THREE RESULTS ON THE REGULARITY OF THE CURVES THAT ARE INVARIANT BY AN EXACT SYMPLECTIC TWIST MAP

by M.-C. ARNAUD

ABSTRACT

A theorem due to G. D. Birkhoff states that every essential curve which is invariant under a symplectic twist map of the annulus is the graph of a Lipschitz map. We prove: if the graph of a Lipschitz map $h : \mathbf{T} \to \mathbf{R}$ is invariant under a symplectic twist map, then h is a little bit more regular than simply Lipschitz (Theorem 1); we deduce that there exists a Lipschitz map $h : \mathbf{T} \to \mathbf{R}$ whose graph is invariant under no symplectic twist map (Corollary 2).

Assuming that the dynamic of a twist map restricted to a Lipschitz graph is bi-Lipschitz conjugate to a rotation, we obtain that the graph is even C^1 (Theorem 3).

Then we consider the case of the C⁰ integrable symplectic twist maps and we prove that for such a map, there exists a dense G_{δ} subset of the set of its invariant curves such that every curve of this G_{δ} subset is C¹ (Theorem 4).

CONTENTS

Abstract
1. Introduction
2. Construction of the Green bundles along an invariant curve
3. Regularity of the invariant graphs
4. A generic property of Lipschitz functions
5. The C^0 integrability $\ldots \ldots \ldots$
Acknowledgement
References

1. Introduction

The exact symplectic twist maps were studied for a long time because they represent (via a symplectic change of coordinates) the dynamic of the generic symplectic diffeomorphisms of surfaces near their elliptic periodic points (see [3]).

Let us introduce some notations and definition:

Notations.

- $\mathbf{T} = \mathbf{R}/\mathbf{Z}$ is the circle.
- $\mathbf{A} = \mathbf{T} \times \mathbf{R}$ is the annulus and an element of \mathbf{A} is denoted by (θ, r) .
- **A** is endowed with its usual symplectic form, $\omega = d\theta \wedge dr$.
- $\pi : \mathbf{T} \times \mathbf{R} \to \mathbf{T}$ is the projection and $\tilde{\pi} : \mathbf{R}^2 \to \mathbf{R}$ its lift.

Definition. — A C¹ diffeomorphism $f : \mathbf{A} \to \mathbf{A}$ of the annulus which is isotopic to identity is a positive twist map if, for any given lift $\tilde{f} : \mathbf{R}^2 \to \mathbf{R}^2$ and for every $x \in \mathbf{R}$, the maps $y \mapsto \tilde{\pi} \circ \tilde{f}(x, y)$ and $y \mapsto \tilde{\pi} \circ \tilde{f}^{-1}(x, y)$ are both diffeomorphisms, the first one increasing and the second one decreasing. If f is a positive twist map, f^{-1} is a negative twist map. A twist map may be positive or negative.

Moreover, f is exact symplectic if the 1-form $f^*(rd\theta) - rd\theta$ is exact.

Notations. — \mathcal{M}_{ω}^+ is the set of exact symplectic positive C^1 twist maps of \mathbf{A} , \mathcal{M}_{ω}^- is the set of exact symplectic negative C^1 twist maps of \mathbf{A} and $\mathcal{M}_{\omega} = \mathcal{M}_{\omega}^+ \cup \mathcal{M}_{\omega}^-$ is the set of exact symplectic C^1 twist maps of \mathbf{A} .

It is obvious that if the graph C of a continuous map is invariant by $f \in \mathcal{M}_{\omega}$, then there exists no orbit for f joining one of the connected component of $\mathbf{A}\setminus \mathbf{C}$ to the other one.

Birkhoff's theory states a kind of converse result (see [2, 6, 10, 12]):

Criterion (Birkhoff). — Let $\eta_1, \eta_2 : \mathbf{T} \to \mathbf{R}$ be two continuous maps such that $\eta_1 < \eta_2$. Let $f \in \mathcal{M}_{\omega}$. The three following properties are equivalent:

- 1. there exists no orbit under f joining $S_{-}(\eta_1) = \{(\theta, r); r < \eta_1(\theta)\}$ to $S_{+}(\eta_2) = \{(\theta, r); r > \eta_2(\theta)\};$
- 2. there exists no orbit under f joining $S_{+}(\eta_2)$ to $S_{-}(\eta_1)$;
- 3. there exists $\eta : \mathbf{T} \to \mathbf{R}$ continuous whose graph is invariant under f such that: $\eta_1 \leq \eta \leq \eta_2$.

Moreover, Birkhoff proved that if the graph of a continuous map η is invariant under $f \in \mathcal{M}_{\omega}$, then η is Lipschitz.

Having explained the link between the existence of invariant continuous (even Lipschitz) graphs of symplectic twist maps and the dynamic of such a twist map, we will now study the Lipschitz maps $\eta : \mathbf{T} \to \mathbf{R}$ whose graphs are invariant under an exact symplectic \mathbf{C}^1 twist map.

We easily see that for every $C^1 \operatorname{map} \eta : \mathbf{T} \to \mathbf{R}$, there exists a C^1 exact symplectic twist map $f : (\theta, r) \to (\theta + \varepsilon(r - \eta(\theta)), r - \eta(\theta) + \eta(\theta + \varepsilon(r - \eta(\theta))))$ (where $\varepsilon > 0$ is small enough) which preserves the graph of η . But very few examples of Lipschitz but not C^1 maps whose graph is invariant under an exact symplectic C^1 twist map are known. The most classical example is the time T map Φ of the pendulum for T > 0 small enough (see [4]): any separatrix of the hyperbolic fixed point is a Lipschitz graph which is invariant under Φ , and this graph is not differentiable at the fixed point. Of course, we can contruct similar examples:

Example. — Let $\alpha, \beta \in \mathbb{Z}^*$ be some integers and let $\mathcal{V} : \mathbb{T} \to \mathbb{R}$ be a small \mathbb{C}^2 function having a strict non degenerate global maximum at $0 \in \mathbb{T}$ (for example $\mathcal{V}(t) = \varepsilon \cos t$ with $\varepsilon > 0$ small enough). Let $\mathbb{V} : \mathbb{T}^2 \to \mathbb{R}$ be defined by: $\mathbb{V}(x, t) = \mathcal{V}(\beta x - \alpha t)$ and let $\mathbb{H} : \mathbb{A} \times \mathbb{R} \to \mathbb{R}$ be the time dependent Hamiltonian function defined by: $\mathbb{H}(x, p; t) = \frac{1}{2}p^2 + \mathbb{V}(x, t)$. The time 1 map of this Hamiltonian function is then a twist map, and if (x, p) is a solution, if we define: $\mathbb{X} = \beta x - \alpha t$ and $\mathbb{P} = \beta p - \alpha$, then (\mathbb{X}, \mathbb{P}) is a solution for the (time-independent) Hamiltonian $\mathcal{H}(\mathbb{X}, \mathbb{P}) = \frac{1}{2}\mathbb{P}^2 + \beta^2 \mathcal{V}(\mathbb{X})$. Therefore, there exists for the Hamiltonian flow of \mathcal{H} (as for the pendulum) an invariant Lipschitz graph which is not differentiable at 0; then, the time 1 map of H leaves a Lipschitz graph invariant, and this Lipschitz graph is not differentiable at β points of \mathbb{T} (they correspond to a periodic orbit with period β); the rotation number of this graph is then $\frac{\alpha}{\beta}$.

Questions.

- 1. Is it possible to construct less regular examples of invariant curves (which have at some points no left or right derivative)?
- 2. Does there exist an example of an invariant curve which is not C^1 and has an irrational rotation number?

In this article, we don't answer these questions. We study the regularity of the curves invariant by exact symplectic C^1 twist maps and prove that they are in general more regular than simply Lipschitz:

Theorem 1. — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive \mathbf{C}^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by f. Then there exists a dense \mathbf{G}_{δ} subset \mathbf{U} of \mathbf{T} whose Lebesgue measure is 1 and such that every t of \mathbf{U} is a point of differentiability of γ and a point of continuity of γ' .

We endow the set of the Lipschitz maps $\gamma : \mathbf{T} \to \mathbf{R}$ with the metric d_{ℓ} defined by: $d_{\ell}(\gamma_1, \gamma_2) = d_{\infty}(\gamma_1, \gamma_2) + \operatorname{Lip}(\gamma_1 - \gamma_2)$ where $\operatorname{Lip}(\gamma)$ is the Lipschitz constant of γ . This metric space (\mathcal{L}, d_{ℓ}) is then complete.

Corollary **2.** — There exists a dense open subset \mathcal{U} of (\mathcal{L}, d_{ℓ}) such that no $\gamma \in \mathcal{U}$ is invariant by an exact symplectic positive \mathbb{C}^1 twist map.

We obtain a stronger regularity if we can specify the dynamic of the restriction of the twist map to the curve:

Theorem **3.** — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive \mathbf{C}^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by f. Let g be the restriction of f to the graph of γ . We assume that there exist two sequences of integers $(n_i)_{i \in \mathbf{N}}$ and $(m_i)_{i \in \mathbf{N}}$ tending to $+\infty$ such that $(g^{m_i})_{i \in \mathbf{N}}$ and $(g^{-n_i})_{i \in \mathbf{N}}$ are equi-Lipschitz.

Then γ is C^1 .

Using a theorem of Michel Herman concerning the diffeomorphisms of the circle (see [9]), we deduce:

Corollary **4.** — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive \mathbf{C}^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by f. Let us assume that the restriction of f to the graph of γ is bi-Lipschitz conjugate to a rotation.

Then γ is C^1 and the restriction of f to the graph of γ is C^1 conjugate to a rotation.

Now we are interested in studying the regularity of the exact symplectic C^1 twist maps having many invariant curves: the C^0 integrable ones.

Definition. — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive C^1 twist map. Then f is C^0 -integrable if $\mathbf{A} = \bigcup_{\gamma \in \Gamma} G(\gamma)$ where:

- 1. Γ is a subset of $C^0(\mathbf{T}, \mathbf{R})$ and $G(\gamma)$ is the graph of γ ;
- 2. $\forall \gamma_1, \gamma_2 \in \Gamma, \gamma_1 \neq \gamma_2 \Rightarrow G(\gamma_1) \cap G(\gamma_2) = \emptyset;$
- 3. $\forall \gamma \in \Gamma, f(\mathbf{G}(\gamma)) = \mathbf{G}(\gamma).$

Remark. — The general reference for this remark is [10].

A theorem of Birkhoff states that under the hypothesis of this definition, every $\gamma \in C^0(\mathbf{T}, \mathbf{R})$ whose graph is invariant by f is Lipschitz and that the set $\mathcal{I}(f)$ of those invariant graphs is closed for the C⁰-topology.

If we fix a lift \tilde{f} of f, we can associate to every $\gamma \in \mathcal{I}(f)$ its rotation number $\rho(\gamma)$. Then, if $\gamma_1, \gamma_2 \in \mathcal{I}(f)$, we have: $G(\gamma_1) \cap G(\gamma_2) \neq \emptyset \Rightarrow \rho(\gamma_1) = \rho(\gamma_2)$ and $G(\gamma_1) \cap G(\gamma_2) = \emptyset \Rightarrow \rho(\gamma_1) \neq \rho(\gamma_2)$. We deduce that $\mathcal{I}(f) = \Gamma$ and therefore Γ is closed for the C^0 topology.

Theorem 5. — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive \mathbf{C}^1 twist map which is \mathbf{C}^0 integrable. Let Γ be the set of $\gamma \in \mathbf{C}^0(\mathbf{T}, \mathbf{R})$ whose graph is invariant under f. Then there exists a dense \mathbf{G}_δ subset \mathcal{G} of (Γ, d_∞) such that: every $\gamma \in \mathcal{G}$ is \mathbf{C}^1 . Moreover, in \mathcal{G} , the \mathbf{C}^0 -topology is equal to the \mathbf{C}^1 -topology.

There exists a common argument to the proof of all these results: the existence of two invariant (non continuous) subbundles along the invariant curves, the so-called "Green bundles".

The original Green bundles were introduced by L. W. Green in [8] for Riemannian geodesic flows; then P. Foulon extended this construction to Finsler metrics in [7] and G. Contreras and R. Iturriaga extended it in [5] to optical Hamiltonian flows; in [1], M. Bialy and R. S. Mackay give an analogous construction for the dynamics of sequence of symplectic twist maps of T^*T^d without conjugate point. Let us cite also a very short survey [11] of R. Iturriaga on the various uses of these bundles (problems of rigidity, measure of hyperbolicity...).

The way we use the Green bundles in our article is different: the two Green bundles will bound the "derivative" below and above (this derivative is in fact the accumulation points of the slope between a given point and a variable one tending to the fixed one) of the invariant curve: therefore, if the two Green bundles are equal at one point, the curve has a derivative at this point.

2. Construction of the Green bundles along an invariant curve

Notations. — $\pi : \mathbf{T} \times \mathbf{R} \to \mathbf{T}$ is the projection. If $x \in \mathbf{A}$, $V(x) = \ker D\pi(x) \subset T_x \mathbf{A}$ is the vertical at x. If $x \in \mathbf{A}$ and $n \in \mathbf{N}$, $G_n^+(x) = Df^n(f^{-n}(x))V(f^{-n}(x))$ and $G_n^-(x) = Df^{-n}(f^n(x))V(f^n(x))$ are two 1-dimensional linear subspaces (or lines) of $T_x\mathbf{A}$.

Definition. — If we identify $T_x \mathbf{A}$ with \mathbf{R}^2 by using the standard coordinates $(\theta, r) \in \mathbf{R}^2$, we may deal with the slope $s(\mathbf{L})$ of any line \mathbf{L} of $T_x \mathbf{A}$ which is transverse to the vertical V(x): it means that $\mathbf{L} = \{(t, s(\mathbf{L})t); t \in \mathbf{R}\}.$

If $x \in \mathbf{A}$ and if L_1 , L_2 are two lines of $T_x\mathbf{A}$ which are transverse to the vertical V(x), L_2 is above (resp. strictly above) L_1 if $s(L_2) \ge s(L_1)$ (resp. $s(L_2) > s(L_1)$). In this case, we write: $L_1 \le L_2$ (resp. $L_1 \prec L_2$).

A sequence $(L_n)_{n \in \mathbb{N}}$ of lines of $T_x \mathbf{A}$ is non decreasing (resp. increasing) if for every $n \in \mathbb{N}$, L_n is transverse to the vertical and L_{n+1} is above (resp. strictly above) L_n . We define the non increasing and decreasing sequences of lines of $T_x \mathbf{M}$ in a similar way.

Remark. — A decreasing sequence of lines corresponds to a decreasing sequence of slopes.

Definition. — If K is a subset of A or of its universal covering $\mathbf{R} \times \mathbf{R}$, if F is a 1-dimensional subbundle of $T_{K}\mathbf{A}$ (resp. $T_{K}\mathbf{R}^{2}$) transverse to the vertical, we say that F is upper (resp. lower) semicontinuous if the map which maps $x \in K$ onto the slope s(F(x)) of F(x) is upper (resp. lower) semicontinuous.

Notations. — If the graph of a continuous map $\gamma : \mathbf{T} \to \mathbf{R}$ is invariant by f, Birkhoff's theorem (see [10]) states that γ is Lipschitz. Therefore, at every $t \in \mathbf{T}$, we can define:

$$\gamma'_{-}(t) = \liminf_{u \to t} \frac{\gamma(u) - \gamma(t)}{u - t}$$
 and $\gamma'_{+}(t) = \limsup_{u \to t} \frac{\gamma(u) - \gamma(t)}{u - t}$

which are two real numbers. We will use too:

$$\gamma'_{+,r}(t) = \limsup_{u \to t^+} \frac{\gamma(u) - \gamma(t)}{u - t}$$
 and $\gamma'_{+,l} = \limsup_{u \to t^-} \frac{\gamma(u) - \gamma(t)}{u - t}$

and in a similar way γ'_{-r} and γ'_{-l} .

(If u is close enough to t, the difference u - t is the unique real number of]-0.5; 0.5[which represents u - t.)

Proposition **6**. — Let $f : \mathbf{T} \times \mathbf{R} \to \mathbf{T} \times \mathbf{R}$ be an exact symplectic positive C^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by f.

Then for every $t \in \mathbf{T}$ and every $n \in \mathbf{N}$, we have:

$$G_n^-(t, \gamma(t)) \prec G_{n+1}^-(t, \gamma(t)) \prec \mathbf{R}(1, \gamma'_-(t)) \preceq \mathbf{R}(1, \gamma'_+(t))$$
$$\prec G_{n+1}^+(t, \gamma(t)) \prec G_n^+(t, \gamma(t)).$$

Notations. — If $(x_1, x_2) \in \mathbf{R}^2$, we will denote by $\mathcal{V}^+(x)$ the set: $\mathcal{V}^+(x) = \{(x_1, y) \in \mathbf{R}^2; y \ge x_2\}.$

Proof of Proposition 6. — Let $\tilde{f} : \mathbf{R} \times \mathbf{R} \to \mathbf{R} \times \mathbf{R}$ be a lift of f and $\tilde{\gamma} : \mathbf{R} \to \mathbf{R}$ be defined by: $\tilde{\gamma}(\theta) = \gamma(\bar{\theta})$ where $\bar{\theta}$ is the projection of θ on \mathbf{T} . Then the graph $G(\tilde{\gamma})$ is invariant by \tilde{f} and every connected component of $\mathbf{R}^2 \setminus G(\tilde{\gamma})$ is invariant by \tilde{f} .

Let $x = (t, \tilde{\gamma}(t))$ be any point of $G(\tilde{\gamma})$. We denote by Q(x) the connected component of $\mathbf{R}^2 \setminus (G(\tilde{\gamma}) \cup \{t\} \times \mathbf{R})$ which is above $G(\tilde{\gamma})$ and in $]t, +\infty[\times \mathbf{R}]$; moreover we denote by $\mathbf{R}(x) = \overline{Q(x)} = Q(x) \cup (\{(\tau, \tilde{\gamma}(\tau)); \tau \ge t\} \cup \mathcal{V}^+(x))$ the closure of Q(x). The diffeomorphism f being an exact symplectic positive C^1 twist map, we have: $\forall x \in G(\tilde{\gamma})$, $\tilde{f}(\mathbf{R}(x)) \subset \mathbf{R}(\tilde{f}(x))$. Therefore:

$$\forall n \in \mathbf{N}^*, \ \forall x \in \mathcal{G}(\tilde{\gamma}), \quad \tilde{f}^n(\mathcal{R}(\tilde{f}^{-n}(x))) \subset \tilde{f}^{n-1}(\mathcal{R}(\tilde{f}^{-(n-1)}(x))).$$

We deduce that for every $n \in \mathbf{N}^*$ and every $x \in G(\tilde{\gamma})$, the curve $\tilde{f}^n(\mathcal{V}^+(\tilde{f}^{-n}(x)))$ is a subset of $\tilde{f}^{n-1}(\mathbf{R}(\tilde{f}^{-(n-1)}(x)))$. Therefore, its tangent space at x, which is $\mathbf{G}_n^+(x)$ is under $\mathbf{G}_{n-1}^+(x)$ and above $\mathbf{R}(1, \gamma'_{+,r}(t))$. The fact that $\mathbf{G}_{n-1}^+(x)$ is strictly above $\mathbf{G}_n^+(x)$ follows from the fact that this subspaces have to be transverse because $\mathbf{V}(f^{-n-1}(x))$ and $\mathbf{D}f(\mathbf{V}(f^{-n}(x)))$ are transverse (f being an exact symplectic positive \mathbf{C}^1 twist map). The fact that $\mathbf{G}_n^+(x)$ is strictly above $\mathbf{R}(1, \gamma'_{+,r}(t))$ comes then from the fact that the sequence ($\mathbf{G}_n^+(x)$) is strictly decreasing.

The proof of the other inequalities is similar.

Remark. — In the last proof, we have noticed that if $x \in G(\tilde{\gamma})$ the curve $\tilde{f}^n(\mathcal{V}^+(\tilde{f}^{-n}(x)))$ is a subset of $\mathbf{R}(x)$ which is transverse to the vertical at x. Therefore, the first (or "horizontal") coordinate of $D\tilde{f}^n(\tilde{f}^{-n}(x))(0, 1)$ is strictly positive.

Then $(G_n^+(x))$ is a strictly decreasing sequence of lines of $T_x \mathbf{A}$ which is bounded below. Hence it tends to a limit $G^+(x)$. In a similar way, the sequence $(G_n^-(x))$ tends to a limit, $G^-(x)$.

Definition. — If $x \in \mathbf{A}$ belongs to a continuous graph invariant under $f \in \mathcal{M}^+_{\omega}$, the bundles $G^-(x)$ and $G^+(x)$ are called the Green bundles at x associated to f.

Example.— Let us assume that $x \in G(\gamma)$ is a periodic hyperbolic periodic point of f; then $G^+(x) = E^u(x)$ is the tangent space to the unstable manifold of x and $G^-(x) = E^s(x)$ is the tangent space to the stable manifold.

Proposition 7. — Let $\gamma : \mathbf{T} \to \mathbf{R}$ be a continuous map whose graph is invariant by an exact symplectic positive \mathbf{C}^1 twist map $f : \mathbf{A} \to \mathbf{A}$. Then the Green bundles, defined at every point of $\mathbf{G}(\gamma)$, are invariant by $\mathbf{D}f$ and for every $t \in \mathbf{T}$, we have: $\mathbf{G}^-(t, \gamma(t)) \preceq \mathbf{R}(1, \gamma'_-(t)) \preceq$

 $\mathbf{R}(1, \gamma'_{+}(t)) \leq G^{+}(t, \gamma(t))$. Moreover, the map $t \to G^{+}(t, \gamma(t))$ is upper semi-continuous and the map $t \to G^{-}(t, \gamma(t))$ is lower semi-continuous. Therefore, the set:

$$\mathcal{G}(\gamma) = \{t \in \mathbf{T}; G^{-}(t, \gamma(t)) = G^{+}(t, \gamma(t))\}$$

is a G_{δ} set and for every $t_0 \in \mathcal{G}(\gamma)$, γ is differentiable, γ' is continuous at t_0 and $\mathbf{R}(1, \gamma'(t_0)) = G^+(t_0, \gamma'(t_0)) = G^-(t_0, \gamma'(t_0))$. Moreover, G^- and G^+ are continuous at $(t_0, \gamma(t_0))$ too.

This proposition is a corollary of Proposition 6 and of usual properties of real functions (the fact that the (simple) limit of a decreasing sequence of continuous functions is upper semi-continuous).

Corollary 8. — Let $\gamma : \mathbf{T} \to \mathbf{R}$ be a continuous map whose graph is invariant by an exact symplectic positive \mathbf{C}^1 twist map $f : \mathbf{A} \to \mathbf{A}$. We assume that:

$$\forall t \in \mathbf{T}, \quad \mathbf{G}^-(t, \gamma(t)) = \mathbf{G}^+(t, \gamma(t)).$$

Then γ is C^1 .

Moreover, in this case, the sequences $(s(\mathbf{G}_n^-(t, \gamma(t))))_{n \in \mathbf{N}}$ and $(s(\mathbf{G}_n^+(t, \gamma(t))))_{n \in \mathbf{N}}$ converge uniformly to $\gamma'(t)$.

Everything in this corollary is a consequence of Proposition 7; the fact that the convergence is uniform comes from Dini's theorem: if an increasing or decreasing sequence of real valued continuous functions defined on a compact set converges simply to a continuous function, then the convergence is uniform.

Example. — We may ask ourselves: if the graph of a C^1 map $\gamma : \mathbf{T} \to \mathbf{R}$ is invariant under an exact symplectic positive C^1 twist map f, do we necessarily have along the graph of γ the equality $G^+ = G^-$? We will show that the answer is no.

In fact, if $g : \mathbf{T} \to \mathbf{T}$ is any orientation preserving C¹ diffeomorphism, we may "immerse" g into an exact symplectic C¹ twist map f. Let us explain this fact: let \tilde{g} : $\mathbf{R} \to \mathbf{R}$ be any lift of g. We define $\tilde{f} : \mathbf{R}^2 \to \mathbf{R}^2$ by:

$$\tilde{f}(x,r) = (\tilde{g}(x) + r, \tilde{g}^{-1}(r + \tilde{g}(x)) - x).$$

Then \tilde{f} is a lift of an exact symplectic positive C^1 twist map f and we have: $\forall t \in \mathbf{T}$, f(t, 0) = (g(t), 0).

If now we assume that g has a hyperbolic periodic point $x_0 \in \mathbf{T}$ (then x_0 is attracting or repulsing), $(x_0, 0)$ is a hyperbolic periodic point for f and therefore $G^-(x_0, 0) \neq G^+(x_0, 0)$.

Using Proposition 7, we will prove in the next section that if the graph of a continuous map γ is invariant by an exact symplectic C¹ twist map $f : \mathbf{A} \to \mathbf{A}$, then there exists a dense G_{δ} subset G of **T** such that every $x \in G$ is a point of differentiability of γ and a point of continuity of γ' .

3. Regularity of the invariant graphs

We begin by giving a criterion to determine if a given vector is in one of the two Green bundles.

Proposition **9.** — Let f be an exact symplectic positive C^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph $G(\gamma)$ is invariant by f.

Let us assume that $x \in G(\gamma)$ and that $v \in T_x \mathbf{A}$ is such that the sequence $(|\mathbf{D}(\pi \circ f^n)(x)v|)_{n \in \mathbf{N}}$ doesn't tends to $+\infty$. Then $v \in G^-(x)$. In a similar way, if the sequence $(|\mathbf{D}(\pi \circ f^{-n})(x)v|)_{n \in \mathbf{N}}$ doesn't tends to $+\infty$, then $v \in G^+(x)$.

Proof of Proposition 9. — We use the standard symplectic coordinates (θ, r) of **A** and we define for every $k \in \mathbb{Z}$: $x_k = f^k(x)$.

In these coordinates, the line $G_n^+(x_k)$ is the graph of $(t \to s_n^+(x_k)t)$ $(s_n^+(x_k)$ is the slope of $G_n^+(x_k)$) and the line $G_n^-(x_k)$ is the graph of $(t \to s_n^-(x_k)t)$. Moreover, the matrix $M_n(x_k)$ of $Df^n(x_k)$ (for $n \ge 1$) is a symplectic matrix:

$$\mathbf{M}_n(x_k) = \begin{pmatrix} a_n(x_k) & b_n(x_k) \\ c_n(x_k) & d_n(x_k) \end{pmatrix}$$

with det $M_n(x_k) = 1$. We have noticed just after the proof of Proposition 6 that the coordinate $D(\pi \circ f^n)(x_k)(0, 1) = b_n(x_k)$ is strictly positive. Using the definition of $G_n^+(x_{k+n})$, we obtain: $d_n(x_k) = s_n^+(x_{k+n})b_n(x_k)$.

The matrix $M_n(x_k)$ being symplectic, we have:

$$\mathbf{M}_n(x_k)^{-1} = \begin{pmatrix} d_n(x_k) & -b_n(x_k) \\ -c_n(x_k) & a_n(x_k) \end{pmatrix}$$

we deduce from the definition of $G_n^-(x_k)$ that: $a_n(x_k) = -b_n(x_k)s_n^-(x_k)$. Finally, if we use the fact that det $M_n(x_k) = 1$, we obtain:

$$\mathbf{M}_{n}(x_{k}) = \begin{pmatrix} -b_{n}(x_{k})s_{n}^{-}(x_{k}) & b_{n}(x_{k}) \\ -b_{n}(x_{k})^{-1} - b_{n}(x_{k})s_{n}^{-}(x_{k})s_{n}^{+}(x_{k+n}) & s_{n}^{+}(x_{k+n})b_{n}(x_{k}) \end{pmatrix}.$$

Lemma 10. — There exists a constant M > 0 such that:

$$\forall x \in \mathcal{G}(\gamma), \ \forall n \in \mathbf{N}^*, \quad \max\{|s_n^+(x)|, |s_n^-(x)|\} \le \mathcal{M}.$$

Proof of Lemma 10. — We deduce from Proposition 6 that: $\forall x \in G(\gamma), \forall n \in \mathbb{N}^*$, $s_1^-(x) \leq s_n^-(x) < s_n^+(x) \leq s_1^+(x)$. Therefore, we only have to prove the inequalities of the lemma for n = 1.

The real number $s_1^-(x)$, which is the slope of $Df^{-1}(f(x))V(f(x))$, depends continuously on x, and is defined for every x belonging to the compact subset $G(\gamma)$. Hence it is uniformly bounded. The same argument proves that s_1^+ is uniformly bounded on $G(\gamma)$ and concludes the proof of Lemma 10.

Lemma 11. — If
$$x \in G(\gamma)$$
, we have: $\lim_{n\to\infty} b_n(x) = +\infty$.

Proof of Lemma 11. — We have: $\forall n, m \in \mathbf{N}^*, \forall i \in \mathbf{Z}, M_{n+m}(x_i) = M_n(x_{i+m})M_m(x_i)$. It implies: $b_{n+m}(x_i) = b_n(x_{i+m})b_m(x_i)(s_m^+(x_{i+m}) - s_n^-(x_{i+m}))$ and: $-b_{n+m}(x_i)s_{n+m}^-(x_i) = b_n(x_{i+m})s_n^-(x_{i+m})b_m(x_i)s_m^-(x_i) - b_n(x_{i+m})(b_m(x_i))^{-1} - b_n(x_{i+m})b_m(x_i)s_m^+(x_{i+m})s_m^-(x_i)$. Hence:

$$-b_{n+m}(x_i)s_{n+m}^{-}(x_i)$$

= $-b_{n+m}(x_i)s_{m}^{-}(x_i) - b_{n+m}(x_i)(b_m(x_i))^{-2}\frac{1}{s_{m}^{+}(x_{i+m}) - s_{n}^{-}(x_{i+m})}.$

Therefore:

$$s_{n+m}^{-}(x_i) = s_m^{-}(x_i) + (b_m(x_i))^{-2} \frac{1}{s_m^{+}(x_{i+m}) - s_n^{-}(x_{i+m})}.$$

In particular:

$$s_{1+m}^{-}(x_i) = s_m^{-}(x_i) + (b_m(x_i))^{-2} \frac{1}{s_m^{+}(x_{i+m}) - s_1^{-}(x_{i+m})}.$$

Using the constant M found via Lemma 10, we have:

$$\bar{s_{1+m}}(x_i) \ge \bar{s_m}(x_i) + \frac{1}{2M(b_m(x_i))^2}.$$

Hence:

$$\bar{s_{1+m}}(x_i) \ge \bar{s_1}(x_i) + \frac{1}{2M} \sum_{k=2}^m \frac{1}{(b_k(x_i))^2}.$$

The sequence $(s_m^-(x_i))_{m \in \mathbb{N}^*}$ being convergent, we must have:

$$\sum_{k=2}^{\infty} \frac{1}{\left(b_k(x_i)\right)^2} < \infty$$

and thus: $\lim_{k\to\infty} b_k(x_i) = +\infty$.

Let us now prove Proposition 9. Let us assume that $v \in T_x \mathbf{A}$ is such that the sequence $(|\mathbf{D}(\pi \circ f^n)(x)v|)_{n \in \mathbf{N}}$ doesn't tends to $+\infty$. Then there is a sequence $(k_n)_{n \in \mathbf{N}}$ of integers tending to $+\infty$ such that the sequence $(|\mathbf{D}(\pi \circ f^{k_n})(x)v|)_{n \in \mathbf{N}}$ is bounded. If $v = (v_1, v_2)$, we have: $\mathbf{D}(\pi \circ f^{k_n})(x)v = b_{k_n}(x)(v_2 - s_{k_n}^-(x)v_1)$ and $\lim_{n\to\infty} b_{k_n}(x) = +\infty$. We deduce: $\lim_{n\to\infty} (v_2 - s_{k_n}^-(x)v_1) = 0$. The sequence $(s_{k_n}^-(x))_{n \in \mathbf{N}}$ tends to the slope $s^-(x)$ of $\mathbf{G}^-(x)$, and then $v \in \mathbf{G}^-(x)$.

Example. — Let us assume that the exact symplectic positive C^1 twist map f: $\mathbf{A} \to \mathbf{A}$ has a regular and proper integral, i.e. that there exists a C^1 regular and proper function $H : \mathbf{A} \to \mathbf{R}$ such that: $\forall x \in \mathbf{A}$, H(f(x)) = H(x). Then, for every $n \in \mathbf{Z}$, we have: $H(f^n(x)) = H(x)$ and then: $DH(f^n(x))Df^n(x) = DH(x)$ and $\| \operatorname{grad} H(x) \|^2 =$ $DH(x) \operatorname{grad} H(x) = DH(f^n(x))Df^n(x) \operatorname{grad} H(x)$ i.e. if we denote by (.|.) the usual scalar product and if $\|.\| = \sqrt{(.|.)}$:

(*)
$$(\operatorname{grad} \operatorname{H}(f^{n}(x))|\operatorname{D}f^{n}(x), \operatorname{grad} \operatorname{H}(x)) = \|\operatorname{grad} \operatorname{H}(x)\|^{2}.$$

Let $\Gamma = H^{-1}(c)$ be a curve invariant by f. If we use a good parametrization $\gamma : \mathbf{R}/T\mathbf{Z} \to \mathbf{A}$ of Γ , the base $(\dot{\gamma}(t), \operatorname{grad} H(\gamma(t)))$ is symplectic: the base is orthogonal, oriented, and $\|\dot{\gamma}(t)\| = \frac{1}{\|\operatorname{grad} H(\gamma(t))\|}$.

The image of this symplectic base by Df^n is symplectic too. This new symplectic base is: $(Df^n(\gamma(t))\dot{\gamma}(t), Df^n(\gamma(t)) \operatorname{grad} H(\gamma(t))) = (\lambda \dot{\gamma}(\tau_n), Df^n(\gamma(t)) \operatorname{grad} H(\gamma(t)))$ where $\gamma(\tau_n) = f^n(\gamma(t))$ and $\lambda \in \mathbf{R}$. Because this base is symplectic, we have: $1 = \lambda \omega(\dot{\gamma}(\tau_n), Df^n(\gamma(t)) \operatorname{grad} H(\gamma(t)))$, this last value being equal to:

$$l = \frac{\lambda}{\|\operatorname{grad} H(\gamma(\tau_n))\|^2} (\operatorname{grad} H(\gamma(\tau_n)) | Df^n(\gamma(t)) \operatorname{grad} H(\gamma(t))).$$

Using (*), we obtain: $\lambda = \frac{\|\operatorname{grad} H(\gamma(\tau_n))\|^2}{\|\operatorname{grad} H(\gamma(t))\|^2}$; hence the sequence $(Df^n(\gamma(t))\dot{\gamma}(t))_{n\in\mathbb{Z}} = (\frac{\|\operatorname{grad} H(\gamma(t_n))\|^2}{\|\operatorname{grad} H(\gamma(t))\|^2}\dot{\gamma}(\tau_n))_{n\in\mathbb{N}}$ is bounded (and even uniformly bounded in $t \in \mathbb{R}$). Using Proposition 9, we deduce that:

$$\forall x \in \Gamma, \quad \mathbf{G}^-(x) = \mathbf{G}^+(x).$$

Hence, if f has a regular and proper integral, the two Green bundles are equal at every point.

Let us notice too that for every $c \in \mathbf{R}$, the restriction of f to $H^{-1}(c)$ is C^1 conjugate to a rotation: indeed, with the notations introduced before, the sequence $((Df^n \circ \gamma)\dot{\gamma})_{n\in \mathbf{Z}}$ is uniformly bounded. Let $g : \mathbf{R}/\mathbf{TZ} \to \mathbf{R}/\mathbf{TZ}$ be the unique C^1 -diffeomorphism such that: $\forall t \in \mathbf{R}/\mathbf{TZ}, f(\gamma(t)) = \gamma(g(t))$. Then: $\forall n \in \mathbf{Z}, f^n(\gamma(t)) = \gamma(g^n(t))$ and $Dg^n(t) = (D\gamma(g^n(t)))^{-1}(Df^n \circ \gamma(t))\dot{\gamma}(t)$ is uniformly bounded in $n \in \mathbf{Z}$ and $t \in \mathbf{R}/\mathbf{TZ}$. By a theorem of Michel Herman (Theorem 6.1.1 of [9]), it implies that g and then $f_{|\Gamma}$ is C^1 conjugate to a rotation.

Proposition 12. — Let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by an exact symplectic positive \mathbf{C}^1 twist map $f : \mathbf{A} \to \mathbf{A}$. Then for almost every $t \in \mathbf{T}$, the sequences $(|\mathbf{D}(\pi \circ f^n)(t, \gamma(t))(1, \gamma'(t))|)_{n \in \mathbf{N}}$ and $(|\mathbf{D}(\pi \circ f^{-n})(t, \gamma(t))(1, \gamma'(t))|)_{n \in \mathbf{N}}$ don't tend to $+\infty$.

Proof of Proposition 12. — We define: $f(t, \gamma(t)) = (f_1(t, \gamma(t)), f_2(t, \gamma(t))) = (g(t), \gamma(g(t)))$. Then $g: \mathbf{T} \to \mathbf{T}$ is a (bi)-Lipschitz homeomorphism of \mathbf{T} which is homotopic to Id_T. There exists a set $U \subset \mathbf{T}$ whose Lebesgue measure is one and such

that γ is differentiable at every $x \in U$. Then, for every $k \in \mathbb{Z}$ and every $x \in U$, the map $g^k = \pi \circ f^k(., \gamma(.))$ is differentiable at x; we have then: $\forall t \in U, \forall k \in \mathbb{Z}, (g^k)'(t) \ge 0$. Let $\tilde{g} : \mathbb{R} \to \mathbb{R}$ be a lift of g. Then: $\forall k \in \mathbb{Z}, \forall t \in \mathbb{R}, \tilde{g}^k(t+1) = \tilde{g}^k(t) + 1$. Therefore:

$$\forall k \in \mathbf{Z}, \quad 1 = \tilde{g}^k(t+1) - \tilde{g}^k(t) = \int_{\mathrm{U}} (g^k)'(s) ds.$$

Using Fatou's theorem, we obtain: $l \ge \int_U \liminf_{n \to \infty} (g^n)'(s) ds$ and then for almost $t \in U$, the sequence $(|(g^n)'(t)|)_{n \in \mathbb{N}}$ doesn't tend to $+\infty$. As we have:

$$\forall t \in \mathbf{U}, \ \forall n \in \mathbf{N}, \quad (g^n)'(t) = \mathbf{D}(\pi \circ f^n)(t, \gamma(t))(1, \gamma'(t))$$

we obtain the Proposition 12.

End of the Proof of Theorem 1. — We can now finish the proof of Theorem 1. Let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by an exact symplectic positive C^1 twist map $f : \mathbf{A} \to \mathbf{A}$. By Proposition 12, there exists a subset U of \mathbf{T} with Lebesgue measure 1 such that for every $t \in U$, the sequences $(|D(\pi \circ f^n)(t, \gamma(t))(1, \gamma'(t))|)_{n \in \mathbf{N}}$ and $(|D(\pi \circ f^{-n})(t, \gamma(t))(1, \gamma'(t))|)_{n \in \mathbf{N}}$ are well defined and doesn't tend to $+\infty$. By Proposition 9, for every $t \in U$, we have: $(1, \gamma'(t)) \in G^-(t, \gamma(t)) \cap G^+(t, \gamma(t))$. By Proposition 7, $\mathcal{G}(\gamma)$ is a dense G_δ subset which contains U and thus the Lebesgue measure of $\mathcal{G}(\gamma)$ is 1, and every point of $\mathcal{G}(\gamma)$ is a point of derivability of γ and a point of continuity of γ' .

Proof of Theorem 3. — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive \mathbb{C}^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by f. Let g be the restriction of f to the graph of γ . We assume that there exist two sequences of integers $(n_i)_{i\in\mathbf{N}}$ and $(m_i)_{i\in\mathbf{N}}$ tending to $+\infty$ such that $(g^{m_i})_{i\in\mathbf{N}}$ and $(g^{-n_i})_{i\in\mathbf{N}}$ are equi-Lipschitz with constant K. We assume that K is a Lipschitz constant for $(t \to (t, \gamma(t))$ too. Then:

$$\begin{aligned} \forall t, u \in \mathbf{R}, \ \forall i \in \mathbf{N}, \quad d(f^{m_i}(t, \gamma(t)), f^{m_i}(u, \gamma(u))) \\ &\leq \mathrm{K}d((t, \gamma(t)), (u, \gamma(u))) \leq \mathrm{K}^2 d(u, t); \\ \forall t, u \in \mathbf{R}, \ \forall i \in \mathbf{N}, \quad d(f^{-n_i}(t, \gamma(t)), f^{-n_i}(u, \gamma(u))) \\ &\leq \mathrm{K}d((t, \gamma(t)), (u, \gamma(u))) \leq \mathrm{K}^2 d(u, t). \end{aligned}$$

Let us now consider $t \in \mathbf{T}$; as γ is Lipschitz, there exists a sequence $(t_n)_{n \in \mathbf{N}} \in \mathbf{T}^{\mathbf{N}}$ such that $\lim_{n \to \infty} t_n = t$ and the sequence $(\frac{\gamma(t) - \gamma(t_n)}{t - t_n})_{n \in \mathbf{N}}$ tends to $\delta \in \mathbf{R}$. Then we have $(\tilde{f} \text{ is any lift of } f)$:

$$\forall i \in \mathbf{N}, \quad \mathrm{D}f^{m_i}(t, \gamma(t))(1, \delta) = \lim_{n \to \infty} \frac{1}{t - t_n} \left(\tilde{f}^{m_i}(t, \tilde{\gamma}(t)) - \tilde{f}^{m_i}(t_n, \tilde{\gamma}(t_n)) \right)$$

and

$$\forall i \in \mathbf{N}, \quad \mathrm{D}f^{-n_i}(t, \gamma(t))(1, \delta) = \lim_{n \to \infty} \frac{1}{t - t_n} \left(\tilde{f}^{-n_i}(t, \tilde{\gamma}(t)) - \tilde{f}^{-n_i}(t_n, \tilde{\gamma}(t_n)) \right).$$

Hence: $\forall i \in \mathbf{N}$, $\max\{\|\mathbf{D}f^{m_i}(t, \gamma(t))(1, \delta)\|, \|\mathbf{D}f^{-n}(t, \gamma(t))(1, \delta)\| \le \mathbf{K}^2$. Therefore, by Proposition 9, $\mathbf{G}^-(t, \gamma(t)) = \mathbf{G}^+(t, \gamma(t)) = \mathbf{R}(1, \gamma'(t))$. We deduce from Corollary 8 that γ is \mathbf{C}^1 .

Proof of Corollary 4. — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive C^1 twist map and let $\gamma : \mathbf{T} \to \mathbf{R}$ be a Lipschitz map whose graph is invariant by f. Let us assume that the restriction g of f to the graph of γ is bi-Lipschitz conjugate to a rotation: there exists $\varphi : \mathbf{T} \to \mathbf{G}(\gamma)$ such that φ and φ^{-1} are Lipschitz and a rotation $\mathbf{R} : \mathbf{T} \to \mathbf{T}$ such that $\varphi \circ \mathbf{R} \circ \varphi^{-1} = g$. Then: $\forall n \in \mathbf{N}, g^n = \varphi \circ \mathbf{R}^n \circ \varphi^{-1}$; therefore, if K is a common Lipschitz constant of γ , φ and φ^{-1} , as R is an isometry, we have:

$$\begin{aligned} \forall t, u \in \mathbf{R}, \quad d(f^n(t, \gamma(t)), f^n(u, \gamma(u))) \\ &= d(\varphi \circ \mathbf{R}^n \circ \varphi^{-1}(t, \gamma(t)), \varphi \circ \mathbf{R}^n \circ \varphi^{-1}(u, \gamma(u))) \\ &\leq \mathbf{K}^3 d(t, u) \leq \mathbf{K}^3 d((t, \gamma(t)), (u, \gamma(u))). \end{aligned}$$

Hence $(g^k)_{k \in \mathbb{Z}}$ is equi-Lipschitz.

We deduce from Theorem 3 that γ is C¹.

Moreover, for every $k \in \mathbb{Z}$, we have: $\|D(\pi \circ f^k)(t, \gamma(t))(1, \gamma'(t))\| \le K^3$; hence, $\pi \circ f(., \gamma(.))$ is a C¹ diffeomorphism of **T** which satisfies the assumptions of Theorem 6.1.1 of [9]: therefore it is C¹ conjugate to a rotation, and $f_{|G(\gamma)|}$ too.

4. A generic property of Lipschitz functions

We think that the results contained in this section should be known as folklore.

If $\theta \in \mathbf{R}$, its projection on $\mathbf{T} = \mathbf{R}/\mathbf{Z}$ is denoted by $\overline{\theta}$. We define on \mathbf{T} a metric *d* by:

$$\forall (\bar{\alpha}, \bar{\beta}) \in \mathbf{T}^2, \quad d(\bar{\alpha}, \bar{\beta}) = \min_{\bar{x} = \bar{\alpha}, \bar{y} = \bar{\beta}} |x - y|.$$

Moreover, λ is the Lebesgue measure on **T**.

Let \mathcal{L} be the vector space of Lipschitz maps from **T** to **R**. We define on \mathcal{L} a map Lip by:

$$\operatorname{Lip}(\gamma) = \sup_{\bar{x} \neq \bar{y}} \frac{|\gamma(\bar{x}) - \gamma(\bar{y})|}{d(\bar{x}, \bar{y})}.$$

We define on \mathcal{L} a norm $\|.\| = \|.\|_{\infty} + \text{Lip. Then } (\mathcal{L}, \|.\|)$ is a Banach space.

Lemma **13.** — *There exists a subset* A *of* **T** *such that, for every open and non-empty subset* U *of* **T**, $\lambda(U \cap A) > 0$ *and* $\lambda(U \cap (\mathbf{T} \setminus A)) > 0$.

Proof of Lemma 13. — Let us introduce a notation: if J is a closed interval which is not a point and $\mu \in [0, 1[, C_{\mu}(J) \text{ is a Cantor subset of } J \text{ such that: } \lambda(C(J)) = \mu\lambda(J).$

We define $\lambda_0 = \frac{1}{3}$ and construct $C_0 = C_{\lambda_0}([0, 1])$. Then $\lambda(C_0) = \frac{1}{3}$ and $[0, 1] \setminus C_0$ is the union of a countable family $(J_n^0)_{n \in \mathbb{N}}$ of open intervals. Let us notice that the measure of each of these intervals is less than $\frac{1}{2}$.

We define $\lambda_1 = \frac{1}{6}$ and for every $n \in \mathbf{N}$, we build $C_n^1 = C_{\lambda_1}(\overline{J}_n^0)$, a Cantor subset built in \overline{J}_n^0 . We define: $C_1 = \bigcup_{n \in \mathbf{N}} C_n^1$. Then $\lambda(C_0 \cup C_1) = \frac{1}{3} + \frac{1}{6} \cdot \frac{2}{3} = \frac{1}{3} + \frac{1}{3^2}$ and $[0, 1] \setminus (C_0 \cup C_1)$ is the union of a countable family $(J_n^1)_{n \in \mathbf{N}}$ of open intervals. Let us notice that the measure of each of these intervals is less than $\frac{1}{4}$.

We repeat this construction: for every $n \in \mathbf{N}$, $\lambda_n(1 - \frac{1}{2}(1 - \frac{1}{3^n})) = \frac{1}{3^{n+1}}$ is such that $C_j^n = C_{\lambda_n}(\overline{J}_j^n)$, we have: $C_n = \bigcup_{j \in \mathbf{N}} C_j^n$, $\lambda(C_0 \cup \cdots \cup C_n) = \frac{1}{2}(1 - \frac{1}{3^{n+1}})$ and $[0, 1] \setminus (C_0 \cup \cdots \cup C_n)$ is the union of a countable family $(J_j^n)_{j \in \mathbf{N}}$ of open intervals. The measure of each of these intervals is less than $\frac{1}{2^n}$.

We define: $\mathbf{C} = \bigcup_{n \in \mathbf{N}} \mathbf{C}_n$.

Let now $\mathbf{J} =]a, b[$ be an open interval in [0, 1]. We choose $n \in \mathbf{N}$ such that $\frac{1}{2^n} < \frac{b-a}{4}$. As the measure of each \mathbf{J}_j^n is less than $\frac{1}{2^n}$, the set $\mathbf{C}_0 \cup \cdots \cup \mathbf{C}_n$ meets $]\frac{b+a}{2} - \frac{b-a}{4}, \frac{b+a}{4} + \frac{b-a}{4}[$; the set $\mathbf{C}_0 \cup \cdots \cup \mathbf{C}_n$ being totally discontinuous, one open set \mathbf{J}_j^n meets $]\frac{b+a}{2} - \frac{b-a}{4}, \frac{b+a}{2} + \frac{b-a}{4}[$; $\frac{b-a}{4}[$ and therefore is contained in \mathbf{J} . We know that:

$$\lambda(\mathbf{J}_{j}^{n} \setminus \mathbf{C}) = \lambda\left(\mathbf{J}_{j}^{n} \setminus \bigcup_{k \ge n+1} \mathbf{C}_{k}\right) = \left(\prod_{i=n+1}^{\infty} (1-\lambda_{i})\right)\lambda(\mathbf{J}_{j}^{n})$$
$$= \left(\prod_{i=n+1}^{\infty} \left(1 - \frac{2}{3^{i+1} + 3}\right)\right)\lambda(\mathbf{J}_{j}^{n}).$$

Therefore $\lambda(J_j^n \setminus C) \in [0, \lambda(J_j^n)]$ and J meets C and $[0, 1] \setminus C$ in subsets which have a non zero measure.

Proposition **14.** — There exists a dense and open subset \mathcal{U} of \mathcal{L} such that, for every $\gamma \in \mathcal{U}$, there exists a subset $U_{\gamma} \subset \mathbf{T}$ such that $\lambda(U_{\gamma}) > 0$ and every $t \in U_{\gamma}$ is a point of differentiability of γ and a point of discontinuity of γ' .

Notations. — If A is a subset of **R** (resp. **T**), χ_A is the characteristic function of A, i.e.: $\forall x \in A, \chi_A(x) = 1$ and $\forall x \notin A, \chi_A(x) = 0$.

Proof of Proposition 14. — We begin by exhibiting one example of $\eta : \mathbf{T} \to \mathbf{R}$ in \mathcal{L} such that the derivative of η has no point of continuity. Let $A \subset \mathbf{T}$ be chosen as in Lemma 13: A is a set such that for every open and non empty subset U of \mathbf{T} , $\lambda(U \cap A) > 0$ and $\lambda(U \cap (\mathbf{T} \setminus A)) > 0$. Then the map: $\alpha : \mathbf{T} \to \mathbf{R}$ defined by: $\alpha(t) = \lambda(\mathbf{T} \setminus A)\chi_A(t) - \lambda(A)\chi_{\mathbf{T} \setminus A}(t)$ is such that: $\int_{\mathbf{T}} \alpha = 0$. Hence, α has a primitive $\eta : \mathbf{T} \to \mathbf{R}$ defined by: $\forall \theta \in [0, 1[, \eta(\bar{\theta}) = \int_{[0, \bar{\theta}]} \alpha$.

The function α being Lebesgue integrable, we have: for almost every $t \in \mathbf{T}$, η is differentiable at t and $\eta'(t) = \alpha(t)$. Moreover, α being bounded, the map η is Lipschitz. We denote by D the set of $t \in \mathbf{T}$ such that η is differentiable at t and $\eta'(t) = \alpha(t)$. We have noticed that $\lambda(D) = 1$. Moreover, if J is any open non empty interval of **T**, by Lemma 13, $\mu(D \cap J \cap A) > 0$ and $\mu(D \cap J \cap (\mathbf{T} \setminus A)) > 0$. If $t \in D \cap J \cap A$, η is differentiable at t and $\eta'(t) = \alpha(t) = \lambda(\mathbf{T} \setminus A) = a > 0$; if $t \in D \cap I \cap (\mathbf{T} \setminus A)$, then η is differentiable at t and $\eta'(t) = \alpha(t) = -\lambda(A) = -b < 0$. Then in every neighbourhood of any point of differentiability of η , there exists t_1 , t_2 points of differentiability of η such that $\eta'(t_1) = a$ and $\eta'(t_2) = -b$. It implies that η' is nowhere continuous.

Before going on with the proof, let us notice that the set of the point of continuity of any function is a G_{δ} subset, and then measurable.

We consider a Lipschitz map $\gamma: \mathbf{T} \to \mathbf{R}$ and an open subset \mathcal{U} of \mathcal{L} which contains γ ; there are two cases:

- 1. either for every $\gamma_1 \in \mathcal{U}$, there exists $U \subset \mathbf{T}$ such that $\lambda(U) > 0$ and every $t \in U$ is a point of differentiability of γ_1 and a point of discontinuity of γ'_1 ;
- 2. or there exists $\gamma_1 \in \mathcal{U}$ and $U \subset \mathbf{T}$ such that $\lambda(U) = 1$ and every $t \in U$ is a point of differentiability of γ_1 and a point of continuity of γ'_1 .

In this last case, we will prove that there exists an open non empty subset $\mathcal{V} \subset \mathcal{U}$ such that: for every $\gamma_2 \in \mathcal{V}$, there exists $U \subset \mathbf{T}$ such that $\lambda(U) > 0$ and every $t \in U$ is a point of differentiability of γ_2 and a point of discontinuity of γ'_2 . If we succeed in proving that, the Proposition 14 is proved.

Let us now build \mathcal{V} . Let $D(\gamma_1)$ be the set of the points of continuity of γ'_1 and let $d(\gamma_1)$ be the set of the points of differentiability of γ_1 : we know that $\lambda(D(\gamma_1)) = 1$. Let $\varepsilon \in [0, 1[$ be such that the ball centered at $\gamma_1 + \varepsilon \eta$ with radius equal to $\varepsilon \frac{b+a}{8}$ is contained in \mathcal{U} : this ball is then denoted by \mathcal{V} . As at the beginning of the proof, we denote by D the set of $t \in \mathbf{T}$ such that η is differentiable at t and $\eta'(t) = \alpha(t)$. Let now $t_0 \in D(\gamma_1)$. As t_0 is a point of continuity of γ'_1 , there exists a neighbourhood U_0 of t_0 in **T** such that: $\forall t \in U_0 \cap d(\gamma_1), |\gamma'_1(t) - \gamma'_1(t_0)| < \varepsilon \frac{b+a}{16}$. Let now $\gamma_2 \in \mathcal{V}$: then $\gamma_2 = \gamma_1 + \varepsilon \eta + u$ with $||u||_{\infty} + \operatorname{Lip}(u) < \varepsilon \frac{b+a}{8}$. Let d(u) be the set of points of differentiability of u and let $V_0 = U_0 \cap d(\gamma_1) \cap D \cap d(u)$. Then $\lambda(V_0) = \lambda(U_0) > 0$ and:

- 1. u, γ_1 and η are differentiable at every $t \in V_0$;

- 2. for every $t \in V_0$, we have $|u'(t)| < \varepsilon^{\frac{a+b}{8}}$ because $\operatorname{Lip}(u) < \varepsilon^{\frac{a+b}{8}}$; 3. for every $t, t' \in V_0$, $|\gamma'_1(t) \gamma'_1(t')| < \varepsilon^{\frac{b+a}{8}}$ because $t, t' \in U_0$; 4. if $t \in V_0 \cap A$, then $\eta'(t) = a$ and if $t \in V_0 \cap (\mathbf{T} \setminus A)$, then $\eta'(t) = -b$.

We deduce:

1. if $t \in V_0 \cap A$, then:

$$\gamma_2'(t) = \gamma_1'(t) + \varepsilon \eta'(t) + u'(t) > \varepsilon a + \gamma_1'(t_0) - 2\varepsilon \frac{b+a}{8}$$

$$=\gamma_1'(t_0)+\varepsilon\left(a-\frac{b+a}{4}\right);$$

2. if $t \in V \cap (\mathbf{T} \setminus A)$, then:

$$\gamma_2'(t) < -\varepsilon b + \gamma_1'(t_0) + 2\varepsilon \frac{b+a}{8} = \gamma_1'(t_0) + \varepsilon \left(-b + \frac{b+a}{4}\right).$$

We have: $-b + \frac{b+a}{4} < a - \frac{b+a}{4}$. Hence γ'_2 is discontinuous at every point of U₀. Finally, we have proved that for every $\gamma_2 \in \mathcal{V}$, the Lebesque measure of the set of the points of discontinuity of γ'_2 is non zero. This ends the proof.

Of course, Corollary 2 is a consequence of the last proposition and Theorem 1.

5. The C⁰ integrability

In this section, we will prove Theorem 5. We consider an exact symplectic C^1 twist map $f : \mathbf{A} \to \mathbf{A}$ which is C^0 integrable and denote by Γ the set of the C^0 -maps $\gamma : \mathbf{T} \to \mathbf{R}$ whose graph is invariant under f. Using the remark given in the introduction, we notice that: $\forall \gamma_1, \gamma_2 \in \Gamma$, either $\gamma_1 < \gamma_2$ or $\gamma_1 > \gamma_2$. We endow Γ with the order \leq and the metric d_{∞} of the uniform convergence.

Let $\tilde{f} = (\tilde{f}_1, \tilde{f}_2) : \mathbb{R}^2 \to \mathbb{R}^2$ be a lift of f. For every $\gamma \in C^0(\mathbb{T}, \mathbb{R})$, $\tilde{\gamma}$ is defined by: $\tilde{\gamma}(\theta) = \gamma(\bar{\theta})$. Then $\tilde{\Gamma} = \{\tilde{\gamma}; \gamma \in \Gamma\}$ is also an ordered set, and the graph of every $\tilde{\gamma} \in \tilde{\Gamma}$ is invariant by \tilde{f} . For every $\gamma \in \Gamma$ we will denote by $\rho(\gamma)$ the rotation number of $\tilde{f}_1(., \tilde{\gamma}(.)) : \mathbb{R} \to \mathbb{R}$ (see [9] for the definition). Then it is proved in [10] (2.4.2) that $\rho : \Gamma \to \mathbb{R}$ is increasing; moreover, it is continuous.

Proposition **15.** — Let $f : \mathbf{A} \to \mathbf{A}$ be an exact symplectic positive \mathbf{C}^1 twist map which is \mathbf{C}^0 integrable. If the graph of a continuous map $\gamma : \mathbf{T} \to \mathbf{R}$ is invariant by f and if its rotation number $\rho(\gamma) = \frac{b}{a}$ is rational, then: $\forall \theta \in \mathbf{T}, f^q(\theta, \gamma(\theta)) = (\theta, \gamma(\theta)).$

Proof of Proposition 15. — Let $(\gamma_n)_{n \in \mathbb{N}}$ be a decreasing sequence of elements of Γ which tends to γ . Then: $\forall n \in \mathbb{N}$, $\rho(\gamma_n) > \frac{p}{q} = \rho(\gamma)$ and $\lim_{n \to \infty} \rho(\gamma_n) = \frac{p}{q}$. We may also choose γ_n in such a way that: $\forall n \in \mathbb{N}$, $\rho(\gamma_n) \in \mathbb{R} \setminus \mathbb{Q}$.

Then, we have: $\forall k \in \mathbf{N}, \forall \theta \in \mathbf{R}, \tilde{f}_1^q(\theta, \tilde{\gamma}_k(\theta)) \neq \theta + p$. We deduce that for every $k \in \mathbf{N}$: either $(*)_1 \forall \theta \in \mathbf{R}, \tilde{f}_1^q(\theta, \tilde{\gamma}_k(\theta)) > \theta + p$ or $(*)_2 \forall \theta \in \mathbf{R}, \tilde{f}_1^q(\theta, \tilde{\gamma}_k(\theta)) < \theta + p$. Using the fact that $\tilde{f}_1(., \tilde{\gamma}_k())$ is increasing and the fact that $\tilde{f}_1(\theta + 1, \tilde{\gamma}_k(\theta + 1)) = \tilde{f}_1(\theta, \tilde{\gamma}_k(\theta)) + 1$: we deduce:

(*)₁ either: $\forall n \in \mathbf{N}^*, \forall \theta \in \mathbf{R}, \tilde{f}_1^{nq}(\theta, \tilde{\gamma}_k(\theta)) > \theta + np;$ (*)₂ or: $\forall n \in \mathbf{N}^*, \forall \theta \in \mathbf{R}, \tilde{f}_1^{nq}(\theta, \tilde{\gamma}_k(\theta)) < \theta + np;$

and then:

(*)₁ either:
$$\forall \theta \in \mathbf{R}, \, \rho(\gamma_k) = \lim_{n \to \infty} \frac{\tilde{j}_1^{nq}(\theta, \tilde{\gamma}_k(\theta)) - \theta}{nq} \ge \frac{p}{q};$$

(*)₂ or: $\forall \theta \in \mathbf{R}, \, \rho(\gamma_k) = \lim_{n \to \infty} \frac{\tilde{j}_1^{nq}(\theta, \tilde{\gamma}_k(\theta)) - \theta}{nq} \le \frac{p}{q}.$

But we know that $\rho(\gamma_k) > \frac{p}{q}$; therefore, the case $(*)_2$ is impossible and we have: $\forall k \in \mathbf{N}$, $\forall \theta \in \mathbf{R}, \tilde{f}_1^q(\theta, \tilde{\gamma}_k(\theta)) > \theta + p$. We deduce that: $\forall \theta \in \mathbf{R}, \tilde{f}_1^q(\theta, \tilde{\gamma}(\theta)) \ge \theta + p$.

Using now a increasing sequence of elements of Γ tending to γ , we obtain, similarly: $\forall \theta \in \mathbf{R}, \tilde{f}_1^q(\theta, \tilde{\gamma}(\theta)) \leq \theta + p$.

Proof of Theorem 5. — Let $C = \{ \gamma \in \Gamma; \gamma \in C^1(\mathbf{T}, \mathbf{R}) \text{ and } \forall \theta \in \mathbf{T}, G^-(\theta, \gamma(\theta)) = G^+(\theta, \gamma(\theta)) \}$. By Corollary 8, we know that the condition $\gamma \in C^1(\mathbf{T}, \mathbf{R})$ is redundant.

Lemma 16. — If $\gamma \in \Gamma$ is such that $\rho(\gamma) = \frac{p}{q} \in \mathbf{Q}$, then $\gamma \in C$.

Proof of Lemma 16. — Let $\gamma \in \Gamma$ be such that $\rho(\gamma) \in \mathbf{Q}$. We deduce from Proposition 15 that every $(\theta, \gamma(\theta))$ is *q*-periodic for *f*.

Hence if g is the restriction of f to the graph $G(\gamma)$ of γ , the family $(g^{nq})_{n \in \mathbb{Z}} = (\mathrm{Id}_{G(\gamma)})_{n \in \mathbb{Z}}$ is equi-Lipschiz. We deduce from Theorem 3 and from its proof that $\gamma \in \mathcal{C}$. \Box

We define: $\Gamma_0 = \{ \gamma \in \Gamma; \rho(\gamma) \in \mathbf{Q} \}$; then Γ_0 is dense in Γ ; Lemma 16 implies that: $\Gamma_0 \subset \mathcal{C}$. Hence \mathcal{C} is dense in Γ .

Let us now prove:

Lemma 17. — The map: $F: \mathbf{T} \times \Gamma \to \mathbf{A}$ defined by: $F(\theta, \gamma) = (\theta, \gamma(\theta))$ is a homeomorphism.

Proof of Lemma 17. — This map is continuous, one-to-one and onto. Moreover, a result due to Birkhoff states that for every compact set K of **A**, the set { $\gamma \in \Gamma$; $G(\gamma) \cap K \neq \emptyset$ } is compact. Therefore the map F is proper; hence, F is a homeomorphism.

Lemma 18. — The set $\mathcal{G} = \{x \in \mathbf{A}; G^+(x) = G^-(x)\}$ is a G_δ subset of \mathbf{A} .

The proof is the same as in Proposition 7: G^+ is upper semi-continuous and G^- is lower semi-continuous.

The map \mathbf{F} being a homeomorphism, we deduce from Lemma 18 that $\mathcal{G} = \{(\theta, \gamma) \in \mathbf{T} \times \Gamma; \mathbf{G}^-(\theta, \gamma(\theta)) = \mathbf{G}^+(\theta, \gamma(\theta))\}$ is a \mathbf{G}_δ subset of $\mathbf{T} \times \Gamma$. Moreover, it contains $\mathbf{T} \times \mathcal{C}$ which is dense in $\mathbf{T} \times \Gamma$. Hence \mathcal{G} is a dense \mathbf{G}_δ subset of $\mathbf{T} \times \Gamma$. Therefore there exists a sequence $(\mathbf{U}_n)_{n \in \mathbf{N}}$ of open subsets of $\mathbf{T} \times \Gamma$ such that $\mathcal{G} = \bigcap_{n \in \mathbf{N}} \mathbf{U}_n$. If $n \in \mathbf{N}$, then $\mathbf{T} \times \mathcal{C} \subset \mathbf{U}_n$. As every set $\mathbf{T} \times \{\gamma\}$ is compact, the set $\mathbf{V}_n = \{\gamma \in \Gamma; \mathbf{T} \times \{\gamma\} \subset \mathbf{U}_n\}$ contains an open subset W_n of Γ which contains \mathcal{C} ; then $\mathbf{T} \times W_n$ is a dense and open subset of $\mathbf{T} \times \Gamma$ such that: $\mathbf{T} \times \mathcal{C} \subset \mathbf{T} \times W_n \subset \mathbf{U}_n$. We deduce that $\mathbf{G} = \bigcap_{n \in \mathbf{N}} W_n$ is a \mathbf{G}_δ of Γ such that: $\mathbf{T} \times \mathcal{C} \subset \mathbf{T} \times \mathbf{G} \subset \mathcal{G}$. Hence \mathbf{G} is a dense \mathbf{G}_δ subset of Γ such that: $\forall \gamma \in \mathbf{G}, \mathbf{T} \times \{\gamma\}$ is a subset in \mathcal{G} ; using Corollary 8, we deduce that every $\gamma \in \mathbf{G}$ is \mathbf{C}^1 . \Box

Acknowledgement

I am grateful to J.-C. Yoccoz who pointed to me the beautifull results of M. Herman and to S. Crovisier and A. Fathi for their comments on the original manuscript.

REFERENCES

- 1. M. L. BIALY and R. S. MACKAY, Symplectic twist maps without conjugate points, Isr. J. Math., 141 (2004), 235-247.
- 2. G. D. BIRKHOFF, Surface transformations and their dynamical application, Acta Math., 43 (1920), 1-119.
- 3. A. CHENCINER, La dynamique au voisinage d'un point fixe elliptique conservatif: de Poincaré et Birkhoff à Aubry et Mather., Astérisque, 1983/84(121–122) (1985), 147–170 (in French). [The dynamics at the neighborhood of a conservative elliptic fixed point: from Poincare and Birkhoff to Aubry and Mather] Seminar Bourbaki.
- 4. A. CHENCINER, Systèmes dynamiques différentiables. Article à l'Encyclopedia Universalis.
- 5. G. CONTRERAS and R. ITURRIAGA, Convex Hamiltonians without conjugate points, *Ergod. Theory Dyn. Syst.*, **19**(4) (1999), 901–952.
- A. FATHI, Une interprétation plus topologique de la démonstration du théorème de Birkhoff, appendice au ch.1 de [9], pp. 39–46.
- P. FOULON, Estimation de l'entropie des systèmes lagrangiens sans points conjugués, Ann. Inst. Henri Poincaré Phys. Théor., 57(2) (1992), 117–146.
- 8. L. W. GREEN, A theorem of E. Hopf, Mich. Math. J., 5 (1958), 31-34.
- M. HERMAN, Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations, Inst. Hautes Étud. Sci. Publ. Math., 49 (1979), 5–233.
- 10. M. HERMAN, Sur les courbes invariantes par les difféomorphismes de l'anneau, Asterisque, 1 (1983), 103-104.
- R. ITURRIAGA, A geometric proof of the existence of the Green bundles, Proc. Amer. Math. Soc., 130(8) (2002), 2311– 2312.
- 12. P. LE CALVEZ, Etude topologique des applications déviant la verticale, Ens. Mat., Soc. Bras. Mat., 2 (1990).

M.-C. A. Université d'Avignon et des Pays de Vaucluse Laboratoire d'Analyse Non Linéaire et Géométrie (EA 2151) 84018 Avignon, France Marie-Claude.Arnaud@univ-avignon.fr

> Manuscrit reçu le 5 avril 2007 publié en ligne le 19 février 2009.