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ABSTRACT

Let (X/Z,B + A) be a Q-factorial dlt pair where B,A ≥ 0 are Q-divisors and KX + B + A ∼Q 0/Z. We prove
that any LMMP/Z on KX + B with scaling of an ample/Z divisor terminates with a good log minimal model or a Mori
fibre space. We show that a more general statement follows from the ACC for lc thresholds. An immediate corollary of
these results is that log flips exist for log canonical pairs.

1. Introduction

We work over C. Extending results from the klt case to the lc case is often not
as easy as it may sound. For example, it took some hard work to prove the cone and
contraction theorem for lc pairs as done by Ambro [2] and Fujino [14]. Another major
example is the finite generation of log canonical rings: the klt case was proved in [9] but
extending this to the lc case is essentially equivalent to proving the abundance conjecture.

It is well-known that log flips exist for klt pairs [9]. In this paper we study the
existence of log flips for lc pairs. Along the way, we came across the following more
general statement which is more suitable for induction, and it is one of the main results
of this paper.

Theorem 1.1. — Let (X/Z,B + A) be a lc pair where B,A ≥ 0 are Q-divisors, A is

Q-Cartier, and the given morphism f : X → Z is surjective. Assume further that KX +
B + A ∼Q 0/Z. Then,

(1) (X/Z,B) has a Mori fibre space or a log minimal model (Y/Z,BY),

(2) if KY + BY is nef/Z, then it is semi-ample/Z,

(3) if (X/Z,B) is Q-factorial dlt, then any LMMP/Z on KX + B with scaling of an

ample/Z divisor terminates.

In the theorem and throughout the paper Mori fibre spaces and log minimal mod-
els are meant as in Definitions 2.1 and 2.2 which are slightly different from the traditional
definitions. The surjectivity of f is obviously not necessary but we have put there for
practical convenience. Sketch of the main ideas of the proof of the theorem is given at the
beginning of Section 6 and the full proof is given in the same section. A weaker form of
the theorem was conjectured by Kollár [23, Conjecture 4.1], in the context of studying
singularities.

As mentioned earlier, an immediate consequence of the above theorem concerns
the existence of log flips for lc pairs.
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Corollary 1.2. — Let (X/Z,B) be a lc pair and X → Y/Z an extremal (KX + B)-negative

flipping contraction. Then, the (KX + B)-flip of X → Y exists.

The proof of the corollary is given at the end of Section 6. In view of Ambro [2] and
Fujino [14], and the previous result, we can run the LMMP on any lc pair. Termination
of such an LMMP can be reduced to the Q-factorial dlt case as in Remark 2.9.

Arguments very similar to those of the proof of Theorem 1.1 also work to prove a
more general statement if we assume the ACC conjecture for lc thresholds.

Conjecture 1.3 (ACC for lc thresholds). — Suppose that � ⊆ [0,1] and S ⊆ Q are finite sets

of rational numbers, and d is a natural number. Then, the set

{
lct(M,X,B) | (X,B) is lc of dimension ≤ d

}

satisfies the ACC where the coefficients of B belong to �, M is a Q-Cartier divisor with coefficients in S,

and lct(M,X,B) is the lc threshold of M with respect to (X,B).

The conjecture is often formulated with �,S being DCC sets but we only need
the finite case. The conjecture was proved for smooth varieties by de Fernex, Ein and
Mustaţă [10] who used some of the ideas of Kollár [24]. Hacon, McKernan, and Xu
have announced that they have solved the conjecture.

Theorem 1.4. — Assume Conjecture 1.3 in dimension d. Let (X/Z,B) be a lc pair of dimen-

sion d where B is a Q-divisor and the given morphism f : X → Z is surjective. Assume further that

KX + B ∼Q 0 over some non-empty open subset U ⊆ Z, and if η is the generic point of a lc centre of

(X/Z,B), then f (η) ∈ U. Then,

(1) (X/Z,B) has a log minimal model (Y/Z,BY),

(2) KY + BY is semi-ample/Z,

(3) if (X/Z,B) is Q-factorial dlt, then any LMMP/Z on KX + B with scaling of an

ample/Z divisor terminates.

The proof is given in Section 7 using arguments quite similar to those of Section 6.
In Section 5, we show that under finite generation a stronger statement holds:

Theorem 1.5. — Let (X/Z,B) be a Q-factorial dlt pair where B is a Q-divisor and

f : X → Z is surjective. Assume further that R(X/Z,KX + B) is a finitely generated OZ-algebra,

and that (KX + B)|Xη
∼Q 0 where Xη is the generic fibre of f . Then, any LMMP/Z on KX + B

with scaling of an ample/Z divisor terminates with a good log minimal model.

This in particular takes care of the klt case of Theorems 1.1 and 1.4.
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Remark 1.6. — Hacon and Xu [19] have independently obtained more general
forms of some of our results using a circle of similar ideas. Compare 1.1, 1.2, 1.5, and 1.4
with [19, 1.6, 1.8, 2.11, 1.1].

An important ingredient of the proof of Theorems 1.1 and 1.4 is the following re-
sult which naturally appears when one tries to reduce the semi-ampleness of a lc divisor
KX + B to semi-ampleness in the klt case (cf. [22]). It is a consequence of Kollár’s injec-
tivity theorem and semi-ampleness on semi-lc pairs. When Z is projective, it follows from
Fujino-Gongyo [16]; the general case was proved by Hacon and Xu [20].

Theorem 1.7 ([16], [20]). — Let (X/Z,B) be a Q-factorial dlt pair and T := �B	 where

B is a Q-divisor. Suppose that

• KX + B is nef/Z,

• (KX + B)|S is semi-ample/Z for each component S of T,

• KX + B − εP is semi-ample/Z for some Q-divisor P ≥ 0 with Supp P = T and for any

sufficiently small rational number ε > 0.

Then, KX + B is semi-ample/Z.

We will now state some of the other results of this paper that are of independent
interest. In Section 3, we prove the following which is similar to a result of Fujino [13].

Theorem 1.8. — Let (X/Z,B) be a Q-factorial dlt pair with KX + B ∼R M/Z where

M ≥ 0 is very exceptional/Z. Then, any LMMP/Z on KX + B with scaling of an ample/Z divisor

terminates with a model Y on which we have KY + BY ∼R MY = 0/Z.

See Definition 3.1 for the notion of very exceptional divisors.
In Section 4, we prove a stronger version of [6, Theorem 1.5] which is repeatedly

used in the subsequent sections:

Theorem 1.9. — Let (X/Z,B + C) be a lc pair of dimension d such that KX + B + C
is nef/Z, B,C ≥ 0 and C is R-Cartier. Assume that we are given an LMMP/Z on KX + B with

scaling of C as in Definition 2.4 with λi the corresponding numbers, and λ := limi→∞ λi . Then, the

LMMP terminates in the following cases:

(i) (X/Z,B) is Q-factorial dlt, B ≥ H ≥ 0 for some ample/Z R-divisor H,

(ii) (X/Z,B) is Q-factorial dlt, C ≥ H ≥ 0 for some ample/Z R-divisor H, and λ > 0,

(iii) (X/Z,B + λC) has a log minimal model, and λ �= λj for any j.

Finally, we briefly mention some previous works on flips. Mori proved the exis-
tence of flips for 3-folds with terminal singularities [26]. Shokurov proved it in full gen-
erality in dimension 3 [29], [30], in dimension 4 in the klt case [31], and also worked
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out a significant proportion of what we know about flips in every dimension. Hacon-
McKernan [17] filled in the missing parts of Shokurov’s program on pl flips. Birkar-
Cascini-Hacon-McKernan [9] (together with Hacon-McKernan [18]) proved the prob-
lem in the klt case in all dimensions (see also [8]). Fujino [12] proved it for lc pairs in
dimension 4. Alexeev-Hacon-Kawamata [1] and Birkar [5] proved it in dimension 5 in
the klt case.

2. Preliminaries

Notation and basic definitions. — We work over k = C. A pair (X/Z,B) consists of nor-
mal quasi-projective varieties X,Z over k, an R-divisor B on X with coefficients in [0,1]
such that KX + B is R-Cartier, and a projective morphism X → Z. For a prime divisor
D on some birational model of X with a nonempty centre on X, a(D,X,B) denotes the
log discrepancy.

Let (X/Z,B) be a lc pair. By a KX + B-flip/Z we mean the flip of a (KX + B)-
negative extremal flipping contraction/Z. A sequence of log flips/Z starting with (X/Z,B) is
a sequence Xi ��� Xi+1/Zi in which Xi → Zi ← Xi+1 is a (KXi

+ Bi)-flip/Z, Bi is the
birational transform of B1 on X1, and (X1/Z,B1) = (X/Z,B). Special termination means
termination near �B	.

Definition 2.1 (Weak lc and log minimal models). — A pair (Y/Z,BY) is a log birational
model of (X/Z,B) if we are given a birational map φ : X ��� Y/Z and BY = B∼ + E where B∼

is the birational transform of B and E is the reduced exceptional divisor of φ−1, that is, E = ∑
Ej

where Ej are the exceptional/X prime divisors on Y. A log birational model (Y/Z,BY) is a weak lc
model of (X/Z,B) if

• KY + BY is nef/Z, and

• for any prime divisor D on X which is exceptional/Y, we have

a(D,X,B) ≤ a(D,Y,BY)

A weak lc model (Y/Z,BY) is a log minimal model of (X/Z,B) if

• (Y/Z,BY) is Q-factorial dlt,

• the above inequality on log discrepancies is strict.

A log minimal model (Y/Z,BY) is good if KY + BY is semi-ample/Z.

Definition 2.2 (Mori fibre space). — A log birational model (Y/Z,BY) of a pair (X/Z,B) is

called a Mori fibre space if (Y/Z,BY) is Q-factorial dlt, there is a (KY + BY)-negative extremal

contraction Y → T/Z with dim Y > dim T, and

a(D,X,B) ≤ a(D,Y,BY)
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for any prime divisor D (on birational models of X) and strict inequality holds if D is on X and

contracted/Y.

Definition 2.3 (Log smooth model). — We need to define various kinds of log smooth models that

in many situations allow us to replace a lc pair with a log smooth one. Let (X/Z,B) be a lc pair, and

let f : W → X be a log resolution. Let BW ≥ 0 be a boundary on W so that KW + BW = f ∗(KX +
B) + E where E ≥ 0 is exceptional/X and the support of E contains each prime exceptional/X divisor

D on W if a(D,X,B) > 0. We call (W/Z,BW) a log smooth model of (X/Z,B). However, in

practice we usually need further assumptions. We list the ones we will need:

Type (1): We take BW to be the birational transform of B plus the reduced exceptional divisor of f ,

that is, we assume that a(D,W,BW) = 0 for each prime exceptional/X divisor D on W.

Type (2): We assume that a(D,W,BW) > 0 if a(D,X,B) > 0, for each prime exceptional/X
divisor D on W.

Note that if (X/Z,B) is klt and (W/Z,BW) is of type (2), then (W/Z,BW) is also klt.

Definition 2.4 (LMMP with scaling). — Let (X1/Z,B1 + C1) be a lc pair such that KX1 +
B1 + C1 is nef/Z, B1 ≥ 0, and C1 ≥ 0 is R-Cartier. Suppose that either KX1 + B1 is nef/Z or there

is an extremal ray R1/Z such that (KX1 + B1) · R1 < 0 and (KX1 + B1 + λ1C1) · R1 = 0 where

λ1 := inf{t ≥ 0 | KX1 + B1 + tC1 is nef/Z}
Now, if KX1 + B1 is nef/Z or if R1 defines a Mori fibre structure, we stop. Otherwise assume that

R1 gives a divisorial contraction or a log flip X1 ��� X2. We can now consider (X2/Z,B2 + λ1C2)

where B2 + λ1C2 is the birational transform of B1 + λ1C1 and continue. That is, suppose that

either KX2 + B2 is nef/Z or there is an extremal ray R2/Z such that (KX2 + B2) · R2 < 0 and

(KX2 + B2 + λ2C2) · R2 = 0 where

λ2 := inf{t ≥ 0 | KX2 + B2 + tC2 is nef/Z}
By continuing this process, we obtain a sequence of numbers λi and a special kind of LMMP/Z which

is called the LMMP/Z on KX1 + B1 with scaling of C1. Note that by definition λi ≥ λi+1 for

every i, and we usually put λ = limi→∞ λi . When we refer to termination with scaling we mean

termination of such an LMMP.

When we have a lc pair (X/Z,B), we can always find an ample/Z R-Cartier divisor C ≥ 0
such that KX + B + C is lc and nef/Z, so we can run the LMMP/Z with scaling assuming that

all the necessary ingredients exist, e.g. extremal rays, log flips. In particular, when (X/Z,B) is klt or

Q-factorial dlt the required extremal rays and log flips exist by [9] and [5, Lemma 3.1].

Definition 2.5. — Let f : X → Z be a projective morphism of quasi-projective varieties with X
normal, and D an R-divisor on X. Define the divisorial sheaf algebra of D as
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R(X/Z,D) =
⊕

m≥0

f∗OX

(�mD	)

where m ∈ Z. If Z is affine, we take R(X/Z,D) to be the global sections of R(X/Z,D).

By a contraction f : X → Z we mean a projective morphism of quasi-projective va-
rieties with f∗OX = OZ.

Some basic facts about log minimal models and the LMMP. — We collect some basic prop-
erties of log minimal models and the LMMP that will be used in this paper.

Remark 2.6 (Weak lc model). — Let (Y/Z,BY) be a weak lc model of a lc pair
(X/Z,B) and φ : X ��� Y the corresponding birational map. Let f : W → X and
g : W → Y be a common log resolution of (X/Z,B) and (Y/Z,BY). Let

E := f ∗(KX + B) − g∗(KY + BY) =
∑

D

(
a(D,Y,BY) − a(D,X,B)

)
D

where D runs over the prime divisors on W. We will show that E is effective and
exceptional/Y. From the definition of weak lc models we get f∗E ≥ 0, and since E is
antinef/X, applying the negativity lemma implies that E ≥ 0. Now assume that D is
a component of E which is not exceptional/Y. Then, D is exceptional/X otherwise
a(D,X,B) = a(D,Y,BY) and D could not be a component of E. By definition of weak
lc models we get a(D,Y,BY) = 0, so by effectiveness of E we have a(D,X,B) = 0 which
again shows that D cannot be a component of E. Therefore, E is exceptional/Y.

Remark 2.7 (Two weak lc models). — Let (Y1/Z,BY1) and (Y2/Z,BY2) be two weak lc
models of a lc pair (X/Z,B). Let f : W → X and gi : W → Yi be a common resolution,
and put

Ei := f ∗(KX + B) − g∗
i (KYi

+ BYi
)

Then, by Remark 2.6, Ei is effective and exceptional/Yi. Since g2∗(E1 − E2) ≥ 0 and
E1 − E2 is anti-nef/Y2, by the negativity lemma, E1 − E2 ≥ 0. Similarly, E2 − E1 ≥ 0.
Therefore,

g∗
1(KY1 + BY1) = g∗

2(KY2 + BY2)

In particular, if KY1 +BY1 is ample/Z, then KY2 +BY2 is semi-ample/Z and the birational
map Y2 ��� Y1 is actually a morphism which pulls back KY1 + BY1 to KY2 + BY2.

Remark 2.8 (Log smooth models). — Log smooth models satisfy certain nice properties
besides being simple in terms of singularities. Let (W/Z,BW) be a log smooth model of a
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lc pair (X/Z,B). Let D be a prime divisor on W. Then, a(D,X,B) ≥ a(D,W,BW) with
strict inequality iff D is exceptional/X and a(D,X,B) > 0.

Another basic property of (W/Z,BW) is that any log minimal model of (W/Z,BW)

is also a log minimal model of (X/Z,B). Indeed let (Y/Z,BY) be a log minimal model
of (W/Z,BW). Let e : V → W and h : V → Y be a common resolution. Then,

e∗(KW + BW) = h∗(KY + BY) + G

where G ≥ 0 is exceptional/Y by Remark 2.6. Thus, using

KW + BW = f ∗(KX + B) + E

we get

e∗f ∗(KX + B) = h∗(KY + BY) + G − e∗E

Since G− e∗E is antinef/X, and f∗e∗(G− e∗E) ≥ 0, by the negativity lemma, G− e∗E ≥ 0.
In particular, this means that a(D,X,B) ≤ a(D,Y,BY) for any prime divisor D on V.
Next we will compare log discrepancies of prime divisors on X and Y.

If D is a prime divisor on X which is exceptional/Y, then

a(D,X,B) = a(D,W,BW) < a(D,Y,BY)

On the other hand, let D be a prime divisor on Y which is exceptional/X. If D is
exceptional/W, then by definition of log minimal models, a(D,Y,BY) = 0. Assume
that D is not exceptional/W. Then, a(D,W,BW) = a(D,Y,BY) which implies that
a(D,X,B) ≤ a(D,W,BW) because of the relation a(D,X,B) ≤ a(D,Y,BY) obtained
above. This is possible only if

a(D,X,B) = a(D,W,BW) = 0

hence again a(D,Y,BY) = 0. Therefore, the prime exceptional divisors of Y ��� X
appear with coefficient one in BY. Finally, if D is a prime divisor on Y which is not
exceptional/X, or if D is a prime divisor on X which is not exceptional/Y, then

a(D,X,B) = a(D,W,BW) = a(D,Y,BY)

So, BY is the birational transform of B plus the reduced exceptional divisor of Y ��� X
hence (Y/Z,BY) is a log minimal model of (X/Z,B).

Remark 2.9 (Lifting a sequence of log flips with scaling). — (1) Assume that we are given
an LMMP with scaling as in Definition 2.4 which consists of only a sequence Xi ���
Xi+1/Zi of log flips. Let (X′

1/Z,B′
1) be a Q-factorial dlt blowup of (X1/Z,B1) and C′

1 the
pullback of C1 (this exists by Corollary 3.6 below). Since KX1 + B1 + λ1C1 ≡ 0/Z1, we
get KX′

1
+ B′

1 + λ1C′
1 ≡ 0/Z1.



332 CAUCHER BIRKAR

Run an LMMP/Z1 on KX′
1
+ B′

1 with scaling of some ample/Z1 divisor which is
automatically also an LMMP/Z1 on KX′

1
+ B′

1 with scaling of λ1C′
1. Assume that this

LMMP terminates with a log minimal model (X′
2/Z1,B′

2). By construction, (X2/Z1,B2)

and (X′
2/Z1,B′

2) are both weak lc models of (X′
1/Z1,B′

1). By Remark 2.7, X′
2 maps to X2

and KX′
2
+ B′

2 is the pullback of KX2 + B2. Thus, (X′
2/Z,B′

2) is a Q-factorial dlt blowup
of (X2/Z,B2). Now, KX′

2
+ B′

2 + λ1C′
2 ≡ 0/Z1 where C′

2 is the birational transform of
C′

1 and actually the pullback of C2. We can continue this process: that is use the fact
that KX2 + B2 + λ2C2 ≡ 0/Z2 and KX′

2
+ B′

2 + λ2C′
2 ≡ 0/Z2 and run an LMMP/Z2 on

KX′
2
+ B′

2, etc.
We have shown that we can lift the original sequence to an LMMP/Z on KX′

1
+ B′

1
with scaling of C′

1 assuming that the following statement holds for each i:

(∗) some LMMP/Zi on KX′
i
+B′

i with scaling of some ample/Zi divisor terminates
where (X′

i/Z,B′
i) is a Q-factorial dlt blowup of (Xi/Z,Bi).

Note however that each X′
i ��� X′

i+1 is a sequence of log flips and divisorial con-
tractions (not necessarily just one log flip).

(2) We will show that (∗) holds for i if (Xi/Z, tBi) is klt for some t ∈ [0,1] (in
particular, this holds if (Xi/Z,Bi) is klt or Q-factorial dlt). Pick an ample/Zi R-divisor
H ≥ 0 on Xi so that

KXi
+ Bi + H ∼R 0/Zi

and (Xi/Z,Bi + H) is lc. Now for a sufficiently small ε > 0, there is a small δ > 0 and �i

such that

(1 − δ)Bi ≤ �i ∼R Bi + εH/Zi

and that (Xi/Z,�i) is klt: if t = 1, then we can just take �i = Bi + εH; but if t < 1, then
Bi is R-Cartier and we take δ > 0 small enough so that δBi + εH is ample/Zi , and we
put �i = (1 − δ)Bi + H′ for a general H′ ∼R δBi + εH/Zi . Now let KX′

i
+ �′

i be the
pullback of KXi

+ �i. We can assume that �′
i ≥ 0 by choosing δ small enough. Now run

an LMMP/Zi on KX′
i
+ �′

i with scaling of some ample/Zi divisor. By [9], the LMMP
terminates. By construction,

KX′
i
+ �′

i ∼R (1 − ε)
(
KX′

i
+ B′

i

)
/Zi

so the LMMP is also an LMMP/Zi on KX′
i
+ B′

i .

Remark 2.10 (On special termination). — Assume that we are given an LMMP with
scaling as in Definition 2.4 which consists of only a sequence Xi ��� Xi+1/Zi of log flips,
and that (X1/Z,B1) is Q-factorial dlt. Assume �B1	 �= 0 and pick a component S1 of
�B1	. Let Si ⊂ Xi be the birational transform of S1 and Ti the normalisation of the image
of Si in Zi . Using standard special termination arguments, we will see that termination
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of the LMMP near S1 is reduced to termination in lower dimensions. It is well-known
that the induced map Si ��� Si+1/Ti is an isomorphism in codimension one if i � 0
(cf. [11]). So, we could assume that these maps are all isomorphisms in codimension one.
Put KSi

+ BSi
:= (KXi

+ Bi)|Si
. In general, Si ��� Si+1/Ti is not a KSi

+ BSi
-flip. To apply

induction, we need to simplify the situation as follows.
Assume that (S′

1,BS′
1
) is a Q-factorial dlt blowup of (S1,BS1) (this exists by Corol-

lary 3.6 below). The idea is to use the sequence Si ��� Si+1/Ti to construct an LMMP/T
on KS′

1
+ BS′

1
with scaling of CS′

1
where T is the normalisation of the image of S1 in Z

and CS′
1

is the pullback of C1. This can be done similar to Remark 2.9 assuming that
something like (∗) is satisfied (in practice, this is satisfied by induction; it also can be de-
rived from Theorem 4.1 and this remark is applied only after 4.1). More precisely, we first
run an LMMP/T1 on KS′

1
+ BS′

1
. This is also an LMMP/T1 on KS′

1
+ BS′

1
with scaling

of λ1CS′
1

because KS′
1
+ BS′

1
+ λ1CS′

1
≡ 0/T1. Assuming this terminates, we get a model

S′
2 on which KS′

2
+ BS′

2
is nef/T1. Since S1 ��� S2 is an isomorphism in codimension

one and KS2 + BS2 is ample/T1, (S2/T1,BS2) is the lc model of all the pairs (S1/T1,BS1),
(S′

1/T1,BS′
1
), and (S′

2/T1,BS′
2
). Thus, KS′

2
+BS′

2
is semi-ample/T1 and the map S′

2 ��� S2

is a morphism which pulls back KS2 + BS2 to KS′
2
+ BS′

2
. We continue the process by run-

ning an LMMP/T2 on KS′
2
+ BS′

2
and so on. So, we get an LMMP/T on KS′

1
+ BS′

1
with

scaling of CS′
1
.

If the LMMP/T on KS′
1
+BS′

1
terminates, then the original LMMP terminates near

S1. One usually applies this argument to every component of �B1	 to derive termination
near �B1	.

3. LMMP on very exceptional divisors

Let (X/Z,B) be a Q-factorial dlt pair such that X → Z is birational and
KX + B ∼R M/Z with M ≥ 0 exceptional/Z. Run an LMMP/Z on KX + B with scal-
ing of an ample divisor. In some step of the LMMP, KX + B becomes nef along very
general curves of D/Z for any prime divisor D. Since M is exceptional/Z, this is possible
only if M is contracted in the process (this follows from a general form of the negativity
lemma that is discussed below). So, the LMMP terminates. This is useful in many situa-
tions, for example, to construct a dlt blowup of a lc pair. It also plays a crucial role in the
proof of Theorem 1.5.

In this section, we generalise and make precise the above phenomenon. Many of
the ideas in this section (and in the proof of Theorem 1.5) are actually explicit or implicit
in Shokurov [31]. However, we would like to give full details here.

Definition 3.1 (cf. Shokurov [31, Definition 3.2]). — Let f : X → Y be a contraction of

normal varieties, D an R-divisor on X, and V ⊂ X a closed subset. We say that V is vertical over Y
if f (V) is a proper subset of Y. We say that D is very exceptional/Y if D is vertical/Y and for any



334 CAUCHER BIRKAR

prime divisor P on Y there is a prime divisor Q on X which is not a component of D but f (Q) = P,

i.e. over the generic point of P we have: Supp f ∗P � Supp D.

If codim f (D) ≥ 2, then D is very exceptional. On the other hand, when f is bi-
rational, then exceptional and very exceptional are equivalent notions. The next lemma
indicates where one can expect to find very exceptional divisors.

Lemma 3.2 (cf. Shokurov [31, Lemma 3.19]). — Let f : X → Y be a contraction of normal

varieties, projective over a normal affine variety Z. Let A be an ample/Z divisor on Y and F = f ∗A.

If E ≥ 0 is a divisor on X which is vertical/Y and such that mE = Fix(mF + mE) for every integer

m � 0, then E is very exceptional/Y.

Proof. — We can assume that A is very ample/Z. Since E is effective, for each inte-
ger l > 0, we have the natural exact sequence 0 → OX → OX(lE) given by the inclusion
OX ⊆ OX(lE). Since mF = Mov(mF + lE) for each m � 0, the induced homomorphism

⊕

m∈Z

H0(X,mF) →
⊕

m∈Z

H0(X,mF + lE)

of R(X/Z,F)-modules is an isomorphism in large degrees. This in turn induces a homo-
morphism

⊕

m∈Z

H0(Y,mA) →
⊕

m∈Z

H0
(
Y,

(
f∗OX(lE)

)
(mA)

)

of R(Y/Z,A)-modules which is an isomorphism in large degrees. Therefore, by [21, II,
Proposition 5.15 and Exercise 5.9], the injective morphism OY = f∗OX → f∗OX(lE) is
also surjective hence we get OY = f∗OX = f∗OX(lE).

Assume that E is not very exceptional/Y. Then, there exist a prime divisor P on
Y such that if Q is any prime divisor on X with f (Q) = P, then Q is a component of E.
Let U be a smooth open subset of Y so that OU � OU(P|U), P|U is Cartier, and each
component of f ∗P|U maps onto P|U. Let V = f −1U. Then, Supp f ∗P|U ⊆ Supp E|V and
for some l > 0, f ∗P|U ≤ lE|V. But then,

OU � OU(P|U) ⊆ f∗OV(lE|V) = OU

which is a contradiction. Therefore, E is very exceptional/Y. �

Let S → Z be a projective morphism of varieties and M an R-Cartier divisor on S.
We say that M is nef on the very general curves of S/Z if there is a countable union 	 of proper
closed subsets of S such that M · C ≥ 0 for any curve C on S contracted over Z satisfying
C � 	. We need the following general negativity lemma of Shokurov [31, Lemma 3.22]
(see also Prokhorov [28, Lemma 1.7]).
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Lemma 3.3 (Negativity). — Let f : X → Z be a contraction of normal varieties. Let D be an

R-Cartier divisor on X written as D = D+ − D− with D+,D− ≥ 0 having no common components.

Assume that D− is very exceptional/Z, and that for each component S of D−, −D|S is nef on the very

general curves of S/Z. Then, D ≥ 0.

Proof. — Assume that D− �= 0 otherwise there is nothing to prove. By assump-
tions, there is a countable union 	 of codim ≥ 2 proper closed subsets of X such that
	 ⊂ Supp D− and such that for any component S of D− and any curve C of S/Z satis-
fying C � 	, we have −D · C ≥ 0. Let P = f (Supp D−). By shrinking Z if necessary we
can assume that P is irreducible and that every component of D− maps onto P. When
dim P > 0 we reduce the problem to lower dimension by taking a hyperplane section
of Z. In contrast, when dim P = 0 we reduce the problem to lower dimension by taking
a hyperplane section of X except when dim Z = 1 or dim Z = dim X = 2 which can be
dealt with directly.

Assume that dim P > 0. Let Z′ be a very general hyperplane section of Z, X′ =
f ∗Z′, and let f ′ be the induced contraction X′ → Z′. Since Z′ is very general, it inter-
sects P, and X′ does not contain any component of D nor any “component” of 	. So,
	 ∩ X′ is again a countable union of codim ≥ 2 proper closed subsets of X′. Since X′ is
general, it does not contain any component of the singular locus of X hence D|X′ is de-
termined on the smooth locus of X. Similarly, the negative part of D|X′ is given by D−|X′

defined on the smooth locus of X. Moreover, we can assume that X′ does not contain any
component of S1 ∩ S2 if S1,S2 are prime divisors mapping onto P.

We show that the negative part of D|X′ , say D|−X′ , is very exceptional/Z′: if
codim P ≥ 2, the claim is trivial; if codim P = 1, we can assume that Z is smooth at
every point of P and that every component of D|−X′ maps onto P′ := Z′ ∩ P; now since
D− is very exceptional/Z, there is a component S of f ∗P mapping onto P such that S is
not a component of D−; let Q be a component of S ∩ X′ having codimension one in X′

and mapping onto P′; then, by our choice of X′, Q is not a component of D|−X′ . Since
Q and each component of D|−X′ maps onto P′, and since Q is not a component of D|−X′ ,
indeed D|−X′ is very exceptional/Z′ as claimed. On the other hand, if T is any component
of D|−X′ , then T is a component of L ∩ X′ for some component L of D− hence −D|T is
nef on the curves of T/Z′ outside 	∩ X′ (note that by construction T � 	). By induction
on dimension applied to D|X′ and X′ → Z′, D|−X′ = 0 which is a contradiction.

From now on we can assume that dim P = 0. Assume dim Z = 1. Then f ∗P is a
divisor which is numerically zero over Z. Let t be the smallest real number such that D +
tf ∗P ≥ 0. Then, there is a component S of D− which has coefficient zero in D + tf ∗P ≥ 0
but such that S intersects Supp(D + tf ∗P). If C is any curve on S which is not inside
S ∩ Supp(D + tf ∗P) but such that C intersects Supp(D + tf ∗P), then D · C = (D + tf ∗P) ·
C > 0. This contradicts our assumptions. On the other hand, if dim X = dim Z = 2, the
lemma is quite well-known and elementary and it can be proved similarly. So, from now
on we assume that dim Z ≥ 2, and dim X ≥ 3.
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Let H be a very general hyperplane section of X and let g : H → G be the con-
traction given by the Stein factorisation of H → Z. Since P = f (Supp D−) is just a point
and dim Z ≥ 2 and dim X ≥ 3, it is obvious that D|−H, the negative part of D|H, is very
exceptional/G. Moreover, arguments similar to the above show that if T is any compo-
nent of D|−H, then −D|H is nef on the very general curves of T/G. So, we can apply
induction to deduce that D|−H = 0 which gives a contradiction. �

We now come to the LMMP that was mentioned at the beginning of this section.
It is a simple consequence of the negativity lemma.

Theorem 3.4 (=Theorem 1.8). — Let (X/Z,B) be a Q-factorial dlt pair such that

KX + B ∼R M/Z with M ≥ 0 very exceptional/Z. Then, any LMMP/Z on KX + B with scaling

of an ample/Z divisor terminates with a model Y on which KY + BY ∼R MY = 0/Z.

Proof. — Assume that C ≥ 0 is an ample/Z R-divisor such that KX + B + C is
lc and nef/Z. Run the LMMP/Z on KX + B with scaling of C. The only divisors that
can be contracted are the components of M hence M remains very exceptional/Z during
the LMMP. We may assume that the LMMP consists of only a sequence Xi ��� Xi+1/Zi

of KX + B-flips/Z with X1 = X. If λi are the numbers appearing in the LMMP, and
λ := limi→∞ λi , then by [9], we may assume that λ = 0. Since λ = 0, KX + B is a limit of
movable/Z R-Cartier divisors hence for any prime divisor S on X, (KX +B) ·� = M ·� ≥
0 for the very general curves � of S/Z. Now by assumptions M is very exceptional/Z
hence by the negativity lemma (3.3), M ≤ 0 which implies that M = 0. So, the LMMP
terminates and contracts M. �

The same arguments as in the previous theorem imply:

Theorem 3.5. — Let (X/Z,B) be a Q-factorial dlt pair such that X → Z is birational,

and KX + B ∼R M = M+ − M−/Z where M+,M− ≥ 0 have no common components and M+ is

exceptional/Z. Then, any LMMP/Z on KX + B with scaling of an ample/Z divisor contracts M+

after finitely many steps.

The birationality condition on X → Z in the previous theorem is needed to make
sure that M+ remains very exceptional/Z during the LMMP.

An application of the above theorems is the existence of Q-factorial dlt blowups
which is due to Hacon (cf. Fujino [13, Theorem 4.1]).

Corollary 3.6. — Let (X/Z,B) be a lc pair. Then, there is a Q-factorial dlt blowup of

(X/Z,B).

Proof. — Let (W/Z,BW) be a log smooth model of (X/Z,B) of type (1) as in Defi-
nition 2.3 constructed via a log resolution f : W → X. Then, KW +BW = f ∗(KX +B)+E
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where E ≥ 0 is exceptional/X. Now, by Theorem 3.4 some LMMP/X on KW + BW with
scaling of an ample divisor terminates with a model Y on which KY + BY ∼R 0/X. If
g : Y → X is the induced morphism, then KY +BY = g∗(KX +B) because E is contracted
over Y. Now (Y/Z,BY) is the desired Q-factorial dlt blowup. �

Corollary 3.7. — Let (X/Z,B) be a lc pair. If (X/Z,B) has a weak lc model, then it has a

log minimal model.

Proof. — Assume that (Y′/Z,BY′) is a weak lc model of (X/Z,B). Let (W/Z,BW)

be a log smooth model of (X/Z,B) of type (1) constructed via a log resolution f : W → X.
We can assume that the induced map g : W ��� Y′ is a morphism. We can write

KW + BW = f ∗(KX + B) + E

and

f ∗(KX + B) = g∗(KY′ + BY′) + G

where E ≥ 0 is exceptional/X and G ≥ 0 is exceptional/Y′ (see Remark 2.6). Now,
KW +BW ∼R G+E/Y′. Moreover, G+E is exceptional/Y′: G is exceptional/Y′ as noted;
on the other hand if D is a component of E, then a(D,X,B) > 0 which implies that D is
exceptional/Y′ otherwise 0 = a(D,Y′,BY′) = a(D,X,B); so, E is also exceptional/Y′.

By Theorem 3.4, some LMMP/Y′ on KW + BW with scaling of an ample divisor
terminates with a model Y on which KY + BY ∼R 0/Y′. This means that KY + BY is the
pullback of KY′ + BY′ hence KY + BY is nef/Z and (Y/Z,BY) is a log minimal model of
(W/Z,BW) hence of (X/Z,B) by Remark 2.8. �

4. From log minimal models to termination with scaling

In this section we prove Theorem 1.9 which is essentially [6, Theorem 1.5]but with
weaker assumptions. The theorem is of independent interest and it will be used repeatedly
in subsequent sections. The proof follows the general idea of deriving termination with
scaling from existence of log minimal models that was developed in [9] and [32]. In [9],
finiteness of models is used to get termination. However, this works only in the klt case
when the boundary is big, or in the dlt case when the boundary contains an ample divisor.
The proof below is closer to [32] in spirit but we still make use of [9]. Much of the
difficulties in the proof are caused by the presence of non-klt singularities.

Theorem 4.1 (=Theorem 1.9). — Let (X/Z,B + C) be a lc pair of dimension d such that

KX + B + C is nef/Z, B,C ≥ 0 and C is R-Cartier. Assume that we are given an LMMP/Z
on KX + B with scaling of C as in Definition 2.4 with λi the corresponding numbers, and λ :=
limi→∞ λi . Then, the LMMP terminates in the following cases:
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(i) (X/Z,B) is Q-factorial dlt, B ≥ H ≥ 0 for some ample/Z R-divisor H,

(ii) (X/Z,B) is Q-factorial dlt, C ≥ H ≥ 0 for some ample/Z R-divisor H, and λ > 0,

(iii) (X/Z,B + λC) has a log minimal model, and λ �= λj for any j.

The following two lemmas essentially contain the main points of the proof of The-
orem 4.1. We will reduce the proof of Theorem 4.1 to these lemmas. When (X/Z,B+C)

is Q-factorial klt, then one can easily see that the assumptions of Lemma 4.3 are auto-
matically satisfied, so in this case we do not need to go beyond the lemmas.

Lemma 4.2. — Theorem 4.1(i) and (ii) hold.

Proof. — (i) Since H is ample/Z, we can perturb the coefficients of B hence assume
that (X/Z,B) is klt. If λi < 1 for some i, then (X/Z,B + λiC) is klt and after finitely
many steps we could replace C with λiC hence we could assume that (X/Z,B + C) is klt
and B is big/Z. We can then apply [9]. Now, assume that λi = 1 for every i. Then, the
LMMP is also an LMMP/Z on KX + B + 1

2C with scaling of 1
2C. By replacing B with

B + 1
2C and C with 1

2C, we can assume that every lc centre of (X/Z,B + C) is inside
Supp B. Now perturb B again so that (X/Z,B + C) becomes klt and apply [9].

(ii) The LMMP is also an LMMP/Z on KX + B + λ

2 C with scaling of (1 − λ

2 )C.

We can replace B with B + λ

2 C, C with (1 − λ

2 )C, and λi with λi− λ
2

1− λ
2

. After this change, we

can assume that B ≥ λ

2 H. Now use (i). �

Lemma 4.3. — Theorem 4.1(iii) holds if there is a birational map φ : X ��� Y/Z satisfying:

• the induced maps Xi ��� Y are isomorphisms in codimension one for every i � 0 where Xi

is the variety corresponding to λi ,

• (Y/Z,BY + λCY) is a log minimal model of (X/Z,B + λC) with respect to the given

map φ,

• there is a reduced divisor A ≥ 0 on X whose components are movable/Z and they generate

N1(X/Z),

• (X/Z,B + C + εA) and (Y/Z,BY + λCY + δCY + εAY) are Q-factorial dlt for some

δ, ε > 0.

(As usual, for a divisor D, DY denotes the birational transform on Y.)

Proof.

Step 1. Assume that the LMMP does not terminate. Pick j � 0 so that λj−1 > λj . Then,
X ��� Xj is a partial LMMP/Z on KX + B + λjC. It is also a partial LMMP/Z on
KX + B + λjC + εA maybe after choosing a smaller ε > 0. In particular, (Xj/Z,

Bj + λjCj + εAj) is Q-factorial dlt. Now we can replace (X/Z,B + C) with (Xj/Z,Bj +
λjCj) hence assume that the LMMP consists of only a sequence Xi ��� Xi+1/Zi of log
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flips/Z starting with (X1/Z,B1) = (X/Z,B). Moreover, by replacing B with B + λC we
may also assume that λ = 0.
We will reduce the problem to the situation in which not only KY + BY is nef/Z but
also KY + BY + λiCY is nef/Z for some i. After that some simple calculations allow us
to show that the LMMP terminates (see Step 5).

Step 2. We will show that, perhaps after replacing δ and ε with smaller positive num-
bers, for any number δ′ and R-divisor A′

Y satisfying 0 ≤ δ′ ≤ δ and 0 ≤ A′
Y ≤ εAY, any

LMMP/Z on KY + BY + δ′CY + A′
Y consists of only a sequence of log flips which are

flops with respect to (Y/Z,BY) (that is, KY + BY is numerically trivial on each extremal
ray that is contacted in the process). First we show that KY +BY + δ′CY +A′

Y is a limit of
movable/Z R-divisors. Since δ is sufficiently small, we can assume that λi−1 ≥ δ′ ≥ λi for
some i. By definition of LMMP with scaling, KXi

+ Bi +λi−1Ci and KXi
+ Bi +λiCi are

both nef/Z hence KXi
+ Bi + δ′Ci is also nef/Z. Thus, KXi

+ Bi + δ′Ci is (numerically) a
limit of movable/Z R-divisors which in turn implies that KY + BY + δ′CY is also a limit
of movable/Z R-divisors. On the other hand, each component of AY is movable/Z so
A′

Y is a movable/Z R-divisor. Therefore, KY + BY + δ′CY + A′
Y is a limit of movable/Z

R-divisors. This implies that any LMMP/Z on KY + BY + δ′CY + A′
Y consists of only

a sequence of log flips. Finally, since KY + BY is nef/Z, by [6, Proposition 3.2], perhaps
after replacing δ and ε with smaller positive numbers, any step of such an LMMP would
be a flop with respect to (Y/Z,BY).

Step 3. Fix some i � 0 so that λi < δ. Since X ��� Xi is a partial LMMP/Z on KX + B +
λiC, there is 0 < τ < ε such that (Xi/Z,Bi + λiCi + τAi) is dlt. Run an LMMP/Z on
KXi

+Bi +λiCi + τAi with scaling of some ample/Z divisor. For reasons as in Step 2, we
can assume that this LMMP consists of only a sequence of log flips which are flops with
respect to (Xi/Z,Bi + λiCi). On the other hand, since the components of Ai generate
N1(Xi/Z), we can assume that there is an ample/Z R-divisor H ≥ 0 such that τAi ≡
H + H′/Z where H′ ≥ 0 and

(
Xi/Z,Bi + λiCi + H + H′)

is dlt. The LMMP on KXi
+ Bi + λiCi + τAi is also an LMMP on

KXi
+ Bi + λiCi + H + H′

hence it terminates by Lemma 4.2 and we get a model T on which both

KT + BT + λiCT and KT + BT + λiCT + τAT

are nef/Z. Again since the components of AT generate N1(T/Z), there is 0 ≤ A′
T ≤ τAT

so that KT + BT + λiCT + A′
T is ample/Z and Supp A′

T = Supp AT.



340 CAUCHER BIRKAR

Step 4. Now run an LMMP/Z on KY + BY + λiCY + A′
Y with scaling of some ample/Z

divisor where A′
Y is the birational transform of A′

T. By Step 2, the LMMP consists of
only a sequence of log flips which are flops with respect to (Y/Z,BY), and it terminates
for reasons similar to Step 3. Actually, the LMMP terminates on T because KT + BT +
λiCT + A′

T is ample/Z. So, by replacing Y with T we could from now on assume that
KY + BY + λiCY is nef/Z. In particular, KY + BY + λjCY is nef/Z for any j ≥ i since
λj ≤ λi and since KY + BY is nef/Z.

Step 5. Pick j > i so that λj < λj−1 and let r : U → Xj and s : U → Y be a common
resolution. Then,

r∗(KXj
+ Bj + λjCj) = s∗(KY + BY + λjCY)

r∗(KXj
+ Bj) � s∗(KY + BY)

r∗Cj � s∗CY

where the first equality holds because both KXj
+ Bj + λjCj and KY + BY + λjCY are

nef/Z and Xj and Y are isomorphic in codimension one, the second inequality holds by
Remark 2.6 because KY + BY is nef/Z but KXj

+ Bj is not nef/Z, and the third claim
follows from the other two. Now

r∗(KXj
+ Bj + λj−1Cj) = r∗(KXj

+ Bj + λjCj) + r∗(λj−1 − λj)Cj

� s∗(KY + BY + λjCY) + s∗(λj−1 − λj)CY

= s∗(KY + BY + λj−1CY)

However, since KXj
+ Bj + λj−1Cj and KY + BY + λj−1CY are both nef/Z, we have

r∗(KXj
+ Bj + λj−1Cj) = s∗(KY + BY + λj−1CY)

This is a contradiction and the sequence of log flips terminates as claimed. �

The reader may want to have a look at Remark 2.9 before reading the rest of this
section.

Proof of Theorem 4.1.

Step 1. In view of Lemma 4.2 it is enough to treat the case (iii). We can replace B
with B + λC hence assume that λ = 0. Moreover, we may assume that the LMMP
consists of only a sequence Xi ��� Xi+1/Zi of log flips starting with (X1/Z,B1) =
(X/Z,B). Pick i so that λi > λi+1. Then, Supp Ci+1 does not contain any lc centre
of (Xi+1/Z,Bi+1 + λi+1Ci+1) because (Xi+1/Z,Bi+1 + λiCi+1) is lc. Thus, by replacing
(X/Z,B) with (Xi+1/Z,Bi+1) and C with λi+1Ci+1 we may assume that no lc centre
of (X/Z,B + C) is inside Supp C. Moreover, since there are finitely many lc centres
of (X/Z,B), perhaps after truncating the sequence, we can assume that no lc centre is
contracted in the sequence. We will reduce the problem to the situation of Lemma 4.3.
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Step 2. By assumptions, there is a log minimal model (Y/Z,BY) for (X/Z,B). Let
φ : X ��� Y/Z be the corresponding birational map. Let f : W → X and g : W → Y
be a common log resolution of (X/Z,B + C) and (Y/Z,BY + CY) where CY is the
birational transform of C. By Remark 2.6,

E := f ∗(KX + B) − g∗(KY + BY)

is effective and exceptional/Y. Let BW be the birational transform of B plus the reduced
exceptional divisor of f , and let CW be the birational transform of C. Pick a sufficiently
small δ ≥ 0. Since (X/Z,B) is lc,

E′ := KW + BW − f ∗(KX + B)

is effective and exceptional/X. Actually, E′ is also exceptional/Y because if D is a com-
ponent of E′ which is not exceptional/Y, then

0 = a(D,Y,BY) ≥ a(D,X,B) ≥ 0

which is a contradiction since a(D,X,B) = 0 means that D cannot be a component
of E′.
On the other hand, since Y is Q-factorial, there is an exceptional/Y R-divisor F on W
such that CW + F ≡ 0/Y. So,

KW + BW + δCW ≡ E + E′ + δCW ≡ E + E′ − δF/Y

and since δ is sufficiently small, the support of E + E′ is contained in the support of
the effective part of E + E′ − δF. Now by Theorem 3.5, if we run an LMMP/Y on
KW +BW + δCW with scaling of an ample divisor, then we arrive at a model V on which
EV + E′

V = 0, that is, E + E′ is contracted over V.
Step 3. We prove that φ : X ��� Y does not contract any divisors. Assume otherwise

and let D be a prime divisor on X contracted by φ. Then D∼ the birational trans-
form of D on W is a component of E because by definition of log minimal models
a(D,X,B) < a(D,Y,BY). Now, in Step 2 take δ = 0. The LMMP contracts D∼ since
D∼ is a component of E and E is contracted. This is not possible as we can see as follows.
Since (X/Z,B + λiC) is lc,

KW + BW + λiCW − f ∗(KX + B + λiC)

is effective and exceptional/X. On the other hand, (Xi/Z,Bi +λiCi) is a weak lc model
of (X/Z,B +λiC) hence f ∗(KX + B +λiC) ≥ M where M is the pullback of KXi

+ Bi +
λiCi under W ��� Xi , that is,

M = p∗q∗(KXi
+ Bi + λiCi)
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for some common resolution p : W′ → W and q : W′ → Xi . Therefore,

KW + BW + λiCW = M + G

where G is effective and exceptional/X. Since KXi
+Bi +λiCi is nef/Z, it is (numerically)

a limit of movable/Z R-divisors hence M is a limit of movable/Z R-divisors. If λi is
sufficiently small then W ��� V (of Step 2) is a partial LMMP/Z on KW + BW + λiCW.
But since G is exceptional/X and since D is a divisor on X, D∼ is not a component of G
hence D∼ cannot be contracted over V by the LMMP of Step 2, a contradiction. Thus
φ does not contract divisors.

Step 4. We will construct a Q-factorial dlt blowup of (Y/Z,BY) as follows. In Step 2, take
δ > 0 which is sufficiently small by assumptions. Let Y′ be the model V obtained. Since
X ��� Y does not contract divisors, by construction, each prime exceptional/Y divisor
on Y′ appears with coefficient one in BY′ . So, in view of

KY′ + BY′ ≡ EY′ + E′
Y′ = 0/Y

we deduce that KY′ +BY′ is the pullback of KY +BY and that (Y′/Z,BY′) is a Q-factorial
dlt blowup of (Y/Z,BY). Moreover, (Y′/Z,BY′ + δCY′) is dlt.

Step 5. We will construct a Q-factorial dlt blowup of (X/Z,B) as follows. Since
(X/Z,B + C) is lc,

E′′ := KW + BW + CW − f ∗(KX + B + C)

is effective and exceptional/X. Run an LMMP/X on KW + BW + CW with scaling
of an ample/X divisor. Since KW + BW + CW ≡ E′′/X, by Theorem 3.4, the LMMP
terminates on a model X′. In particular, (X′/Z,B′ + C′) is a Q-factorial dlt blowup
of (X/Z,B + C) where B′ is the pushdown of BW and C′ is the pushdown of CW.
Moreover, the LMMP does not contract an exceptional prime divisor D of W → X iff
a(D,X,B + C) = 0. Since Supp C does not contain any lc centre of (X/Z,B + C) by
Step 1, the LMMP does not contract an exceptional prime divisor D of W → X iff
a(D,X,B) = 0. Therefore, (X′/Z,B′) is a Q-factorial dlt blowup of (X/Z,B) and C′ is
the pullback of C. Note that the prime exceptional divisors of φ−1 are not contracted/X′

since their log discrepancies with respect to (X/Z,B) are all 0.
Step 6. By Remark 2.9(1), we can lift the sequence Xi ��� Xi+1/Zi to an LMMP/Z on
KX′ + B′ with scaling of C′ if the property (∗) of the remark holds. If (∗) holds, then
continue from the next paragraph. But if (∗) does not hold for some i, then we can
replace our sequence Xi ��� Xi+1/Zi with the LMMP in (∗) and repeat Steps 1–5
again. In particular, we could assume that each (Xi/Z,Bi) is Q-factorial dlt. But in that
case, by Remark 2.9 (2), (∗) holds so we will not need to deal with (∗) again.
From now on we assume that we have lifted Xi ��� Xi+1/Zi to an LMMP/Z on KX′ +B′

with scaling of C′. We show that Y′ ��� X′ does not contract divisors. Suppose that D
is a prime divisor on Y′ which is exceptional/X′. If D is not exceptional/Y, then D is
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an exceptional divisor of φ−1 and this contradicts the last sentence of Step 5. Thus,
D is exceptional/Y. But since (Y′/Z,BY′) is a Q-factorial dlt blowup of (Y/Z,BY),
a(D,Y,BY) = 0 which in turn implies that a(D,X,B) = 0 and again Step 5 gives a
contradiction.
We show that X′ ��� Y′ also does not contract divisors. By Step 3, it is enough to show
that (Y′/Z,BY′) is a log minimal model of (X′/Z,B′). By construction, BY′ is the push-
down of B′. So, it remains to compare log discrepancies. Assume that D is a prime divi-
sor on X′ which is exceptional/Y′. Since X ��� Y does not contract divisors by Step 3,
D is exceptional/X. In particular, a(D,X′,B′) = a(D,X,B) = 0. If a(D,Y′,BY′) = 0,
then a(D,Y,BY) = 0 hence the birational transform of D cannot be a component of
E + E′ + δCW in Step 2 so it could not be contracted over Y′ which is a contradiction.
Therefore, a(D,Y′,BY′) > 0. Thus, for every prime exceptional divisor of X′ ��� Y′

we have shown that a(D,X′,B′) < a(D,Y′,BY′) which implies that (Y′/Z,BY′) is a log
minimal model of (X′/Z,B′) by construction.

Step 7. Let A ≥ 0 be a reduced divisor on W whose components are general ample/Z
divisors such that they generate N1(W/Z). By Step 5, X′ is obtained by running some
LMMP on KW + BW + CW. This LMMP is a partial LMMP on KW + BW + CW + εA
for any sufficiently small ε > 0. In particular, (X′/Z,B′ + C′ + εA′) is dlt where A′ is
the birational transform of A. For similar reasons, we can choose ε so that (Y′/Z,BY′ +
δCY′ + εAY′) is also dlt. Now apply Lemma 4.3 to the LMMP/Z on KX′ + B′ with
scaling of C′ of Step 6. �

5. Shokurov bss-ampleness, finite generation, and the klt case

The next theorem shows that more general versions of Theorem 1.1 and The-
orem 1.4 hold when (X/Z,B) has a finitely generated algebra R(X/Z,KX + B). The
result is an easy consequence of Lemmas 3.2 and 3.3 and it should be considered as a
very special case of Shokurov’s attempt in relating bss-ampleness and finite generation
[31, Theorem 3.18] (see also [25], [13] for more recent adaptations). Though we are
not using Shokurov’s terminology of bss-ample divisors but the next theorem is saying
that finite generation implies bss-ampleness in the specific situation we are concerned
with. Shokurov proves that in general finite generation together with the so-called global
almost generation property implies bss-ampleness.

Theorem 5.1 (=Theorem 1.5). — Let (X/Z,B) be a Q-factorial dlt pair where B is a

Q-divisor and f : X → Z is surjective. Assume further that R(X/Z,KX + B) is a finitely generated

OZ-algebra, and that (KX + B)|Xη
∼Q 0 where Xη is the generic fibre of f . Then, any LMMP/Z

on KX + B with scaling of an ample/Z divisor terminates with a good log minimal model.

Proof. — We can assume that f is a contraction. Run an LMMP/Z on KX + B
with scaling of some ample/Z divisor. Since termination and semi-ampleness/Z are both
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local on Z, we can assume that Z is affine, say Spec R. By Theorem 4.1, it is enough to
show that (X/Z,B) has a good log minimal model. Let I be a positive integer so that
I(KX + B) is Cartier. Since R(X/Z,KX + B) is a finitely generated R-algebra, perhaps
after replacing I with a multiple, there exist a log resolution g : W → X, a divisor E ≥ 0
and a free divisor F on W such that

Fix g∗mI(KX + B) = mE and Mov g∗mI(KX + B) = mF

for every m > 0 (cf. [31] or [7, Theorem 4.3]). Let h : W → T/Z be the contraction
defined by |F|. Then, since (KX + B)|Xη

∼Q 0, the map T → Z is birational and E is
vertical/T.

Choose a boundary BW so that (W/Z,BW) is a log smooth model of (X/Z,B) of
type (1) as in Definition 2.3, that is, BW is the birational transform of B plus the reduced
exceptional divisor of g. We can write

I(KW + BW) = g∗I(KX + B) + E′

where E′ ≥ 0 is exceptional/X. So,

Fix mI(KW + BW) = mE + mE′ and Mov mI(KW + BW) = mF

Run the LMMP/T on KW + BW with scaling of some ample/T divisor. Since (KX +
B)|Xη

∼Q 0, there is a non-empty open subset U ⊆ Z so that KX + B ∼Q 0 over U and
T → Z is an isomorphism over U. So, over U, (X/Z,B) is a weak lc model of (W/Z,BW)

hence by Corollary 3.7, (W/Z,BW) has a log minimal model over U (which is just a suit-
able Q-factorial dlt blowup of (X/Z,B)). Thus, by Theorem 4.1, the LMMP terminates
over U. By construction, over U we have

I(KW + BW) ∼ E + E′ + F ∼ E + E′

so we reach a model Y′ on which EY′ + E′
Y′ ∼Q 0 over U, in particular, EY′ + E′

Y′ is
vertical/T. On the other hand, since W ��� Y′ is a partial LMMP/T on KW + BW,

Fix mI(KY′ + BY′) = Fix
(
mEY′ + mE′

Y′ + mFY′
) = mEY′ + mE′

Y′

hence by Lemma 3.2, EY′ + E′
Y′ is very exceptional/T. Now, by Theorem 3.4, there is an

LMMP/T on KY′ + BY′ which ends up with a log minimal model (Y/T,BY) on which

I(KY + BY) ∼Q EY + E′
Y = 0/T

In particular, I(KY + BY) ∼Q FY/Z. Thus, KY + BY is semi-ample/Z and (Y/Z,BY) is a
good log minimal model of (W/Z,BW) hence of (X/Z,B) by Remark 2.8. �
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Theorem 5.2. — We have the following for klt pairs:

(1) Let (X/Z,B) be a Q-factorial klt pair where B is a Q-divisor and f : X → Z is sur-

jective. Assume that (KX + B)|Xη
∼Q 0 where Xη is the generic fibre of f . Then, any

LMMP/Z on KX + B with scaling of an ample/Z divisor terminates with a good log

minimal model.

(2) Theorems 1.1 and 1.4 hold when (X/Z,B) is klt.

Proof. — (1) By [9], R(X/Z,KX + B) is a finitely generated OZ-algebra so we can
apply Theorem 5.1.

(2) Suppose that (X/Z,B) is klt under the assumptions of Theorem 1.1. By taking
a Q-factorial dlt blowup as in Corollary 3.6 we can assume that X is Q-factorial. If A is
not vertical/Z, then KX + B is not pseudo-effective/Z hence (X/Z,B) has a Mori fibre
space by [9]. So, we can assume that A is vertical/Z. Then, (KX + B)|Xη

∼Q 0 where Xη

is the generic fibre of f . Now use (1). We can treat Theorem 1.4 in a similar way. Note
that here we do not need ACC for lc thresholds. �

Though the last theorem settles the klt case of Theorems 1.1 and 1.4 but we prove
further results in this direction as we will need them to deal with the lc case (e.g., proof
of Lemma 5.5). The next two theorems unfortunately do not simply follow from Theo-
rem 5.2 because the boundaries that appear are not necessarily rational.

Theorem 5.3. — Let (X/Z,B) be a klt pair where f : X → Z is surjective. Assume further

that there is a contraction g : X → S/Z such that KX + B ∼R 0/S and that S → Z is generically

finite. Then, (X/Z,B) has a good log minimal model. (Note that B is not necessarily a Q-divisor.)

Proof. — As mentioned above we cannot apply Theorem 5.2 because B is not
assumed to be rational. However, the proof given below is somewhat similar to the proof
of Theorem 5.1.

We can assume that f is a contraction hence S → Z is birational. Moreover, by
taking a Q-factorial dlt blowup as in Corollary 3.6 we can assume that X is Q-factorial.
Since KX + B ∼R 0/S, by Ambro [3] and Fujino-Gongyo [16, Theorem 3.1], there is a
boundary BS on S such that

KX + B ∼R g∗(KS + BS)

and such that (S/Z,BS) is klt and of general type. So, by [9], there is a weak lc model
(T/Z,BT) for (S/Z,BS) obtained by running an LMMP/Z on KS + BS with scaling
of some ample/Z divisor. Moreover, since T ��� S does not contract divisors, there are
non-empty open subsets U ⊆ S and V ⊆ T such that the induced map U ��� V is an
isomorphism and such that codim(T \ V) ≥ 2.

Take a log smooth model (W/Z,BW) of (X/Z,B) of type (2) as in Definition 2.3
using a log resolution e : W → X. Then, (W/Z,BW) is klt and

KW + BW = e∗(KX + B) + E
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where E ≥ 0 is exceptional/X, and any log minimal model of (W/Z,BW) is also a log
minimal model of (X/Z,B) by Remark 2.8. Moreover, we can assume that the induced
maps φ : W ��� S and ψ : W ��� T are both morphisms. Run an LMMP/T on KW +BW

with scaling of some ample/T divisor. Since KX + B ∼R 0 over U, (X/Z,B) is a log
minimal model of (W/Z,B) over U = V hence by Theorem 4.1 the LMMP terminates
over V: we reach a model Y′ such that KY′ + BY′ ∼R 0 over V, and the remaining steps
of the LMMP contract extremal rays only over T \ V.

Let π be the induced map W ��� Y′. Let M ⊆ X, N ⊆ W, and O ⊆ Y′ be the
inverse images of U = V. Then, as mentioned (M/V,B|M) is a log minimal model of
(N/V,BW|N) hence M and O are isomorphic in codimension one. Thus, E|N is con-
tracted over O. So, in particular, EY′ = π∗E is a divisor on Y′ which is mapped into T \ V
hence it is very exceptional/T. On the other hand, since (T/Z,BT) is a weak lc model of
(S/Z,BS),

φ∗(KS + BS) = ψ∗(KT + BT) + G

where G ≥ 0 is very exceptional/T because G is mapped into T \ V. Thus,

KY′ + BY′ = π∗(KW + BW) = π∗
(
e∗(KX + B) + E

)

= π∗e∗(KX + B) + π∗E

∼R π∗φ∗(KS + BS) + π∗E

= π∗ψ∗(KT + BT) + π∗G + π∗E

By construction, π∗G +π∗E ≥ 0 is very exceptional/T. So, by Theorem 3.4, there
is an LMMP/T on KY′ + BY′ with scaling of some ample/T divisor which ends up with
a model Y on which KY + BY ∼R 0/T hence

KY + BY ∼R ν∗(KT + BT)

where ν : Y → T is the induced morphism. In particular, KY + BY is semi-ample/Z as
KT + BT is semi-ample/Z. So, (Y/Z,BY) is a good log minimal model of (W/Z,BW)

hence of (X/Z,B). �

Theorem 5.4. — Let (X/Z,B) be a klt pair where B is a Q-divisor and f : X → Z is

surjective. Assume further that (KX + B)|F ∼Q 0 for the generic fibre F of f . If KX + B + H is klt

and nef/Z for some Q-divisor H ≥ 0, then the LMMP/Z on KX + B with scaling of H terminates

if either

(1) B is big/Z or H is big/Z, or

(2) H is vertical/Z and λ �= λj for any j where λj are the numbers appearing in the LMMP

with scaling (as in Definition 2.4) and λ = limi→∞ λi .
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Proof. — We can assume that f is a contraction. By Theorem 5.2, (X/Z,B) has a
good log minimal model. Assume that condition (1) holds. If B is big/Z, the termination
follows from [9]. If H is big/Z, and if λ > 0, then again the termination follows from [9]
as we can replace B with B + λH. If λ = 0, use Theorem 4.1.

Now assume that condition (2) holds. Since B,H are Q-divisors, each λi is rational.
However, at this stage we do not know whether λ is rational. So, we cannot apply Theo-
rem 5.2 to get a log minimal model of (X/Z,B + λH) to allow us to apply Theorem 4.1.

We may assume that the LMMP consists of only a sequence Xi ��� Xi+1/Zi of
log flips and that X1 = X. Moreover, by Remark 2.9(1), (2), we can lift the sequence to
the Q-factorial situation hence assume that Xi are Q-factorial. Now by Theorem 5.2,
(X/Z,B + λ1H) has a good log minimal model. But then every log minimal model of
(X/Z,B + λ1H) is good by Remark 2.7. Since KX + B + λ1H is nef/Z, (X/Z,B + λ1H)

is a log minimal model of itself hence KX + B + λ1H is semi-ample/Z. Let g : X → T
be the contraction associated to it. Since H is vertical/Z and (KX + B)|F ∼Q 0, the map
T → Z is birational so the generic fibre of g and f are the same. By Theorem 5.2, some
LMMP/T on KX + B terminates with a good log minimal (Y/T,BY) of (X/T,B). Let
h : Y → S/T be the contraction associated to KY + BY. Since

KX + B + λ1H ∼Q 0/T

we have

KY + BY + λ1HY ∼Q 0/S

This combined with KY + BY ∼Q 0/S implies that HY ∼Q 0/S. In particular, since KY +
BY is semi-ample/T, the map S → T is birational otherwise HY would be numerically
negative on some curves not contained in HY which is not possible as HY ≥ 0. Moreover,

KY + BY + λHY ∼R 0/S

Therefore, by Theorem 5.3, (Y/Z,BY + λHY) has a log minimal model which is
also a log minimal model of (X/Z,B + λH). Now the termination follows from The-
orem 4.1. �

An application of the above theorems concerns a certain LMMP with scaling
which will be used in the proof of Lemmas 6.1 and 7.1 and Proposition 7.2.

Lemma 5.5 (cf. [6, Lemma 4.1]). — Let (X/Z,B) be a Q-factorial lc pair such that

f : X → Z is surjective, B is a Q-divisor, and (KX + B)|F ∼Q 0 where F is the generic fibre

of f . Moreover, assume that

• every lc centre of (X/Z,B) is contained in Supp�B	,

• KX + B + cC is lc and nef/Z for some Q-divisor C ≥ 0 and some rational number c > 0,

• KX + B ∼Q P + C/Z for some Q-divisor P ≥ 0 with Supp P = Supp�B	.
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Then, we can run an LMMP/Z on KX +B with scaling of cC so that λ := limi→∞ λi = 0 where λi

are the numbers that appear in the LMMP. (Note that we are not claiming that the LMMP terminates.)

Proof.

Step 1. Since

(P + C)|F ∼Q (KX + B)|F ∼Q 0

both P and C are vertical/Z, in particular, �B	 is also vertical/Z. On the other hand,
for each rational number t ∈ (0,1] we can write

KX + B + tcC ∼Q (1 + ε)(KX + B) − εP − εC + tcC

∼Q (1 + ε)

(
KX + B − ε

1 + ε
P + tc − ε

1 + ε
C

)/
Z

for some sufficiently small rational number ε > 0. Under our assumptions,
(

X,B − ε

1 + ε
P + tc − ε

1 + ε
C

)

is klt and
(

KX + B − ε

1 + ε
P + tc − ε

1 + ε
C

)∣∣∣∣
F

= (KX + B)|F ∼Q 0

In particular, if KX + B + tcC is nef/Z, then

KX + B − ε

1 + ε
P + tc − ε

1 + ε
C

is nef/Z hence semi-ample/Z by Theorem 5.2; this in turn implies that KX + B + tcC is
semi-ample/Z. We will use this observation on X and on the birational models that will
be constructed.

Step 2. Put Y1 := X, B1 := B, and C1 := C. Let λ1 ≥ 0 be the smallest number such
that KY1 + B1 + λ1cC1 is nef/Z. We may assume that λ1 > 0. We will show that λ1 is
rational. Pick a rational number λ′ ∈ (0, λ1). In view of Step 1, there is a boundary �

and a rational number ε > 0 such that (Y1/Z,�) is klt and

KY1 + B1 + λ′cC1 ∼Q (1 + ε)(KY1 + �)/Z

Now s = λ1−λ′
1+ε

is the smallest number such that KY1 + � + scC1 is nef/Z. By [5,
Lemma 3.1], s is rational which means that λ1 is also rational (note that we did not
apply [5, Lemma 3.1]directly to (Y1/Z,B1) because this pair may not be dlt).
By Step 1, KY1 + B1 + λ1cC1 is semi-ample/Z; let Y1 → V1/Z be the associated con-
traction. Run the LMMP/V1 on KY1 + B1 + tcC1 with scaling of an ample/V1 divisor,
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for some rational number t ∈ (0, λ1). This terminates with a good log minimal model of
(Y1/V1,B1 + tcC1) by Step 1 and by Theorem 5.2. The LMMP is also an LMMP/V1

on KY1 + B1 with scaling of λ1cC1 because

KY1 + B1 + tcC1 ∼Q −(λ1 − t)cC1 ∼Q
(λ1 − t)

λ1
(KY1 + B1)/V1

So, we get a model Y2 such that KY2 + B2 is semi-ample/V1 where B2 is the birational
transform of B1 (similar notation will be used for other divisors and models). Now since
KY2 + B2 + λ1cC2 is the pullback of some ample/Z divisor on V1,

KY2 + B2 + λ1cC2 + δ(KY2 + B2)

is semi-ample/Z for some sufficiently small δ > 0. Put it in another way, KY2 +B2 +τ cC2

is semi-ample/Z for some rational number τ < λ1. We can consider Y1 ��� Y2 as a
partial LMMP/Z on KY1 + B1 with scaling of cC1. We can continue as before. That
is, let λ2 ≥ 0 be the smallest number such that KY2 + B2 + λ2cC2 is nef/Z, and so on
(note that λ1 > τ ≥ λ2). This process is an LMMP/Z on KX + B with scaling of cC. The
numbers λi that appear in the LMMP satisfy λ := limi→∞ λi �= λj for any j.

Step 3. In Step 2, we constructed an LMMP/Z on KX + B with scaling of cC. After
modifying the notation, we may assume that the LMMP consists of only a sequence
Xi ��� Xi+1/Zi of log flips, X1 = X, and that KXi

+ Bi + λicCi is nef/Z but numerically
trivial/Zi .
If λ > 0, then the LMMP is also an LMMP/Z on KX + B + λ′cC with scaling of (1 −
λ′)cC for some rational number λ′ ∈ (0, λ). As in Step 1, there is a rational number
ε > 0 and a klt (X/Z,�) such that

KX + B + λ′cC ∼Q (1 + ε)(KX + �)/Z

So, we can consider the LMMP as an LMMP/Z on KX + � with scaling of 1−λ′
1+ε

cC.
Since (X/Z,� + 1−λ′

1+ε
cC) is klt and C is vertical/Z, Theorem 5.4(2) implies that the

LMMP terminates. So, λ = 0. �

6. Proof of Theorem 1.1 and Corollary 1.2

Corollary 1.2 follows from Theorem 1.1 easily (see the end of this section). We
divide the proof of Theorem 1.1 into two cases. One case is when every lc centre of
(X/Z,B) is vertical/Z (the vertical case) and the other case is when some lc centre is
horizontal/Z (the horizontal case). Each case needs a different kind of argument. Here
we give a brief account of the main ideas (a very similar line of thought is used to prove
Theorem 1.4).

Suppose that (X/Z,B + A) is as in the statement of Theorem 1.1. By taking a
Q-factorial dlt blowup we can assume that (X/Z,B) is Q-factorial dlt. First note that if
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A intersects the generic fibre of X → Z, then KX + B is not pseudo-effective/Z and the
result follows from [9]. So, we could assume that A is vertical/Z.

Now assume that every lc centre of (X/Z,B) is vertical/Z which means that �B	
is vertical/Z. By Theorem 4.1, the termination statement in Theorem 1.1(3) holds for
(X/Z,B) if statement (1) holds. Thus, we only need to construct a good log minimal
model of (X/Z,B). Pick a sequence t1 > t2 > · · · of sufficiently small positive rational
numbers such that limi→∞ ti = 0. Then, (X/Z,B − ti�B	) is a klt pair for each i. So,
by Theorem 5.2, for each i, we get a good log minimal model (Yi/Z,BYi

− ti�BYi
	) of

(X/Z,B − ti�B	) by running some LMMP/Z on KX + B − ti�B	.
Assume that Yi = Yi+1 for every i � 0 and let Y be this common model. Then, a

simple calculation on log discrepancies show that (Y/Z,BY) is actually a weak lc model
of (X/Z,B) from which we get a log minimal model as in Corollary 3.7. In general the Yi

may be different but at least we could assume that they are all isomorphic in codimension
one. In particular, if �BY1	 = 0, then we could replace each Yi with Y1 and proceed as
before. We may then assume that �BY1	 �= 0.

Since KY1 + BY1 − t1�BY1	 is semi-ampleness/Z,

KY1 + BY1 − t1�BY1	 ∼Q CY1/Z

for some CY1 ≥ 0 so that KY1 + BY1 + CY1 is lc. If t′i = ti
t1−ti

and i �= 1, then

KY1 + BY1 + t′i CY1 ∼Q

(
1 + t′i

)(
KY1 + BY1 − ti�BY1	

)
/Z

We can make sure that t′i ≤ 1 for every i > 1. Next we run an LMMP/Z on KY2 +BY2 with
scaling of t′2CY2. We use special termination (see Lemma 6.1) to show that the LMMP
terminates with a model Y . We can proceed as before by replacing each Yi with Y, for
i � 0 (see Proposition 6.2 for more details). Finally, we will use Theorem 1.7 to show that
the log minimal model we have constructed is actually good (see Proposition 6.3).

Now the horizontal case: assume that some lc centre of (X/Z,B) is horizontal/Z,
that is, some component of �B	 is horizontal/Z. The above arguments do not work since
KX + B − ti�B	 is not pseudo-effective/Z so we do not have a log minimal model of
(X/Z,B − ti�B	). However, (X/Z,B − ti�B	) has a Mori fibre space. Assume that for
some i we already have a Mori fibre structure on X, that is, we have a (KX + B − ti�B	)-
negative extremal contraction g : X → T/Z which is of fibre type, that is, dim X > dim T.
The condition KX + B + A ∼Q 0/Z and the pseudo-effectivity of KX + B ensures that
KX + B ∼Q 0/T, in particular, KX + B ∼Q g∗M/Z for some Q-Cartier divisor M on T.
Now there is a component of �B	, say S, which maps onto T since �B	 is ample/T. By
applying induction to

KS + BS + AS := (KX + B + A)|S
we deduce that (S/Z,BS) has a good log minimal model hence the algebra R(S/Z,

KS + BS) is finitely generated over OZ. It turns out that this implies that R(T/Z,M)
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is finitely generated (see Lemma 6.4) hence R(X/Z,KX + B) is also finitely generated.
Next, we can apply Theorem 5.1 (see Lemma 6.5). In general, there may not be any Mori
fibre structure on X but there is such a structure on some birational model of X which
can be used in a somewhat similar way (see Proposition 6.6 and Lemma 6.7).

The vertical case. — In this subsection, we deal with Theorem 1.1 in the vertical
case, i.e. when every lc centre of (X/Z,B) is vertical/Z, in particular, when X → Z is bi-
rational. First we prove a kind of special termination which will enable us to do induction
on dimension. It is helpful to recall Remarks 2.9 and 2.10 before reading the proof of the
next result.

Lemma 6.1. — Let (X/Z,B + A) be a lc pair of dimension d as in Theorem 1.1 such that

(X/Z,B) satisfies the assumptions of Lemma 5.5. Then, assuming Theorem 1.1 in dimension d − 1,

there is an LMMP/Z on KX + B with scaling of cC which terminates.

Proof. — By Lemma 5.5, there is an LMMP/Z on KX + B with scaling of cC such
that λ = limi→∞ λi = 0. We can assume that the LMMP consists of only log flips. Let
(X′/Z,B′) be a Q-factorial dlt blowup of (X/Z,B) and let C′ be the birational transform
of C. By Remark 2.9(1), (2), we can lift the above LMMP/Z on KX + B to an LMMP/Z
on KX′ + B′ with scaling of cC′. We could assume that the latter LMMP consists of only
log flips.

Let S be a component of �B′	 and let T be the normalisation of the image of S
in Z. Put KS + BS := (KX′ + B′)|S and let (S′,BS′) be a Q-factorial dlt blowup of (S,BS).
By construction,

KS′ + BS′ + AS′ ∼Q 0/T

where AS′ is the pullback of A. By Remark 2.10, we may assume that the LMMP on
KX′ +B′ induces an LMMP/T on KS′ +BS′ with scaling of cCS′ where CS′ is the pullback
of C.

Since λ = limi→∞ λi = 0, KS′ + BS′ is pseudo-effective/T which means that AS′ is
vertical/T. By induction, (S′/T,BS′) has a log minimal model. Thus, by Theorem 4.1,
the above LMMP/T on KS′ + BS′ terminates. Thus, the LMMP on KX′ + B′ terminates
near S. The same argument applied to each component of �B′	 shows that the LMMP
on KX′ + B′ terminates near �B′	.

By assumptions, KX + B ∼Q P + C/Z where P ≥ 0 and Supp P = Supp�B	. More-
over, Supp�B	 contains all the lc centres of (X/Z,B). Thus, there is a Q-divisor P′ ≥ 0
with Supp P′ = Supp�B′	 such that KX′ + B′ ∼Q P′ + C′/Z. So, each extremal ray con-
tracted by the LMMP on KX′ + B′ intersects P′. But the LMMP terminates near �B′	
which in turn implies that it terminates near P′ therefore it terminates everywhere. �
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Next we use the above special termination to derive parts (1) and (3) of Theo-
rem 1.1, in the vertical case, from Theorem 1.1 in lower dimensions. The semi-ampleness
statement in part (2) will be proved afterwards using Theorem 1.7.

Proposition 6.2. — Theorem 1.1 in dimension d −1 implies Theorem 1.1(1), (3) in dimension

d in the vertical case, i.e. when every lc centre of (X/Z,B) is vertical/Z.

Proof.

Step 1. After taking a Q-factorial dlt blowup using Corollary 3.6 we may assume that
(X/Z,B) is Q-factorial dlt, in particular, �B	 is vertical/Z. Run an LMMP/Z on KX +B
with scaling of an ample/Z divisor. If KX +B is not pseudo-effective/Z, then the LMMP
ends up with a Mori fibre space by [9]. So, from now on we assume that KX + B is
pseudo-effective/Z. By Theorem 4.1, the LMMP terminates if we show that (X/Z,B)

has a log minimal model. Since KX + B ∼Q −A/Z, A|F = 0 where F is the generic fibre
of f : X → Z. Thus, A is vertical/Z and (KX + B)|F ∼Q 0.

Step 2. Let t1 > t2 > · · · be a sequence of sufficiently small rational numbers with
limi→∞ ti = 0. Each (X/Z,B − ti�B	) is klt and (KX + B − ti�B	)|F ∼Q 0 hence by The-
orem 5.2 each (X/Z,B − ti�B	) has a good log minimal model (Yi/Z,BYi

− ti�BYi
	) so

that Yi ��� X does not contract divisors. Moreover, Supp�BYi
	 contains all the lc cen-

tres of (Yi/Z,BYi
) because (Yi/Z,BYi

− ti�BYi
	) is klt which means that (Yi/Z,BYi

) is klt
outside Supp�BYi

	. Now, since A and �B	 are vertical/Z, there are vertical/Z Q-divisors
M,N ≥ 0 such that

KX + B ∼Q −A ∼Q M/Z and − �B	 ∼Q N/Z

and

KX + B − ti�B	 ∼Q M + tiN/Z

So, any prime divisor contracted by X ��� Yi is a component of M + N hence after
replacing the sequence with a subsequence we can assume that the maps X ��� Yi

contract the same divisors, i.e. Yi are isomorphic in codimension one.
Step 3. Assume that Yi = Yi+1 for i � 0, and let Y be this common model. Since KY +
BY − ti�BY	 is nef/Z for each i � 0, KY + BY is also nef/Z. For any prime divisor D on
X and each i � 0, we have

a(D,X,B) ≤ a
(
D,X,B − ti�B	) ≤ a

(
D,Y,BY − ti�BY	)

which implies that

a(D,X,B) ≤ lim
i→∞

a
(
D,Y,BY − ti�BY	) = a(D,Y,BY)

Therefore, (Y/Z,BY) is a weak lc model of (X/Z,B), and by Corollary 3.7, we can
construct a log minimal model of (X/Z,B) as required.
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Step 4. Assume that �BY1	 = 0. Then, KY1 + BY1 − ti�BY1	 is nef/Z for each i, and since
Y1 ��� Yi is an isomorphism in codimension one, we can replace each Yi with Y1 and
then apply Step 3.
From now on we assume that �BY1	 �= 0. Since (Y1/Z,BY1 − t1�BY1	) is klt and KY1 +
BY1 − t1�BY1	 is nef/Z, KY1 + BY1 − t1�BY1	 is semi-ample/Z by Theorem 5.2. Thus,

KY1 + BY1 − t1�BY1	 ∼Q CY1/Z

for some CY1 ≥ 0 such that KY1 + BY1 + CY1 is lc, in particular, Supp CY1 does not
contain any lc centre of (Y1/Z,BY1). For each rational number t we have

KY1 + BY1 + tCY1 ∼Q (1 + t)

(
KY1 + BY1 − tt1

1 + t
�BY1	

)/
Z

In particular, if t′i = ti
t1−ti

and i �= 1, then

KY1 + BY1 + t′i CY1 ∼Q

(
1 + t′i

)(
KY1 + BY1 − ti�BY1	

)
/Z

We may assume that 2ti ≤ t1 for each i > 1 which implies that t′i ∈ [0,1]. So,
(Yi/Z,BYi

+ t′i CYi
) is a weak lc model of (Y1/Z,BY1 + t′i CY1) for each i > 1. Note that

(Y1/Z,BY1 + t′i CY1) is lc because t′i ≤ 1.
Step 5. By construction,

KY2 + BY2 + AY2 ∼Q 0/Z

and every lc centre of (Y2/Z,BY2) is contained in �BY2	 because (Y2/Z,BY2 − t2�BY2	)
is klt. On the other hand, since A is vertical/Z, AY2 is also vertical/Z, and if we put
PY2 = t1�BY2	, then by construction

KY2 + BY2 ∼Q PY2 + CY2/Z

Now KY2 + BY2 + t′2CY2 is nef/Z, so by Lemma 6.1, we can run an LMMP/Z on
KY2 +BY2 with scaling of t′2CY2 which terminates on a model Y on which KY +BY +δCY

is nef/Z for any sufficiently small δ ≥ 0. Since Y2 ��� Yi is an isomorphism in codimen-
sion one, KYi

+ BYi
+ t′i CYi

is nef/Z, and limi→∞ t′i = 0, we deduce that KY2 + BY2 is
(numerically) a limit of movable/Z R-divisors. So, the LMMP does not contract any
divisors, i.e. Y ��� Yi is an isomorphism in codimension one.
For any i � 0, KY + BY + t′i CY is nef/Z which in turn implies that KY + BY − ti�BY	
is also nef/Z. Since Y ��� Yi is an isomorphism in codimension one and since
(Yi/Z,BYi

− ti�BYi
	) is a log minimal model of (X/Z,B − ti�B	), (Y/Z,BY − ti�BY	) is

a log minimal model of (X/Z,B − ti�B	), for every i � 0. By Step 3, we are done. �

Proposition 6.3. — Theorem 1.1 in dimension d − 1 implies Theorem 1.1 in dimension d in

the vertical case, i.e. when every lc centre of (X/Z,B) is vertical/Z.
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Proof. — After taking a Q-factorial dlt blowup using Corollary 3.6 we may assume
that (X/Z,B) is Q-factorial dlt, in particular, �B	 is vertical/Z. By Proposition 6.2, any
LMMP/Z on KX + B with scaling of an ample/Z divisor ends up with a Mori fibre space
or a log minimal model (Y/Z,BY). Assume that (Y/Z,BY) is a log minimal model. Let
g : W → X and h : W → Y be a common resolution, and let AY := h∗g∗A. Then,

KY + BY + AY = h∗g∗(KX + B + A) ∼Q 0/Z

where we use the fact that h∗g∗(KX + B) = KY + BY which in turn follows from the fact
that g∗(KX + B) − h∗(KY + BY) is exceptional/Y, by Remark 2.6. Also, (Y/Z,BY + AY)

is lc because

h∗(KY + BY + AY) = g∗(KX + B + A)

So, by replacing (X/Z,B+A) with (Y/Z,BY +AY) we may assume that KX +B is nef/Z.
It remains to prove that KX + B is semi-ample/Z.

Run an LMMP/Z on KX + B − ε�B	 with scaling of some ample/Z divisor, for
some sufficiently small rational number ε > 0. Since KX +B is nef/Z and KX +B+A ∼Q

0/Z, (KX + B)|F ∼Q 0 where F is the generic fibre of X → Z. Moreover, since �B	 is
vertical/Z,

(
KX + B − ε�B	)∣∣

F
∼Q 0

So, by Theorem 5.2, the LMMP terminates on a model X′ on which KX′ + BX′ − ε�BX′	
is semi-ample/Z. On the other hand, by [6, Proposition 3.2], KX + B is numerically
trivial on each extremal ray contracted by the LMMP. Therefore, KX′ +BX′ is also nef/Z.
Another application of Theorem 5.2 shows that KX′ + BX′ − δ�BX′	 is semi-ample/Z for
any δ ∈ (0, ε]. In addition, X ��� X′ is an isomorphism over the generic point of Z.

The pair (X′/Z,BX′) is Q-factorial and lc and (X′/Z,BX′ − ε�BX′	) is klt. If
�BX′	 = 0 we are done so we can assume that �BX′	 �= 0. Let (Y/Z,BY) be a Q-factorial
dlt blowup of (X′/Z,BX′) and let S be a component of T := �BY	. Let AY be the pullback
of AX′ . Then, from

KX′ + BX′ + AX′ ∼Q 0/Z

we get

KY + BY + AY ∼Q 0/Z

which implies that

KS + BS + AS ∼Q 0/Z
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where KS + BS := (KY + BY)|S and AS := AY|S. Now, by induction, KS + BS is semi-
ample/Z. On the other hand, if P := e∗�BX′	 and if δ > 0 is any sufficiently small rational
number, where e is the morphism Y → X′, then

KY + BY − δP = e∗
(
KX′ + BX′ − δ�BX′	)

is semi-ample/Z. Now, by Theorem 1.7, KY + BY is semi-ample/Z hence KX + B is also
semi-ample/Z. �

The horizontal case. — In this subsection, we deal with the horizontal case of The-
orem 1.1, that is, when some lc centre of (X/Z,B) is horizontal/Z. First, we need the
following result on finite generation of algebras.

Lemma 6.4. — Let f : X → Y/Z be a surjective morphism of normal varieties, projective over

an affine variety Z = Spec R, and L a Cartier divisor on Y. If R(X/Z, f ∗L) is a finitely generated

R-algebra, then R(Y/Z,L) is also a finitely generated R-algebra.

The lemma can be easily derived from the deep fact that OY splits f∗OX. However,
a simpler proof (suggested by the referee and independently by Kollár and Totaro) uses
only basic commutative algebra: R(X/Z, f ∗L) is integral over R(Y/Z,L) so the latter is
finitely generated since the former is assumed to be finitely generated (cf. [4, Proposi-
tion 7.8]). Okawa [27, Theorem 4.1] proves a more general statement.

We will reduce the horizontal case to the next lemma by finding a suitable Mori
fibre space.

Lemma 6.5. — Assume Theorem 1.1 in dimension d − 1. Let (X/Z,B + A) be of dimension

d as in Theorem 1.1 such that (KX + B)|F ∼Q 0 for the generic fibre F of f : X → Z. Moreover,

assume that there is a contraction g : X → T/Z such that

(1) KX + B ∼Q 0/T,

(2) some lc centre of (X/Z,B) is horizontal over T.

Then, (X/Z,B) has a good log minimal model.

Proof. — By replacing (X/Z,B) with a Q-factorial dlt blowup, we can assume that
(X/Z,B) is Q-factorial dlt and that there is a component S of �B	 which is horizontal/T.
Run an LMMP/Z on KX + B with scaling of some ample/Z divisor. Since termination
and semi-ampleness/Z are local on Z, we can assume that Z is affine, say Spec R. By
Theorem 4.1, the LMMP terminates with a good log minimal model if we prove that
(X/Z,B) has a good log minimal model.

By adjunction define KS + BS := (KX + B)|S and let AS := A|S. Then,

KS + BS + AS = (KX + B + A)|S ∼Q 0/Z
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and KS + BS ∼Q 0/T. Moreover, (KS + BS)|H ∼Q 0 where H is the generic fibre of the
induced morphism h : S → Z.

Since we are assuming Theorem 1.1 in dimension d − 1, (S/Z,BS) has a good log
minimal model. Therefore, if I(KS + BS) is Cartier for some I ∈ N, then R(S/Z, I(KS +
BS)) is a finitely generated R-algebra (cf. [7]). We can choose I such that I(KX + B) is
Cartier and such that I(KX +B) ∼ g∗L for some Cartier divisor L on T. So, I(KS +BS) ∼
e∗L where e : S → T is the induced morphism. Now, by Lemma 6.4, R(T/Z,L) is a
finitely generated R-algebra which in turn implies that R(X/Z, I(KX + B)) is a finitely
generated R-algebra since X → T is a contraction. Therefore, R(X/Z,KX + B) is a
finitely generated R-algebra and according to Theorem 5.1, (X/Z,B) has a good log
minimal model. �

Proposition 6.6. — Assume Theorem 1.1 in dimension d − 1, and assume Theorem 1.1 in

dimension d in the vertical case. Then, Theorem 1.1 holds in dimension d in the horizontal case, i.e.

when some lc centre of (X/Z,B) is horizontal over Z.

Proof. — We can assume that (X/Z,B) is Q-factorial dlt and that f : X → Z is a
contraction. By assumptions, some component of �B	 is horizontal/Z. Run an LMMP/Z
on KX + B with scaling of some ample/Z divisor. If A is not vertical/Z, then KX + B is
not pseudo-effective/Z hence the LMMP terminates with a Mori fibre space by [9]. So,
we can assume that A is vertical/Z hence (KX + B)|F ∼Q 0 where F is the generic fibre
of f : X → Z. By Theorem 4.1, the LMMP terminates with a good log minimal model if
we show that (X/Z,B) has a good log minimal model.

If ε > 0 is a sufficiently small rational number, then (X/Z,B − ε�B	) is klt
and KX + B − ε�B	 is not pseudo-effective/Z. Thus, by [9] there is a Mori fibre
space (Y/Z,BY − ε�BY	) for (X/Z,B − ε�B	) obtained by running an LMMP/Z on
KX + B − ε�B	. Let g : Y → T/Z be the KY + BY − ε�BY	-negative extremal contrac-
tion which defines the Mori fibre space structure, and let R be the corresponding extremal
ray. Since A is vertical/Z, AY is vertical over T. So, from

KY + BY + AY ∼Q 0/Z

we deduce that (KY + BY) · R = 0 which in turn implies that KY + BY ∼Q 0/T. Since
KY + BY − ε�BY	 is numerically negative/T, �BY	 �= 0. We could apply Lemma 6.5
to get a good log minimal model of (Y/Z,BY) but this does not give a good log mini-
mal model of (X/Z,B) because we cannot easily compare the singularities of (Y/Z,BY)

and (X/Z,B). We need to find a model which is closely related to both (Y/Z,BY) and
(X/Z,B).

Let (W/Z,BW) be a log smooth model of (X/Z,B) of type (1) as in Definition 2.3
such that W dominates Y, say by a morphism h : W → Y. We can write

KW + BW = h∗(KY + BY) + G
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where G is exceptional/Y. Run the LMMP/Y on KW +BW with scaling of some ample/Y
divisor. By Theorem 3.5, at some step of this LMMP we reach a model X′ on which
GX′ ≤ 0. Also,

KX′ + BX′ − GX′ ∼Q 0/T

as it is the pullback of KY + BY. Since KX + B is pseudo-effective/Z, KW + BW and
KX′ + BX′ are pseudo-effective over both Z and T. Thus, GX′ is vertical/T hence
KX′ + BX′ ∼Q 0 over the generic point of T. By construction, �BY	 is ample/T hence
in particular some of its components are horizontal/T. This implies that some compo-
nent of �BX′	 is horizontal/T because �BY	 is the pushdown of �BX′	.

Now by Lemma 6.7 below, we can run an LMMP/T on KX′ + BX′ which ends up
with a model X′′ on which KX′′ + BX′′ is semi-ample/T (to be more precise, in place of
X,Y,Z,B,A in the lemma use X′, Y, T, BX′ , −GX′ respectively). Since KX′ + BX′ ∼Q 0
over the generic point of T, X′ ��� X′′ is an isomorphism over the generic point of T. So,
if X′′ → T′′/T is the contraction associated to KX′′ + BX′′ , then T′′ → T is birational and
some component of �BX′′	 is horizontal/T′′.

On the other hand, if we denote X′ → Y by e, then we can write

KX′ + BX′ + AX′ = e∗(KY + BY + AY)

by taking AX′ := −GX′ + e∗AY. Thus,

KX′ + BX′ + AX′ ∼Q 0/Z

and

KX′′ + BX′′ + AX′′ ∼Q 0/Z

where AX′′ is the birational transform of AX′ . Since KX′′ + BX′′ is pseudo-effective/Z,
AX′′ is vertical/Z and KX′′ + BX′′ ∼Q 0 over the generic point of Z. Now we can apply
Lemma 6.5 (by taking X,Z,T,B,A in the lemma to be X′′,Z,T′′,BX′′,AX′′ respectively)
to get a good log minimal model of (X′′/Z,BX′′) which would give a good log minimal
model of (W/Z,BW) hence of (X/Z,B), by Remark 2.8. �

Lemma 6.7. — Assume Theorem 1.1 in dimension d in the vertical case. Let (X/Z,B + A)

be of dimension d as in Theorem 1.1 such that (KX +B)|F ∼Q 0 for the generic fibre F of f : X → Z.

Moreover, assume that

• (X/Z,B) is Q-factorial dlt,

• there exist contractions e : X → Y and g : Y → Z,

• e is birational, A is exceptional/Y, and Y is Q-factorial,

• D := KY + BY − ε�BY	 is klt and g is a D-negative extremal contraction where ε > 0
and BY := e∗B.
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Then, any LMMP/Z on KX + B with scaling of an ample/Z divisor terminates with a good

log minimal model of (X/Z,B).

Proof. — By Theorem 4.1, it is enough to prove that (X/Z,B) has a good log
minimal model. By adding a small multiple of A to B we can assume that Supp A ⊆
Supp B. Since e is birational, by Theorem 1.1 in dimension d in the vertical case, we
can assume that KX + B is actually semi-ample/Y. By replacing X with the lc model
of (X/Y,B) we can assume that KX + B is ample/Y (we may loose the Q-factorial dlt
property of (X/Z,B) but we will recover it later). Since −A is ample/Y, Supp A contains
all the prime exceptional/Y divisors on X. In particular,

Supp e∗�BY	 ⊆ (
Supp�B	 ∪ Supp A

) ⊆ Supp B

By replacing (X/Z,B) with a Q-factorial dlt blowup, we can again assume that (X/Z,B)

is Q-factorial dlt; note that this preserves the property Supp e∗�BY	 ⊆ Supp B.
Since A is exceptional/Y and KX + B + A ∼Q 0/Z, KY + BY ∼Q 0/Z. So, �BY	 is

ample/Z hence e∗�BY	 is semi-ample/Z. Thus, for a small rational number τ > 0 we can
write

KX + B = KX + B − τ e∗�BY	 + τ e∗�BY	 ∼Q KX + �/Z

where � is some rational boundary such that (X/Z,�) is klt: since (Y/Z,BY − ε�BY	)
is klt, �BY	 contains all the lc centres of (Y/Z,BY), in particular, the image of all the lc
centres of (X/Z,B); so, Supp e∗�BY	 contains all the components of �B	 hence (X/Z,B−
τ e∗�BY	) is klt and we can indeed find � with the required properties. By Theorem 5.2,
we can run an LMMP/Z on KX + � which ends up with a good log minimal model of
(X/Z,�) hence a good log minimal model of (X/Z,B). �

Proof of Theorem 1.1. — We argue by induction so in particular we may assume
that Theorem 1.1 holds in dimension d − 1. By Proposition 6.3, Theorem 1.1 holds in
dimension d in the vertical case. On the other hand, by Proposition 6.6, Theorem 1.1
also holds in dimension d in the horizontal case. �

Proof of Corollary 1.2. — First assume that B has rational coefficients. Since
−(KX + B) is ample/Y, we can find

A ∼Q −(KX + B)/Y

such that A ≥ 0, (X/Z,B + A) is lc, and

KX + B + A ∼Q 0/Y
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Now by Theorem 1.1, (X/Y,B) has a good log minimal model and its lc model gives the
(KX + B)-flip. When B is not rational, we can find rational lc divisors KX + Bi and real
numbers ri > 0 such that

KX + B =
∑

ri(KX + Bi) and
∑

ri = 1

Moreover, we can assume that −(KX + Bi) is ample/Y for every i. For each i, j there is
a rational number bi,j such that

KX + Bi ≡ bi,j(KX + Bj)/Y

By the cone theorem for lc pairs proved by Ambro [2] and Fujino [14],

KX + Bi ∼Q bi,j(KX + Bj)/Y

Therefore, there is a morphism X+ → Y which gives the flip of KX + Bi for every i. The
morphism also gives the (KX + B)-flip. �

7. Proof of Theorem 1.4

In this section, we give the proof of Theorem 1.4 which is parallel to the arguments
of section 6 with some small changes.

The vertical case. — First, we deal with Theorem 1.4 in the vertical case. It is helpful
to recall Remarks 2.9 and 2.10 before reading the proof of the next special termination
result.

Lemma 7.1. — Let (X/Z,B) be a lc pair of dimension d as in Theorem 1.4 such that it

satisfies the assumptions of Lemma 5.5. Then, assuming Conjecture 1.3 and Theorem 1.4 in dimension

d − 1, there is an LMMP/Z on KX + B with scaling of cC which terminates.

Proof. — By Lemma 5.5, there is an LMMP/Z on KX + B with scaling of cC such
that λ = limi→∞ λi = 0. We can assume that the LMMP consists of only log flips. Let
(X′/Z,B′) be a Q-factorial dlt blowup of (X/Z,B) and let C′ be the birational transform
of C. By Remark 2.9(1), (2), we can lift the above LMMP/Z on KX + B to an LMMP/Z
on KX′ + B′ with scaling of cC′. We could assume that the latter LMMP consists of only
log flips.

Let S be a component of �B′	 and let T be the normalisation of the image of S
in Z. Put KS + BS := (KX′ + B′)|S and let (S′,BS′) be a Q-factorial dlt blowup of (S,BS).
By Remark 2.10, we may assume that the LMMP on KX′ + B′ induces an LMMP/T
on KS′ + BS′ with scaling of cCS′ where CS′ is the pullback of C. On the other hand, by
assumptions, there is a non-empty open subset U ⊆ Z such that KX +B ∼Q 0 over U and
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such that the generic point of each lc centre of (X/Z,B) is mapped into U. Let V ⊆ T
be the inverse image of U under T → Z. Then, KS′ + BS′ ∼Q 0 over V and the generic
point of each lc centre of (S′/T,BS′) is mapped into V.

By induction, (S′/T,BS′) has a log minimal model. Since λ = limi→∞ λi = 0, by
Theorem 4.1, the above LMMP/T on KS′ + BS′ terminates. Thus, the LMMP/Z on
KX′ + B′ terminates near S. The same argument applied to each component of �B′	
shows that the LMMP/Z on KX′ + B′ terminates near �B′	. By assumptions, KX + B ∼Q

P + C/Z where P ≥ 0 and Supp P = Supp�B	. Moreover, Supp�B	 contains all the lc
centres of (X/Z,B). Thus, there is a Q-divisor P′ ≥ 0 with Supp P′ = Supp�B′	 such that
KX′ + B′ ∼Q P′ + C′/Z. So, each extremal ray contracted by the LMMP/Z on KX′ + B′

intersects P′. But the LMMP terminates near �B′	 which in turn implies that it terminates
near P′ therefore it terminates everywhere. �

Proposition 7.2. — Theorem 1.4 in dimension d −1 implies Theorem 1.4(1), (3) in dimension

d in the vertical case, i.e. when every lc centre of (X/Z,B) is vertical/Z.

Proof.

Step 1. After taking a Q-factorial dlt blowup using Corollary 3.6 we may assume that
(X/Z,B) is Q-factorial dlt, in particular, �B	 is vertical/Z. Run an LMMP/Z on KX +B
with scaling of an ample/Z divisor. By Theorem 4.1, the LMMP terminates if we prove
that (X/Z,B) has a log minimal model. By assumptions, KX + B ∼Q 0 over some non-
empty open subset U ⊆ Z and if η is the generic point of any lc centre of (X/Z,B), then
f (η) ∈ U.

Step 2. Let t1 > t2 > · · · be a sequence of sufficiently small rational numbers with
limi→∞ ti = 0. Each (X/Z,B − ti�B	) is klt and (KX + B − ti�B	)|F ∼Q 0 where F is the
generic fibre of f . Hence by Theorem 5.2 each (X/Z,B− ti�B	) has a good log minimal
model (Yi/Z,BYi

− ti�BYi
	) so that Yi ��� X does not contract divisors. Since we are as-

suming Conjecture 1.3 in dimension d , we can assume that each (Yi/Z,BYi
) is lc. More-

over, Supp�BYi
	 contains all the lc centres of (Yi/Z,BYi

) because (Yi/Z,BYi
− ti�BYi

	)
is klt which means that (Yi/Z,BYi

) is klt outside Supp�BYi
	. Since KX + B ∼Q 0 over U

and since �B	 is vertical/Z, there are vertical/Z Q-divisors M,N ≥ 0 such that

KX + B ∼Q M/Z and − �B	 ∼Q N/Z

and

KX + B − ti�B	 ∼Q M + tiN/Z

So, any prime divisor contracted by X ��� Yi is a component of M + N hence after
replacing the sequence with a subsequence we can assume that the maps X ��� Yi

contract the same divisors, i.e. Yi are isomorphic in codimension one.
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Step 3. Assume that Yi = Yi+1 for i � 0, and let Y be this common model. Since KY +
BY − ti�BY	 is nef/Z for each i � 0, KY + BY is also nef/Z. For any prime divisor D on
X and each i � 0, we have

a(D,X,B) ≤ a
(
D,X,B − ti�B	) ≤ a

(
D,Y,BY − ti�BY	)

which implies that

a(D,X,B) ≤ lim
i→∞

a
(
D,Y,BY − ti�BY	) = a(D,Y,BY)

Therefore, (Y/Z,BY) is a weak lc model of (X/Z,B), and by Corollary 3.7, we can
construct a log minimal model of (X/Z,B) as required.

Step 4. Assume that �BY1	 = 0. Then, KY1 + BY1 − ti�BY1	 is nef/Z for each i, and since
Y1 ��� Yi is an isomorphism in codimension one, we can replace each Yi with Y1 and
then apply Step 3.
From now on we assume that �BY1	 �= 0. Then, since (Y1/Z,BY1 − t1�BY1	) is klt and
KY1 + BY1 − t1�BY1	 is nef/Z, KY1 + BY1 − t1�BY1	 is semi-ample/Z by Theorem 5.2.
Thus,

KY1 + BY1 − t1�BY1	 ∼Q CY1/Z

for some CY1 ≥ 0 such that KY1 + BY1 + CY1 is lc, in particular, Supp CY1 does not
contain any lc centre of (Y1/Z,BY1). For each rational number t we have

KY1 + BY1 + tCY1 ∼Q (1 + t)

(
KY1 + BY1 − tt1

1 + t
�BY1	

)/
Z

In particular, if t′i = ti
t1−ti

and i �= 1, then

KY1 + BY1 + t′i CY1 ∼Q

(
1 + t′i

)(
KY1 + BY1 − ti�BY1	

)
/Z

We may assume that 2ti ≤ t1 for each i > 1 which implies that t′i ∈ [0,1]. So,
(Yi/Z,BYi

+ t′i CYi
) is a weak lc model of (Y1/Z,BY1 + t′i CY1) for each i > 1. Note that

(Y1/Z,BY1 + t′i CY1) is lc because t′i ≤ 1.
Step 5. We will modify the situation so that if η is the generic point of any lc centre of
(Y2/Z,BY2), then η is mapped into U. Put PY2 = t1�BY2	. Then,

KY2 + BY2 ∼Q PY2 + CY2/Z

By Lemma 5.5, we can run an LMMP/Z on KY2 + BY2 with scaling of t′2CY2 so that if
λk are the numbers appearing in the LMMP, then λ = limk→∞ λk = 0. Since Y2 ��� Yi

is an isomorphism in codimension one, KYi
+ BYi

+ t′i CYi
is nef/Z, and limi→∞ t′i = 0,

we deduce that KY2 + BY2 is (numerically) a limit of movable/Z R-divisors. So, the
LMMP does not contract any divisors. Now, by replacing the ti with a subsequence, we
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can assume that for each i > 2 there is k such that λk ≥ t′i ≥ λk+1. If T is the variety
corresponding to λk+1, then KT + BT + t′i CT is nef/Z. By replacing Yi with T, we could
assume that Yi occurs in some step of the LMMP. Thus, we can assume that every Yi

occurs in some step of the LMMP if i > 1.
After finitely many steps, the LMMP does not contract any lc centres. So, perhaps af-
ter replacing (Y2/Z,BY2) with some (Yj/Z,BYj

), with j � 0, we may assume that the
LMMP does not contract any lc centre of (Y2/Z,BY2). Assume that η is the generic
point of some lc centre of (Y2/Z,BY2) which is mapped outside U. If E is a prime divi-
sor over η such that a(E,Y2,BY2) = 0, then a(E,X,B) > 0 and for any i ≥ 2 we have

a
(
E,Y2,BY2 − ti�BY2	

) = a
(
E,Yi,BYi

− ti�BYi
	)

≥ a
(
E,X,B − ti�B	)

≥ a(E,X,B)

where the equality follows from the fact that Y2 ��� Yi is an isomorphism near η. Then,

0 = a(E,Y2,BY2) = lim
i→∞

a
(
E,Y2,BY2 − ti�BY2	

) ≥ a(E,X,B) > 0

which is a contradiction. So, from now on we can assume that if η is the generic point
of any lc centre of (Y2/Z,BY2), then η is mapped into U. Moreover, by construction,
KY2 + BY2 ∼Q 0 over U.

Step 6. By Lemma 7.1, we can run an LMMP/Z on KY2 +BY2 with scaling of t′2CY2 which
terminates on a model Y on which KY + BY + δCY is nef/Z for any sufficiently small
δ ≥ 0. Since Y2 ��� Yi is an isomorphism in codimension one, KYi

+BYi
+ t′i CYi

is nef/Z,
and limi→∞ t′i = 0, we deduce that KY2 + BY2 is (numerically) a limit of movable/Z R-
divisors. So, the LMMP does not contract any divisors, i.e. Y ��� Yi is an isomorphism
in codimension one.
For any i � 0, KY + BY + t′i CY is nef/Z which in turn implies that KY + BY − ti�BY	
is also nef/Z. Since Y ��� Yi is an isomorphism in codimension one and since
(Yi/Z,BYi

− ti�BYi
	) is a log minimal model of (X/Z,B − ti�B	), (Y/Z,BY − ti�BY	) is

a log minimal model of (X/Z,B − ti�B	), for every i � 0. By Step 3, we are done. �

Proposition 7.3. — Theorem 1.4 in dimension d − 1 implies Theorem 1.4 in dimension d in

the vertical case, i.e. when every lc centre of (X/Z,B) is vertical/Z.

Proof. — By Proposition 7.2, statements (1) and (3) of Theorem 1.4 hold for
(X/Z,B), in particular, (X/Z,B) has a log minimal model (Y/Z,BY). By assumptions,
KX + B ∼Q 0 over some non-empty open subset U ⊆ Z and if η is the generic point of
any lc centre of (X/Z,B) then f (η) ∈ U. This implies that KY + BY ∼Q 0 over U and
that if η is the generic point of any lc centre of (Y/Z,BY) then η is mapped into U. By
replacing (X/Z,B) with (Y/Z,BY) we may assume that (X/Z,B) is Q-factorial dlt and
that KX + B is nef/Z. It remains to prove that KX + B is semi-ample/Z.
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Run an LMMP/Z on KX + B − ε�B	 with scaling of some ample/Z divisor, for
some sufficiently small rational number ε > 0. By [6, Proposition 3.2], KX + B is numer-
ically trivial on each step of this LMMP. Since �B	 is vertical/Z, (KX +B− ε�B	)|F ∼Q 0
where F is the generic fibre of f . So, by Theorem 5.2, the LMMP terminates on a model
X′ on which KX′ + BX′ and KX′ + BX′ − ε�BX′	 are both nef/Z. Another application
of Theorem 5.2 shows that KX′ + BX′ − δ�BX′	 is semi-ample/Z for any δ ∈ (0, ε]. The
pair (X′/Z,BX′) is Q-factorial and lc and (X′/Z,BX′ − ε�BX′	) is klt. If �BX′	 = 0 we
are done so we can assume that �BX′	 �= 0. Let (Y/Z,BY) be a Q-factorial dlt blowup of
(X′/Z,BX′). By construction, KY + BY ∼Q 0 over U and if η is the generic point of any
lc centre of (Y/Z,BY) then η is mapped into U.

Let S be a component of T := �BY	 and put KS + BS := (KY + BY)|S. If Q is
the normalisation of the image of S in Z and if V ⊆ Q is the inverse image of U, then
KS + BS ∼Q 0 over V and if η is the generic point of any lc centre of (S/Q,BS) then
η is mapped into V. So, by induction, KS + BS is semi-ample/Q hence semi-ample/Z.
On the other hand, if P := e∗�BX′	 and if δ > 0 is any sufficiently small rational number,
where e is the morphism Y → X′, then

KY + BY − δP = e∗
(
KX′ + BX′ − δ�BX′	)

is semi-ample/Z. Now, by Theorem 1.7, KY + BY is semi-ample/Z hence KX + B is also
semi-ample/Z. �

In the proof of Proposition 7.3, it is also possible to compactify X and Z first before
running the LMMP on KX + B − ε�B	; in this way we would need Theorem 1.7 only
when X,Z are projective.

The horizontal case. — In this subsection, we deal with the horizontal case of Theo-
rem 1.4.

Lemma 7.4. — Assume Conjecture 1.3 and Theorem 1.4 in dimension d − 1. Let (X/Z,B)

be of dimension d as in Theorem 1.4. Moreover, assume that there is a contraction g : X → T/Z such

that

(1) KX + B ∼Q 0/T,

(2) some lc centre of (X/Z,B) is horizontal over T.

Then, (X/Z,B) has a good log minimal model.

Proof. — By replacing (X/Z,B) with a Q-factorial dlt blowup, we can assume that
(X/Z,B) is Q-factorial dlt and that there is a component S of �B	 which is horizontal/T.
Run an LMMP/Z on KX + B with scaling of some ample/Z divisor. Since termination
and semi-ampleness/Z are local on Z, we can assume that Z is affine, say Spec R. By
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Theorem 4.1, the LMMP terminates with a good log minimal model if we prove that
(X/Z,B) has a good log minimal model.

By assumptions, KX + B ∼Q 0 over some non-empty open subset U ⊆ Z and if
η is the generic point of any lc centre of (X/Z,B) then f (η) ∈ U. By adjunction define
KS + BS := (KX + B)|S. Then, KS + BS ∼Q 0 over U and if η is the generic point of any
lc centre of (S/Z,BS) then f (η) ∈ U. Moreover, KS + BS ∼Q 0/T.

Since we are assuming Conjecture 1.3 and Theorem 1.4 in dimension d − 1,
(S/Z,BS) has a good log minimal model. Therefore, if I(KS + BS) is Cartier for some
I ∈ N, then R(S/Z, I(KS + BS)) is a finitely generated R-algebra (cf. [7]). We can choose
I such that I(KX + B) is Cartier and such that I(KX + B) ∼ g∗L for some Cartier di-
visor L on T. So, I(KS + BS) ∼ e∗L where e : S → T is the induced morphism. Now,
by Lemma 6.4, R(T/Z,L) is a finitely generated R-algebra which in turn implies that
R(X/Z, I(KX + B)) is a finitely generated R-algebra since X → T is a contraction.
Therefore, R(X/Z,KX + B) is a finitely generated R-algebra and according to Theo-
rem 5.1, (X/Z,B) has a good log minimal model. �

Proposition 7.5. — Assume Theorem 1.4 in dimension d − 1. Then, Theorem 1.4 holds in

dimension d in the horizontal case, i.e. when some lc centre of (X/Z,B) is horizontal over Z.

Proof. — We can assume that (X/Z,B) is Q-factorial dlt and that f : X → Z is a
contraction. By assumptions, some component of �B	 is horizontal/Z. Moreover, KX +
B ∼Q 0 over some non-empty open subset U ⊆ Z and if η is the generic point of any lc
centre of (X/Z,B) then η is mapped into U. Run an LMMP/Z on KX +B with scaling of
some ample/Z divisor. By Theorem 4.1, the LMMP terminates with a good log minimal
model if we show that (X/Z,B) has a good log minimal model.

If ε > 0 is a sufficiently small rational number, then (X/Z,B − ε�B	) is klt
and KX + B − ε�B	 is not pseudo-effective/Z. Thus, by [9] there is a Mori fibre
space (Y/Z,BY − ε�BY	) for (X/Z,B − ε�B	) obtained by running an LMMP/Z on
KX +B− ε�B	. Let g : Y → T/Z be the KY +BY − ε�BY	-negative extremal contraction
which defines the Mori fibre space structure, and let R be the corresponding extremal ray.
By construction, KY + BY ∼Q 0 over U hence (KY + BY) · R = 0 which in turn implies
that KY + BY ∼Q 0/T. Since KY + BY − ε�BY	 is numerically negative/T, �BY	 �= 0.
As we are assuming Conjecture 1.3 in dimension d , we can assume that (Y/Z,BY) is
lc.

Let (W/Z,BW) be a log smooth model of (X/Z,B) of type (2) as in Definition 2.3
such that W dominates Y, say by a morphism h : W → Y. In particular, we may assume
that if η is the generic point of any lc centre of (W/Z,BW), then η is mapped into U. We
can write

KW + BW = h∗(KY + BY) + G

where G is exceptional/Y. Run the LMMP/Y on KW +BW with scaling of some ample/Y
divisor. By Theorem 3.5, we reach a model X′ on which GX′ ≤ 0. Moreover,
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KX′ + BX′ − GX′ ∼Q 0/T

as it is the pullback of KY + BY.
Let π be the given morphism W → X. By definition of log smooth models, we can

write

KW + BW = π∗(KX + B) + E

where E is effective and exceptional/X. On the other hand, since KX + B ∼Q 0 and
KY + BY ∼Q 0 over U, we have π∗(KX + B) = h∗(KY + BY) over U which means that
E = G over U. Therefore, every component of G with negative coefficient is mapped into
Z \ U hence GX′ is also mapped into Z \ U. In particular, this means that KX′ + BX′ ∼Q 0
over U. Moreover, if η is the generic point of any lc centre of (X′/Z,BX′) then η is
mapped into U because the same holds for (W/Z,BW). Let UT ⊆ T be the inverse image
of U. Then, KX′ + BX′ ∼Q 0 over UT and if η is the generic point of any lc centre of
(X′/Z,BX′) then η is mapped into UT.

By construction, �BY	 is ample/T hence in particular some of its components are
horizontal/T. This implies that some component of �BX′	 is horizontal/T because �BY	
is the pushdown of �BX′	. By Lemma 7.6 below, we can run an LMMP/T on KX′ + BX′

which ends up with a model X′′ on which KX′′ + BX′′ is semi-ample/T (more precisely,
we should take X,Y,Z,B in the lemma to be our X′,Y,T,BX′ respectively). Over UT,
X′ ��� X′′ is an isomorphism. So, if X′′ → T′′/T is the contraction associated to KX′′ +
BX′′ , then T′′ → T is birational and some component of �BX′′	 is horizontal/T′′.

By construction, KX′′ + BX′′ ∼Q 0/T′′, and KX′′ + BX′′ ∼Q 0 over U. Moreover, if
η is the generic point of any lc centre of (X′′/Z,BX′′) then η is mapped into U. Now
we can apply Lemma 7.4 (by taking X,Z,T,B in the lemma to be our X′′,Z,T′′,BX′′

respectively) to get a good log minimal model of (X′′/Z,BX′′) which would give a good
log minimal model of (W/Z,BW) hence of (X/Z,B), by Remark 2.8. �

Lemma 7.6. — Assume Conjecture 1.3 in dimension d and Theorem 1.4 in dimension d − 1.

Let (X/Z,B) be of dimension d as in Theorem 1.4. Moreover, assume that

• (X/Z,B) is Q-factorial dlt,

• there exist contractions e : X → Y and g : Y → Z,

• e is birational and Y is Q-factorial,

• KY + BY is lc, D := KY + BY − ε�BY	 is klt, and g is a D-negative extremal contraction

for some ε > 0 where BY := e∗B.

Then, any LMMP/Z on KX + B with scaling of an ample/Z divisor terminates with a good

log minimal model of (X/Z,B).

Proof. — By Theorem 4.1, it is enough to prove that (X/Z,B) has a good log
minimal model. By assumptions, KX + B ∼Q 0 over some non-empty open subset U ⊆ Z
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and if η is the generic point of any lc centre of (X/Z,B) then f (η) ∈ U. Let UY ⊆ Y
be the inverse image of U. Then, KX + B ∼Q 0 over UY and if η is the generic point
of any lc centre of (X/Z,B) then e(η) ∈ UY. Since e is birational, by Proposition 7.3 we
can assume that KX + B is actually semi-ample/Y. By replacing X with the lc model
of (X/Y,B) we can assume that KX + B is ample/Y (we may loose the Q-factorial dlt
property of (X/Z,B) but we will recover it later).

Since g is an extremal contraction and since KY + BY ∼Q 0 over U, KY + BY ∼Q

0/Z. Moreover, since KX + B is ample/Y, there is an e-exceptional Q-divisor A ≥ 0 such
that

KX + B + A = e∗(KY + BY)

and KX + B + A ∼Q 0/Z, and since KY + BY is lc, KX + B + A is lc too. Also, since −A is
ample/Y, Supp A contains all the prime exceptional/Y divisors on X. Now we can add
a small multiple of A to B and assume that Supp B contains all the prime exceptional/Y
divisors on X. Note that A ∼Q 0 over UY hence A = 0 over UY, so we still have
KX + B ∼Q 0 over U after adding a small multiple of A to B. Now,

Supp e∗�BY	 ⊆ (
Supp�B	 ∪ Supp A

) ⊆ Supp B

Replacing (X/Z,B) with a Q-factorial dlt blowup, we can again assume that (X/Z,B) is
Q-factorial dlt; the property Supp e∗�BY	 ⊆ Supp B is preserved.

By assumptions, �BY	 is ample/Z hence e∗�BY	 is semi-ample/Z. Thus, for a small
rational number τ > 0 we can write

KX + B = KX + B − τ e∗�BY	 + τ e∗�BY	 ∼Q KX + �/Z

where � is some rational boundary such that (X/Z,�) is klt: since (Y/Z,BY − ε�BY	)
is klt, �BY	 contains all the lc centres of (Y/Z,BY), in particular, the image of all the lc
centres of (X/Z,B); so, Supp e∗�BY	 contains all the components of �B	 hence (X/Z,

B − τ e∗�BY	) is klt and we can indeed find � with the required properties. By Theorem
5.2, we can run an LMMP/Z on KX + � which ends up with a good log minimal model
of (X/Z,�) hence a good log minimal model of (X/Z,B). �

Proof of Theorem 1.4. — This follows from Propositions 7.3 and 7.5. �
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