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ABSTRACT

Under suitable hypotheses, we prove that a form of a projective homogeneous variety G/P defined over the
function field of a surface over an algebraically closed field has a rational point. The method uses an algebro-geometric
analogue of simple connectedness replacing the unit interval by the projective line. As a consequence, we complete the
proof of Serre’s Conjecture II in Galois cohomology for function fields over an algebraically closed field.
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1. Introduction

Let f : X → B be a morphism of smooth projective varieties over an algebraically
closed field k of characteristic 0. In the paper [GHS03] it was shown that if B is a curve
and the general fibre of f is a rationally connected variety then f has a section. In this
paper we partially generalize this result to the case where B is a surface. In order to state
it, we say that a line in a polarized variety (X, L) is a morphism P1 → X such that L pulls
back to OP1(1).

Theorem 1.1 (See Corollary 13.2). — Let f : X → S be a morphism of nonsingular projective

varieties over an algebraically closed field k of characteristic zero with S a surface. If
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1. there exists a Zariski open subset U of S whose complement has codimension 2 such that Xu

is irreducible for u ∈ U(k),

2. there exists an invertible sheaf L on f −1(U) which is f -relatively ample,

3. the geometric generic fibre (Xη, Lη) of f is rationally simply connected by chains of free lines

and has a very twisting scroll,

then there exists a rational section of f .

The assumption on the irreducibility of fibres is likely superfluous and can be re-
moved in most instances, see Remark 11.2. The existence of the invertible sheaf L globally

is necessary, even in the presence of conditions (1) and (3). Namely, there exist morphisms
f : X → S as in the theorem all of whose fibres are isomorphic to Pn

k , and which have
no rational sections (e.g., conic bundles or more generally Brauer-Severi schemes over S).
The third condition is what makes the proof work. In Section 2 we will discuss this con-
dition informally in more detail. Morally speaking however the third condition is an
algebraic geometric way of saying that Xη is “rationally simply connected”.

In order to prove the theorem above we analyze carefully the space of sections of
the restriction of the family to a general nonsingular projective curve C ⊂ S. It turns out
that the result of the following theorem is enough to imply the theorem above.

Theorem 1.2 (See Theorem 13.1). — Let X → C be a morphism of nonsingular projective

varieties over an algebraically closed field k of characteristic 0 with C a curve. Let L be an invertible

sheaf on X which is ample on each fibre of X → C. Assume the geometric generic fibre of X → C
is rationally simply connected by chains of free lines and contains a very twisting scroll. In this case,

for e � 0 there exists a canonically defined irreducible component Ze ⊂ Sectionse(X/C/k) so that the

restriction of

αL : Sectionse(X/C/k) −→ Pice
C/k

to Ze has rationally connected fibres.

In this theorem the space Sectionse(X/C/k) parametrizes sections σ : C → X of
degree e (with respect to L) and the map αL assigns to a section σ the point of Pice

C/k

corresponding to the invertible sheaf σ ∗L. In Section 2 we will informally discuss how
this theorem is proved and how it implies Theorem 1.1.

Main application. — In an email dated Jul 8, 2005 Phillipe Gille sketched out how a theo-
rem as above for families of homogeneous varieties (or Borel varieties) over surfaces might
lead to a proof of Serre’s Conjecture II for function fields of surfaces. Our method reduces
Serre’s Conjecture II to studying sections of families of Borel varieties over curves. In the
case of curves over finite fields the same method was used by G. Harder to prove Serre’s
conjecture II for function fields of curves over finite fields, see for example [Har71], the
references therein and [Har75]. Of course the actual details differ substantially.
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Lots of work has been done by many authors on Serre’s conjecture II, including
Merkurjev and Suslin, Bayer and Parimala, Chernousov and Gille. A nice summary of
these results, as well as additional results, can be found in the paper [CTGP04]. Our
approach is tailored to function fields of surfaces, is geometric and does not involve any
Galois cohomology groups.

Theorem 1.3 (See Theorem 16.6). — Let k be an algebraically closed field of any characteristic.

Let S be a quasi-projective surface over k. Let X → S be a projective morphism. Let η be the spectrum of

the algebraic closure of the function field k(S). If Xη is of the form G/P for some linear algebraic group

G and parabolic subgroup P and Pic(X) → Pic(Xη) is surjective, then X → S has a rational section.

Note that this theorem holds in characteristic p > 0 and the base surface does not
need to be projective. The reason is that there are tricks one can do to reduce to a case
where Theorem 1.1 applies, see Remark 16.4 and Remark 16.7. In any case, this theorem
implies the following special case of Serre’s Conjecture II over function fields.

Theorem 1.4 (Serre’s Conjecture II over function fields for groups defined over the ground field).

— Let k be an algebraically closed field of any characteristic and let K/k be the function field of a surface.

Let G be a connected, semisimple, simply connected algebraic group over k. Every G-torsor over K is

trivial.

Proof. — Suppose K is the function field of the quasi-projective surface S over k.
Let T be a G-torsor over K (see [Mil80, page 120]). After possibly shrinking S we may
assume that T extends to a G-torsor T over S. Let B be a Borel subgroup of G. Consider
the family

X = T /B → S.

Since G is simply connected any invertible sheaf L0 on G/B has a G-linearization. Thus
the map from the character group of B to Pic(G/B) is surjective. Note that the geometric
generic fibre Xη is isomorphic to (G/B)η by construction. The character group of B
also maps to Pic(X). Comparing these maps over η and η we conclude that Pic(X) →
Pic(Xη) is surjective. In other words, the assumptions of Theorem 1.3 are satisfied and
we see that X has a K-rational point. This means that T has a reduction of structure to B.
But as B is a connected solvable group over k any B-torsor over K is trivial. We conclude
that T is trivial as desired. �

To finish the proof of Serre’s conjecture we use some standard results on linear
algebraic groups (see e.g. [Spr98]) and the results of [CTGP04]. Suppose GK is a simple
algebraic group over K of type E8. Note that GK is simply connected. Let G be a form
of GK defined over k. Note that Aut(G) ∼= Inn(G) ∼= G. We see that GK as a form of G
over K corresponds to an element of H1(K,G) and hence by Theorem 1.4 it is itself split.
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Combining this and Theorem 1.4 with [CTGP04, Theorem 1.2(v)] (which deals with all
other types) this completes the proof of Serre’s Conjecture II for function fields.

Theorem 1.5 (Serre’s Conjecture II for function fields). — Let k be an algebraically closed field.

Let k ⊂ K be a finitely generated field extension of transcendence degree 2. For every connected, simply

connected, semisimple algebraic group GK over K, every GK-torsor over K is trivial.

Minor Application. — We would like to point out that Theorem 1.1 and Theorem 1.2 can
be used to reprove Tsen’s theorem for families of hypersurfaces over surfaces. Whereas
the proof of Tsen’s theorem can fit on a napkin, this paper has 60+ pages. However, the
aim of such an investigation is to stimulate research into different generalizations of Tsen’s
theorem. For example, one possible avenue for research is to study families of low degree
hypersurfaces in homogeneous spaces. In any case, we briefly explain in Section 17 below
how to reprove Tsen’s theorem using the main results of this paper.

2. Leitfaden

In this section we try to introduce the reader to the techniques and methods used
in this paper. We will assume the reader has read an exposition of the proof of the main
result in the paper [GHS03]. All of the discussion in this section is informal; for the details
the reader has to consult the body of this work.

The first important conceptual step is that Theorem 1.2 implies Theorem 1.1. Let
X → S be a fibration as in Theorem 1.1. After possibly blowing up the surface S we may
assume there exists a morphism g : S → B to a curve B whose general fibre is a smooth
projective curve C. Let b ∈ B be a general point. Here is a picture

f −1(C) Y
fb

C b

X
f

S
g

B

How do we construct a rational section of f ? To do this it is certainly necessary that
we can find a rational section σb of fb for a general b. Moreover, if we can find an al-
gebraic family {σb}b∈U of sections for some U ⊂ B nonempty open, then we have our
rational section σ of f simply by setting σ(s) = σg(s)(s). Let Sections(X/S/B) denote the
moduli space whose points correspond to pairs (b, σb) with b ∈ B and σb a section of
fb as above. In particular, there is a canonical map Sections(X/S/B) → B. The phrase
“algebraic family” above means we want to find a (rational) section of this morphism
Sections(X/S/B) → B. Now, the main result of [GHS03] tells us that such a section ex-
ists, as soon as we can find a variety Z ⊂ Sections(X/S/B) such that the fibres of Z → B
are rationally connected. For more details, please see the proof of Corollary 13.2.
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Let k be an algebraically closed field, and let Y be a smooth projective variety
over k. Let L be an ample invertible sheaf on Y. A free line on Y is a morphism ϕ : P1 → Y
such that deg(ϕ∗L) = 1, and ϕ∗TY is globally generated. A chain of free lines is a morphism
C → Y, where C is a nodal curve of genus zero all of whose components are free lines
and whose dual graph is a chain. We say Y is rationally simply connected by chains of free lines

if

(1) the space of lines through a general point of Y is nonempty, irreducible, and
rationally connected, and

(2) there exists an n > 0 such that for a general pair of points on Y the moduli
space of length n chains of free lines connecting them is nonempty, irreducible,
and birationally rationally connected.

A more precise formulation is that Y/k should satisfy Hypothesis 7.8. This explains the
first of the two conditions of Theorem 1.1 (3).

Let f : X → C be a morphism of projective smooth varieties, where C is a curve.
Let L be an ample invertible sheaf on X. In this situation we have the moduli stacks
�e(X/C/k) whose points classify stable sections h : C′ → X of degree e. This means
that C′ = C ∪ ⋃

i=1,...,s Ci, is a connected nodal curve, h|C : C → X is a section of f ,
and the maps h|Ci

: Ci → X are 1-pointed stable maps from nodal rational curves into
pairwise distinct fibres of f . Finally, the degree of the pullback of L to C has degree e.
See Definition 6.2 for a more precise and more general definition. In Sections 7, 8, 9 we
study these spaces of sections of f : X → C if the general fibre of f is rationally simply
connected by chains of free lines. In some sense the main result is Corollary 9.8. It says
that given two free sections σ , σ ′ of f , you can attach free lines in fibres to σ and σ ′ such
that the resulting points p, p′ of �e(X/C/k) are connected by a chain of rational curves
in �e(X/C/k) whose nodes map to non-stacky, smooth points of �e(X/C/k).

This important intermediate result is the first hint that something like Theorem 1.2
holds. However, if C = P1 and X → C is a general pencil of cubic hypersurfaces in P8,
then the moduli spaces of sections are not rationally connected, even though a general
fibre is rationally simply connected by chains of free lines. The reason is (reversing argu-
ments above) that a general net X → P2 of cubics in P8 does not have a rational section!
Hence a further condition on the general fibre is necessary.

Let k be an algebraically closed field, and let Y be a smooth projective variety
over k. Let L be an ample invertible sheaf on Y. Loosely, a very twisting scroll on Y is
given by a surface R ⊂ Y which is ruled by free lines in (Y, L) over P1, together with a
section σ : P1 → R of the ruling with σ 2 ≥ 0, such that the induced morphism g : P1 →
M0,1(Y,1) is sufficiently free. (Recall here that Mg,n(Y, e) is the Kontsevich moduli space
of degree e stable maps from nodal n-pointed genus g curves into Y.) Namely, the pullback
by g of Tev twisted down by 2 should have vanishing H1. Here Tev is the relative tangent
bundle of the map ev : M0,1(Y,1) → Y. The formal definition is Definition 12.7 and the
reformulation in terms of properties of g is Lemma 12.6. This explains the second of the
two conditions of Theorem 1.1 (3).
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FIG. 1. — Connecting sections by scrolls

How are these assumptions used in the proof of Theorem 1.2? Let us return to the
situation f : X → C, L of three paragraphs ago, assuming now that a general fibre of f is
rationally simply connected by chains of free lines and has a very twisting scroll. Let σ,σ ′

be two free sections of f . Let n be sufficiently large and consider the space Ch of length n

chains of free lines in fibres Xc of f connecting σ(c) to σ(c′). By the first assumption the
fibres of the natural map Ch → C are rationally connected. Hence applying [GHS03]
we obtain a rational section of Ch → C. This means we have a sequence of surfaces
R1, . . . ,Rn ⊂ X ruled by lines over C such that for each c ∈ C we obtain a chain of lines
connecting σ(c) to σ ′(c). See Figure 1 and Lemma 9.6. What we want to do now is move
the section σ in the surface R1 so it becomes the common section of R1 and R2, etc,
finally ending up with the section σ ′. It turns out that this is possible on adding lines in
fibres, see Proposition 9.7.

Now the problem with this result is that it only connects points in the boundary
of �e(X/C/k) by chains of rational curves. Hence to prove Theorem 1.2 we need to
find a way to connect points in the interior of �e(X/C/k) to points in the boundary.
And this is where very twisting scrolls come in. Namely, we first show that if one has
very twisting scrolls in fibres, then one has very twisting surfaces ruled by lines in X/C,
see Lemma 12.9. Next, we show that this implies that “many” sections lie (as the defin-
ing section) on a very twisting surface, see Proposition 12.12. Finally, we show that if
the section σ is a positive section of a very twisting surface, then it sits in a rational 1-
parameter family which hits the boundary, see Lemma 12.5 and Corollary 12.13. These
ideas form the backbone of the somewhat complicated proof of Theorem 1.2 (see Theo-
rem 13.1).
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3. Stacks of curves and maps from curves to a target

In this section we introduce the stack Curves classifying curves and the stack
CurveMaps(X /S) classifying maps from curves to an algebraic stack X . We recall that
these are algebraic stacks. Given a smooth Z/S we construct a determinant morphism
CurveMapsLCI(Z × BGLn/S) → PicZ/S.

The correct notion to use when doing moduli of algebraic varieties is to use families
of varieties where the total space is an algebraic space – not necessarily a scheme. Even
in the case of families of curves it can happen that the total space is not locally a scheme
over the base. This leads to the following definitions.

Definition 3.1. — Let S be a scheme.

1. A flat family of proper curves over S is a morphism of algebraic spaces π : C → S
which is proper, locally finitely presented, and flat of relative dimension 1.1

2. A flat family of polarized, proper curves over S is a pair (π : C → S, L) consisting

of a flat family of proper curves over S and a π -ample invertible sheaf L on C.

3. For every morphism of schemes u : T → S and π : C → S as above the pullback family
is the projection

u∗π = prT : T ×u,S,π C → T.

If the family is polarized by L then the pullback family is polarized by the u∗π -ample

invertible sheaf (u, IdC)∗L.

4. For two flat families of proper curves π : C → S and π ′ : C′ → S′, a morphism f from

the first family to the second is given by a Cartesian diagram

C
f

C′

S S′.

If π : C → S is polarized by L and π ′ : C′ → S′ is polarized by L′ then a morphism
between the polarized families is a pair (f , φ) with f as above and φ : L → f ∗L′ is an

isomorphism.

Definition 3.2. — The stack of proper curves is the fibred category

Curves −→ Schemes

whose objects are families of flat proper curves π : C → S and morphisms are as above. The functor

Curves → Schemes is the forgetful functor. Similarly the stack of proper, polarized curves is the

1 All fibres pure dimension 1.
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fibred category

Curvespol −→ Schemes

whose objects are flat families of proper, polarized curves (π : C → S, L) as in the definition above.

Denote by (Aff) the category of affine schemes. A technical remark is that in
[LMB00] stacks are defined as fibred categories over (Aff). So in the following proposi-
tions we state our results in a manner that is compatible with their notation. In particular
when we speak of Curves over (Aff) we mean the restriction of the fibred category Curves

to (Aff) ⊂ Schemes.
There is a functor of fibred categories

F : Curvespol → Curves

sending each object (π : C → S, L) to the object (π : C → S), i.e., forgetting about the
invertible sheaves.

Proposition 3.3. — The categories Curvespol and Curves are limit preserving algebraic stacks

over (Aff) (with the fppf topology) with finitely presented, separated diagonals. Moreover F is a smooth,

surjective morphism of algebraic stacks.

Proof. — This is folklore; here is one proof. The category Curvespol is a limit preserv-
ing algebraic stack with finitely presented, separated diagonal by [Sta06, Proposition 4.2].
Moreover, by [Sta06, Propositions 3.2 and 3.3], Curves is a limit preserving stack with
representable, separated, locally finitely presented diagonal. To prove that Curves is an
algebraic stack, it only remains to find a smooth cover of Curves, i.e., a smooth, essentially
surjective 1-morphism from an algebraic space to Curves. Let u : X → Curvespol be such
a smooth cover for the stack of polarized curves. We claim that F ◦ u : X → Curves is a
smooth cover.

Let (S,π : C → S) be an object of Curves. The 2-fibred product of F with the
associated 1-morphism S → Curves is the stack A of π -ample invertible sheaves on C.
Consider the diagram

A ×Curvespol X X

A Curvespol

S Curves.

Once we have shown A is an algebraic stack and A → S is smooth surjective, then the
claim above follows, as well as the smoothness and surjectivity of F in the proposition.
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Before we continue we remark that A is an open substack of the Picard stack of
C → S by [Gro63, Théorème 4.7.1]. Hence, by [Sta06, Proposition 4.1] (which is a
variant of [LMB00, Théorème 4.6.2.1]) the stack A is a limit preserving algebraic stack
with quasi-compact, separated diagonal. In particular, for every smooth cover A → A,
the induced morphism A → S is locally finitely presented. Thus to prove A → S is
smooth, and thus that A is smooth over S, it suffices to prove that A → S is formally
smooth. Let s be a point of S and denote by Cs the fibre π−1(s). By [Ill71, Proposi-
tion 3.1.5], the obstructions to infinitesimal extensions of invertible sheaves on Cs live
in Ext2

OCs
(OCs

, OCs
) = H2(Cs, OCs

). Since Cs is a Noetherian, 1-dimensional scheme,
H2(Cs, OCs

) is zero. Thus there are no obstructions to infinitesimal extensions of π -ample
invertible sheaves on Cs. Thus A → S is smooth as desired.

Next, we prove that A → S is surjective. Thus, let s be a point of S. It suffices to
prove there is an ample invertible sheaf on Cs. This is essentially [Har77, Exercise III.5.8].
Therefore Curves is an algebraic stack.

It only remains to prove that the diagonal of Curves is quasi-compact. Let (πi :
Ci → S), i = 1,2 be two families of proper flat curves over an affine scheme S. We have
to show that the algebraic space

IsomS(C1,C2)

is quasi-compact. Using that F is smooth and surjective, after replacing S by a quasi-
compact, smooth cover, we may assume there exist πi-ample invertible sheaves Li on
Ci . We may assume the Hilbert polynomial of the fibres of Ci → S with respect to Li

are constant, say Pi. For every S-scheme T and every T-isomorphism φ : C1,T → C2,T,
the graph 	φ : C1,T → (C1 ×S C2)T is a closed immersion. In the usual way this iden-
tifies IsomS(C1,C2) as a locally closed subscheme of the Hilbert scheme of C1 ×S C2

over S. We will show that whenever T = Spec(k) is the spectrum of a field, the Hilbert
polynomial of 	φ with respect to the S-ample invertible sheaf pr∗

1 L1 ⊗ pr∗
2 L2 is equal

to P1 + P2 − P1(0). Quasi-compactness follows from the projectivity of the Hilbert
scheme parametrizing closed subschemes with given Hilbert polynomial. By Snapper’s
theorem (see [Kle66]) the values of the Hilbert polynomial χ(C1,T, L⊗n

1,T ⊗ φ∗L⊗n
2,T)

equal χ(C1,T, L⊗n
1,T)) + χ(C1,T, φ∗L⊗n

2,T) − χ(C1,T, O). And of course χ(C1,T, φ∗L⊗n
2,T) =

χ(C2,T, L⊗n
2,T). The claim follows. �

At this point we need some definitions related to moduli of maps from curves into
varieties. But since we are going to study the rational connectivity of moduli stacks of
rational curves on varieties, we need to deal with moduli of morphisms from curves to
stacks.

Definition 3.4. — Let X be an algebraic stack, let S be a scheme and let X → S be a morphism.

A family of maps of proper curves to X over S is a triple (T → S,π : C → T, ζ : C → X )

consisting of a flat family of proper curves over the S-scheme T and a 1-morphism ζ over S.
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We leave it to the reader to define morphisms between families of maps of proper
curves to X over S.

Definition 3.5. — The stack of maps of proper curves to X is the fibred category

CurveMaps(X /S) −→ Schemes/S

whose objects are families of maps of proper curves to X over S, and morphisms as above.

We again have the technical remark that according to the conventions in [LMB00]
we should really be working with the restriction of CurveMaps(X /S) to the category (AffS)

of affine schemes over S. Denote by CurvesS the restriction of Curves over the category
Schemes/S of S-schemes. There is an obvious functor

(3.1) G : CurveMaps(X /S) −→ CurvesS

forgetting the 1-morphisms to X .

Proposition 3.6 (See Lie06, Proposition 2.11). — Assume S excellent. Suppose that X =
[Z/G] where Z is an algebraic space, Z → S is separated and of finite presentation, and where G is an

S-flat linear algebraic group scheme. The stack CurveMaps(X /S) is a limit preserving algebraic stack

over (AffS) with locally finitely presented, separated diagonal. And the 1-morphism (3.1) is representable

by limit preserving algebraic stacks.

Proof. — The second assertion is precisely proved in [Lie06, Proposition 2.11] and
implies the first assertion because of Proposition 3.3. �

Definition 3.7. — Let S be a scheme. A flat family of proper curves over S, π : C → S, is LCI
if π is a local complete intersection morphism in the sense of [Gro67, Définition 19.3.6].

It is true that this is equivalent to [BGI71, Définition VIII.1.1]. See [BGI71, Propo-
sition VIII.1.4].

Proposition 3.8. — The subcategory CurvesLCI of Curves of flat families which are LCI is an

open substack of Curves.

Proof. — Let π : C → S be a flat family of proper curves, and assume for the mo-
ment that C is a scheme. According to [Gro67, Corollaire 19.3.8] there exists an open
subscheme U ⊂ S such that Cs is LCI if and only if s ∈ U. By definition [Gro67, Défi-
nition 19.3.6] the induced morphism CU → U is LCI. It follows from [Gro67, Propo-
sition 19.3.9] that given a morphism of schemes g : T → S then the inverse image
g−1(U) ⊂ T has the same property for the family over T.

In the general case (where we do not assume that C is a scheme) we use that there
is a smooth cover S′ → S such that the pullback family over S′ has a total space which
is a scheme (for example by using 3.3). Hence we obtain an open U′ ⊂ S′ characterized
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as above. Clearly U′ ×S S′ = S′ ×S U′ and we conclude that U′ is the inverse image of an
open U of S. Again by definition the restriction CU → U is LCI, and all fibres of C → S
at points of S \ U are not LCI. Clearly this shows that any base change by T → S is LCI
if and only if T → S factors through U. �

Definition 3.9. — Let X be an algebraic stack, let S be a scheme and let X → S be a mor-

phism. The stack of maps of proper, LCI curves to X is the open substack CurveMapsLCI(X /S)

of CurveMaps(X /S) obtained as the 2-fibred product of CurveMaps(X /S) → Curves and

CurvesLCI → Curves.

In order to define the determinant pushforward below we need the following
lemma.

Lemma 3.10. — Suppose we are given a diagram of morphisms of algebraic spaces

C Z

T S

where C → T is an LCI, flat proper family of curves, and Z → S is a smooth morphism. Then the

induced morphism C → T ×S Z is a local complete intersection morphism in the sense of [BGI71, Défi-

nition VIII.1.1]. In particular, it is a perfect morphism in the sense of [BGI71, Définition III.4.1].

Proof. — Note that T ×S Z is smooth over T, and hence it suffices to prove the
lemma in the case that S = T. By [BGI71, Proposition VIII.1.6] it suffices to prove the
lemma after a faithfully flat base change. Hence it is also sufficient to prove the propo-
sition in the case that C → S is projective, by 3.3. Choose a closed immersion C → PN

S
over S. This is regular by [BGI71, Proposition VIII.1.2]. According to [BGI71, Corol-
laire VIII.1.3] this implies that C → PN

S ×S Z is regular, which in turn by definition implies
that C → Z is a local complete intersection morphism. �

We are going to use the stack CurveMaps(X /S) in the case where X = Z × BGLn

for some algebraic space Z separated and of finite presentation over S. Note that by
Proposition 3.6 this is a limit preserving algebraic stack. An object of this stack is given by
a datum (T → S,π : C → T, ζ : C → Z, E ) where (T → S,π : C → T, ζ : C → Z) is a
family of maps of proper curves to Z over S and where E is a locally free sheaf of rank n

over C. It is straightforward to spell out what the morphisms are in this stack (left to the
reader). The object (T → S,π : C → T, ζ : C → Z, E ) belongs to CurveMapsLCI(X /S) if
and only if π is LCI.

Assuming that S is excellent, Z is a scheme, Z → S is quasi-compact and smooth
and X = Z × BGLn we define a functor

det(R(−)∗) : CurveMapsLCI(X /S) → HomS(Z,BGm) = PicZ/S
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to the Picard stack of Z over S. First we note that, by our discussion above both sides are
limit preserving algebraic stacks over S. Thus we need only define the functor on fibre
categories over schemes of finite type over S. Consider an object (T → S,π : C → T, ζ :
C → Z, E ) of the left hand side with T/S finite type. The morphism ζ : C → T ×S Z
is a perfect morphism by Lemma 3.10. Since ζ is perfect Rζ∗E is a perfect complex of
bounded amplitude on T×S Z by [BGI71, Corollaire III.4.8.1]. (We leave it to the reader
to check that we have put in enough finiteness assumptions so the Corollary applies.) The
“det” construction of [KM76] associates an invertible sheaf det(Rζ∗E ) to the perfect
complex Rζ∗E on the scheme T ×S Z. Also, by [KM76, Definition 4(iii)] and [BGI71,
Proposition IV.3.1.0], formation of det(Rζ∗E ) is compatible with morphisms of objects
of CurveMapsLCI(X /S).

Definition 3.11. — Given S, Z → S and n as above. The determinant pushforward
1-morphism is the functor

det(R(−)∗) : CurveMapsLCI(Z × BGLn/S) → PicZ/S

defined above. If the Picard stack PicZ/S has a coarse moduli space PicZ/S then the composite morphism

CurveMapsLCI(Z × BGLn/S) → PicZ/S

will also be called the determinant pushforward 1-morphism.

The following is an important special case for our paper. Namely, suppose that
S = Spec(κ) is the spectrum of a field κ , and suppose that Z = C is a smooth, projective,
geometrically connected κ-curve of genus g. In this case we can “compute” the value of
the determinant 1-morphism on some special points. Assume that we have a Spec(κ)-
valued point of CurveMapsLCI(C × BGLn/S) given by a datum (Spec(κ) → Spec(κ),π :
C′ → Spec(κ), ζ : C′ → C, E ). Assume furthermore that C′ is proper, at worst nodal,
geometrically connected of genus g. Finally, assume that ζ is an isomorphism over a
dense open of C′. For every such map, there exists a unique section s : C → C′ whose
image is the unique irreducible component of C′ mapping dominantly to C. The scheme
C′ − s(C) is a disjoint union of trees of rational curves C1, . . . ,Cδ . Each Ci meets s(C) in
a single point ti .

Lemma 3.12. — Assumptions and notation as above. There is an isomorphism

det(Rζ∗(E )) = det(s∗E )(d1 · t1 + · · · + dδ · tδ)

where di is the degree of the base change of E to the connected nodal curve Ci over the field κ(ti).

Proof. — For a comb C′ = s(C) ∪ C1 ∪ · · · ∪ Cδ as above, there is a surjection of
OC-modules E → E |s(C) whose kernel we will write as ⊕E |Ci

(−ti). We will use later on
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that χ(Ci, E |Ci
(−ti)) = di by Riemann-Roch on Ci over κ(ti). Pushing this forward by ζ

gives a triangle of perfect complexes:

Rζ∗(⊕E |Ci
(−ti)) Rζ∗(E )

λ

Rζ∗(E |s(C))

Note that Rζ∗(E |s(C)) = s∗(E )[0], and that the term Rζ∗(⊕E |Ci
(−ti)) is supported in the

points ti . Hence λ is “good” and we may apply the “Div” construction of [KM76]. It
follows that det(Rζ∗(E )) ∼= det(s∗E )(−Div(λ)). Using [KM76, Theorem 3(iii) and (vi)],
it follows that Div(λ) = −∑

di · ti (minus sign because the complex H· of locus citatus is
our complex ζ∗(⊕E |Ci

(−ti)) shifted by 1). �

We end this section with a simple semi-continuity lemma.

Lemma 3.13. — Let S be an affine scheme. Let π : C → S be a flat family of proper curves

over S. Let F be a quasi-coherent sheaf on C which is locally finitely presented and flat over S. For

every integer i ≥ 0 there exists an open subscheme Ui of S such that for every S-scheme T, the derived

pushforward to T of the pullback of F to T ×S C is concentrated in degrees ≤ i if and only if T factors

through Ui . Moreover, after base change from S to Ui , the formation of Riπ∗(F ) is compatible with

arbitrary base change.

This also holds when S is an arbitrary scheme, algebraic space, etc., instead of an affine scheme.

Proof. — This is probably true in some vast generality for morphisms of algebraic
stacks, but we do not know a reference. In our case we may deduce it from the schemes
case as follows. By Proposition 3.3, there exists a faithfully flat morphism of affine
schemes S′ → S such that S′ ×S C is projective over S′. By [LMB00, Proposition 13.1.9],
the statement for the original family over S follows from the statement over S′. Also by
limit arguments, it suffices to consider the case when S′ is of finite type. Now the result
follows from [Gro63, Section 7] or [Mum70, Section 5]. The general case follows from
the affine case by [LMB00, Proposition 13.1.9]. �

4. Free sections

This section introduces the stack Sections(X /C/S) of sections of a morphism f :
X → C of algebraic stacks over a base S. Recent work on Hom stacks allows us to show
Sections(X /C/S) is algebraic in many cases. Especially important are free sections, which
are also defined and discussed in this section. Proposition 4.15 gives a geometric criterion
for when sections are free, and Lemma 4.17 proves free sections lift along a rationally
connected fibration.

Let S be an algebraic space. Let C → S be a proper, flat, finitely presented algebraic
stack over S. Let f : X → C be a 1-morphism of algebraic S-stacks.
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Definition 4.1. — With notation as above. Let T be an S-scheme, or an algebraic space over S.

1. A family of sections of f over T is a pair (τ, θ) consisting of a 1-morphism of S-stacks

τ : T ×S C → X together with a 2-morphism θ : f ◦ τ ⇒ prC , giving a 2-commutative

diagram

X
f

T ×S C
f ◦τ

prC

θ

τ

C

T S

2. For two families of sections of f , say (T′, τ ′, θ ′) and (T, τ, θ), a morphism (u, η) from

the first family to the second family is given by a morphism u : T′ → T and a 2-morphism

η : τ ◦ (u × idC) ⇒ τ ′ such that

f ◦ τ ′ η

θ ′

f ◦ τ ◦ (u × idC)

θ

prT′×S C
C

=
prT×S C

C ◦ (u × idC)

commutes.

Definition 4.2. — The stack of sections of f is the fibred category

Sections(X /C/S) −→ Schemes/S

whose objects are family of sections of f and whose morphisms are morphisms of families of sections of F.

We recall some results from the literature.

Theorem 4.3. — Let C → S, f : X → C be as above.

1. See [Gro62, Part IV.4.c, p. 221–219]. Assume that C = C is a projective scheme over S
and that X = X is a quasi-projective scheme over C either globally over S, resp. fppf locally

over S. Then Sections(X/C/S) is an algebraic space which is locally finitely presented and

separated over S. Moreover, globally over S, resp. fppf locally over S, the connected components

of Sections(X/C/S) are quasi-projective over S.

2. See [Ols06, Theorem 1.1]. Assume that C and X are separated over S and have finite

diagonal. Also assume that fppf locally over S there is a finite, finitely presented cover of C by

an algebraic space. Then Sections(X /C/S) is a limit preserving algebraic stack over S with

separated, quasi-compact diagonal.
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3. See [Lie06, Proposition 2.11]. Assume S excellent and C = C is a proper flat family of

curves. Assume that, fppf locally over S, we can write X = [Z/G] for some algebraic space

Z separated and of finite type over S and some linear group scheme G flat over S. Then

Sections(X /C/S) is a limit preserving algebraic stack over S.

Proof. — Besides the references, here are some comments. For the first case we may
realize the space of sections as an open subscheme of Hilbert scheme of C×S X over S. In
the second and third case we think of Sections(X /C/S) as a substack of the Hom-stack
HomS(C, X ). The references guarantee the existence of the Hom-stack as an algebraic
stack. Next we consider the 2-Cartesian diagram

Sections(X /C/S) HomS(C, X )

S HomS(C, C)

In cases 2 and 3 the lower horizontal arrow is representable by the results from [Ols06]
and [Lie06] as the target is an algebraic stack. It follows that Sections(X /C/S) is an
algebraic stack. �

Of course we will most often use the space of sections for a family of varieties over
a curve. We formulate a set of hypothesis that is convenient for the developments later
on.

Hypothesis 4.4. — Let κ be a field. Let C be a projective, smooth, geometrically connected curve

over κ . Let f : X → C be a quasi-projective morphism. Let L be an f -ample invertible sheaf on X.

Denote the smooth locus of X by Xsmooth. Denote the open subset of Xsmooth on which f is smooth by

Xf ,smooth.

According to the theorem above the space of sections Sections(X/C/κ) is a union
of quasi-projective schemes over κ in this case. The locus Sections(Xf ,smooth/C/κ) is an
open subscheme of Sections(X/C/κ).

Definition 4.5. — In Situation 4.4. For every integer e, the scheme of degree e sections of
f is the open and closed subscheme Sectionse(X/C/κ) of Sections(X/C/κ) parametrizing sections τ

of f which pullback L to a degree e invertible sheaf on C. The universal degree e section of f is

denoted

σ : Sectionse(X/C/κ) ×κ C −→ X.

The Abel map is the κ-morphism

α : Sectionse(X/C/κ) −→ Pice
C/κ
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associated to the invertible sheaf σ ∗L by the universal property of the Picard scheme Pice
C/κ .

There are several variations of the notion of “free curve” as described in [Kol96,
Definition II.3.1]. Of the following two notions, the weaker notion arises more often
geometrically and often implies the stronger notion.

Definition 4.6. — In Situation 4.4. Let T be a κ-scheme. Let τ : T ×κ C → Xf ,smooth be a

family of degree e sections of f with image in Xf ,smooth.

1. Let D be an effective Cartier divisor in C. The family τ is weakly D-free if the OT-module

homomorphism

(prT)∗(τ ∗Tf ) −→ (prT)∗(τ ∗Tf ⊗OT×κ C pr∗
C OD)

is surjective. Here Tf = Hom(�1
X/C, OX).

2. Let D be an effective Cartier divisor in C. The family τ is D-free if the sheaf of OT-modules

R1(prT)∗(τ ∗Tf ⊗OT×κ C pr∗
C OC(−D))

is zero.

3. For an integer m ≥ 0, the family is weakly m-free if the base change to Spec(κ) is weakly

D-free for every effective, degree m, Cartier divisor D in C ×κ Spec(κ).

4. For an integer m ≥ 0, the family is m-free if the base change to Spec(κ) is D-free for every

effective, degree m, Cartier divisor D in C ×κ Spec(κ).

Whenever we talk about D-free, weakly D-free, weakly m-free or m-free sections we tacitly assume that

the image of the section is contained in Xf ,smooth.

Definition 4.7. — In Situation 4.4 a section s : C → X of f is called unobstructed if it is

0-free. It is called free if it is 1-free.

It is true and easy to prove that these correspond to the usual notions. Namely, if
a section is unobstructed then its formal deformation space is the spectrum of a power
series ring. Also, a section s is free if and only if it is unobstructed and s∗TX/C is globally
generated, which implies that its deformations sweep out an open set in X.

Lemma 4.8. — In Situation 4.4.

1. Let D be an effective Cartier divisor on C. There is an open subscheme U of Sectionse(X/C/κ)

parametrizing exactly those sections whose image lies in Xf ,smooth and which are D-free.

2. Let m ≥ 0 be an integer. There is an open subscheme V of Sectionse(X/C/κ) parametrizing

exactly those families whose image lies in Xf ,smooth and which are m-free.

3. The set of κ-points of Sectionse(X/C/κ) × Symm(C) corresponding to pairs (τ,D) such

that τ is D-free is open.
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Proof. — The first part follows from Lemma 3.13. To see the second part consider a
family τ : T×κ C → Xf ,smooth. Let T′ = T×κ Symm(C). On T′ ×κ C we have a “universal”
relative Cartier divisor D (of degree m over T′). Hence we may consider the open U ⊂
T′ = T ×κ Symm(C) where the relevant higher direct image sheaf vanishes. Let V ⊂ T
be the largest open subset such that V ×κ Symm(C) is contained in U. We leave it to the
reader to verify that a base change by T′′ → T of τ is m-free if and only if T′′ → T factors
through V. The third part is similar to the others. �

Lemma 4.9. — In Situation 4.4. Let τ : T ×κ C → Xf ,smooth be a family of sections, let

u : T′ → T be a morphism and let τ ′ = τ ◦ (u, idC).

1. Let D be an effective Cartier divisor in C. If τ is weakly D-free, then so is τ ′.
2. Let m ≥ 0 be an integer. If τ is weakly m-free then so is τ ′.

The converse holds if u is faithfully flat.

Proof. — We first prove 1. The sheaf of OT-modules G = (prT)∗(τ ∗Tf ⊗OT×C

pr∗
C OD) from Definition 4.6 is finite locally free (of rank the degree of D times the

dimension of X over C) and its formation commutes with base change. The sheaf
F = (prT)∗(τ ∗Tf ) is quasi-coherent but its formation only commutes with flat base
change in general. Denote F ′ the corresponding sheaf for τ ′. Assume the map F → G
is surjective. Then F ′ → G ′ = u∗G is surjective because u∗F → u∗G factors through F ′.
The statement about the faithfully flat case follows from this discussion as well.

To prove 2 we use the arguments of 1 for the universal situation over T×κ Symm(C)

as in the proof of Lemma 4.8 above (left to the reader). �

Lemma 4.10. — In Situation 4.4. Let τ : T ×κ C → Xf ,smooth be a family of sections.

1. Let D′ ≤ D be effective Cartier divisors on C. If τ is D-free, resp. weakly D-free, then it is

also D′-free, resp. weakly D′-free.
2. For integers m ≥ m′ ≥ 0, if τ is m-free, resp. weakly m-free, then it is also m′-free, resp.

weakly m′-free.

Proof. — Consider the finite locally free sheaves of OT-modules defined by G =
(prT)∗(τ ∗Tf ⊗OT×C pr∗

C OD) and G ′ = (prT)∗(τ ∗Tf ⊗OT×C pr∗
C OD′) that occur in Defi-

nition 4.6. It is clear that there is a surjection G → G ′. On the other hand consider
the sheaves H = R1(prT)∗(τ ∗Tf ⊗OT×C pr∗

C OC(−D)) and H′ = R1(prT)∗(τ ∗Tf ⊗OT×C

pr∗
C OC(−D′)). There is a surjection H → H′ induced by the map OC(−D) → OC(−D′)

with finite cokernel (tensored with τ ∗Tf this has a cokernel finite over T). In this way we
deduce 1.

In order to prove 2 we work on T′ = T ×κ Symm(C) ×κ Symm′−m(C). There are
“universal” relative effective Cartier divisors D ⊂ T′ ×κ C (of degree m) and D′ ⊂ T′ ×κ C
(of degree m′) with D ⊂ D′. There are sheaves of OT′-modules G , G ′, H, and H′ which
are variants of the sheaves above defined using the relative Cartier divisors D and D′. If
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τ is m-free, resp. weakly m-free, then H = 0, resp. (prT′)∗((τ ′)∗Tf ) surjects onto G . The
arguments just given to prove part 1 show that there are canonical surjections H → H′

and G → G ′. Hence we deduce that H′ = 0, resp. that (prT′)∗((τ ′)∗Tf ) surjects onto G ′.
Then this in turn implies that τ is m-free, resp. weakly m-free. �

Lemma 4.11. — In Situation 4.4. Let τ : T ×κ C → Xf ,smooth be a family of sections.

1. Let D be an effective Cartier divisor on C. Then τ is D-free if and only if it is both 0-free

and weakly D-free.

2. Let m ≥ 0 be an integer. Then τ is m-free if and only if it is both 0-free and weakly m-free.

Proof. — We first prove 1. Saying a family is 0-free is equivalent to saying it is D′-
free where D′ is the empty Cartier divisor. Thus, if a family is D-free then it is 0-free by
Lemma 4.10. The long exact sequence of higher direct images associated to the short
exact sequence

0 → τ ∗Tf ⊗OT×κ C pr∗
C OC(−D) → τ ∗Tf → τ ∗Tf ⊗OS×κ C pr∗

C OD → 0

shows that

(prT)∗(τ ∗Tf ) → (prT)∗(τ ∗Tf ⊗OT×κ C pr∗
C OD)

is surjective so long as R1(prT)∗(τ ∗Tf ⊗OT×κ C pr∗
C OC(−D)) is the zero sheaf. Moreover,

the converse holds so long as R1(prS)∗(τ ∗Tf ) is the zero sheaf. From this it follows that if
a family of sections is D-free, then it is weakly D-free and the converse holds so long as
the family is 0-free.

The proof of 2 is left to the reader. (It is similar to the proofs above.) �

Lemma 4.12. — In Situation 4.4. Let τ : T ×κ C → Xf ,smooth be a family of sections.

1. Let D be a nontrivial effective Cartier divisor of C. If deg(D) ≥ 2g(C) and if τ is weakly

D-free, then τ is (deg(D) − 2g(C))-free (and thus D-free by the previous lemmas).

2. Let m ≥ 2g be an integer with m ≥ 1 if g(C) = 0. Every weakly m-free family is m-free.

Proof. — We prove part 1. By Lemma 4.8, there is a maximal open subscheme V
of T over which τ is (deg(D) − 2g(C))-free. The goal is to prove that V is all of T. For
this, it suffices to prove that every geometric point of S factors through V. By Lemma 4.9,
the base change of the family to any geometric point is weakly D-free. Thus, it suffices
to prove the lemma when κ is algebraically closed and T = Spec(κ), i.e., τ is a section
τ : C → Xf ,smooth.

Let m denote deg(D). Let us write T = τ ∗Tf , and let r be the rank of T . The
assumption is that the restriction map

H0(C, T ) → H0(C, T ⊗OC OD)
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is surjective. Let p ∈ D be a point. The restriction map

H0(C, T ⊗OC OC(−D + p)) → H0(C, T ⊗OC κ(p))

is also surjective. In other words, there exist r global sections of T (−D + p) generating
the fibre at p. These global sections give an injective OC-module homomorphism O⊕r

C →
T (−D + p) which is surjective at p. Thus the cokernel is a torsion sheaf. Let E ⊂ C be
any effective divisor of degree m − 2g(C). Twisting by D − E − p, this gives an injective
OC-module homomorphism

OC(D − E − p)⊕r → T (−E)

whose cokernel is torsion. From the long exact sequence of cohomology, there is a surjec-
tion

H1(C, OC(D − E − p))⊕r → H1(C, T (−E)).

Since deg(D − E − p) > 2g(C)− 2 we see that h1(C, OC(D − E − p)) equals 0. Therefore
h1(C, T (−E)) also equals 0.

Part 2 is proved in a similar fashion. �

Proposition 4.13. — Situation as in 4.4. Let D ⊂ C be an effective divisor.

1. Let τ : T ×κ C → Xf ,smooth be a family of sections. If the induced morphism

(τ |T×κD, IdD) : T ×κ D → Xf ,smooth ×C D is smooth, then the family is weakly D-free.

2. Let U be the open subscheme of Sectionse(Xf ,smooth/C/κ) over which the universal section is

D-free (see Lemma 4.8). The morphism

(σ, IdD) : U ×κ D → Xf ,smooth ×C D

is smooth.

3. The scheme Sections(X/C/κ) is smooth at every point which corresponds to a section that is

D-free.

Proof. — When D is the empty divisor, both 1 and 2 are vacuous, and 3 follows
from the vanishing of the obstruction space for the deformation theory. When D is not
empty, one argues as in [Kol96, Proposition II.3.5]. �

In order to state the following proposition we need some notation. In Situation 4.4,
consider the Hilbert scheme Hilbm

X/κ of finite length m closed subschemes of X over κ .
There is an open subscheme Hm

X,f ⊂ Hilbm
X/κ parametrizing those Z ⊂ X such that (a)

Z ⊂ Xf ,smooth and (b) f |Z : Z → C is a closed immersion. By construction there is a natural
quasi-projective morphism

(4.1) Hm
X,f −→ Symm(C).
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We claim this morphism is smooth. Namely, a point of Hm
X,f corresponds to a pair (Z′, σ ),

where Z′ ⊂ C is a closed subscheme of length m, and σ : Z′ → Xf ,smooth which is a sec-
tion of f . There are no obstructions to deforming a map from a given zero dimensional
scheme to a smooth scheme, whence the claim.

Let D be a degree m effective Cartier divisor on C. The fibre Hm
X,f ,D of (4.1)

over [D] ∈ Symm(C) is the space of sections of D ×C Xf ,smooth → D. Note that Hm
X,f ,D

equals the Weil restriction of scalars ResD/κ(D ×C Xf ,smooth). In fact Hm
X,f is a Weil re-

striction of scalars as well, which gives an alternative construction of Hm
X,f . Namely,

Hm
X,f = ResD/Symm(C)(D ×C Xf ,smooth), where D ⊂ Symm(C) ×κ C is the universal degree

m effective Cartier divisor on C.
Consider any family of sections τ : T ×κ C → Xf ,smooth. Given a divisor D of C

of degree m we may restrict τ to T ×κ D and obtain a T-valued point of Hm
X,f ,D. This

construction can be done more generally with D replaced by the universal Cartier divisor
D to obtain a morphism

(4.2) T ×κ Symm(C) −→ Hm
X,f

over Symm(C). Since this is functorial in T we obtain a morphism of algebraic stacks

(4.3) res : Sections(Xf ,smooth/C/κ) ×κ Symm(C) −→ Hm
X,f

over Symm(C).

Lemma 4.14. — In Situation 4.4, the morphism res is smooth at any point (τ,D) such that τ

is D-free.

Proof. — This is akin to Proposition 4.13 and proved in the same way. It also fol-
lows from part 2 of that Proposition by the fibrewise criterion of smoothness since both
Sections(Xf ,smooth/C/κ) ×κ Symm(C) and Hm

X,f are smooth over Symm(C) at the corre-
sponding points. �

Here are two technical results that will be used later.

Proposition 4.15. — See [KMM92a, 1.1]. In Situation 4.4, with char(κ) = 0. Let e and

m ≥ 0 be integers. There exists a constructible subset Wm
e of Hm

X,f whose intersection Wm
e ∩Hm

X,f ,D with

the fibre over every point [D] of Symm(C) contains a dense open subset of Hm
X,f ,D with the following

property: For every κ-scheme T and for every family of degree e sections

τ : T ×κ C −→ Xf ,smooth,

if the restriction of τ to T ×κ D is in Wm
e ∩ Hm

X,f ,D, then τ is weakly D-free.
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Proof. — It suffices to construct Wm
e over κ , and hence we may and do assume κ

algebraically closed. Stratify Sectionse(Xf ,smooth/C/κ) by a finite set of irreducible locally
closed strata Ti , each smooth over κ . For each i we have the restriction morphism resi : Ti ×
Symm(C) → Hm

X,f . This is a morphism of smooth schemes of finite type over Symm(C).
Let Si ⊂ Ti × Symd(C) be the closed set of points where the derivative of resi

dresi : TTi×Symm(C) −→ res∗
i (THm

X,f
)

is not surjective. By Sard’s theorem, or generic smoothness the image Ei = resi(Si) ⊂ Hm
X,f

is not dense in any fibre Hm
X,f ,D. It is constructible as well by Chevalley’s theorem. Take

Wm
e to be the complement of the finite union

⋃
Ei . Let us prove that Wm

e has the desired
properties. Suppose that τ : C → Xf ,smooth is a section such that τ |D is in Wm

e . Let i be
such that τ corresponds to a point [τ ] ∈ Ti. By construction of Wm

e the morphism Ti →
Hm

X,f ,D is smooth with surjective derivative at τ . Note that Tτ (Ti) ⊂ H0(C, τ ∗Tf ), and
that Tres(τ×[D])(Hm

X,f ,D) = H0(C, τ ∗Tf |D). Thus the surjectivity of the derivative in terms
of Zariski tangent spaces implies that τ is weakly D-free. �

Situation 4.16. — Here k is an algebraically closed field and we have a commutative diagram

τ : C × T Y U

C

of varieties over k where C is a smooth projective curve and Y is proper over C. Moreover, we assume given

a dense open U ⊂ Y such that U → C is a smooth morphism whose nonempty fibres are geometrically

irreducible. Finally, we assume that τ(C × T) ∩ U �= ∅.

In this situation, for t ∈ T(k) we denote τt : C → Y the restriction of τ to C × {t}. In
other words, we think of τ as a family of maps from C to Y. Let m > 0 be an integer.
Let Hm

U = Hm
U,U→C → Symm(C) be as in (4.1). In the following we will use a canonical

rational map

(4.4) τm : T × Symm(C) ��� Hm
U.

over Symm(C). Namely, it is defined on the open subscheme W ⊂ Symm(C) × T consist-
ing of the set of pairs (D, t) such that τt(D) ⊂ U which is a dense open by assumption.
And for (D, t) ∈ W we simply set τm(D, t) = τt|D : D → U.

Lemma 4.17. — In Situation 4.16 assume k is an uncountable algebraically closed field of

characteristic 0, and assume given m > 0 such that τm is dominant. Finally, let V be a variety and let
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� : V → U be a smooth, surjective morphism whose nonempty geometric fibres are birationally rationally

connected. Then we can find a commutative diagram

C × T′
τ ′ V

�

V

�

C × T
τ

Y U

such that T′ → T is dominant, the top row is as in Situation 4.16, and τ ′
m : T′ × Symm(C) ��� Hm

V

is dominant. Moreover, given an arbitray compactification V ⊂ W by a proper variety W we can choose

our V to dominate W.

Remark 4.18. — This technical lemma just says that a general m-free section of
Y → C lifts to an m-free section of V.

Proof. — Note that V is a nonsingular variety. We choose a smooth proper com-
pactification V ⊂ V such that � extends to a morphism � : V → Y. (First choose any
proper compactification to which � extends, and then resolve singularities, see [Hir64,
Hir64a]. To see the last statement of the lemma let V be a resolution of W.) This gives
us the right square of the diagram in the lemma. By generic smoothness we may shrink
U and assume that the fibres of � are proper smooth varieties over all points of U. In
this case these fibres are rationally connected varieties by our assumption on �. We may
shrink T and assume that τt(C) meets U for all t ∈ T(k).

The assumption on the fibres of � implies that for every t ∈ T(k) we may find a
section σ : C → V such that � ◦ σ = τt . See [GHS03]. It was already known before the
results of [GHS03], see for example [KMM92b], that one may, given any m sufficiently
general points c1, . . . , cm of the curve C, assume the m-tuple (σ (ci) ∈ Vτt(ci))i=1...m is a
general point of Vτt(c1) × · · · × Vτt(cm). This is done by the “smoothing combs” technique
of [KMM92b]. Namely, after attaching sufficiently many free teeth (in fibres of V → Y) to
σ , the comb can be deformed to a section σ which passes through m very general points
of m very general fibres. (This also follows from the main result of the paper [HT06].
Note that since the fibres of V → U are smooth and rationally connected we are allowed
to use that result. Of course [HT06] proves something much stronger!) Combined with
the assumption that τm is dominant this implies that in fact the m-points σ(ci) hit a general
point of Vc1 × · · · × Vcm

which is the fibre of Hm
V → Symm(C) over the point

∑
ci .

The paragraph above solves the problem “pointwise”, but since the field k is un-
countable this implies the result of the lemma by a standard technique. Namely, the
above produces lots (uncountably many) of points on the scheme Sections(V×Y (C×T)/

(C × T)/T) which implies that it must have a suitable irreducible component T′ domi-
nating T (details left to the reader). �
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5. Kontsevich stable maps

In this section we review the stack Mg,I(Y/B, β) of Kontsevich stable maps. Stan-
dard references are [Kon95, FP97, BM96]. We will use these spaces in a relative setting
and where β is a partial curve class.

Let k be an algebraically closed field and let Y be a quasi-projective k-scheme.

Definition 5.1. — A stable map to Y over k is given by

(1) a proper, connected, at-worst-nodal k-curve C,

(2) a finite collection (pi)i∈I of distinct, smooth, closed points of C, and

(3) a k-morphism h : C → Y.

These data have to satisfy the stability condition that the logarithmic dualizing sheaf ωC/k(
∑

i∈I pi) is

h-ample.

The stability of the triple (C, (pi), h) can also be expressed in terms of the numbers
of special points on h-contracted components of C of arithmetic genus 0 and 1, or by
saying that the automorphism group scheme of the triple is finite. See [Kon95].

There are many invariants of a stable map of a numerical or topological nature.
One invariant is the number n = #I of marked points. Occasionally it is convenient to
mark the points by some unspecified finite set I, but usually I is simply {1,2, . . . , n}.
Another invariant is the arithmetic genus g of C. Yet another invariant is the “curve
class” of h∗([C]), which we define below. Since often we do not need the full curve class,
the following definition makes precise the notion of a “partial curve class”. We will use
NS(Y) to denote the Néron-Severi group of Y, i.e., the group of Cartier divisors up to
numerical equivalence on Y.

Definition 5.2. — Let k be an algebraically closed field and let Y be a quasi-projective k-scheme.

A partial curve class on Y is a triple (A, i, β) consisting of an Abelian group A and homomorphisms

of Abelian groups

i : A → NS(Y) and β : A → Z.

The triple will usually be denoted by β , with A being denoted Aβ and i being denoted iβ . We say a

stable map (C, (pi)i∈I, h) belongs to the partial curve class β or has partial curve class β if

for every element a in A and for every Cartier divisor D on Y with class i(a), the degree of h∗D on C
equals β(a).

Remark 5.3. — If there exists a stable map belonging to β then Ker(β) contains
Ker(i), i.e., β factors through i(A) ⊂ NS(Y). From this point of view it is reasonable to
restrict to cases where A is a subgroup of NS(Y). But it is sometimes useful to allow i to
be noninjective.
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We will also use a relative version of stable maps and of partial curve classes.

Definition 5.4. — Let Y → S be a quasi-projective morphism.

1. A family of stable maps to Y/S is given by

(1) an S-scheme T,

(2) a proper, flat family of curves π : C → T (see Definition 3.1),

(3) a finite collection of T-morphisms (σi : T → C)i∈I, and

(4) a S-morphism h : C → Y.

These data have to satisfy the stability condition that for every algebraically closed field k

and morphism t : Spec(k) → T, the base change (Ct, (σi(t))i∈I, ht) is a stable map to

Yt = Spec(k) ×t,S Y as in Definition 5.1.

2. Given two families of stable maps (T′ → S,π ′ : C′ → T′, (σ ′
i )i∈I, h′) and (T → S,π :

C → T, (σi)i∈I, h) a morphism from the first family to the second family is given by

an S-morphism u : T′ → T, and a morphism φ : C′ → C such that (a) (φ, u) forms a

morphism of flat families of curves (see 3.1), (b) σi ◦ u = φ ◦ σ ′
i , and (c) h′ = h ◦ φ.

Let Y → S be a quasi-projective morphism. Denote PicY/S the relative Picard func-
tor, see [BLR90, Section 8.1]. It is an fppf sheaf on the category of schemes over S. We
define the relative Néron-Severi functor NSY/S of Y/S to be the quotient of PicY/S by the
subsheaf of sections numerically equivalent to zero on all geometric fibres. Finally, we de-
fine the relative Néron-Severi group NS(Y/S) = NSY/S(S) to be the sections of this sheaf
over S.

Definition 5.5. — A partial curve class on Y/S is a triple (A, i, β) consisting of an Abelian

group A, and homomorphisms of Abelian groups

i : A → NS(Y/S) and β : A → Z.

For every morphism of schemes T → S there is a pullback partial curve class on YT/T given by

(A, iT, β) where iT is the composition

A
i−→ NS(Y/S) → NS(YT/T).

A family of stable maps (T → S,π : C → T, (σi)i∈I, h) to Y/S belongs to the partial curve
class β or has partial curve class β if for every algebraically closed field k and every morphism

t : Spec(k) → T, the pullback (Ct, (σi(t))i∈I, ht) belongs to the pullback partial curve class (A, it, β).

Suppose that (T → S,π : C → T, (σi)i∈I, h) is a family of stable maps to Y/S as
in Definition 5.4. For every g ≥ 0 there is an open and closed subscheme of T where
the geometric fibres of π have genus g. In addition, given a relative partial curve class
β , there is an open and closed subscheme of T where the geometric fibres ht : Ct → Yt

belong to the partial curve class βt . This is because the degree of an invertible sheaf on a
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proper flat family of curves is locally constant on the base. Thus the following definition
makes sense.

Definition 5.6. — Let Y → S be quasi-projective. For every finite set I the Kontsevich stack
of stable maps to Y/S is the stack

M∗,I(Y/S) −→ Schemes/S

whose objects and morphisms are as in Definition 5.4 above. When I is just {1, . . . , n}, this stack

is denoted M∗,n(Y/B). For every integer g ≥ 0, there is an open and closed substack Mg,I(Y/B)

parametrizing stable maps whose geometric fibres all have arithmetic genus g. And for every partial

curve class β on Y/S, there is an open and closed substack Mg,I(Y/B, β) parametrizing stable maps

belonging to the partial curve class β .

The following theorem is well known to the experts. We state it here for conve-
nience, and because we do not know an exact reference.

Theorem 5.7. — Compare [Kon95]. Let Y → S be quasi-projective, and S excellent.

1. The stack M∗,I(Y/S) is a locally finitely presented, algebraic stack over S with finite diag-

onal, satisfying the valuative criterion of properness over S when Y is proper over S.

2. If S lives in characteristic 0 then M∗,I(Y/S) is a Deligne-Mumford stack over S.

3. If Y is proper over S and if (A, i, β) is a partial curve class such that i(A) contains the

class of a S-relatively ample invertible sheaf on Y, then Mg,I(Y/S, β) is proper over S with

projective coarse moduli space.

Proof. — (Sketch.) Forgetting the sections gives a 1-morphism from M∗,I(Y/S)

to CurveMaps(Y/S). It is easy to see that this morphism is representable and smooth.
Hence, by Proposition 3.6 the stack M∗,I(Y/S) is algebraic locally of finite presentation
over S, with finitely presented diagonal. For the valuative criterion of properness, see
[Kon95, bottom page 338]. Finiteness of the diagonal is, in view of quasi-compactness
(see above), a consequence of the valuative criterion of properness for Isom between
stable maps (basically trivial), combined with the fact that by definition stable maps have
finite automorphism groups (gives quasi-finiteness). This proves 1. In characteristic zero
a stack with finite diagonal is Deligne-Mumford, because automorphism group schemes
are reduced. Finally, to see 3 note that Mg,I(Y/S, β) is quasi-compact in this case by
the argument in [Kon95, page 338]. Thus it is proper over S, see [Ols05] and [Fal03,
Appendix]. By [KM97] the coarse moduli space exists, and by the above it is proper
over S. The projectivity of this coarse moduli space will not be used in the sequel; a
reference is [AV02, Section 8.3]. �

Notation 5.8. — A simple case of a partial curve class is as follows. Let Y → S be quasi-

projective and let L be an S-ample invertible sheaf on Y. For every integer e there is a partial curve
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class β = (Z,1 �→ [L],1 �→ e). When L is understood, the corresponding Kontsevich moduli space is

denoted Mg,n(Y/S, e).

6. Stable sections and Abel maps

In this section we introduce the stack �e(X/C/S) of stable sections as a special
case of Kontsevich moduli spaces. This is a compactification of the space of sections.
We explain the connection to combs, a ubiquitous notion in rational curves on algebraic
varieties. Finally, we introduce the Abel map in this setting, see Lemma 6.7.

Situation 6.1. — In this section C → S is a proper, flat family of curves (see 3.1) whose

geometric fibres are connected smooth projective curves of some fixed genus g(C/S). Moreover, f : X → C
is a proper morphism, and L is an f -ample invertible sheaf on X.

Here the group NS(C/S) (see discussion preceding 5.5) is a free Abelian group of
rank 1, simply because any two invertible sheaves on the family are numerically equiv-
alent on geometric fibres if and only if they have the same degree on the fibres. Denote
[point] the element of NS(C/S) that fppf locally on S corresponds to an invertible sheaf
on C having degree 1 on the fibres.

Consider the relative partial curve class βC/S = (Z,1 �→ [point],1 �→ 1) on C/S
(compare 5.8). For all nonnegative integers g and n, we denote

Mg,n(C/S,1) := Mg,n(C/S, βC/S).

Loosely speaking the stable maps h arising from points of this algebraic stack have one
component that maps birationally to a fibre of C → S, and all other components are
contracted. If g = g(C/S), then the contracted components all have genus zero.

Denote by [fibre] the pullback f ∗[point] in NS(X/S). For every integer e, denote
by βe the relative partial curve class (Z ⊕ Z, i, βe) with i(1,0) = [fibre], i(0,1) = L and
βe(1,0) = 1, βe(0,1) = e. Using this notation, for all nonnegative integers g and n, we
may consider the algebraic stacks

Mg,n(X/S, βe)

introduced in the previous section. When g = g(C/S) a stable map h arising from a point
of this algebraic stack gives rise to a generalized section of Xs/Cs having total degree e

with respect to L for some geometric point s of S.
There is an obvious way in which βe and βC/S are related. Thus by [BM96, Theo-

rem 3.6], there are 1-morphisms of algebraic S-stacks

Mg,n(f ) : Mg,n(X/S, βe) −→ Mg,n(C/S,1).
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Definition 6.2. — In Situation 6.1. For every nonnegative integer n and every integer e, the
space of n-pointed, degree e, stable sections of f is the algebraic stack

�e
n(X/C/S) := Mg(C/S),n(X/S, βe).

We will also use the variant �e
I(X/C/S) where the sections are labeled by a given finite set I. Finally,

�e(X/C/S) = �e
0(X/C/S).

We also have the analogue of Definitions 4.2 and 4.5.

Definition 6.3. — In Situation 6.1. A family of n-pointed, degree e sections of X/C/S
over T → S is given by a family (τ, θ) of sections of f (see Definition 4.1) together with pairwise disjoint

sections σi : T → T ×S C, i = 1, . . . , n, such that τ ∗L has degree e on the fibres of T ×S C → T.

We leave it to the reader to define morphisms of families of n-pointed, degree e sections of X/C/S.

We will denote such a family as (T → S, σi : T → T ×S C, h : T ×S C → X). In
other words τ is replaced by h and we drop the notation θ since in this case it just signifies
that f ◦ h equals the projection map T ×S C → S.

The functor which associates to T/S the set of isomorphism classes of families of
n-pointed, degree e sections of X/C/S is an algebraic space Sectionse

n(X/C/S) locally
of finite presentation over S. There are two ways to see this. First, we can use that the
natural 1-morphism

Sectionse
n(X/C/S) −→ Sections(X/C/S)

is representable and smooth as C → S is smooth (proof omitted). Theorem 4.3 part (2)
guarantees Sections(X/C/S) is an algebraic stack locally of finite presentation over S. (If
C → S is projective then it follows from part (1) of Theorem 4.3.) Combined we conclude
that Sectionse

n(X/C/S) is an algebraic stack locally of finite presentation over S. Second,
there is another obvious 1-morphism, namely

Sectionse
n(X/C/S) −→ �e

n(X/C/S).

This 1-morphism is representable by open immersions of schemes. In this precise sense,
the proper, algebraic S-stack �e

n(X/C/S) is a “compactification” of Sectionse
n(X/C/S).

And of course this also implies that Sectionse
n(X/C/S) is an algebraic stack locally of finite

presentation over S.
We will also use the variant Sectionse

I(X/C/S) where the sections are labeled by a
given finite set I.

Notation 6.4. — Let n be a nonnegative integer. Let I be a set of cardinality n. Let e be an

integer. Let δ be a nonnegative integer. Let J be a set of cardinality δ. Let e = (e0, (ej)j∈J) be a collection

of integers such that e = e0 + ∑
j∈J ej . Let I = (I0, (Ij)j∈J) be a collection of subsets of I such that
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I = I0 � �j∈JIj is a partition of I. The triple (J, e, I) is called an indexing triple for (e, I). In the

special case that I = ∅, so that every subset I0 and Ij is also ∅, this is called an indexing pair for e

denoted (J, e).

We are going to define an algebraic stack Combe

I(X/C/S) of I-pointed, degree e

combs. A point will correspond to a degree e stable section with marked points indexed
by I0 � J and for every j a vertical genus zero degree ej curve with marked points indexed
by Ij � {j}. These will be “attached” by requiring the points marked j (on the handle and
tooth) to map to the same point of X.

Definition 6.5. — In Situation 6.1. A family of I-pointed, degree e combs in

(X/C/S, L) as above is given by the following data

(1) an S-scheme T
(2) an object ζ0 = (π0 : C0 → T, (pi : T → C0)i∈I0 ∪ (qj : T → C0)j∈J, h0 : C0 → X) of

�
e0
I0�J(X/C/S) over T, and

(3) for j ∈ J, an object ζj = (πj : Cj → T, (pi : T → Cj)i∈Ij
∪ (rj : T → Cj), hj : Cj → X)

of M0,Ij�{j}(X/C, ej) as in Notation 5.8 over T.

These data should satisfy the requirement that h0 ◦ qj equals hj ◦ rj as morphisms T → X for every

j ∈ J.

Morphisms of I-pointed, degree e combs in X/C/S are defined in the obvious way.
The category of families of I-pointed, degree e combs in X/C/S with pullback diagrams
as morphisms is an S-stack denoted Combe

I(X/C/S).
Given a family (ζ0, (ζj)j∈J) of combs, the family ζ0 is the handle and the families

(ζj)j∈J are the teeth. There is a “forgetful” 1-morphism

�handle : Combe

I(X/C/S) −→ �
e0
I0�J(X/C/S)

called the handle 1-morphism. Similarly, for every j ∈ J there is a 1-morphism

�tooth,j : Combe
n(X/C/S) −→ M0,Ij�{j}(X/C, ej)

called the j th tooth 1-morphism. Moreover as constructed in [BM96, Theorem 3.6], specifi-
cally Case II on p. 18, there is also a total curve 1-morphism

�total : Combe

I(X/C/S) −→ �e
I(X/C/S)

obtained by attaching rj(T) in Cj to qj(T) in C0 for every j ∈ J.
By definition, Combe

I(X/C/S) together with the handle and tooth 1-morphisms is
the equalizer of the collection of marked point 1-morphisms associated to (qj, rj)j∈J. Since
each of �

e0
I0�J(X/C/S) and M0,Ij�{j}(X/C, ej) is a proper, algebraic S-stack with finite

diagonal, the same is true for the equalizer Combe

I(X/C/S).
The canonical open substack, Combe

I,open(X/C/S), is defined to be the inverse image
under �handle of the open substack Sectionse0

I0�J(X/C/S) of �
e0
I0�J(X/C/S).
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Proposition 6.6. — In Situation 6.1. Given indexing triples (J′, e′, I′) and (J′′, e′′, I′′), the

images of

�total : Comb
e′
I′,open(X/C/S) → �e

I(X/C/S)

and

�total : Comb
e′′
I′′,open(X/C/S) → �e

I(X/C/S)

intersect only if there exists a bijection φ : J′ → J′′ such that e′′φ(j) = e′j and I′′
φ(j) = I′

j for every j ∈ J′.
If such a bijection exists, the images are equal. Finally, for every algebraically closed field k over S, every

object of �e
I(X/C/S) over Spec k is in the image of

�total : Comb
e

I,open(X/C/S) → �e
I(X/C/S)

for some collection (J, e, I).

Proof. — This is left to the reader. �

Lemma 6.7. — In Situation 6.1 assume S is excellent. For every integer e there exists a 1-

morphism over S

αL : �e(X/C/S) −→ Pice
C/S

with the following property: For every indexing pair (J, e) for e the composition

Combe
open(X/C/S) → �e(X/C/S) → Pice

C/S

on the level of objects over a scheme T of finite type over S maps the object (ζ0, ζj) as in Definition 6.5 to

the class of the invertible sheaf

h∗
0(L)

(∑

j∈J
ejqj(T)

)

on T ×S C.

Proof. — We use the material preceding Definition 3.11. Any flat proper family of
nodal curves is LCI in the sense of Definition 3.7. Thus there is a morphism of stacks

�e(X/C/S) −→ CurveMapsLCI(C × BGm)

which associates to (T → S,π : C′ → T, h : C′ → X) the object (T → S,π : C′ → T, f ◦
h : C′ → C, h∗L). Hence we may use the construction of Definition 3.11 which gives a
1-morphism

CurveMapsLCI(C × BGm) −→ PicC/S.

To prove this map satisfies the property expressed in the lemma it suffices to apply
Lemma 3.12. �
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7. Peaceful chains

In this section we study free lines and free chains of lines on a family of projective
varieties. Their key feature is that they are unobstructed. An important notion is that of
a peaceful point, see Definition 7.4. The key feature is that these are connected to any
general point by a chain of free lines. Hypothesis 7.7 is our notion of being rationally
simply connected by chains of free lines.

Let S be an excellent scheme. Let f : X → S be a proper, flat morphism with ge-
ometrically irreducible fibres. Let L be an f -ample invertible sheaf on X. Recall (5.8)
that M0,n(X/S,1) parametrizes stable n-pointed genus 0 degree 1 maps from connected
nodal curves to fibres of X → S. Over a geometric point s : Spec(k) → S such a stable
map (C/k, p1, . . . , pn ∈ C(k), h : C → Xs) is nonconstant on exactly one irreducible com-
ponent L of C because L is ample. Then, L ∼= P1

k , the map L → Xs is birational onto
its image and corresponds to a point of M0,0(X/S,1). We will call L → Xs a line, and
(C/k, p1, . . . , pn ∈ C(k), h : C → Xs) an n-pointed line. If n = 0 or n = 1 then L = C. If
n = 2 it may happen that C = L ∪ C′, with p1, p2 ∈ C′(k) and where C′ is contracted.
However, one gets the same algebraic stack (in the case n = 2) by considering moduli of
triples (L, p1, p2 ∈ L(k), h : L → Xs) where p1 and p2 are allowed to be the same point
of L. We will use this below without further mention. For any n ≥ 0 the objects of the
stack M0,n(X/S,1) have no nontrivial automorphisms, as is clear from their description
above. Hence M0,n(X/S,1) is actually an algebraic space.

Definition 7.1. — Notation as above. An n-pointed line is free if the morphism L → Xs → X
factors through the smooth locus of X/S and the pullback of TXs

via the morphism L → Xs is globally

generated.

We leave it to the reader to show that the locus of free lines defines an
open subspace of M0,n(X/S,1). For every integer n there is an algebraic space
FreeChain2(X/S, n) over S parametrizing 2-pointed chains of n free lines in fibres of f .
To be precise, FreeChain2(X/S, n) is an open subset of the n-fold fibre product2

M0,2(X/S,1) ×ev2,X,ev1 M0,2(X/S,1) ×ev2,X,ev1 · · · ×ev2,X,ev1 M0,2(X/S,1).

The points of FreeChain2(X/S) over a geometric point s : Spec(k) → S correspond to n-
tuples of 2-pointed lines (Ci/k, pi,1, pi,2 ∈ Ci, hi : Ci → Xs) such that hi(pi,2) = hi+1(pi+1,1)

for i = 1, . . . , n − 1 and such that each of the 2-pointed lines is free. We will sometime
denote this by (C/k, p, q ∈ C(k), h : C → Xs). This means that C is the union of the curves
Ci with pi,2 identified with pi+1,1, with h equal to hi on Ci and p = p1,1 and q = pn+1,2. Note
that there are n + 1 natural evaluation morphisms

evi : FreeChain2(X/S) −→ X, i = 1, . . . , n + 1

2 This fibre product will be denoted Chain2(X/C, n) later on.
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over S, namely evi([(Ci/k, pi,1, pi,2 ∈ Ci, hi : Ci → Xs)]i=1,...,n) = hi(pi,1) for i = 1, . . . , n

and evn+1 on the same object evaluates to give hn(pn,2). In the variant notation described
above we have ev1((C/k, p, q ∈ C(k), h : C → Xs)) = h(p) and evn+1((C/k, p, q ∈ C(k), h :
C → Xs)) = h(q). Note that these morphisms map into the smooth locus of the morphism
X → S.

Lemma 7.2. — With notation as above. For every positive integer n and for every integer i =
1, . . . , n + 1, the evaluation morphism evi : FreeChain2(X/S, n) −→ X is a smooth morphism. In

particular FreeChain2(X/S, n) is smooth over S.

Proof. — We claim the morphism ev : M0,1(X/S,1) → X is smooth on the locus
of free lines. This is true because, given a free 1-pointed line h : L → Xs, p ∈ L(k) the
corresponding deformation functor has obstruction space H1(L, h∗TXs

(−p)). This is zero
as h∗TXs

is globally generated by assumption. A reference for the case where S is a point
is [Kol96, Proposition II.3.5]. Combined with a straightforward induction argument, this
proves that the morphisms evi are smooth. �

Lemma 7.3. — Notation as above. Suppose that s : Spec(k) → S is a geometric point. Suppose

that (C/k, p, q ∈ C(k), h : C → Xs) is a free 2-pointed chain of lines of length n. If ev1,n+1 :
FreeChain2(X/S, n) → X ×S X is smooth at the corresponding point then:

(1) H1(C, h∗TXs
(−p − q)) = 0, and

(2) for any free line hL : L → Xs passing through h(q) and any point r ∈ L the morphism

ev1,n+2 : FreeChain2(X/S, n + 1) → X ×S X is smooth at the point corresponding to the

chain of free lines of length n + 1 given by (C ∪ L, p, r ∈ (C ∪ L)(k), h ∪ hL).

Proof. — If the morphism ev1,n+1 is smooth then in particular the map h∗TXs
→

h∗TXs
|p ⊕ h∗TXs

|q is surjective on global sections. Using freeness of the chain this implies
statement (1). Let C′ = C ∪ L, and h′ = h ∪ hL. Part (1) and the freeness of L imply
that H1(C′, (h′)∗TXs

(−p − r)) is zero. Part (2) follows by deformation theory from this
vanishing. �

Definition 7.4. — In the situation above. A geometric point x ∈ Xs(k) lying over the geometric

point s : Spec(k) → S is peaceful if both

(1) the evaluation morphism ev : M0,1(X/S,1) → X is smooth at every point in ev−1(x),

and

(2) for all n � 0, the evaluation morphism ev1,n+1 : FreeChain2(X/S, n) → X ×S X is

smooth at some point (C/k, p, q ∈ C(k), h : C → Xs) with h(p) = x.

The second condition implies that there is at least one free line through every
peaceful point, and hence that a peaceful point lies in the smooth locus of X → S. The
first implies, upon considering the derivative of ev that all lines through a peaceful point
are free. Note that there may be situations where there are no peaceful points whatsoever.
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Lemma 7.5. — In the situation above. The set Xf ,pax of peaceful points of X is an open subset

of X. Furthermore, there exists an n0 such that the second condition of Definition 7.4 holds for all peaceful

points and all n ≥ n0.

Proof. — Denote by Z the singular set of the morphism ev : M0,1(X/S,1) → X.
Since ev is proper, ev(Z) is a closed subset of X. Thus the complement U′ = X \ ev(Z)

is the maximal open subset of X such that ev : ev−1(U′) → U′ is smooth. For every n,
denote by Vn the open subset of FreeChain2(X/S, n) on which

ev1,n+1 : FreeChain2(X/S, n) → X ×S X

is smooth. The image V′
n := ev1(Vn) is open by Lemma 7.2. By Lemma 7.3 we have V′

1 ⊂
V′

2 ⊂ . . .. Since S and hence X is Noetherian we find n0 such that Vn0 = Vn0+1 = . . . . It
is clear that the set V′ := U′ ∩ ⋃

n≥1 V′
n is open and equals Xf ,pax. �

Remark 7.6. — In fact, consider the open subset Wn ⊂ X ×S X above which the
morphism ev1,n+1 : FreeChain2(X/S, n) → X ×S X has some smooth point. This is an
increasing sequence by Lemma 7.3 as well and hence stabilizes to Wn1 for some n1.

Definition 7.7. — In the situation above. Let U be an open subset of Xf ,pax. Let n > 0. A

U-adapted free chain of n lines is a point [h] ∈ FreeChain2(X/S, n) such that evi([h]) ∈ U for

all i = 1, . . . , n + 1. When U is all of Xf ,pax, this is sometimes called a peaceful chain. The subset

of FreeChain2(X/S, n) parametrizing U-adapted free chains is denoted FreeChainU
2 (X/S, n). When

U is all of Xf ,pax we sometimes use the notation PeaceChain2(X/S, n).

Without more hypotheses on our morphism f : X → S and relatively ample in-
vertible sheaf L we cannot say much more (since after all the set of lines in fibres might
be empty). A variety V over an algebraically closed field k is rationally connected if
there exists a variety T and a morphism T × P1 → V such that the induced morphism
T × P1 × P1 → V × V is dominant. A variety is birationally rationally connected if it
is birational to a rationally connected variety. Note that An

k is birationally rationally con-
nected but not rationally connected. On the other hand, a proper birationally rationally
connected variety is rationally connected.

Hypothesis 7.8. — Let S be an excellent scheme of characteristic 0. Let f : X → S be a

proper flat morphism with geometrically irreducible fibres. Let L be f -ample. In addition we assume the

following.

(1) There exists an open subset U of X surjecting to S and such that the geometric fibres of the

evaluation morphism

ev : M0,1(X/S,1) → X

over U are nonempty, irreducible and rationally connected.
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(2) There exists a positive integer m0 and an open subset V of X ×S X surjecting to S and such

that the geometric fibres of the evaluation morphism

ev1,n+1 : FreeChain2(X/S,m0) −→ X ×S X

over V are nonempty, irreducible and birationally rationally connected.

Note that condition (2) in particular implies that the smooth locus of f intersects every
fibre of f . Namely, the open V is contained in Smooth(X/S) ×S Smooth(X/S) by the
definition of free lines. In addition condition (2) shows that the smooth locus of each
geometric fibre of X → S is rationally chain connected by free rational curves, and hence
rationally connected.

Lemma 7.9. — In Situation 7.8 the set Xf ,pax of peaceful points is dense in every smooth fibre

of X → S. (Warning: There may not be any smooth fibres.)

Proof. — First replace S by the open subscheme over which the morphism is
smooth. In characteristic 0 lines passing through a general point of a smooth vari-
ety are free, see [KMM92a, Proposition 1.1]. Hence the open U′ of the proof of
Lemma 7.5 has a nonempty intersection with every fibre of f . On the other hand, con-
dition 2 of 7.8 implies that for every point s of S the morphism FreeChain2(X/S,m0)s →
(X ×S X)s is a dominant morphism of smooth varieties. Hence it is smooth at some point
ξ ∈ FreeChain2(X/S,m0)s by generic smoothness. The “critère de platitude par fibre”
[Gro67, Theorem 11.3.10] implies that ev1,n+1 is flat at ξ and hence smooth as desired.
Thus the open V′

m0
of the proof of lemma 7.5 has nonempty fibre V′

m0,s
. We win because

Xf ,pax ⊃ U′ ∩ V′
m0

. �

Remark 7.10. — In Situation 7.8 if Xs is a geometric fibre such that for a general
point x ∈ Xs the lines through x avoid the singular locus of Xs, then the set of peaceful
points is dense in Xs also. Hypothesis 7.8 holds if X is a cubic hypersurface with a single
ordinary double point in P9

k over S = Spec k. In this case lines through a general point
do not pass through the double point and we conclude that the peaceful points are dense.
We will not use this remark in the sequel.

Lemma 7.11. — In Situation 7.8.

(1) The geometric fibres of ev : M0,1(X/S,1) → X over Xf ,pax are proper, smooth and

rationally connected.

(2) If U is a nonempty open subset of Xf ,pax, then FreeChainU
2 (X/S, n) is an open dense subset

of FreeChain2(X/S, n). In fact, it is dense in the fibre of FreeChain2(X/S, n) → S over

any point s for which Us �= ∅.

(3) For every integer i = 1, . . . , n + 1, each morphism

evi : FreeChainU
2 (X/S, n) −→ U,
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is a smooth morphism and every geometric fibre is nonempty, irreducible and birationally

rationally connected.

Proof. — Since ev : M0,1(X/S,1) → X is a proper morphism and since the geo-
metric generic fibre of ev is rationally connected, every fibre in the smooth locus of ev is
rationally connected by [KMM92b, 2.4] and [Kol96, Theorem IV.3.11]. In particular,
the fibre over every peaceful point is in the smooth locus and thus is rationally connected.
This proves (1).

By Lemma 7.2, the morphisms evi of (3) are smooth. Thus the preimages ev−1
i (U)

are dense open subsets. It follows that the finite intersection FreeChainU
2 (X/S, n) =

⋂n+1
i=1 (ev−1

i (U)) is also a dense open subset. The same argument works for fibres. This
proves (2).

Next let x be a geometric point of U. The fibre of

ev1 : FreeChainU
2 (X/S, n) −→ U

over x is the total space of a tower of birationally rationally connected fibrations. Indeed,
the variety parametrizing choices for the first line L1 of the chain containing x = p1,1

is the fibre of ev : M0,1(X/S,1) → X over x. Next, given L1, the variety parametriz-
ing choices for the attachment point p1,2 is the intersection of L1 with U, which is bira-
tionally rationally connected since it is open in L1

∼= P1. Next, the variety parametrizing
lines L2 containing p1,2 = p2,1 is rationally connected for the same reason that the vari-
ety parametrizing lines L1 is rationally connected, etc. By [GHS03], the total space of
a tower of birationally rationally connected fibrations is itself birationally rationally con-
nected. Thus the geometric fibres of ev1 are birationally rationally connected. The proof
of (3) for the other morphisms evi is similar. �

Proposition 7.12. — In Situation 7.8. There exists a positive integer m1 such that for every

integer n ≥ m1 and for every nonempty open subset U of Xf ,pax there exists an open subset Un of

FreeChainU
2 (X/S, n) whose intersection with every geometric fibre of

ev1,n+1 : FreeChainU
2 (X/S, n) −→ U ×S U

is nonempty, smooth, irreducible and birationally rationally connected.

Proof. — Let n0 be the integer of Lemma 7.5. Let m0 be the integer of Hypothe-
sis 7.8. We claim that m1 = 2n0 + m0 works.

Namely, suppose that n ≥ m1. Write n = a + m0 + b, with a ≥ n0 and b ≥ n0. Con-
sider the open sets

A = eva+1(FreeChainU
2 (X/S, a)) ⊂ X, and

B = ev1(FreeChainU
2 (X/S, b)) ⊂ X.
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These have nonempty fibre over every point of S over which the fibre of U → S is
nonempty by Lemma 7.11. For B use that there is an automorphism on the space of
chains which switches the start with the end of a chain. As a first approximation we let

Un = ev−1
a+1(A) ∩ ev−1

a+1+m0
(B) ∩ ev−1

a+1,a+1+m0
(V) ⊂ FreeChainU

2 (X/S, n).

Here V ⊂ X ×S X is the open set of Hypothesis 7.8. Let us describe the geometric points
of Un. Let s : Spec(k) → S be a geometric point of S such that Us �= ∅. A point ξ ∈ Un(k)

is given by the following data:

(1) a point x ∈ As(k), a point y ∈ Bs(k), such that (x, y) ∈ Vs(k),
(2) a U-adapted free chain of a lines ξa with end point at x,
(3) a U-adapted free chain of b lines ξb with start point at y, and
(4) a U-adapted 2-pointed free chain ξm of m0 lines connecting x to y.

The morphism Un → U ×S U maps ξ as above to the pair (x′, x′′) ∈ Us(k)
2 consisting of

the start point x′ of ξa and the end point x′′ of ξb. According to Lemma 7.11 the set of
choices of ξa and ξb, given x′ and x′′, is a nonempty smooth irreducible, birationally ratio-
nally connected variety. For every pair (ξa, ξb) we get a pair of points (x, y) as above and
since Vs �= ∅ it is a nonempty open condition to have (x, y) ∈ Vs(k). By the Hypothesis 7.8
the set of choices of ξm connecting x with y forms an irreducible, birationally rationally
connected variety. Using [GHS03], it follows that the fibre of Un over (x′, x′′) is smooth
and birationally rationally connected.

We are not yet assured that ev1,n+1 : Un → U ×S U is smooth. Let U′
n ⊂ Un be

the smooth locus of this morphism. We claim that U′
n ⊂ Un is dense in every geometric

fibre ev−1
1,n+1((x

′, x′′)) we studied above, which will finish the proof of the proposition. By
irreducibility of this fibre it suffices to show U′

n intersects the fibre. Since a ≥ n0 we know
by Lemma 7.5 that there is a chain ξa as above which represents a point where ev1,a+1

is smooth. Similarly for ξb. By openness of smoothness, we may assume the associated
pair (x, y) is an element of Vs(k). Pick any free chain ξm connecting x and y as above.
We claim that the resulting chain of length a + m0 + b represents a smooth point for the
morphism ev1,n+1. The last part of the proof is similar to the proof of Lemma 7.3 and
uses the results of that lemma. Namely, ξm corresponds to a chain of lines L1, . . . ,Ln and
points pi,j , i ∈ {1, . . . , n}, j ∈ {1,2}, such that (where we simply write TXs

to denote the
pullback) H1(L1 ∪ . . .∪La,TXs

(−p1,1 −pa,2)) = 0, H1(La+m0+1 ∪ . . .∪Ln,TXs
(−pa+m0+1,1 −

pn,2)) = 0, and the lines La+1, . . . ,La+m0 are free. It is easy to see that this implies that
H1(L1 ∪ . . . ∪ Ln,TXs

(−p1,1 − pn,2)) = 0. This finishes the proof as in Lemma 7.3. �

8. Porcupines

In this section we define the notion of a porcupine for a family X/C of vari-
eties over a curve. Using porcupines and an irreducible component Z of �(X/C/k)
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parametrizing a free section Lemma 8.4 produces a sequence of irreducible components
Ze of �(X/C/k). Namely Ze is the component containing porcupines of degree e whose
body is in Z. It will turn out later that this sequence is asymptotically canonical, i.e., in-
dependent of the choice of Z, see Corollary 9.8. An interesting fact is that the Abel map
restricted to Ze has irreducible geometric generic fibre when e � 0, see Lemma 8.9 and
Remark 8.10.

Hypothesis 8.1. — Here k is an uncountable algebraically closed field of characteristic 0. Let C
be a smooth, irreducible, proper curve over k. Let X be smooth and proper over k. Let f : X → C be

proper and flat with geometrically irreducible fibres. The invertible OX-module L is f -ample.

We are going to apply the material of the previous section to this situation. In
particular, let Xf ,pax be the set of peaceful points relative to f : X → C, see Lemma 7.5.
Here is one more type of stable map that arises often in what follows.

Definition 8.2. — Notation as above. Let e be an integer and let n be a nonnegative integer. A

degree e porcupine with n quills over k is given by the following data

(1) a section s : C → X of degree e with respect to L,

(2) n distinct points q1, . . . , qn ∈ C(k), and

(3) n 1-pointed lines (ri ∈ Li(k),Li → Xqi
).

These data have to satisfy the requirements that (a) the set s−1(Xf ,pax) �= ∅ and each qi is in this

open set, (b) the points ri and qi get mapped to the same k point of X, and (c) the section s is free (see

Definition 4.7).

It may be useful to discuss this a bit more. The first remark is that by our definitions
the image of s lies in the smooth locus of X/C and all the lines Li are free and lie in the
smooth locus as well. In other words, the union C ∪ (

⋃
Li) → X is going to be a comb

(see Definition 6.5) in the smooth locus. We will call the handle s : C → X the body of the
porcupine, and we will call the teeth Li → X the quills.

Families of degree e porcupines with n quills are defined in the obvious man-
ner; for example we may observe that the space of porcupines of degree e and n quills
is an open substack of the moduli stack Combe

I(X/C/k) with I = (∅,∅, . . . ,∅), and
e = (e,1, . . . ,1) of combs studied in Section 6. The parameter space for porcupines is
denoted Porcupinee,n(X/C/k).

Denote by

�total : Porcupinee,n(X/C/κ) −→ �e+n(X/C/κ),

�body : Porcupinee,n(X/C/κ) −→ Sectionse
n(X/C/k),

�quill,i : Porcupinee,n(X/C/κ) −→ M0,1(X/C,1),

�forget : Porcupinee,n+m(X/C/κ) −→ Porcupinee,n(X/C/κ)
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the obvious forgetful morphisms where �forget forgets about (ri ∈ Li(k),Li → Xqi
) and qi

for i > n. Note that �forget is smooth.

Lemma 8.3. — In Situation 8.1. Let n ≥ 1. If the geometric generic fibre of f is rationally

connected then there exists a n-free section of f . If the set of peaceful points is nonempty then we may

assume the section meets this locus.

Proof. — By Lemma 4.12 it suffices to construct a section that is D-free for some
divisor D of degree 2g(C) + n. Set m = 2g(C) + n. Consider the subsets Wm

e of Hm
X,f

introduced in Proposition 4.15. Since Wm
e is constructible and dense in Hm

X,f there exists a
nonempty open subset Um

e ⊂ Hm
X,f , such that Um

e ⊂ Wm
e . Moreover the proposition implies

that a section τ : C → Xf ,smooth will be D-free for some effective divisor D ⊂ C of degree m

provided that the restriction τ |D is in
⋂

e Um
e . By Lemma 4.17 (applied with T = Spec(k),

m = m, U = Y = C, and V = Xf ,smooth and W = X) we can find a family of sections
τ ′ : T′ × C → X such that the rational map τ ′

m : T′ × Symm(C) ��� Hm
X,f is dominant.

Hence, for a very general t′ ∈ T′(k) and very general divisor D ⊂ C of degree m we have
τ |D ∈ ⋂

Um
e with τ = τ ′

t′ . We omit the proof of the last statement. �

Before we state the next lemma, we wish to remind the reader that an irreducible
scheme is necessarily nonempty. Also, see Remark 8.10 below for a more “lightweight”
variant of some of the following lemmas.

Lemma 8.4. — In Situation 8.1, assume in addition Hypothesis 7.8 for the restriction of f to

some nonempty open subscheme S ⊂ C. Let e0 be an integer and let Z be an irreducible component of

�e0(X/C/k) whose general point parametrizes a free section of f . For every integer e ≥ e0 there exists

a unique irreducible component Ze of �e(X/C/k) such that every porcupine with body in Z and with

e − e0 quills is parametrized by Ze .

Proof. — Take any point [s] of Z corresponding to a section s which is free. By
Proposition 4.13, the space �e0(X/C/k) is smooth at the point [s]. Thus this point is con-
tained in a unique irreducible component of �e0(X/C/k), namely Z. By Lemma 4.13 free
sections deform to contain a general point of X. The set of peaceful points is nonempty
by Lemma 7.9. Hence there are also points [s] of Z which correspond to free sections s

which intersect the peaceful locus. For every such section s, the inverse image s−1(Xf ,pax)

is a dense open subset of C. Thus the variety parametrizing (e− e0)-tuples of closed points
(q1, . . . , qe−e0) in s−1(Xf ,pax) is smooth and irreducible. By definition of peaceful the fibre
of

ev : M0,1(X/C,1) → X

over s(qi) is smooth and by Lemma 7.11 it is irreducible. Putting the pieces together, the
variety WZ,e parametrizing degree e porcupines with body in Z is smooth and irreducible.
Moreover, because the body is unobstructed and because the teeth are all free, each such
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porcupine is unobstructed. Thus �e(X/C/k) is smooth at every point of WZ,e. Thus WZ,e

is contained in a unique irreducible component Ze of �e(X/C/k). �

Lemma 8.5. — Notation and assumptions as in Lemma 8.4. Let e ≥ e0. A general point of Ze

corresponds to a section of X → C which is free and meets Xf ,pax.

Proof. — Another way to state this lemma is that (1) we can smooth porcupines, and
(2) a smoothing of a porcupine is a porcupine. Consider a porcupine (s, ri ∈ Li(k),Li →
X). Let h : C ∪ ⋃

Li → X be the corresponding stable map. We noted in the proof of
Lemma 8.4 above that the map h is unobstructed. Hence any smoothing of the comb
C ∪ ⋃

Li → C can be followed by a deformation of h. We can realize C ∪ ⋃
Li as the

special fibre of a family of curves over C whose general fibre is C, simply by blowing up
C × P1 in suitable points of the fibre C × {0}. Thus we can smooth the stable map h.

Consider a general smoothing s′ : C → X of h. The statement on the intersection
with Xf ,pax holds since this is clearly an open condition on all of Ze. To see that the
smoothing s′ of (s, ri ∈ Li(k),Li → X) is free we will use Lemma 3.13. It suffices to show
for any effective Cartier divisor D ⊂ C of degree 1 that H1(C

⋃
Li, h∗Tf (−D)) = 0. And

this is immediate from the assumption that H1(C, s∗Tf (−D)) = 0 and Tf |Li
is globally

generated. �

Lemma 8.6. — Notation and assumptions as in Lemma 8.4. For any e′ ≥ e ≥ e0, any porcupine

of total degree e′ with body in Ze and e′ − e quills corresponds to a point of Ze′ .

Proof. — Let [s] ∈ Ze be the moduli point corresponding to a section of X → C
which meets Xf ,pax and is free. Because Ze is irreducible, and because of the construction
of Ze we can find an irreducible curve T, a morphism h : T → Ze, and points 0,1 ∈ T(k)

such that h(0) = [s] and h(1) corresponds to a point of WZ,e (see proof of Lemma 8.4).
After deleting finitely many points �= 0,1 from T we may assume every point t ∈ T(k),
t �= 1 corresponds to a section st which is free (see Lemma 4.8) and meets Xf ,pax. Thus ev-
ery point h(t) ∈ Ze corresponds to a porcupine. Consider the scheme T′ → T parametriz-
ing choices of e′ − e quills attached to the body of the porcupine h(t), t ∈ T(k) in pairwise
distinct points of Xf ,pax. As in the proof of Lemma 8.4 there is an irreducible parame-
ter space of choices, in other words T′ is irreducible. Also T′ ⊂ �e′(X/C/k) lies in the
smooth locus, because each point of T′ corresponds to a porcupine. The result follows
because T′

1 ⊂ Ze′ by definition of Ze′ and T′
0 parametrizes porcupines with body s. �

Lemma 8.7. — Notation and assumptions as in Lemma 8.4. Let e ≥ e0. Let [s] ∈ Ze(k) be a

point corresponding to a 0-free section s : C → X. Let (hi : Ci → X, pi ∈ Ci(k)) be a finite number of

1-pointed chains of free lines in fibres of f . Assume hi(pi) ∈ s(C) and assume hi(pi) pairwise distinct.

Then s(C) ∪ ⋃
Ci defines an unobstructed nonstacky point of �e′(X/C/k) which lies in Ze′ with

e′ = e + ∑
deg(Ci).
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Proof. — There are no automorphisms of the stable curve s(C) ∪ ⋃
Ci , see our

discussion of lines in Section 7. Since s is 0-free and each line in each chain Ci is free,
there are no obstructions to deforming s(C) ∪ ⋃

Ci, hence �e′(X/C/k) is smooth at the
corresponding point. In particular, this point lies in a unique irreducible component. The
next goal is to prove that this irreducible component equals Ze′ .

Because the evaluation morphisms FreeChain1(X/C, n) → X are smooth
(Lemma 7.2), we may replace s by any of its deformations. And by Lemma 8.5, af-
ter deforming we may assume that s−1(Xf ,pax) is nonempty and that s is free. By the
smoothness of FreeChain1(X/C, n) → X again we may deform the 1-pointed chains
(Ci → X, pi) and assume pi ∈ s(C) ∩ Xf ,pax.

The lemma follows from Lemma 8.6 by induction on the length of the chains of
free lines attached to the body. Namely, let Li ⊂ Ci be the first line of the chain, i.e., the
line that contains pi. Let C′

i be the rest of the chain, and let p′
i ∈ C′

i be the attachment
point (where it is attached to Li ). Any deformation of s(C) ∪ ⋃

Li to a section s′ : C → X
lies in Ze0+m by construction. Here m is the number of chains Ci. By the smoothness of
FreeChain1(X/C, n) → X again we may deform the 1-pointed chains (C′

i → X, p′
i) along

with the given deformation to obtain p′
i ∈ s′(C). By induction the resulting deformation

of s′(C) ∪ ⋃
C′

i is in Ze′ as desired. �

Lemma 8.8. — Notation and assumptions are as in Lemma 8.4. For every integer m ≥ 0 there

exists an integer E(m) such that for every integer e ≥ E(m), Ze contains a point corresponding to a

section which is m-free and meets Xf ,pax.

Proof. — Let N = m + 2g(C) + 1. Let n be an integer such that condition (2)
of Definition 7.4 holds for all peaceful points and this choice of n, see Lemma 7.5.
By Lemma 8.5, for every integer e1 ≥ e0 there exists [s] ∈ Ze1 , a moduli point corre-
sponding to a section s : C → X which is free and meets Xf ,pax. Consider pairwise dis-
tinct points c1, . . . , cN ∈ C(k) such that s(ci) ∈ Xf ,pax. Choose 2-pointed free chains of
lines (hi : Ci → X, pi, qi ∈ Ci(k)) of length n such that s(ci) = h(pi) and such that, with
zi = h(qi), the point (z1, . . . , zN) is a general point of Xc1 × · · · × XcN. This is possi-
ble by our choice of n above. By Lemma 8.7 any smoothing of the stable N-pointed
map s(C) ∪ ⋃

Ci → X (marking given by the points qi ) defines a point of Ze, where
e = e1 + Nn. The marking of a general smoothing will still determine a general point
of Xc1 × · · · × XcN. Whence applying Proposition 4.15 we get that the resulting sec-
tion is D-free with D = ∑

ci a divisor of degree N. By Lemma 4.12 we conclude with
E(m) = e0 + nN. �

Lemma 8.9. — Notation and assumptions are as in Lemma 8.4. For every e ≥ e0 + g(C), the

Abel map

αL|Ze
: Ze −→ Pice

C/k

is dominant with irreducible geometric generic fibre.
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Proof. — Let n be an integer with n ≥ g(C) and let e = e0 + n. Let WZ,e be as in the
proof of Lemma 8.4. As in the proof of Lemma 8.4, every point of WZ,e is a smooth point
of Ze. Therefore to prove that

αL|Ze
: Ze −→ Pice

C/k

is dominant with irreducible geometric generic fibre, it suffices to prove that the restric-
tion

αL|WZ,e
: WZ,e −→ Pice

C/k

is dominant with irreducible geometric generic fibre. And by Lemma 6.7, the morphism
αL|WZ,e

factors as follows

WZ,e → Z × Ce−e0 → Z × Pice−e0
C/k → Pice0

C/k × Pice−e0
C/k → Pice

C/k

where each of the component maps is the obvious morphism. The first map has smooth,
geometrically irreducible fibres as was explained in the proof of the Lemma 8.4 above.
And since e − e0 is ≥ g(C), the second is dominant with irreducible geometric generic
fibre.

The trick is to factor the composition β of the last two maps. Namely, it is the
composition of the map

(IdZ, β) : Z ×k Pice−e0
C/k → Z ×k Pice

C/k, (s, [D]) �→ (s, αL,Z(s) + [D])
and the projection

pr2 : Z ×k Pice
C/k → Pice

C/k.

Since (s, [D]) �→ (s,−αL,Z(s) + [D]) is an inverse of (IdZ, β), we see (IdZ, β) is an iso-
morphism of schemes. Moreover, considering the source as a scheme over Pice

C/k via β

and considering the target as a scheme over Pice
C/k via pr2, it is an isomorphism of schemes

over Pice
C/k . Therefore every geometric fibre of β is isomorphic to Z, which is irreducible

by hypothesis. So β is dominant with irreducible geometric generic fibre. Since a com-
position of dominant morphisms with irreducible geometric generic fibres is of the same
sort, αL|WZ,e

, and thus αL|Ze
, are dominant with irreducible geometric generic fibres. �

Remark 8.10. — The proof of Lemmas 8.4 and 8.9 works in a more general setting.
Namely, suppose that k, X → C and L are as in 8.1. Redefine a porcupine temporarily
by replacing condition (a) with the condition: all lines on Xqi

through s(qi) are free and
they form an irreducible variety. Assume that for a general c ∈ C(k) and a general x ∈
Xc(k) the space of lines through x is nonempty and irreducible. Then the conclusions of
Lemmas 8.4 and 8.9 hold.
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9. Pencils of porcupines

In this section we start using ruled surfaces to connect Abel-equivalent porcupines
by chains of rational curves in �e(X/C/k). In brief, two porcupines which are linearly
equivalent Cartier divisors in a common ruled surface R determine a pencil of divisors
on R which determines a morphism from the base of the pencil to �e(X/C/k). The
main result is Proposition 9.7. A key step is that if the general fibre is rationally simply
connected by chains of free lines, then a pair of sections is contained in a 2-dimensional
scheme over C whose fibres are chains of free lines.

Let k, f : X → C and L be as in Hypothesis 8.1. A ruled surface or a scroll in X will
be a morphism R → X such that R → C is proper smooth and all fibres are lines in X.
The following will be used over and over again.

Lemma 9.1. — In Situation 8.1 any ruled surface R → X lies in the smooth locus of X → C.

Proof. — Since by assumption the total space of X is smooth any section of X → C
lies in the smooth locus of X → C. On the other hand, weak approximation holds for the
ruled surface R → C, a fortiori for any point r ∈ R(k) we can find a section of R → C
passing through r. The lemma follows. �

Let h : C′ = C ∪ ⋃
Li → X be a porcupine as in Definition 8.2.

Definition 9.2. — Notations as above. A pen for C′ is a ruled surface R such that C′ → X
factors through R → X.

We will always assume a pen for C′ comes with a factorization. If lines in fibres of
X → C are automatically smooth (e.g. if L is very ample on the fibres of X → C) then R
and C′ are closed subschemes of X and the definition just means C′ ⊂ R.

Lemma 9.3. — Let C′
0 and C′

∞ be porcupines whose bodies s0(C) and s∞(C) are penned in a

common ruled surface R. Let (e0, n0), resp. (e∞, n∞) be the numerical invariants of C′
0, resp. C′

∞ and

assume e0 + n0 = e∞ + n∞. Denote the attachment points of C′
0, resp. of C′

∞, by q0,i , resp. q∞,j . The

Abel images αL([C′
0]) and αL([C′

∞]) are equal if and only if D0 ∼ D∞ in the divisor class group of

R where

D0 := s0(C) +
∑n0

i=1
Rq0,i

and D∞ := s∞(C) +
∑n∞

j=1
Rq∞,j

.

Here Rq0,i
, Rq∞,j

denote the fibres of R over the points q0,i , q∞,j in C.

Proof. — Note that Pic(R) is isomorphic to Z ⊕ Pic(C). As generator for the sum-
mand Z we take the class of L. The divisors Rq on R correspond to the elements OC(q)

in Pic(C). Let Krel denote the relative canonical divisor of R → C. The divisor s0(C)

corresponds to the element −KR + (−1, s∗
0 L), by a calculation left to the reader. Hence
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D0 ∼ −Kr + (−1, s∗
0 L(

∑
q0,i)) The argument is similar for s∞. The result now follows

from Lemma 6.7. �

In the above lemma, if D0 and D∞ are linearly equivalent, denote by (Dλ)λ∈� the
pencil of effective Cartier divisors on R spanned by D0 and D∞. At this point we start
constructing families of porcupines over rational curves. In order to do this we state and
prove a few lemmas.

Lemma 9.4. — In Situation 8.1 assume the restriction of f to some nonempty open subscheme

S ⊂ C satisfies Hypothesis 7.8. Suppose that C′ and C′′ are porcupines whose bodies and attachment

points agree, but which may have different quills. Then there exists a rational curve in the smooth nonstacky

locus of �e+n(X/C/k) connecting the corresponding points (where e is the degree of the body and n is

the number of quills).

Proof. — A porcupine always represents a smooth nonstacky point of �e+n(X/C/k).
The space parametrizing choice of quills given the body s and the attachment points
q1, . . . , qn is the product of n fibres of the evaluation map M0,1(X/C,1) → X at peaceful
points. But these fibres are smooth projective rationally connected varieties by definition
of peaceful and Lemma 7.11. �

In the following lemma and below we will say that the porcupine C′′ is an extension

of C′ if you get C′ from C′′ by deleting some of its quills.

Lemma 9.5. — Same assumptions as in Lemma 9.4. Let s0, s∞ : C → X be sections. Assume

s0 and s∞ are free, and that V = s−1
0 (Xf ,pax)∩ s−1

∞ (Xf ,pax) is not empty. Assume s0 and s∞ are penned

in a common ruled surface R. Then there exists a nonnegative integer E with the following property: for all

e with e ≥ min{E,deg(s0),deg(s∞)}, for any pairwise distinct points q0,1, . . . , q0,e−deg(s0) ∈ C(k),

for any pairwise distinct points q∞,0, . . . , q∞,e−deg(s∞) ∈ C(k) and for every extension C′
0, resp. C′

∞, of

s0, resp. s∞, to a porcupine with quills over the points q0,1, . . . , q0,e−deg(e0), resp. q∞,0, . . . , q∞,e−deg(e∞)

if s∗
0(L)(

∑
q0,i) ∼= s∗

∞(L)(
∑

q∞,i) as invertible sheaves on C, then the points [C′
0] and [C′

∞] are

connected in the stack �e(X/C/k) by a chain of rational curves whose nodes parametrize unobstructed,

non-stacky stable sections. Moreover, the integer E is bounded above by ϕ(deg(R),deg(s0)) where

ϕ : Z2 → Z≥0 is a function such that B ≥ B′ ⇒ ϕ(B, e) ≥ ϕ(B′, e).

Proof. — We first describe our choice of E. For any effective Cartier divisor D ⊂ C
denote RD ⊂ R the corresponding divisor in R. Note that there exists an integer E1 such
that the linear system |s0(C) + RD| is base point free and very ample for all D with
degC(D) ≥ E1. This is true because s0(C) is relatively very ample for R → C. We may
also choose E2 such that codimension 1 points of |s0(C) + RD| parametrize nodal curves
for all D with degC(D) ≥ E2. This follows from a simple Bertini type argument once we
have chosen E2 big enough: namely, so big that

H0(R, OR(s0(C) + RD)) −→ H0(RZ, ORZ(s0(C)))
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is surjective for Z ⊂ C any length 2 closed subscheme. As above, such an E2 exists since
s0(C) is relatively very ample. We will take E = E2. The easiest way to see that E ≤
ϕ(deg(R),deg(s0)) with ϕ as in the lemma is to remark that the family of pairs s0 : C →
X,R → X with bounded degrees is bounded.

Choose e ≥ E. By Lemma 9.4 it suffices to prove the lemma assuming all the quills
are in the surface R. Let qi,j be as in the statement of the lemma. Note that s0(C) +∑

Rq0,j
∼ s∞(C) + ∑

Rq∞,j
as divisors on R by Lemma 9.3.

Let us connect our points s0(C) + ∑
Rq0,j

∈ |s0(C) + ∑
Rq0,j

| and s∞(C) +∑
Rq∞,j

∈ |s0(C) + ∑
Rq0,j

| by a pair of general lines �1,�2. In other words, �1 and
�2 intersect, �1 contains the first point and �2 contains the second, but otherwise the
lines are general. We claim that this chain of two rational curves in �e(X/C/k) satisfies
the stated properties. Since the curves s0(C) + ∑

Rq0,j
and s∞(C) + ∑

Rq∞,j
are nodal

and by our choice of e we see that all points of �1 and �2 correspond to nodal curves,
hence automatically �1 and �2 correspond to families of stable sections. Finally, since
the point s0(C) + ∑

Rq0,j
∈ �1 corresponds to a smooth point of �e(X/C/k) we see that

a general point of �1 corresponds to a smooth point as well. And since �1 ∩ �2 is just a
general point on �1 this node corresponds to a smooth point of �e(X/C/k) as desired. �

Here is one of the key technical lemmas of this paper.

Lemma 9.6. — In Situation 8.1 assume the restriction of f to some nonempty open S ⊂ C
satisfies Hypothesis 7.8. Let D be an effective Cartier divisor of degree 2g(C) + 1 on C. Suppose

we have sections s0, s∞ of X → C which are D-free.3 Let T0, resp. T∞ be the unique irreducible

component of Sections(X/C/k) of which s0, resp. s∞ is a smooth point (see Proposition 4.13). There

exists a dense open W ⊂ T0 × T∞, an integer n ≥ 1, integers e1, . . . , en+1, B such that for every point

(τ0, τ∞) ∈ W we have the following:

(1) there exist sections τ0 = τ1, τ2, . . . , τn+1 = τ∞,

(2) the degree of τi is ei for i = 1, . . . , n + 1,

(3) τ−1
i (Xf ,pax) �= ∅ for i = 1, . . . , n + 1,

(4) τi is free for i = 1, . . . , n + 1,

(5) there exist ruled surfaces Ri → X, i = 1, . . . , n,

(6) the degree of Ri (with respect to the relatively ample invertible sheaf L) is at most B, and

(7) τi, τi+1 factor through Ri for i = 1, . . . , n.

Proof. — We will write m = 2g(C) + 1 in order to ease notation. Let W0 ⊂ T0 ×
Symm(C), be the open subset corresponding to pairs (τ0,D0), such that τ0 is D0-free.
Similarly we have W∞ ⊂ T∞ × Symm(C). Our assumption is that W0 and W∞ are not

3 It is not necessary to have the same divisor for the two sections.
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empty. Recall the spaces Hm
X,f defined above Proposition 4.15. By Lemma 4.14 the maps

res0 : W0 → Hm
X,f , (τ0,D0) �→ (τ0|D0 : D0 ↪→ X),

res∞ : W∞ → Hm
X,f , (τ∞,D∞) �→ (τ∞|D∞ : D∞ ↪→ X)

are smooth. Let e0 = deg(s0) and e∞ = deg(s∞).
Let S ⊂ C be the nonempty open over which Hypothesis 7.8 holds. Denote U =

Xf ,pax. Consider the morphism

ev1,n+1 : FreeChainU
2 (X/C, n) −→ U ×S U ⊂ X ×C X

we studied in Section 7. By Proposition 7.12 there exists an n, and an open V ⊂
FreeChainU

2 (X/C, n) such that ev1,n+1|V : V → U ×S U is surjective, smooth, with irre-
ducible and birationally rationally connected fibres. Also, the morphisms evi|V : V → U
are smooth, see Lemma 7.11.

The commutative diagram

C × T0 × T∞
τ0×τ∞

X ×C X U ×S U

C

is a diagram as in Situation 4.16. The associated rational map

(τ0 × τ∞)m : Symm(C) × T0 × T∞ ��� Hm
U×SU = Hm

U ×Symm(C) Hm
U,

see (4.4), is the product map

Symm(C) × T0 × T∞ ⊃ W0 ×Symm(C) W∞ −→ Hm
U ×Symm(C) Hm

U

and by the remarks above is even smooth. The morphism � = ev1,n+1|V : V → U ×S U
satisfies the assumptions of Lemma 4.17. This lemma implies that there exists a variety
T′, a dominant morphism T′ → T0 × T∞, a compactification V ⊂ V over X ×C X and a
morphism τ : C ×T′ → V such that C×T′ → V → X×C X equals C ×T′ → C ×T0 ×
T∞ → X ×C X, and such that the induced rational map τm : Symm(C) × T′ ��� Hm

V is
dominant. We may also assume the compactification V dominates the compactification

V ⊂ FreeChainU
2 (X/C, n) ⊂ Chain2(X/C, n)

by the space Chain2(X/C, n) of 2-pointed chains of (not necessarily free) lines in fibres
of X/C.

At this point, every t ∈ T′(k) gives rise to a morphism τt : C → Chain2(X/C, n),
which in turn gives rise to n ruled surfaces R1, . . . ,Rn in X over C, and n + 1 sections
τ1, . . . , τn+1 of X/C such that
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(1) τ1 corresponds to a point of T0,
(2) τn+1 corresponds to a point of T∞,
(3) τi, τi+1 factor through Ri for i = 1, . . . , n.

By shrinking T′ we may assume that both τ1 and τn+1 meet U and are D-free for some
divisor D of degree m.

Let ei = deg(τi) for i = 2, . . . , n. Recall the constructible sets Wm
ei

⊂ Hm
X,f con-

structed in Proposition 4.15, in particular recall that each Wm
ei

contains a dense open
of Hm

X,f , and hence of Hm
U. Because the associated rational map from Symm(C) × T′ to

Hm
V is dominant, and because each evi : V → U is smooth we see that after replacing T′

by a nonempty open subvariety, for each t ∈ T′(k) the associated maps τi map a general
divisor D ⊂ C of degree m to a point of Wm

ei
. In particular, τi meets U = Xf ,pax and there

exists a divisor D of degree m such that τi is D-free. By Lemma 4.12 all the sections τi are
1-free, i.e., free. Since T′ → T0 × T∞ is dominant its image contains an open subset and
the lemma is proved. �

Let P ⊂ Porcupinee,n(X/C/k) be an irreducible component. Since the space
Porcupinee,n(X/C/k) is smooth this is also a connected component. And since the forget-
ful morphisms �forget : Porcupinee,n+m(X/C/k) → Porcupinee,n(X/C/k) are smooth with
geometrically irreducible fibres, we see that P determines a sequence (Pm)m≥1 of irre-
ducible components, Pm ⊂ Porcupinee,n+m(X/C/k). Note that points of Pd−e−n correspond
to porcupines with total degree d .

Proposition 9.7. — In Situation 8.1 assume the restriction of f to some nonempty open set

S ⊂ C satisfies Hypothesis 7.8. Let D ⊂ C be an effective Cartier divisor of degree 2g(C) + 1. Let e0,

e∞ be integers and let n0, n∞ be nonnegative integers. Let P ⊂ Porcupinee0,n0(X/C/k) be an irreducible

component, and let P′ ⊂ Porcupinee∞,n∞(X/C/k) be an irreducible component. Assume that a general

point of P corresponds to a porcupine whose body is D-free, and similarly for P′. There exists an integer

E such that for every e ≥ E there exists a dense open subscheme

U ⊂ Pe−e0−n0 ×αL,Pice
C/k,αL P′

e−e∞−n∞

such that for any pair of points (p, q) ∈ U the points p and q are connected in �e(X/C/k) by a chain

of rational curves whose marked points and nodes parametrize unobstructed, non-stacky stable sections.

Proof. — Let T0, resp. T∞ denote the irreducible components of Sections(X/C/k)

to which the bodies of porcupines in P, resp. P′ belong. Let n, e1, . . . , en+1,B and W ⊂
T0 × T∞ be the data found in Lemma 9.6. Note that e0 = e1 and e∞ = en+1. Set E =
max{ei} + max{0, ϕ(B, ei)} + 2g(C) + 999 where ϕ(−,−) is the function mentioned in
Lemma 9.5. Pick e ≥ E. The open subset U will correspond to the pairs (p, q) in the fibre
product with p = (s0, q0,i, r0,i ∈ L0,i(k),L0,i → X), q = (s∞, q∞,i, r∞,i ∈ L∞,i(k),L∞,i →
X) such that the pair (s0, s∞) ∈ W.
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Namely, let R1, . . . ,Rn, τ1, . . . , τ∞ be as in Lemma 9.6 adapted to the pair (s0, s∞).
Denote ξ = αL(p) = αL(q) ∈ Pice

C/k(k) the corresponding degree e divisor class on C. For
each i = 2, . . . , n it is possible to find a reduced effective divisor Qi ⊂ C, Qi ⊂ τ−1

i (Xf ,pax)

of degree e − ei ≥ 2g(C) + 999 such that τ ∗
i (L)(Qi) is ξ . Now we will repeatedly

use Lemmas 9.4 and 9.5 to find our chain of rational curves. Let p1 be the point of
Porcupinee0,e−e0(X/C/k) gotten from p by moving all e − e0 = e − e1 quills attached to
s0 = τ1 into the ruled surface R1. Then p is connected to p1 by a suitable chain of ratio-
nal curves by Lemma 9.4. Let p2 ∈ Porcupinee2,e−e2(X/C/k) be the porcupine with body
τ2 and quills attached to the points of the divisor Q2 lying in the ruled surface R1. By
Lemma 9.5 we see that p1 is connected to p2 by a suitable chain of rational curves. Let
p3 ∈ Porcupinee2,e−e2(X/C/k) be the porcupine with body τ2 and quills attached to the
points of the divisor Q2 lying in the ruled surface R2. By Lemma 9.4 the points p2 and p3

are connected by a suitable chain of rational curves. And so on and so forth. �

In particular, this implies the following corollary, that the sequence of irreducible
components is “asymptotically unique”. And it does imply that Abel-equivalent points
of some boundary strata are connected by chains of rational curves in a fiber of the
Abel map. But it does not yet imply that the general fiber of an Abel map is rationally
connected, since we do not yet know that a general pair of Abel-equivalent points are
connected by a chain of rational curves (this requires much more work).

Corollary 9.8. — In Situation 8.1, assume in addition Hypothesis 7.8 for the restriction of

f to some nonempty open S ⊂ C. Let e0, e∞ be integers and let Z,Z′ be irreducible components of

�e0(X/C/k), �e∞(X/C/k) whose general point parametrizes a free section of f . Consider the families

of components Ze, Z′
e constructed in Lemma 8.4. Then for e � 0 we have Ze = Z′

e.

Proof. — By Lemmas 8.8 and 8.6 we may assume that Z and Z′ each contain a
section which meets Xf ,smooth and is 2g(C) + 1-free. By Proposition 9.7 there exists an E
such that for all e ≥ E there are points p ∈ Ze and q ∈ Z′

e corresponding to porcupines
with bodies in Z and Z′ such that p can be connected to q by a chain of rational curves in
�e(X/C/k) whose marked points correspond to unobstructed, non-stacky stable sections.
In particular such a chain lies in a unique irreducible component! �

10. Varieties and peaceful chains

Previously we studied moduli of sections of X/C. Here we apply this to the study
of rational curves on a smooth projective variety Y. In particular, if Y is rationally simply
connected by chains of free lines, then the sequence Ze from Section 8 gives a canonical
sequence of irreducible components of the moduli space M0,0(Y, e).
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Hypothesis 10.1. — Let k be an uncountable algebraically closed field of characteristic 0. Let

Y be a smooth projective variety over k. Let L be an ample invertible sheaf on Y. We assume that

Y → Spec(k) satisfies Hypothesis 7.8 (where S is Spec(k) and f : X → S is Y → Spec(k)).

Assume that Hypothesis 10.1 holds. Let X = P1 × Y and

f = pr1 : X = P1 × Y −→ P1.

The first thing to remark is that a morphism g : P1 → Y gives rise to a section s : P1 → X,
and conversely. Also, the section s is 0-free, i.e., unobstructed (see Definition 4.7), if and
only if the rational curve g : P1 → Y is unobstructed (i.e., every invertible sheaf summand
in the direct sum decomposition of g∗TY has degree at least −1). Similarly, s is 1-free, i.e.,
free (see Definition 4.7), if and only if the rational curve g : P1 → Y is free. Arguing in this
way we see that we can interpret many of the previous results for the family f : X → P1

in terms of the moduli spaces of lines on Y.
Instead of reproving everything from scratch in this setting we make a list of state-

ments and we point out the corresponding lemmas, and propositions in the more general
treatement above. We denote M0,0(Y, e) the Kontsevich moduli space of degree e ratio-
nal curves in Y. Also, let Ypax denote the set of peaceful points (w.r.t. Y → Spec(k)), see
Definition 7.4.

(1) There is a sequence of irreducible components Ze ⊂ M0,0(Y, e), e ≥ 1 uniquely
characterized by the property that every comb in Y whose handle is contracted
to a point of Ypax and which has e teeth mapping to lines in Y is in Ze. This is
the exact analogue of Lemma 8.4, starting with the fact that a constant map
P1 → Y is free!

(2) A general point of Ze corresponds to a map P1 → Y which is free and meets
Ypax. This is the exact analogue of Lemma 8.5.

(3) Consider a comb in Y whose handle has degree e with e′ − e teeth which are
lines. Such a comb is in Ze′ if the handle is free, is in Ze, and the attachment
points map to Ypax. This is the exact analogue of Lemma 8.6.

(4) Any stable map f : C → Y in M0,0(Y, e′) which has exactly one component a
free curve corresponding to a point in Ze and all other components free lines
corresponds to a smooth nonstacky point of Ze′ . This is the exact analogue of
Lemma 8.7.

(5) Given any integer m ≥ 0 there exists e � 0 such that the general point of Ze

corresponds to a map f : P1 → Y with H1(P1, f ∗TY(−m)) = 0. This is the
exact analogue of Lemma 8.8.

(6) Let Z′ ⊂ M0,0(Y, e0) be an irreducible component whose general point cor-
responds to a free rational curve. There exists an integer E � 0 such that for
all e ≥ E we have the following property: Consider a comb in Y whose handle
has degree e0 with e − e0 teeth which are lines. Such a comb is in Ze if the han-
dle is free, is in Z′, and the attachment points map to Ypax. (And in particular
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any smoothing of this comb defines a point of Ze.) This is the exact analogue
of Corollary 9.8, once you observe that such a comb defines an unobstructed
nonstacky point of M0,0(Y, e).

It is perhaps not necessary, but we point out that instead of defining Ze as in (1) above, we
could just define Ze as the unique irreducible component of M0,0(Y, e) which contains all
trees of free lines. This follows from (4) (with e′ = 0).

Lemma 10.2. — In Situation 10.1 above. Let Ze,1 ⊂ M0,1(Y, e) be the unique irreducible

component dominating Ze ⊂ M0,0(Y, e). The general fibre of ev : Ze,1 → Y is irreducible.

Proof. — Let us temporarily denote by Z◦
e,1 ⊂ Ze,1 the dense open locus of stable

1-pointed maps
⋃

Ci → Y all of whose irreducible components Ci → Y are free and
whose nodes map to points of Ypax. The morphism ev : Z◦

e,1 → Y is smooth. Consider
the locus We,1 ⊂ Z◦

e,1 whose points correspond to those combs whose handles are con-
tracted to a point of Ypax and whose teeth are (automatically) free lines and whose marked
point is on the handle. By definition of the irreducible components Ze the space We,1 is
nonempty. It is smooth and We,1 → Y is still smooth onto Ypax. Clearly, Hypothesis 7.8
for Y → Spec(k) implies the general fibre of We,1 → Y is irreducible. From this, and the
irreducibility of Ze,1 it follows that the general fibre of Ze,1 → Y is irreducible, for example
by [Gro67, Proposition 4.5.13]. �

Lemma 10.3. — In Situation 10.1 above. Let Z′ ⊂ M0,0(Y, e0) and E be as in (6) above.

Suppose that g : C → Y is a genus 0 Kontsevich stable map such that C = ⋃A
i=1 Ci ∪ ⋃B

j=1 Lj is

a decomposition into irreducible components with the following properties: (1) each Ci → Y is free and

corresponds to a point of Z′, (2) each Li → Y is a free line and a “leaf of the tree”, i.e., it intersects the

rest of the curve in a single node, and (3) B ≥ E − e0. Then g defines an unobstructed point of ZAe0+B.

Proof. — We will show there is a connected chain of curves contained in the un-
obstructed locus of M0,0(Y,Ae0 + B) which connects g to a point of ZAe0+B. As the un-
obstructed locus is smooth this will imply that the entire curve is contained in ZAe0+B

and hence g is in it. We may first move the map a little bit such that all the nodes of
C are mapped into Ypax. Since the lines are leaves, we may 1 by 1 slide all the lines
Li along the curves Ci and onto one of the curves Ci0 which is a leaf of the tree

⋃
Ci.

Say this curve is C1, and is attached to C′′ = ⋃
i �=1 Ci at the point p ∈ C1 and q ∈ C′′.

Set C′ = C1 ∪ ⋃
Li , so C = C′ ∪p∼q C′′. By (6) above we see that C′ → Y defines an

unobstructed point of Ze0+B.
We may assume (after possibly moving the map a little bit) that the attachment

point p is mapped to a point y ∈ Y such that the fibre of Ze0+B,1 → Y is irreducible over
this point, see Lemma 10.2. Hence we may connect the 1-pointed stable map (C′, p) → Y
inside the fibre of Ze0+B,1 → Y over y to a curve which is made out of a comb C′′′ whose
handle is contracted and whose teeth are free lines. Since the marked point is throughout
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mapped to the same y ∈ Y(k) this connects the original stable map C′ ∪ C′′ → Y to a
stable map C′′′ ∪ C′′ → Y where the number of lines in C′′′ is now e0 + B. We may again
slide these lines over to some irreducible component Ci of C′′ and continue until all the
Ci are gone, and so obtain a point of ZAe0+B. This proves the lemma. �

The notation in the section conflicts with the notation introduced in Lemma 8.4
in case Y is a fibre of a family as in Situation 8.1 such that Hypothesis 7.8 holds over
a nonempty open of C. In that situation we will use the notation Ze(Xt) to denote the
irreducible component defined in this section for the irreducible fibre Xt .

Lemma 10.4. — In Situation 8.1, assume in addition Hypothesis 7.8 for the restriction of f

to some nonempty open S ⊂ C. Suppose that s : C → X is a free section, and let Z ⊂ �(X/C/k)

be the unique irreducible component containing the moduli point [s]. Let Ze as in Lemma 8.4. For any

t1, . . . , tδ ∈ S(k), for any free rational maps si : P1 → Xti such that si(0) = s(ti), if si corresponds to

Zei(Xti), then the comb C ∪ ⋃
P1 → X/C defines an unobstructed point of Zdeg(s)+∑

ei .

Proof. — This is very similar to the proof of Lemma 10.3 above. Namely, we first
move the comb (as a comb) such that the points s(ti) are in the locus where the fibres of
Zei,1 → Xti are irreducible. then we connect the si in these fibres to chains of lines. After
this we can apply Lemma 8.7 for example. �

11. Families of varieties and lines in fibres

This section contains two results that did not seem to fit well in other sections.
Lemma 11.1 proves, under our hypotheses, the smooth locus is dense in every fibre and
is strongly rationally connected in the sense of [HT06]. Lemma 11.4 gives a criterion for
when the limit of a family of free lines is also free.

Lemma 11.1. — In Situation 8.1, assume in addition Hypothesis 7.8 for the restriction of f

to some nonempty open S ⊂ C. Every geometric fibre Xt of f is integral and every pair of points of the

smooth locus X◦
t of the fibre is contained in (1) a chain of lines contained in X◦

t , and (2) a very free

rational curve in the smooth locus.

Proof. — Although the conclusions are stated entirely in terms of the fiber, we see no
way to prove any of the conclusions without using the hypotheses on the global family. In
fact one can easily find families failing some of the hypotheses where also the conclusions
of this lemma fail.

Let t ∈ C(k). Situation 8.1 requires Xt to be irreducible. Since X is smooth, by
[GHS03], the fibre Xt intersects the smooth locus of f . Hence Xt is generically reduced
and Cohen-Macaulay, and hence is reduced.

Let x, y ∈ Xt(k) be smooth points of Xt . We will construct a very free rational curve
in Xt passing through x and y. There exists a finite cover C′ → C etale over t and over
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the discriminant of f : X → C, a point t′ ∈ C′(k) and sections a, b : C′ → Xc′ such that
a(t′) = x, b(t′) = y. To construct C′ choose two complete intersection curves Cx,Cy ⊂ X
general apart from the condition x ∈ Cx and y ∈ Cy and let C′ be an irreducible compo-
nent of the normalization of Cx ×C Cy (details left to the reader).

Set X′ = XC′ and f ′ : X′ → C′ the base change of f . By construction, all conditions
of Situation 8.1, and Hypothesis 7.8 remain satisfied for X′ → C′. Hence, upon replacing
X → C by X′ → C′, and t by t′ we may assume there are sections s0, s∞ such that s0(t) = x

and s∞(t) = y. Attaching very free rational curves in fibres of f and deforming we may
assume that s0 and s∞ are sufficiently general such that (s0, s∞) : C → X ×C X meets the
open set V ⊂ XS ×S XS ⊂ X ×C X from Hypothesis 7.8.

By [GHS03] we can find a morphism φ : C → Chain2(X/C, n) which meets
FreeChain2(XS/S, n) and such that ev1,n+1 ◦ φ = (s0, s∞). As in the proof of Lemma 9.6
this translates into a collection of n ruled surfaces R1, . . . ,Rn in X/C, n + 1 sections
τ1, . . . , τn+1 of X/C such that τ1 = s0, τn+1 = s∞ and such that τi, τi+1 factor through Ri .

Note that the fibres R1,t,R2,t, . . . ,Rn,t form a chain of lines connecting x to y in
the fibre Xt . By Lemma 9.1 this chain lies in the smooth locus X◦

t of X → C. Thus any
pair of points of X◦

t may be connected by a chain of lines in X◦
t . The result follows upon

applying [Kol96, IV Theorem 3.9.4] for example. �

Remark 11.2. — The Lemmas 9.1 and 11.1 could be stated with slightly weaker
hypotheses. Namely, we could remove the assumption (in 8.1) that all the fibres of X → C
are geometrically irreducible. This does not pose a problem for Lemma 9.1. For 11.1
it means that one has to show there are no irreducible components of Xt which have
multiplicity > 1. We may try to prove this by specializing the “chain of ruled surfaces”
R1, . . . ,Rn, τ1, . . . , τn+1 as you move one of the two points x, y into a presumed higher
multiplicity component. What might happen is that the ruled surfaces may break, and
we do not see how to conclude the proof. However, if L is very ample on all the fibres
(an assumption that always holds in practice), then this argument works: in this case any
line that meets a higher multiplicity component must be contained in it and it is easy to
conclude from this.

Lemma 11.3. — Let X be a nonsingular projective variety over an algebraically closed field k of

characteristic 0. Let L be an ample invertible sheaf on X.

(1) The locus T ⊂ X swept out by non free lines is a proper closed subset. Let D′
1, . . . ,D′

r be

desingularizations (see [Hir64, Hir64a]) of the irreducible components D1, . . . ,Dr of T
which have codimension 1 in X.

(2) There exists a closed codimension 2 subset T′ ⊂ X containing the singular locus of T and

all codimension ≥ 2 components such that any non free line not contained in T′ is the image

of a free rational curve on some D′
i .

Proof. — The first assertion is basic, see [Kol96, II Theorem 3.11]. For the second,
first let T′ ⊂ T be the closed subset over which �D′

i → T is not an isomorphism. Any line
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in T not contained in T′ is the image of a unique rational curve on some D′
i . Finally we

apply the general fact that since these curves cover D′
i the general one is free. �

Lemma 11.4. — Notations and assumptions as in Lemma 11.3. Let C be a nonsingular curve,

and let f : P1 × C → X be a family of lines in X. Assume that γ = f |{0}×C : C → X does not

meet T′, and meets T transversally at all of its points of intersection. Then for each c ∈ C(k) the line

Lc → X is free.

Proof. — By the definition of T, for every point t ∈ C(k) with ft(0) �∈ T, e.g., for a
general point of C(k), the corresponding line ft : P1 → X is free. Thus let t ∈ C be a point
such that ft(0) ∈ T. Again by the definition of T, if ft(P1) �⊂ T then this is a free line. Thus
assume that ft(P1) ⊂ T.

The goal is to prove that f ∗
t TX is globally generated. By Lemma 11.3 the line

ft : P1 → X is the image of a free rational curve g : P1 → D′, where D′ is a resolution of
some D = Di . In particular g∗TD′ is globally generated. Consider the maps

g∗TD′ → f ∗
t TX → f ∗

t NDX.

Note that the composition is zero. Moreover, the sequence is exact on the open comple-
ment of f −1

t (T′) (which is dense since it contains 0 ∈ P1 by hypothesis). So the quotient of
the kernel by the image is a torsion sheaf, which is thus globally generated. Since g∗TD′

is globally generated, also its image in f ∗
t TX is globally generated. So the kernel sheaf is

an extension of globally generated coherent sheaves. On P1, such an extension is itself
globally generated, i.e., the kernel of f ∗

t TX → f ∗
t NDX is globally generated. Again using

that an extension of globally generated, coherent sheaves on P1 is itself globally gener-
ated, f ∗

t TX is globally generated provided that the image of f ∗
t TX → f ∗

t NDX is globally
generated, i.e., so long as the image is not a negative invertible sheaf.

However, the given deformation f : P1 × C → X gives rise to a vector θ ∈
H0(P1, f ∗

t TX). And θ(0) corresponds to the tangent vector dγ ∈ Tγ (0)X which points
out of D by the hypothesis that γ is transverse to T. Thus the sheaf homomorphism
f ∗
t TX → f ∗

t NDX induces a nonzero map on H0. Therefore f ∗
t TX → f ∗

t NDX cannot fac-
tor through a negative invertible sheaf. So f ∗

t TX is globally generated, i.e., ft : P1 → X is
a free line. �

12. Perfect pens

In this section we introduce the notion of twisting and very twisting scrolls, see
Definition 12.3. The main consequence of this definition occurs in Lemma 12.5, which
shows that a porcupine contained in a twisting scroll gives a moduli point t in �(X/C/k)

which is contained in a P1 whose general point parameterizes a section. In other words,
the P1 connects t, a point in a boundary stratum, to a moduli point in the interior, the
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complement of the boundary divisor. It is important to have a geometric criterion for
twisting and very twisting surfaces, which is the purpose of Lemma 12.6. The main result
of this section, Proposition 12.12, is that a family X → C contains very twisting scrolls,
if the geometric generic fiber Y has a very twisting scroll. The proof uses lemmas about
gluing twisting and very twisting scrolls and then deforming to produce new twisting and
very twisting scrolls. We also prove that there are good parameter spaces for twisting
and very twisting scrolls. And we prove that there are good parameter spaces for those
porcupines “penned” by a very twisting scroll.

Recall the definition of a ruled surface R in X → C with respect to L was given at
the start of Section 9. The morphism R → X maps into the smooth locus of X → C, see
Lemma 9.1. Our first task is to show that (many) free sections lie on scrolls of free lines.

Lemma 12.1. — In Situation 8.1 assume Hypothesis 7.8 holds for the restriction of f to some

nonempty open set S ⊂ C. Let e0 be an integer and let Z be an irreducible component of �e0(X/C/k)

whose general point parametrizes a free section. Then there exists a nonempty open set U ⊂ Z such that

every u ∈ U(k) corresponds to a section s such that (a) it is penned by a ruled surface R → X, and (b)

any ruled surface R penning s has the property that all of its fibres are free lines in X.

Proof. — We are going to use Lemma 11.4. Note that although L is f -relatively
ample, L may not be “absolutely” ample, i.e., it may not be ample on X. However, to
prove the lemma we may replace L by L ⊗ f ∗N for some suitable very ample sheaf N
on C. Thus, without loss of generality, we may assume that L is ample on the total space
X. Similarly, if N is sufficiently ample, then we may also assume that any rational curve
in X of degree 1 is in a fibre of f : X → C.

Let T′ ⊂ T ⊂ X, Di be as in Lemma 11.3. Because T′ ⊂ X has codimension ≥ 2
there is a nonempty open U′ ⊂ Z such that every u ∈ U′(k) corresponds to a section s

which is disjoint from T′. Furthermore, we then pick a nonempty open U′′ ⊂ U′ such
every u ∈ U′′(k) corresponds to a section s that meets each irreducible component Di

transversally in smooth points, see [Kol96, II Proposition 3.7]. Finally, by part (1) of
Hypothesis 7.8, we may find a further nonempty open U ⊂ U′′ such that each section
s : C → X corresponding to a point of U meets the locus over which the evaluation
morphism ev : M0,1(X/C,1) → X has irreducible rationally connected fibres.

Let s : C → X correspond to a k-point of U. By [GHS03] we can find a morphism
g : C → M0,1(X/C,1) such that ev ◦ g = s. This corresponds to a ruled surface R → X
which pens s. This proves (a). Next, let R be any ruled surface penning s. By Lemma 9.1
it lies in the smooth locus of X → C. By Lemma 11.4 and our choice of s all fibres of
R → C are free curves in X. This proves (b). �

To define the notion of a twisting scroll, we introduce some notation. Let f : X →
C, L be as in Situation 8.1. Consider a ruled surface h : R → X. The following commu-
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tative diagram of coherent sheaves on R with exact rows

0 TR/C h∗TX/C NR/X 0

0 TR h∗TX NR/X 0

defines the coherent sheaf NR/X, which we call the normal bundle. Even when the mor-
phism from R to X fails to be a closed immersion, the normal bundle is of fundamental
importance cf. its use in [GHS03]. Moreover, if the sheaf L is relatively very ample, which
is satisfied in important cases, then the map h : R → X will be a closed immersion and
NR/X will be a locally free sheaf.

Remark 12.2. — There are two remarks about the case where L is relatively ample,
but perhaps not very ample. The first is that NR/X is always flat over C, even when it
is not locally free over R. This follows as the maps TR/C|Rt

→ h∗TX/C|Rt
are injective,

and [Mat80, Section (20.E)]. In particular it has depth ≥ 1, its torsion is supported in
codimension ≥ 1, and any fibre meets the torsion locus in at most finitely many points.
This also shows that NR/X|Rt

equals NRt/Xt
, the normal bundle of the map Rt → Xt

(defined similarly). The second is that the deformation theory of the morphism R → X,
with X held fixed, is given by H0(R,NR/X) (infinitesimal deformations) and H1(R,NR/X)

(obstruction space). The deformation theory is described in [Ill71, Section 2.1.6, pp. 191–
192], especially [Ill71, Théorème 2.1.7]. In particular, the cotangent complex of h : R →
X is given by h∗�1

X → �1
R which is quasi-isomorphic to h∗�1

X/C → �1
R/C. It follows that

Exti(h∗�1
X/C → �1

R/C, OR) = Hi−1(R,NR/X) as usual.

Definition 12.3. — In Situation 8.1. Let R → X be a ruled surface in X and let D be a

Cartier divisor on R. For every nonnegative integer m, we say (R,D) is m-twisting if

(1) the complete linear system |D| is basepoint free,

(2) the cohomology group H1(R, OR(D)) is 0,

(3) D has relative degree 1 over C,

(4) the normal bundle NR/X is globally generated,

(5) H1(R,NR/X) equals 0, and

(6) we have H1(R,NR/X(−D − A)) = 0 for every divisor A which is the pullback of any

divisor on C of degree ≤ m.

This only depends on the Cartier divisor class of the Cartier divisor D.

This is a “relative” definition—it is defined with respect to the morphism f . An
important special case is an “absolute” variant, see Definition 12.7 below.
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Suppose we are in Situation 8.1 and suppose that (R,D) is an m-twisting scroll in
X/C. By assumption |D| is nonempty, base point free, and of relative degree 1. Hence
a general element is smooth and defines a section σ : C → R. We will often say “let
(R, σ ) be an m-twisting scroll” to denote this situation. Having chosen σ we can think of
R → X as a family of stable 1-pointed lines. Let g = g(R,σ ) : C → M0,1(X/C,1) denote
the associated morphism.

Lemma 12.4. — In the situation above:

(1) The image of g = g(R,σ ) lies in the unobstructed (and hence smooth) locus of the morphism

ev : M0,1(X/C,1) → X.

(2) We have H1(C, g∗Tev(−A)) = 0 for every divisor A of degree ≤ m on C.

(3) Let � : M0,1(X/C,1) → M0,0(X/C,1) be the forgetful morphism (which is smooth).

Then g∗T� is globally generated, and H1(C, g∗T�) = 0.

(4) The section h ◦ σ : C → X is free, see Definition 4.7.

Proof. —

(1) The fact that NR/X is globally generated implies that for each t ∈ C(k) the
fibre Rt → X is free. This follows upon considering the exact sequences
0 → TR|Rt

→ h∗TX|Rt
→ NR/X|Rt

→ 0 (exact by flatness of NR/X over C), and
the fact that TR|Rt

is globally generated. This implies the image of g is in the
unobstructed locus for ev.

(2) Let π : R → C be the structural morphism. The pullback of the relative tan-
gent bundle Tev by g is canonically identified with π∗NR/X(−σ). This is true
because the normal bundle of a fibre Rt → X is an extension of the restric-
tion NR/X|Rt

by a rank 1 trivial sheaf on Rt
∼= P1. The assumptions of Defi-

nition 12.3 imply that R1π∗NR/X(−σ) = 0. Hence by the Leray spectral se-
quence for NR/X(−σ −π∗A), H1(C, g∗Tev(−A)) = H1(R,NR/X(−σ −π∗A)).
Thus we get the desired vanishing from the definition of twisting scrolls.

(3) The pullback g∗T� is canonically identified with σ ∗OR(σ ). The global gener-
ation of the sheaf g∗T� is therefore a consequence of the base point freeness of
OR(σ ) of Definition 12.3. The vanishing of H1(C, g∗T�) follows on consider-
ing the long exact cohomology sequence associated to 0 → OR → OR(σ ) →
σ∗σ ∗OR(σ ) → 0 and the vanishing of H1(R, OR(σ )) in Definition 12.3.

(4) Consider the exact sequence σ ∗TR/C → σ ∗h∗TX/C → σ ∗NR/X → 0. Note
that σ ∗TR/C = σ ∗OR(σ ). By Definition 12.3 both σ ∗OR(σ ) and σ ∗NR/X

are globally generated. Thus by the exact sequence σ ∗h∗TX/C is glob-
ally generated. This is obvious if the first map is zero, otherwise the ex-
act sequence is a short exact sequence, and in the previous paragraph we
showed that H1(C, σ ∗OR(σ )) = 0. There is an exact sequence NR/X(−σ) →
NR/X → σ∗σ ∗NR/X → 0. By Definition 12.3, H1(R,NR/X) = 0. The group
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H2(R,NR/X(−σ)) vanishes as its Serre dual HomR(NR/X(−σ),ωR)

is zero (hint: consider restriction to fibres). Together these imply that
H1(C, σ ∗NR/X) = 0. Thus the first exact sequence of this paragraph implies
that H1(C, σ ∗h∗TX/C) = 0. Thus (h ◦σ)∗TX/C is globally generated with trivial
H1 and we conclude that h ◦ σ is 1-free, i.e., free. �

The following innocuous looking lemma is why we introduce twisting scrolls. It will
eventually show that for every canonical irreducible component of the moduli space of
stable sections with sufficiently positive degree, for the associated “boundary” stratifica-
tion of the moduli space (according to the dual graph of the domain curve), a general
point of a particular boundary stratum is connected by a P1 to a point in the “interior”,
i.e., the open complement of the boundary divisor.

Lemma 12.5. — In Situation 8.1, let (R, σ ) be m-twisting with m ≥ 1. Let t ∈ C(k). The

stable map σ(C) ∪ Rt → X defines a nonstacky unobstructed point of �(X/C/k) which is connected

by a rational curve in �(X/C/k) to a free section of X → C.

Proof. — The fact that the point is nonstacky comes from the fact that sections
and lines have no automorphisms. The fact that the point is unobstructed follows from
Lemma 12.4 above. Consider the linear system |σ + Rt|. Since H1(C, OR(σ )) = 0 the
map H0(R, OR(σ + Rt)) → H0(Rt, ORt

(1)) is surjective. This implies that |σ + Rt| is
base point free. A general member of |σ + Rt| is a section σ ′ : C → R. It is trivial to show
that (R, σ ′) is (m − 1)-twisting. Hence by Lemma 12.4 we see that σ ′ is free. The result
is clear now by considering the pencil of curves on R connecting σ + Rt to σ ′. �

It is useful to have a criterion that guarantees the existence of a twisting sur-
face. In particular, we would like a condition formulated in terms of the map g : C →
M0,1(X/C,1). We do not know a good way to do this unless g(C) = 0.

Lemma 12.6. — In Situation 8.1 assume C = P1. Let g : P1 → M0,1(X/P1,1) be a

section. Let m ≥ 1. Assume we have:

(1) The pullback g∗T� has degree ≥ 0.

(2) The image of g is contained in the unobstructed locus of ev.

(3) The cohomology group H1(P1, g∗Tev(−m)) is zero.

(4) The composition ev ◦ g : P1 → X is a free section of X → P1.

Then the associated pair (R, σ ) is a m-twisting scroll in X.

Proof. — We will use the identifications of g∗T� = σ ∗OR(σ ) and g∗Tev =
π∗NR/X(−σ) from the proof of Lemma 12.4. Note that R is a Hirzebruch surface,
and H1(R, OR) = H2(R, OR) = 0. Combined with the fact that σ 2 = deg(g∗T�) ≥ 0
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we see that |σ | is base point free. Also, during the course of the proof we may assume
that σ is general in its linear system on R. In particular this means that the section
1 ∈ 	(R, OR(σ )) is regular for the coherent sheaf NR/X. (Note that this is automatic in
the case, which always holds in practice, that R → X is a closed immersion.)

The fact that ev ◦ g : P1 → X is 1-free means that g∗ev∗TX/P1 is globally gen-
erated. The fact that H1(P1, g∗Tev) = 0 means that any infinitesimal deformation of
the morphism ev ◦ g : P1 → X can be followed by an infinitesimal deformation of
g : P1 → M0,1(X/C,1). In terms of the pair (R, σ ) this means that the image of
α : H0(R,NR/X) → H0(P1, σ ∗NR/X) contains the image of β : H0(P1, (ev ◦ g)∗TX/P1) →
H0(P1, σ ∗NR/X). In this way we conclude that NR/X is at least globally generated over
the image of σ .

This weak global generation result in particular implies that R1π∗NR/X(−σ) = 0,
and R1π∗NR/X = 0; we can for example see this by computing the cohomology on the
fibres. Thus we see that H1(R,NR/X(−σ − π∗A)) = H1(P1, g∗Tev(−A)). This gives us
the vanishing of the cohomology group H1(R,NR/X(−σ − π∗A)) for any divisor A of
degree ≤ m on P1. We also get H1(R,NR/X) = H1(P1,π∗NR/X), and an exact sequence
0 → π∗NR/X(−σ) → π∗NR/X → σ ∗NR/X → 0. The first sheaf being identified with g∗Tev

and the second being globally generated we conclude that H1(R,NR/X) = 0. Note that,
with m > 0 this argument actually also implies that H1(R,NR/X(−Rt)) = 0 for any t ∈
C(k). At this point, what is left, is to show that NR/X is globally generated. It is easy
to show that a coherent sheaf on P1 which is globally generated at a point is globally
generated. Since m ≥ 1 the map H0(R,NR/X) → H0(Rt,NR/X|Rt

) is surjective by the
vanishing of cohomology we just established. Combined these imply that NR/X is globally
generated. �

Here is the definition we promised above.

Definition 12.7. — Let k be an algebraically closed field of characteristic 0. Let Y be projective

smooth over k, and let L be an ample invertible sheaf on Y. A scroll on Y is a scroll for the morphism

pr1 : P1 ×Y → P1, i.e., it is given by morphisms P1 ← R → Y such that (a) R is a smooth projective

surface, (b) all fibres Rt of R → P1 are nonsingular rational curves, and (c) the induced maps Rt → Y
are lines in Y. Let R be a scroll in Y and suppose D ⊂ R is a Cartier divisor. For every nonnegative

integer m, we say (R,D) is an m-twisting scroll in Y if the diagram

R P1 × Y

pr1

P1 P1

and the divisor D form an m-twisting scroll with respect to the invertible sheaf pr∗
2 L. If m is at least 2,

an m-twisting scroll will also be called a very twisting scroll.
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The main observation of this section is that if X → C is as in Situation 8.1, and
Hypothesis 7.8 holds over an open part of C, and if the geometric generic fibre has a very
twisting scroll, then X → C also has very twisting scrolls.

Lemma 12.8. — In Situation 10.1, assume that Y has a very twisting scroll. Then there

exist m-twisting scrolls (π : R → P1, h : R → Y, σ ) such that π∗OR(D) and π∗NR/P1×Y are

ample locally free sheaves on P1 with m arbitrarily large. Moreover, for a sequence (Ze)e≥e0 as defined

in Section 10, we can further arrange it so that h ◦ σ corresponds to an unobstructed point of one of the

irreducible components Ze.

Proof. — First we have a simple construction which begins with m-twisting scrolls for
an integer m, and produces m′-twisting scrolls for a larger integer m′. Let (R,D) be an m-
twisting scroll on Y. Choose a section σ of R in |D| and think of the associated morphism
g : P1 → M0,1(Y,1) as in Lemmas 12.4 and 12.6. In fact Lemma 12.4 implies that the
morphism g satisfies the assumptions of Lemma 12.6. It is clear that the assumptions of
Lemma 12.6 hold on an open subspace of Mor(P1, M0,1(Y,1)). Also, a morphism g

satisfying those assumptions is free. Given two morphisms gi : P1 → M0,1(Y,1), i = 1,2
corresponding to mi-twisting surfaces with g1(∞) = g2(0) there exists a smoothing (see
[Kol96, II Definition 7.1, Theorem 7.6]) of g1 ∪ g2 : P1 ∪∞∼0 P1 → M0,1(Y,1) whose
general fibre is a morphism g : P1 → M0,1(Y,1). As explained above, such a morphism
gives a P1-bundle R over P1, a Cartier divisor D on R (the “marked point” divisor), and
a morphism from R to P1 × Y compatible with the projection to P1. The hypotheses in
Definition 12.3 are each open in families. Thus using that g1 is m1-twisting and that g2 is
m2-twisting, it follows directly that for the general smoothing g, also g is an (m1 + m2 − 1)-
twisting scroll.

By hypothesis, there exist 2-twisting scrolls. Using the construction above, we con-
clude that there exist 3-twisting scrolls. Also if (R → P1,R → Y,D) is m-twisting with
m ≥ 3, then (R → P1,R → Y,D + R0) is (m − 1)-twisting and has the property that
π∗OR(D + R0) is ample.

Fix m ≥ 3 such that an m-twisting scroll exists. Consider a large integer N and con-
sider maps gi : P1 → M0,1(Y,1), i = 1, . . . ,N each corresponding to an m-twisting scroll
(πi : Ri → P1, hi : Ri → X, σi), and such that gi(∞) = gi+1(0) for i = 1, . . . ,N − 1. We
may assume that all the free rational curves hi ◦ σi lie in the same irreducible component
Z′ of M0,0(Y, e0), for example by taking the same twisting scroll for each i (with coordi-
nate on P1 reversed for odd indices i). We may also assume that N ≥ E − e0 where E is as
in assertion (6) in Section 10. Since each gi is free we can find a smoothing of the stable
map g1 ∪ . . . ∪ gN : P1

⋃
∞∼0 . . .

⋃
∞∼0 P1 → M0,1(Y,1). In fact, we may moreover as-

sume the smoothing of P1
⋃

∞∼0 . . .
⋃

∞∼0 P1 has N sections zi with zi limiting to a point
t′i on the ith component of the initial chain.

Let (π : R → P1, h : R → Y, σ ) correspond to a general point of the smoothing,
and let t1, . . . , tN ∈ P1(k) be the values of the sections zi . We claim that (R → P1, h : R →
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Y, σ + ∑
Rti) is a twisting surface which has two of the three desired properties, i.e.,

π∗OR(σ + ∑
Rti) is ample and the section curve can be chosen to be an unobstructed

point of some Ze. The third property, ampleness of π∗NR/X, will require more work.
First, since (R, σ ) is Nm-twisting we see immediately that (R, σ +∑

Rti) is N(m −
1) twisting.

Second, the Cartier divisor σ + ∑
Rti is a deformation of a divisor on the surface

R1

⋃

R1,∞∼=R2,0

. . .
⋃

RN−1,∞∼=RN,0

RN

which restricts to the divisor class of σi + Ri,t′i on every Ri . By our discussion above we
conclude that π∗OR(σ +∑

Rti) is a deformation of a locally free sheaf on a chain of P1’s
which is ample on each link, hence ample.

Third, we show that a general element of |σ + ∑
Rti | corresponds to a point of Ze

with e = Ne0 + N. Consider the comb consisting of h : σ(P1) ∪ ⋃
Rti → Y. It suffices to

show that this defines a unobstructed point of M0,0(Y, e) which is in Ze. It is unobstructed
because (R, σ ) is a twisting scroll. By construction our comb is a “partial smoothing” of
the tree of rational curves

(P1 ∪ R1,t′i )
⋃

∞∼0 . . .
⋃

∞∼0(P
1 ∪ RN,t′N)

hi◦σi∪hi |R
i,t′

i

Y.

Again since all fibres of twisting scrolls are free lines, and since each σi is free this stable
map is unobstructed. At this point we may apply Lemma 10.3 to conclude that this stable
map is in Ze.

At this point it is not yet clear that π∗NR/X is ample. Let σ ′ be a section of R
representing a general element of σ + ∑

Rti . We just proved that σ ′ is a point of Ze. Let
g′ : P1 → M0,1(Y,1) be the morphism corresponding to the twisting scroll (R, σ ′). We
saw above that g′ corresponds to a twisting scroll. Since (g′)∗Tev has no H1 there are no
obstructions to lifting a given deformation of ev ◦ g′ = σ ′ to a deformation of g′. Hence
we may assume that σ ′ is a general point of Ze and in particular we may assume that σ ′

is very free, see Section 10 (6). At this point consider the exact sequence of locally free
sheaves on P1

0 → π∗NR/P1×Y(−σ ′) → π∗NR/P1×Y → σ ∗NR/P1×Y → 0.

The sheaf on the left hand side is ample because (R, σ ′) is N(m − 1)-twisting. Combined
with the surjective map (σ ′)∗TY → σ ∗NR/P1×Y and the ampleness of (σ ′)∗TY this proves
the result. �

In order to formulate the next lemma, we need a definition. A very twisting scroll
(π : R → P1, h : R → Y, σ ) as in the lemma above is called wonderful if the pushforward
sheaf π∗NR/P1×Y (which is locally free by Remark 12.2) is ample, if π∗OR(σ ) is ample,
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and if the section h ◦ σ belongs to the canonical irreducible component Ze defined in
Section 10 for some integer e (of course the integer e equals the degree of h ◦ σ ).

Lemma 12.9. — In Situation 8.1, assume that Hypothesis 7.8 holds over a nonempty open

S ⊂ C. Assume that for some t ∈ C(k) the fibre Xt has a very twisting scroll. Then there exists a family

of wonderful, very twisting scrolls, in the following precise sense. There exist

(1) a smooth variety B over k,

(2) a flat morphism t : B → C,

(3) a smooth projective family of surfaces R → B,

(4) a morphism π : R → P1,

(5) a morphism h : R → X such that f ◦ h = t, and

(6) a morphism σ : P1 × B → R over B such that π ◦ σ = pr1.

These data satisfy:

(1) for each b ∈ B(k) the fibre (πb : Rb → P1, hb : Rb → Xt(b), σb) is a wonderful very

twisting scroll in Xt(b), and

(2) the image of the map

fib0 : B −→ M0,1(X/C,1),

which assigns to b ∈ B(k) the 1-pointed free line σb(0) ∈ π−1
b (0) → Xt(b) contains a

nonempty open V ⊂ M0,1(X/C,1).

Remark 12.10. — The formulation above is just one possible formulation of “family
of wonderful very twisting scrolls”. The important part of the lemma is once there is a
single such a scroll, then there are many.

Proof. — Let (P1 ← R → Xt,D) be a scroll in a fiber. As in the proof of
Lemma 12.8, we consider this as a morphism P1 → M0,1(P1 × Xt,1) ⊂ M0,1(P1 ×
X,1). And this gives a point in Mor(P1, M0,1(P1 × X,1)). For a suitably chosen R, B
will be an open subset of Mor(P1, M0,1(P1 × X,1)) containing this point.

Let (P1 ← R → Xt,D) be an m-twisting scroll in a fibre. There are no obstruc-
tions to deforming the morphism R → P1 × Xt because H1(R,NR/P1×Xt

) = 0, see Re-
mark 12.2. Also there are also no obstructions to deforming the morphism R → P1 × X:
the normal bundle of this morphism is a direct sum of NR/X and a trivial summand
TtC ⊗ κ(t)OR

∼= OR, where the splitting is induced by the derivative df of the morphism
f : X → C (which is constant on R by hypothesis). Since H1(R,NR/P1×Xt

) equals 0 and
since also H1(R, OR) equals 0 (as R is a rational surface), also H1(R,NR/P1×X) equals 0.
A deformation of R → P1 × X is a scroll R′ → P1 × X which is also contained in a fiber
P1 × Xt′ of f over some point t′ of C. Also since OR(D) is globally generated on R and
since h1(R, OR(D)) equals 0, we can deform D to a divisor D′ on R′. Since the hypothe-
ses of Definition 12.3 are open conditions, a general deformation (R′,D′) of (R,D) is
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still m-twisting. And since the normal bundle of R → P1 × X is globally generated, we
see that we may deform R → P1 × Xt to a morphism R′ → P1 × Xt′ with t′ general
and R′ → Xt′ passing through a general point of Xt′ . So this gives very twisting scrolls
in fibres over S. Since Hypothesis 7.8 holds over S, these scrolls in fibres over S are in
Situation 10.1. Thus we may apply Lemma 12.8 to these scrolls. Therefore we may now
assume that R is a wonderful twisting scroll.

Moreover, let σ : P1 → R be a section of R → P1 such that D ∼ σ are ratio-
nally equivalent. Pick a point p ∈ P1(k). Since m > 0 the map H0(R,NR/P1×Xt

(−σ)) →
H0(Rp,NRp/Xt

(−σ(p))) is surjective. We see that given any infinitesimal deformation of
the pointed map (Rp, σ (p)) → (Xt, h(σ (p))) (from a pointed line to Xt pointed by the
image of the point) in Xt we can find an (unobstructed) infinitesimal deformation of
R → P1 × Xt that induces it. Combined with the fact, proven above, that we can pass a
deformation of R through a general point of X this shows that we can deform R → Xt

such that a given fibre of R → P1 is a general line in X/C.
Now we consider the point of Mor(P1, M0,1(P1 × X,1)) corresponding to this

scroll, and we define B to be a suitable open neighborhood. Finally, what is left is to show
that in a family of morphisms of surfaces R → P1 × X the locus where the surface is a
wonderful m-twisting scroll is open. This follows from semi-continuity of cohomology and
can safely be left to the reader, although a very similar and more difficult case is handled
in Lemma 12.11 below. �

In Situation 8.1, let R → X be a ruled surface all of whose fibres are free lines in
X/C. Let D be a Cartier divisor on R of degree 1 on the fibres of R → C. Let t1, . . . , tδ ∈
C(k) be pairwise distinct points. Let P1 ← Si → Xti be scrolls. Let Di be a Cartier divisor
on Si of degree 1 on the fibres of Si → P1. Assume given isomorphisms Rti

∼= Si,0 of
the fibre of R over ti with the fibre of Si over 0 compatible with the maps into Xti . Let
C′ = C ∪ ⋃

i P
1 be a copy of C with δ copies of P1 glued by identifying 0 in the ith copy

with ti ∈ C(k). Let R′ = R ∪ ⋃
i Si → C′ be the ruled surface over C′ gotten by gluing Rti

to Si,0 using the given isomorphisms. Let h′ : R′ → C′ ×C X be the obvious morphism.
Note that there is a Cartier divisor D′ on R′ whose restriction to R is rationally equivalent
to D and whose restriction to each Si is rationally equivalent to Di . Moreover this Cartier
divisor is unique up to rational equivalence.

In the following we are interested in smoothings of situations as above. This means
that we have an irreducible variety T over k, and a commutative diagram of varieties

R′ = R ∪ ⋃
Si

π0

R

π

C ×C×T (X × T) X × T

C′ = C ∪ ⋃
P1 C C × T T

satisfying the following conditions: (1) C → T and R → T are flat and proper, (2) every
fibre Ct of C → T over t ∈ T(k) is a nodal curve of genus g(C) and Ct → C has degree 1
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(see discussion in Section 6), (3) the morphism R → C is smooth, (4) every fibre Rt →
Ct ×C X is a ruled surface over every irreducible component of Ct , (5) for some point
0 ∈ T(k) the fibre R0 → C0 ×C X is isomorphic to our map h′ : R′ → C′ ×C X above, and
finally (6) for some point t ∈ T(k) the fibre Ct = C. In addition we assume given a Cartier
divisor D on R restricting to the divisor D′ on R′ = R0.

Lemma 12.11. — In the situation above.

(1) If (R,D) is m-twisting and (Si,Di)i=1...δ are mi-twisting, with mi ≥ 2, then for t ∈ T(k)

general the ruled surface (Rt, Dt) in X is (m + δ)-twisting.

(2) Let ni, i = 1,2,3 be integers such that for all Cartier divisors A of degree on C we have

(a) deg(A) ≥ n1 ⇒ H1(C, (π∗NR/X)(A)) = 0,

(b) deg(A) ≥ n2 ⇒ H1(C, (π∗NR/X(−D))(A)) = 0, and

(c) deg(A) ≥ n3 ⇒ H1(C, (π∗OR(D))(A)) = 0.

If (Si,Di)i=1...δ are wonderful very twisting scrolls and δ ≥ max{n1 + 1, n2 + 1, n3},
then for t ∈ T(k) general the ruled surface (Rt, Dt) in X is (δ − n3)-twisting.

Proof. — The main part is (2). Part (1) follows by applying the proof of (2) and
the proof of Lemma 12.8. Regarding the proof of (1), we would like to remark that the
increase in the twisting comes from the fact that the sheaves (Si → P1)∗

(
NSi/P1×Xti

(−Di)
)

are ample vector bundles on P1: they are locally free by Remark 12.2, and ampleness
follows from the hypothesis that each mi ≥ 2, combined with [Kol96, II Lemma 7.10.1].

We begin the proof of (2). Because the morphism R → C is smooth we can define
NR/X by the short exact sequence

0 → TR/C → (R → X)∗TX/C → NR/X → 0.

As before this is a sheaf on R which is flat over C . For every point c ∈ C(k) lying over
t ∈ C(k) the restriction of NR/X to the fibre Rc is the normal bundle of the line Rc → Xt

(compare with Remark 12.2). For all points c ∈ C(k) lying over 0 the sheaf NR/X|Rc
is

globally generated. Hence after replacing T by an open subset containing 0 we may
assume this is true for all points c.

Consider the coherent sheaves of OC -modules E1 = π∗OR(D), E2 = π∗NR/X and
E3 = π∗NR/X(−D). By the above the corresponding higher direct images are zero (as
H1 of a globally generated sheaf on P1 is zero). The semicontinuity theorem implies Ei

is a locally free sheaf on C . Let U ⊂ T be a nonempty open such that Ct = C for all
t ∈ U(k) (this exists because we started with a smoothing). For t ∈ U(k) we can and do
think of Ei,t as a locally free sheaf on C. Let A be a Cartier divisor of degree ≤ δ − n3

on C, and let p ∈ C(k) be any point. We would like to show that H1(C, E1,t(−p)) = 0,
H1(C, E2,t(−p)) = 0, and H1(C, E3,t(−A)) = 0, for t general in U(k). This now follows
from [Kol96, II Lemma 7.10.1], the definition of ni in the lemma and the fact that δ ≥ n.
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Namely, these vanishings imply that both E1,t , and E2,t are globally gener-
ated and have no H1, which implies that ORt

(Dt) and NRt/X are globally gener-
ated and have no H1. The statement on E3,t gives the desired vanishing of H1(Rt,

NRt/X(−Dt − π∗
t A)). �

Proposition 12.12. — In Situation 8.1, assume Hypothesis 7.8 holds over a dense open subset

S of C. Suppose there exists a geometric fibre of X → C which has a very twisting scroll. Then there

exists an irreducible component Z ⊂ �(X/C/k) containing a free section (and thus containing a dense

open subset parameterizing free sections), such that for all e � 0 the irreducible component Ze defined

in Lemma 8.4 contains a point [s] such that s = h ◦ σ for some very twisting scroll (h : R → X, σ )

in X.

Proof. — The proof of this proposition is in two stages. In the first stage we will find
some sufficiently twisting scroll (R, σ ). The irreducible component Z will be the unique
one containing [h◦σ ]. This then determines a sequence (Ze)e≥e0 by gluing free lines, as in
Section 8. In the second stage we will prove that for all Ze, a generic section is penned by
a very twisting scroll obtained from the initial scroll (R, σ ) by attaching wonderful, very
twisting scrolls in fibers, and then deforming.

Let B, t : B → C, R → B, π : R → P1, h : R → X, σ : P1 × B → R be the
family of wonderful very twisting scrolls in fibres of X/C we found in Lemma 12.9. Let
V ⊂ M0,1(X/C,1) be the nonempty open set swept out by fib0 as in that lemma. In
addition, let e0 be the degree of the rational curves hb ◦ σb : P1 → Xt(b).

By Lemma 8.3 there exists a free section s of X → C meeting Xf ,pax. We may
deform s such that it also meets the open set ev(V). We may also deform s such that s

defines a point of the open U of Lemma 12.1. In the proof of Lemma 12.1 we used the
main result of [GHS03] to establish the existence of a ruled surface R penning s all of
whose fibres are free lines. Hence we may actually choose R such that for some t ∈ C(k)

general the one pointed line s(t) ∈ Rt defines a point of the open V. Here we use that
the moduli space of lines in XS/S meeting Xf ,pax is irreducible by Hypothesis 7.8. Thus
we may assume that s is penned by a ruled surface R all of whose fibres are free lines in
X/C, by (b) of Lemma 12.1, and such that there exists an open W ⊂ C with the property
that s(t) ∈ Rt → Xt defines a point of V for all t ∈ W(k).

In other words, at every point of W we may attach a wonderful very twisting scroll
out of the family R/B to R. We reinterpret this in terms of the corresponding map g =
g(R,σ ) : C → M0,1(X/C,1). In terms of this it means that we can find arbitrarily many
free maps gα : P1 → M0,1(X/C,1) corresponding to wonderful very twisting scrolls in
fibres that we may attach to the morphism g to get combs C ∪ ⋃

α P1 → M0,1(X/C,1).
By [Kol96, II Theorem 7.9] an arbitrarily large subcomb will smooth. Now we reinter-
pret this back into a smoothing of the corresponding glueing of ruled surfaces. It says, via
part (2) of Lemma 12.11, that a general point of the base of this smoothing will corre-
spond to a (e0 + 1)-twisting surface (π : R → C, h : R → X, σ ). This finishes the proof
of the first stage.
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Let e1 be the degree of h ◦ σ , and let Z ⊂ �e1(X/C/k) (as promised) be the unique
irreducible component containing the free section h ◦ σ . Fix an integer i ∈ {0,1, . . . ,

e0 − 1}. Pick some effective Cartier divisor �i ⊂ C of degree i, and pick a section σi of
R → P1 which is a member of the (base point free) linear system |σ +π∗�i|. Then (R, σi)

is (e0 + 1 − i)-twisting. Thus the associated morphism gi : C → M0,1(X/C,1) is free, see
Lemma 12.4. In particular after deforming gi a bit we may assume that gi meets the open
dense subset V above.

For any δ > 0 consider pairwise distinct point t1, . . . , tδ ∈ C(k) such that gi(tj) ∈ V
for all j = 1, . . . , δ. In addition let gij : P1 → M0,1(Xtj ,1) be morphisms corresponding
to wonderful very twisting scrolls out of our family R/B above with the property that
gij(0) = gi(tj) (this is possible). In other words, now we have a comb g̃i : C ∪ ⋃

j P
1 →

M0,1(X/C,1). Note that the resulting stable section ev◦ g̃i of X/C has degree e1 + i +δe0.
Since both gi and all the gij are free there exists a smoothing of this comb (for all δ ≥ 0).
By part (1) of Lemma 12.11 a general point of the base of this smoothing corresponds to
a (e0 + 1 − i + δ)-twisting scroll.

It remains to show that (for every i) the stable section ev ◦ g̃i corresponds to a point
of Ze1+i+δe0 (since then the same will be true after smoothing the surface). This follows
from Lemma 10.4. �

Corollary 12.13. — Assumptions and notations are as in the Proposition 12.12 above, with

Z, Ze as in that proposition. Let Pe,1 be the moduli space of porcupines (s : C → X, q ∈ C(k), r ∈
L(k),L → Xq) with one quill and body s whose moduli point is in Ze. There exists a dense open

Ue,1 ⊂ Pe,1 such that if [(s : C → X, q ∈ C(k), r ∈ L(k),L → Xq)] lies in Ue,1 then there exists a

ruled surface R in X penning s(C) ∪ L (see Definition 9.2) such that (R, s) is very twisting.

Proof. — Although the formulation of this corollary is cumbersome the proof is not.
Namely, we already know that for all e � 0 there exists a very twisting scroll (π : R →
C, h : R → X, σ ) such that h ◦ σ lies in Ze. Pick a general q ∈ C(k) and consider the
datum (q ∈ C(k),π : R → C, h : R → X, σ ). After moving the ruled surface (R, σ ) a bit
we may assume h(σ (q)) is a point of Xf ,pax such that (h ◦ σ)(C) ∪ h(Rq) is a porcupine.
(This step is not strictly necessary for the proof.) At this point it suffices to show that
any deformation of the porcupine can be followed by a deformation of the datum (q ∈
C(k),π : R → C, h : R → X, σ ). This is true because H1(R,NR/X(−σ − Rq)) = 0 as
(R, σ ) was assumed very twisting. �

13. Main theorem

Here is the main theorem of the paper, as well as its important Corollary 13.2.

Theorem 13.1. — In Situation 8.1, assume Hypothesis 7.8 holds over an open part S of C.

Suppose there exists a geometric fibre of X → C which has a very twisting scroll. In this case there exist
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an integer ε and a sequence (Ze)e≥ε of irreducible components Ze of �e(X/C/κ) as in Lemma 8.4

such that

(1) a general point of Ze parametrizes a free section of f ,

(2) each Abel map

αL|Ze
: Ze → Pice

C/κ

has nonempty rationally connected geometric generic fibre, and

(3) for every free section s of f there exists an E = E(s) > 0 such that for all e ≥ E, Ze is the

unique irreducible component of �e(X/C/κ) containing every comb whose handle is s and

whose teeth are free lines in fibres of f .

Proof. — We will show the sequence of irreducible components we found in Propo-
sition 12.12 satisfies the conclusions of the theorem. By Lemma 8.5 the irreducible com-
ponents satisfy the first condition. As a second step we remark that {Ze} satisfies the
third part by Corollary 9.8. Also, the geometric generic fibres of αL|Ze

are irreducible
by Lemma 8.9 (for large enough e).

So what is left is to show that these fibres are rationally connected. Since they are
proper it is the same as showing they are birationally rationally connected. We will prove
this for a general fibre rather than the geometric generic fibre, which is anyway the same
thing since our field is uncountable. To show that a variety W/k is birationally rationally
connected it suffices to show that for a general pair of points (p, q) ∈ W × W there exist
open subsets Vi ⊂ P1, morphisms fi : Vi → W, for i = 1, . . . ,N such that (1) each Vi

nonempty open, (2) p ∈ f1(V1), (3) q ∈ fN(VN) and (4) fi(Vi) ∩ fi+1(Vi+1) contains a smooth

point of W for i = 1, . . . ,N − 1. See [Kol96, Theorem IV.3.10.3]. This is the criterion
we will use. During the proof of the theorem we will call such a chain of rational curves
a “useful chain”. We apply this criterion to the coarse moduli scheme for the stack Ze.
The proof is an accumulation of intermediate steps proving that various subvarieties of
the coarse moduli space are connected to each other by chains of rational curves. And
the useful chain is an accumulation of these subchains: we will show there are sufficiently
may chains of rational curves to do the job.

A first point is to note that since the target of αL is an abelian variety every rational
curve in Ze is automatically contracted to a point under αL. Hence we do not have to
worry about our curves “leaving” the fibre.

Second, what does Corollary 12.13 say? Let E be the implied (large) constant of
Corollary 12.13. It says that for all e − 1 ≥ E there is a nonempty open Ue−1,1 ⊂ Ze of the
space of porcupines of total degree 1 and one quill which are penned by a very twisting
scroll. By Lemma 12.5, all points of Ue−1,1 are connected by a rational curve to a point in
the “interior” of Ze, i.e., the dense open subset parameterizing free sections. The subset
of Ze which is the union of these rational curves is a constructible subset whose closure
properly contains Ue−1,1. Note that Ze is irreducible and Ue−1,1 is a Cartier divisor in Ze.
Thus the only closed subset of Ze which properly contains Ue−1,1 is all of Ze. Therefore
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this constructible subset is dense in Ze, i.e., a general point of Ze is contained in one of
these rational curves intersecting Ue−1,1 in a general point. Now since the points of Ue−1,1

parameterize unobstructed curves, we conclude: (A) a general point of Ze is connected by
a rational point to a general point of Ue−1,1.

Thirdly, we repeat the previous argument several times, as follows. Consider the
forgetful map Ue−1,1 → Ze−1 × C which omits the quill but remembers the attachment
point. It has rationally connected smooth projective fibres at least over a suitable open of
Ze−1 × C, by Hypothesis 7.8 which holds over S ⊂ C. By (A), if e − 2 ≥ E, then we can
find a rational curve connecting a general point of Ze−1 to a general point of Ue−2,1, and
by the previous remark we can find a rational curve in Ue−1,1 connecting a general point
of Ue−1,1 to a point of Ze which corresponds to a general porcupine with 2 quills. In other
words, if e − 2 ≥ E, we can find a useful chain of rational curves connecting a general
point of Ze to a general porcupine with two quills.

Continuing in this manner, we see that if e − δ ≥ E, then we can connect a general
point of Ze by a useful chain of rational curves to a general porcupine with δ quills. It
is mathematically more correct to say that we proved that useful chains emanating from
points corresponding to porcupines whose body is in Ze−δ and with δ quills sweep out an
open in Ze.

Fix e0 an integer such that (a) e0 > E, and (b) the general point of Ze0 corresponds to
a 2g(C) + 1-free section, see Lemma 8.8. Let P ⊂ Ze0 be the set of points corresponding
to porcupines without quills. Recall (see just above Proposition 9.7) that Pe−e0 indicates
porcupines with e − e0 quills and body in P, in other words porcupines with body in Ze0

and e − e0 quills. We apply Proposition 9.7 to the pair (P,P′ = P); let E1 be the constant
(which is ≥ e0) found in that proposition. The proposition says exactly that for e ≥ E1,
a general point of

Pe−e0 ×αL,Pice
C/k,αL Pe−e0

can be connected by useful chains in Ze. Combined with the assertion above that a gen-
eral point of Ze may be connected by useful chains to a point of Pe−e0 , the proof is com-
plete. �

The impetus of a lot of the research in this paper comes from the following appli-
cation of the main theorem.

Corollary 13.2. — Let k be an algebraically closed field of characteristic 0. Let S be a smooth,

irreducible, projective surface over k. Let

f : X → S

be a flat proper morphism. Assume there exists a Zariski open subset U of S whose complement has codi-

mension 2 such that the total space f −1(U) is smooth and such that f : f −1(U) → U has geometrically

irreducible fibres. Let L be an f -ample invertible sheaf on f −1(U). Assume in addition that the geometric
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generic fibre Xη → η satisfies Hypothesis 7.8 and has a very twisting scroll. Then there exists a rational

section of f .

Proof. — Right away we may assume that k is an uncountable algebraically closed
field. Also, if Xη → η satisfies 7.8 and has a very twisting scroll, then for some nonempty
open V ⊂ U the morphism Xv → V satisfies 7.8 and the fibres contain very twisting
surfaces. In addition we may blow up S (at points of U) and assume we have a morphism

b : S −→ P1

whose general fibre is a smooth irreducible projective curve. Let W ⊂ P1 be a nonempty
Zariski open such that all fibres of b over W are smooth, and meet the open V. Consider
the space and moduli map

�e(XW/SW/W) −→ Pice
SW/W

introduced in Definition 6.2 and Lemma 6.7.
Let ξ ∈ W be the generic point so its residue field κ(ξ) is equal to the function

field k(W) of W. Let ξ = Spec(k(W)) → W be a geometric point over ξ corresponding
to an algebraic closure of k(W). Note that by our choice of W and the assumption of
the corollary the hypotheses of the main theorem (13.1) are satisfied for the morphisms
Xw → Sw for every geometric point w of W. Let us apply this to the geometric generic
point ξ of W. This gives a sequence of irreducible components Ze ⊂ �e(XW/SW/W)ξ

say for all e ≥ e0. Note that Ze0 can be defined over a finite Galois extension κ(ξ) ⊂ L.
By construction of the sequence {Ze}e≥e0 , see Lemma 8.4, we see that each Ze is defined
over L. Next, suppose that σ ∈ Gal(L/κ(ξ)). Then we similarly have a sequence {Zσ

e }e≥e0

deduced from the sequence by applying σ to the coefficients of the equations of the
original Ze. Of course the sequence {Zσ

e }e≥e0 is the sequence of components deduced from
Zσ

e0
by Lemma 8.4. Thus {Ze}e≥e0 and {Zσ

e }e≥e0 satisfy the hypotheses of Corollary 9.8. So,
by Corollary 9.8, there exists an integer e1 ≥ e0 such that Ze equals Zσ

e for all e ≥ e1. Since
there are only finitely many elements σ in Gal(L/κ(ξ)), in fact there exists a single integer
e1 ≥ e0 such that for every e ≥ e1 and for every σ in Gal(L/κ(ξ)), Ze equals Zσ

e . Thus Ze

is Galois invariant. Thus it is the base change of an irreducible component defined over
κ(ξ). So for e � 0 the irreducible components Ze ⊂ �e(XW/SW/W)ξ are the geometric
fibres of irreducible components ZW,e ⊂ �e(XW/SW/W)!

The conclusion of the above is that we know that for all e � 0 there exist irreducible
components ZW,e ⊂ �e(XW/SW/W) such that the induced morphisms

ZW,e −→ Pice
SW/W

have birationally rationally connected nonempty geometric generic fibre. But note that
since �e(XW/SW/W) is actually proper over W, so is ZW,e and hence its fibres over
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Pice
SW/W are actually rationally connected (more precisely the underlying coarse moduli

spaces of the fibres are rationally connected).
At this point we are done by the lemmas below. Namely, Lemma 13.3 says it is

enough to construct a rational section of ZW,e → W, and even such a rational section to
its coarse moduli space Zcoarse

W,e . Since the original surface S was projective, we can find
for arbitrarily large e divisors D on S which give rise to sections of Pice

SW/W → W. On
the other hand, since Pice

SW/W is smooth, Lemma 13.4 guarantees, because of the result
on the geometric generic fibre above, that we can lift this up to a section of Zcoarse

W,e → W.
Thus the proof of the corollary is finished. �

Lemma 13.3. — Let k be an algebraically closed field of characteristic zero. Let S be a variety

over k. Let C → S be a family of smooth projective curves. Let X → C be a proper flat morphism. Let

L be an invertible sheaf on X ample w.r.t. X → C. If �e(X/C/S) → S (see Definition 6.2) has a

rational section for some e, then X → C has a rational section. The same conclusion holds if we replace

�e(X/C/S) by its coarse moduli space.

Proof. — After shrinking S we have to show that if there is a section, then X → C
has a rational section. Let τ : S → �(X/C/S) be a section. This corresponds to a proper
flat family of curves C → S, and a morphism C → X such that C → C is a degree 1 map
from a nodal, genus 0 curve to C. See Section 6 and the initial discussion in that section.
In particular there is a nonempty Zariski open U ⊂ C such that U → C → X → C is an
open immersion. (For example, U is the open part where the morphism C → C is flat, or
it is the part obtained by excising the vertical pieces of the stable maps.) This proves the
first assertion of the lemma.

To prove the final assertion, after shrinking S as before, let t : S → �(X/C/S)coarse

be a map to the coarse moduli space. After shrinking S some more we may assume there
is a surjective finite étale Galois morphism ν : S′ → S such that t ◦ ν corresponds to a
morphism τ ′ : S′ → �(X/C/S)′

S = �(XS′/CS′/S′). By the arguments in the first part of
the proof this corresponds to a section of XS′ → CS′ . To see that it descends to a rational
section of X → C it is enough to see that it is Galois invariant. This is clear because the
only stackiness in the spaces of stable maps comes from the contracted components. �

Lemma 13.4. — Let α : Z → P be a proper morphism of varieties over an algebraically closed

field k of characteristic zero. Assume the geometric generic fibre is rationally connected, and P is quasi-

projective. Let C ⊂ P be any curve meeting the nonsingular locus of P. Then there exists a rational section

of α−1(C) → C.

Proof. — (Sketch only, see also similar arguments in [GHMS05].) Curve means irre-
ducible and reduced closed subscheme of dimension 1. Thus C is generically nonsingular
and meets the nonsingular locus of P. This means C is locally at some point a complete
intersection in P. This means that globally C is an irreducible component of multiplic-
ity 1 of a global complete intersection curve on P (here we use that P is quasi-projective).
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This means that there exists a 1-parameter flat family of complete intersections C ⊂ P×T
parametrized by a smooth irreducible curve T/k such that C is an irreducible component
of multiplicity 1 of a fibre Ct for some t ∈ T(k) and such that the general fibre is a smooth
irreducible curve passing through a general point of P. In other words, by [GHS03] and
the assumption of the lemma, we can find a lift of Ck(T) → P to a morphism γ : Ck(T) → X
into X. Note that if T′ → T is a nonconstant morphism of nonsingular curves over k and
t′ ∈ T′(k) maps to t ∈ T(k) then the pullback family C ′ = C ×T T′ still has C as a compo-
nent of multiplicity one of the fibre over t′. Using this, we may assume that γ is defined
over k(T). In other words we obtain a rational map C ⊃ W γ−→ X lifting the morphism
C → P. Since T is nonsingular, and since C is a component of multiplicity one of the fibre
of C → T we see that the generic point of C corresponds to a codimension 1 point ξ of
C whose local ring is a DVR. Because X → P is proper we see, by the valuative criterion
of properness that we may assume that γ is defined at ξ . This gives the desired rational
map from C into X. �

14. Special rational curves on flag varieties

In this section we show that flag varieties contain many good rational curves. In
characteristic p > 0 there exist closed subgroup schemes H of reductive groups G such
that G/H is projective, but H not reduced. To avoid dealing with these, we say P ⊂ G is
a parabolic subgroup if P is geometrically reduced and G/P is projective.

Theorem 14.1. — Let k be an algebraically closed field. Let G be a connected, reductive algebraic

group over k. Let P be a parabolic subgroup of G. There exists a k-morphism f : P1 → G/P such that

for every parabolic subgroup Q of G containing P, denoting the projection by

π : G/P → G/Q,

we have that the pullback of the relative tangent bundle f ∗Tπ is ample on P1.

Remark 14.2. — Note that for any fixed Q, since the fibres of π are rationally con-
nected there exists a morphism f : P1 → G/P such that f ∗Tπ is ample. The importance
of Theorem 14.1 is that f has this property for all parabolics Q simultaneously.

The purpose of this section is to prove Theorem 14.1. We use some results in
the theory of reductive linear algebraic groups. It turns out that the proof in the case
X = G/B is somewhat easier. Thus we first reduce the general case to this case by a
simple geometric argument.

Lemma 14.3. — It suffices to prove Theorem 14.1 when P is a Borel subgroup.
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Proof. — If P is not a Borel, then pick any B ⊂ P Borel contained in P. Let g : P1 →
G/B be a morphism as in Theorem 14.1. We claim that the composition f of g with the
projection map G/B → G/P has the necessary property. Namely, if P ⊂ Q is another
parabolic, then we have a commutative diagram

G/B

τ

G/P

π

G/Q G/Q

which proves that f ∗Tπ is a quotient of g∗Tτ , and hence is ample. �

The outline of the proof of Theorem 14.1 in the case of G/B is as follows. We will
construct a curve C ∼= P1 in G/B which is the closure of the orbit of a Gm-action, such
that all the weights of the induced action of Gm at T0G/B, resp. T∞G/B are positive,
resp. negative.

We review some of the notation of [Spr98], see also [MR04, Section 2]. Let G
be a connected reductive algebraic group over an algebraically closed field k. Choose a
maximal torus T ⊂ G and let T ⊂ B be a Borel subgroup of G containing T. Let B−

be the opposite Borel subgroup, so that T = B ∩ B−. Let U (resp. U−) be the unipotent
radical of B (resp. B−). Let X = X∗(T) = Hom (T,Gm) and Y = X∗(T) = Hom (Gm,T)

be the character and cocharacter groups of T. Let (, ) : X × Y → Z be the pairing de-
fined by x(y(t)) = t(x,y) for t ∈ Gm. The choice of T ⊂ B ⊂ G determines the set of roots
� ⊂ X, the set of positive roots �+, as well as its complement �−. For α ∈ �, let Uα be
the root subgroup corresponding to α. Our normalization is that α ∈ �+ ⇔ Uα ⊂ B. We
denote the simple roots � = {αi | i ∈ I}. So here I is implicitly defined as the index set
for the simple roots. For any J ⊂ I, let �J be the set of roots spanned by simple roots in
J and �+

J = �J ∩ �+, �−
J = �J ∩ �−. Let PJ be the parabolic subgroup corresponding

to J which is characterized by Uα ⊂ PJ ⇔ (α ∈ �J or α ∈ �+). Let XJ = G/PJ the corre-
sponding flag variety (there will be no subscripts to X = X∗(T) and so we will avoid any
possible confusion). Note that X∅ = G/B classifies Borel subgroups of G and is sometimes
written as B.

For each i ∈ I there is a morphism of algebraic groups

hi : SL2,k → G

which maps the diagonal torus into T, such that a �→ hi

(
1 a
0 1

)
is an isomorphism xi :

Ga → Uαi
, and such that a �→ hi

(
1 0
a 1

)
is an isomorphism yi : Ga → U−αi

. It follows that
αi

(
hi

(
t 0
0 tı

))
is equal to t2. The cocharacter Gm → T, t �→ hi

(
t 0
0 tı

)
is the coroot α∨

i dual to
the simple root αi . The datum (B,T, xi, yi; i ∈ I) is called an épinglage or a pinning of G.
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For i ∈ I, let si be the corresponding simple reflection in the Weyl group W = NG(T)/T.
The element ṡi = hi

(
0 −1
1 0

) ∈ NG(T) is a representative of si. Then

(a) yi(1) = xi(1)ṡixi(1).

For w ∈ W, we denote by l(w) its length and we set ẇ = ṡi1 ṡi2 · · · ṡin , where si1si2 · · · sin is
a reduced expression of w. This expression is independent of the choice of the reduced
expression for w.

For any subgroup H of G, we denote by Lie(H) its Lie algebra. (We will think of
this as the spectrum of the symmetric algebra on the cotangent space of G at the identity.)
Let us recall the following result (see [Slo80, page 26, Lemma 4]).

Lemma 14.4. — Let H be a closed subgroup scheme of G. Let X be a scheme of finite type

over k endowed with a left G-action. Let f : X → G/H be a G-equivariant morphism from X to the

homogeneous space G/H. Let E ⊂ X be the scheme theoretic fibre f ı(H/H). Then E inherits a left

H-action and the map G ×H E → X sending (g, e) to g · e defines a G-equivariant isomorphism of

schemes.

Let J ⊂ I and e = PJ/PJ ∈ XJ = G/PJ. We are going to apply the lemma to
the tangent bundle TXJ of XJ and the G-equivariant map f : TXJ → XJ. Note that
f ı(e) = TXJ,e = Lie(G)/Lie(PJ) because 1 ∈ G lifts e ∈ XJ. For an element p ∈ PJ the left
multiplication p : XJ → XJ lifts to innp : G → G, g �→ pgpı because pgpıPJ = pgPJ. Since
innp fixes 1 ∈ G and acts by the adjoint action on Lie(G) it follows that the PJ-action on
f ı(e) = Lie(G)/Lie(PJ) is the adjoint action of PJ on Lie(G)/Lie(PJ). We define an action
of PJ on G × Lie(G)/Lie(PJ) by p · (g, k) = (gpı,Ad(p) · k). Let G ×PJ Lie(G)/Lie(PJ) be
the quotient space. Then by the lemma, we have

TXJ
∼= G ×PJ Lie(G)/Lie(PJ).

In particular, when J = ∅ we get that the tangent bundle of X∅ = G/B is identified with
G ×B Lie(G)/Lie(B).

What about the relative tangent bundles? Consider a subset J ⊂ I as before. Then
B ⊂ PJ and we obtain a canonical morphism pJ : X∅ → XJ. Note that Lie(PJ)/Lie(B) is a
B-stable subspace of Lie(G)/Lie(B). Again by the above lemma, we see that the vertical
tangent bundle TpJ ⊂ TX∅ of the projection map pJ is isomorphic to

G ×B Lie(PJ)/Lie(B) ⊂ G ×B Lie(G)/Lie(B).

Consider the adjoint group ad(G) of G together with the image ad(T) of T. The
root lattice X∗(ad(T)) is the free Z-module

⊕
i∈I Zαi ⊂ X = X∗(T). Let ρ∨ ∈ X∗(ad(T))

be the cocharacter such that (αi, ρ
∨) = 1 for all i ∈ I. In other words,

ρ∨ : Gm → ad(G)
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is a morphism into ad(T) such that ρ∨(t) acts via multiplication by t on Uαi
for all i ∈ I.

From this we conclude that, for any u ∈ U we have

limt→0 innρ∨(t)(u) = 1

and, for any u− ∈ U− we have

limt→∞ innρ∨(t)(u
−) = 1

Here, by abuse of notation, for an element ḡ ∈ ad(G) we denote innḡ the associated inner
automorphism of G; in other words, innḡ = inng for any choice of g ∈ G mapping to
ḡ ∈ ad(G). Since each PJ contains T and hence the center of G we see that Gm acts
on XJ = G/PJ via ρ∨. This action induces a Gm-action on the bundles TG/B and TpJ .
Under the isomorphism TpJ = G ×B Lie(PJ)/Lie(B) this action is given by t · (g, k) =
(innρ∨(t)(g),Adρ∨(t)(k)). We leave the verification to the reader.

Let w be the maximal element in W and let w = si1si2 · · · sin be a reduced expression
of w. Set u = xi1(1)ṡi1xi2(1)ṡi2 · · · xin(1)sin . By [MR04, Proposition 5.2], u · B/B ∈ (Bẇ ·
B/B) ∩ (B− · B/B). In particular, u · B/B = u1ẇ · B/B = u2 · B/B for some u1 ∈ U and
u2 ∈ U−. This is the only property of u that we will use. Another way to find an element
with this property is as follows: Since w is the longest element we have ẇBẇ−1 = B−.
Thus finding a u as above amounts to showing that BẇB ∩ B−B is nonempty, which is
clear since both are open in G (because BwB = wB−B).

Let C be the closure of {innρ∨(t)(u) · B/B; t ∈ k∗} in X∅. In other words, C is the
closure of the Gm-orbit of the point u∅ := u · B/B of X∅ with Gm acting via ρ∨. Then

lim
t→∞ t · u∅ = lim

t→∞ innρ∨(t)(u2) · B/B = B/B,

lim
t→0

t · u∅ = lim
t→0

innρ∨(t)(u1)ẇ · B/B = ẇ · B/B.

Then C = {innρ∨(t)(u∅); t ∈ k∗} � [0] � [∞], where [0] = ẇ · PJ/PJ and [∞] = PJ/PJ. Let

h : P1 → C ⊂ XJ

be the Gm-equivariant morphism with h(t) = t ·u, h(0) = [0], and h(∞) = [∞]. (Warning:
h needs not be birational.)

With this notation h∗TpJ is a Gm-equivariant vector bundle over P1. It is an exercise
to show that an Gm-equivariant bundle on P1 is a direct sum of Gm-equivariant line bun-
dles. Thus we have that h∗TpJ = ⊕

Ll for some Gm-equivariant line bundles Ll over P1.
We would like to compute the degrees of the line bundles Ll . For any Gm-equivariant
line bundle L on P1 we define two integers n(L,0), and n(L,∞) as the weight of the
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Gm-action on the fibre at 0, respectively ∞. We leave it to the reader to prove the for-
mula

deg L = n(L,0) − n(L,∞),

see also Remark 14.5 below. In order to compute the degrees of the Ll we com-
pute the integers n(Ll,0) and n(Ll,∞). And for this in turn we compute the fi-
bre of TpJ at the points [0] and [∞] as Gm-representations. In fact both points
are T-invariant and hence we can think of TpJ|[0] and TpJ|[∞] as representations
of T.

The fibre of TpJ at the point [∞] = B/B is just the vector space Lie(PJ)/Lie(B)

with T acting via the adjoint action. We have Lie(PJ) = Lie(B) ⊕ ⊕
α∈�−

J
Lie(Uα). Thus

Lie(PJ)/Lie(B) ∼=
⊕

α∈�−
J

Lie(Uα).

How does Gm act on this? It acts via the coroot ρ∨. For each α ∈ �−
J we have (α,ρ∨) < 0,

hence all the weights are negative, in other words all the n(Ll,∞) are negative.
The fibre of TpJ at the point [0] = ẇ ·B/B is the space {ẇ}×Lie(PJ)/Lie(B) inside

G ×B Lie(PJ)/Lie(B). For an element t ∈ T and an element k ∈ Lie(PJ)/Lie(B) we have
(see above)

t · (ẇ, k) = (innt(ẇ),Adt(k))

= (tẇt−1,Adt(k))

= (ẇtwt−1,Adt(k))

= (ẇ,Adtw(Adt−1(Adt(k))))

= (ẇ,Adtw(k)).

Thus the weights for T on TpJ|[0] are the w(α), where α ∈ �−
J . How does Gm act on this?

It acts via the coroot ρ∨. For each α ∈ �−
J we have (w(α),ρ∨) > 0, because the longest el-

ement w exchanges positive and negative roots. This follows directly from ẇBẇ−1 = B−.
Hence all the weights are positive, in other words all the n(Ll,0) are positive.

From this we conclude that all the line bundles Ll have positive degree. In other
words we have shown that h∗TpJ is a positive vector bundle for all J ⊂ I. This proves
Theorem 14.1.

Remark 14.5. — The sign of the formula for the degree of an equivariant line
bundle on P1 may appear to be wrong due to the fact that we are working with line
bundles and not invertible sheaves (which is dual). The actual sign of the formula for
an equivariant line bundle on P1 does not matter for the argument however. Namely, in
either case the rest of the arguments show that all the line bundles Ll have the same sign.
And since we know that G/B is Fano we know that the sum of all the degrees of the line
bundles in the pullback of TG/B has to be positive.
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15. Rational simple connectedness of homogeneous spaces

In this section we show that a projective homogeneous space Z of Picard num-
ber 1 has a very twisting scroll, see Corollary 15.4. We also prove Z is rationally simply
connected by chains of free lines, see Lemmas 15.7 and 15.8.

Let k be an algebraically closed field of characteristic 0. Let X and Y be smooth,
connected, quasi-projective k-schemes. Let L be an ample invertible sheaf on X. Let
u : Y → M0,0(X,1) be a morphism. This corresponds to the X, C,Y, p, q in the following
diagram of k-schemes

P1

τ

σ

C
p

q

X

Y.

Automatically q is a smooth, projective morphism whose geometric fibres are isomorphic
to P1 which map to lines in X via p. There is an associated 1-morphism

v : C → M0,1(X,1).

Proposition 15.1. — In the situation above with σ : P1 → C as in the displayed diagram.

Assume that

(1) all lines parametrized by Y are free,

(2) p is smooth,

(3) u is unramified,

(4) either τ is a free rational curve on Y, or p ◦ σ : P1 → X is free,

(5) σ ∗Tp and σ ∗Tq are ample.

Then X has a very twisting scroll.

Proof. — We will show the pair (R, s) where the scroll R is defined as R = P1 ×q◦σ,Y,q

C and with section s : P1 → R given by σ satisfies all the properties of Definition 12.7. It
is enough to show this after replacing k by any algebraically closed extension so we may
assume k is uncountable. Product will mean product over Spec(k).

We will use the following remarks frequently below. Denote the projection to P1 by
qR : R → P1 and the projection to C by σR : R → C . For every coherent sheaf F on C ,
cohomology and base change implies the natural map

τ ∗R1q∗F → R1qR,∗(σ ∗
RF )

is an isomorphism. If the sheaves R1qR(F ) are zero (along the image of τ ) then

τ ∗q∗F → qR,∗(σ ∗
RF )

is an isomorphism.
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Note that NR/P1×X equals the pullback of NC/Y×X. Because TX×Y = pr∗
1TX ⊕pr∗

2TY,
and because q is smooth there is a short exact sequence of locally free sheaves 0 → Tp →
q∗TY → NC/Y×X → 0 on C . There is an associated long exact sequence

0 → q∗Tp → q∗q∗TY
α−→ q∗NC/Y×X → R1q∗Tp → 0

using the fact that R1q∗q∗TY is zero. We can say more: (a) q∗q∗TY is canonically isomor-
phic to TY, (b) q∗NC/Y×X is canonically isomorphic to u∗TM0,0(X,1) (see Remark 12.2), and
(c) the sheaf homomorphism α above is canonically isomorphic to du. By hypothesis u

is unramified, in other words α is injective. Thus q∗Tp = 0, and we get an isomorphism
R1q∗Tp = NY/M0,0(X,1). We conclude that R1q∗Tp is locally free, and formation of R1q∗Tp

and q∗Tp commutes with arbitrary change of base. By relative duality, we get that R1q∗Tp

is dual to q∗(�p ⊗O C �q), and that R1q∗(�p ⊗O C �q) = 0.

Claim 15.2. — The sheaf τ ∗q∗(�p ⊗O C �q) is anti-ample, and thus τ ∗NY/M0,0(X,1) is

ample.

The surface R is a Hirzebruch surface. Denote by E the pullback of �p ⊗O C �q

to R. By our remarks above the claim is equivalent to the assertion that (qR)∗E is anti-
ample. The normal bundle Ns(P1)/R is canonically isomorphic to σ ∗Tq, which is ample
by hypothesis. Therefore the divisor s(P1) on R moves in a basepoint free linear system.
This implies the section s deforms to a family {st}t∈� of sections whose images cover a
dense open subset of R. Of course the pullback of �p ⊗O C �q to R is a locally free sheaf E
whose dual E ∨ is canonically isomorphic to the pullback of Tp ⊗O C Tq. And s∗E ∨ equals
σ ∗Tp ⊗OP1 σ ∗Tq. By hypothesis, each of σ ∗Tp and σ ∗Tq is ample on P1. Thus s∗E ∨ is
ample on P1. Since ampleness is an open condition, after shrinking � we may assume
s∗
t E ∨ is ample for t ∈ �. Therefore, s∗

t E is anti-ample.
For every t there is an evaluation morphism

et : (qR)∗E → s∗
t E .

Of course, since the curves st(P1) cover a dense open subset of R, the only local section
of (qR)∗E in the kernel of every evaluation morphism et is the zero section. Since (qR)∗E is
a coherent sheaf, in fact for N � 0 and for t1, . . . , tN a general collection of closed points
of �, the morphism

(et1, . . . , etn) : (qR)∗E −→
⊕N

i=1
s∗
ti

E

is injective. Since every summand s∗
ti

E is anti-ample, the direct sum is anti-ample. And a
locally free sheaf admitting an injective sheaf homomorphism to an anti-ample sheaf is
itself anti-ample. Therefore (qR)∗E is anti-ample, proving Claim 15.2.
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As usual, we denote by ev : M0,1(X,1) → X the evaluation morphism. Thus ev ◦
v = p as morphisms C → X. Consider the diagram

C

q

v

M0,1(X,1)

forget

ev
X

Y
u

M0,0(X,1)

whose square is Cartesian. Since we assumed that all lines parametrized by Y are free it
follows that M0,1(X,1) is nonsingular at every point of v(C). As p is assumed smooth, it
follows that ev : M0,1(X,1) → X is smooth at all points of v(C) (by Jacobian criterion for
example). Also, the diagram shows v is unramified and NC/M0,1(X,1) is canonically isomor-
phic to q∗NY/M0,0(X,1). Smoothness of ev and p implies we have a short exact sequence

0 → Tp → v∗Tev → NC/M0,1(X,1) → 0

By hypothesis, σ ∗Tp is ample. Claim 15.2 implies τ ∗NY/M0,0(X,1) = σ ∗NC/M0,1(X,1) is am-
ple. Therefore (v ◦ σ)∗Tev is ample.

At this point we can apply Lemma 12.6 to the surface R → P1 × X and the sec-
tion s, which combine to give the morphism g = v ◦ σ : P1 → M0,1(P1 × X/P1,1).
Condition (1) corresponds to the fact that s moves on R. Condition (2) holds because
the lines parametrized by Y are free. Condition (3) with m = 2 holds because, as we just
saw, the sheaf (v ◦ σ)∗Tev is ample. It remains to see that the morphism p ◦ σ : P1 → X
is free. This follows either by assumption, or if τ is free we argue as follows: The pull-
back (p ◦ σ)∗TX is a quotient of σ ∗TC . The sheaf σ ∗TC is sandwiched between σ ∗Tq and
σ ∗q∗TY and by assumption both are globally generated. Hence σ ∗TC and also (p◦σ)∗TX

is globally generated. �

Remark 15.3. — In the “abstract” situation of Proposition 15.1 we can often deduce
that the fibres of ev : M0,1(X,1) → X are rationally connected using [Sta04, Proposi-
tion 3.6] (the proof of this uses a characteristic 0 hypothesis). We will avoid this below to
keep the paper more self contained; instead we will use a little more group theory.

The new result in the following corollary is the statement about very twisting
scrolls.

Corollary 15.4. — Let G be a connected semi-simple group over k and let P ⊂ G be a maximal

parabolic subgroup. Let Z = G/P. Let L be an ample generator for Pic(Z) ∼= Z. Then the evaluation

morphism

ev : M0,1(Z,1) → Z

is surjective, smooth and projective. In addition, there exists a very twisting scroll in Z.
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Proof. — The action of G on Z determines a sheaf homomorphism

TeG ⊗k OZ → TZ

which is surjective because the action is separable and X is homogeneous. Thus TZ is
globally generated. Therefore every smooth, rational curve in Z is free. This implies

ev : M0,1(Z,1) → Z

is smooth. It is always projective, although at this point the space of lines on Z could be
empty.

Let B be a Borel subgroup of G contained in P, and let T be a maximal torus
in B. The data (G,B,T) determine a root system (X,�,Y,�∧) as in Section 14; we will
use the notation introduced there. As P is a maximal parabolic subgroup, P equals the
parabolic subgroup PJ where J = I − {j} for an element j of I. Thus Z = G/PJ = XJ in
the notation of Section 14. It is proved in [Coh95, § 4.20] and [CC98, Lemma 3.1] that
the subvariety

L := P{j} · PJ/PJ

is a line in G/PJ with respect to the ample sheaf L. (See also Remark 15.5 below.)
The action of G on Z induces an action of G on M0,0(Z,1) and M0,1(Z,1). Let

p = PJ/PJ ∈ G/PJ. This is a point on our line L. The stabilizer of (L, p) in M0,1(Z,1)

contains the Borel subgroup B, and thus is of the form PK for a subset K ⊂ J = I − {j}.
Since PK is parabolic, the orbit C of (L, p) is a projective (hence closed) G-orbit. The
image Y of C in M0,0(Z,1) is also a projective G-orbit. Observe that Pj acts transitively
on the subset {(L, q)|q ∈ L} of M0,1(Z,1) by construction of L. Thus the fibre of the for-
getful morphism M0,1(Z,1) → M0,0(Z,1) over [L] equals the fibre of C → Y over [L].
By homogeneity it follows that

C = M0,1(Z,1) ×M0,0(Z,1) Y.

So the diagram

C
p

q

Z

Y

is a diagram of smooth, projective morphisms where every geometric fibre of q is a
smooth, rational curve.

By Theorem 14.1, there exists a morphism,

σ : P1 → C
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such that σ ∗Tp and σ ∗Tq are both ample sheaves. The morphism p is smooth by homo-
geneity. And the morphism u : Y → M0,0(Z,1) is a closed immersion hence unramified.
Thus, by Proposition 15.1, there is a very twisting scroll in Z. �

Remark 15.5. — The variety G/P can be constructed as the orbit of the highest
weight vector in P(Vωj

) where ωj is the jth fundamental weight (this is what we called
β in the proof above). Here Vωj

is the representation with highest weight ωj . Under this
embedding L is the pullback of O(1) and lines are lines in P(Vωj

). In particular L is very
ample.

Lemma 15.6. — Let G be a linear algebraic group over k. Let X, Y be proper G-varieties

over k. Let Y → X be a G-equivariant morphism. Suppose that Y is rationally connected and that X
has an open orbit whose stabilizer is a connected linear algebraic group. Then the geometric generic fibre

of Y → X is rationally connected.

Proof. — Let x ∈ X(k) be a point in the open orbit. Let H be the stabilizer of x

in G, which is a connected linear algebraic group by assumption. Let F = Yx be the fibre
of Y → X over x. Consider the morphism � : G × F → Y, (g, f ) �→ g · f . This is a domi-
nant morphism of varieties over k. By construction the fibres of � are isomorphic to the
birationally rationally connected variety H. It follows from the main result of [GHS03]
that G × F is birationally rationally connected. Hence F is rationally connected. �

Note that the Bruhat decomposition in particular implies that the variety G/P ×
G/P has finitely many G-orbits. In addition all stabilizers of points of G/P × G/P are
connected, for example by [Bor91, Proposition 14.22].

Lemma 15.7. — Let Z = G/P, L be as in Corollary 15.4 above. Then every geometric fibre

of

ev : M0,1(Z,1) → Z

is nonempty and rationally connected.

Proof. — Because Z is homogeneous, all fibres are isomorphic and it suffices
to prove one fibre is rationally connected. By Lemma 15.6, it suffices to show that
M0,1(Z,1) is rationally connected. Clearly, it suffices to show that M0,0(Z,1) is ratio-
nally connected. Since a line is determined by any pair of points it passes through, this
follows from the remarks about the Bruhat decomposition immediately preceding the
lemma. �

Lemma 15.8. — Let Z = G/P, L be as in Corollary 15.4 above. There exists a positive

integer n and a nonempty open subset V of Z × Z such that the geometric fibres of the evaluation
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morphism

ev1,n+1 : FreeChain2(Z/k, n) −→ Z × Z

over V are nonempty, irreducible and birationally rationally connected. (Notation as in Section 7.)

Proof. — We will use without mention that every line on Z is free.
We rephrase a few arguments of Campana and Kollár-Miyaoka-Mori in this par-

ticularly nice setting. Consider the diagram

M0,0(Z,1)
�←− M0,1(Z,1)

ev−→ Z

For any closed subset T ⊂ Z, the closed set T′ = ev(�−1(�(ev−1(T)))) is the set of points
which are connected by a line passing through a point in T. Note that if T is irreducible,
then so is T′ since by Corollary 15.4 the morphism ev is smooth with irreducible fibres
according to Lemma 15.7. For any point z ∈ Z(k) consider the increasing sequence of
closed subvarieties

T0(z) = {z} ⊂ T1(z) = T0(z)
′ ⊂ T2(z) = T1(z)

′ ⊂ . . .

The first is the variety of points that lie on a line passing through z. The second is the set of
points which lie on a chain of lines of length 2 passing through z, etc. Let n ≥ 0 be the first
integer such that the dimension of Tn(z) is maximal. Then obviously Tn+1(z) = Tn(z).
Hence T2n = Tn(z). We conclude that for every point z′ ∈ Tn(z) we have Tn(z

′) = Tn(z).
Consider the map Z → HilbZ/k , z �→ [Tn(z)]. By what we just saw the fibres of this map
are exactly the varieties Tn(z). Since Pic(Z) = Z we conclude that either Tn(z) = {z}, or
Tn(z) = Z. The first possibility is clearly excluded and hence Tn(z) = Z, in other words
every pair of points on Z can be connected by a chain of lines of length n.

Thus the morphism

ev : FreeChain2(Z/k, n) → Z ×k Z

is surjective. This is a G-equivariant morphism for the evident actions of G on the
domain and target. There exists an open orbit in Z × Z, and all stabilizers are con-
nected, see the remarks preceding Lemma 15.7. By Lemma 15.6 it suffices to prove that
FreeChain2(Z/k, n) is rationally connected. For n = 1 this was shown in the proof of
Lemma 15.7. For larger n it follows by induction on n from Lemma 15.7 in exactly the
same way as the proof of the corresponding statement of Lemma 7.11. �

16. Families of projective homogeneous varieties

The main theorem in this section is Theorem 16.6: every split family of homo-
geneous spaces (see below) over a quasi-projective surface has a rational section. There
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are several steps in the proof. Lemma 16.1 reduces to the case of Picard number 1.
Lemma 16.3 shows it suffices to prove the theorem in characteristic zero. The technique
of discriminant avoidence reduces it to the special case where the base is a projective
surface, which is proved in Theorem 16.5.

In this section k is an algebraically closed field of any characteristic. A projective

homogeneous space over k or an algebraically closed extension of k is a variety isomorphic to
G/P where G is a connected, semi-simple, simply connected linear algebraic group and
P ⊂ G is a parabolic subgroup. (We do not allow exotic, nonreduced, parabolic subgroup
schemes.) Let S be a variety over k, and let η → S be a geometric generic point. A split

family of homogeneous spaces over S will be a proper smooth morphism X → S such that Xη

is a projective homogeneous space and that Pic(X) → Pic(Xη) is surjective.

Lemma 16.1. — Let k be an algebraically closed field of any characteristic. Let X → S be a

split family of homogeneous spaces over S. Then, after possibly shrinking S, there exists a factorization

X → Y → S

such that X → Y is a split family of homogeneous spaces over Y, such that Y → S is a split family of

homogeneous spaces over S and such that Pic(Yη) = Z.

Proof. — Choose an isomorphism Xη = G/P for some G, P over η. Choose a max-
imal parabolic P ⊂ P′ containing P. Let L0 be an ample generator of Pic(G/P′), as in
Corollary 15.4, its proof and Remark 15.5. Let L be an invertible sheaf on X whose
restriction to Xη is isomorphic to the pullback of L0 to Xη = G/P via the morphism
π : G/P → G/P′. Since L0 is ample, some power LN

0 is very ample and globally gener-
ated. Also, H0(G/P,π∗LN

0 ) = H0(G/P′, LN
0 ) as the fibres of π are connected projective

varieties. We conclude, by cohomology and base change, that after shrinking S we may
assume that LN is globally generated on X.

Choose a finite collection of sections s0, . . . , sM which generate the κ(η)-vector
space H0(G/P,π∗LN

0 ) = H0(G/P′, LN
0 ). Consider the morphism X → PM

S over S. Note
that on the geometric generic fibre the image is the projective embedding of G/P′ via the
sections s0, . . . , sM. Hence, after possibly shrinking S and using Stein factorization, we get
a factorization X → Y → S such that Yη

∼= G/P′ with Xη → Yη equal to π . The family
Y → S is split because the invertible sheaf L descends to Y due to the fact that it does so
on the geometric generic fibre; really, just take the pushforward of L under X → Y.

The geometric generic fibre of X → Y is isomorphic to P/P′ which is a projec-
tive homogeneous variety as well (for a possibly different group). To show that X → Y is
split it suffices to show that Pic(G/P) → Pic(P′/P) is surjective, as X → S is split. This
surjectivity can be proved using the fact that the derived group of the Levi group of
P′ is simply connected (since G is simply connected), combined with for example the
results of [Pop74]. We prefer to prove it by considering the Leray spectral sequence
for f : G/P → G/P′ and the sheaf Gm. Namely, R1f∗Gm is a constant sheaf with value
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Pic(P/P′) (due to the fact that G/P′ has trivial fundamental group). Hence the obstruction
to surjectivity is an element in the Brauer group Br(G/P′). Since k is algebraically closed
and G/P′ is rational (by Bruhat decomposition) we see Br(G/P′) = 0 and we win. �

Let k be an algebraically closed field of positive characteristic. Let R be a Cohen
ring for k (for example the Witt ring of k). Let G be a connected, semi-simple, simply
connected linear algebraic group over k, and let P ⊂ G be a parabolic subgroup. Ac-
cording to Chevalley ([Che95], see also [Dem65] and [Spr98]) there exists a reductive
group scheme GR over R and a parabolic subgroup scheme PR ⊂ GR whose fibre over
k recovers the pair (G,P). Denote ZR = GR/PR the smooth projective GR-scheme over
R whose special fibre is Z = G/P. Since Pic(ZR) is isomorphic to the character group
of PR, and since by construction the character group of PR equals that of P, we see that
Pic(ZR) = Pic(Z). Choose an ample invertible sheaf O(1) on ZR.

Lemma 16.2. — The automorphism scheme AutR((ZR, O(1))) is smooth over R.

Proof. — The scheme of automorphisms AutR(ZR) is smooth over R by [Dem77,
Proposition 4]. Thus it suffices to show that the morphism AutR((ZR, O(1))) →
AutR(ZR) is smooth. By deformation theory it suffices to show that H1(Z, OZ) = 0. This
follows from [Kem76, Section 6 Theorem 1]. �

The following lemma follows from a general “lifting” argument that was explained
to us by Ofer Gabber, Jean-Louis Colliot-Thélène and Max Lieblich. For a brief expla-
nation, see Remark 16.4 below.

Lemma 16.3. — Let k,R,G,P,GR,PR as above. Assume that P is maximal parabolic

in G. Let � = K be an algebraic closure of the field of fractions of R. Suppose that every split family

of homogeneous spaces over a surface over � whose general fibre is isomorphic to G�/P� has a rational

section. Then the same is true over k.

Proof. — Let O(1) on ZR be an ample generator of Pic(ZR) = Pic(Z) = Z. Denote
HR = AutR((ZR, O(1))). By Lemma 16.2 we see that HR is flat over R. At this point
[dJS05a, Corollary 2.3.3] applies with our HR playing the role of the group named GR

in ibid., and with our ZR playing the role of the scheme called VR in ibid. �

Remark 16.4. — What is involved in the proof of [dJS05a, Corollary 2.3.3]? Con-
sider a split family X → S/k of homogeneous spaces whose general fibre is isomorphic to
Z = G/P. Let L be an invertible sheaf on X restricting to a generator of the Picard group
of a general fibre. Then Isom((X, L), (Z, OZ(1))) is a Hk-torsor over a nonempty affine
open U ⊂ S of the surface S. After shrinking U we may assume U is smooth over k. After
this one lifts the smooth morphism U → Spec(k) to a smooth morphism W → Spec(R)

using [Elk73]. The “lifting” result mentioned above is the statement that a Hk-torsor over
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U is the restriction of a HR-torsor over W after possibly replacing W by W′ → W étale
and trivial over a nonempty open U. This torsor in turn defines a split family of homo-
geneous spaces X → W restricting to XU → U over U. It is split because the geometric
generic fibre has Picard group Z and the ample generator exists by virtue of the fact that
HR acts on O(1) on ZR. At this point, a standard specialization argument implies the
result. For details see [dJS05a].

Theorem 16.5. — Let k be an algebraically closed field of characteristic 0. Let G be a linear

algebraic group over k and let P ⊂ G be a maximal parabolic subgroup. Let S be a nonsingular projective

surface over k. Let X → S be a smooth projective morphism all of whose geometric fibres are isomorphic to

G/P. Assume there exists an invertible sheaf L on X which restricts to an ample generator of Pic(G/P)

on a fibre. Then X → S has a rational section.

Proof. — The varieties G/P are rationally simply connected by chains of free lines
and contain very twisting surfaces, see Corollary 15.4 and Lemmas 15.7 and 15.8. There-
fore using Corollary 13.2 we immediately obtain the theorem. �

Theorem 16.6. — Let k be an algebraically closed field of any characteristic. Let S be a quasi-

projective surface over k. Let X → S be a split family of projective homogeneous spaces. Then X → S
has a rational section.

Proof. — By Lemma 16.1 it suffices to prove the theorem in case the general fibre
has Picard number ρ = 1, i.e., the parabolic group is maximal. By Lemma 16.3 it suffices
to prove the result in the ρ = 1 case in characteristic zero. The case ρ = 1, S is a projective

smooth surface and X → S is smooth and projective is Theorem 16.5.
Thus it remains to deduce the general ρ = 1 case in characteristic 0 from the case

where the base is projective. This is done by the method of discriminant avoidance. Pre-
cise references are [dJS05b, Theorem 1.3], or [dJS05a, Theorem 1.0.1] (either reference
contains a complete argument; the first giving a more down to earth approach than the
second). Please see Remark 16.7 below for a brief synopsis of the argument. �

Remark 16.7. — Let k be an algebraically closed field (of any characteristic). As
before let Z = G/P with P maximal parabolic and let O(1) be an ample generator of
Pic(Z). Also, as before let H = Aut((Z, O(1))) be the automorphism scheme of the pair.
According to the proof of Lemma 16.2 and the references therein, the group scheme H is
reductive. Let S be a quasi-projective surface over k. Suppose that X → S is a split family
of projective homogeneous spaces whose general fibre is isomorphic to Z. We will explain
the method of [dJS05a] reducing the problem of finding a rational section of X → S to
the problem in a case where the base surface is projective.

Choose an invertible sheaf L on X whose restriction to a general fibre is an ample
generator. As in Remark 16.4 there exists an open U and an H-torsor T over U such that
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(XU, LU) is isomorphic over U to (T ×H Z, O×H O(1)). The main result of [dJS05a] im-
plies that there exists a flat morphism W → Spec(k[[t]]), an open immersion j : Wk → U,
a H-torsor T ′ over W such that (1) T ′

k
∼= j∗T and (2) the generic fibre Wk((t)) is projective.

We may use the torsor T ′ to obtain an extension of the pullback family j∗X to a split
family X → W of projective homogeneous spaces over all of W. At this point a standard
specialization argument implies that the existence of a rational section of Xk((t)) → Wk((t))

implies the existence of a rational section of the original X → S.
The main result of [dJS05a] mentioned above is the following: If H is a reduc-

tive algebraic group, and c ≥ 0 an integer then the algebraic stack B(H) = [Spec(k)/H]
allows a morphism X → B(H) surjective on field points such that X has a projective
compactification X ⊂ X whose boundary has codimension ≥ c in X. This result easily
implies the existence of the family of torsors as above. For details see the references above.

17. Application to families of complete intersections

In this section we sketch a proof of Tsen’s theorem in characteristic 0 for families
of hypersurfaces using the main results of this paper. As explained in the introduction this is
silly, but hopefully provides a useful illustration of our methods.

Let K ⊃ k be the function field of a surface over an algebraically closed field k.
Tsen’s theorem states that any complete intersection of type (d1, . . . , dc) in Pn

K has a K-
rational point if

∑
d2

i ≤ n. See [Lan52]. When the inequality is violated then there are
function fields K and complete intersections without rational points.

First of all we may replace k by an uncountable algebraically closed overfield of
characteristic zero (by standard limit techniques). Second we may assume di ≥ 2 for all i.
The moduli space M of all complete intersections X of type (d1, . . . , dc) in Pn is an open
subset of a product of projective spaces M ⊂ Pn1 × · · · × Pnc . Note that we do not require
complete intersections to be nonsingular; it is then easy to see that the complement of
M in Pn1 × · · · × Pnc has codimension ≥ 2. It is also straightforward to see that the total
space of the universal family X → M is nonsingular. It follows by standard specialization
techniques that to prove Tsen’s theorem for all K and all complete intersections, it suffices
to prove it for those X/K such that K corresponds to the function field of a surface S ⊂ M
with the following properties:

(1) S passes through a very general point of M,
(2) the closure S ⊂ Pn1 × · · · × Pnc differs from S by finitely many points, and
(3) the restriction of X to S has smooth total space.

At this point Theorem 1.1 says that it is enough to show that a very general complete
intersection Y of type (d1, . . . , dc) in Pn is rationally simply connected by chains of free
lines, and contains a very twisting surface.

To check that Y is rationally simply connected by chains of free lines, i.e., that
Y → Spec(k) satisfies Hypothesis 7.8 we point out the following:
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(1) The space of lines through a general point y ∈ Y(k) is a nonsingular com-
plete intersection of type (1,2, . . . , d1,1,2, . . . , d2, . . . ,1,2, . . . , dc) in a Pn−1.
Because 1 + 2 + · · · + d1 + 1 + 2 + · · · + d2 + · · · + 1 + 2 + · · · + dc =∑

di(di + 1)/2 ≤ ∑
(d2

i − 1) ≤ n − 1 it is a smooth projective Fano and hence
rationally connected.

(2) For a general pair of points x, y ∈ Y(k) the space of pairs of lines connect-
ing x and y is parametrized by a nonsingular complete intersection of type
(1,2, . . . , d1 − 1,1,2, . . . , d1 − 1, d1, . . . ,1,2, . . . , dc − 1,1,2, . . . , dc − 1, dc)

in Pn. (To see this consider the equations for the locus of the intersection points
of the two lines.) The sum of the degrees is equal to

∑
d2

i ≤ n and again we see
that this is a smooth projective Fano variety and hence rationally connected.

To prove this argue as in [Kol96, Chapter V Section 4], especially the exercises. See also
[dJS06]. This proves Hypothesis 7.8 for Y/k.

As usual the hardest thing to check is the existence of a very twisting scroll. A simple
parameter count shows that a very twisting scroll should exist on a general complete
intersection with

∑
d2

i ≤ n. We do not know how to prove the existence unless c = 1.
Namely, in [HS05] it was shown that very twisting scrolls exist if d2

1 + d1 + 1 ≤ n. In
the preprint [Sta04] it is shown that very twisting scrolls exist in a general hypersurface
if d2

1 ≤ n, thereby concluding our sketch of the proof of Tsen’s theorem for families of
hypersurfaces.

Final remark: In the preprint [dJS06] very twisting surfaces are constructed in any
smooth complete intersection in Pn under the assumption that n + 1 ≥ ∑

(2d2
i − di). But

note that these surfaces are not ruled by lines in every case; sometimes they are ruled by
conics—to which the methods of this paper do not apply.
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