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ABSTRACT

We exhibit stable finite time blow up regimes for the energy critical co-rotational Wave Map with the S2 target
in all homotopy classes and for the critical equivariant SO(4) Yang-Mills problem. We derive sharp asymptotics on the
dynamics at blow up time and prove quantization of the energy focused at the singularity.

1. Introduction

In this paper, we study the dynamics of two critical problems: the (2 + 1)-
dimensional Wave Map and the (4 + 1)-dimensional Yang-Mills equations. These prob-
lems admit non trivial static solutions (topological solitons) which have been extensively
studied in the literature both from the mathematical and physical point of view, see e.g.
[2], [3], [11], [13], [30], [45], [47]. The static solutions for the (WM) are harmonic maps
from R2 into S2 ⊂ R3 satisfying the equation

−�� = �|∇�|2.
They are explicit solutions of the O(3) nonlinear σ -model of isotropic plane ferromag-
nets. For the (YM) equations a particularly interesting class of static solutions is formed
by (anti)self-dual instantons, satisfying the equations

F = ± ∗ F

for the curvature F of an so(4)-valued connection over R4. The 4-dimensional Euclidean
Yang-Mills theory forms a basis of the Standard Model of particle physics and its special
static solutions played an important role as pseudoparticle models in Quantum Field
Theory.

The geometry of the moduli space of static solutions has been a subject of a thor-
ough investigation, see e.g. [46], [1], [11], [12]. In particular, the moduli spaces are in-
complete due to the scale invariance property of both problems. This gave rise to a plau-
sible scenario of singularity formation in the corresponding time dependent equation
which has been studied heuristically, numerically and very recently from a mathematical
point of view, [5], [14], [20], [21], [34], [23] and references therein.

The focus of this paper is the investigation of special classes of solutions to the
critical (2 + 1)-dimensional (WM) and the critical (4 + 1)-dimensional (YM) describing
a stable (in a fixed co-rotational class) and universal regime in which an open set of
initial data leads to a finite time formation of singularities.
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The Wave Map problem for a map � : R2+1 → S2 ⊂ R3 is described by a nonlin-
ear hyperbolic evolution equation

∂2
t � − �� = �

(|∇�|2 − |∂t�|2)

with initial data �0 : R2 → S2 and ∂t�|t=0 = �1 : R2 → T�0S
2. We will study the prob-

lem under an additional assumption of co-rotational symmetry, which can be described
as follows. Parametrizing the target sphere with the Euler angles � = (�, u) we assume
that the solution has a special form

�(t, r, θ) = kθ, u(t, r, θ) = u(t, r)

with an integer constant k ≥ 1—homotopy index of the map �(t, ·) : R2 → S2. Under
such symmetry assumption the full wave map system reduces to the one dimensional
semilinear wave equation:

(1.1) ∂2
t u − ∂2

r u − ∂ru

r
+ k2 sin(2u)

2r2
= 0, k ≥ 1, (t, r) ∈ R × R+, k ∈ N∗.

Similarly, the equivariant reduction, given by the ansatz,

Aij
α = (

δi
αxj − δj

αxi
)1 − u(t, r)

r2
,

of the (4 + 1)-dimensional Yang-Mills system

Fαβ = ∂αAβ − ∂βAα + [Aα,Aβ],
∂βFαβ + [

Aβ,Fαβ
] = 0, α,β = 0, . . . ,3

for the so(4)-valued gauge potential Aα and curvature Fαβ , leads to the semilinear wave
equation:

(1.2) ∂2
t u − ∂2

r u − ∂ru

r
− 2u(1 − u2)

r2
= 0, (t, r) ∈ R × R+.

The problems (1.1) and (1.2) can be unified by an equation of the form

(1.3)

{
∂2

t u − ∂2
r u − ∂r u

r
+ k2 f (u)

r2 = 0,

u|t=0 = u0, (∂tu)|t=0 = v0

with f = gg′

and

g(u) =
{

sin(u), k ∈ N∗ for (WM)

1
2(1 − u2), k = 2 for (YM).
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(1.3) admits a conserved energy quantity

E(u, ∂tu) =
∫

R2

(
(∂tu)

2 + |∂ru|2 + k2 g2(u)

r2

)

which is left invariant by the scaling symmetry

uλ(t, r) = u

(
t

λ
,

r

λ

)
, λ > 0.

The minimizers of the energy functional can be explicitly obtained as

(1.4) Q(r) = 2 tan−1
(
rk
)

for (WM), Q(r) = 1 − r2

1 + r2
for (YM),

and their rescalings which constitute the moduli space of stationary solutions in the given
corotational homotopy class.

A sufficient condition for the global existence of solutions to (1.3) was established in
the pioneering works by Christodoulou-Tahvildar-Zadeh [8], Shatah-Tahvildar-Zadeh
[36], Struwe [40]. It can be described as follows: for smooth initial data (u0, v0) with
E(u0, v0) < E(Q,0), the corresponding solution to (1.3) is global in time and decays to
zero, see also [10]. More precisely, it was shown that if a singularity is formed at time
T < +∞, then energy must concentrate at r = 0 and t = T. This concentration must
happen strictly inside the backward light cone from (T,0), that is if the scale of concen-
tration is λ(t), then

(1.5)
λ(t)

T − t
→ 0 as t → T.

Note that the case λ(t) = T − t would correspond to self-similar blow up which is there-
fore ruled out. Finally, a universal blow up profile may be extracted in rescaled variables,
at least on a sequence of times:

(1.6) u
(
tn, λ(tn)r

) → Q in H1
loc as n → +∞.

These results hold for more general targets for (WM) with Q being a non trivial harmonic
map. In particular, this implies the global existence and propagation of regularity for the
corotational (WM) problem with targets admitting no non trivial harmonic map from
R2. Very recently, in a series of works [42], [43], [38], [39], [19], this result has been
remarkably extended to the full (WM) problem without the assumption of corotational
symmetry, hence completing the program developed in [18], [17], [44], [41], [16].

These works leave open the question of existence and description of singularity for-
mation in the presence of non trivial harmonic maps, or the instanton for the (YM). This
long standing question has first been addressed through some numerical and heuristic
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works in [4], [5], [14], [32], [37]. In particular, the blow up rates of the concentration
scale

λ(t) ∼ B
T − t

| log(T − t)| 1
2

for (YM),

λ(t) ∼ A
(
T∗ − t

)
e−

√| ln(T∗−t)| for (WM) with k = 1

with specific constants A,B have been predicted in a very interesting work [5] and, a very
recent, [37] respectively.

Instability of Q for the k = 1 (WM) and (YM) was shown by Côte in [9]. A rigorous
evidence of singularity formation has been recently given via two different approaches.
In [34], Rodnianski and Sterbenz study the (WM) system for a large homotopy number
k ≥ 4 and prove the existence of stable finite time blow up dynamics. These solutions
behave near blow up time according to the decomposition

(1.7) u(t, r) = (Q + ε)

(
t,

r

λ(t)

)
with w(t, r) = ε

(
t,

r

λ(t)

)
,‖w,∂tw‖Ḣ1×L2 
 1

with a lower bound on the concentration:

(1.8) λ(t) → 0 as t → T with λ(t) ≥ T − t

| log(T − t)| 1
4

.

In [20], [21], Krieger, Schlag and Tataru consider respectively the (WM) system for k = 1
and the (YM) equation and exhibit finite time blow up solutions which satisfy (1.7) with

(1.9)
λ(t) = (T − t)ν for (WM) with k = 1,

λ(t) = (T − t)| log(T − t)|−ν for (YM)

for any chosen ν > 3
2 . This continuum of blow up solutions is believed to be non-generic.

1.1. Statement of the result. — In this paper, we give a complete description of a
stable singularity formation for the (WM) for all homotopy classes and the (YM) in the
presence of corotational/equivariant symmetry near the harmonic map/instanton. The
following theorem is the main result of this paper.

Theorem 1.1 (Stable blow up dynamics of co-rotational Wave Maps and Yang-Mills). — Let

k ≥ 1. Let H2
a denote the affine Sobolev space (1.19).There exists a set O (see Definition 5.1) of initial

data which is open in H2
a and a universal constant ck > 0 such that the following holds true. For all

(u0, v0) ∈ O, the corresponding solution to (1.3) blows up in finite time 0 < T = T(u0, v0) < +∞
according to the following universal scenario:
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(i) Sharp description of the blow up speed: There exists λ(t) ∈ C 1([0,T),R∗
+) such

that:

(1.10) u
(
t, λ(t)y

) → Q in H1
r,loc as t → T

with the following asymptotics:

λ(t) = ck

(
1 + o(1)

) T − t

| log(T − t)| 1
2k−2

as t → T for k ≥ 2,(1.11)

λ(t) = (T − t)e−
√

| log(T−t)|+O(1) as t → T for k = 1.

λ(t) = c2

(
1 + o(1)

) T − t

| log(T − t)| 1
2

as t → T for (YM).
(1.12)

Moreover,

b(t) := −λt(t) = λ(t)

T − t

(
1 + o(1)

) → 0 as t → T.

(ii) Quantization of the focused energy: Let H be the energy space (1.15), then there exist

(u∗, v∗) ∈ H such that

(1.13) lim
t→T

∥
∥∥
∥u(t, r) − Q

(
r

λ(t)

)
− u∗, ∂tu(t, r) − v∗

∥
∥∥
∥

H
= 0.

Moreover, there holds the quantization of the focused energy:

(1.14) E0 = E(u, ∂tu) = E(Q,0) + E
(
u∗, v∗).

This theorem thus gives a complete description of a stable blow up regime for all
homotopy numbers k ≥ 1 and the (YM) problem, which can be formally compared with
the k = 2 case of (WM). Stable blow up solutions in O decompose into a singular part
with a universal structure and a regular part which has a strong limit in the scale invariant
space. Moreover, the amount of energy which is focused by the singular part is a universal
quantum independent of the Cauchy data.

Comments on the result. — 1. k = 1 case: In the k ≥ 2 and (YM) case, the blow up
speed λ(t) is to leading order universal i.e. independent of initial data. On the contrary,
in the k = 1 case, the presence of the eO(1) factor in the blow up speed seems to suggest
that the law is not entirely universal and has an additional degree of freedom depending
on the initial data. In general, the analysis of the k = 1 and to some extent k = 2 prob-
lems is more involved. In particular for k = 1, the instability direction r∂rQ driving the
singularity formation misses the L2 space logarithmically. This anomalous logarithmic
growth is fundamental in determining the blow up rate. On the other hand, this anomaly
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also adversely influences the size of the radiation term which implies that there is only
a logarithmic difference between the leading order and the radiative corrections. This
requires a very precise analysis and a careful track of all logarithmic gains and losses. In
the case of larger k, these gains are polynomial and hence the effect of radiation is more
easily decoupled from the leading order behavior. In this paper, we adopted a universal
approach which simultaneously treats all cases.

2. k = 2 case: The analysis of the k = 2 case for the (WM) problem is almost identi-
cal to that required to treat the (YM) equations. In what follows we will subsume the (YM)
problem into the k = 2 regime of (WM), making appropriate modifications, caused by a
small difference in the structure of the nonlinearities in the two equations, in necessary
places.

3. Regularity of initial data: The open set O of initial data described in the theorem
contains an open subset of C∞ data coinciding with Q for all sufficiently large values of
r ≥ R. As a consequence, the main result of the paper in particular describes singularity
formation in solutions arising from smooth initial data. This should be compared with
the results in [20], [21] where solutions, specifically constructed to exhibit the blow up
behavior given by the rates in (1.9), lead to an initial data of limited regularity dependent
on the value of the parameter ν and degenerating as ν → 3

2 .
4. Comparison with the L2 critical (NLS): This theorem as stated can be compared to

the description of the stable blow up regime for the L2 critical (NLS)

iut + �u + u|u| 4
N = 0, (t, x) ∈ [0,T) × RN,N ≥ 1,

see Perelman [31] and the series of papers by Merle and Raphaël [27], [25], [33], [26],
[29], [28]. There is a conceptual analogy between the mechanisms of a stable regime
singularity formation for the critical (WM) and (YM) problems and the L2 critical (NLS)
problem. For the latter problem the sharp blow up speed and the quantization of the blow
up mass is derived in [26], [29], [28]. The concentration occurs on an almost self-similar
scale

λ(t) ∼
√

2π(T − t)

log | log(T − t)| as t → T.

In both (WM), (YM) and the L2 critical (NLS) problems self-similar singularity formation
is corrected by subtle interactions between the ground state and the radiation parts of
the solution. The precise nature of these interactions, affecting the blow up laws, depends
in a very sensitive fashion on the asymptotic behavior of the ground state: polynomially
decaying to the final value for the (WM) and (YM) and exponentially decaying for the
(NLS), see also [22] for related considerations. This dependence becomes particularly
apparent upon examining the blow up rates for the (WM) problem in different homotopy
classes parametrized by k. For k = 1 the harmonic map approaches its constant value at
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infinity at the slowest rate, which leads to the strongest deviation of the corresponding
blow up rate from the self-similar law.

5. Least energy blow up solutions: The importance of the k = 1 case for the (WM)
problem is due to the fact that the k = 1 ground state is the least energy harmonic map:

E(Q,0) = 4πk.

A closer investigation of the structure of Q for k ≥ 2 shows that this configuration cor-
responds to the accumulation of k topological charges at the origin r = 0. For the full,
non-symmetric problem, we expect such configurations to split under a generic pertur-
bation into a collection of k = 1 harmonic maps and lead to a different dynamics driven
by the evolution of each of the k = 1 ground states and their interaction.

From this point of view the stability of the least energy k = 1 configuration under
generic non-symmetric perturbations is an important remaining problem.

1.2. Functional spaces and notations. — For a pair of functions (ε(y), σ (y)), we let

(1.15) ‖ε,σ‖2
H =

∫ [
σ 2 + (∂yε)

2 + ε2

y2

]

define the energy space. We also define the H2 Sobolev space with norm:

‖ε,σ‖2
H2 = ‖(ε, σ )‖2

H +
∫ [(

∂2
y ε

)2 + (∂yε)
2

y2
+ (∂yσ)2 + σ 2

y2

]
for k ≥ 2,(1.16)

‖ε,σ‖2
H2 = ‖(ε, σ )‖2

H +
∫ [

(
∂2

y ε
)2 + (∂yσ)2 + σ 2

y2

]
(1.17)

+
∫

y≤1

1
y2

(
∂yε − ε

y

)2

for k = 1.

For a given time-dependent parameter λ(t) > 0 we let w(t, r) = ε(t, r

λ(t)
) and define a

related norm, in the relevant case σ = λ(t)∂tw,

(1.18) ‖ε‖2
H̃ = ‖Hε‖2

L2 + λ2(t)‖∂tw,0‖2
H

where H is the linearized Hamiltonian defined in (1.26). Observe that (1.15), (1.16), (1.17)
and (1.18) require vanishing of ε,σ and ∂tw at the origin.

We then define an affine space

(1.19) H2
a = H2 + Q.

We denote

(f , g) =
∫

fg =
∫ +∞

0
f (r)g(r)rdr
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the L2(R2) radial inner product. We define the differential operators:

(1.20) �f = y · ∇f
(
Ḣ1 scaling

)
, Df = f + y · ∇f

(
L2 scaling

)

and observe the integration by parts formula:

(1.21) (Df , g) = −(f ,Dg), (�f , g) + (�g, f ) = −2(f , g).

Given f and λ > 0, we shall denote:

fλ(t, r) = f

(
t,

r

λ

)
= f (t, y),

and the rescaled variable will always be denoted by

y = r

λ
.

For a time-dependent scaling parameter λ(t) we define the rescaled time

s =
∫ t

0

dτ

λ2(τ )
.

We let χ be a smooth positive radial cut off function χ(r) = 1 for r ≤ 1 and χ(r) = 0 for
r ≥ 2. For a given parameter B > 0, we let

(1.22) χB(r) = χ

(
r

B

)
.

Given b > 0, we set

(1.23) B0 = 1

b

√
3
∫

yχ(y)dy

, Bc = 2
b
, B1 = | log b|

b
.

1.3. Strategy of the proof. — We now briefly sketch the main ingredients of the proof
of Theorem 1.1.

Step 1 The family of approximate self similar profiles.
We start with the construction of suitable approximate self-similar solutions in the

fashion related to the approach developed in [25], [29]. Following the scaling invariance
of (1.3), we pass to the self-similar variables and look for a one parameter family of self
similar solutions dependent on a small parameter b > 0:

u(t, r) = Qb(y), y = r

λ(t)
, λ(t) = b(T − t).
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This transformation maps (1.3) into the self-similar equation:

(1.24) −�v + b2D�Qb + k2 f (v)

y2
= 0

where the differential operators �,D are given by (1.20). A well known class of exact
solutions are given by the explicit profiles:

Qb(r) = Q
(

r

1 + √
1 − b2r2

)
, r ≤ 1

b
.

These solutions were used by Côte to prove that Q is unstable for both (WM) and (YM),
[9]. A direct inspection however reveals that these have infinite energy due to a logarith-
mic divergence on the backward light cone

r = (T − t) equivalently y = 1
b
.

This situation is exactly the same for the L2 critical (NLS), [25], and reveals the critical
nature of the problem. Note that in higher dimensions finite energy self-similar solutions
can be shown to exist thus providing explicit blow up solutions to the Wave Map and
Yang-Mills equations, [35], [7].

In order to find finite energy suitable approximate solutions to (1.24) in the vicinity
of the ground state Q we construct a formal expansion

Qb = Q +
p∑

i=1

b2iTi.

Substituting the ansatz into the self-similar equation (1.24), we get at the order b2i an
equation of the form:

(1.25) HTi = Fi

where

(1.26) H = −� + k2 f ′(Q)

y2

is obtained by linearizing (1.24) on Q (setting b = 0) and Fi is a nonlinear expression in
(T1, . . . ,Ti−1). The solvability of (1.25) requires that Fi is orthogonal to the kernel of H,
which is explicit by the variational characterization of Q:

(1.27) Ker(H) = span(�Q)

and hence the orthogonality condition:

(1.28) (Fi,�Q) = 0.
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While the condition (1.28) seems at first hand to be a very nonlinear condition, it can
be easily checked to hold due to the specific algebra of the H1 critical problem and its
connection to the Pohozaev identity. In fact, if Q(p)

b = Q + ∑p

i=1 b2iTi is the expansion of
the profile to the order p, then (1.28) holds as long as the Pohozaev computation is valid:

(
−�Q(p)

b + b2D�Q(p)

b + k2 f (Q(p)

b )

y2
,�Q(p)

b

)
(1.29)

= lim
R→+∞

[
−1

2

(
1 − b2R2

)∣∣�Q(p)

b (R)
∣
∣2 + k2

2

∣
∣g

(
Q(p)

b (R)
)∣∣2

]
= 0,

see step 2 of the proof of Proposition 3.1, Section 3.2. By a direct computation, F1 ∼
D�Q ∼ 1

yk asy → +∞ and at each step, the inversion of (1.25) dampens the decay of Ti+1

at infinity by an extra y2 factor, and hence the validity of (1.29) comes under question
after p steps, for as y → ∞:

Tp(y) ∼ ck

y
for p = k − 1

2
, k odd,(1.30)

Tp(y) ∼ ck for p = k

2
, k even.(1.31)

In fact (1.30), (1.31) will result in a universal nontrivial flux type contribution to (1.29). More-
over, Tp is the first term which gives an infinite contribution to the energy of the approxi-
mate self-similar profile Q(p)

b ( r

λ(t)
). Tp is the radiation term which becomes dominant in the

region y ≥ 1
b
—exterior to the backward light cone from a singularity at the point (T,0).

We therefore stop the asymptotic expansion at p1 and localize constructed profiles by
connecting Qb to the constant a = Q(+∞), which is also an exact self-similar solution:

(1.32) PB1 = χB1Qb + (1 − χB1)a, B1 = | log b|
b

� 1
b

where χB1 = 1 for y ≤ B1, χB1 = 0 for y ≥ 2B1. PB1 satisfies an approximate self-similar
equation of the form:

(1.33) −�PB1 + b2D�PB1 + k2 f (PB1)

y2
= �B1

where �B1 is very small inside the light cone y ≤ 1
b

but encodes a slow decay near B1

induced by the cut off function and the radiative behavior of Tp at infinity.

1 We will in fact also need the next term Tp+1 in the expansion. Its construction will be made possible thanks to a
subtle cancellation, see step 4 of the proof of Proposition 3.1.
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Step 2 The H2 type bound.
Let now u(t, r) be the solution to (1.3) for a suitably chosen initial data close enough

to Q. Given the profile PB1 , we introduce, with the help of the standard modulation
theory, a decomposition of the wave:

u(t, r) = PB1(t)

(
r

λ(t)

)
+ w(t, r)

or alternatively

u(t, r) = (PB1(t) + ε)(s, y), y = r

λ(t)
,

ds

dt
= 1

λ

with B1 given by (1.32) and where we have set the relation

(1.34) b(s) = −λs

λ
= −λt.

The decomposition is complemented by the orthogonality condition2

∀s > 0,
(
ε(s),�Q

) = 0

as is natural from (1.27). Our first main claim is the derivation of a pointwise in time bound

on ε

(1.35) ‖ε‖H̃ � bk+1

in a certain weighted Sobolev space H̃. The norm in the space H̃ is given by the expres-
sion

(1.36) ‖ε‖2
H̃ = ‖Hε‖2

L2 + λ2‖∂tw,0‖2
H

and is based on the linear Hamiltonian H associated with the ground state Q, see (1.18).
We note in passing that, after adding the norm ‖(ε, ∂tε)‖2

H, for k ≥ 2 this norm is equiv-
alent to the H2 norm introduced in (1.16). There are however subtle differences in the
corresponding norms in the case k = 1, connected with the behavior for y ≥ 1.

Bounds related to (1.35) but for a weaker norm than H̃ and with bk+1 replaced by b4

were derived in [34] for higher homotopy classes k ≥ 4. They were a consequence of the
proof of energy and Morawetz type estimates for the corresponding nonlinear problem
satisfied by w. The linear part of the equation for w is given by the expression

∂2
t w + Hλw

with the Hamiltonian

(1.37) Hλ = −� + k2 f ′(Qλ)

r2
.

2 The actual orthogonality condition is defined with respect to a cut-off version of �Q.
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Special variational nature of Q, discovered in [2], provides an important factorization
property for Hλ:

(1.38) Hλ = A∗
λAλ, Aλ = −∂r + k

g′(Qλ)

r
.

It arises as a consequence of the fact that3 Q represents the co-rotational global minimum
of energy V[�] in a given topological class of maps � : R2 → S2 of degree k.

V[�] = 1
2

∫

R2
(∇x� · ∇x�) dx,

which can be factorized using the notation εij for the antisymmetric tensor on two indices,
as follows:

V[�] = 1
4

∫

R2

[(
∂i� ± ε

j

i� × ∂j�
) · (∂ i� ± ε ij� × ∂j�

)]
dx(1.39)

± 1
2

∫

R2
ε ij� · (∂i� × ∂j�) dx

= 1
4

∫

R2

[(
∂i� ± ε

j

i� × ∂j�
) · (∂ i� ± ε ij� × ∂j�

)]
dx ± 4πk

from which it is immediate that an absolute minimum of the energy functional V[�] in
a given topological sector k must be a solution of the equation:

(1.40) ∂i� ± ε
j

i� × ∂j� = 0.

The ground state Q is precisely the representation of the unique co-rotational solution of
(1.40).

In [34] factorization (1.38) gave the basis for the H2 and Morawetz type bounds
for w, obtained by conjugating the problem for w with the help of the operator Aλ, so
that

AλHλw = H̃λ(Aλw)

with H̃λ = AλA∗
λ, and exploiting the space-time repulsive properties of H̃λ to derive the

energy and Morawetz estimates for Aλw. Simultaneous use of pointwise in time energy
bounds and space-time Morawetz estimates however runs into difficulties in the cases
k = 1,2, which become seemingly insurmountable for k = 1.

We propose here a new approach, still based on the factorization of Hλ, yet relying
only on the appropriate energy estimates for the associated Hamiltonian H̃λ, which retains

3 We restrict this discussion to the (WM) case. Similar considerations also apply to the (YM) problem, [6].
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its repulsive properties even in the most difficult cases of k = 1,2. We note that ‖ε‖H̃
norm introduced above can be conveniently written in the form

‖ε‖2
H̃ = λ2(H̃λAλw,Aλw) + λ2‖∂tw,0‖2

H.

One difficulty will be that the bound (1.35) is not sufficient to derive the sharp blow up
speed. The size bk+1 in the RHS of (1.35) is sharp and is induced by a very slowly decaying
term in �B1 in (1.33), which arises from the localization of the profile Qb. Such terms
however are localized on y ∼ B1 � 1

b
far away from the backward light cone with the

vertex at the singularity. Another crucial new feature of our analysis here is a use of
localized energy identities. It is based on the idea of writing the energy identity in the
region bounded by the initial hypersurface t = 0 and the hypersurface

r = 2
λ(t)

b(t)
, equivalently y = 2

b(t)

which, under the bootstrap blow up assumptions, is complete (the point r = 0 is reached
at the blow up time) and space-like. Such an energy identity effectively restricts the error
term �B1 to the region y ≤ 2/b, where it is better behaved, and leads to an improved
bound:

(1.41) ‖ε‖H̃(y≤ 2
b ) � bk+1

| log b| ,

see Lemma 6.5 in Section 6.2. Note that the logarithmic gain from (1.35) to (1.41) is
typical of the k = 1 case and can be turned to a polynomial gain for k ≥ 2.

Step 3 The flux computation and the derivation of the sharp law.
The pointwise bounds (1.35), (1.41) are specific to the almost self-similar regime we are

describing. They are derived by a bootstrap argument, which incidentally requires only

an upper bound4 on |bs|, see Lemma 6.3. To derive the precise law for b we examine the
equation for ε, which has the following approximate form:

(1.42) ∂2
s ε + HB1ε = −bs�PB1 + �B1 + L.O.T.

where HB1 = −� + k2 f ′(PB1 )

y2 . We consider an almost self-similar solution PB0 localized
on the scale B0 = c

b
with a specific constant 0 < c < 1 defined in (1.23) and project this

equation onto �PB0 , which is almost in the null space of HB1 . The result is the identity of
the form:

(1.43) bs|�PB0|2L2 = (�B1,�PB0) + O
(
bk−1‖ε‖H̃(y≤ 2

b
)

)
.

4 Such an upper bound is already sufficient to conclude the finite time blow up and establish a lower bound on the
concentration scale λ(t).
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The first term in the above RHS yields the leading order flux and tracks the nontrivial
contribution of Tp to the Pohozaev integration (1.29):

(�B1,�PB0) = −ckb
2k
(
1 + o(1)

)

for some universal constant ck . This computation can be thought of as related to the
derivation of the log-log law in [29]. The ε-term in (1.43) is treated with the help of
(1.41), observe that (1.35) alone would not have been enough:

O
(
bk−1‖ε‖H̃(y≤ 2

b )

) = o
(
b2k

)
.

Finally, from the behavior

�Q ∼ 1
yk

as y → +∞

and PB0 ∼ Q for b small, there holds:

|�PB0|2L2 ∼
{

ck for k ≥ 2

c1| log b| for k = 1

for some universal constant ck > 0. We hence get the following system of ODE’s for the
scaling law:

ds

dt
= 1

λ
, b = −λs

λ
, bs = −

{
ck(1 + o(1))b2k for k ≥ 2,

(1 + o(1)) b2

2| log b| for k = 1.

Its integration yields—for the class of initial data under consideration—the existence
of T < +∞ such that λ(T) = 0 with the laws (1.11), (1.12) near T, thus concluding
the proof of the sharp asymptotics (1.11), (1.12). The non-concentration of the excess of
energy (1.13), (1.14) now follows from the dispersive bounds obtained on the solution,
hence concluding the proof of Theorem 1.1.

This paper is organized as follows. In Section 2, we recall some well known facts
about the structure of the linear Hamiltonian H close to Q and the orbital stability
bounds. In Section 3, we construct the approximate self similar profiles Qb with sharp
estimates on their behavior, Proposition 3.1 and Proposition 3.3. In Section 5, we ex-
plicitly describe the set of initial data of Theorem 1.1, Definition 5.1, and set up the
bootstrap argument, Proposition 5.6, which proof relies on a rough bound on the blow
up speed, Lemma 5.3, and global and local H2 bounds, Lemma 6.5. In Section 7, we de-
rive the sharp blow up speed from the obtained energy bounds and the flux computation,
Proposition 7.1, and this allows us to conclude the proof of Theorem 1.1.
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2. Ground state and the associated linear Hamiltonian

The problem

(2.1) ∂2
t u − ∂2

r u − 1
r
∂ru + k2 f (u)

r2
= 0, f = gg′

admits a special stationary solution Q(r), and its dilates Qλ(r) = Q(r/λ), characterized
as the global minimum of the corresponding energy functional

E(u, ∂tu) =
∫ (

(∂tu)
2 + (∂ru)

2 + k2 g2(u)

r2

)

=
∫ (

(∂tu)
2 +

(
∂ru − k

g(u)

r

)2)
+ 2kG

(
u(r)

)|r=∞
r=0 ,(2.2)

where G(u) = ∫ u

0 g(u)du. In view of such factorization of energy, Q can be found as a
solution of the ODE

r∂rQ = kg(Q),

or alternatively

(2.3) �Q = kg(Q).

For the (WM) problem the function g(u) = sin u and for the (YM) equation g(u) =
1
2(1 − u2). Therefore,

Q(r) = 2 tan−1
(
rk
)
, Q(r) = 1 − r2

1 + r2

respectively.
For a solution u(t, r) close to a ground state Qλ the nonlinear problem (2.1) can be

approximated by a linear inhomogeneous evolution

∂2
t w + Hλw = F, u(t, r) = Qλ(r) + w(t, r)

with the linear Hamiltonian

Hλ = −� + k2 f ′(Qλ)

r2
.

We denote the Hamiltonian associated to Q by

H = −�y + k2 f ′(Q(y))

y2
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and recall the factorization property (1.38) of H:

(2.4) H = A∗A

with

(2.5) A = −∂y + V(1)

y
, A∗ = ∂y + 1 + V(1)

y
,

with

(2.6) V(1)(y) = kg′(Q(y)
)
,

and:

(2.7) Aλ = −∂r + V(1)

λ

r
, A∗

λ = ∂r + 1 + V(1)

λ

r
.

This factorization is a consequence of the Bogomol’nyi’s factorization of the Hamiltonian
(1.39) or, alternatively (2.2). Since Q is an energy minimizer we expect the Hamiltonian
H to be non-negative definite and possess a kernel generated by the function �Q—
generator of dilations (scaling symmetry) of the ground state Q. Factorization of H how-
ever leads to even a stronger property, which on one hand confirms that the kernel of H
is one dimensional but also leads to the fundamental cancellation:

(2.8) A(�Q) = 0,

that is �Q lies in the kernel of A. We note that for k = 1 the function �Q is not in L2(R2)

and thus formally does not belong to the domain of H. The structure of the kernel of H
leads to the following statement of orbital stability of the ground state.

Lemma 2.1 (Orbital stability of the ground state, [9], [34]). — For any initial data (u0, u1)

with the property that u0 = Qλ0 + w0 and ‖(w0, u1)‖H < ε with ε sufficiently small, and for any

t ∈ [0,T) with 0 < T ≤ +∞ the maximum time of existence of the classical solution with data

(u0, u1), there exists a unique decomposition of the flow

u(t) = Qλ(t) + w(t)

with λ(t) ∈ C 2([0,T),R∗
+) and

∀t ∈ [0,T), |∂tu|L2 + |λt(t)| + ‖w(t),0‖H � O(ε)

satisfying the orthogonality condition

(2.9) ∀t ∈ [0,T),
(
w

(
t, λ(t)·), χM�Q

) = 0.
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Remark 2.2. — The cut-off function χM(r) = χ(r/M) equal to one on the interval
[0,M] and vanishing for r ≥ 2M for some sufficiently large universal constant M is in-
troduced to accommodate the case k = 1 in which �Q(y) decays with the rate y−1 and
thus misses the space of L2 functions. The imposed orthogonality condition is not stan-
dard, however the arguments in [9], [34] can be easily adapted to handle this case. The
statement of the Lemma in particular implies the coercivity of the Hamiltonian Hλ

(2.10) (Hλw,w) = |Aλw|2L2 ≥ c(M)

∫ (
(∂rw)2 + w2

r2

)
,

provided that (w(λ·),χM�Q) = 0.

We introduce the function

(2.11) W(t, r) = Aλ(t)w.

The energy type bound on W will lead us to the H2 type bound on w. To be more precise,
we will control the H̃ norm of the function ε(s, y) = w(t, r), introduced in (1.36).

We next turn to the equation for W = Aλw. Following [34], an important obser-
vation is that the Hamiltonian driving the evolution of W is the conjugate Hamiltonian

(2.12) H̃λ = AλA∗
λ = −�+ k2 + 1

r2
+ 2V(1)

λ + V(2)

λ

r2
, V2(y) = k2

[(
g′)2 − gg′′ −1

]
(Q)

which, as opposed to H, displays space-time repulsive properties. Commuting the equation
for w with Aλ yields:

(2.13) ∂ttW + H̃λW = AλF + ∂ttV
(1)

λ w

r
+ 2∂tV

(1)

λ ∂tw

r
.

Observe that in the (WM) case V(2) ≡ 0 and

(2.14) k2 + 1 + 2V(1) + V(2) = (k − 1)2 + 2k
(
1 + cos(Q)

) ≥
{

1, for k ≥ 2,

1
1+r2 , for k = 1.

For the (YM) problem V(2) = −2(1 − Q2) and, with k = 2,

(2.15) k2 + 1 + 2V(1) + V(2) = 1 + 2(1 − Q)2 ≥ 1.

These inequalities imply that the Hamiltonian H̃λ is a positive definite operator with the
property that

(2.16) (H̃λW,W) = |A∗
λW|2L2 ≥ C

⎧
⎨

⎩

∫
((∂rW)2 + W2

r2 ) for k ≥ 2,
∫
((∂rW)2 + W2

r2(1+ r2

λ2 )
) for k = 1.
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It is important to note that unlike Hλ, H̃λ is unconditionally coercive. However, it provides
weaker control at infinity in the case k = 1. The expression

λ2(H̃λW,W) + λ2‖(∂tW,0)‖2
H

is precisely the norm ‖ε‖2
H̃ we ultimately need to control. Moreover, it obeys the estimate

λ2(H̃λW,W) + λ2‖∂tW,0‖2
H � ‖ε‖2

H2 .

Associated to the Hamiltonian H̃λ, we define global and local energies E (t), Eσ (t) used
extensively in the paper:

E (t) = λ2

∫ [
(∂tW)2 + (∇W)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]
(2.17)

= λ2

[∫
|A∗

λ(t)W(t)|2 +
∫

|∂tW(t)|2
]
,

Eσ (t) = λ2

∫
σBc

[
(∂tW)2 + (∇W)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]
(2.18)

where we let Bc = 2
b
, as in (1.23), and σBc

be a cut off function

(2.19) σBc
(r) = σ

(
r

λBc

)
with σ(r) =

{
1 for r ≤ 2,

0 for r ≥ 3.

We finish this section with the discussion on the admissibility of the functions u(t, r),
w(t, r) = u(t, r) − (PB)λ(r) where (PB(r))λ is a deformation of Qλ which will be defined
in Section 3. The criterium for admissibility of w(t, r) = ε(s, y) will be the finiteness of
the H2 norm of ε.

Proposition 2.3. — Let � be a smooth solution of the (WM)/(YM) problem on the time interval

[0,T(�0,�1)) with co-rotational/equivariant initial data (�0,�1). Then (�(t), ∂t�(t)) remains

co-rotational/equivariant for any t ∈ [0,T(�0,�1)) and its symmetry reduction u(t, r) coincides with

the solution of the nonlinear problem (1.1)/(1.2). Moreover, for any t ∈ [0,T(�0,�1)) the function

u(t) ∈ H2
a .

Proof of Proposition 2.3. — The first part of the Proposition is a standard statement of
propagation of symmetry. We omit its proof. It remains to show that u(t) ∈ H2

a . We give
the argument for the (WM) case, the (YM) is left to the reader. We note that

|∂ru| = |∂r�|, | sin(u)| = |∂θ�|, |∂2
r u| = |∂2

r � + (∂r�,∂r�)�|.
As a consequence, for a smooth map �(t) the finiteness of the H2

a norm of u(t) can
only fail at r = 0. To eliminate this possibility it will be sufficient to show that for k ≥ 2
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|∂ru| ≤ Cr, while for k = 1 the function |u| ≤ Cr and |∂ru− u

r
| ≤ Cr. The desired statement

for k ≥ 2 is contained in [34]. For k = 1, arguing as in [34] we derive that the energy
density

e(�)(t, r) = |∂tu|2 + |∂ru|2 + sin2 u

r2

is a smooth function of r2, which leads to the requirement that |u| ≤ Cr. Moreover, dif-
ferentiability of � also implies that

lim
r→0

|∂ru| = lim
r→0

| sin u|
r

,

which immediately gives the existence of

lim
r→0

(∂ru) = lim
r→0

(
u

r

)
.

On the other hand, the algebra of (1.39) implies that

∣
∣∣
∣∂ru − sin u

r

∣
∣∣
∣

2

= 1
2
(∂i� − εij� × ∂j�) · (∂i� − εij� × ∂j�) = v(�)

is a smooth function of r2. Since (∂ru− sin u

r
) vanishes at the origin we obtain that |∂ru− sin u

r
|

and hence |∂ru − u

r
| obey the estimate

∣∣
∣∣∂ru − u

r

∣∣
∣∣ ≤ Cr,

and this concludes the proof of Proposition 2.3. �

3. Construction of the family of almost self-similar solutions

This section is devoted to the construction of approximate self-similar solutions Qb.
These describe the dominant part of the blow up profile inside the backward light cone
from the singular point (0,T) and display a slow decay at infinity, which is eventually
responsible for the log modifications to the blow up speed. A related construction was
made in the (NLS) setting in [31], [25], where the ground state is exponentially decreas-
ing. A simpler version of the profiles Qb = Q + b2T1, terminating at a 2-term expansion
was used in [34]. The key to this construction is the fact that the structure of the linear
operator H = −� + k2 f ′(Q)

y2 is completely explicit due to the variational nature of Q as
the minimizer of the associated nonlinear problem.
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3.1. Self-similar equation. — Fix a small parameter b > 0. Given T > 0, a self-
similar solution to (1.3) is of the form:

(3.1) u(t, r) = Qb

(
r

λ

)
, λ(t) = b(T − t).

The stationary profile Qb should solve the nonlinear elliptic equation:

(3.2) −�Qb + b2D�Qb + k2 f (Qb)

y2
= 0.

This equation however admits no finite energy solutions, see [15] for related results. We
therefore construct approximate solutions of finite energy, which exhibit the fundamental
slow decay behavior in the region y ≥ 1

b
.

The approximate solution Qb will be of the form

(3.3) Qb = Q +
p+1∑

j=1

b2jTj.

We will require that the profiles Tj verify the orthogonality condition

(3.4) (Tj, χM�Q) = 0

with χM given by (1.22). The error associated to Qb is defined according to the formula

(3.5) �b(y) = −�Qb + b2D�Qb + k2 f (Qb)

y2
.

For a given homotopy index k we define an auxiliary integer parameter p

(3.6) p =
{

k

2 for k even,

k−1
2 for k odd.

Proposition 3.1 (Approximate solution to the self-similar equation). — Let M > 0 be a large

universal constant to be chosen later and let C(M) denote a generic large increasing function of M. Then

there exists b∗(M) > 0 such that for all 0 < b ≤ b∗(M) the following holds true. There exist smooth

radial profiles (Tj)1≤j≤p+1 satisfying (3.4) with the following properties:

• k ≥ 4 even: For all sufficiently small y and 0 ≤ m ≤ 3,

(3.7)
dmTj

dym
(y) = c̃j,myk−m

(
1 + O

(
y2

))
.

For y ≥ 1,

dmTj

dym
(y) = cj

dmy2j−k

dym

(
1 + fj

y2
+ O

(
1
y3

))
, 1 ≤ j ≤ p − 1,0 ≤ m ≤ 3,(3.8)
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Tp(y) = cp

(
1 + fp

y2
+ O

(
1
y3

))
,

dmTp

dym
(y) = fpcp

dmy−2

dym
+ O

(
1

y3+m

)
, 1 ≤ m ≤ 3,

(3.9)

Tp+1(y) = O(1),
dmTp+1

dym
(y) = O

(
1

ym+1

)
, 1 ≤ m ≤ 3.(3.10)

For 0 ≤ m ≤ 1 the error term verifies

(3.11)

∣∣
∣∣
dm�b

dym
(y)

∣∣
∣∣ � bk+4 yk−m

1 + yk+1
.

• k ≥ 3 odd: (Tj)1≤j≤p obey the asymptotics (3.7) near the origin, while for all y ≥ 1 and

0 ≤ m ≤ 3

dmTj

dym
(y) = cj

dmy2j−k

dym

(
1 + fj

y2
+ O

(
1
y3

))
, 1 ≤ j ≤ p,(3.12)

dm

dym
Tp+1(y) = O

(
1

y1+m

)
.(3.13)

For 0 ≤ m ≤ 1 the error term verifies

(3.14)

∣∣
∣∣
dm�b

dym
(y)

∣∣
∣∣ � bk+3 yk−m

1 + yk+2
.

• k = 2: There exist smooth profiles T1,T2 verifying (3.4) such that for all sufficiently small y

and j = 1,2,

(3.15)
dmTj

dym
(y) = C(M)O

(
yk−m

)
, 0 ≤ m ≤ 3,

while for all y ≥ 1 and 0 ≤ m ≤ 3,

(3.16)
dmTj

dym
(y) =

{
cjδ0m + C(M)O( 1

yk+m ), j = 1,

C(M)O( 1
ym ), j = 2.

For 0 ≤ m ≤ 1 the error term verifies

(3.17)

∣∣
∣∣

dm

dym

[
�b + cbb

4�Q
]
∣∣
∣∣ � C(M)bk+4 yk−m

1 + yk+1
,

for some constant cb = O(1).
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• k = 1: We can find T1 satisfying (3.4), such that for all sufficiently small y and 0 ≤ m ≤ 3,

(3.18)
dmT1

dym
(y) = C(M)O

(
yk−m

)
,

while for 1 ≤ y ≤ 1
b2 and 0 ≤ m ≤ 3,

∣∣
∣∣

dm

dym
T1(y)

∣∣
∣∣ �

(
1 + y1−m

)1 + | log(by)|
| log b| 1

y≤ B0
2

+ 1
b2| log b|(1 + y1+m)

1
y≥ B0

2
(3.19)

+ C(M)

1 + y1+m
.

The error term �b satisfies for 0 ≤ m ≤ 1 and 0 ≤ y ≤ 1
b2 ,

∣
∣∣
∣

dm

dym

(
�b − cbb

2χ B0
4
�Q

)
∣
∣∣
∣(3.20)

� b4 y1−m

1 + y4
+ b4 (1 + | log(by)|)

| log b| y1−m11≤y≤ B0
2

+ b2

| log b|y1+m
1

y≥ B0
2

with a constant

|cb| � 1
| log b| .

The constants (cj)1≤j≤p in (3.8), (3.9), (3.12) are given by the recurrence formula:

(3.21) ∀j ∈ [2, p], cj = −cj−1
(k − 2j + 2)(k − 2j + 1)

4j(k − j)
, c1 = k

2
.

In the construction of the profile Qb the term Tp(y) is a radiative term display-
ing an anomalous slow decay at infinity according to (3.9), (3.12), (3.19). It is the first
term which yields an unbounded contribution to the Hamiltonian of the corresponding
self-similar solution u. The term Tp+1 is introduced in the decomposition to refine the be-
havior of the error term �b on compact sets, i.e. finite values of y, without destroying its
radiative behavior far out. This turns out to be more delicate for k = 1,2 which explains
a slightly pathological behavior of the error �b in these cases, (3.17), (3.20). Note that
this is particularly true for k = 1 where p = 0 and Q itself is the radiative term. In that
case, introduction of the term T1, which is however badly behaved for y ≥ 1

b
according

to (3.19), allows us to gain a factor of 1
| log b| in the region y ≤ 1

b
in (3.20). This should be

contrasted with the polynomial gain in b we see for higher values of k.

Remark 3.2. — The orthogonality condition (3.4) corresponds to a choice of gauge
for Qb allowed by the kernel of H, given by (1.37). This choice will be convenient for an
additional decomposition of the flow near Qb, see in particular (5.12).
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3.2. Construction of Qb. — Proof of Proposition 3.1. — Let p be given by (3.6).
Step 1 Construction of an expansion.
The case k = 1 will be treated separately. Let thus k ≥ 2, j ∈ [1, p] and (Tl)1≤l≤j be

any smooth radial function vanishing sufficiently fast both at zero and infinity, as in say
(A.5). Let

Qb =
j∑

l=0

b2lTl, T0 = Q.

From the Taylor expansion of f :

f (Qb) = f (Q) +
j∑

l=1

f (l)(Q)

l!
(
b2T1 + · · · + b2jTj

)l + R1,j(b, y)

with

(3.22) R1,j(b, y) = (Qb − Q)j+1

j!
∫ 1

0
(1 − u)j f (j+1)

(
uQb + (1 − u)Q

)
du.

We then reorder the polynomial part in b to get:

f (Qb) = f (Q) +
j∑

l=1

b2l
[
f ′(Q)Tl + Pl(T1, . . . ,Tl−1)

]
(3.23)

+ R1,j(b, y) + R2,j(T1, . . . ,Tj).

Here Pl is a polynomial of degree l with the convention that P1 = 0 and the term Tm

contributes m to the degree of Pl . R2,j is a polynomial in (Tl)1≤l≤j and contains the terms
of order (b2l)l≥j+1. Hence:

(3.24) ∀0 ≤ l ≤ j,
∂ lR1,j(b, y)

∂(b2)l

∣∣
∣∣
b=0

= ∂ lR2,j(b, y)

∂(b2)l

∣∣
∣∣

b=0

= 0.

We now expand the self similar equation:

−�Qb + b2D�Qb + k2 f (Qb)

y2
(3.25)

= −�

(
Q +

j∑

l=1

b2lTl

)
+

( j∑

l=1

b2lD�Tl−1

)
+ b2(j+1)D�Tj

+ k2

y2

{
f (Q) +

j∑

l=1

b2l
[
f ′(Q)Tl + Pl(T1, . . . ,Tl−1)

] + R1,j + R2,j

}
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=
j∑

l=1

b2l

[
HTl + D�Tl−1 + k2

y2
Pl(T1, . . . ,Tl−1)

]

+ k2

y2
(R1,j + R2,j) + b2(j+1)D�Tj.

We claim by induction on 1 ≤ j ≤ p that we may solve the system:

(3.26) HTl + D�Tl−1 + k2

y2
Pl(T1, . . . ,Tl−1) = 0, 1 ≤ l ≤ j

with (Tl)1≤j satisfying the desired estimates and the orthogonality condition (3.4). Indeed,
for j = 1, we solve:

(3.27) HT1 + D�Q = 0, (T1, χM�Q) = 0,

explicitly by setting

(3.28) T1 = 1
4

y2�Q −
∫

χMy2(�Q)2

4
∫

χM(�Q)2
�Q.

In the (WM) case for k ≥ 3, it satisfies from (A.10) the asymptotics:

(3.29) T1(y) =
{

c̃1yk(1 + O(yk)) as y → 0,

c1
y2

yk (1 + f1
y2 + O( 1

y3 )) as y → +∞,

and for k = 1,2:

(3.30) T1(y) =
{

c̃1yk(1 + O(yk)) as y → 0,

c1
y2

yk (1 + C(M)O( 1
y2 )) as y → +∞,

with

C(M) ∼
{

log M for k = 2,

M2

log M for k = 1.

In the (YM) k = 2 case

(3.31) T1(y) =
{−c̃1yk(1 + log MO(yk)) as y → 0,

−c1
y2

yk (1 + O(
log M

yk )) as y → +∞.

In all cases,

(3.32) c1 = k

2
.
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Hence T1 satisfies (3.4), (3.7), (3.8), (3.12), (3.15) and (3.16) for j = 1.
Step 2 Induction for k ≥ 3.
For k = 3, we have p = 1 and T2 = Tp+1 will be constructed in step 4. We hence

assume k ≥ 4 and now argue by induction on j using Lemma A.1. We assume that we
could solve (3.26) for 1 ≤ l ≤ j − 1 with (Tl)1≤l≤j−1 satisfying (3.7), (3.8), (3.12). In order
to apply Lemma A.1, we need to show the orthogonality:

(3.33)
(

D�Tj−1 + k2

y2
Pj(T1, . . . ,Tj−1),�Q

)
= 0.

Assume (3.33). Then from Lemma A.1, we may solve (3.26) for l = j with Tj satisfying
(3.4). Moreover, from the decay properties of (T1, . . . ,Tj−1) at infinity and the poly-
nomial structure of Pj(T1, . . . ,Tj−1), the leading order term on the RHS of (3.26) as
y → +∞ is given by D�Tj−1 = 2yT′

j−1 + y2T′′
j−1 that is:

D�Tj−1 + k2

y2
Pj(T1, . . . ,Tj−1)

= (k − 2j + 2)(k − 2j + 1)cj−1
y2(j−1)

yk

(
1 + O

(
1
y2

))
.

(A.4), (A.5), (A.6) now allow us to derive the asymptotics of Tj,T′
j near +∞, and higher

derivatives are controlled using Equation (3.26).
Estimates (3.8), (3.12) follow with the recurrence formula:

cj = −cj−1
(k − 2j + 2)(k − 2j + 1)

4j(k − j)
,

which gives (3.21). Similarly, the yk vanishing of (Tl)1≤l≤j−1 at the origin ensures that the
same vanishing holds for (

Pl (T1,...,Tl−1)

y2 )2≤l≤j , and (3.7) follows.
Proof of (3.33): Note that a direct algebraic proof seems hopeless due to the non-

linear structure of the problem. However, we claim that (3.33) is a simple consequence
of the energy criticality of the problem and the cancellation provided by the Pohozaev
identity. Let (Tl)0≤l≤j−1 be the first constructed profiles and let Tj be any smooth radial
function vanishing sufficiently fast both at zero and infinity. Let Qb = ∑j

l=0 b2lTl , then:

F(b) =
(

−�Qb + b2D�Qb + k2 f (Qb)

y2
,�Qb

)
= 0.

Let us indeed recall that this holds true for any smooth Qb which decays enough both at
the origin and infinity. Note also that we are implicitly using the condition j ≤ p which
ensures from (3.8), (3.12) that the integration by parts does not create any boundary terms
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for the (Tl)1≤l≤j−1 terms. We conclude that the Taylor series of F at b = 0 vanishes to all
orders. On the other hand, from the decomposition (3.25),

F(b) =
( j∑

l=1

b2l

[
HTl + D�Tl−1 + k2

y2
Pl(T1, . . . ,Tl−1)

]

+ k2

y2
R1,j + k2

y2
R2,j + b2(j+1)D�Tj,�Q +

j∑

l=1

b2l�Tl

)

=
(

b2j

[
HTj + D�Tj−1 + k2

y2
Pj(T1, . . . ,Tj−1)

]
+ k2

y2
R1,j + k2

y2
R2,j

+ b2(j+1)D�Tj,�Q +
j∑

l=1

b2l�Tl

)

where we used that (3.26) is satisfied for 1 ≤ l ≤ j − 1. (3.24) now implies:

0 = d2j

db2j
F(b)

∣
∣∣
∣
b=0

=
(

HTj + D�Tj−1 + k2

y2
Pj(T1, . . . ,Tj−1),�Q

)
.

Now (HTj,�Q) = (Tj,H�Q) = 0 for any Tj and (3.33) follows.
Step 3 Estimate on the error at the order p.
Let now �

(p)

b be given by (3.5) for Qb = ∑p

l=0 b2lTl , explicitly from (3.25):

(3.34) �
(p)

b = k2

y2
R1,p + k2

y2
R2,p + b2(p+1)D�Tp.

R1,p are given by (3.22) and R2,p are given by (3.23) are estimated using the uniform
bound on (‖f (j)‖L∞)1≤j≤p and the behavior of Tj near the origin and infinity:

For k odd and 0 ≤ m ≤ 1:
∣
∣∣
∣
dmy−2R1,p

dym
(y)

∣
∣∣
∣ � b2(p+1) y(p+1)k−m−2

1 + y2(p+1)(k−1)
+ b2p(p+1) y(p+1)k−m−2

1 + y(p+1)(k+1)
,(3.35)

∣∣
∣∣
dmy−2R2,p

dym
(y)

∣∣
∣∣ � b2(p+1) y2k−m−2

1 + y3k−1
+ b2p2 ypk−m−2

1 + ypk+p
.(3.36)

Note that R2,p is non-trivial only for k ≥ 5.
For k even and 0 ≤ m ≤ 1:

∣∣
∣∣
dmy−2R1,p

dym
(y)

∣∣
∣∣ � b2(p+1) y(p+1)k−m−2

1 + y2(p+1)(k−1)
+ b2p(p+1) y(p+1)k−m−2

1 + y(p+1)k
,(3.37)

∣
∣∣
∣
dmy−2R2,p

dym
(y)

∣
∣∣
∣ � b2(p+1) y2k−m−2

1 + y3k−2
+ b2p2 ypk−m−2

1 + ypk
.(3.38)
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Note that R2,p is non-trivial only for k ≥ 4.
It remains to estimate the leading order term D�Tp in (3.34). Recall the asymp-

totics of Tp near y + ∞ from (3.9), (3.12):

Tp(y) = cp

(
1 + fp

y2
+ O

(
1
y3

))
for k even,

Tp(y) = cp

y

(
1 + fp

y2
+ O

(
1
y3

))
for k odd.

We now use in a fundamental way the cancellation

(3.39) D�

(
1
y

)
= D�(1) = 0

which yields in particular as y → +∞:

(3.40) D�Tp(y) =
⎧
⎨

⎩

f̃p

y2 + O( 1
y3 ) for k even,

f̃p

y3 + O( 1
y4 ) for k odd,

and the crude bounds:
∣∣
∣∣
dmD�Tp

dym
(y)

∣∣
∣∣ � yk−m

1 + yk+2
, 0 ≤ m ≤ 1 for k even,

∣
∣∣
∣
dmD�Tp

dym
(y)

∣
∣∣
∣ � yk−m

1 + yk+3
, 0 ≤ m ≤ 1 for k odd.

These estimates together with (3.35)–(3.38) now yield:
∣
∣∣
∣

dm

dym
�

(p)

b

∣
∣∣
∣ � bk+2yk−m

1 + yk+2
, 0 ≤ m ≤ 1, for k even,(3.41)

∣∣
∣∣

dm

dym
�

(p)

b

∣∣
∣∣ � bk+1yk−m

1 + yk+3
, 0 ≤ m ≤ 1, for k odd.(3.42)

Step 4 Construction of Tp+1 for k ≥ 3.
Observe that for all k ≥ 1, Tp is the radiative term in the sense that as y → +∞:

Tp ∼ 1
y

for k odd, Tp ∼ 1 for k even.

Note that for k = 1 we have p = 0 and T0 = Q.
The estimates (3.41), (3.42) are not sufficient for our analysis. Therefore we add an

extra term Tp+1 by taking advantage of the cancellations (3.39). The cases k = 1,2 are
degenerate and require a separate treatment.
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For k ≥ 3, we need to solve:

(3.43) LTp+1 + D�Tp + k2

y2
Pp+1(T1, . . . ,Tp) = 0.

To do this, we first need to verify the orthogonality condition for k ≥ 3:

(3.44)
(

D�Tp + k2

y2
Pp+1(T1, . . . ,Tp),�Q

)
= 0.

As before we may define Qb = ∑p+1
l=0 b2lTl with an arbitrary smooth rapidly decaying

function Tp+1 and

F(b) =
(

−�Qb + b2D�Qb + k2 f (Qb)

y2
,�Qb

)

so that
(

D�Tp + k2

y2
Pp+1(T1, . . . ,Tp),�Q

)
= 1

(2(p + 1))!
d2(p+1)F(b)

b2(p+1)

∣∣
∣∣

b=0

.

We now claim:

(3.45) F(b) = c2
p

2
b2k

(
1 + o(1)

)
as b → 0.

Indeed, let R > 0 and recall the Pohozaev integration: for any smooth enough φ,

(3.46)
∫

r≤R

(
−�φ+b2D�φ+ k2 f (φ)

y2

)
�φ =

[
−1

2

(
rφ′)2 + b2

2
|r�φ|2 + k2g2(φ)

2

]
(R).

Applying this with φ = Qb yields:

lim
R→+∞

∫

r≤R

(
−�Qb + b2D�Qb + k2 f (Qb)

y2

)
�Qb

= lim
R→+∞

b2

2
|r�Qb|2(R) + k2

2
|g(Qb)|2(R)

and hence:

F(b) =
⎧
⎨

⎩

c2
p b4p+2

2 = c2
p b2k

2 for k odd,

c2
p b4p

2 = c2
p b2k

2 for k even
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where we used in the last step the asymptotics (3.9), (3.12) for j = p for Tp. Combining
(3.45) with the analytic dependence of F(b) on b, we conclude that for k ≥ 3 (recall that
2(p + 1) = k + 1 < 2k for k odd and 2(p + 1) = k + 2 < 2k for k even):

d2(p+1)

db2(p+1)
F(b)

∣∣
∣
∣
b=0

= 0

and the desired orthogonality condition follows. We now argue exactly as in the proof of
Lemma A.1 to construct Tp+1 solution to (3.43) satisfying from (3.40) the estimate (3.7)
near the origin and for y ≥ 1:

Tp+1 = cp+1

(
1 + O

(
1
y

))
,

∣
∣∣
∣

dm

dym
Tp+1(y)

∣
∣∣
∣ � yk−m

1 + yk+1
, 0 ≤ m ≤ 2 for k even,

Tp+1 = cp+1

y

(
1 + O

(
1
y

))
,

∣
∣∣
∣

dm

dym
Tp+1(y)

∣
∣∣
∣ � yk−m

1 + yk+1
, 0 ≤ m ≤ 2, for k odd.

In the even case, we used here the same cancellation which led to (A.6) for the 1
y2 part of

the behavior of D�Tp in the asymptotics (3.40) near y → +∞. We cannot retrieve the
same cancellation on the part induced by the O( 1

y3 ) tail but we simply need the rough
bound |T′

p+1| � 1
y2 at +∞.

Using the degeneracy (3.39), this leads to the bound for 0 ≤ m ≤ 1:
∣∣
∣∣

dm

dym
D�Tp+1(y)

∣∣
∣∣ � yk−m

1 + yk+2
for k odd,(3.47)

∣
∣∣
∣

dm

dym
D�Tp+1(y)

∣
∣∣
∣ � yk−m

1 + yk+1
for k even.(3.48)

We now define

�b = k2

y2
R1,p+1 + k2

y2
R2,p+1 + b2(p+2)D�Tp+1.

The estimates on the first two terms are already contained in (3.35)–(3.38), and (3.47),
(3.48) now imply (3.11), (3.14).

Step 5 Construction of T2 for k = 2.
We now turn to the k = 2 case. Observe that the fundamental cancellation (3.39)

still holds, but the orthogonality condition (3.44) fails. This failure is due to the fact that
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2( k

2 + 1) = 2k. Let T1 be given by (3.28) and

(3.49) cb = (D�T1 + k2

2y2 f ′′(Q)T2
1,�Q)

|�Q|2L2

= c2
1

2|�Q|2L2

∼ 1,

then T1 satisfies the asymptotics (3.15), (3.16) from (3.29), (3.31). Let then T2 be the
solution given5 by Lemma A.1 to

HT2 = −D�T1 − k2

2y2
f ′′(Q)T2

1 + cb�Q = g.

Explicitly, from (A.16), T2 = T̃2 − cM�Q with:

T̃2(y) = J(y)
∫ y

1
g(x)�(x)xdx − �(y)

∫ y

0
g(x)J(x)xdx

and

cM = (T̃2, χM�Q)

(�Q, χM�Q)
.

The asymptotics (3.7) near the origin follow easily from (3.29), (3.31). For y ≥ 1, we have
from (g,�Q) = 0:

|T̃2(y)| =
∣
∣∣
∣�(y)

∫ +∞

y

g(x)J(x)xdx + J(y)
∫ y

1
g(x)�(x)xdx

∣
∣∣
∣

� y2

∫ ∞

y

xdx

(1 + x2)2
+ 1

y2

∫ y

1

x3dx

1 + x2
� C(M).

Therefore,

cM � C(M).

This leads to (3.16) for m = 0 and j = 2. Higher order derivatives are estimated similarly.
We now compute the error �b:

�b = −�Qb + b2D�Qb + k2 f (Qb)

y2

= b4

[
LT2 + D�T1 + k2

2y2
f ′′(Q)(T1)

2

]
+ b6D�T2

5 Formally, Lemma A.1 can be applied only in the context of the (WM) problem and with k ≥ 3. The argument
however can be easily modified to satisfy our current needs. We sketch the argument below.
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+ k2

y2

[
f
(
Q + b2T1 + b4T2

) − f (Q) − b2f ′(Q)
(
T1 + b2T2

)

− b4T2
1

2
f ′′(Q)

]

from which:

∣∣�b + cbb
4�Q

∣∣ � b6

[
|D�T2| + C(M)

y2

1 + y4

]
� C(M)b6 y2

1 + y3
.

This is (3.17) for m = 0, the case m = 1 follows similarly.
Step 6 Construction of T1 for k = 1.
We now turn to the k = 1 case. The cancellation (3.39) still holds, but the orthog-

onality condition (3.44) fails since for k = 1, 2( k−1
2 + 1) = 2k. This reflects the fact that

�Q ∼ 1
y

is already the radiative term, and the non vanishing quantity on the LHS of
(3.44) is exactly the flux term driving the blow up speed. This can equivalently be seen in
the anomalous growth of

T0
1 = y2

4
�Q ∼ y solution of HT0

1 + D�Q = 0.

Let

(3.50) cb = (D�Q,�Q)

(�Q, χ B0
4
�Q)

∼ C
| log b|

and T1 be the solution given by Lemma A.1 to

LT1 = −D�Q + cb�Qχ B0
4

= g,

explicitly T1 = T̃1 − cM�Q with

cM = (T̃1, χM�Q)

(�Q, χM�Q)

and from (A.16):

T̃1(y) = J(y)
∫ y

1
g(x)�(x)xdx − �(y)

∫ y

0
g(x)J(x)xdx.

The asymptotics (3.7) near the origin follow easily. For y ≥ 1, we first have from the
orthogonality condition (g,�Q) = 0, implied by (3.50), and the degeneracy (3.39), which
implies that |D�Q| ≤ y−3 for y ≥ 1, that for 1

b2 ≥ y ≥ B0
2 ,

|T̃1(y)| =
∣∣
∣∣�(y)

∫ +∞

y

g(x)J(x)xdx + J(y)
∫ y

1
g(x)�(x)xdx

∣∣
∣∣
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� (1 + y)

∫ ∞

y

dx

1 + x3
+ 1

y

[∫ y

1

x2dx

1 + x3
+ |cb|

∫ B0

1

x2dx

1 + x

]

� 1
b2| log b|

1
1 + y

.

On the other hand, for 1 ≤ y ≤ B0
2 :

|T̃1(y)| = (1 + y)

∫ +∞

y

dx

1 + x3
+ |cb|(1 + y)

∫ B0

y

dx

1 + x

+ 1
1 + y

∫ y

1
x2dx

[
1

1 + x3
+ |cb|

x

]

� 1 + y

| log b|
(
1 + | log(by)|)1

y≤ B0
2
.

The constant cM can be then estimated:

cM ≤ C(M).

This leads to (3.19) for m = 0. Higher order derivatives are estimated similarly. We now
compute the error �b:

�b = −�Qb + b2D�Qb + k2 f (Qb)

y2

= b2(LT1 + D�Q) + b4D�T1

+ k2

y2

[
f
(
Q + b2T1

) − f (Q) − b2f ′(Q)T1

]
.

Using the cancellation for the term D�(cM�Q) we then obtain
∣
∣�b + cbb

2�Qχ B0
4

∣
∣

� b4

[
|D�T1| + 1

y2
T2

1

∫ 1

0

∫ 1

0
τ f ′′(Q + τ ′τb2T1

)
dτ ′dτ

]

� C(M)b4 y

1 + y4
+ b4 1 + y

| log b|
(
1 + | log(by)|)11≤y≤ B0

2
+ b2

| log b|
1

y≥ B0
2

y
,

where we used the behavior |f ′′(y)| � y for y ≤ 1. This is (3.20) for m = 0, the case m = 1
follows similarly.

For future reference we also note the following improved behavior in the region
y ≥ B0. First, we compute

�T̃1 = ��(y)

∫ ∞

y

g(x)J(x)xdx + �J(y)
∫ y

1
g(x)�(x)xdx,
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D�T̃1 = D��(y)

∫ ∞

y

g(x)J(x)xdx − ��(y)g(y)J(y)y2

+ D�J(y)
∫ y

1
g(x)�(x)xdx + �J(y)g(y)�(y)y2.

We now observe that |D�J(y)| � y−3 for y ≥ 1 and that the worst term in g is supported
in y ≤ B0/2. Therefore, for y ≥ B0

|D�T̃1(y)| � (1 + y)

(∫ ∞

y

dx

1 + x3
+ 1

1 + y2

)

+ 1
y3

([∫ y

1

x2dx

1 + x3
+ |cb|

∫ B0

1

x2dx

1 + x

]
+ y3

1 + y3

)

� 1
1 + y

.

Repeating the calculation for �b, we obtain for y ≥ B0

|�b| � b4

[
|D�T̃1| + 1

y2
T2

1

∫ 1

0

∫ 1

0
τ f ′′(Q + τ ′τb2T1

)
dτ ′dτ

]
(3.51)

� b4

1 + y
+ b4 1

y5b4 log2 b
� b4

1 + y
.

This concludes the proof of Proposition 3.1. �

3.3. Profile localization. — Observe from (3.9), (3.12) that the profiles Tp possess
tails slowly decaying at infinity. The behavior of these tails, near the light cone y ∼ 1

b
, are

responsible for a leading order phenomenon in determining the blow up speed, but their
slow decay becomes irrelevant for y � 1

b
, where Qb is no longer a good approximation

of the solution. In this region, the nonlinear interaction is over and we simply match the
profile to its asymptotic value a. Note that the existence of an exact constant self-similar
stationary solution to the full nonlinear problem turns out to be important for the analysis
for small k. We thus introduce a localized version of the Qb profile as follows. Recall the
two different scales B0,B1 defined in (1.23) and let

B ∈ {B0,B1} with B0 = 1

b

√
3
∫

yχ(y)dy

,B1 = | log b|
b

.

We then define:

(3.52) PB = (1 − χB)a + χBQb,
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where

a = lim
y→+∞ Q(y) =

{
π for (WM),

−1 for (YM)

and Qb is given by Proposition 3.1. We now collect the estimates on this localized profile
PB which are a simple consequence of Proposition 3.1.

Proposition 3.3 (Estimates on the localized profile). — Let

(3.53) �B = −�PB + b2D�PB + k2 f (PB)

y2
.

Then

(3.54) Supp(�B) ⊂ {y ≤ 2B}
and there holds the estimates:

(i) For k ≥ 4 even,

∣∣
∣
∣

dm

dym

∂PB

∂b

∣∣
∣
∣ � b

yk−m

1 + y2k−2
1y≤ 1

b
+ bk−1

ym
1 1

b
≤y≤2B, 0 ≤ m ≤ 3,(3.55)

∣
∣∣
∣
dm�B

dym
(y)

∣
∣∣
∣ � bk+4 yk−m

1 + yk+1
1y≤B + bk+2

ym
1B≤y≤2B, 0 ≤ m ≤ 1.(3.56)

(ii) For k ≥ 3 odd,

∣∣
∣∣

dm

dym

∂PB

∂b

∣∣
∣∣ � b

yk−m

1 + y2k−2
1y≤ 1

b
+ bk−2

y1+m
1 1

b ≤y≤2B, 0 ≤ m ≤ 3,(3.57)

∣
∣∣
∣
dm�B

dym

∣
∣∣
∣ � bk+3 yk−m

1 + yk+2
1y≤B + bk+1

1 + ym+1
1B≤y≤2B, 0 ≤ m ≤ 1.(3.58)

(iii) For k = 2
∣∣
∣∣
dm

dym

∂PB

∂b

∣∣
∣∣ � b

y2−m

1 + y2
1y≤ 1

b
+ b

ym
1 1

b
≤y≤2B + C(M)b

y2−m

1 + y4
1y≤2B, 0 ≤ m ≤ 3,(3.59)

∣
∣∣
∣

dm

dym

[
�B − cbb

4χB�Q
]
∣
∣∣
∣(3.60)

� C(M)bk+4 yk−m

1 + yk+1
1y≤B + bk+2

ym
1B≤y≤2B, 0 ≤ m ≤ 1, k = 2.
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(iv) For k = 1,

∣∣
∣∣

dm

dym

∂PB

∂b

∣∣
∣∣ � by1−m(1 + | log b(1 + y)|)

| log b| 1
y≤ B0

2
+ 1

b| log b|y1+m
1 B0

2 ≤y≤2B(3.61)

+ 1
by1+m

1 B
2 ≤y≤2B + C(M)

by

1 + y2+m
, 0 ≤ m ≤ 3

and for 0 ≤ m ≤ 1:

∣
∣∣
∣

dm

dym

(
�b − cbb

2χ B0
4
�Q

)
∣
∣∣
∣ � b2

y
1B≤y≤2B + C(M)b4 y1−m

1 + y4
1y≤2B(3.62)

+ b4 (1 + | log(by)|)
| log b| y1−m11≤y≤ B0

2

+ b2

| log b|y1+m
1 B0

2 ≤y≤2B.

The main consequence of the localization procedure is first that

Supp(�PB) ⊂ {0 ≤ y ≤ 2B}
and hence the possible growth in b of weighted Sobolev norms of PB may be evaluated ex-
plicitly. Second, the localization procedure creates an unavoidable slowly decaying term
in the error �B arising from the commutator [D�,χB] ∼ 1 and the specific decay of the
radiation Tp, leading to:

(3.63) ∀y ∈ [B,2B], �B(y) ∼
{

bk+2 for k even,

bk+1

y
for k odd.

However, according to (3.56), (3.58), (3.60), (3.62), �B is better behaved on the set where
χB = 1, thanks to the extra gains provided by the Tp+1 terms in Proposition 3.1.

Remark 3.4. — Observe that for b < b∗(M) small enough, the localization does
not destroy the orthogonality relation which we have built into Qb. More precisely, (3.4)
ensures:

(3.64) ∀b ≤ b∗(m),∀B ≥ 1
b
, (PB − Q, χM�Q) = 0.

Proof of Proposition 3.3. — First compute from (3.52) and (3.5):

∂PB

∂b
= χB

∂Qb

∂b
− ∂ log B

∂b
yχ ′

B(Qb − π),(3.65)
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�B = χB�b + k2

y2

{
f (PB) − χBf (Qb)

} − (Qb − a)�χB − 2χ ′
BQ′

b(3.66)

+ b2
{
(Qb − a)D�χB + 2y2χ ′

BQ′
b

}

and thus (3.54) follows from (3.52). We now consider separate cases:
Case k ≥ 4 even: Recall that 2p = k for k even. From (3.7), (3.12), there holds for

y ≤ 1
b
:

∣∣
∣∣
∂PB

∂b

∣∣
∣∣ � b|T1(y)| � byk

1 + y2k−2
.

On the other hand, in the region 1
b
≤ y ≤ 2B:

∣∣
∣∣
∂PB

∂b

∣∣
∣∣ � bk−1Tp(y) + bk

b
� bk−1.

This proves (3.57) for m = 0, other cases follow similarly.
We now estimate �B. For y ≤ B, �B = �b and hence (3.58), (3.60) follow for y ≤ B

from (3.11), (3.17). For B ≤ y ≤ 2B, we estimate the RHS of (3.66). First:

1
y2

{|f (PB) − χBf (Qb)|
}

� |Qb − a|
y2

1B≤y≤2B � bk+21B≤y≤2B.

Similarly,

∣
∣(Qb − π)�χB − 2χ ′

B(Qb − a)′∣∣ � bk

B2
1B≤y≤2B � bk+21B≤y≤2B,

b2
∣
∣(Qb − a)D�χB + 2y2χ ′

BQ′
b

∣
∣ � b2bk1B≤y≤2B = bk+21B≤y≤2B.

These estimates imply (3.56) for m = 0. The cases 1 ≤ m ≤ 3 follow similarly and are left
to the reader.

The case k = 2 follows similarly using (3.15), (3.16), (3.17), this is left to the reader.
Case k ≥ 3 odd: Recall that 2p+1 = k for k odd. From (3.7), (3.12), (3.13), the leading

order behavior of ∂PB
∂b

in the region y ≤ 1
b

is given by:
∣
∣∣
∣
∂PB

∂b

∣
∣∣
∣ � b|T1(y)| � byk

1 + y2k−2
.

On the other hand, in the region 1
b
≤ y ≤ 2B, there holds:

∣
∣∣
∣
∂PB

∂b

∣
∣∣
∣ � bk−2Tp(y) + 1

b

bk−1

y
� bk−2

y
.

This proves (3.57) for m = 0, other cases follow similarly.
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We now estimate the error �B given in (3.66). For y ≤ B, �B = �b and hence (3.58)
follows for y ≤ B from (3.14). In the region B ≤ y ≤ 2B, we estimate from (3.57) and
f (π) = 0:

1
y2

{|f (PB) − χBf (Qb)|
}

� 1
y2

{|f (π + χB(Qb − π)) − f (π)| + |f (Qb) − f (π)|}

� |Qb − π |
y2

1B≤y≤2B � bk+1

y
1B≤y≤2B,

∣
∣(Qb − π)�χB − 2χ ′

B(Qb − π)′∣∣ � bk−1

B2y
1B≤y≤2B � bk+1

y
1B≤y≤2B,

b2
∣∣(Qb − π)D�χB + 2y2χ ′

BQ′
b

∣∣ � b2bk−1

y
1B≤y≤2B = bk+1

y
1B≤y≤2B.

These estimates together with (3.14) now imply (3.58) for m = 0. The case m = 1 follow
similarly.

Case k = 1: We estimate from (3.65):

∂PB

∂b
= χB

∂Qb

∂b
− ∂ log B

∂b

y

B
χ ′

B(Qb − π).

Therefore,
∣
∣∣
∣
∂PB

∂b

∣
∣∣
∣ ≤

∣
∣∣
∣
∂(b2T1)

∂b

∣
∣∣
∣1y≤2B + b−1|Qb − π |1 B

2 ≤y≤2B.

Estimate (3.61) is a direct consequence of the construction of T1 and the bound
|Qb − π | � (1 + y)−1. The derivative estimates follow in a similar fashion.

We now turn to the estimate of �B. From (3.66):

1
y2

{|f (PB) − χBf (Qb)|
}

� |Qb − π |
y2

1B≤y≤2B � b2

y
1B≤y≤2B,

∣∣(Qb − π)�χB − 2χ ′
b(Qb − π)′∣∣ � 1

B2y
1B≤y≤2B � b2

y
1B≤y≤2B,

(3.67)

b2
∣∣(Qb − π)D�χB + 2y2χ ′

BQ′
b

∣∣ � b2

y
1B≤y≤2B.(3.68)

These estimates yield (3.62) for m = 0, the case m = 1 follows similarly.
This concludes the proof of Proposition 3.3. �
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4. Decomposition of the flow

Having constructed the almost self similar localized profiles PB, we introduce a
decomposition of the flow:

u(t, r) = (PB1(b(t)) + ε)

(
t,

r

λ(t)

)
= (PB1(b(t)))λ(t) + w(t, r)

where

B1 = | log b|
b

.

The time dependent parameters b(t), λ(t) will be determined from the modulation theory
in Section 5.2. The perturbative w(t) is what is referred to in the paper as the “radiation
term”. Since (PB1)λ(t) ∈ H2

a , it implies6 that w(t, r) ∈ H2.
We now derive the equations for w and ε. Let

(4.1) s(t) =
∫ t

0

dτ

λ(τ)

be the rescaled time.7 We shall make an intensive use of the following rescaling formulas:
for

u(t, r) = v(s, y), y = r

λ
,

ds

dt
= 1

λ
,

∂tu = 1
λ
(∂sv + b�v)λ,

(4.2)

∂ttu = 1
λ2

[
∂2

s v + b(∂sv + 2�∂sv) + b2D�v + bs�v
]
λ
.(4.3)

In particular, using (3.53) and (4.3), we derive from (1.3) the equation for ε:

∂2
s ε + HB1ε = −�B1 − bs�PB1 − b(∂sPB1 + 2�∂sPB1) − ∂2

s PB1(4.4)

− b(∂sε + 2�∂sε) − bs�ε − k2

y2
N(ε)

where HB1 is the linear operator associated to the profile PB1

(4.5) HB1ε = −�ε + b2D�ε + k2 f ′(PB1)

y2
ε,

6 Observe that for k = 1, Qλ(t) does not belong to H2
a due its slow convergence at infinity.

7 Note that s(t) will be proved to be a global time s(t) → +∞ as t → T.
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and the nonlinearity:

(4.6) N(ε) = f (PB1 + ε) − f (PB1) − f ′(PB1)ε.

Alternatively, the equation for w given by (5.11) takes the form:

∂2
t w + HB1w = −

[
∂2

t (PB1)λ − �(PB1)λ + k2 f ((PB1)λ)

r2

]
− k2

r2
N(w)

with

HB1w = −�w + k2 f ′((PB1)λ)

r2
,(4.7)

N(w) = f (PB1 + w) − f (PB1) − f ′((PB1)λ

)
w.(4.8)

We then expand using (4.2), (4.3) and (3.53):

∂2
t (PB1)λ − �(PB1)λ + k2 f ((PB1)λ)

r2

= 1
λ2

[
∂ssPB1 + b(∂sPB1 + 2�∂sPB1) + bs�PB1 + �B

]
λ

= 1
λ2

[b�∂sPB1 + bs�PB1 + �B]λ + ∂t

[
1
λ
(∂sPB1)λ

]

and rewrite the equation for w:

(4.9) ∂2
t w + HB1w = − 1

λ2
[b�∂sPB1 + bs�PB1 +�B]λ − ∂t

[
1
λ
(∂sPB1)λ

]
− k2

r2
N(w).

For most of our arguments we prefer to view the linear operator HB1 acting on w in (4.9)
as a perturbation of the linear operator Hλ associated to Qλ. Then

∂2
t w + Hλw = FB1(4.10)

= − 1
λ2

[b�∂sPB1 + bs�PB1 + �B1]λ − ∂t

[
1
λ
(∂sPB1)λ

]

+ k2

r2

[
f ′(Qλ) − f ′((PB1)λ

)]
w − k2

r2
N(w)

with

(4.11) Hλw = −�w + k2 f ′(Qλ)

r2
.
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Remark 4.1. — We note that absence of satisfactory pointwise in time estimates for
the bss type of terms appearing on the RHS of (4.10) (see also (4.4)) requires that we
rewrite such terms as full time derivatives and consistently integrate them by parts in all
of our estimates.

Our analysis will require control of H2 norm of w. This will be achieved via energy
estimates for the function

(4.12) W = Aλw.

We recall that the operator Aλ factorizes the Hamiltonian Hλ = A∗
λAλ and the function

W is a solution of the wave equation

(4.13) ∂ttW + H̃λW = AλFB1 + ∂ttV
(1)

λ w

r
+ 2∂tV

(1)

λ ∂tw

r

with the conjugate Hamiltonian H̃λ = AλA∗
λ, see (2.13).

5. Initial data and the bootstrap assumptions

In this section we describe the set of estimates which govern the blow up dynamics
stated in Theorem 1.1. We begin with the prescription of the set O of initial data and
consequently show that, under bootstrap assumptions, they evolve to a trapped regime
leading to a finite time blow up.

5.1. Description of the set O of initial data. — Let us recall the orbital stability state-
ment of Lemma 2.1: for all sufficiently small η > 0 such that for (u0, u1) ∈ H1

r × L2
r with

E(u0, u1) < E(Q,0) + η, there exists λ(t) > 0 such that the corresponding solution u(t)

to (1.3) satisfies:

u(t, r) = (Q + ε)

(
r

λ(t)

)
with ‖ε(t), ∂tu‖H = O(η).

This decomposition is not unique. Uniqueness can be achieved, using standard modula-
tion theory, by for example fixing an orthogonality condition on ε, see Lemma 2.1. The
class of initial data which lead to the blow up dynamics of Theorem 1.1 have energy just
above E(Q,0) and are excited in a specific direction of the Qb deformation of Q.

Definition 5.1 (Description of the set of initial data O). — Let M be a sufficiently large constant

and let b∗
0(M) > 0 be small enough. We define O to be the set of initial data (u0, u1) of the form:

u0(r) = (PB1(b0))λ0 + w0(r) = (PB1(b0) + ε0)λ0,(5.1)
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u1(r) = b0

λ0
(�PB1(b0))

(
r

λ0

)
+ w1(r),(5.2)

where ε0 satisfies the orthogonality condition:

(5.3) (ε0, χM�Q) = 0.

We require that the following bounds are satisfied:

• Smallness of b0:

(5.4) 0 < b0 < b∗
0;

• Smallness of λ0 with respect to b0:

(5.5) λ2
0 < b2k+4

0 ;
• Smallness of the excess of energy:

(5.6) ‖(w0,w1)‖H � b10k
0

and

(5.7) ‖(w0,w1)‖H2 � b10k
0

λ0
.

Remark 5.2. — Note that by the implicit function theorem O is a non-empty open

set of H2.

5.2. Decomposition of the flow and modulation equations. — Let us now consider
(u0, u1) ∈ O and let u(t) be the corresponding solution to (1.3) with life time T = T(u0) ≤
+∞ defined as the maximal time interval on which u ∈ C([0,T), H2

a). It now easily fol-
lows from the orbital stability of Lemma 2.1 that for any (u0, u1) ∈ O and t ∈ [0,T(u0))

there exists a unique decomposition of the flow

u(t) = (Q + ε1)λ(t)

with λ(t) ∈ C 2([0,T),R∗
+) and

(5.8) ∀t ∈ [0,T), |∂tu|L2 + |λt(t)| + ‖ε1(t),0‖H � o(1)b∗
0→0

satisfying the orthogonality condition

(5.9) ∀t ∈ [0,T),
(
ε1(t),χM�Q

) = 0.

Based on this decomposition we define

(5.10) b(t) = −λt so that b(t) = o(1)b∗
0→0
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and for b∗
0 small enough define the new decomposition with the profile PB1(b(t)) and “the

excess” ε(t, y) = w(t, r):

(5.11) u(t, r) = (PB1(b(t)) + ε)

(
t,

r

λ(t)

)
= (PB1(b(t)))λ(t) + w(t, r).

Observe from (5.9) and the choice of gauge (3.64) in the construction of Qb that:

(5.12) ∀t ∈ [0,T),
(
ε(t),χM�Q

) = 0,
(
w(t), (χM�Q)λ(t)

) = 0.

According, to Section 4, w,ε and W given by (4.12) satisfy respectively the Equations
(4.4), (4.10) and (4.13). The modulation equation for b is based on the orthogonality
condition (5.12) and will be derived in Section 6.1. The precise control of the parameter
b is at the heart of our analysis. According to the modulation equation for λ (5.10), the
behavior determines the blow up speed and measures the deviation from the self similar
blow up.

5.3. Initial bounds for (λ, b,w). — We have now began the process of recasting the
original flow for the function u in terms of the dynamics of the new variables (λ, b,w).
Although the equations for λ(t), b(t) are yet to be derived, we reinterpret the assumptions
on the initial data (u0, u1) ∈ O as assumptions on (λ(0), b(0),w(0),W(0)) and claim the
following initial estimates:

Lemma 5.3 (Initial bounds for the (λ, b,w) decomposition). — We have

λ0 = λ(0), b0 − b(0) = 0
(
b10k

0

)
,(5.13)

‖w(0), ∂tw(0)‖H = o(1)b∗
0→0,(5.14)

|bs(0)| + λ0‖W(0), ∂tW(0)‖H � bk+1
0

| log b0| .(5.15)

Proof of Lemma 5.3.
Step 1 Estimates for λ(0), b(0) and spatial derivatives of w.
Let us first show that

λ0 = λ(0), b0 − b(0) = 0
(
b10k

0

)
,(5.16)

∫ (
∂rw(0)

)2 +
∫

(w(0))2

r2
� b5k

0 ,(5.17)

‖W(0),0‖H � b5k
0

λ(0)
.(5.18)

Indeed, first compare (5.1) and (5.11) at t = 0 to get:

u0 = (
Q + (PB1(b0) − Q) + ε0

)
λ0

= (
Q + (PB1(b(0)) − Q) + ε(0)

)
λ(0)
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with
(
(PB1(b0) − Q) + ε0, χM�Q

) = (
(PB1(b(0)) − Q) + ε(0),χM�Q

) = 0

and hence the uniqueness of the geometric decomposition ensures:

(5.19) λ(0) = λ0 and ε(0) = ε0 + PB1(b0) − PB1(b(0))

and

(5.20) w(0) = w0 + (PB1(b0) − PB1(b(0)))λ0 .

We now compute the ∂t derivative at t = 0:

(5.21) ∂tu(0) = 1
λ0

(
bs(0)

∂PB1

∂b
+ b(0)�PB1(b(0))

)

λ0

+ ∂tw(0).

We take a scalar product of this relation with (χM�Q)λ0 and first observe from (5.12)
that:

(
∂tw, (χM�Q)λ

) = − b

λ

(
w,�(χM�Q)λ

)

and hence from (5.19):
∣∣(∂tw(0), (χM�Q)λ0

)∣∣ � |b(0)|λ0

(
ε0 + PB1(b0) − PB1(b(0)),�(χM�Q)

)

� C(M)λ0|b(0)|(b10k
0 + |b2(0) − b2

0|
)
.

The last line uses the initial bound (5.6) and the results of Proposition 3.3.
Furthermore,

(
∂PB1

∂b
, χM�Q

)
= 0

and hence from (5.21):
(
∂tu(0), (χM�Q)λ0

)
(5.22)

= λ0

[
b(0)(�PB1(b(0)), χM�Q) + O(|b(0)|(b10k

0 + |b2(0) − b2
0|
)]

.

Performing the same computation on (5.2) using (5.7) yields:
(
∂tu(0), (χM�Q)λ0

) = λ0

[
b0(�PB1(b0), χM�Q) + O

(
b10k

0

)]

which together with (5.22) now implies:

b0 − b(0) = 0
(
b10k

0

)
.
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This gives (5.16). Estimate (5.17) now follows by inserting (5.6) and (5.13) into (5.20).
Finally,

‖W(0),0‖2
H =

∫
|∂rAλ0w(0)|2 +

∫
(Aλ0w(0))2

r2
(5.23)

� ‖w(0),0‖2
H

λ2
0

+ ‖w(0),0‖2
H2

� ‖w0,0‖2
H

λ2
0

+ ‖w0,0‖2
H2 + (b0 − b(0))2

λ2
0

� b10k
0

λ2
0

where we used the uniform boundedness of the Qb profile in the H2 norm (note asymp-
totic behavior (3.7), (3.18) at the origin). Thus (5.20), (5.13) and the initial bounds (5.6),
(5.7), and (5.18) follow. Note that for k = 1, the bound (5.23) requires some care and uses
the fact that |V(1)(y) − 1| � y for y ≤ 1 and hence:

∫

r≤λ0

|∂rAλ0w(0)|2 +
∫

r≤λ0

(Aλ0w(0))2

r2

=
∫

r≤λ0

∣∣
∣∣∂r

(
−∂rw(0) + V(1)

λ0

r
w(0)

)∣∣
∣∣

2

+
∫

r≤λ0

1
r2

∣∣
∣∣−∂rw(0) + V(1)

λ0

r
w(0)

∣∣
∣∣

2

�
∫

r≤λ0

(
∂2

r w(0)
)2 +

∫

r≤λ0

1
r2

(
∂rw(0) − w(0)

r

)2

+
∫

r≤λ0

(w(0))2

λ2
0r2

� ‖w(0),0‖2
H2 + ‖w(0),0‖2

H
λ2

0

while

∫

r≥λ0

|∇Aλ0w(0)|2 +
∫

r≥λ0

(Aλ0w(0))2

r2

�
∫

r≥λ0

(
∂2

r w(0)
)2 +

∫

r≥λ0

(
(∇w(0))2

r2
+ w(0)2

r4

)

�
∫ (

(
∂2

r w(0)
)2 + (∂rw(0))2

r2
+ w(0)2

λ2
0r2

)

� ‖w(0),0‖2
H2 + ‖w(0),0‖2

H
λ2

0

,

which yield (5.23) for k = 1.
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Step 2 Time derivative estimates.
From (5.2), (5.21), (5.16):

λ0∂tw(0) =
(

b0�PB1(b0) − b(0)�PB1(b(0)) − bs(0)
∂PB1

∂b

)

λ0

+ w1.

Therefore,

λ0∂tW(0) = λ0Aλ0∂tw(0) + λ0(∂tAλ)w(0).

Using (2.5) and (2.6) we have

(∂tAλ) = ∂tV
(1)

λ

r
= kb(0)

λ0

(�Qg′′(Q))λ0

r
.

This implies from (5.6), (5.7), (5.20) and (5.13):

|∂tw(0)|L2 + λ0|∂tW(0)|L2

�
(|bs(0)| + b10k

0

)
(∣

∣∣
∣
∂PB1

∂b

∣
∣∣
∣

L2

+
∣
∣∣
∣A

∂PB1

∂b

∣
∣∣
∣

L2

)
+ O

(
b4k

0

)
.

We now derive from Proposition 3.3 the rough bound:

(5.24)

∣∣
∣∣A

∂PB1

∂b

∣∣
∣∣

L2

+
∣∣
∣∣
∂PB1

∂b

∣∣
∣∣

L2

�
{

1 for k ≥ 2
1
b0

for k = 1

and hence:

(5.25) |∂tw(0)|L2 + λ0|∂tW(0)|L2 � O
(
b4k

0

) +
{ |bs(0)| for k ≥ 2

|bs(0)|
b0

for k = 1.

It remains to compute bs(0). This computation relies on the orthogonality relation (5.12)
and is done in full detail in the proof of Proposition 6.3. In particular, we may extract
from the explicit formula (6.6) evaluated at t = 0 the crude bound:

|bs||�Q|2L2(y≤2M)
� |(�B1, χM�Q)| + |b(0)||∂tw(0)|L2

∣∣
∣∣

yk

1 + y2k

∣∣
∣∣

L2(y≤2M)

(5.26)

+ MC

(
|Aλ0w(0)|L2(y≤2M) +

∣
∣∣
∣
w(0)

r

∣
∣∣
∣
L2(y≤2M)

)
.

We now examine separately:
Case k ≥ 2: We first have from Proposition 3.3:

|(�B1, χM�Q)| � MCbk+2.



46 PIERRE RAPHAËL, IGOR RODNIANSKI

We insert this together with (5.16), (5.17), (5.18) into (5.26) to get:

|bs(0)| � |b0||∂tw(0)|L2 + O
(
bk+2

0

)
.

Combining this with (5.25) concludes the proof of (5.14), (5.15).
Case k = 1: From (3.62),

|(�B1, χM�Q)| � MC b2

| log b|
and hence (5.16), (5.17), (5.18) and (5.26) yield:

| log M||bs(0)| � |b0|
√

log M|∂tw(0)|L2 + O
(

b2
0

| log b0|
)

.

Combining this with (5.25) now concludes the proof of (5.14), (5.15) for M large enough
and b0 < b∗

0(M) sufficiently small.
This concludes the proof of Lemma 5.3. �

5.4. The set of bootstrap estimates. — Let K = K(M) > 0 be a large universal constant
to be chosen later, and let E (t), Eσ (t) be the global and local energies as defined in (2.17),
(2.18). From the continuity u ∈ C([0,T), H2), the initial bounds (5.5) and (5.14), (5.15) of
Lemma 5.3, we may find a maximal time T1 ∈ (0,T) such that the following estimates
hold on [0,T1):

• Pointwise control of λ by b:

(5.27) λ2 < 10b2k+4.

• Pointwise bound on bs:

(5.28) |bs| ≤
√

K
bk+1

| log b| .

• Global H2 bound:

(5.29) E (t) ≤ Kb2k+2.

• Local H2 bound:

(5.30) Eσ (t) ≤ K
b2k+2

(log b)2
.
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Remark 5.4. — The large bootstrap constant K(M) does not depend on the small
constant b∗

0, which provides an upper bound for possible values of the parameter b. It
therefore allows us to assume that

o(1)b∗
0→0K(M) = o(1)b∗

0→0.

In particular, if C(M) is an even larger universal constant dependent on M and K and η

is the constant in the orbital stability bound (6.1), we may assume that

η
1
10 C(M) < 1,

Remark 5.5 (Coercivity of E ). — The potential part of the energy E is the quadratic
form of the Hamiltonian H̃λ given by (2.12). As a consequence E , as well as Eσ , is coercive.
However, the norm under control degenerates at infinity for k = 1. In fact, from (2.14),
(2.15):

(5.31)
Eσ

λ2
≥

∫
σBc

[
(∂tW)2 + (∂rW)2 + W2

r2

]
for k ≥ 2,

and thus controls the Hardy norm both at the origin and at infinity, while

(5.32)
Eσ

λ2
≥

∫
σBc

[
(∂tW)2 + (∂rW)2 + W2

r2(1 + r2

λ2 )

]
for k = 1

and thus is not as strong at infinity. This difficulty will be handled with the help of loga-
rithmic Hardy inequalities, see Lemma B.1 in the Appendix. However, logarithmic losses
in Hardy type inequalities are potentially dangerous, since for k = 1 all possible gains
are themselves merely logarithmic in the parameter b. This explains why many estimates
for k = 1 will require a very detailed, careful and sometimes subtle analysis, which in
particular will keep track of log losses and log b gains.

Our first result is the contraction of the bootstrap regime, described by (5.27)–
(5.30), under the nonlinear flow.

Proposition 5.6 (Bootstrap control of λ, bs,W). — Assume that K = K(M) in (5.27),

(5.28), (5.29), (5.30) has been chosen large enough, then ∀t ∈ [0,T1),

λ2 ≤ b2k+4,(5.33)

|bs| ≤
√

K
2

bk+1

| log b| ,(5.34)

E (t) ≤ K
2

b2k+2,(5.35)
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Eσ (t) ≤ K
2

b2k+2

(log b)2
.(5.36)

As a consequence T1 = T. Moreover, the solution blows up in finite time

T < +∞.

Remark 5.7. — The bootstrap bounds of Proposition 5.6 are not enough yet to
provide a sharp law for the blow up speed. The fact that a sharp description of the
singularity formation is not needed to prove finite time blow up was already central in [24],
[27], [33] and [34]. This conveniently separates the analysis required for the proof of
a finite time blow up and an upper bound on the blow up rate from obtaining a lower
bound on the blow up rate, which relies on finer dispersive effects.

The next section is devoted to the proof of the key dynamical estimates which
imply Proposition 5.6.

6. The excess of energy and finite time blow up

This section is devoted to the proof of the bootstrap bounds (5.35), (5.36). The
proof consists of two steps. First is to derive a crude bound on the blow up speed in the
form of a pointwise control on |bs|. This follows directly from the construction of the
profile PB1 . The second step is a pointwise in time bound on the excess of energy of W
in the region containing the backward light cone of a future singularity. Combination
of these two estimates will establish (5.35), (5.36). This will be already sufficient to prove
finite time blow up with an explicit non-sharp upper bound on blow up rate. Note that
the statements of a finite time blow up and stability of the blow up regime do not require
the knowledge of the precise blow up speed.

6.1. First bound on bs. — The first step in the proof of the bootstrap estimates (5.35),
(5.36) is the derivation of a crude bound on bs which will allow us to obtain control on
the scaling parameter λ and to derive suitable energy estimates on the solution. This
bound is a simple consequence of the construction of the profile Qb and the choice of the
orthogonality condition (5.12).

Let M > 0 be a large enough universal constant to be chosen later and |b| ≤ b∗
0(M)

small enough. Let us start with observing the following orbital stability bound:

Lemma 6.1 (Orbital stability bound). — There holds:

(6.1) ∀t ∈ [0,T1], |b| + ‖w,∂tw‖H < η = o(1)b∗
0→0.
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Remark 6.2. — We note that ‖w,∂tw‖H norm provides an L∞ bound for w and ε

|w(t)|L∞ = |ε(s)|L∞ < η.

This is a consequence of the simple inequality

w2(r) ≤
∫ (

(∂rw)2 + w2

r2

)
,

which holds true for smooth functions vanishing at the origin.

Proof of Lemma 6.1. — First recall from (5.8), (5.11) that |b| = |λt| � o(1)b∗
0→0 and

hence:

(6.2) ‖w,0‖H � ‖ε1,0‖ + ‖PB1 − Q,0‖H � o(1)b∗
0→0.

It remains to prove the smallness of the time derivative for which we use (5.8), the esti-
mates of Proposition 3.3, (5.24) and the bootstrap bound (5.28) on bs:

‖∂tw‖L2 � ‖∂tu‖L2 +
∥
∥∥
∥bs

∂bPB1

∂b
+ b�PB1

∥
∥∥
∥

L2

� o(1)b∗
0→0 + |bs|

∥
∥∥
∥
∂bPB1

∂b

∥
∥∥
∥

L2

� o(1)b∗
0→0 + |bs|

{
1 for k ≥ 2
1
b

for k = 1
� o(1)b∗

0→0 + √
K(M)

|b|
| log b|

� o(1)b∗
0→0

and (6.1) follows. This concludes the proof of Lemma 6.1. �

We now claim the first refined bound on bs:

Lemma 6.3 (First bound on bs). — The following bound on bs holds true on [0,T1):

(6.3) |bs|2 � 1
log M

[∫

y≤2M
|∇(Aε)|2 +

∫

y≤1

|Aε|2
y2

]
+ b2k+2

| log b|2 + b2MC E .

In particular,

(6.4) |bs|2 � 1
log M

Eσ + b2k+2

| log b|2 + b2MC E .

Remark 6.4. — Observe that the upper bound on bs given by Lemma 6.3 is sharp
for k = 1 but very lossy for large k compared with the expected behavior |bs| ∼ b2k . At
this stage, sharp bounds could have been derived by further improving the profile inside
the light cone as we did for k = 1,2, but this is not needed for large k.
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Proof of Lemma 6.3. — Let us recall that the equation for ε in rescaled variables is
given according to (4.4), (4.5), (4.6) by:

∂2
s ε + HB1ε = −�B1 − bs�PB1 − b(∂sPB1 + 2�∂sPB1) − ∂2

s PB1

− b(∂sε + 2�∂sε) − bs�ε − k2

y2
N(ε)

with

HB1ε = −�ε + b2D�ε + k2 f ′(PB1)

y2
ε,

N(ε) = f (PB1 + ε) − f (PB1) − f ′(PB1)ε.

Note that from (1.21), the adjoint of HB with respect to the L2(ydy) inner product is given
by:

(6.5) H∗
B = HB + 2b2D.

To compute bs we take the scalar product of (4.4) with χM�Q. Using the orthogonality
relations

(ε,χM�Q) = (
∂m

s (PB1 − Q),χM�Q
) = 0, ∀m ≥ 0

we integrate by parts to get the algebraic identity:

bs

[
(�PB1, χM�Q) + b

(
∂PB1

∂b
+ 2�

∂PB1

∂b
, χM�Q

)
+ (�ε,χM�Q)

]
(6.6)

= −(�B1, χM�Q) − (
ε,H∗

B1
(χM�Q)

)

+ b
(
∂sε,3χM�Q + �(χM�Q)

) − k2

(
N(ε)

y2
, χM�Q

)
.

On the support of χM and for b < b∗
0(M) small enough, the term �Q dominates the

remaining terms in the expansion

�PB1 = �Qb = �Q +
p+1∑

j=1

b2j�Tj.

The orbital stability bound then yields:

|bs|2
(∫

y≤M
|�Q|2

)2

� (�B1, χM�Q)2 + ∣
∣(ε,H∗

B1
(χM�Q)

)∣∣2
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+ b2|(∂sε,3χM�Q + �(χM�Q))|2 +
∣∣
∣∣

(
N(ε)

y2
, χM�Q

)∣∣
∣∣

2

.

We now treat each term in the above RHS. The last two terms may be estimated in a
straightforward fashion using the χM localization:

b2|(∂sε,3χM�Q + �(χM�Q))|2
� b2|(∂sε + by · ∇ε,3χM�Q + �(χM�Q))|2

+ b4|(y · ∇ε,3χM�Q + �(χM�Q))|2

� b2λ2MC

[∣∣
∣∣
∂tw

r

∣∣
∣∣

2

L2

+
∣∣
∣∣

w

r2(1 + | log r|)
∣∣
∣∣

2

L2

]

� b2λ2MC
[|∂tW|2L2 + |A∗

λW|2L2

]

where we used the estimates of Lemma B.2, Lemma B.4 and (B.19). Similarly, from (B.11):
∣∣
∣
∣

(
N(ε)

y2
, χM�Q

)∣∣
∣
∣

2

�
(∫

y≤2M
|ε|2 y

y2(1 + y2)

)2

� MC|ε|2L∞(y≤2M)|A∗Aε|2L2

� MC|∇ε|L2(y≤2M)

∣∣
∣∣
ε

y

∣∣
∣∣
L2(y≤2M)

|A∗Aε|2L2

� MC|A∗Aε|4L2 � b2λ2|A∗
λW|2L2

where we used (5.29) in the last step. The first two terms in (6.8) require more attention.
First observe that the χM localization ensures that

�BχM = �bχM.

Next, we rewrite the linear term in ε as follows. Using H = A∗A and the cancellation
A(�Q) = 0 from (2.8) we derive:

(
ε,H∗

B1
(χM�Q)

)2 =
(

ε,H(χM�Q) + 2b2D(χM�Q) + 1
y2

(
f ′(PB1)(6.7)

− f ′(Q)
)
(χM�Q)

)2

�
(
Aε, (�Q)∂yχM

)2 + b2λ2MC|A∗
λW|2L2

where we used (B.11) and the rough bound |PB1 − Q|L∞ � b. We have thus obtained the
preliminary estimate:

(6.8) |bs|2
(∫

y≤M
|�Q|2

)2

� (�B1, χM�Q)2 + (
Aε, (�Q)∂yχM

)2 + b2λ2MC E .
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We now separate cases:
Case k odd, k ≥ 3: We estimate from (3.14)

(�B, χM�Q)2 � b2k+6

(∫
yk

1 + yk+2

yk

1 + y2k

)2

� b2k+6,(6.9)

(
Aε, (�Q)∂yχM

)2 �
(∫

y≤2M

(Aε)2

y2

)∫

M≤y≤2M
|�Q|2

� 1
M2k−3

(∫

y≤2M
|∇Aε|2 +

∫

y≤1

∣
∣∣
∣
Aε

y

∣
∣∣
∣

2)

where we used (B.4) in the last step. This concludes the proof of (6.3).
Case k even, k ≥ 4: From (3.11):

(�B, χM�Q)2 � b2k+8

(∫
yk

1 + yk+1

yk

1 + y2k

)2

� b2k+8,

and (6.9) still holds. This concludes the proof of (6.3).
Case k = 2: From (3.17):

(�B, χM�Q)2 �
(∫

y≤2M

[
b4�Q + b6 yk

1 + yk+1

]
�Q

)2

� b8,

and (6.9) still holds. This concludes the proof of (6.3).
Case k = 1: From (3.20):

(�B, χM�Q)2

�
(∫

y≤2M

y

1 + y2

[
b2

| log b|
y

1 + y2
+ b4y1y≤1 + b4 (1 + | log(by)|)

| log b| y

+ b4

(log M)2

M4

1 + y4

])2

� (log M)2 b4

| log b|2 .

For the linear term, we use (B.4) to derive:

(
Aε, (�Q)∂yχM

)2 �
(∫

M≤y≤2M

(Aε)2

y2

)∫

M≤y≤2M
|�Q|2

� log M
(∫

y≤2M
|∇(Aε)|2 +

∫

1≤y≤1
|Aε|2

)
.
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It is now crucial to observe the growth on the LHS of (6.8), specific to the k = 1 case:

|bs|2
(∫

y≤2M
|�Q|2

)2

≥ C(log M)2|bs|2

and (6.3) follows.
This concludes the proof of Lemma 6.3. �

6.2. Global and local H2 bounds. — In this section we establish H2 type bounds on
the solution w. The global bound corresponds to the energy E (t), while the local bound
is connected to the energy Eσ (t) and provides an H2 type estimate for the solution in a re-
gion slightly larger than the backward light cone from a future singularity. These bounds
rely on non-characteristic energy type identities for (4.13) and specific repulsive proper-
ties of the time-dependent conjugate Hamiltonian H̃λ given by (2.12). This estimate is
the second step in the proof of Proposition 5.6.

Lemma 6.5 (H2 type energy inequalities). — In notations of (2.17), (2.18) and for b < b∗
0(M)

small enough, we have the following inequalities:

d

dt

{ E
λ2

+ O
( |bs|2

λ2
+ |bs|

√
E

λ2
+ η

1
4 E
λ2

)}
(6.10)

� b

λ3

[|bs|2 + b2k+2 + (|bs| + bk+1
)√

E + η
1
4 E

]
,

d

dt

{ Eσ

λ2
+ O

( |bs|2
λ2

+ |bs|
√

Eσ

λ2
+ b

1
4 E
λ2

)}
(6.11)

� b

λ3

[
|bs|2 + b2k+2

| log b|2 +
(

|bs| + bk+1

| log b|
)√

Eσ + E
| log b|2

]
.

Remark 6.6. — It is critical that the constants involved in the bounds (6.10), (6.11)
do not depend on M provided b0 < b∗

0(M) has been chosen sufficiently small.

Remark 6.7. — Note that the logarithmic gain from the global bound (6.10) to the
local bound (6.11) can be turned into polynomial gain for k ≥ 2.

Proof of Lemma 6.5. — The proof is a consequence of the energy identity on (4.13)
and the bootstrap control of the geometric parameters. The key is the space-time repul-
sive properties of the operator H̃λ.
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Step 1 Algebraic energy identity.
We recall the definition of the cut-off function σBc

given by (2.19) and of the local-
ized energy Eσ given by (2.18). In the sequel, we shall use the notation σ generically for
both σ ≡ 1 and σ ≡ σBc

given by (2.19).
We claim the following algebraic energy identity:

1
2

d

dt

{∫
σ

[
(∂tW)2 + (∇W)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2(6.12)

− 4
r
∂tV

(1)

λ ∂twW
]}

= 3b

λ

∫
σW2

r2

[
�Q

(
kg′′ + k2

2

(
g′g′′ − gg′′′)

)
(Q)

]

λ

− b

∫
∂rσ

W2

r

(
k�Qg′′(Q)

)
λ

+ 1
2

∫
∂tσ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]

− 2
∫

∂tσ
W
r

∂tV
(1)

λ ∂tw −
∫

∂rσ∂rW∂tW

+
∫

σ∂ttV
(1)

λ

r
[w∂tW − 2W∂tw] − 2

∫
σW

r
∂tV

(1)

λ FB1

+
∫

σ∂tWAλFB1 . �

Proof of (6.12). — We proceed with the help of (2.12), (4.13):

1
2

d

dt

{∫
σ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]}
(6.13)

= 1
2

∫
∂tσ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]

−
∫

∇σ · ∇W∂tW +
∫

σ∂tW(∂ttW + H̃λW)

+ 1
2

∫
σW2

r2

(
2∂tV

(1)

λ + ∂tV
(2)

λ

)

= 1
2

∫
∂tσ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]
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−
∫

∂rσ∂rW∂tW +
∫

σ∂tW
[

AλFB1 + ∂ttV
(1)

λ w

r

+ 2∂tV
(1)

λ ∂tw

r

]
+ 1

2

∫
σW2

r2

(
2∂tV

(1)

λ + ∂tV
(2)

λ

)
.

The third term on the last line above requires integration by parts:
∫

σ∂tW
2∂tV

(1)

λ ∂tw

r
(6.14)

= d

dt

{∫
σW

2∂tV
(1)
λ ∂tw

r

}

− 2
∫

W
r

[
∂tσ∂tV

(1)

λ ∂tw + σ∂ttV
(1)

λ ∂tw + σ∂tV
(1)

λ ∂ttw
]

= d

dt

{∫
σW

2∂tV
(1)

λ ∂tw

r

}
− 2

∫
∂tσ

W∂tw

r
∂tV

(1)

λ

− 2
∫

σW
r

[
∂ttV

(1)

λ ∂tw + ∂tV
(1)

λ FB1

] + 2
∫

σW
r

∂tV
(1)

λ Hλw

where we used (4.10) in the last step. We now integrate the last term above by parts in
space using (2.5):

2
∫

σW
r

∂tV
(1)

λ Hw = 2
∫

σW
r

∂tV
(1)

λ A∗
λW

= 2
∫

σW
r

∂tV
(1)

λ

(
∂rW + 1 + V(1)

λ

r
W

)

= 2
∫

σ
W2

r2

[
(
1 + V(1)

λ

)
∂tV

(1)

λ − r

2
∂t∂rV

(1)

λ

]

−
∫

W2

r
∂rσ∂tV

(1)

λ .

Inserting this together with (6.14) into (6.13) yields:

1
2

d

dt

{∫
σ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

− 4
r
∂tV

(1)

λ ∂twW
]}

=
∫

σ
W2

r2

[
1
2

(
2∂tV

(1)

λ + ∂tV
(2)

λ

) + 2
(

(
1 + V(1)

λ

)
∂tV

(1)

λ − r

2
∂t∂rV

(1)

λ

)]
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+
∫

σ∂tW
[

AλFB1 + ∂ttV
(1)

λ w

r

]
− 2

∫
σ

W
r

[
∂ttV

(1)

λ ∂tw + ∂tV
(1)

λ FB1

]

+ 1
2

∫
∂tσ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]

−
∫

∂rσ∂rW∂tW −
∫

W2

r
∂rσ∂tV

(1)
λ − 2

∫
∂tσ∂tV

(1)
λ

W∂tw

r
.

An explicit computation from (2.6), (2.12) yields:

(6.15) ∂tV
(1)

λ = k
b

λ

(
�Qg′′(Q)

)
λ
, ∂tV

(2)

λ = k2 b

λ

(
�Q

[
g′g′′ − gg′′′](Q)

)
λ

and

V(1)

λ ∂tV
(1)

λ − r

2
∂t∂rV

(1)

λ = bk2

2λ

(
�Q

(
g′g′′ − gg′′′)(Q)

)
λ
= 1

2
∂tV

(2)

λ ,

and (6.12) follows.

Remark 6.8. — A fundamental feature of (6.12) is that the first term on the RHS
of (6.12) which could not be treated perturbatively has a sign. Indeed, in the (WM) case,
g(u) = sin(u) and thus from (2.3):

3b

λ

∫
σW2

r2

[
�Q

(
kg′′ + k2

2

(
g′g′′ − gg′′′)

)
(Q)

]

λ

= −3k2b

λ

∫
σ

W2

r2
sin2(Q) < 0.

In the (YM), we compute from g(u) = 1
2(1 − u2) and (2.3):

3b

λ

∫
σW2

r2

[
�Q

(
kg′′ + k2

2

(
g′g′′ − gg′′′)

)
(Q)

]

λ

= −3b

λ

∫
σ

W2

r2
(1 − Q)

(
1 − Q2

)
< 0.

For future reference, we record here an estimate on ∂tV
(1)

λ :

(6.16) |∂tV
(1)

λ (r)| � b

λ

(
rk

1 + r2k

)

λ

,

which applies in both the (WM) and (YM) case. In the former, however, we also have a
strengthened estimate

(6.17) |∂tV
(1)

λ (r)| � b

λ

(
r2k

1 + r4k

)

λ

,
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which follows from the vanishing properties of g(Q) = sin(Q). We can unify them in the
following bound

(6.18) |∂tV
(1)

λ (r)| � b

λ

(
r2

1 + r4

)

λ

.

As a consequence the last term on the LHS of (6.12) can be estimated as follows:

∣
∣∣
∣

∫
σ

2
r
∂tV

(1)

λ ∂twW

∣
∣∣
∣ � b

λ

(∫
(∂tw)2

r2

) 1
2
(∫

W2

(
r4

1 + r8

)

λ

) 1
2

� C(M)b
(|∂tW|L2 + |A∗

λW|L2

)|A∗
λW|L2 � C(M)

b

λ
E

� b
1
4 E
λ2

where we used (2.16), (B.19).
We now aim at estimating all the terms in the RHS (6.12).
Step 2 Control of the boundary terms in σ .
We treat the boundary terms in σ which appear in the third line of the RHS (6.12).

Observe from the explicit choice of σBc
with Bc = 2

b
and (5.28) that

∂tσBc
= 1

λ

[
b + bs

b

]
(y∂yσ)

(
r

λBc

)
≤ −b(1 − η)

λ
|∂yσ |

(
r

λBc

)
,

|∂rσBc
| = 1

λBc

|∂yσ |
(

r

λBc

)
≤ b

2λ
|∂yσ |

(
r

λBc

)

and hence

∂tσBc
≤ −3

2
|∂rσBc

|.

This reflects the fact that r = Cλb−1 are space-like hypersurfaces for any choice of con-
stant C ≥ 1. Recall also from (2.14), (2.15) that

k2 + 1 + 2V(1)

λ + V(2)

λ ≥ 0

and hence:

1
2

∫
∂tσ

[
(∂tW)2 + (∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)
λ

r2
W2

]
(6.19)

−
∫

∂rσ∂rW∂tW
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≤ −1
4

∫
∂tσ

[
(∂tW)2 + (∂rW)2

]
.

The other term is estimated by brute force:
∣
∣
∣∣2

∫
∂tσ

W
r

∂tV
(1)

λ ∂tw

∣
∣
∣∣ � b2

λ2

∫
W|∂tw|

r

(
r2

1 + r4

)

λ

� b2

λ

(∫
(∂tw)2

r2

) 1
2

|A∗
λW|L2 � C(M)

b2

λ3
E

� b

λ3
b

1
4 E

where we used (2.16), (B.19). Finally, observe that �Qg′′(Q) ≤ 0 and ∂rσ ≤ 0 imply that

−b

∫
∂rσ

W2

r

(
k�Qg′′(Q)

)
λ
≤ 0.

Step 3 ∂ttV
(1)

λ terms.
We compute:

∂ttV
(1)

λ = k
bs + b2

λ2

(
�Qg′′(Q)

)
λ
+ k2 b2

λ2
(�Q

(
g′(Q)g′′(Q) + g(Q)g′′′(Q)

)
λ

and hence using the bootstrap bound (5.28):

(6.20) |∂ttV
(1)

λ | � |bs| + b2

λ2

(
r2k

1 + r4k

)

λ

� b2

λ2

(
r2k

1 + r4k

)

λ

in the (WM) case and

(6.21) |∂ttV
(1)

λ | � |bs| + b2

λ2

(
r2

1 + r4

)

λ

� b2

λ2

(
rk

1 + r2k

)

λ

for the (YM) k = 2 case. We can unify them in the following bound:

(6.22) |∂ttV
(1)

λ | � b2

λ2

(
r2

1 + r4

)

λ

.

As a consequence, we obtain using (2.16), (B.11), (B.19):
∣
∣∣
∣

∫
σ∂ttV

(1)

λ

r
[w∂tW − 2W∂tw]

∣
∣∣
∣

� b2

λ2

(∫
(∂tW)2

) 1
2
(∫

w2

(
r4

r2(1 + r8)

)

λ

) 1
2
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+ b2

λ2

(∫
(∂tw)2

r2

) 1
2
(∫

W2

(
r4

1 + r8

)

λ

) 1
2

� b2

λ2
‖∂tW‖L2

(
λ2

∫
ε2

y4(1 + | log y|2)
) 1

2

+ b2

λ2

(‖∂tW‖2
L2 + ‖A∗

λW‖2
L2

) 1
2
(
λ2‖A∗

λW‖L2

) 1
2

� C(M)
b2

λ

[∫
(∂tW)2 + (

A∗
λW

)2
]

� C(M)
b2

λ3
E � b

λ3
b

1
4 E .

Step 4 Decomposition of FB1 terms.
We now decompose the term involving FB1 , given by (4.10) in (6.12), as follows. We

first write:

(6.23) FB1 = F1 − ∂tF2 with F2 = 1
λ
(∂sPB1)λ.

Recall from Remark 4.1 that there is no satisfactory pointwise bound for bss and hence
for ∂tF2. We thus have to integrate by parts in time:

−2
∫

σW
r

∂tV
(1)

λ FB1 +
∫

σ∂tWAλFB1

= −2
∫

σW
r

∂tV
(1)

λ (F1 − ∂tF2) +
∫

σ∂tWAλ(F1 − ∂tF2)

= d

dt

{
2
∫

σW
r

∂tV
(1)

λ F2 −
∫

σ∂tWAλF2

}

− 2
∫

F2∂t

(
σW

r
∂tV

(1)

λ

)
+

∫
AλF2(σ∂ttW + ∂tσ∂tW)

− 2
∫

σW
r

∂tV
(1)

λ F1 +
∫

σ∂tWAλF1 +
∫

σ∂tW
∂tV

(1)

λ

r
F2.

We then use the Equation (4.13) to compute:
∫

σAλF2∂ttW

= −
∫

σAλF2H̃λW

+
∫

σAλF2

(
AλF1 − Aλ∂tF2 + ∂ttV

(1)

λ w

r
+ 2∂tV

(1)

λ ∂tw

r

)
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= −
∫ (

A∗
λW

)
A∗

λ(σAλF2)

+
∫

σAλF2

(
AλF1 + ∂tV

(1)

λ

r
F2 + ∂ttV

(1)

λ w

r
+ 2∂tV

(1)

λ ∂tw

r

)

− d

dt

{
1
2

∫
σ(AλF2)

2

}
+ 1

2

∫
∂tσ(AλF2)

2.

We finally arrive at the following identity:

−2
∫

σW
r

∂tV
(1)

λ FB1 +
∫

σ∂tWAλFB1(6.24)

= d

dt

{
2
∫

σW
r

∂tV
(1)

λ F2 −
∫

σ∂tWAλF2 − 1
2

∫
σ(AλF2)

2

}

− 2
∫

σW
r

∂tV
(1)

λ F1 +
∫

σ∂tWAλF1

−
∫

F2

[
2∂tσ

W
r

∂tV
(1)

λ + σ
∂tW

r
∂tV

(1)

λ + 2σ
W
r

∂ttV
(1)

λ

]

+
∫

σAλF2

[
AλF1 + ∂tV

(1)

λ

r
F2 + ∂ttV

(1)

λ w

r
+ 2∂tV

(1)

λ ∂tw

r

]

+
∫

∂tσAλF2

[
∂tW + 1

2
AλF2

]
−

∫ (
A∗

λW
)
A∗

λ(σAλF2).

We now treat all terms on the RHS (6.24).
Step 5 F2 terms.
In what follows we use the crude bounds:

|∂bPB1| �
yk

(1 + yk)| log b|1y≤2B1 + 1
byk

1 B0
2 ≤y≤2B1

,

|∂b∂yPB1| �
yk−1

(1 + yk)| log b|1y≤2B0 + 1
by1+k

1 B0
2 ≤y≤2B1

.

(6.25)

We treat all F2 terms on the RHS of (6.24).
First line in the RHS of (6.24): The crude bound |∂bPB1|L∞ � 1 follows from (6.25).

Therefore, from (5.32), (6.18):
∣
∣∣
∣

∫
σW

r
∂tV

(1)

λ F2

∣
∣∣
∣(6.26)

� b|bs|
λ2

(∫

r≤2λB1

σ
W2

r2(1 + r2

λ2 )

) 1
2
(∫

y≤2B1

(
r4(1 + r2)

1 + r8

)

λ

) 1
2
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�
|bs|b

√| log b|
λ2

√
Eσ � |bs|

λ2

√
Eσ ,

∣∣
∣∣

∫
σ∂tWAλF2

∣∣
∣∣

� |bs|
λ

|√σ∂tW|L2

(∫ (
1

(1 + y2) log2 b
1y≤2B1 + 1

b2y4
1 B0

2 ≤y≤2B1

)) 1
2

� |bs|
λ

|√σ∂tW|L2 � |bs|
λ2

√
Eσ ,

∫
σ(AλF2)

2 � |bs|2
λ2

∫ (
1

(1 + y2) log2 b
1y≤2B1 + 1

b2y4
1 B0

2 ≤y≤2B1

)
≤ |bs|2

λ2
.

Third line in the RHS of (6.24): From (6.18):

∣∣
∣∣

∫
F2∂tσ

W
r

∂tV
(1)

λ

∣∣
∣∣ � b2|bs|

λ3

(∫

2λBc≤r≤3λBc

W2

r2(1 + (λr)2)

) 1
2

×
(∫

y≤2B1

(
r4(1 + r2)

1 + r8

)

λ

) 1
2

≤ b2| log b||bs|
λ2

|A∗
λW|L2 ≤ b

λ3

(
|bs|2 + E

| log b|2
)

,

∣
∣∣
∣

∫
F2σ

∂tW
r

∂tV
(1)

λ

∣
∣∣
∣ � b|bs|

λ2
|√σ∂tW|L2

(∫

y≤2B1

(
r4

r2(1 + r8)

)

λ

) 1
2

≤ b|bs|
λ2

|√σ∂tW|L2 � b

λ3
|bs|

√
Eσ ,

and from (6.22):

∣∣
∣∣

∫
F2σ

W
r

∂ttV
(1)

λ

∣∣
∣∣ � |bs|b2

λ3

(∫

r≤3λBc

W2

r2(1 + r2

λ2 )

) 1
2
(∫

y≤2B1

(
r4(1 + r2)

1 + r8

)

λ

) 1
2

≤ b2| log b||bs|
λ2

|A∗
λW|L2 � b

λ3

(
|bs|2 + E

| log b|2
)

.

Fourth line in the RHS of (6.24): We leave aside the term involving F1 which will be treated
in the next step. From (6.18):

∣∣
∣∣

∫
σAλF2

∂tV
(1)

λ

r
F2

∣∣
∣∣ � b|bs|2

λ5

∫

y≤2B1

(
r2

r(1 + r4)

)

λ

≤ b

λ3
|bs|2.
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From (6.25):

∣∣
∣
∣

∫
σAλF2

∂ttV
(1)

λ w

r

∣∣
∣
∣ � |bs|b2

λ4

(∫
w2

(
r4

r2(1 + r7)

)

λ

) 1
2

×
(∫

y≤2B1

(
1

(1 + r3)

)

λ

) 1
2

� |bs|b2

λ4

(
λ2

∫
ε2

y4(1 + | log y|2)
) 1

2

� C(M)
|bs|b2

λ2
|A∗

λW|L2

� b

λ3

(
|bs|2 + E

| log b|2
)

where we used (B.11) in the last steps. Finally, from (B.19) and with the help of slightly
stronger bounds

|∂bPB1| �
yk

(1 + yk)| log b|
(b(1 + y))

1
2

1 + (b(1 + y))
1
2

1y≤2B1 + 1
byk

1 B0
2 ≤y≤2B1

,

|∂b∂yPB1| �
yk−1

(1 + yk)| log b|
(b(1 + y))

1
2

1 + (b(1 + y))
1
2

1y≤2B0 + 1
by1+k

1 B0
2 ≤y≤2B1

,

we obtain
∣
∣∣
∣

∫
σAλF2

∂tV
(1)

λ ∂tw

r

∣
∣∣
∣

� b|bs|
λ2

(∫
(∂tw)2

r2

) 1
2

×
(∫

y≤2B1

y4

(1 + y8)

(
by

y2 log2 b
1y≤2B1 + 1

b2y4
1 B0

2 ≤y≤2B1

)) 1
2

� C(M)
b

3
2 |bs|

| log b|λ2

(|∂tW|2L2 + |A∗
λW|2L2

) 1
2 � b

λ3

(
|bs|2 + E

| log b|2
)

.

Fifth line in the RHS of (6.24): From (6.25):
∣
∣∣
∣

∫
∂tσAλF2

[
∂tW + 1

2
AλF2

]∣
∣∣
∣
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� b
1
2 |bs|
λ

5
2

|√∂tσ∂tW|L2

(∫

2Bc≤y≤3Bc

(
1

(1 + r2) log2 b

)

λ

) 1
2

+ b2|bs|2
λ5

∫

2Bc≤y≤3Bc

(
1

1 + r2

)

λ

�
[ |√∂tσ∂tW|2L2

| log b| + b|bs|2
λ3

]

which is absorbed thanks to (6.19).
For the last term, we need to exploit an additional cancellation in the case k = 1.

We compute from (3.65):

A∗(σA∂bPB1) = σH(∂bPB1) + ∂yσA∂bPB1

= σH
(

χB1

∂b(b
2T1)

∂b
− ∂ log B1

∂b

y

B1
χ ′

B1
(Qb − π)

)

+ ∂yσA∂bPB1 .

Using the estimate (3.61) on ∂bPB1 and its derivatives
∣
∣∣
∣

dm

dym

∂PB

∂b

∣
∣∣
∣ � by1−m(1 + | log by|)

| log b| 1
y≤ B0

2
+ 1

b| log b|y1+m
1 B0

2 ≤y≤2B1

+ 1
by1+m

1 B1
2 ≤y≤2B1

+ C(M)
b

1 + y1+m
,

as well as (3.19) for T1, we can easily conclude that

A∗(σA∂bPB1) = σχB1

∂b(b
2HT1)

∂b
+ 1

b| log b|y3
1 B0

2 ≤y≤2B1
+ 1

by3
1 B1

2 ≤y≤2B1
δσ≡1.

We use that HT1 verifies the equation

HT1 = −D�Q + cb�Qχ B0
4
,

which immediately implies from D�( 1
y
) = 0 that |D�Q| � y

1+y4 and

∂b(b
2HT1)

∂b
≤ by

1 + y3
+ by

(1 + y2)| log b|χ B0
2

As a consequence,

|A∗(σA∂bPB1)| � σ

[
by

1 + y3
1y≤2B1 + by

(1 + y2)| log b|1y≤2B1

]
(6.27)
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+ 1
b| log b|y3

1 B0
2 ≤y≤2B1

+ 1
by3

1 B1
2 ≤y≤2B1

δσ≡1.

For σ ≡ 1, this yields:
∣
∣∣
∣

∫ (
A∗

λW
)
A∗

λ(σAλF2)

∣
∣∣
∣

� |bs|
λ2

|A∗
λW|L2

(∫

y≤2B1

b2y2

(1 + y6)
+ b2y2

(1 + y4)(log b)2
+ 1

b2y6
1 B1

2 ≤y≤2B1

) 1
2

� b|bs|
λ2

|A∗
λW|L2 � b

λ3
|bs|

√
E .

For σ ≡ σBc
, observe that (6.27) on the set y ≤ B0/2 is an improvement relative to a more

straightforward estimate

|A∗(σA∂bPB1)| �
by(1 + | log by|)
(1 + y2)| log b| 1

y≤ B0
2

+ 1
b| log b|y3

1 B0
2 ≤y≤2B1

+ C(M)
b

1 + y3
1y≤2B0

which follows from (3.61). Such an estimate would imply that
∫

|A∗(σA∂bPB1)|2 � b2| log b|,

as opposed to the improved bound

(6.28)
∫

|A∗(σA∂bPB1)|2 � b2.

We also note that (6.27) and thus (6.28) follow similarly from Proposition 3.3 for all k ≥ 2.
Hence:

∣
∣∣
∣

∫ (
A∗

λW
)
A∗

λ(σAλF2)

∣
∣∣
∣

� |bs|
λ2

|A∗
λW|L2

(∫

B0
2 ≤y≤2B1

1
b2| log b|2y6

) 1
2

+ |bs|
λ2

|√σA∗
λW|L2

(∫

y≤2B1

b2y2

(1 + y6)
1y≤2B1 + b2y2

(1 + y4)(log b)2
1y≤2B1

) 1
2

� b|bs|
λ2

(
|√σA∗

λW|L2 + |A∗W|L2

| log b|
)

� b

λ3

(
|bs|

√
Eσ + |bs|2 + E

| log b|2
)

.
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In the last step, we used the inequality

(6.29)
(
1 + V(1)

)2 � k2 + 1 + 2V(1) + V(2),

which can be verified by a direct computation. Hence:
∫

σ
(
A∗

λW
)2 =

∫
σ

[
∂rW + 1 + V(1)

λ

r
W

]2

�
∫

σ

[
(∂rW)2 + k2 + 1 + 2V(1)

λ + V(2)

λ

r2
W2

]

� λ−2 Eσ .

Step 6 F1 terms.
We now turn to the control of F1 terms appearing in the RHS (6.24). For this, we

first split F1 into four different components:

(6.30) F1 = F1,1 + F1,2 + F1,3 − 1
λ2

(�B1)λ

with

F1,1 = − 1
λ2

[b�∂sPB1 + bs�PB1]λ, F1,2 = k2

r2

[
f ′(Q) − f ′(PB1)

]
λ
w,

F1,3 = k2

r2
N(w).

F1,1 terms: We estimate from Proposition 3.1

(6.31) |�PB1| �
byk

(1 + yk)| log b|1y≤2B1 + yk

1 + y2k
1y≤2B1

which together with (6.25) yields:
∣∣
∣
∣

dm

dym
F1,1

∣∣
∣
∣ � |bs|

λ2

(
byk−m

(1 + yk)| log b|1y≤2B1 + yk−m

1 + y2k
1y≤2B1

)
, 0 ≤ m ≤ 1.

Next, the cancellation A(�Q) = 0 implies the bound

|A�PB1| �
byk−1

(1 + yk)| log b|1y≤2B1 + 1
yk+1

1 B0
2 ≤y≤2B1

and thus:

|AλF1,1| � |bs|
λ3

(
byk−1

(1 + yk)| log b|1y≤2B1 + 1
yk+1

1 B0
2 ≤y≤2B1

)
.
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From (5.32), (6.18):
∣∣
∣∣

∫
σW

r
∂tV

(1)

λ F1,1

∣∣
∣∣

� |bs|b
λ3

(∫
σ

W2

r2(1 + r2

λ2 )

) 1
2

×
(∫

y≤2B1

(
r4(1 + r2)

1 + r8

[
b2

| log b|2 + r2k

1 + r4k

])

λ

) 1
2

� b

λ3
|bs|

√
Eσ ,

∣∣
∣∣

∫
σ∂tWAλF1,1

∣∣
∣∣

� |bs|
λ3

|√σ∂tW|L2

(∫

y≤2B1

(
b2

(1 + r2) log2 b
+ 1

r4
1 B0

2 ≤r≤2B1

)

λ

) 1
2

� b|bs|
λ2

|√σ∂tW|L2 � b

λ3
|bs|

√
Eσ ,

∣
∣
∣∣

∫
σAλF2AλF1,1

∣
∣
∣∣

� |bs|2
λ3

∫
1
y2

(
by

(1 + y)| log b|1y≤2B1 + 1
y
1 B0

2 ≤y≤2B1

)

×
(

y

(1 + y)| log b|1y≤2B1 + 1
by

1 B0
2 ≤y≤2B1

)

� |bs|2
λ3

∫

y≤2B1

(
b

(1 + y2)(log b)2

)
� b

λ3
|bs|2.

F1,2 terms: Take note that the term F1,2 is not localized inside the ball y ≤ 2B1.
We first recall the estimate:

|PB1 − Q| = |(1 − χB1)(a − Q) + χB1(Qb − Q)|

� C(M)
b2yk

1 + y2k−2
1y≤2B1 + 1

yk
1

y≥ B1
2
,

which follows from Proposition 3.1. It implies:

|f ′(PB1) − f ′(Q)| � |PB1 − Q|
∫ 1

0
|f ′′(τPB1 + (1 − τ)Q

)|dτ
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� C(M)
b2y2

1 + y2
1y≤2B1 + 1

y2
1

y≥ B1
2
.

In the last inequality we used that for the (WM) problem |f ′′(π +R)| � R while the (YM)
bound |f ′′(R)| � 1 only applies to the case k = 2. Hence from (B.11):

∫
|AλF1,2|2 � C(M)

λ3

∫

y≤2B1

b4

(
y

y2(1 + y2)

)2

|ε|2(6.32)

+ C(M)

λ3

∫

y≤2B1

b4

(
y2

y2(1 + y2)

)2

|Aε|2

+ 1
λ3

∫

y≥ B1
2

|ε|2
y10

+ 1
λ3

∫

y≥ B1
2

|Aε|2
y8

� C(M)

λ3

[
b4|A∗Aε|2L2 + b5|A∗Aε|2L2

]
� C(M)

b4

λ2
|A∗

λW|2L2 .

This implies:

∣
∣∣
∣

∫
σW

r
∂tV

(1)

λ F1,2

∣
∣∣
∣ � b

λ

∫ |wW|
r

(
y2

1 + y4

)

λ

× 1
r2

[
C(M)

b2y2

1 + y2
1y≤B + 1

y2
1y≥B

]

λ

� C(M)
b3

λ3

∫ |εAε|
1 + y5

� C(M)
b3

λ3

(∫ |Aε|2
1 + y5

) 1
2
(∫ |ε|2

1 + y5

) 1
2

� C(M)
b3

λ
|A∗

λW|2L2

� C(M)
b3

λ3
E � b

λ3
bE

from (B.11). Similarly, from (6.32):

∣∣
∣∣

∫
σ∂tWAλF1,2

∣∣
∣∣ � C(M)

b2

λ
|A∗

λW|L2 |√σ∂tW|L2

� C(M)
b2

λ3

√
E Eσ � b

λ3
b

1
2 E .



68 PIERRE RAPHAËL, IGOR RODNIANSKI

Finally, from (6.32):

∣
∣∣
∣

∫
σAλF2AλF1,2

∣
∣∣
∣ � C(M)

b2

λ2
|A∗

λW|L2|bs|
(∫

y≤2B1

1
1 + y

) 1
2

� C(M)
b

3
2
√| log b||bs|

λ2
|A∗

λW|L2 � b
b

1
4 |bs|
λ3

√
E

� b

λ3

(|bs|2 + b
1
2 E

)
.

F1,3 terms: We now turn to the control of the nonlinear term. In this section we will
also use the bootstrap assumption (5.35) in the form:

(6.33) λ2
(|A∗W|2L2 + |∂tW|2L2

) ≤ Cb4

for some positive constant C. We may assume that C is dominated by the constant C(M),
which in turn, as before, can be assumed to satisfy C(M) < η− 1

10 .
We claim the following preliminary nonlinear estimates:

(6.34)
∫ |w|4

r4
≤ η

1
2 |A∗

λW|2L2

and

(6.35)
∫

r≤3λB1

|w|4
r4

≤ b
3
2 |A∗

λW|2L2 .

Proof of (6.34), (6.35). — We rewrite
∫ |w|4

r4
= 1

λ2

∫ |ε|4
y4

and split the integral in three zones. Near the origin, we rewrite:

Aε = −∂yε + V(1)

y
ε = −y∂y

(
ε

y

)
+ V(1) − 1

y
ε

from which:
∫

y≤1

∣
∣∣
∣∂y

(
ε

y

)∣
∣∣
∣

2

�
∫

y≤1

(Aε)2

|y|2 +
∫

y≤1

|V(1) − 1|2
y4

ε2.

We now estimate for k ≥ 2 from (2.16), (B.9):
∫

y≤1

(Aε)2

|y|2 +
∫

y≤1

|V(1) − 1|2
y4

ε2 �
∫

(Aε)2

|y|2 +
∫

y≤1

ε2

y4
� C(M)

∫
(Aε)2

y2
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� C(M)|A∗Aε|2L2 .

In the k = 1 case, we use the cancellation |V(1)(y)− 1| � y (in fact y2) for y ≤ 1 and (2.16),
(B.11):

∫

y≤1

(Aε)2

|y|2 +
∫

y≤1

|V(1) − 1|2
y4

ε2 �
∫

y≤1

(Aε)2

|y|2 +
∫

y≤1

ε2

y2
� C(M)|A∗Aε|2L2 .

We thus conclude from the standard interpolation estimates

∫

y≤1

(ε)4

y4
�

[∫

y≤2

∣∣
∣∣∂y

(
ε

y

)∣∣
∣∣

2

+
∫

y≤2

(ε)2

y2

]∫

y≤2

(ε)2

y2
� |A∗Aε|4L2(6.36)

� C(M)b4|A∗Aε|2L2 � b
3
2 |A∗Aε|2L2

where we used (B.11) and (6.33) in the last step. For 1 ≤ y ≤ 4B1, we have from (B.2),
(B.11) and (6.33) that:

(6.37) |ε|2L∞(1≤y≤4B1)
� B2

1| log b|2|A∗Aε|2L2 � C(M)b2| log b|4

and hence:
∫

1≤y≤4B1

|ε|4
y4

� |ε|2L∞(1≤y≤4B1)

∫

y≤4B1

ε2

y4
� C(M)b2| log b|6|A∗Aε|2L2(6.38)

≤ C(M)b
5
3 |A∗Aε|2L2 � b

3
2 |A∗Aε|2L2

where we used (B.11). This concludes the proof of (6.35). It remains to control the integral
in (6.34) for y ≥ 4B. For k ≥ 2, we have from (B.9), the orbital stability bound (6.1) and
(2.16):

∫ |ε|4
y4

� |ε|2L∞

∫ |ε|2
y4

� C(M)η|A∗Aε|2L2

which yields (6.34) for k ≥ 2. For k = 1, we need to deal with the logarithmic losses in
(B.11) and have to sharpen the control. We argue as follows. Let ψB1(y) = ψ(

y

B1
) be a

cut-off function with ψ(y) = 0 for y ≤ 1 and ψ(y) = 1 for y ≥ 2. We compute:
∫

ψB1

(ε)4

y4
= −1

2

∫
ψB1(ε)

4∂y

(
1
y2

)
dy

= 1
2

∫
1
y3

[
(ε)4∂yψB1 + 4ψB1(ε)

3∂yε
]

≤ C
∫

B1≤y≤2B1

(ε)4

y4
+ 2

∫
ψB1

(ε)3

y3

[
V1

y
ε − Aε

]
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≤ C
∫

B1≤y≤2B1

(ε)4

y4
+ C|ε|2L∞

∫
ψB1

|ε|2
y5

− 2
∫

ψB1

(ε)3

y3

[
1
y
ε + Aε

]

≤ C(M)η2|A∗Aε|2L2 − 2
∫

ψB1

(ε)3

y3

[
1
y
ε + Aε

]

where we used that |V1(y) + 1| � 1
y

(in fact 1
y2 ) for y ≥ 1, the orbital stability bound (6.1)

and (B.11), (6.38). We now use Hölder and Sobolev inequalities to derive:

3
∫

ψB
(ε)4

y4
� C(M)η2|A∗Aε|2L2 +

∫
ψB1

(ε)3

y3
|Aε| � η|A∗Aε|2L2

+
(∫

ψB1

(ε)4

y4

) 3
4

|Aε|L4

� η|A∗Aε|2L2 +
(∫

ψB1

(ε)4

y4

) 3
4

|Aε| 1
2
L2 |∇(Aε)| 1

2
L2

� η

(∫
ψB1

(ε)4

y4
+ |A∗Aε|2L2

)

where we used the orbital stability bound (6.1)which implies

|Aε|2L2 � |∇ε|2L2 +
∣
∣∣
∣
ε

y

∣
∣∣
∣

2

L2

� η2.

This concludes the proof of the global bound (6.34) for k = 1. �

We now claim the following controls:
∫

|F1,3|2 � η
1
2 |A∗

λW|2L2,(6.39)

∫

r≤3λB
|F1,3|2 � b

3
2 |A∗

λW|2L2,(6.40)

∫
|∂tF1,3|2 � b2b

3
2

λ2
|A∗

λW|2L2 .(6.41)

Proof of (6.39), (6.40), (6.41). — First recall the formula:

F1,3 = k2

r2

[
f
(
(PB1)λ + w

) − f
(
(PB1)λ

) − f ′((PB1)λ

)
w

]
.
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We thus derive the crude bound

|F1,3| � |w|2
r2

and hence (6.39), (6.40) directly follow from (6.34), (6.35). Next, we compute:

∂tF1,3 = k2

r2
∂t(PB1)λ

[
f ′((PB1)λ + w

) − f ′((PB1)λ

) − f ′′((PB1)λ + w)
]

+ 1
r2

∂tw
[
f ′((PB1)λ + w

) − f ′((PB1)λ

)]

which yields the bound:

|∂tF1,3| � 1
r2

|∂t(PB1)λ||w|2 + 1
r2

∣
∣f ′′((PB1)λ

)∣∣|w||∂tw| + 1
r2

|∂tw||w|2.
We now square this identity, integrate and estimate all terms. From (6.25), (6.31), (5.28):

|∂t(PB1)λ|L∞ � 1
λ

∣∣
∣∣

(
bs

∂PB1

∂b
+ b�PB1

)

λ

∣∣
∣∣ � |bs| + b

λ
� b

λ
,

and thus from (6.34):
∫ |∂t(PB1)λ|2|w|4

r4
� b2

λ2

∫

r≤2λB1

|w|4
r4

� b2b
3
2

λ2
|A∗

λW|2L2 .

Next, we have from (B.19):

(6.42) |∂tw|2L∞ � |∇∂tw|L2

∣
∣∣
∣
∂tw

r

∣
∣∣
∣

L2

� C(M)
(|A∗

λW|2L2 + |∂tW|2L2

)
.

For k ≥ 2, we then use the fact that |f ′′(PB1)| � 1 and is supported in y ≤ 2B1, with
additional help of (6.33) and (B.9) followed by (5.31) to estimate:

∫
1
r4

∣∣f ′′((PB1)λ

)∣∣2|w|2|∂tw|2 � C(M)
(|A∗

λW|2L2 + |∂tW|2L2

) 1
λ2

∫

y≤2B

1
y4

|ε|2

� C(M)
b4

λ4
|A∗Aε|2L2 � b2b

3
2

λ2
|A∗

λW|2L2 .

For k = 1, we use the improved bound |f ′′(PB1(y))| � y

1+y2 and (B.11):
∫

1
r4

∣∣f ′′((PB1)λ

)∣∣2|w|2|∂tw|2 � C(M)
(|A∗

λW|2L2 + |∂tW|2L2

) 1
λ2

×
∫

1≤y≤2B

y2

y4(1 + y4)
|ε|2
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� C(M)
b4

λ4
|A∗Aε|2L2 � b2b

3
2

λ2
|A∗

λW|2L2 .

Finally, from (6.34) and (6.42):
∫ |∂tw|2|w|4

r4
� C(M)η

1
2
(|A∗

λW|2L2 + |∂tW|2L2

)∫ |w|4
r4

� C(M)
b4

λ2
|A∗

λW|2L2 � b2b
3
2

λ2
|A∗

λW|2L2 .

This concludes the proof of (6.41). �

We are now in position to control the F1,3 terms in (6.24). First from (6.39), (B.1):

∣
∣∣
∣

∫
W
r

∂tV
(1)

λ F1,3

∣
∣∣
∣ � b

λ2
|F1,3|L2

(∫ (
r4

r2(1 + r8)

)

λ

W2

) 1
2

(6.43)

� η
1
4

b

λ
|A∗

λW|2L2 � b

λ3
η

1
4 E ,

∣
∣∣
∣

∫
σBc

W
r

∂tV
(1)

λ F1,3

∣
∣∣
∣ � b

λ2
|F1,3|L2(r≤3λBc)

(∫ (
r4

r2(1 + r8)

)

λ

W2

) 1
2

(6.44)

� bb
3
4

λ
|A∗

λW|2L2 � b

λ3
b

3
4 E .

The second term in (6.24) requires an integration by parts in time:
∫

σ∂tWAλF1,3 = d

dt

{∫
σWAλF1,3

}

−
∫

W
[
σAλ∂tF1,3 + σ

∂tV
(1)

λ

r
F1,3 + ∂tσAλF1,3

]

= d

dt

{∫
F1,3

[
σA∗

λW + ∂rσW
]}

−
∫

∂tF1,3

[
σA∗

λW + ∂rσW
] −

∫
σ

W
r

∂tV
(1)
λ F1,3

−
∫

F1,3

[
∂tσA∗

λW + ∂2
rtσW

]
.

Case σ ≡ 1: From (6.39):
∣
∣∣
∣

∫
F1,3A∗

λW

∣
∣∣
∣ � η

1
4 |A∗

λW|2L2 � η
1
4 E
λ2

.
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From (6.41) and (6.43):
∣∣
∣∣

∫
∂tF1,3A∗

λW

∣∣
∣∣ +

∣∣
∣∣

∫
W
r

∂tV
(1)

λ F1,3

∣∣
∣∣ � η

1
4

b

λ
|A∗

λW|2L2 � b

λ3
η

1
4 E .

Case σ = σBc
: From (6.40),

∣∣
∣∣

∫
σBc

F1,3A∗
λW

∣∣
∣∣ � b

3
4 |A∗

λW|2L2 � b
3
4 E .

λ2
.

From (6.40) and (B.1):

∣∣
∣
∣

∫
F1,3∂rσBc

W

∣∣
∣
∣ � b

3
4 |A∗

λW|L2

(∫

λBc≤r≤3λBc

W2

r2

) 1
2

� b
3
4 | log b||A∗

λW|2L2

� b
1
2 |A∗

λW|2L2 � b
1
2 E
λ2

.

Arguing similarly from (6.41) and (B.1) yields:

∣
∣∣
∣

∫
∂tF1,3

[
σBc

A∗
λW + ∂rσBc

W
]
∣
∣∣
∣ � bb

3
4

λ
|A∗

λW|2L2

+ bb
3
4

λ
|A∗

λW|L2

(∫

λ≤r≤3λB

W2

r2

) 1
2

� bb
1
2

λ
|A∗

λW|2L2 � b

λ3
b

1
2 E .

From (6.44):

∣∣
∣∣

∫
σBc

W
r

∂tV
(1)

λ F1,3

∣∣
∣∣ � bb

3
4

λ
|A∗

λW|2L2 � b

λ3
b

3
4 E .

From (6.40):

∣∣
∣∣

∫
F1,3∂tσA∗

λW

∣∣
∣∣ � b

λ

(∫

r≤3λBc

|F1,3|2
) 1

2

|A∗
λW|L2 � bb

3
4

λ
|A∗

λW|2L2 � b

λ3
b

3
4 E ,

∣∣
∣∣

∫
F1,3∂

2
trσW

∣∣
∣∣ � b

λ

(∫

r≤3λBc

|F1,3|2
) 1

2
(∫

λ≤r≤3λBc

W2

r2

) 1
2

� bb
3
4 | log b|

λ
|A∗

λW|2L2 � bb
1
2

λ
|A∗

λW|2L2 � b

λ3
b

1
2 E .
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The last F1,3 term to bound in (6.24) is estimated for the either choice of σ ≡ 1 and
σ = σBc

with the help of (6.28), using (6.40) and the fact that F2 is supported in y ≤ 2B1:
∣∣
∣
∣

∫
σAλF2AλF1,3

∣∣
∣
∣ =

∣∣
∣
∣

∫
F1,3A∗

λ(σAλF2)

∣∣
∣
∣

� |bs|
λ3

|F1,3|L2(r≤2λB1)|A∗
λ(σAλ∂bPB1)|L2(r≤2λB1)

� |bs|bb
3
4

λ2
|A∗

λW|L2 � b

λ3
|bs|b 3

4
√

E � b

λ3

(|bs|2 + b
3
2 E

)
.

Step 7 F1 terms involving �B1 .
We now turn to the control of the leading order term on the RHS of (6.24) which

is given by �B1 in the decomposition (6.30). These estimates will be sensitive to the choice
of σ ≡ 1 or σ = σBc

with a decisive improvement in the latter case. Indeed,

σBc
�B1 = σBc

�b.

As a consequence, the slowly decaying leading order flux terms, localized around y ∼ B1,
in the estimates of Proposition 3.3 disappear.

Case k even, k ≥ 4: We estimate from (3.56), (5.31):
∣∣
∣∣

∫
σW

r
∂tV

(1)

λ

(�B1)λ

λ2

∣∣
∣∣(6.45)

� b

λ2

(∫
W2

r2

) 1
2
(∫

|�B1|2
y4

1 + y8

) 1
2

� b

λ2
|A∗

λW|L2

(∫
y4

1 + y8

[
bk+4yk

1 + yk+1
1y≤2B1 + bk+21B1≤y≤2B1

]2) 1
2

� bk+3

λ2
|A∗

λW|L2 � b

λ3
bk+2

√
E .

Next, there holds from (3.56):

∫ [
Aλ

(
(�B1)λ

λ2

)]2

� 1
λ4

∫

y≤2B

1
y2

[
bk+4yk

1 + yk+1
1y≤2B1 + bk+21B1≤y≤2B1

]2

� b2k+4

λ4
,

∫
σBc

[
Aλ

(
(�B1)λ

λ2

)]2

� 1
λ4

∫

y≤2Bc

1
y2

[
bk+4yk

1 + yk+1
1y≤2B1

]2

� b2k+8

λ4
,
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from which:
∣∣
∣∣

∫
∂tWAλ

(
(�B1)λ

λ2

)∣∣
∣∣ � bk+2

λ2
|∂tW|L2 � b

λ3
bk+1

√
E ,

∣
∣∣
∣

∫
σ∂tWAλ

(
(�B1)λ

λ2

)∣
∣∣
∣ � bk+4

λ2
|√σ∂tW|L2 � b

λ3
bk+3

√
Eσ .

Finally, we derive from (6.25) the crude bound valid for all k ≥ 1:

(6.46) |AλF2| � |bs|
λ2

(
1

1 + y
1y≤2B1

)

which yields:
∣∣
∣∣

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣∣
∣∣ � |bs|

λ3

∫

y≤2B1

1
y(1 + y)

×
[

bk+4yk

1 + yk+1
1y≤2B1 + bk+21B1≤y≤2B1

]

� bk+2|bs|
λ3

� b

λ3

[
b2k+2 + |bs|2

]
,

∣
∣
∣∣σBc

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣
∣
∣∣ � |bs|

λ3

∫

y≤2Bc

1
y(1 + y)

[
bk+4yk

1 + yk+1

]

� bk+4|bs|
λ3

� b

λ3

[
b2k+6 + |bs|2

]
.

Case k odd, k ≥ 3: We estimate from (3.58):

∣∣
∣∣

∫
σW

r
∂tV

(1)

λ

(�B1)λ

λ2

∣∣
∣∣ � b

λ2

(∫
W2

r2

) 1
2
(∫

|�B1|2
y4

1 + y8

) 1
2

� b

λ2
|A∗

λW|L2

(∫
y4

1 + y8

[
bk+3yk

1 + yk+2
1y≤2B1

+ bk+1

y
1B1≤y≤2B1

]2) 1
2

� bk+3

λ2
|A∗

λW|L2 � b

λ3
bk+2

√
E .

Next, from (3.58) there holds:
∫ [

Aλ

(
(�B1)λ

λ2

)]2

� 1
λ3

∫

y≤2B1

1
y2

[
bk+3 yk

1 + yk+2
1y≤B1
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+ bk+1

1 + y
1B1≤y≤2B1

]2

� b2k+4

λ3
,

∫
σBc

[
Aλ

(
(�B1)λ

λ2

)]2

� 1
λ3

∫

y≤2B1

1
y2

[
bk+3yk

1 + yk+2
1y≤B

]2

� b2k+6

λ3
,

from which:
∣∣
∣∣

∫
∂tWAλ

(
(�B1)λ

λ2

)∣∣
∣∣ � bk+2

λ2
|∂tW|L2 � b

λ3
bk+1

√
E ,

∣
∣∣
∣

∫
σBc

∂tWAλ

(
(�B1)λ

λ2

)∣
∣∣
∣ � bk+3

λ2
|√σBc

∂tW|L2 � b

λ3
bk+2

√
Eσ .

Finally, from (6.46):
∣
∣∣
∣

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣
∣∣
∣

� |bs|
λ3

∫

y≤2B1

1
y(1 + y)

[
bk+3yk

1 + yk+2
1y≤2B1 + bk+1

y
1B1≤y≤2B1

]

� bk+2|bs|
λ3

� b

λ3

[
b2k+2 + |bs|2

]
,

∣∣
∣∣σ

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣∣
∣∣ � |bs|

λ3

∫

y≤2B1

1
y(1 + y)

[
bk+3yk

1 + yk+2

]

� bk+3|bs|
λ3

� b

λ3

[
b2k+4 + |bs|2

]
.

Case k = 2: The chain of estimates (6.45) is still valid even taking into account the
term cbb

4�Q in (3.60) and leads to:
∣
∣∣
∣

∫
σW

r
∂tV

(1)

λ

(�B1)λ

λ2

∣
∣∣
∣ � bk+3

λ2
|A∗

λW|L2 � b

λ3
bk+2

√
E .

Next, we use in a crucial way the cancellation

A(�Q) = 0

to conclude from (3.60) that for k = 2:
∫ [

Aλ

(
(�B1)λ

λ2

)]2

� 1
λ3

∫

y≤2B1

1
y2

[
C(M)bk+4 yk

1 + yk+1
1y≤2B1
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+ bk+21B1≤y≤2B1

]2

� b2k+4

λ4
,

∫
σBc

[
Aλ

(
(�B1)λ

λ2

)]2

� 1
λ3

∫

y≤2B1

1
y2

[
C(M)

bk+4yk

1 + yk+1
1y≤2B1

]2

� b2k+7

λ4
.

Observe that without the cancellation we would expect to have an additional term
b4yk

1+yk+2 1y≤2B1 , which would not disappear after application of the cut-off function σBc
and

therefore destroy the extra gain in the localized estimate. Thus:
∣∣
∣∣

∫
∂tWAλ

(
(�B1)λ

λ2

)∣∣
∣∣ � bk+2

λ2
|∂tW|L2 � b

λ3
bk+1

√
E ,

∣
∣∣
∣

∫
σ∂tWAλ

(
(�B1)λ

λ2

)∣
∣∣
∣ � bk+7/2

λ2
|√σ∂tW|L2 � b

λ3
bk+2

√
Eσ .

Finally, using (6.46):
∣
∣
∣∣

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣
∣
∣∣ � |bs|

λ3

∫
1

y(1 + y)

∣
∣
∣∣C(M)

bk+4yk

1 + yk+1
1y≤2B1

+ bk+21B1≤y≤2B1

∣
∣∣
∣

� |bs|bk+2

λ3
� b

λ3

[
b2k+2 + |bs|2

]
,

∣∣
∣∣σ

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣∣
∣∣ � |bs|

λ3

∫
1

y(1 + y)

∣∣
∣∣C(M)

bk+4yk

1 + yk+1

∣∣
∣∣

� |bs|bk+3

λ3
� b

λ3

[
b2k+4 + |bs|2

]
.

Case k = 1: We estimate from (3.62):

∣∣
∣∣

∫
σW

r
∂tV

(1)

λ

(�B1)λ

λ2

∣∣
∣∣ � b

1
2

λ
3
2

(∫
σ

W2

r2
|∂tV

(1)

λ |
) 1

2
(∫

|�B1|2
y2

1 + y4

) 1
2

� c

∫
σ

W2

r2
|∂tV

(1)

λ | + b

cλ3

∫
y2

1 + y4

[
b2

y
1B1≤y≤2B1

+ b2

| log b|
y

1 + y2

]2
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� c

∫
σ

W2

r2
|∂tV

(1)

λ | + b

λ3

b4

c| log b|2
for some small universal constant c > 0. By the Remark 6.8 the first term on the RHS
above can be absorbed in the energy identity (6.12).

Next, we use again the fundamental cancellation:

|A(χ B0
4
�Q)| � 1

y2
1 B0

8 ≤y≤ B0
2

which implies from (3.62) and cb ∼ 1
| log b| :

∫ [
Aλ

(
(�B1)λ

λ2

)]2

� 1
λ4

∫

y≤2B1

1
y2

[
b2

y
1B1≤y≤2B1 + C(M)b4 y

1 + y4

+ b4 (1 + | log(by)|)
| log b| y11≤y≤ B0

2
+ b2

| log b|y1 B0
2 ≤y≤2B1

]2

� b6

λ4
,

∫
σBc

[
Aλ

(
(�B1)λ

λ2

)]2

� 1
λ4

∫

y≤2B

1
y2

[
C(M)b4 y

1 + y4
+ b4 (1 + | log(by)|)

| log b| y11≤y≤ B0
2

+ b2

| log b|y1 B0
2 ≤y≤3Bc

]2

� b6

| log b|2λ4
,

from which:
∣
∣∣
∣

∫
∂tWAλ

(
(�B1)λ

λ2

)∣
∣∣
∣ � b3

λ2
|∂tW|L2 � b

λ3
b2

√
E ,

∣
∣∣
∣

∫
σ∂tWAλ

(
(�B)λ

λ2

)∣
∣∣
∣ � b3

| log b|λ2
|√σ∂tW|L2 � b

λ3

b2
√

Eσ

| log b| .

Finally:
∣
∣∣
∣

∫
AλF2Aλ

(
(�B1)λ

λ2

)∣
∣∣
∣
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� |bs|
λ3

∫
1

y(1 + y)

[
b2

y
1B1≤y≤2B1 + C(M)b4 y

1 + y4

+ b4 (1 + | log(by)|)
| log b| y11≤y≤ B0

2

+ b2

| log b|y1 B0
2 ≤y≤2B1

]
� |bs|b3

λ3
� b

λ3

[
b4 + |bs|2

]
,

∣
∣∣
∣

∫
σBc

AλF2Aλ

(
(�B1)λ

λ2

)∣
∣∣
∣

� |bs|
λ3

∫

y≤2Bc

1
y(1 + y)

[
C(M)b4 y

1 + y4
+ b4 (1 + | log(by)|)

| log b| y11≤y≤ B0
2

+ b2

| log b|y1 B0
2 ≤y≤2B1

]

� |bs|b3

| log b|λ3
� b

λ3

[
b4

| log b|2 + |bs|2
]
.

Note the sharpness of the above estimate. Its most significant contribution is generated
by the second term in the square brackets above.

Step 8 Conclusion.
The collection of all previous estimates now yields the claimed bounds (6.10), (6.11)

and concludes the proof of Lemma 6.5. �

6.3. Proof of Proposition 5.6. — We are now in position to complete the proof of
Proposition 5.6. The key will be to combine the a priori bound on the blow up acceler-
ation given by Lemma 6.3 with the information provided in (6.10), (6.11). The smallness
of the coupling constant (log M)−1 in Lemma 6.3, linking the behavior of the blow ac-
celeration bs with the pointwise behavior of the local energy Eσ , provides the mechanism
allowing us to combine the two estimates and obtain the desired bounds. Equally crucial
to this strategy is the independence of the constants in (6.10), (6.11) on M noted in the
Remark 6.6.

Step 1 Control of the scaling parameter.
We begin with the proof of (5.33). First observe from (6.3) and the bootstrap esti-

mate (5.28) that

(6.47) |bs| ≤ K
b2

| log b| ≤ b2

100k
.

This implies:

d

ds

(
bk+2

λ

)
= bk+1

λ

[
b2 + (k + 2)bs

] ≥ 0
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and hence from (5.5):

bk+2(t)

λ(t)
≥ bk+2(0)

λ(0)
≥ 1

and (5.33) follows. We derive similarly

bk+1(0)

λ(0)
≤ bk+1(t)

λ(t)
,(6.48)

bk+1(0)

| log b(0)|λ(0)
≤ bk+1(t)

| log b(t)|λ(t)
, b2k+2(0)

λ2(t)

λ2(0)
≤ b2k+2(t).(6.49)

Step 2 Bound on the global energy.
We now turn to the proof of (5.35).
In this case we use the bootstrap assumptions (5.28), (5.29) to obtain from (6.10)

(6.50)
E (t)

λ2(t)
� E (0)

λ2(0)
+

∫ t

0

√
K

b2k+3

λ3
+ b2k+2(t)

λ2(t)
+ b2k+2(0)

λ2(0)
.

Note that we used the inequalities η
1
4 K ≤ 1 and | log b|−1K ≤ 1. We then derive from

(6.47):
∫ t

0

b2k+3

λ3
= −

∫ t

0

λtb
2k+2

λ3
= b2k+2(t)

2λ2(t)
− b2k+2(0)

2λ2(0)
− (k + 1)

∫ t

0

btb
2k+1

λ2

≤ b2k+2(t)

λ2(t)
+ (k + 1)

∫ t

0

|bs|b2k+1

λ2

≤ b2k+2(t)

λ2(t)
+ 1

2

∫ t

0

b2k+3

λ3

and hence the bound:

(6.51)
∫ t

0

b2k+3

λ3
≤ 2

b2k+2(t)

λ2(t)
.

Note that the fact that the above inequality holds is derived under the assumptions of the
regime under consideration. We now insert (6.51) into (6.50) and use (6.48) to conclude:
∀t ∈ [0,T1),

E (t) � λ2(t)

λ2(0)
E (0) + √

Kb2k+2(t) + b2k+2(0)
λ2(t)

λ2(0)
(6.52)

� λ2(t)

λ2(0)
E (0) + √

Kb2k+2(t).
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Observe now from the initial bound (5.15) and (6.49):

λ2(t)

λ2(0)
E (0) � λ2(t)

λ2(0)

b2k+2
0

| log b0|2 � b2k+2(t)

| log b(t)|2
and thus (6.52) implies:

(6.53) E (t) �
√

Kb2k+2(t).

This yields (5.35) for K large enough.
Step 3 Bound on the local energy and bs.
First observe from the bs bound (6.4) and the bootstrap bound (5.30) that

|bs|2 � b2k+2

| log b|2
(

1 + K
log M

)

which implies (5.34). We now substitute (5.34), (5.35) and the improved bound (6.53) into
(6.11) and integrate in time to get:

Eσ (t)

λ2(t)
� E (0)

λ2(0)
+

∫ t

0

b2k+3

| log b|2λ3

(
1 + √

K + K
√

log M

)
(6.54)

+ b2k+2(t)

log2 b(0)λ2(t)
+ b2k+2(0)

log2 b(0)λ2(0)
.

We now estimate from (6.47):
∫ t

0

b2k+3

| log b|2λ3
= −

∫ t

0

λtb
2k+2

| log b|2λ3
� b2k+2(t)

2| log b(t)|2λ2(t)

+ (k + 1)

∫ t

0

|bs|b2k+1

| log b|2λ2

≤ b2k+2(t)

| log b(t)|2λ2(t)
+ 1

2

∫ t

0

b2k+3

| log b|2λ3

and substitute this into (6.54) together with (5.14), (5.27) to get:

Eσ (t) �
(

1 + √
K + K

√
log M

)
b2k+2(t)

| log b(t)|2 ≤ K
2

b2k+2(t)

| log b(t)|2
for K = K(M) large enough, and (5.36) follows.

Step 4 Finite time blow up.
We now have proved that T1 = T. It remains to prove that T < +∞. From (5.27),

the scaling parameter satisfies the pointwise differential inequality

(6.55) −λt = b ≥ λ
1

k+1 ≥ √
λ
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from which:

∀t ∈ [0,T), −2
√

λ(t) + 2
√

λ(0) ≥ t.

Positivity of λ implies T < +∞.
This concludes the proof of Proposition 5.6.

7. Sharp description of the singularity formation

This section is devoted to the proof of Theorem 1.1. We will provide a precise
description of the dynamics of the parameter b and the scaling parameter λ, as required in
(1.11)–(1.12). In particular, we will prove that b → 0 as t → T, which together with (5.35),
(5.36) implies dispersion of the excess of energy at the blow up time. These estimates are
crucial for the proof of the quantization of the blow up energy as stated in (1.13). The first
step of the proof relies on a flux computation leading to a sharp differential inequality for
the parameter b. The leading contribution to the flux is provided by an explicit behavior
of the radiative part of the Qb profile. To identify it as a leading contribution we exploit
the logarithmic gain in the local energy bound (5.36). This analysis can be thought of as
related to the L2 flux calculation in [29] leading to the log–log blow up law for the L2

critical (NLS).

7.1. The flux computation and the derivation of the bs law. — In this section we derive
the precise behavior of the parameter b(t) modulo negligible time oscillations. This is
achieved by refining the analysis of Lemma 6.3 and projecting the ε equation (4.4) onto
the instability direction of the linearized operator HB0 associated to PB0 .

Define

(7.1) G(b) = b|�PB0|2L2 +
∫ b

0
b̃

(
∂PB0

∂b
,�PB0

)
db̃

and

I(s) = (∂sε,�PB0) + b(ε + 2�ε,�PB0) + bs

(
∂PB0

∂b
,�PB0

)
(7.2)

− bs

(
∂

∂b
(PB1 − PB0),�PB0

)
.

We claim:

Proposition 7.1 (Sharp derivation of the b law). — For b ≤ b∗
0 small enough, there holds:

(7.3) G(b) =
{

b|�Q|2L2(1 + o(1)) for k ≥ 2,

4b| log b| + O(b) for k = 1,
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and

(7.4) |I| �
{

b2| log b| for k ≥ 2,

b for k = 1.

The functions G, I satisfy the following differential inequalities:

(7.5)

∣
∣∣
∣

d

ds

{
G(b) + I(s)

} + c̃kb
2k

∣
∣∣
∣ ≤ b2k

| log b|
with

(7.6) c̃k =

⎧
⎪⎪⎨

⎪⎪⎩

c2
p

2 for k odd, k ≥ 3,

k2c2
p

2 for k even,

2 for k = 1.

Remark 7.2. — Observe that (7.3), (7.4), (7.5) essentially yield a pointwise differen-
tial equation

bs ∼ −
{

b2k for k ≥ 2,

b2

2| log b| for k = 1

which will allow us to derive the sharp scaling law via the relationship −λs

λ
= b. Note also

that for k ≥ 2, with a little bit more work, the logarithmic gain in the RHS of (7.5) may
be turned into a polynomial gain in b.

Proof of Proposition 7.1. — We multiply (4.4) with �PB0—the instability direction of
HB0—and compute:

(
bs�PB1 + b(∂sPB1 + 2�∂sPB1) + ∂2

s PB1,�PB0

)

= −(�B1,�PB0) − (HB1ε,�PB0)

− (
∂2

s ε + b(∂sε + 2�∂sε) + bs�ε,�PB0

) − k2

(
N(ε)

y2
,�PB0

)
.

We further rewrite this as follows:
(
bs�PB0 + b(∂sPB0 + 2�∂sPB0) + ∂2

s PB0,�PB0

)
(7.7)

= −(�B1,�PB0) − (HB1ε,�PB0)

− (
bs�(PB1 − PB0) + b

(
∂s(PB1 − PB0) + 2�∂s(PB1 − PB0)

)

+ ∂2
s (PB1 − PB0),�PB0

)
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− (
∂2

s ε + b(∂sε + 2�∂sε) + bs�ε,�PB0

) − k2

(
N(ε)

y2
,�PB0

)
.

We now estimate all terms in the above identity.
Step 1 Transformation of the LHS of (7.7).
We claim that the LHS of (7.7) may be rewritten as follows:

(
bs�PB0 + b(∂sPB0 + 2�∂sPB0) + ∂2

s PB0,�PB0

)
(7.8)

= d

ds

[
G(b) + bs

(
∂PB0

∂b
,�PB0

)]
+ |bs|2

∣∣
∣
∣
∂PB0

∂b

∣∣
∣
∣

2

L2

with G given by (7.1) and the bound:

(7.9) |bs|2
∣∣
∣∣
∂PB0

∂b

∣∣
∣∣

2

L2

� b2k

| log b|2 .

Proof of (7.8). — Let

φ(t, y) = (PB0)λ,

then:

∂ttφ = 1
λ2

[
∂2

s PB0 + b(∂sPB0 + 2�∂sPB0) + b2D�PB0 + bs�PB0

]
λ
.

Using the cancellation

(D�PB0,�PB0) = 0,

this yields:
(
bs�PB1 + b(∂sPB1 + 2�∂sPB1) + ∂2

s PB1,�PB0

)
(7.10)

= λ2
(
∂ttφ(λy),�φ(λy)

) = (∂ttφ,�φ)

= d

dt

[
(∂tφ,�φ)

] − (∂tφ,�∂tφ) = d

dt

[
(∂tφ,�φ)

] +
∫

(∂tφ)2.

We now compute each term separately:

d

dt

[
(∂tφ,�φ)

] = 1
λ

d

ds

[
λ(∂sPB0 + b�PB0,�PB0)

]

= d

ds

[
b|�PB0|2L2 + bs

(
∂PB0

∂b
,�PB0

)]

− b

[
b|�PB0 |2L2 + bs

(
∂PB0

∂b
,�PB0

)]
.
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On the other hand,
∫

(∂tφ)2 =
∫

(∂sPB0 + b�PB0)
2

= |bs|2
∣∣
∣∣
∂PB0

∂b

∣∣
∣∣

2

L2

+ 2bsb

(
∂PB0

∂b
,�PB0

)
+ b2|�PB0|2L2 .

Substituting these two computations into (7.10) yields:
(
bs�PB1 + b(∂sPB1 + 2�∂sPB1) + ∂2

s PB1,�PB0

)

= d

ds

[
b|�PB0|2L2 + bs

(
∂PB0

∂b
,�PB0

)]
+ bsb

(
∂PB0

∂b
,�PB0

)

+ |bs|2
∣
∣∣
∣
∂PB0

∂b

∣
∣∣
∣

2

L2

= d

ds

[
G(b) + bs

(
∂PB0

∂b
,�PB0

)]
+ |bs|2

∣
∣∣
∣
∂PB0

∂b

∣
∣∣
∣

2

L2

,

which gives (7.8). To prove (7.9), we first estimate from (6.25):

|∂bPB0|2L2 �
∫

y≤2B0

(
y2

(1 + y2)| log b|2 + 1
b2y2

1 B0
2 ≤y≤2B0

)
� 1

b2
,

and hence (7.9) follows from (5.34). �

Step 2 The flux computation.
We now turn to the first key step in the derivation of the sharp b law. It is the

following outgoing flux computation:

(7.11) (�B1,�PB0) = dpb
2k

(
1 + O

(
1

| log b|
))

as b → 0.

The error in this identity is determined by the (non-sharp) choice of B1 in (1.23). The
universal constant

dp =

⎧
⎪⎪⎨

⎪⎪⎩

k2c2
p

2 for k even,

c2
p

2 for k odd, k ≥ 3,

2 for k = 1.

Proof of (7.11). — Let us define the expression, which in what follows we will refer
to as the radiation term,

(7.12) ζb = PB1 − PB0 = (χB1 − χB0)(Qb − a)
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with a = π for the (WM) problem and a = −1 for the (YM). It satisfies:

(7.13) Supp(ζb) ⊂ {B0 ≤ y ≤ 2B1},
and the equation:

−�ζb + b2D�ζb + k2 f (PB0 + ζb) − f (PB0)

y2
= �B1 − �B0

which we rewrite:

(7.14) −�ζb + b2D�ζb + k2 ζb

y2
= �B1 − �B0 − M(ζb)

with

(7.15) M(ζb) = k2 f (PB0 + ζb) − f (PB0) − f ′(PB0)ζb + (f ′(PB0) − 1)ζb

y2
.

We now manipulate the identity

(�B1,�PB0) = (�B1,�PB1) − (�B1,�ζb) = −(�B1,�ζb).

In the last step we used the Pohozaev identity (3.46):

(�B1,�PB1) =
(

−�PB1 + b2D�PB1 + k2 f (PB1)

y2
,�PB1

)
= 0,

which holds for �PB1 of compact support and g(PB1(y)) with the boundary value
limy→+∞ g(PB1(y)) = 0. We now integrate by parts, use the formula (3.66) and the lo-
calization property (7.13) to conclude:

−(�ζb,�B1) = −
∫ 2B1

B1

�ζb�B1ydy −
∫ B1

B0

�ζbχB1�bydy(7.16)

= −
∫ 2B1

B1

�ζb(�B1 − �B0)ydy −
∫ B1

B0

�ζbχB1�bydy

=
∫ 2B1

B1

�ζb

[
�ζb − b2D�ζb − k2 ζb

y2

]
ydy

−
∫ 2B1

B1

�ζbM(ζb)ydy −
∫ B1

B0

�ζbχB1�bydy.

In the last step we also used (7.14). The first term on the RHS above produces the lead-
ing order flux term from the Pohozaev integration (3.46) and the boundary conditions
ζb(2B1) = ζ ′

b(2B1) = 0:
∫ 2B1

B1

�ζb

[
�ζb − b2D�ζb − k2 ζb

y2

]
ydy =

[
1
2

(
b2y2 − 1

)|�ζb|2 + k2

2
ζ 2

b

]
(B1).
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Now from (7.12) and the estimates on Qb from Proposition 3.1 with the choice B1 =
| log b|

b
� 1

b
, there holds: ∀y ∈ [B1

2 ,B1],

(7.17) ζb(y) = (Qb − a)(y) =

⎧
⎪⎨

⎪⎩

cp

y
bk−1(1 + O( 1

| log b|)) for k odd, k ≥ 3,

cpb
k(1 + O( 1

| log b|)) for k even,

2
y
(1 + O( 1

| log b|2 )) for k = 1

from which

(7.18)
∫ 2B1

B1

�ζb

[
�ζb − b2D�ζb − k2 ζb

y2

]
ydy =

⎧
⎪⎪⎨

⎪⎪⎩

c2
p b2k

2 (1 + O( 1
| log b|2 )) for k odd,

k2c2
p b2k

2 (1 + O( 1
| log b|2 )) for k even,

2b2(1 + O( 1
| log b|2 )) for k = 1.

It remains to estimate the error terms in (7.16). For this, first observe the crude bound:

(7.19) ∀y ∈ [B0,2B1], |ζb(y)| + |�ζb(y)| �
{

bk−1

y
for k odd,

bk for k even

and from (7.15):

(7.20) ∀y ∈ [B0,2B1], |M(ζb)| � 1
y2

[
|ζb|2 + |ζb|

yk

]
.

Case k ≥ 3 odd: From (3.14):

∫ B1

B0

|�ζbχB1�b|ydy �
∫ B1

B0

bk−1

y

bk+3

y2
ydy � b2k+3.

Next, (7.19) and (7.20) imply

∫ 2B1

B1

|�ζbM(ζb)|ydy �
∫ 2B1

B1

bk−1

y

1
y2

(
b2k−2

y2
+ bk−1

yk+1

)
ydy � b3k.

Case k ≥ 4 even: From (3.11), (7.19):

∫ B1

B0

|�ζbχB1�b|ydy �
∫ B1

B0

bk bk+4

y
ydy � b2k+3.

From (7.19) and (7.20):

∫ 2B1

B1

|�ζbM(ζb)|ydy �
∫ 2B1

B1

bk

y2

(
b2k + bk

yk

)
ydy � b3k.
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Case k = 2: From (3.17), (7.19):

∫ B1

B0

|�ζbχB1�b|ydy �
∫ B1

B0

bk

[
C(M)

bk+4

y2
+ b4

y2

]
ydy � b2k+1.

From (7.19) and (7.20):

∫ 2B1

B1

|�ζbM(ζb)|ydy �
∫ 2B1

B1

bk

y2

(
b2k + bk

yk

)
ydy � b3k.

Case k = 1: We recall that according to (3.51), |�b| � b4

1+y
for y ≥ B0. Therefore,

∫ B1

B0

|�ζbχB1�b|ydy �
∫ B1

B0

1
y

b4

y
ydy ≤ b4| log b| ≤ b3.

Next, (7.19) and (7.20) imply

∫ 2B1

B1

|�ζbM(ζb)|ydy �
∫ 2B1

B1

1
y

1
y2

(
1
y2

+ 1
y2

)
ydy � b3.

This concludes the proof of (7.11). �

Step 3 Second line of (7.7).
We first observe

bs�(PB1 − PB0) + b
(
∂s(PB1 − PB0) + 2�∂s(PB1 − PB0)

) + ∂2
s (PB1 − PB0)

= bs�ζb + b(∂sζb + 2�∂sζb) + ∂2
s ζb.

We further rewrite
(
bs�ζb + b(∂sζb + 2�∂sζb) + ∂2

s ζb,�PB0

)

= d

ds
(∂sζb,�PB0) + (

bs�ζb + b(∂sζb + 2�∂sζb),�PB0

) − (∂sζb,�∂sPB0)

= d

ds

[
bs(∂bζb,�PB0)

] + bs

(
�ζb + b(∂bζb + 2�∂bζb),�PB0

)

− b2
s (∂bζb,�∂bPB0).

We use crude bounds similar to (7.19), ∀y ∈ [B0,2B0],
|ζb(y)| + |�ζb(y)| + b|∂bζb(y)| + b|�∂bζb(y)| � bk,

|�PB0 | + |�∂bPB0| � bk.
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As a consequence,

|bs||(∂bζb,�PB0)| �
bk+1

| log b|b
2k−3 ≤ b3k−2

| log b|
and

|bs|
∣
∣(�ζb + b(∂bζb + 2�∂bζb),�PB0

)∣∣ � bk+1

| log b|b
2k−2 ≤ b3k−1

| log b| ,(7.21)

b2
s |(∂bζb,�∂bPB0)| �

b2k+2

| log b|2 b2k−4 ≤ b4k−2

| log b|2 .(7.22)

Step 4 The main linear term.
�PB0 is only approximate element of the kernel of H∗

B1
. The corresponding linear

term (ε,H∗
B1

(�PB0)) on the RHS of (7.7) is therefore potentially a highly problematic
term. The control of this term requires the improved local estimate (5.36). We claim:

(7.23)
∣
∣(HB1ε,�PB0)

∣
∣ � b2k

| log b| .

Proof of (7.23). — Let us first compute H∗
B1

(�PB0). Observe first from space local-
ization that

H∗
B1

(�PB0) = H∗
B0

(�PB0) + S, S := k2 f ′(PB1) − f ′(PB0)

y2
�PB0

with S supported only on the set y ∈ [B0,2B0].
Rescaling (3.53), we find that (PB0)λ satisfies:

�(PB0)λ − b2

λ2
D�(PB0)λ − f ((PB0)λ)

y2
= −(�B0)λ

λ2
.

Differentiating this relation with respect to λ and evaluating the result at λ = 1 yields:

HB0�PB0 + 2b2D�PB0 = 2�B0 + ��B0

or equivalently from (6.5):

H∗
B0

�PB0 = 2�B0 + ��B0 .

We thus rewrite the main linear term in (7.7):

(HB1ε,�PB0) = (
ε,H∗

B1
�PB0

) = (ε,2�B0 + ��B0 + S).

Let us now define

(7.24) eb = (2�B0 + ��B0 + S,�Q)

(�Q, χM�Q)
,
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we claim that we can find �b solution to:

(7.25) H�b = 2�B0 + ��B0 + S − ebχM�Q

with the property that

�b = �1
b + �2

b ,

where Supp(�1
b ,A�2

b ) ⊂ {y ≤ 2B0} and

|�1
b (y)|L∞ � bk,(7.26)

|A�2
b (y)| �

bk+1

| log b|1y≤2B0 + bk+1

log M
1y≤2M + bk+11B0≤y≤2B0 .(7.27)

Assume (7.26), (7.27). We then use the orthogonality condition (5.12) and (B.4), (B.5) to
estimate:

Case k ≥ 2:
∣
∣(ε,2�B0 + y · ∇�B0)

∣
∣(7.28)

= ∣∣(ε,2�B0 + y · ∇�B0 − ebχM�Q)
∣∣

= (A∗Aε,�b)

� bk

(∫

y≤2B0

(
A∗Aε

)2
) 1

2
(∫

y≤2B0

1
) 1

2

+ bk+1

(∫

y≤2B0

(Aε)2

y2

(
1

| log2 b|1y≤2B0

+ 1

log2 M
1y≤2M + 1B0≤y≤2B0

)) 1
2
(∫

y≤2B0

y2

) 1
2

� bk−1

(∫

y≤2B0

|A∗Aε|2
) 1

2

+ bk−1

(∫

y≤2B0

|Aε|2
y2

) 1
2

.

From (6.29):

∫

y≤2B0

|A∗Aε|2 =
∫

y≤2B0

∣∣
∣∣∂y(Aε) + 1 + V(1)

y
Aε

∣∣
∣∣

2

(7.29)

�
∫

y≤2B0

[
|∂y(Aε)|2 + k2 + 1 + 2V(1) + V(2)

y2
(Aε)2

]

� λ2 Eσ
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and thus from (5.36) for k ≥ 2:

(7.30)
∫

y≤2B0

|Aε|2
y2

+
∫

y≤2B0

|A∗Aε|2 � λ2 Eσ � b2k+2

| log b|2 .

Inserting this into (7.29) yields:

∣
∣(ε,2�B0 + y · ∇�B0)

∣
∣ � bk−1

(
b2k+2

| log b|2
) 1

2

� b2k

| log b| ,

which gives (7.23).
Case k = 1: We first obtain the bound

(7.31)
∣∣(ε,2�B0 + y · ∇�B0)

∣∣ � bk−1

(
b2k+2

| log b|2
) 1

2

� b2k

√| log b| .

Using (7.26), (7.27), the orthogonality condition (5.12) and (B.4), (B.5) we obtain:
∣∣(ε,2�B0 + y · ∇�B0)

∣∣(7.32)

= ∣
∣(ε,2�B0 + y · ∇�B0 − ebχM�Q)

∣
∣ = (A∗Aε,�b)

� bk

(∫

y≤2B0

(
A∗Aε

)2
) 1

2
(∫

y≤2B0

1
) 1

2

+ bk+1

(∫

y≤2B0

(Aε)2

(
1

| log2 b|1y≤2B0 + 1

log2 M
1y≤2M

+ 1B0≤y≤2B0

)) 1
2
(∫

y≤2B0

1
) 1

2

� bk−1

(∫

y≤2B0

|A∗Aε|2
) 1

2

+ bk−1
√| log b|

(∫

y≤1
|Aε|2 +

∫

y≤2B0

|∇Aε|2
) 1

2

.

Since by (7.29) and (5.36):

(7.33)
∫

y≤1
|Aε|2 +

∫

y≤2B0

|∇Aε|2 +
∫

y≤2B0

|A∗Aε|2 � λ2 Eσ � b2k+2

| log b|2
we obtain

∣∣(ε,2�B0 + y · ∇�B0)
∣∣ � bk−1

√| log b|
(

b2k+2

| log b|2
) 1

2

� b2k

√| log b| .
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To obtain the stronger estimate

(7.34)
∣∣(ε,2�B0 + y · ∇�B0)

∣∣ � b2k

| log b| ,

we claim that we can redefine the decomposition �b = �̃1
b + �̃2

b so that (7.26), (7.27) are
replaced by the estimates

|�̃1
b | � b,(7.35)

|A�̃2
b (y)| �

b2

| log b|1y≤2B0 + b2

log M
1y≤2M.(7.36)

The absence of the term bk+11B0≤y≤2B0 in (7.36) eliminates the additional logarithmic di-
vergence in (7.32) and leads to the desired bound. We omit the straightforward details. �

Remark 7.3. — The gain in (7.34) with respect to the simpler bound (7.31) will
allow us to obtain the O( b2

| log b|) estimate on the remaining terms in the RHS of (7.5).
This in turn will lead to the O(1) term in the derivation of the blow up speed (1.12) after
reintegration of the modulation equations, see in particular (7.65).

Proof of (7.26), (7.27). — Let

gb = 2�B0 + ��B0 + S − ebχM�Q,

so that

(7.37) (gb,�Q) = 0

from (7.24). Then, as in (A.16), a solution to (7.25) is given by

�b(y) = �(y)

∫ y

0
�Qgbudu − �Q(y)

∫ y

1
gb�udu = �1

b + �2
b .

The compact support of �B0 and hence of gb in y ≤ 2B0 and (7.37) ensure Supp(�1
b ) ⊂

{y ≤ 2B0}. On the other hand, using that A(�Q) = 0,

(7.38) A�2
b = �Qgb�y

and the property Supp(A�2
b ) ⊂ {y ≤ 2B0}. follows. We now turn to the proof of the L∞

estimates (7.26), (7.27).
In what follows we will use the bound

(7.39) |S| � b2k+21B0≤y≤2B0,
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which easily follows from
∣
∣∣
∣
f ′(PB1) − f ′(PB0)

y2
�PB0

∣
∣∣
∣ ≤ 1

y2
|PB1 − PB0||�PB0|.

Case k ≥ 3: We use the bound from (3.56), (3.58):

|�B0| + |��B0| � bk+31y≤2B0 + bk+21B0≤y≤2B0,

which yields:

|eb| �
∫

bk+2yk

1 + y2k
ydy � bk+2,

|�1
b (y)| �

1 + y2k

yk

∫ 2B0

y

bk+2uk

1 + u2k
udu � bk.

On the other hand, taking into account that |�Q�| � 1,

|A�2
b (y)| = |�Q�gby| ≤ bk+21y≤2B0 + bk+11B0≤y≤2B0 .

Case k = 2: We estimate from (3.60):

|�B0| + |��B0| �
b4y2

1 + y4
1y≤B0 + b41B0≤y≤2B0,

and hence:

|eb| �
∫

yk

1 + y2k

[
b4y2

1 + y4
+ b41B0≤y≤2B0,

]
ydy � b4,

|�1
b (y)| �

1 + y4

y2

∫ 2B0

y

u2

1 + u4

[
b4u2

1 + u4
+ b41B0≤u≤2B0

]
udu � b2,

|A�2
b (y)| � |gby| � b41y≤2B0 + b31B0≤y≤2B0 .

Case k = 1: We estimate from (3.62):

|�B0| + |��B0| �
b2

| log b|
y

1 + y2
1y≤2B0 + b2

y
1B0≤y≤2B0,

and hence:

log M|eb| �
∫

y≤2B0

y

1 + y2

[
b2y

| log b|(1 + y2)
+ b2

y
1B0≤y≤2B0,

]
ydy � b2,

|�1
b (y)| �

1 + y2

y

∫ 2B0

y

u

1 + u2

[
b2u

| log b|(1 + u2)
+ b2

u
1B0≤u≤2B0
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+ b2

log M(1 + u)
1u≤2M

]
udu � b,

|A�2
b (y)| � |gby| � b2

| log b|1y≤2B0 + b2

log M
1y≤2M + b21B0≤y≤2B0 .

This concludes the proof of (7.26), (7.27). �

Proof of (7.35), (7.36). — As before let

gb = 2�B0 + ��B0 + S − ebχM�Q,

so that

�b(y) = −�(y)

∫ ∞

y

�Qgbudu − �Q(y)

∫ y

1
gb�udu.

We now recall that according to (3.66)

�B0 = χB0�b + k2

y2

{
f (PB0) − χB0 f (Qb)

} − (Qb − π)�χB0 − 2χ ′
B0

Q′
b

+ b2
{
(Qb − π)D�χB0 + 2y2χ ′

B0
Q′

b

}
.

Set

�1
B0

= 2
y
�χB0 − 4

y2
χ ′

B0
− 2b2

y

{
D�χB0 − 2yχ ′

B0

}
,

�2
B0

= χB0�b + 1
y2

{
f (PB0) − χB0 f (Qb)

} −
(

Qb − π + 2
y

)
�χB0

− 2χ ′
B0

(
Qb + 2

y

)′
+ b2

{(
Qb − π + 2

y

)
D�χB0

+ 2y2χ ′
B0

(
Qb − 2

y

)′}

and define

�1
b (y) = −�(y)

∫ ∞

y

�Qgbudu − 1
4
�Q(y)

∫ y

0
∂u

(
u2�1

B0

)
udu,

�2
b (y) = −�Q(y)

∫ 1

0
∂u

(
u2�1

B0

)
�du

− �Q(y)

∫ y

1

(
gb − 2�1

B0
− ��1

B0

)
�udu



STABLE BLOW UP DYNAMICS FOR THE CRITICAL CO-ROTATIONAL WAVE MAPS 95

− �Q(y)

∫ y

0
∂u

(
u2�1

B0

)
(

� − u

4

)
du.

Therefore,

A�2
b (y) = −(

gb − 2�1
B0

− ��1
B0

)
�Q�y

= (
2�2

B0
+ ��2

B0
+ S − ebχM�Q

)
�Q�y

− ∂y

(
y2�1

B0

)
(

� − y

4

)
�Q

and thus we need to show that

1
y

∣
∣∣
∣∂y

(
y2�1

B0

)(
� − y

4

)∣
∣∣
∣ + y|2�2

B0
+ ��2

B0
+ S − ebχM�Q|

� b2

| log b|1y≤2B0 + b2

log M
1y≤2M.

From (3.20) we have that on the support of χB0

|�b| + |��b| � b2

| log b|
y

1 + y2
.

Furthermore, (7.39) gives

|S| � b2k+21B0≤y≤2B0,

and

|ebχM�Q| � b2

| log M|
y

1 + y2
1y≤2M.

Using that f (π) = 0, f ′(π) = 1, we also obtain
∣
∣∣
∣

2
y2

(
f (PB0) − χB0 f (Qb)

)
∣
∣∣
∣ + �

[
1
y2

(
f (PB0) − χB0 f (Qb)

)
]

= 1
y
∂y

[
f (PB0) − χB0 f (Qb)

]

= 1
y
∂y

[
PB0 − π − χB0(Qb − π)

]

+ 1
y
∂y

[∫ 1

0
τ

∫ 1

0

(
f ′′(ττ ′PB0

)
(PB0 − π)2 − χB0 f

′′(ττ ′Qb

)
(Qb − π)2

)
]
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= 1
y
∂y

[∫ 1

0
τ

∫ 1

0

(
f ′′(ττ ′PB0

)
(PB0 − π)2 − χB0 f

′′(ττ ′Qb

)
(Qb − π)2

)]

� 1
y4

.

Since f (PB0)−χB0 f (Qb) vanishes outside the interval B0 ≤ y ≤ 2B0, the above bound can
be replaced by b41B0≤y≤2B0 . The estimate for the remaining part of �2

B0
follows from the

bounds
∣
∣∣
∣

dm

dym

(
Qb − π + 2

y

)∣
∣∣
∣ �

∣
∣∣
∣

dm

dym

(
Q − π + 2

y

)∣
∣∣
∣ + b2

∣
∣∣
∣

dm

dym
T1

∣
∣∣
∣

� 1
y3+m

+ 1
| log b|y1+m

,

∣∣
∣∣

dm

dym
�1

B0

∣∣
∣∣ � b2

y1+m
,

∣∣
∣∣� − y

4

∣∣
∣∣ � 1

which hold for B0 ≤ y ≤ 2B0 (in particular on the support of χ ′
B0

) and follow from (3.19),
(A.9) and (A.14).

These estimates imply the desired bound (7.36).
To prove (7.35) it suffices to show that �Q(y)

∫ y

0 ∂u(u
2�1

B0
)�du is supported in

y ≤ 2B0 and establish the bound
∣
∣∣
∣�Q(y)

∫ y

0
∂u

(
u2�1

B0

)
�du

∣
∣∣
∣ � b.

We argue that a careful choice of B0 ensures that

(7.40)
∫ ∞

0
∂u

(
u2�1

B0

)
udu = 0.

Assuming this we immediately conclude the statement about the support, since �1
B0

is
supported in B0 ≤ y ≤ 2B0. Furthermore, from (3.67) and (3.68) for y ≥ 2B0

∣
∣∣
∣�Q(y)

∫ y

0
∂u

(
u2�1

B0

)
�du

∣
∣∣
∣ � y

1 + y2

∫ y

0

1 + u2

u
b21B0≤u≤2B0du � b.

To show (7.40) we rewrite

y2�1
B0

= 2y
(
1 − b2y2

)
χ ′′

B0
− 2χ ′

B0
,

∫ ∞

0
∂u

(
u2�1

B0

)
udu = −

∫ ∞

0
u2�1

B0
du = −

∫ ∞

0

(
2y

(
1 − b2y2

)
χ ′′

B0
− 2χ ′

B0

)
dy

= −2 + 2
∫ ∞

0

(
1 − 3b2y2

)
χ ′

B0
dy
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= −4 + 12b2

∫ ∞

0
yχB0dy = −4 + 12b2B2

0

∫ ∞

0
yχdy.

Therefore, the choice

B2
0 = 1

3b2
∫ ∞

0 yχdy

gives the desired property.
Step 5 Lower order linear terms in ε.
We are left with estimating the third line on the RHS of (7.7). We first claim:

∣∣
∣∣
(
∂2

s ε + b(∂sε + 2�∂sε) + bs�ε,�PB0

)
(7.41)

− d

ds

[
(∂sε,�PB0) + b(ε + 2�ε,�PB0)

]
∣
∣∣
∣

� b2k

| log b| .

Indeed, we integrate by parts to obtain:
(
∂2

s ε + b(∂sε + 2�∂sε) + bs�ε,�PB0

)
(7.42)

= d

ds

[
(∂sε,�PB0) + b(ε + 2�ε,�PB0)

]

− bs

[(
∂sε + b�ε,�

∂PB0

∂b

)
+

(
ε,�PB0 + b�

∂PB0

∂b

)

+ b

(
�ε,�

∂PB0

∂b

)
+ (�ε,�PB0)

]

= d

ds

[
(∂sε,�PB0) + b(ε + 2�ε,�PB0)

]

− bs

[(
∂sε + b�ε,�

∂PB0

∂b

)
+ (ε,�b)

]

with

(7.43) �b = −�PB0 − �2PB0 − b�
∂PB0

∂b
− b�2 ∂PB0

∂b
.

We now estimate the RHS of (7.42). To wit, let

(7.44) rb = (�b,�Q)

(�Q, χM�Q)
,
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we claim that we can find �̃ = �̃1 + �̃2 such that

H�̃ = �b − rbχM�Q, Supp(�̃1) ∪ Supp(A�̃2) ⊂ [0,2B0],
and

|�̃1|L∞ �
{

1 for k ≥ 2,

| log b|
b

for k = 1,
(7.45)

|A�̃2(y)| �
{

yk+1

1+y2k 1y≤2B0 for k ≥ 2,

y2

1+y2 [1y≤2B0 + | log b|1y≤2M] for k = 1.
(7.46)

Let us assume (7.45), (7.46) and conclude the proof of (7.41).
Case k ≥ 2: First recall from (5.34) the bound:

|bs| � bk+1.

Moreover, (3.57), (3.59) imply:

(7.47) |�l∂bPB0| � C(M)b1y≤2B0, 0 ≤ l ≤ 2.

We conclude from (B.19), (5.34), (5.35):

|bs|
∣∣
∣∣

(
∂sε + b�ε,�

∂PB0

∂b

)∣∣
∣∣ � C(M)bk+1λ|∂tw|L∞

∫

y≤2B0

b(7.48)

� C(M)λbk
(|A∗

λW|2L2 + |∂tW|2L2

) 1
2

� C(M)b2k+1.

Next, from (7.45), (7.46) and the choice of the orthogonality condition (5.12):

|bs||(ε,�b)| = |bs|
∣∣(A∗Aε, �̃b

)∣∣

� bk+1 1
b
|A∗Aε|L2 + bk+1

∣
∣
∣∣
Aε

y

∣
∣
∣∣

L2

(∫

y≤2B0

y2k+2y2

1 + y4k

) 1
2

� b2k+2 1
b

� b2k+1,

where we used (2.16), (5.35).
Case k = 1: By (3.61)

|�l∂bPB0| � 1y≤2B0, 0 ≤ l ≤ 2.
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Thus, using (B.19), (5.34), (5.35), (6.25):

|bs|
∣∣
∣∣

(
∂sε + b�ε,�

∂PB0

∂b

)∣∣
∣∣ � b2

| log b|λ|∂tw|L∞

∫

y≤2B0

ydy

� λ

| log b|
(|A∗

λW|2L2 + |∂tW|2L2

) 1
2 � b2

| log b| .

Next from (7.45) and the choice of the orthogonality condition (5.12):

|bs||(ε,�b)| = |bs|
∣
∣(A∗Aε, �̃b

)∣∣

� b2

| log b|
[ | log b|

b2
|A∗Aε|L2(y≤2B0)

+
∣
∣∣
∣
Aε

y

∣
∣∣
∣
L2(y≤2B0)

(∫
y6

1 + y4

[
1y≤2B0 + log2 b1y≤2M

]
) 1

2
]
.

We then observe from (7.33) and (B.5):

(7.49)

∣∣
∣∣
Aε

y

∣∣
∣∣

L2(y≤2B0)

� | log b| b2

| log b| � b2

and hence from the refined bound (7.33):

|bs||(ε,�b)| = b2

| log b|
[ | log b|

b2

b2

| log b| + b2 1
b2

]
� b2

| log b| .

This concludes the proof of (7.41). �

Proof of (7.45), (7.46). — We let

�̃b = �(y)

∫ y

0
�Q(�b − rbχM�Q)udu − �Q(y)

∫ y

0
�(�b − rbχM�Q)udu(7.50)

= �̃1 + �̃2.

The support of �b belongs to the set y ≤ 2B0. Therefore Supp(�̃1) ⊂ [0,2B0] by the
choice of rb in (7.44) and Supp(A�̃2) ⊂ [0,2B0] which follows from the identity

A�̃2 = �Q�(�b − rbχM�Q)y.

Case k ≥ 2: We derive from (7.43), (3.59), (3.57) the bound:

|�b| � yk

1 + y2k
1y≤2B0,
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and hence rb, given by (7.44), satisfies:

|rb| � 1.

We then estimate:

|�̃1(y)| � 1 + y2k

yk

∫ 2B0

y

uk

1 + u2k

uk

1 + u2k
udu � 1

1 + yk−2
� 1

and (7.45) follows. Similarly,

|A�̃2(y)| � y|�b − rbχM�Q| � yk+1

1 + y2k
1y≤2B0

and (7.46) follows.
Case k = 1: We estimate from (7.43), (3.61):

|�b| � y

1 + y2
1y≤2B0

from which rb, given by (7.44), satisfies:

|rb| � | log b|
and

|�̃1(y)| � 1 + y2

y

∫ 2B0

y

u

1 + u2

u

1 + u2
[1 + | log b|1y≤M]udu � | log b|

b

and (7.45) follows. Next,

|A�̃2(y)| � y|�b − rbχM�Q| � y2

1 + y2
1y≤2B0 + | log b| y2

1 + y2
1y≤2M

and (7.46) follows.
This concludes the proof of (7.45), (7.46). �

Step 6 Control of the nonlinear term.
Case k ≥ 2: There holds from (B.9), (5.31), (5.35):

(7.51)

∣
∣∣
∣

(
N(ε)

y2
,�PB0

)∣
∣∣
∣ �

∫
|ε|2 yk

y2(1 + y2k)
�

∫ |ε|2
y4

� λ2|A∗
λW|2L2 � b2k+2.

Case k = 1: From (6.35)

∣∣
∣∣

(
N(ε)

y2
,�PB0

)∣∣
∣∣ �

(∫

y≤2B0

|ε|4
y4

) 1
2

|�PB0 |L2 � | log b|b 3
4 λ|A∗

λW|L2(7.52)
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� b2+ 1
2 .

Step 6 Control of G(b) and I .
Using estimates (7.8), (7.11), (7.21), (7.22), (7.23), (7.41), (7.51), (7.52) in conjunc-

tion with the algebraic formula (7.7) concludes the proof of (7.5). It remains to prove (7.3),
(7.4).

Proof of (7.3). — Recall the formula (7.1) for G(b). We compute

�PB0 = χB0�Qb + �χB0(Qb − a)

= χB0�Q + χB0�(Qb − Q) + �χB0(Qb − a).

It then follows from Proposition 3.1 that for any k ≥ 1

|�PB0 − χB0�Q| � C(M)b2 yk

1 + y2k−2
1y≤2B0 .

As a consequence,

(7.53) |�PB0|2L2 =
{ |�Q|2L2 + O(b2) = |�Q|2L2(1 + o(1)) for k ≥ 2,

|χB0�Q|2L2 + O(1) = 4| log b| + O(1) for k = 1.

Similarly, using (6.25):
∣
∣∣
∣

(
∂PB0

∂b
,�PB0

)∣
∣∣
∣ �

∫

y≤2B0

yk

1 + y2k
�

{ | log b| for k ≥ 2,
1
b

for k = 1,

from which:
∣
∣∣
∣

∫ b

0
b′
(

∂PB0

∂b
,�PB0

)
db′

∣
∣∣
∣ �

{
b2| log b| for k ≥ 2,

b for k = 1,

which together with (7.1), (7.53) concludes the proof of (7.3). �

Proof of (7.4). — We integrate by parts in space in (7.2) to rewrite:

I(s) = (∂sε + b�ε,�PB0) + bs

(
∂PB0

∂b

,�PB0

)
− b

(
ε,�PB0 + �2PB0

)
(7.54)

− bs

(
∂

∂b
(PB1 − PB0),�PB0

)
.

The last term above has been estimated in step 3. We let

(7.55) r̃b = (�PB0 + �2PB0,�Q)

(χM�Q,�Q)
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and claim that we can solve:

L�b = �PB0 + �2PB0 − r̃bχM�Q

with �b = �1 + �2, Supp(�1) ∪ Supp(A�2) ⊂ [0,2B0] and

|�1|L∞ �
{

1 for k ≥ 2,

| log b|
b

for k = 1,
(7.56)

|A�2(y)| �
{

yk+1

1+y2k 1y≤2B0 for k ≥ 2,

y2

1+y2 [1y≤2B0 + | log b|1y≤2M] for k = 1.
(7.57)

The proof of (7.56), (7.57) is completely similar to the one of (7.45), (7.46) and left to the
reader.

Case k ≥ 2: From (B.19), (5.35):
∣
∣(∂sε + b�ε,�PB0)

∣
∣ � λ|∂tw|L∞|�PB0 |L1 � | log b|bk+1 � b2.

Next, from (5.34):
∣∣
∣
∣bs

(
∂PB0

∂b
,�PB0

)∣∣
∣
∣ � bk+1|�PB0|L1 � b2.

Finally, from (5.35), (7.56) and the choice of the orthogonality condition (5.12):

b|(ε,�PB0 + �2PB0)| = b|(A∗Aε,�b)|

� b|A∗Aε|L2
1
b

+ b

∣∣
∣∣
Aε

y

∣∣
∣∣

L2

(∫

y≤2B0

y2y2k+2

1 + y4k

) 1
2

� b|A∗Aε|L2
1
b

+ b

∣∣
∣
∣
Aε

y

∣∣
∣
∣

L2

1
b

� bk+1 � b2.

Case k = 1: From (B.19), (5.35):

∣
∣(∂sε + b�ε,�PB0)

∣
∣ � λ|∂tw|L∞|�PB0 |L1 � b2

b
� b.

Next, from (5.34):
∣
∣∣
∣bs

(
∂PB0

∂b
,�PB0

)∣
∣∣
∣ � b2

| log b| |�PB0 |L1 � b

| log b| .

Finally, from (7.56) and the choice of orthogonality condition (5.12):

b|(ε,�PB0 + �2PB0)| = b|(A∗Aε,�b)|
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� b|A∗Aε|L2(y≤2B0)

| log b|
b2

+ b

(∫

y≤2B0

(Aε)2

y2

) 1
2

×
(∫

y≤2B0

y2y4

1 + y4

(
1 + | log b|21y≤2M

)
) 1

2

� |A∗Aε|L2(y≤2B0)

| log b|
b

+ b
b2

| log b|
| log b|

b2
� b

where we used (B.5), the improved localized bound (7.33) and (7.49).
This concludes the proof of (7.4). �

This concludes the proof of Proposition 7.1. �

7.2. Proof of Theorem 1.1. — We are now in position to conclude the proof of The-
orem 1.1.

First recall that finite time blow up is a consequence of Proposition 5.6. This cou-
pled with the standard scaling lower bound:

λ(t) ≤ T − t

implies that the rescaled time s is global:

ds

dt
= 1

λ
≥ 1

T − t
and hence s(t) → +∞ as t → T.

Step 1 Derivation of the scaling law.
We begin with the proof of (1.11), (1.12), which are consequences of (7.5).

Proof of (1.11). — For k ≥ 2 let G, I, c̃k be given by (7.1), (7.2), (7.6) and

J = G + I.

From (7.3), (7.4), (7.5) we have that:

(7.58) J (b) = b|�Q|2L2 + o(b) and Js + c̃kb
2k = o

(
b2k

)
.

In particular, this yields:

Js + c̃k

( J
|�Q|2L2

)2k

= o
(

J 2k
)
.

Dividing by J 2k , which is strictly positive by (7.58), (5.33), and integrating in s yields:

1
(2k − 1)J 2k−1(s)

= 1
(2k − 1)J 2k−1(s0)

+ c̃k

|�Q|4k
L2

s + o(s).
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Together with (7.58), this provides the asymptotics:

(7.59) b(s) =
( |�Q|2L2

(2k − 1)c̃ks

) 1
2k−1 (

1 + o(1)
)

as s → +∞.

We now integrate the law for the scaling parameter −λs

λ
= b to obtain:

− logλ(s) = 2k − 1
2k − 2

( |�Q|2L2

(2k − 1)c̃k

) 1
2k−1

s
2k−2
2k−1

(
1 + o(1)

)
as s → +∞.

In particular, taking into account (7.59):

b = dk

| logλ| 1
2k−2

(
1 + o(1)

)
with dk =

( |�Q|2L2

(2k − 2)c̃k

) 1
2k−2

.

As a result λ satisfies the following differential equation:

(7.60) −λt = b = dk

| logλ| 1
2k−2

(
1 + o(1)

)
with λ(t) → 0 as t → T.

Integrating this in time yields:

λ(t) = dk(T − t)

| log(T − t)| 1
2k−2

(
1 + o(1)

)
.

This gives (1.11). �

Proof of (1.12). — Let k = 1, then (7.3), (7.4), (7.5) imply:

(7.61) J (b) = 4b| log b|+ O(b) and Js + J 2

8| log(J /| log J |)|2 = O
( J 2

| log J |3
)

.

Let

4β = J
| log J | − J

| log J |2 log | log J |,
logβ = log J − log | log J | + O(1)

so that

4β = 4b| log b| + O(b)

| log b + log | log b| + O(1)| − 4b| log b| + O(b)

(log b + log | log b| + O(1))2
(7.62)

×
(

log | log b| + O
(

log | log b|
| log b|

))
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= 4b + O
(

b

| log b|
)

.

We compute

4βs = Js

| log J |
(

1 − log | log J |
| log J |

)
+ JsO

(
1

| log J |2
)

,

16β2

| logβ| = J 2

| log J |2| log(J /| log J |)| − 2J 2 log | log J |
| log J |3| log(J /| log J |)|

+ O
( J 2

| log J |4
)

and therefore

4βs + 2β2

| logβ|2 = − J 2

8| log J || log(J /| log J |)|2
(

1 − log | log J |
| log J |

)

+ J 2

8| log J |2| log(J /| log J |)|

− J 2 log | log J |
4| log J |3| log(J /| log J |)| + O

(
β2

logβ2

)

= − J 2

8| log J |3
(

1 − 3
log | log J |

| log J |
)

+ J 2

8| log J |3
(

1 − 3
log | log J |

| log J |
)

+ O
(

β2

logβ2

)

= O
(

β2

logβ2

)
.

To solve the problem

βs = − β2

2| logβ| + O
(

β2

| logβ|2
)

we multiply by | logβ|
β2 so that

βs logβ

β2
= 1

2
+ O

(
1

| logβ|
)

.

Now
(

log u

u
+ 1

u

)′
= − log u

u2
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and thus

− logβ + 1
β

= s

2
+ O

(∫ s

0

dτ

| logβ|
)

.

To leading order, this leads to:

β = 2 log s

s

(
1 + o(1)

)
, logβ = log log s − log s + O(1)

from which

(7.63)
− logβ

β
= s

2

(
1 + O

(
1

log s

))
, β = −2 logβ

s

(
1 + O

(
1

log s

))
.

Therefore,

β = 2 log s

s
− 2

log log s

s
+ O

(
1
s

)
.

Using (7.62) we also conclude that

(7.64) b = 2 log s

s
− 2

log log s

s
+ O

(
1
s

)
.

We now integrate the law for λ:

−λs

λ
= b = 2 log s

s
− 2

log log s

s
+ O

(
1
s

)

resulting in

− log(λ) = (log s)2 − 2(log s) log log s + O(log s)

= (log s)2

(
1 − 2

log log s

log s
+ O

(
1

log s

))

which implies:

(7.65)
√− logλ = log s

(
1 − log log s

log s
+ O

(
1

log s

))
= log s − log log s + O(1)

and thus

(7.66) e
√

− logλ+O(1) = s

log s
, s = √− logλe

√
− logλ+O(1).

We now observe from (7.64):

(7.67)
√− logλ = bs

2
+ O(1) = −λt

2
s + O(1)
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and thus

− λt√− logλ
s = 2 + o(1).

Taking into account (7.66) gives the differential equation for λ:

(7.68) −λt e
√

| logλ|+O(1) = 2 + o(1) and equivalently − λt e
√

| logλ| = eO(1).

Integrating this in time gives:

(7.69) λ(t) = (T − t)e−
√

| log(T−t)|+O(1).

It remains to prove the strong convergence of the excess of energy (1.13) which
easily implies the quantization of the focused energy (1.14).

Step 2 Sharp derivation of the b law.
Let us start with the following slightly different control on b:

(7.70) b(t) = λ(t)

T − t

(
1 + o(1)

)
as t → T.

For k ≥ 2, this follows directly from (1.11), (7.60). We need to be more careful for k = 1.
Indeed, (7.68) and (7.69) imply:

(7.71) b(t) = O(1)e−
√

| log(T−t)|,

but this together with (7.69) is not sufficient to yield (7.70). However, we compute:
∫ T

t

b2 =
∫ T

t

−bλt = b(t)λ(t) +
∫ T

t

λbt

= b(t)λ(t) +
∫ T

t

bs = b(t)λ(t) + o

(∫ T

t

b2

)

where we used (5.34) in the last step. Hence:

(7.72)
1

b(t)λ(t)

∫ T

t

b2 = 1 + o(1) as t → T.

On the other hand,
∣
∣∣
∣

1
(T − t)b2(t)

∫ T

t

b2 − 1

∣
∣∣
∣ = 2

(T − t)b2(t)

∣
∣∣
∣

∫ T

t

bbt(T − τ)

∣
∣∣
∣(7.73)

� 1
(T − t)b2(t)

∫ T

t

b2

| log b|
b(T − τ)

λ(τ)
dτ.
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We now observe from (7.61) that

∀τ ∈ [t,T),
b2(τ )

| log b(τ )| ≤ 2
b2(t)

| log b(t)|
and hence (7.73) yields the bound:

(7.74)

∣∣
∣
∣

1
(T − t)b2(t)

∫ T

t

b2 − 1

∣∣
∣
∣ � 1

(T − t)| log b(t)|
∫ T

t

b(T − τ)

λ(τ)
dτ.

We now claim

(7.75)
1

(T − t)| log b(t)|
∫ T

t

b(T − τ)

λ(τ)
dτ = o(1) as t → T.

Assume (7.75), then (7.72) and (7.74) yield
∫ T

t

b2 = bλ
(
1 + o(1)

) = (T − t)b2
(
1 + o(1)

)

which implies (7.70). �

Proof of (7.75). — We compute:

(7.76)
∫ T

t

b(T − τ)

λ(τ)
dτ = −

∫ T

t

λt(T − τ)

λ(τ)
dτ = (T − t) logλ(t) −

∫ T

t

logλdτ.

We now substitute (1.12) which implies

logλ(t) = log(T − t) − √| log(T − t)| + O(1)

and derive from (7.76) after some explicit integration by parts:
∫ T

t

b(T − τ)

λ(τ)
dτ = O

(
(T − t)

)
as t → T.

We hence conclude from (7.71) that:

1
(T − t)| log b(t)|

∫ T

t

b(T − τ)

λ(τ)
dτ = o

(
1

| log b(t)|
)

= o(1) as t → T,

and (7.75) is proved. �

Step 3 Strong convergence of (w, ∂tw) in H.
We are now in position to conclude the proof of (1.13) which is a consequence of

the sharp asymptotics (1.11), (1.12) and (7.70) and the control of the excess of energy
(5.35).
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Statement (1.13) is equivalent to the existence of the strong limit for (w(t), ∂tw(t))

in H as t → T.
Let ζ be a cut-off function with ζ(r) = 0 for r ≤ 1 and ζ(r) = 1 for r ≥ 2 and let

ζR(r) = ζ(Rr). The non-concentration of energy of the full solution u outside the origin
is well known and follows by a simple domain of dependence argument combined with
the results in [36]. Therefore, using the decomposition (5.11) we obtain existence of u∗, g∗

such that

(7.77) ∀R > 0,
∥
∥ζR

(
w(t) − u∗), ζR

(
∂tw − g∗)∥∥

H → 0 as t → T.

The proof of the strong convergence (1.13) is now equivalent to the non-concentration of
the energy for w or equivalently:

(7.78) E
(
u∗, g∗) = lim

t→T
E
(
w(t), ∂tw(t)

)
.

Proof of (7.78). — We adapt the argument from [28]. For t ∈ [0,T) define

R(t) = B1(t)λ(t)

and

ER(u, v) =
∫

ζR

[
v2 + (∂ru)

2 + k2 g2(u)

r2

]
.

Integrating by parts using the Equation (1.3), we compute:
∣∣
∣∣

d

dτ
ER(t)

(
u(τ ), ∂tu(τ )

)
∣∣
∣∣ � 1

R(t)

∫

R(r)≤r≤2R(t)

[
(∂tu)

2 + (∂ru)
2 + k2 g2(u)

r2

]

� 1
R(t)

,

where in the last step we used conservation of energy. Integrating this from t to T using
(7.77) yields:

(7.79)
∣
∣ER(t)

(
u∗, g∗) − ER(t)

(
u(t), ∂tu(t)

)∣∣ � T − t

R(t)
= T − t

λ(t)B1(t)
.

We now observe from (1.23), (7.70) that:

T − t

λ(t)B1(t)
= b(t)(T − t)

λ(t)

1
b(t)B1(t)

→ 0 as t → T.

Letting t → T in (7.79), we conclude:

ER(t)

(
u(t), ∂tu(t)

) → E
(
u∗, g∗) as t → T.
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(7.78) now follows from:

(7.80) ER(t)

(
u(t), ∂tu(t)

) − E
(
w(t), ∂tw(t)

) → 0 as t → T.

Indeed, observe that:

∣
∣ER(t)

(
u(t), ∂tu(t)

) − E
(
w(t), ∂tw(t)

)∣∣

�
∫

R(t)≤r≤2R(t)

[
(∂tw)2 + (∂rw)2 + k2 g2(w)

r2

]
.

For the first term, we have from (B.19), (5.29):

∫

r≤2R(t)

(∂tw)2 � R2(t)

∫
(∂tw)2

r2
� B2

1(t)E (t)(7.81)

� | log b|4
b2

b4 → 0 as t → T.

Similarly, from (B.11):

∫

2r≤2R(t)

[
(∂rw)2 + g2(w)

r2

]
� R2| log b|2

∫

r≤2R(t)

(∇W)2(7.82)

� | log b|4
b2

E (t) → 0ast → T.

This concludes the proof of (7.80) and (7.78). �

Step 2 Proof of the quantization of the blow up energy (1.14).
From the conservation of the Hamiltonian:

E0 = E
(
(PB1)λ + w,∂t

[
(PB1)λ + w

])
.

We develop this identity. The construction of PB implies from direct check

E
(
(PB1)λ, ∂t

[
(PB1)λ

]) → E(Q,0) as t → T

and the crossed term is easily proved to converge to zero using (7.81), (7.82) and the space
localization of PB1 .

(7.78) now yields (1.14).
This concludes the proof of Theorem 1.1.
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Appendix A: Inversion of H

We formulate the following lemma about solutions of the inhomogeneous problem
Hv = h with the linear operator

H = −� + k2 f ′(Q)

y2

associated to Q. Hamiltonian H is a standard Schrödinger operator with the kernel gen-
erated by the Ḣ1 scaling invariance:

Ker(H) = span(�Q),

see [34] for a further introduction to the spectral structure of H. The following Lemma
is elementary but crucial for the construction of Qb:

Lemma A.1 (Inversion of H). — For k ≥ 4 let 1 ≤ j ≤ k

2 − 1 and let hj(y) be a smooth

function with

(A.1) (hj,�Q) = 0.

and the following asymptotics:

(A.2) hj(y) =
{

yk(ej + O(y2)) as y → 0,

dj
y2j

yk (1 + fj

y2 + O( 1
y3 )) as y → +∞.

Then there exists a smooth solution Hvj+1 = hj with

(A.3) (vj+1, χM�Q) = 0

and the following asymptotics:
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(i) for j + 1 < k

2 , for 0 ≤ m ≤ 2,

(A.4)
dmvj+1

dym
(y) =

{
yk−m(αj+1,m + O(y2)) as y → 0,

βj+1
dmy2(j+1)−k

dym [1 + γj+1

y2 + O( 1
y3 )] as y → +∞.

(ii) for j + 1 = k

2 with k even:

(A.5) vj+1(y) =
{

yk(αj+1 + O(y2)) as y → 0,

βj+1[1 + γj+1

y2 + O( 1
y3 )] as y → +∞.

For 1 ≤ m ≤ 2

(A.6)
dmvj+1(y)

dym
=

{
yk−m(αj+1,m + O(y2)) as y → 0,

βj+1γj+1
dmy−2

dym + O( 1
y3+m ) as y → +∞.

Moreover, if

(A.7) h′
j(y) =

{
kyk−1(ej + O(y2)) as y → 0,

dj(2j − k)
y2j−1

yk (1 + fj

y2 + O( 1
y3 )) as y → +∞,

then (A.4), (A.6) hold for m = 3. The constants αj+1, αj+1,m, γj+1 implicitly depend on

dj, ej and βj+1 can be found from the relation:

(A.8) βj+1 = dj

4(j + 1)(k − (j + 1))
.

Proof. — The proof relies on the accessibility of the explicit expression for the
Green’s function of H.

Step 1 Solving the linear equation.
From (1.4) in the Wave Map case Q has the following asymptotics

(A.9) Q(y) =
{

2yk(1 + O(yk)) as y → 0,

π − 2
yk (1 + O( 1

yk )) as y → ∞
and:

(A.10) J = �Q =
{

2kyk(1 + O(yk)) as y → 0,

2k

yk (1 + O( 1
yk )) as y → ∞.

Similarly, in the (YM) case (k = 2, not covered by the Lemma) we find

(A.11) Q(y) =
{

(1 + O(yk)) as y → 0,

(−1 + O( 1
yk )) as y → ∞
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and:

(A.12) J = �Q =
{−2kyk(1 + O(yk)) as y → 0,

− 2k

yk (1 + O( 1
yk )) as y → ∞.

Let now

�(y) = J(y)
∫ y

1

dx

xJ2(x)

be the other (singular) element of the kernel of H, which can be found from the Wron-
skian relation:

(A.13) �′J − �J′ = 1
y
.

From this we can easily find the asymptotics of �:

(A.14) �(y) =
{− 1

4k2yk (1 + O(yk)) as y → 0,

yk

4k2 (1 + O( 1
yk )) as y → ∞,

in the (WM) case. In the (YM) case

(A.15) �(y) =
{ 1

4k2yk (1 + O(yk)) as y → 0,

− yk

4k2 (1 + O( 1
yk )) as y → ∞.

Using the method of variation of parameters and (A.13), we find that a solution to
Hwj+1 = hj is given by:

(A.16) wj+1(y) = J(y)
∫ y

1
hj(x)�(x)xdx − �(y)

∫ y

0
hj(x)J(x)xdx.

Step 2 Asymptotics of wj+1.
We compute the asymptotics of wj+1 near +∞. In what follows we restrict our

analysis to the (WM) case. For the second term in (A.16), we use (A.1), (A.2) to derive:

−�(y)

∫ y

0
hj(x)J(x)xdx

= �(y)

∫ +∞

y

hj(x)J(x)xdx

= yk

2k2

(
1 + O

(
1
yk

))∫ +∞

y

x
k

xk

djx
2j

xk

(
1 + fj

x2
+ O

(
1
x3

))
dx

= djy
k

2k

(
1 + O

(
1
yk

))∫ +∞

y

x2j+1

x2k

(
1 + fj

x2
+ O

(
1
x3

))
dx
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= dj

4k(k − (j + 1))

y2(j+1)

yk

(
1 + f

(1)

j+1

y2
+ O

(
1
y3

))
.

In the above f
(1)

j+1 is a constant dependent only on fj, k and j.
For the first term, we estimate

J(y)
∫ y

1
hj(x)�(x)xdx

= k

yk

(
1 + O

(
1
yk

))∫ y

1

xxk

2k2

djx
2j

xk

(
1 + fj

x2
+ O

(
1
x3

))
dx

= dj

2kyk

(
1 + O

(
1
yk

))∫ y

1
x2j+1

(
1 + fj

x2
+ O

(
1
x3

))
dx

and (A.4), (A.5) and (A.8) follow for y → +∞.
We compute the asymptotics of vj+1 near the origin. First,

−�(y)

∫ y

0
hj(x)J(x)xdx = 1

2k2yk

(
1 + O

(
yk

))∫ y

0
xejx

kkxk
(
1 + O

(
x2

))
dx

= yk
(
O

(
y2

))
.

For the other term in (A.16),

J(y)
∫ y

1
hj(x)�(x)xdx = −kyk

(
1 + O

(
yk

))∫ y

1
ejx

kx
1

2k2xk

(
1 + O

(
x2

))
dx

= − ej

2k
yk

[
−

∫ 1

0

(
x + O

(
x2

))
dx + O

(
y2

)]

and (A.4) and (A.5) follow for vj+1 as y → 0.
Step 3 Estimates for the derivatives.
For 2j < k − 2, the estimates for the derivatives (A.4) are derived similarly and left

to the reader. For k even and j = k

2 − 1, there holds an extra cancellation as y → +∞
leading to (A.6) which we now exploit. Indeed,

w′
j+1(y) = �′(y)

∫ +∞

y

hj(x)J(x)xdx + J′(y)
∫ y

1
hj(x)�(x)xdx.

For the first term,

�′(y)
∫ +∞

y

hj(x)J(x)xdx

= kyk−1

2k2

(
1 + O

(
1
yk

))∫ +∞

y

kdjx
2j+1

x2k

(
1 + fj

x2
+ O

(
1
x3

))
dx



STABLE BLOW UP DYNAMICS FOR THE CRITICAL CO-ROTATIONAL WAVE MAPS 115

= dj

2ky

(
1 + f

(2)

j+1

y2
+ O

(
1
y3

))
.

Similarly,

J′(y)
∫ y

1
hj(x)H(x)xdx = − k2

yk+1

(
1 + O

(
1
yk

))∫ y

1

djx
2j+1

2k2

(
1 + O

(
1
x3

))
dx

= − dj

2ky

(
1 + f

(3)

j+1

y2
+ O

(
1
y3

))
,

resulting in the cancellation leading to (A.6). The constants f
(2)

j+1 , f
(3)

j+1 depend only on fj, k

and j.
The second derivative w′′

j+1 is estimated using the equation and the asymptotics for
(wj+1,w

′
j+1), this is left to the reader.

Step 4 Satisfying the orthogonality condition.
We now let

vj+1 = wj+1 − (wj+1, χM�Q)

(�Q, χM�Q)
�Q

so that (A.3) is satisfied. Moreover, L(�Q) = 0 implies Lvj+1 = Lwj+1 = fj . It now remains
to observe from (A.10) that the behavior of vj+1 near the origin and +∞ is the same as
of wj+1.

This concludes the proof of Lemma A.1. �

Appendix B: Some linear estimates

Lemma B.1 (Logarithmic Hardy inequalities). — ∀R > 2, ∀v ∈ Ḣ1
rad(R

2), there holds the

following controls:
∫

y≤R

|v|2
y2(1 + | log y|)2

ydy �
∫

1≤y≤2
|v|2dy +

∫

y≤R
|∇v|2,(B.1)

|v|2L∞(1≤y≤R) �
∫

1≤y≤2
|v|2 + R2

∫ |∇v|2
y2

ydy,(B.2)

∫

y≤R
|v|2ydy � R2

(∫

y≤2
|v|2ydy + log R

∫

y≤R
|∇v|2ydy

)
,(B.3)

∫

R≤y≤2R

|v|2
y2

ydy �
∫

y≤2
|v|2ydy + log R

∫

y≤2R
|∇v|2ydy,(B.4)

∫

y≤2R

|v|2
y2

ydy � log R
∫

y≤2
|v|2ydy + log2 R

∫

y≤2R
|∇v|2ydy.(B.5)
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Proof. — Let v smooth. To prove (B.1), let f (y) = − ey

y(1+| log(y)|) so that ∇ · f =
1

y2(1+| log y|)2 for y ≥ 1 and ∇ · f = − 1
y2(1+| log y|)2 for y < 1. We then have

∫

δ≤y≤R

|v|2
y2(1 + | log y|)2

ydy =
∫

1≤y≤R
|v|2∇ · fydy −

∫

δ≤y1
|v|2∇ · fydy(B.6)

= −
[ |v|2

1 + | log(y)|
]R

1

+
[ |v|2

1 + | log(y)|
]1

δ

+ 2
∫ R

δ

v∂yv
1

y(1 + | log y|)ydy

� |v(1)|2 +
(∫

y≤R

|v|2
y2(1 + | log y|)2

ydy

) 1
2

×
(∫

y≤R
|∇v|2ydy

) 1
2

.

On the other hand, since v is spherically symmetric,

|v(1)|2 �
∫ 2

1
|v|2ydy +

∫ 2

1
|∇v|2ydy

and the result follows by letting δ → 0.
To prove (B.2), let y0 ∈ [1,2] such that

|v(y0)|2 �
∫

1≤y≤2
|v|2ydy.

Then: ∀y ∈ [1,R],

|v(y)| =
∣
∣∣
∣v(y0) +

∫ y

y0

v′(r)dr

∣
∣∣
∣ � |v(y0)| + R

(∫ |∇v|2
y2

ydy

) 1
2

,

and (B.2) follows. Similarly,

|v(y)| =
∣
∣∣
∣v(y0) +

∫ y

y0

v′(r)dr

∣
∣∣
∣ � |v(y0)| +

(∫

y≤R
|∇v|2ydy

) 1
2 √

log R,

and (B.3), (B.4) follow by squaring this estimate and integrating in R. Finally, (B.5) follows
from (B.4) by summing over dyadic R-intervals. �

Lemma B.2 (Hardy type estimates with A). — Let M ≥ 1 fixed. Then there exists c(M) > 0
such that the following holds true. Let u ∈ H1 with

(u, χM�Q) = 0,
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then:

(i)

(B.7)
∫ (

|∇u|2 + |u|2
y2

)
≤ C(M)

∫
|Au|2;

(ii) if

(B.8)
∫ |u|2

y4
+

∫ |∇u|2
y2

< +∞,

then:

(B.9)
∫ |∇u|2

y2
+

∫ |u|2
y4

≤ c(M)

∫ |Au|2
y2

;

(iii) if

(B.10)
∫ |u|2

y4(1 + | log y|)2
+

∫
|∇(Au)|2 < +∞,

then:
∫ |∇u|2

y2(1 + | log y|)2
+

∫ |u|2
y4(1 + | log y|)2

(B.11)

≤ c(M)

[∫ |Au|2
y2(1 + y2)

+
∫

|∇(Au)|2ydy

]

� c(M)|A∗Au|2L2 .

Remark B.3. — The norm (B.8) is finite for u = w for k ≥ 2. For k = 1, the finitness
of the H2 norm implies that

∇(Aw) ∈ Ḣ1,
w

y
∈ H1

and hence the norm (B.10) is finite using (B.1).

Proof. — (B.7) is equivalent to (2.10) i.e. the coercitivity of the linearized energy. The
proof of the global Hardy type inequality (B.9), (B.11) with c(M) follows as in Rodnianski-
Sterbenz’ [34] Appendix for k ≥ 3. The cases k = 1,2 require some more attention. We
treat k = 1 which is the most delicate case and leave k = 2 to the reader.

We claim the key subcoercitivity property:
∫ |Au|2

y2(1 + y2)
+

∫
|∇(Au)|2(B.12)
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≥ C
[∫ |∂yu|2

y2(1 + | log y|)2
+

∫ |u|2
y4(1 + | log y|)2

−
∫ |u|2

1 + y5

]
.

Assume (B.12), then (B.11) follows by contradiction. Let M > 0 fixed and consider a
sequence un such that

(B.13)
∫ |∂yun|2

y2(1 + | log y|)2
+

∫ |un|2
y4(1 + | log y|)2

= 1, (un, χM�Q) = 0,

and

(B.14)
∫ |Aun|2

y2(1 + y2)
+

∫
|∇(Aun)|2 ≤ 1

n
,

then by semicontinuity of the norm, un weakly converges on a subsequence to u∞ ∈ H1
loc

solution to Au∞ = 0. u∞ is smooth away from the origin and hence the explicit integration
of the ODE and the regularity assumption at the origin u∞ ∈ H1

loc implies

u∞ = α�Q.

On the other hand, from the uniform bound (B.13) together with the local compactness
of Sobolev embeddings, we have up to a subsequence:

∫ |un|2
1 + y5

→
∫ |u∞|2

1 + y5
and (un, χM�Q) → (u∞, χM�Q).

We thus conclude that

α(�Q, χM�Q) = (u∞, χM�Q) = 0 and thus α = 0.

On the other hand, from the subcoercitivity property (B.12) and (B.13), (B.14)

α2

∫ |�Q|2
1 + y5

=
∫ |u∞|2

1 + y5
≥ C > 0 and thus α �= 0.

A contradiction follows. Finally, the last step in (B.11) is a direct consequence of (2.16) i.e.
the structure of the conjugate Hamiltonian H̃. �

Proof of (B.12). — Let a smooth cut off function χ(y) = 1 for y ≤ 1, χ(y) = 0 for
y ≥ 2, and consider the decomposition:

u = u1 + u2 = χu + (1 − χu).

Then from (B.1):

(B.15)
∫ |Au|2

y2(1 + y2)
+

∫
|∇(Au)|2 ≥ C

[∫ |Au|2
y2(1 + y2)

+ |Au|2
y2(1 + | log y|)2

]
.
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For the first term, we rewrite:
∫ |Au|2

y2(1 + y2)
≥

∫ |Au1|2
y2

+ 2
∫

(Au1)(Au2)

y2(1 + y2)

≥ C
[∫ |y∂y(

u1
y
)|2

y2
−

∫ |V(1) − 1|2
y2

|u1|2 −
∫

1≤y≤2
|u|2

]

where in the last step we integrated by parts the quantity:

(Au1)(Au2) = (
χAu − χ ′u

)(
(1 − χ)Au + χ ′u

)

≥ χ(Au)χ ′u − χ ′u(1 − χ)(Au) − (
χ ′)2

u2.

We hence conclude from |V(1)(y)−1| � y for y ≤ 1 and the Hardy inequality (B.1) applied
to u1

y
that:

(B.16)
∫ |Au|2

y2(1 + y2)
≥ C

[∫ |u1|2
y4(1 + | log y|)2

−
∫

y≤2
|u|2

]
.

Similarly we estimate:
∫ |Au|2

y2(1 + | log y|)2
(B.17)

≥
∫ |Au2|2

y2(1 + | log y|)2
+ 2

∫
(Au1)(Au2)

y2(1 + | log y|)2

≥ C
[∫

1
y2(1 + | log y|)2

∣∣
∣∣∂yu2 + u2

y

∣∣
∣∣

2

−
∫ |V(1) + 1|2

y2(1 + | log y|)2
|u2|2

−
∫

1≤y≤2
|u|2

]

≥ C
[∫ |∂yu2|2

y2(1 + | log y|)2
+

∫ |u2|2
y4(1 + | log y|)2

−
∫ |u2|2

y6(1 + | log y|)2

]

where we integrated by parts for the last step and used the bound |V(1)(y) + 1| � 1
y2 for

y ≥ 1. (B.15), (B.16) and (B.17) imply:

(B.18)
∫ |Au|2

y2(1 + y2)
+

∫
|∇(Au)|2 ≥ C

[∫ |u|2
y4(1 + | log y|)2

−
∫ |u|2

1 + y5

]
.

This implies using again (B.1):
∫ |∂yu|2

y2(1 + | log y|)2
�

∫ |Au|2
y2(1 + | log y|)2

+
∫ |u|2

y4(1 + | log y|)2
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�
∫

|∇(Au)|2 +
∫ |Au|2

y2(1 + y2)
+

∫ |u|2
1 + y5

which together with (B.18) concludes the proof of (B.12).
This concludes the proof of Lemma B.2. �

Lemma B.4 (Control of the ∂t derivative). — There holds:

(B.19)
∫

|∇∂tw|2 +
∫ |∂tw|2

r2
≤ C(M)

[∫
(∂tW)2 +

∫
|A∗

λW|2
]
.

Proof. — We compute from (2.7):

∂tW = A(∂tw) + ∂tV
(1)

λ w

r

and hence:

(B.20)
∫

(A∂tw)2 �
∫

(∂tW)2 +
∫ (

∂tV
(1)

λ w

r

)2

.

We now recall the following coercitivity property of the linearized Hamiltonian:
∫

(A∂tw)2

≥ c(M)

(∫
|∇∂tw|2 +

∫ |∂tw|2
r2

)
− 1

c(M)λ4

(
∂tw, (χM�Q)λ

)2
.

From the choice of orthogonality condition (5.12):
∣∣(∂tw, (χM�Q)λ

)∣∣ = ∣∣(w,∂t

(
(χM�Q)λ

))∣∣ = b

λ

∣∣(w,
(
�(χM�Q)

)
λ

)∣∣

≤ c(M)bλ

(∫

y≤2M
|ε|2

) 1
2

.

Combining this with (B.20) and the pointwise bound (6.18) yields:

(B.21)
∫

|∇∂tw|2 +
∫ |∂tw|2

r2
�

∫
(∂tW)2 + b2

λ2

∫
|ε|2

[
1y≤M + y4

y2(1 + y8)

]
.

We then estimate from (B.11):
∫

|ε|2
[

1y≤M + y4

y2(1 + y8)

]
�

∫ |ε|2
y4(1 + | log y|2)

≤ C(M)

∫
|A∗Aε|2 = λ2

∫
|A∗W|2,

which together with (B.21) concludes the proof of (B.19). �
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