterpret Proposition A.2 in a way suitable for the setup of Sec-
tion 5.

Assume that n = 2k and let M = M(k,k). Recall the automorphism θ̃ of Gk given
by g �→w0

t g−1w0. Let π ∈�Gk
gen and recall the equivalence yπ : W (π)θ̃ → W ψ−1

(π∨) of
(1.3).

Embed Gk in M via g �→ gj = (g, g θ̃ ). Recall the mirabolic subgroup Qk of Gk . For
�= π ⊗ π ∈�M

gen let

β
�

0 (W)= L(k, 1F∗)

(∫

Uj
0\Qj

k

W(p)|det p|s dp

)

s=0

, W ∈ W (�).

Then 0 �≡ β
�

0 ∈HomGj
k
(W (�),C) and β

�

0 (W1⊗W2)= [W1,yπ(W2)]π for any W1, W2 ∈
W (π).

Now let κ = (n1, . . . , ns) be a composition of k and let L=M(κ,←−κ ). (We recall that←−κ = (ns, . . . , n1).) Let � ∈�L
gen be of the form

�= σ ⊗←−σ
where σ = σ1 ⊗ · · · ⊗ σs ∈�Mκ

gen and ←−σ = σs ⊗ · · · ⊗ σ1 ∈�
M←−κ
gen . Define

(A.10) β
�

0 (W)=
[ s∏

i=1

L(ni, 1F∗)

](∫

(U0∩Mκ )j \Qj
κ

W(p)|det p|z dp

)

z=0

, W ∈ W (�)

where Qκ is the mirabolic subgroup of Mκ (i.e., the product of the mirabolic subgroups
of Gni

, i = 1, . . . , s). From (1.5) and Proposition A.2 we obtain

Corollary A.5. — Suppose that ν = IM
L (�,λ) ∈�M

gen with � as above and w0λ= λ (so that

λ is of the form (μ,←−μ )). Then ν is Gj

k -distinguished and

βν
0

(
WM

L (ϕ,�,λ)
)=

∫

Pj
κ\Gj

k

β
�

0

[
ϕ(g)

]
dg, ϕ ∈ IM

L

(
W (�)

)
.

Appendix B: Distinguished representations in the Archimedean case,
by Avraham Aizenbud and Erez Lapid

In this appendix we consider representations of G = GL(n,C) and a unitary group
Gx =U(p, q)⊆G defined with respect to a Hermitian form x with signature (p, q). Re-
call that we denote complex conjugation by τ , the diagonal torus of G by M0 and the
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upper-triangular Borel subgroup by P0. For a character χ of M0 we denote by I(χ) the
representation induced from the character χ on P0.

Let W2 be the set of involutions in W. Any w ∈ W2 can be written as a product
of gw disjoint transpositions where the number of fixed points of w is fw = n− 2gw. Set
m(w)= (

fw
q−gw

)= (
fw

p−gw

)
(= 0 if gw > w(x)=min(p, q)).

In this appendix we will prove the following result.

Theorem B.1. — Let χ = (χ1, . . . , χn) be a character of M0 such that |χ(t)| =
|t1|λ1 · · · |tn|λn with λ1 ≥ · · · ≥ λn. Then

dim HomGx

(
I(χ),C

)≤
∑

w∈W2:wχ=χτ

m(w).

Thus, if π is the Langlands quotient of I(χ) then

dim HomGx(π,C)≤
∑

w∈W2:wχ=χτ

m(w).

In particular, if π is Gx-distinguished then there exists w ∈W2 with gw ≤w(x) such that wχ = χτ .

Hence, π is τ -invariant and w̃(π)≤w(x).

For w ∈ W2 set Iw = {(i, j) : i > j,w(i) < w(j)} and define for any function κ :
Iw → Z≥0 a character of M0 by

ακ

(
diag(t1, . . . , tn)

)=
∏

(i,j)∈Iw

[
ti

tj

]κ(i,j)

.

Let

Sw(χ)= {
κ : Iw → Z≥0 | χτwχ−1 = ατ

κwα−1
κ

}
.

Note that if χ satisfies the assumption of Theorem B.1 then

Sw(χ)=
{
{κ ≡ 0} if wχ = χτ ,

∅ otherwise.

Thus, Theorem B.1 would follow from the following Proposition which will be
proved at the end of the appendix.

Proposition B.2. — Let χ be a character of M0. Then

dim HomGx

(
I(χ),C

)≤
∑

w∈W2

m(w)
∣∣Sw(χ)

∣∣.
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We will prove the Proposition by representing the Gx-invariant linear forms on
I(χ) as equivariant distributions on the Schwartz space of G/Gx and using the analysis
of equivariant distributions developed in [AG08].

Henceforth, we will use the following notational conventions. For now, G is an
arbitrary group.

• For any G-set X and a point x ∈X, we denote by G(x) the G-orbit of x and by
Gx the stabilizer of x.

• For any representation of G on a vector space V, we denote by VG the subspace
of G-invariant vectors in V. For a character χ of G, we denote by VG,χ the
subspace of (G, χ)-equivariant vectors in V.

• Given manifolds L ⊆ M, we denote by NM
L := (TM|L)/TL the normal bundle

to L in M and by CNM
L := (NM

L )∗ the conormal bundle. For any point y ∈ L,
we denote by NM

L,y the normal space to L in M at the point y and by CNM
L,y the

conormal space.
• The symmetric algebra of a vector space V will be denoted by Sym(V) =⊕

k≥0 Symk(V).

We will use the theory of Schwartz functions and distributions on Nash manifolds
as developed in [AG08] generalizing the usual notions for Rn.13

We denote the Fréchet space of Schwartz functions on a Nash manifold X by S (X)

and the dual space of Schwartz distributions by S∗(X) := S (X)∗. For a closed subset Z
of a smooth manifold X we set S∗

X(Z) := {ξ ∈ S∗(X) : supp(ξ)⊆ Z}. More generally, for
a locally closed subset Y⊆X we set S∗

X(Y) := S∗
X\(Y\Y)

(Y).
If U is an open Nash submanifold of X then we have the following exact sequence

0→ S∗
X(X \U)→ S∗(X)→ S∗(U)→ 0.

For any Nash vector bundle E over X we denote by S (X, E) the space of Schwartz
sections of E and by S∗(X, E) its dual space.

We denote by DX the bundle of densities over X [AG08, A.1.1] and by G(X) :=
S∗(X, DX) the space of generalized functions on X. More generally we set G(X, E) :=
S∗(X, E∗ ⊗ DX) for any Nash vector bundle E over X. Note that S (X, E) is naturally
embedded into G(X, E) but not into S∗(X, E). For any locally closed subset Y of X, the
spaces S∗

X(Y, E), GX(Y, E) and GX(Y) are similarly defined.
Suppose that a group G acts on a Nash manifold X. Then G naturally acts on

S (X) and S∗(X), and TX has a natural G-equivariant structure. Therefore all the stan-
dard bundles constructed from TX, such as DX, also have a G-equivariant structure. This
gives rise to an action of G on S (X, DX) and the dual action on G(X). Note that the
G-action on G(X) extends the action on S (X) and similarly the action on S∗(X) extends
the action on S (X, DX).

We will use some standard facts about equivariant distributions.

13 In the present context we will only apply it to smooth real algebraic manifolds.
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Proposition B.3. — Let a Nash group G act on a Nash manifold X. Let Z⊆ X be a closed

G-invariant subset with a G-invariant stratification Z=⋃l

i=0 Zi . Let χ be a character of G. Then

dim
(

S∗
X(Z)G,χ

)≤
l∑

i=0

∞∑

k=0

dim
(

S∗(Zi, Symk
(
CNX

Zi

))G,χ)
.

The proof is the same as in [AGS08, Corollary B.2.4].
Let φ : M → N be a Nash submersion of Nash manifolds. Let E be a bundle

on N. We denote by φ∗ : G(N, E)→ G(M, φ∗(E)) the pull back of generalized functions
[AG09a, Notation B.2.5].

Proposition B.4. — Let M be a Nash manifold. Let K be a Nash group. Let E → M be a

Nash bundle. Consider the standard projection p : K × M → M. Then the map p∗ : G(M, E) →
G(M×K, p∗E)K is an isomorphism.

For a proof see [AG09a, Proposition B.3.1].

Corollary B.5. — Let G be a real algebraic group and H ⊆ G a closed subgroup. Then

G(G)H ∼= G(G/H).

Proof. — By [AG10, Proposition 4.0.6] the map G→G/H is a Nash locally triv-
ial fibration [AG10, Definition 2.4.1]. The assertion follows from Proposition B.4 by a
partition of unity argument (cf. [AG08, Theorem 5.2.1]). �

The following version of Frobenius reciprocity is a slight generalization of [AG09a,
Theorem 2.5.7]. For the convenience of the reader we sketch a proof.

Theorem B.6 (Frobenius reciprocity). — Let G be a Nash group acting transitively on a Nash

manifold Z and let ϕ : X → Z be a G-equivariant Nash map. Fix z ∈ Z and let Xz be the fiber

of z. Let χ be a tempered character of G [AG08, Definition 5.1.1]. Then S∗(X)G,χ is canonically

isomorphic to S∗(Xz)
Gz,χδ−1

H δG .

Moreover, for any G-equivariant bundle E on X, the space S∗(X, E)G,χ is canonically isomor-

phic to S∗(Xz, E|Xz
)Gz,χδ−1

H δG . Here δG and δH are the modulus characters of the groups G and H.

Proof. — As in [AG09a, Theorem 2.5.7], we will prove an equivalent state-
ment for generalized functions. Namely, we will construct canonical isomorphisms HC :
G(X, E)G,χ → G(Xz, E|Xz

)Gz,χ and Fr : G(Xz, E|Xz
)Gz,χ → G(X, E)G,χ .

Consider the natural submersion a :G×Xz →X and the projection p :G×Xz →
Xz. Note that the equivariant structure of E gives us an identification φ : a∗(E) →
p∗(E|Xz

). Consider the tempered function f on G × Xz given by f (g, x) = χ−1(g). De-
fine the map a∗,χ : G(X, E)G,χ → G(G × Xz, p∗(E|Xz

))G by a∗,χ (ξ) = f φ(a∗(ξ)). Here,
the action of G on G × Xz is on the first coordinate. On the other hand, By Proposi-
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tion B.4 we have G(G×Xz, p∗(E|Xz
))G ∼= G(Xz, E|Xz

). Together, this gives the required
map HC. A similar modification to the construction of Fr in [AG09a, Theorem 2.5.7]
gives rise to Fr in our context. �

Proof of Proposition B.2. — Let G=GLn(C) and H=U(p, q). Note that after iden-
tifying DG and DG/H with the trivial bundle (in a G-equivariant way) we have

I(χ)∗ = G(G)P0,χδ
−1/2
0 = S∗(G)P0,χδ

− 1
2

0

where P0 acts on generalized functions on the left. Therefore

HomH

(
I(χ),C

)= G(G/H)P0,χδ
−1/2
0 = S∗(G/H)P0,χδ

− 1
2

0 .

We can stratify G/H by P0-orbits. By Remark 6.3 any such orbit contains a unique ele-
ment x of the form x =wa where w ∈W2 and a ∈M0 is such that ai = 1 if w(i) �= i and
ai =±1 otherwise. The number of P0-orbits on G/H above a given w ∈W2 is precisely
m(w) and moreover,

(B.1) Mx
0 =Mw

0 =
{
t ∈M0 : twtτ w = 1

}= {
tw

(
t−1

)τ
w : t ∈M0

}
.

Using Proposition B.3, it suffices to show that for any w and a as above we have

∞∑

k=0

dim
(

S∗(P0(x), Symk
(
CNX

P0(x)

))P0,χδ
−1/2
0

)≤ ∣∣Sw(χ)
∣∣.

By Theorem B.6 and the relation δ
1/2
0 |Px

0
= δPx

0
[LR03, Proposition 4.3.2] we get

S∗(P0(x), Symk
(
CNX

P0(x)

))P0,χδ
−1/2
0 = S∗({x}, Symk

(
CNX

P0(x),x

))P0,χδ
−1/2
0 δ−1

Px
0

δ0

= S∗({x}, Symk
(
CNX

P0(x),x

))P0,χ

= (
Symk

(
NX

P0(x),x

)⊗R C
)P0,χ

.

We reduce to showing that

dim
(
Sym

(
NG/H

P0(x),x

)⊗R C
)Px

0,χ ≤ ∣∣Sw(χ)
∣∣.

To that end, it suffices to show that

(B.2) Sym
(
NG/H

P0(x),x

)⊗R C=
⊕

κ:Iw→Z≥0

ακ

as a representation of Mx
0. Indeed, by (B.1) we have

ακ |Mx
0
= χ |Mx

0
⇐⇒ κ ∈ Sw(χ)
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and hence it would follow that

dim
(
Sym

(
NG/H

P0(x),x

)⊗R C
)Px

0,χ ≤ dim
(
Sym

(
NG/H

P0(x),x

)⊗R C
)Mx

0,χ ≤ ∣∣Sw(χ)
∣∣

as required.
It remains to show (B.2). We will deduce it by showing that

NG/H
P0(x),x ⊗R C∼=

⊕

ı∈Iw

αδı

as a representation of Mx
0 where δı is defined by δı(j)= δı,j .

We have

NP0(x),x =Herm / Im(φ)

where Herm is the space of n× n Hermitian matrices and φ : Lie(P0)→Herm is defined
by φ(b)= bwa+watbτ .

It is easy to see that

Im(φ)= SpanC

({ei,w(j), ew(j),i : j ≥ i})∩Herm

= SpanC

({
ei,j, ej,i :w(j)≥ i

})∩Herm

= SpanC

({
ei,j :w(j)≥ i or w(i)≥ j

})∩Herm,

where ei,j is the standard basis for n× n matrices. Therefore

NP0(x),x
∼= SpanC

({
ei,j : i > w(j), j > w(i)

})∩Herm

= SpanC

({
ei,w(j) : i > j,w(j) > w(i)

})∩Herm

= SpanC

({
ei,w(j) : (i, j) ∈ Iw

})∩Herm

∼=
⊕

{(i,j)∈Iw :i=w(j)}
SpanR(ei,w(j))

⊕
⊕

{(i,j)∈Iw :i<w(j)}
SpanR

(
ei,w(j) + ew(j),i,

√−1(ei,w(j) − ew(j),i)
)
.

By (B.1), the action of Mx
0 on ei,w(j) is given by αδ(i,j)

= ti/tj . Thus, as a representation of
Mx

0 we have

NP0(x),x ⊗R C∼=
⊕

{(i,j)∈Iw,i=w(j)}
αδ(i,j)

⊕
⊕

{(i,j)∈Iw,i<w(j)}

(
αδ(i,j)

⊕ ατ
δ(i,j)

)

=
⊕

{(i,j)∈Iw,i=w(j)}
αδ(i,j)

⊕
⊕

{(i,j)∈Iw,i<w(j)}
(αδ(i,j)

⊕ αδ(w(j),w(i))
)
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=
⊕

{(i,j)∈Iw,i=w(j)}
αδ(i,j)

⊕
⊕

{(i,j)∈Iw,i<w(j)}
αδ(i,j)

⊕
⊕

{(i,j)∈Iw,i>w(j)}
αδ(i,j)

=
⊕

ı∈Iw

αδı

as required. �

Finally, we go back to the definition of the open periods in Section 4.

Theorem B.7. — For any λ ∈ a∗M0,C with Re λ1 > · · · > Re λn the map α �→ J(α,λ) is

holomorphic and defines an isomorphism EM0(X
M0, 1∗M0

)→ EG(X, I(1M0, λ)∗).

Proof. — Let χλ be the character t �→ |t1|λ1 . . . |tn|λn of M0. The argument above
shows that for λ as in the statement, unitary periods on I(1M0, λ) are supported on open
orbits, in the sense that for any x outside the open orbits we have (Sym(NG/H

P0(x),x) ⊗R

C)Px
0,χλ = 0. We can now argue exactly as in the proof of Lemma 6.7. �

Appendix C: The relative trace formula, by Erez Lapid and Omer Offen

For f ′ ∈ S (G′
A) and � ∈ S (XA) let

K′
f ′(x, y)=

∑

γ∈G′
f ′
(
x−1γ y

)
, x, y ∈G′

A

and

K�(g)=
∑

x∈X

�(x • g), g ∈GA.

Define the relative trace formula

RTF(�)=
∫

U0\U0,A

K�(u)ψ0(u) du

and the Kuznetsov trace formula

KTF
(

f ′
)=

∫

U′
0\U′

0,A

∫

U′
0\U′

0,A

Kf ′
(

tu−1
1 , u2

)
ψ ′

0(u1u2) du1 du2.

Expanding the geometric sides according to double cosets and applying [Jac03a,
Théorème 1.1] for the non-Archimedean case and [AG] for the Archimedean case, we
see that for � and f ′ matching we have

RTF(�)=KTF
(

f ′
)
.
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Using the spectral expansion for the kernel (cf. [Art78, §4]) and the computation
of the Whittaker coefficient of Eisenstein series, the spectral decomposition of KTF(f ′) is
given by

KTF
(

f ′
)=

∑

(M′,π ′)∈X ′

∫

ia∗M
B
(

f ′ : π ′, λ′
)

dλ′

where X ′ is the set of pairs (M′,π ′), π ′ ∈ C M′
up to conjugation and we recall that

B(f ′ : π ′, λ′) was defined in (11.1).
The spectral expansion of RTF(�) was considered in [Lap06]. Only pairs (L,π),

π ∈ C L which are conjugate to (L,πτ ) contribute. We can conjugate such (L,π) to have
the form

π = �1 ⊗ · · · ⊗ �s ⊗ σ1 ⊗ · · · ⊗ σr ⊗ �τ
s ⊗ · · · ⊗ �τ

1

where �i ∈ C GLni
,¬τ , i = 1, . . . , s and σj ∈ C GLmj

,τ , j = 1, . . . , r. Denote by X τ the
collection of all such cuspidal data (L,π). Let P = MU be the parabolic of type
(n1, . . . , ns, m1+ · · ·+mr, ns, . . . , n1) and let a∗(L,π) = (a∗L)wM, i.e., the subspace of a∗L given
by

{
(μ1, . . . ,μs, λ1, . . . , λr,μs, . . . ,μ1) : ∀i, j, λi,μj ∈R

}
.

We define α(L,π)(λ) ∈ EGA(XA, I(π,λ)∗), λ ∈ a∗(L,π) as follows. If x •GA ∩w0M= ∅ then
we set α(L,π)

x ≡ 0. Otherwise, suppose that y = x • g−1 ∈ X ∩w0M for some g ∈ GA and
set

α(L,π)
x (ϕ,λ)=

∫ ∗

(AM∩Gy

A)Uy

AMy\Gy

A

EP(hg, ϕ,λ) dh.

(See [Lap06] for the meaning of the regularized integral
∫ ∗.) This is well-defined because

the M-orbit of y is determined by x, and given y, g is determined up to left multiplication
by Gy

A.
In particular, if π ∈ C L,τ then M=G, a∗(L,π) = a∗L and

(C.1) α(L,π)
x (ϕ,λ)=

{∫ ∗
Gy\Gy

A
E(hg, ϕ,λ) dh if x= y • g, y ∈X, g ∈GA

0 x /∈X •GA.

Of course, if L=G and x • g−1 = y ∈X, this is just
∫

Gy\Gy

A
ϕ(hg) dh.

We set

B̃(� : π,λ)= B̃
α(L,π)(λ),Wψ−1

e (π̂,−λ)

A(π,λ) (�), λ ∈ ia∗(L,π).
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Theorem C.1 [Lap06]. — The spectral expansion of the relative trace formula is given by

∑

(L,π)∈X τ

cM
L

∫

ia∗
(L,π)

B̃(� : π,λ) dλ

where cM
L are certain combinatorial constants depending only on the types of L and M. In particular,

cG
G = 1. The integral-sum is absolutely convergent.

Remark C.2. — The formulation in [Lap06] is given in a slightly different form,
but it amounts to the one given here. Note that in [ibid.] the notation suggests that cM

L
depends on π as well, but in fact it is clear from the proof that it does not. Finally, in
[Lap06], the statement is made for compactly supported �. However, it is easy to see
that the argument extends to all � ∈ S (XA). First, for any such � there are still only
finitely many G-orbits x • G in X such that �(x • g) �= 0 for some g ∈ GA. Thus, just
like in [ibid.] it is enough to deal with a single orbit. Everything boils down to extending
the majorization of Eisenstein series given in [Lap06, Proposition 6.1] to any f ∈ S (GA).
Examining the proof, the only place where the compact support of f was used is the
majorization of the operator norm of I(f , λ) on the induced space (for Re λ possibly
non-zero, but bounded). But in any case this is bounded by

∫

GA

f (g)‖g‖N dg

for some N (depending on Re λ), and therefore it is still a continuous semi-norm on
S (GA). We note that the inequality [Lap06, (6.2)] is used only for fixed auxiliary com-
pactly supported functions g1, g2, but never for f itself.

Let us compare the two spectral expansions. Let L′1 be a Levi subgroup of G′ and
π ′ ∈ C L′1 . After conjugation, we may assume that L′1 is of type (m1, . . . , mr, 2n1, . . . , 2ns)

and

π ′ = σ ′
1 ⊗ · · · ⊗ σ ′

r ⊗ �′1 ⊗ · · · ⊗ �′s

where σ ′
i �� σ ′

i · η for all i and �′j � �′j · η for all j. Define

bc
((

L′1,π ′))= (L,π)

where

π = �1 ⊗ · · · ⊗ �s ⊗ bc
(
σ ′

1

)⊗ · · · ⊗ bc
(
σ ′

r

)⊗ �τ
s ⊗ · · · ⊗ �τ

1

and where

bc
(
�′j

)= I
(
�j ⊗ �τ

j , 0
)
,
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i.e., �′j = ai(�j) for all j. Note that we can identify a∗bc(L′1,π ′) with a∗L′1 via

λ= (μ1, . . . ,μs, λ1, . . . , λr,μs, . . . ,μ1) �→ λ′ = (λ1, . . . , λr,μ1, . . . ,μs).

Theorem C.3. — For any (L,π) ∈ X τ and M as above there exists a constant c depending

only on the types of L and M such that for all λ ∈ ia∗(L,π) we have

B̃(� : π,λ)= c
∑

(L′1,π ′):bc(L′1,π ′)=(L,π)

B
(

f ′ : π ′, λ
)

for any �←→ f ′. In particular, if π ∈ C L,τ then

B̃(� : π,λ)= c
∑

π ′:bc(π ′)=π

B
(

f ′ : π ′, λ
)
.

Especially, if π ∈ C G,τ then

B̃
απ ,Wψ−1

e

Aπ
(�)=

∑

π ′∈C G′ :bc(π ′)=π

Bπ ′
(

f ′
)
.

(The right-hand side consists of two summands.)

Proof. — We will use the general linear independence of characters argument
[LR00, Lemma 4]. Fix �=⊗

�v ∈ S (GA) and f ′ =⊗
f ′v ∈ S (G′

A) such that �v←→ f ′v
for all places v of F and a finite set S of places of F containing the Archimedean and the
even ones, outside of which E/F is unramified, ψ ′

v has conductor Ov , �v = 1Kv∩Xv
and

f ′v = 1K′
v
. Let f S be in the Hecke algebra of G(AS). Then by the Fundamental Lemma

(f S)∨ ∗�←→ f ′S ⊗ bc(f S) where

f S ∗�(x)=
∫

G(AS)

f S(g)�(x • g) dg, x ∈XA.

We infer an identity

∑

(L,π)

cM
L

∫

ia∗
(L,π)

f̂ S
(
I(π,λ)

)
B̃(� : π,λ) dλ

=
∑

(L′1,π ′)

∫

ia∗
L′1

f̂ S(bc
(
I
(
π ′, λ′

))
B
(

f ′ : π ′, λ′
)

dλ′

where the sums are over π (resp. π ′) which are unramified outside S. To separate the con-
tribution of (L,π) and λ we appeal to [LR00, Lemma 4] whose conditions are satisfied
by the Jacquet-Shalika classification Theorem [JS81b, JS81a]. �
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Appendix D: Upper semicontinuity of multiplicity, by Erez Lapid
and Omer Offen

The following statement and proof are well known to experts. For convenience we include
a simple proof which was suggested to us by Joseph Bernstein, Akshay Venkatesh and
Nolan Wallach. We are very grateful to them for allowing us to include the proof here.

For now G is any p-adic group and H is any closed subgroup of G.

Lemma D.1. — Let πλ be an analytic family of admissible representations of G on V. Suppose

that there exist k meromorphic families of linear functionals li
λ, i = 1, . . . , k on V which are H-invariant

and generically linearly independent. Then dim HomH(πλ, 1)≥ k for all λ.

Proof. — Let K1 ⊃ K2 ⊃ · · · be a basis of compact open subgroups of G and let
Vn = VKn . There exists N such that the restrictions of l1

λ, . . . , lk
λ to VN are generically

linearly independent. Suppose that λ0 is given. By passing to a one-parameter family in
general position through λ0, we may assume that the set of parameters is the unit disc
D= {λ ∈C : |λ|< 1}, that λ0 = 0, and that the restrictions of l1

λ, . . . , lk
λ to VN are linearly

independent for λ ∈D \ {0}. For a finite-dimensional vector space W over C, let Gk(W)

denote the Grassmannian variety of k-dimensional vector subspaces of W, which we view
as a closed subvariety of the projective space of

∧k W through the Plücker embedding
ιW. For any n≥N, let

μn = min
v1,...,vk∈Vn

ordλ=0 det
(
l i
λ(vj)

)
i,j=1,...,k

∈N.

The map λ �→ 〈l1
λ, . . . , lk

λ〉 defines a holomorphic curve Fn : D → Gk(V∗
n) such that,

if we fix a basis v1, . . . , vd of Vn, the homogeneous coordinates of ιV∗n (Fn(λ)) are
λ−μn det(l i

λ(vmj
))i,j=1,...,k , 1 ≤ m1 < · · ·< mk ≤ d . By enlarging N if necessary, we may as-

sume that μn = μN for all n≥N. Then for any n≥ m≥N and for all λ ∈D (including 0),
Fm(λ) is the image of Fn(λ) under the restriction map V∗

n →V∗
m. Thus, for any λ ∈D we

get a k-dimensional subspace F(λ) of V∗ whose image in V∗
n is Fn(λ) for all n ≥ N. Fix

h ∈H and n≥N. By assumption, we have l ◦πλ(h)|Vn
= l|Vn

for any l ∈ Fn(λ). This equal-
ity depends only on l|Vm

provided that Km ⊆Kn ∩ hKnh
−1. Therefore, l ◦ πλ(h)|Vn

= l|Vn

for any l ∈ F(λ). It follows that l is H-invariant for any l ∈ F(λ), λ ∈D. �

Consider now the Archimedean case and assume in addition that G is reductive
and H is the fixed point subgroup of an involution of G. Let K be a maximal com-
pact subgroup of G such that H ∩ K is a maximal compact subgroup of H. (This can
always be arranged.) The proof above works for the underlying (g, K)-module of πλ

(where we take Vn to be the sum of the isotypic components of the first n irreducible
representations of K, ordered arbitrarily). It yields that dim(h,H∩K)(πλ, 1)≥ k for all λ. By
the automatic continuity Theorem for H-invariant functionals [vdBD88, BD92] we get
dim HomH(πλ, 1)≥ k. Thus Lemma D.1 holds in this case as well. We thank Eitan Sayag
for pointing this out to us.
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Index of symbols

A, Sect. 0
η, Sect. 0
G′, G, X, Sect. 0
Px, Sect. 0
bc, Sects. 0, 3.2
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cs(σ,λ), Sects. 1.4, 11.1
N(w,σ,λ), N(w, W (σ ), λ), Sect. 1.4
LQ(σ,λ), Sect. 1.5
�unr, Sect. 1.5
f̂ (π), Sect. 1.5
σ [Z], Sect. 1.5
suppc(π), Sect. 1.5
�,�, Sect. 1.5
B

�,�̂

D (f ), Sect. 2.1
D◦, Sect. 2.1
D · χ , Sect. 2.1
I(D, λ), Sect. 2.1
‖g‖, Sect. 2.1
EG(X,π∗), Sect. 2.1
�� α, Sect. 2.1
α ◦T, Sect. 2.1
W(π), Sect. 2.2
Bπ ′ , Sects. 2.2, 10.3
S∗(G′)(tU′

0×U′
0,tψ ′

0×ψ ′−1
0 ),

Sect. 2.2
B(f ′ : σ ′, λ), Sect. 2.2
G′±, Sect. 2.2



ON REPRESENTATIONS DISTINGUISHED BY UNITARY GROUPS 319

�←→ f ′, f
x←→ f ′, Sect. 3.1

X[x], G′[x], Sect. 3.1
D←→D′, Sect. 3.1
S∗(X)(U0,ψ−1

0 ), Sect. 3.1
ai, Sect. 3.2
λψ ′ , Sect. 3.2
B(π), bπ , [B](π), [b]π , Sect. 3.2
w̃(π), Sect. 3.2
w̃′(π ′), Sect. 3.2
�τ,ti, �τ,an, Sect. 3.2
�′

bc-gen, Sect. 3.2
απ ′ , B Ix, B I , Sect. 3.3
B IM,x, B IM, Sect. 3.3
X◦, Sect. 4
JM(ϕ : x, α,λ), Sect. 4
G◦[x], Sect. 4
�M, Sect. 4
n(σ ′, λ), Jσ ′(x, α,λ), Sect. 4
B̃(σ ′, λ), Sect. 4
XL, Sect. 5.1
θ , Sect. 5.1
(a∗M)w, Sect. 5.1

Z(ϕ : x, β,λ), Sect. 5.1
F (ϕ : x, β,λ), Sect. 5.2
β�, Sect. 5.3
D̃L(�,λ), Sect. 5.3
W2[M], M(w), Sect. 6
I, ≺, Sect. 6
Fw, Sect. 6
[·, ·]π , Sect. A.1
AG, Sect. 10.1
C , Sect. 10.3
Aπ , Sect. 10.3
Wπ , Wπ

e , Sect. 10.3
rl
′π ′ , Sect. 10.3

W(π ′), Sect. 10.3
AM,σ , Sect. 11.1
E(g, ϕ,λ), Sect. 11.1
A(σ,λ), Sect. 11.1
', Sect. 11.2
rl(σ,λ), Sect. 11.2
J(ϕ : x, σ,λ), Sect. 11.2
C¬τ , Sect. 11.4
�τ

reg, Sect. 13.2

REFERENCES

AC89. J. ARTHUR and L. CLOZEL, Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathe-
matics Studies, vol. 120, Princeton University Press, Princeton, 1989. MR 1007299 (90m:22041).

AG. A. AIZENBUD and D. GOUREVITCH, Smooth transfer of Kloosterman integrals (the Archimedean case), Amer. J. Math.,
to appear.

AG08. A. AIZENBUD and D. GOUREVITCH, Schwartz functions on Nash manifolds, Int. Math. Res. Not., 5 (2008), rnm155.
37. MR 2418286 (2010g:46124).

AG09a. A. AIZENBUD and D. GOUREVITCH, Generalized Harish-Chandra descent, Gelfand pairs, and an Archimedean
analog of Jacquet-Rallis’s theorem, Duke Math. J., 149 (2009), 509–567, with an appendix by the authors and Eitan
Sayag. MR 2553879 (2011c:22026).

AG09b. A. AIZENBUD and D. GOUREVITCH, Multiplicity one theorem for (GLn+1(R), GLn(R)), Sel. Math. New Ser., 15
(2009), 271–294. MR 2529937 (2010i:22012).

AG10. A. AIZENBUD and D. GOUREVITCH, The de-Rham theorem and Shapiro lemma for Schwartz function on Nash
manifolds, Isr. J. Math., 177 (2010), 155–188. MR 2684417.

AGS08. A. AIZENBUD, D. GOUREVITCH, and E. SAYAG, (GLn+1(F), GLn(F)) is a Gelfand pair for any local field F, Compos.
Math., 144 (2008), 1504–1524. MR 2474319 (2009k:22022).

Art78. J. G. ARTHUR, A trace formula for reductive groups. I. Terms associated to classes in G(Q), Duke Math. J., 45 (1978),
911–952. MR 518111 (80d:10043).

Art85. J. ARTHUR, A measure on the unipotent variety, Can. J. Math., 37 (1985), 1237–1274. MR 828844 (87m:22049).
Art86. J. ARTHUR, On a family of distributions obtained from orbits, Can. J. Math., 38 (1986), 179–214. MR 835041

(87k:11058).



320 BROOKE FEIGON, EREZ LAPID, OMER OFFEN

Bar89. D. BARBASCH, The unitary dual for complex classical Lie groups, Invent. Math., 96 (1989), 103–176. MR 981739
(90c:22044).

Bar03. E. M. BARUCH, A proof of Kirillov’s conjecture, Ann. Math. (2), 158 (2003), 207–252. MR 1999922 (2004f:22012).
BD92. J.-L. BRYLINSKI and P. DELORME, Vecteurs distributions H-invariants pour les séries principales généralisées

d’espaces symétriques réductifs et prolongement méromorphe d’intégrales d’Eisenstein, Invent. Math., 109 (1992), 619–
664. MR 1176208 (93m:22016).

BD08. P. BLANC and P. DELORME, Vecteurs distributions H-invariants de représentations induites, pour un espace
symétrique réductif p-adique G/H, Ann. Inst. Fourier (Grenoble), 58 (2008), 213–261. MR 2401221 (2009e:22015).

Ber84. J. N. BERNSTEIN, P-invariant distributions on GL(N) and the classification of unitary representations of GL(N)
(non-Archimedean case), in Lie group representations, II. Lecture Notes in Math., vol. 1041, pp. 50–102, Springer, Berlin,
1984. MR 748505 (86b:22028).

BK. J. BERNSTEIN and B. KRÖTZ, Smooth Fréchet globalizations of Harish-Chandra modules, Israel J. Math., to appear.
BK93. C. J. BUSHNELL and P. C. KUTZKO, The Admissible Dual of GL(N) via Compact Open Subgroups, Annals of Mathematics

Studies, vol. 129, Princeton University Press, Princeton, 1993. MR 1204652 (94h:22007).
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