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ABSTRACT

We introduce a notion of homological projective duality for smooth algebraic varieties in dual projective spaces,
a homological extension of the classical projective duality. If algebraic varieties X and Y in dual projective spaces are
homologically projectively dual, then we prove that the orthogonal linear sections of X and Y admit semiorthogonal
decompositions with an equivalent nontrivial component. In particular, it follows that triangulated categories of singu-
larities of these sections are equivalent. We also investigate homological projective duality for projectivizations of vector
bundles.

1. Introduction

Investigation of derived categories of coherent sheaves on algebraic varieties
has become one of the most important topics in the modern algebraic geometry.
Among other reasons, this is because of the Homological Mirror Symmetry con-
jecture of Maxim Kontsevich [Ko] predicting that there is an equivalence of cat-
egories between the derived category of coherent sheaves on a Calabi–Yau variety
and the derived Fukaya category of its mirror. There is an extension of Mirror
Symmetry to the non Calabi–Yau case [HV]. According to this, the mirror of
a manifold with non-negative first Chern class is a so-called Landau–Ginzburg
model, that is an algebraic variety with a 2-form and a holomorphic function
(superpotential) such that the restriction of the 2-form to smooth fibers of the
superpotential is symplectic. It is expected that singular fibers of the superpoten-
tial of the mirror Landau–Ginzburg model give a decomposition of the derived
category of coherent sheaves on the initial algebraic variety into semiorthogonal
pieces, a semiorthogonal decomposition.

Thus from the point of view of mirror symmetry it is important to investigate
when the derived category of coherent sheaves on a variety admits a semiorthogon-
al decomposition. The goal of the present paper is to answer the following more
precise question:

Assume that X is a smooth projective variety and denote by Db(X) the

bounded derived category of coherent sheaves on X. Supposing that we are given
a semiorthogonal decomposition of Db(X), is it possible to construct a semior-
thogonal decomposition of Db(XH), where XH is a hyperplane section of X?

(†)
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Certainly this question is closely related to the question what does the operation of

taking a hyperplane section of a projective algebraic variety mean on the side of the mirror?

In general one cannot expect an affirmative answer to (†). However, there
is an important particular case, when something can be said. Explicitly, assume
that X ⊂ P(V) is a smooth projective variety, OX(1) is the corresponding very
ample line bundle, and assume that there is a semiorthogonal decomposition of its
derived category of the following type

Db(X) = 〈A0,A1(1), ...,Ai−1(i − 1)〉,
0 ⊂ Ai−1 ⊂ Ai−2 ⊂ · · · ⊂ A1 ⊂ A0,

where (k) stands for the twist by OX(k). A decomposition of this type will be
called Lefschetz decomposition because as we will see its behavior with respect to
hyperplane sections is similar to that of the Lefschetz decomposition of the co-
homology groups. An easy calculation shows that for any hyperplane section XH

of X with respect to OX(1) the composition of the embedding and the restric-
tion functors Ak(k) → Db(X) → Db(XH) is fully faithful for 1 ≤ k ≤ i − 1 and
〈A1(1), ...,Ai−1(i − 1)〉 is a semiorthogonal collection in Db(XH). In other words,
dropping the first (the biggest) component of the Lefschetz decomposition of Db(X)

we obtain a semiorthogonal collection in Db(XH). Denoting by CH the orthogonal
in Db(XH) to the subcategory of Db(XH) generated by this collection we consider
{CH}H∈P(V∗) as a family of triangulated categories over the projective space P(V∗).
Assuming geometricity of this family, i.e. roughly speaking that there exists an alge-
braic variety Y with a map Y → P(V∗) such that for all H we have CH

∼= Db(YH),
where YH is the fiber of Y over H ∈ P(V∗), we prove the main result of the paper

Theorem 1.1. — The derived category of Y admits a dual Lefschetz decomposition

Db(Y) = 〈Bj−1(1 − j),Bj−2(2 − j), ...,B1(−1),B0〉,
0 ⊂ Bj−1 ⊂ Bj−2 ⊂ · · · ⊂ B1 ⊂ B0.

Moreover, if L ⊂ V∗ is a linear subspace and L⊥ ⊂ V is the orthogonal subspace such that

the linear sections XL = X ×P(V) P(L⊥) and YL = Y ×P(V∗) P(L), are of expected dimension

dim XL = dim X − dim L, and dim YL = dim Y − dim L⊥, then there exists a triangulated

category CL and semiorthogonal decompositions

Db(XL) = 〈CL,Adim L(1), ...,Ai−1(i − dim L)〉,
Db(YL) = 〈Bj−1(dim L⊥ − j), ...,Bdim L⊥(−1),CL〉.

In other words, the derived categories of XL and YL have semiorthogonal
decompositions with several “trivial” components coming from the Lefschetz de-
compositions of the ambient varieties X and Y respectively, and with equivalent

nontrivial components.
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We would like to emphasize the similarity of derived categories and cohomo-
logy groups with respect to the hyperplane section operation. Thus, Theorem 1.1
can be considered as a homological generalization of the Lefschetz theorem about
hyperplane sections.

A simple corollary of Theorem 1.1 is an equivalence of the derived categories
of singularities (see [O3]) of XL and YL. In particular, it easily follows that YL is
singular if and only if XL is singular. This means that we have an equality of the
following two closed subsets of the dual projective space P(V∗):

{H ∈ P(V∗) | XH is singular}
= {critical values of the projection Y → P(V∗)}.

Note that the first of these subsets is the classical projectively dual variety of X.
Thus Y can be considered as a homological generalization of the projectively dual.
In accordance with this we say that Y is a homologically projectively dual variety
of X.

The simplest example of a Lefschetz decomposition is given by the standard
exceptional collection (O,O(1), ...,O(i − 1)) on a projective space X = P i−1 (we
take A0 = A1 = · · · = Ai−1 = 〈O〉). It is easy to see that the corresponding homo-
logical projectively dual variety is an empty set, and we obtain nothing interesting.
However, considering a relative projective space we already obtain some interesting
results. More precisely, consider a projectivization of a vector bundle X = PS(E)

over a base scheme S, embedded into the projectivization of the vector space
H0(S, E∗)∗ = H0(X,OX/S(1))∗ with the following Lefschetz decomposition

Db(X) = 〈Db(S),Db(S) ⊗ OX/S(1), ...,Db(S) ⊗ OX/S(i − 1)〉.
We prove that Y = PS(E⊥), where E⊥ = Ker(H0(S, E∗)⊗OS → E∗), is a homologic-
ally projectively dual variety of X. As a consequence we get certain semiorthogonal
decompositions and equivalences between derived categories of linear sections of
PS(E) and PS(E⊥). For example, applying a relative version of Theorem 1.1 we
can deduce that there is an equivalence of derived categories between the follow-
ing two varieties related by a special birational transformation called a flop (it is
conjectured in [BO2] that the derived categories of any pair of algebraic varieties

related by a flop are equivalent). Consider a morphism of vector bundles F
φ−−→ E∗

of equal ranks on S and consider

XF = {(s, e) ∈ PS(E) | φ∗
s (e) = 0}, YF = {(s, f ) ∈ PS(F) | φs( f ) = 0},

and ZF = {s ∈ S | det φs = 0}.
If dim XF = dim YF = dim S − 1 then the natural projections XF → ZF and
YF → ZF are birational and the corresponding birational transformation XF

�� YF
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is a flop. We prove an equivalence of categories Db(XF) ∼= Db(YF) if additionally
dim XF ×S YF = dim S − 1.

The next example of a Lefschetz decomposition is a decomposition of
Db(X) for X = P(W) with respect to OX(2) given by A0 = A1 = · · · = Ai−2 =
〈OX,OX(1)〉 and either Ai−1 = 〈OX,OX(−1)〉 for dim W = 2i, or Ai−1 = 〈OX〉 for
dim W = 2i − 1. In a companion paper [K2] we show that the universal sheaf
of even parts of Clifford algebras on P(S2W∗) is a homologically projectively dual
variety to X with respect to the double Veronese embedding X = P(W) ⊂ P(S2W).
This gives immediately a proof of the theorem of Bondal and Orlov [BO2,BO3]
about derived categories of intersections of quadrics.

Let us mention also that the homological projective duality for Lefschetz de-
compositions with A0 generated by exceptional pair and A0 = A1 = · · · = Ai−1 was
considered in [K1]. There such decompositions were constructed for X = Gr(2, 5),
X = OGr+(5, 10), a connected component of the Grassmannian of 5-dimensional
subspaces in k10 isotropic with respect to a nondegenerate quadratic form,
X = LGr(3, 6), the Lagrangian Grassmannian of 3-dimensional subspaces in k6 with
respect to a symplectic form, and X = G2Gr(2, 7), the Grassmannian of the Lie
group G2, and it was shown that homologically projectively dual varieties for them
are Y = Gr(2, 5), Y = OGr−(5, 10), a quartic hypersurface in P13, and a double
covering of P13 ramified in a sextic hypersurface (in the last two cases one must
consider the derived category of sheaves of modules over a suitable sheaf of Azu-
maya algebras on Y instead of the usual derived category). Moreover, in a forth-
coming paper [K4] we are going to describe the homologically projectively dual
varieties to Grassmannians of lines Gr(2, W) (the Lefschetz decompositions for these
Grassmannians were constructed in [K3]).

Finally, we would like to emphasize that aside of its purely theoretical interest
homological projective duality provides a powerful tool for investigation of derived
categories of linear sections of a given algebraic variety. It was already applied
in [K1] for the description of derived categories of some Fano threefolds. Having
in mind the role played in Mirror Symmetry by complete intersections in toric
varieties it seems a good idea to investigate the homological projective duality
for toric varieties. This also may shed some light on the relation of homological
projective duality and Mirror Symmetry.

Now we describe the structure of the paper. In Section 2 we recall the
necessary material concerning admissible subcategories, semiorthogonal decompo-
sitions, mention an important technical result, the faithful base change theorem
proved in [K1], and check that the property of being fully faithful for a functor
linear over a base is local over the base. In Section 3 we define splitting functors

and give a criterion for a functor to be splitting. In Section 4 we define Lefschetz

decompositions of triangulated categories. In Section 5 we consider derived category
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of the universal hyperplane section of a variety admitting a Lefschetz decomposition of
the derived category. In Section 6 we define homological projective duality and prove
Theorem 1.1 and its relative versions. In Section 7 we discuss relation of the
homological projective duality to the classical projective duality. In Section 8 we
consider the homological projective duality for a projectivization of a vector bundle.
Finally, in Section 9 we consider some explicit examples of homological projective
duality.

Acknowledgements. — I am grateful to A. Bondal, D. Kaledin and D. Orlov for
many useful discussions and to the referee for valuable comments. Also I would
like to mention that an important example of homological projective duality (the
case of X = Gr(2, 6) which is not discussed in this paper) first appeared in a con-
versation with A. Samokhin.

2. Preliminaries

2.1. Notation. — The base field k is assumed to be algebraically closed of
zero characteristic. All algebraic varieties are assumed to be embeddable (i.e. ad-
mitting a finite morphism to a smooth algebraic variety) and of finite type over k.

Given an algebraic variety X we denote by Db(X) the bounded derived
category of coherent sheaves on X. Similarly, D−(X), D+(X) and D(X) stand
for the bounded above, the bounded below and the unbounded derived categories.
Further, Db

qc(X), D−
qc (X), D+

qc (X), and Dqc(X), stand for the corresponding derived
categories of quasicoherent sheaves, and Dperf(X) denotes the category of perfect
complexes on X, i.e. the full subcategory of D(X) consisting of all objects locally
quasiisomorphic to bounded complexes of locally free sheaves of finite rank.

Given a morphism f : X → Y we denote by f∗ and f ∗ the total derived push-
forward and the total derived pullback functors. The twisted pullback functor [H]
is denoted by f ! (it is right adjoint to f∗ if f is proper). Similarly, ⊗ stands for the
derived tensor product, and RHom, RHom stand for the global and local RHom
functors.

Given an object F ∈ D(X) we denote by H k(F) the k-th cohomology sheaf
of F.

2.2. Semiorthogonal decompositions. — If A is a full subcategory of T then the
right orthogonal to A in T (resp. the left orthogonal to A in T ) is the full subcat-
egory A ⊥ (resp. ⊥A ) consisting of all objects T ∈ T such that HomT (A, T) = 0
(resp. HomT (T, A) = 0) for all A ∈ A .

Definition 2.1 ([BO1]). — A semiorthogonal decomposition of a triangulated category T
is a sequence of full triangulated subcategories A1, ...,An in T such that HomT (Ai,Aj) = 0
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for i > j and for every object T ∈ T there exists a chain of morphisms 0 = Tn → Tn−1 →
· · · → T1 → T0 = T such that the cone of the morphism Tk → Tk−1 is contained in Ak

for each k = 1, 2, ..., n.

In other words, every object T admits a decreasing “filtration” with factors
in A1, ...,An respectively. Semiorthogonality implies that this filtration is unique
and functorial.

For any sequence of subcategories A1, ...,An in T we denote by 〈A1, ...,An〉
the minimal triangulated subcategory of T containing A1, ...,An.

If T = 〈A1, ...,An〉 is a semiorthogonal decomposition then Ai =
〈Ai+1, ...,An〉⊥ ∩ ⊥〈A1, ...,Ai−1〉.

Definition 2.2 ([BK,B]). — A full triangulated subcategory A of a triangulated category

T is called right admissible if for the inclusion functor i : A → T there is a right adjoint

i! : T → A , and left admissible if there is a left adjoint i∗ : T → A . Subcategory A
is called admissible if it is both right and left admissible.

Lemma 2.3 ([B]). — If T = 〈A ,B〉 is a semiorthogonal decomposition then A is

left admissible and B is right admissible.

Lemma 2.4 ([B]). — If A1, ...,An is a semiorthogonal sequence of full triangulated

subcategories in a triangulated category T (i.e. HomT (Ai,Aj) = 0 for i > j) such that

A1, ...,Ak are left admissible and Ak+1, ...,An are right admissible then

〈A1, ...,Ak,
⊥〈A1, ...,Ak〉 ∩ 〈Ak+1, ...,An〉⊥,Ak+1, ...,An〉

is a semiorthogonal decomposition.

Assume that A ⊂ T is an admissible subcategory. Then T = 〈A , ⊥A 〉 and
T = 〈A ⊥,A 〉 are semiorthogonal decompositions, hence ⊥A is right admissible
and A ⊥ is left admissible. Let i⊥A : ⊥A → T and iA ⊥ : A ⊥ → T be the
inclusion functors.

Definition 2.5 ([B]). — The functor RA = i⊥A i!⊥A
is called the right mutation

through A . The functor LA = iA ⊥ i∗
A ⊥ is called the left mutation through A .

Lemma 2.6 ([B]). — We have RA (A ) = 0 and the restriction of RA to A ⊥ is an

equivalence A ⊥ → ⊥A . Similarly, we have LA (A ) = 0 and the restriction of LA to ⊥A
is an equivalence ⊥A → A ⊥.

Lemma 2.7 ([B]). — If A1, ...,An is a semiorthogonal sequence of admissible subcat-

egories in T then R〈A1,...,An〉 = RAn ◦ · · · ◦ RA1 and L〈A1,...,An〉 = LA1 ◦ · · · ◦ LAn .
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Lemma 2.8 ([O1]). — If E is a vector bundle of rank r on S, PS(E) is its

projectivization, O(1) is the corresponding Grothendieck ample line bundle, and p : PS(E) → S
is the projection then the pullback p∗ : Db(S) → Db(PS(E)) is fully faithful and

Db(PS(E)) = 〈 p∗(Db(S)) ⊗ O(k), p∗(Db(S)) ⊗ O(k + 1),

..., p∗(Db(S)) ⊗ O(k + r − 1)〉
is a semiorthogonal decomposition for any k ∈ Z.

2.3. Saturatedness and Serre functors

Definition 2.9 ([B]). — A triangulated category T is called left saturated if every exact

covariant functor T → Db(k) is representable, and right saturated if every exact contravariant

functor T → Db(k) is representable. A triangulated category T is called saturated if it is

both left and right saturated.

Lemma 2.10 ([B]). — A left (resp. right) admissible subcategory of a saturated category

is saturated.

Proof. — Assume that A is a left admissible subcategory in a saturated tri-
angulated category T , i : A → T is the inclusion functor and i∗ : T → A is
its left adjoint functor. Let φ : A → Db(k) be an exact covariant functor. Then
φ ◦ i∗ : T → Db(k) is representable since T is saturated. Therefore there exists
T ∈ T such that φ ◦ i∗ ∼= HomT (T,−). Then

φ ∼= φ ◦ i∗ ◦ i ∼= HomT (T, i(−)) ∼= HomA (i∗T,−),

therefore i∗T represents φ.
Let ψ : A → Db(k) be an exact contravariant functor. Then ψ ◦ i∗ :

T → Db(k) is representable since T is saturated. Therefore there exists T ∈ T
such that ψ ◦ i∗ ∼= HomT (−, T). Note that i∗(⊥A ) = 0, hence HomT (⊥A , T) = 0
which means that T ∈ (⊥A )⊥ = A , thus T ∼= i(A) with A ∈ A . Finally

ψ ∼= ψ ◦ i∗ ◦ i ∼= HomT (i(−), i(A)) ∼= HomA (−, A),

since i is fully faithful, therefore A represents ψ.
A similar argument works for right admissible subcategories. �
Lemma 2.11 ([B]). — If A is saturated then A is admissible.

Proof. — For any object T ∈ T consider the functor HomT (T, i(−)) :
A → Db(k). Since A is saturated there exists AT ∈ A , such that this functor
is isomorphic to HomA (AT,−). Since HomT (T, i(AT)) ∼= HomA (AT, AT) we have
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a canonical morphism T → i(AT) and since i is fully faithful it is easy to see
that its cone is contained in ⊥A . It follows that any morphism T → S com-
posed with S → i(AS) factors in a unique way as T → i(AT) → i(AS). Since
HomT (i(AT), i(AS)) ∼= HomA (AT, AS) the correspondence T �→ AT is a functor
T → A , left adjoint to i : A → T . Similarly one can construct a right adjoint
functor. �

Lemma 2.12 ([BV]). — If X is a smooth projective variety then Db(X) is saturated.

Corollary 2.13. — If X is a smooth projective variety and A is a left (resp. right)

admissible subcategory in Db(X) then A is saturated.

Definition 2.14 ([BK], [BO4]). — Let T be a triangulated category. A covariant

additive functor S : T → T is a Serre functor if it is a category equivalence and for all

objects F, G ∈ T there are given bi-functorial isomorphisms Hom(F, G) → Hom(G, S(F))∗.

Lemma 2.15 ([BK]). — If a Serre functor exists then it is unique up to a canonical

functorial isomorphism. If X is a smooth projective variety then S(F) := F ⊗ ωX[dim X] is

a Serre functor in Db(X).

Definition 2.16 ([BV]). — A triangulated category T is called Ext-finite if for any

objects F, G ∈ T the vector space ⊕n∈Z HomT (F, G[n]) is finite dimensional.

Lemma 2.17 ([BK]). — If T is an Ext-finite saturated category then T admits

a Serre functor.

Lemma 2.18 ([BK]). — If S is a Serre functor for T and A is a subcategory of

T then S(⊥A ) = A ⊥ and S−1(A ⊥) = ⊥A . In particular, if T = 〈A1,A2〉 is a semi-

orthogonal decomposition then T = 〈S(A2),A1〉 and T = 〈A2, S−1(A1)〉 are semiorthogonal

decompositions.

Lemma 2.19 ([B]). — If T admits a Serre functor S and A ⊂ T is right admissible

then A admits a Serre functor SA = i! ◦ S ◦ i, where i : A → T is the inclusion functor.

Proof. — If A, A′ ∈ A then HomA (A, i!SiA′) ∼= HomT (iA, SiA′) ∼=
HomT (iA′, iA)∗ ∼= HomA (A′, A)∗. �

2.4. Tor and Ext-amplitude. — Let f : X → Y be a morphism of algebraic
varieties. For any subset I ⊂ Z we denote by DI(X) the full subcategory of D(X)

consisting of all objects F ∈ D(X) with H k(F) = 0 for k �∈ I.
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Definition 2.20 ([K1]). — An object F ∈ D(X) has finite Tor-amplitude over Y
(resp. finite Ext-amplitude over Y), if there exist integers p, q such that for any object

G ∈ D [s,t](Y) we have F ⊗ f ∗G ∈ D [p+s,q+t](X) (resp. RHom(F, f !G) ∈ D [p+s,q+t](X)).

Morphism f has finite Tor-dimension, (resp. finite Ext-dimension), if the sheaf OX has finite

Tor-amplitude over Y (resp. finite Ext-amplitude over Y).

The full subcategory of D(X) consisting of objects of finite Tor-amplitude
(resp. of finite Ext-amplitude) over Y is denoted by Df Td/Y(X) (resp. Df Ed/Y(X)).
Both are triangulated subcategories of Db(X).

The following results (Lemmas 2.21–2.25 and 2.27–2.30 below) are well
known in folklore. A useful reference where all of them can be found in a compact
form is [K1].

Lemma 2.21. — If i : X → X′ is a finite morphism over Y then F ∈ Df Td/Y(X)

⇔ i∗F ∈ Df Td/Y(X′) and F ∈ Df Ed/Y(X) ⇔ i∗F ∈ Df Ed/Y(X′).

Lemma 2.22. — If morphism f : X → Y has finite Tor-dimension (resp. Ext-
dimension) then any perfect complex on X has finite Tor-amplitude (resp. Ext-amplitude) over Y.

Lemma 2.23. — If f : X → Y is a smooth morphism then Df Td/Y(X) = Dperf(X)

= Df Ed/Y(X).

Definition 2.24. — A triangulated category T is Ext-bounded, if for any objects

F, G ∈ T the set {n ∈ Z | Hom(F, G[n]) �= 0} is finite.

Lemma 2.25. — The following conditions for an algebraic variety X are equivalent:

(i ) X is smooth;

(ii ) Db(X) = Dperf(X);

(iii ) the bounded derived category Db(X) is Ext-bounded.

Lemma 2.26. — Assume that T = 〈A ,B〉 is a semiorthogonal decomposition. If

both A and B are Ext-bounded and either A or B is admissible then T is Ext-bounded.

Proof. — Let F, G ∈ T . Then there exist exact triangles

ββ!F → F → αα∗F, ββ!G → G → αα∗G.

Computing Hom(F, G[n]) and using semiorthogonality of A and B we obtain
a long exact sequence

· · · → Hom(αα∗F, ββ!G[n]) → Hom(F, G[n])
→ Hom(β!F, β!G[n]) ⊕ Hom(α∗F, α∗G[n]) → · · ·
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Since A and B are Ext-bounded, the third term vanishes for |n| � 0. On the
other hand, if A is admissible then Hom(αα∗F, ββ!G[n]) ∼= Hom(α∗F, α!ββ!G[n]),
hence the first term also vanishes for |n| � 0. Similarly, if B is admissible then
Hom(αα∗F, ββ!G[n]) ∼= Hom(β∗αα∗F, β!G[n]), hence the first term also vanishes for
|n| � 0. In both cases we deduce that Hom(F, G[n]) vanishes for |n| � 0, hence
T is Ext-bounded. �

2.5. Kernel functors. — Let X1, X2 be algebraic varieties and let pi : X1 × X2

→ Xi denote the projections. Take any K ∈ D−
qc (X1 × X2) and define functors

ΦK(F1) := p2∗( p∗
1F1 ⊗ K), Φ!

K(F2) := p1∗ RHom(K, p!
2F2).

Then ΦK is an exact functor D−
qc (X1) → D−

qc (X2) and Φ!
K is an exact functor

D+
qc (X2) → D+

qc (X1). We call ΦK the kernel functor with kernel K, and Φ!
K the

kernel functor of the second type with kernel K (cf. [K1]). In smooth case any
kernel functor of the second type is isomorphic to a usual kernel functor: Φ!

K
∼=

ΦRHom(K,ωX1 [dim X1]).

Lemma 2.27. — (i ) If K has coherent cohomologies, finite Tor-amplitude over X1

and supp(K) is projective over X2 then ΦK takes Db(X1) to Db(X2).

(ii ) If K has coherent cohomologies, finite Ext-amplitude over X2 and supp(K) is

projective over X1 then Φ!
K takes Db(X2) to Db(X1).

(iii ) If both (i ) and (ii ) hold then Φ!
K is right adjoint to ΦK. Moreover, ΦK takes

Dperf(X1) to Dperf(X2).

Lemma 2.28. — If K is a perfect complex, X2 is smooth and supp(K) is projective

both over X1 and over X2, then the functor ΦK admits a left adjoint functor Φ∗
K which is

isomorphic to a kernel functor ΦK# with the kernel

K# := RHom(K, ωX2[dim X2]).
Consider kernels K12 ∈ D−(X1 × X2), K23 ∈ D−(X2 × X3). Denote by

pi j : X1 × X2 × X3 → Xi × Xj the projections. We define the convolution of kernels
as follows

K23 ◦ K12 := p13∗( p∗
12K12 ⊗ p∗

23K23).

Lemma 2.29. — For K12 ∈ D−(X1 × X2), K23 ∈ D−(X2 × X3) we have ΦK23 ◦
ΦK12 = ΦK23◦K12 .

Assume that Φ1,Φ2,Φ3 : D → D ′ are exact functors between triangulated
categories, and α : Φ1 → Φ2, β : Φ2 → Φ3, γ : Φ3 → Φ1[1] are morphisms of
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functors. We say that

Φ1
α−−→ Φ2

β−−→ Φ3
γ−−→ Φ1[1]

is an exact triangle of functors, if for any object F ∈ D the triangle

Φ1(F)
α(F)−−−→ Φ2(F)

β(F)−−−→ Φ3(F)
γ(F)−−−→ Φ1(F)[1]

is exact in D ′.

Lemma 2.30. — If K1
α−−→ K2

β−−→ K3
γ−−→ K1[1] is an exact triangle in

D−(X × Y) then we have the following exact triangles of functors

ΦK1

α∗−−→ ΦK2

β∗−−→ ΦK3

γ∗−−→ ΦK1[1]
Φ!

K3

β!−−→ Φ!
K2

α!−−→ Φ!
K1

γ !−−→ Φ!
K3

[1].
If additionally kernels K1, K2 and K3 satisfy the conditions of Lemma 2.28 then we have

also the following exact triangle of functors

Φ∗
K3

β∗−−→ Φ∗
K2

α∗−−→ Φ∗
K1

γ ∗−−→ Φ∗
K3

[1].
Proof. — Evident. �
Let α : X → Y be any morphism. Consider the functor α∗α∗ : Db(X)

→ Db(X). Note that both the pullback and the pushforward are kernel functors
(with the kernel being the structure sheaf of the graph of α). It follows that α∗α∗
is a kernel functor as well. Let Kα ∈ Db(X×X) be its kernel, so that α∗α∗ ∼= ΦKα

.

Lemma 2.31. — If α : X → Y is a locally complete intersection embedding then we

have

H −t(Kα) ∼=
{

∆∗ΛtN ∗
X/Y, if 0 ≤ t ≤ codimY X

0, otherwise,

where NX/Y is the normal bundle and ∆ : X → X × X is the diagonal embedding. In

particular, if α is a divisorial embedding then Kα fits into the exact triangle Kα → ∆∗OX →
∆∗OX(−X)[2].

Proof. — Let γ = (1 × α) ◦ ∆ : X → X × Y be the graph of α. Then
α∗ ∼= Φγ∗OX . Consider the diagram

X
��

γ

OO
OO

OO
O X × X

uu
1×α

lll
lll

��
p2
PPP

PPP
P

X × Y

ww
p1

nnn
nnn

n

��
p2

SSS
SSS

SS
X.

vv
α

nnn
nnn

nnn

X Y
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We have α∗α∗(F) = α∗p2∗( p∗
1F⊗γ∗OX) ∼= p2∗(1×α)∗( p∗

1F⊗γ∗OX) ∼= p2∗((1×α)∗p∗
1F⊗

(1 × α)∗γ∗OX), so it follows that Kα = (1 × α)∗γ∗OX. To describe Kα consider its
pushforward to X × Y:

(1 × α)∗Kα = (1 × α)∗(1 × α)∗γ∗OX
∼= (1 × α)∗OX×X ⊗ γ∗OX

∼= γ∗γ ∗(1 × α)∗OX×X.

Now γ ∗(1 × α)∗OX×X
∼= ∆∗(1 × α)∗(1 × α)∗OX×X. Since α is a locally complete

intersection embedding we have H −t((1×α)∗(1×α)∗OX×X) ∼= OX�ΛtN ∗
X/Y, hence

H −t(∆∗(1 × α)∗(1 × α)∗OX×X) ∼= ΛtN ∗
X/Y. Thus H −t((1 × α)∗Kα) ∼= γ∗ΛtN ∗

X/Y
∼=

(1×α)∗∆∗ΛtN ∗
X/Y and the first part of the lemma follows since (1×α) is a closed

embedding. Finally, if α is divisorial then Kα has only two nontrivial cohomology,
∆∗OX in degree 0 and ∆∗OX(−X) in degree −1. Therefore it fits in the triangle
as in the claim. �

2.6. Exact cartesian squares. — Consider a cartesian square

X ×S Y ��q

��
p

Y

��
g

X ��f
S.

Consider the functors q∗p∗ and g∗f∗ : Db(X) → Db(Y). It is easy to see that
both are kernel functors. Explicitly, the first is given by the structure sheaf of the
fiber product OX×SY and the second is given by the convolution of the structure
sheaves of graphs of f and g respectively. It is easy to see that the latter kernel
is a complex supported on the fiber product, the top cohomology of which is
isomorphic to OX×SY. The natural map from this complex to its top cohomology
induces a morphism of functors g∗f∗ → q∗p∗. A cartesian square is called exact
cartesian [K1] if this morphism of functors is an isomorphism. As explained above
a square is exact cartesian if and only if the convolution of the structure sheaves
of graphs of f and g is isomorphic to its top cohomology.

Lemma 2.32 ([K1]). — Consider a cartesian square as above.

(i ) If either f or g is flat then the square is exact cartesian.

(ii ) A square is exact cartesian, if and only if the transposed square is exact cartesian.

(iii ) If g is a closed embedding, Y ⊂ S is a locally complete intersection, both S and

X are Cohen–Macaulay, and codimX(X ×S Y) = codimS Y, then the square is

exact cartesian.

2.7. Derived categories over a base. — Consider a pair of algebraic varieties X
and Y over the same smooth algebraic variety S. In other words, we have a pair
of morphisms f : X → S and g : Y → S.
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A functor Φ : D(X) → D(Y) is called S-linear [K1] if for all F ∈ D(X),
G ∈ Db(S) there are given bifunctorial isomorphisms

Φ( f ∗G ⊗ F) ∼= g∗G ⊗ Φ(F).

Note that since S is smooth any object G ∈ Db(S) is a perfect complex.

Lemma 2.33 ([K1]). — If Φ is S-linear and admits a right adjoint functor Φ! then

Φ! is also S-linear. If K ∈ D−(X×S Y) then the kernel functors Φi∗K and Φ!
i∗K are S-linear.

A strictly full subcategory C ⊂ D(X) is called S-linear if for all F ∈ C ,
G ∈ Db(S) we have f ∗G ⊗ F ∈ C .

Lemma 2.34 ([K1]). — If C ⊂ Db(X) is a strictly full S-linear left (resp. right)

admissible triangulated subcategory then its left (resp. right) orthogonal is also S-linear.

2.8. Faithful base change theorem. — Consider morphisms f : X → S and
g : Y → S with smooth S. For any base change φ : T → S we consider the fiber
products

XT := X ×S T, YT := Y ×S T, XT ×T YT = (X ×S Y) ×S T

and denote the projections XT → X, YT → Y, and XT ×T YT → X ×S Y also
by φ. For any kernel K ∈ D−(X ×S Y) we denote KT = φ∗K ∈ D−(XT ×T YT).

Definition 2.35 ([K1]). — A change of base φ : T → S is called faithful with respect

to a morphism f : X → S if the cartesian square

XT
��

��

X

��
f

T ��φ
S

is exact cartesian. A change of base φ : T → S is called faithful for a pair (X, Y) if φ is

faithful with respect to morphisms f : X → S, g : Y → S, and f ×S g : X ×S Y → S.

Using the criterions of Lemma 2.32 it is easy to deduce the following

Lemma 2.36 ([K1]). — Let f : X → S be a morphism and φ : T → S a base

change.

(i ) If φ is flat then it is faithful.

(ii ) If T and X are smooth and dim XT = dim X + dim T − dim S then the base

change φ : T → S is faithful with respect to the morphism f : X → S.

Lemma 2.37 ([K1]). — If φ : T → S is a faithful base change for a morphism f :
X → S then we have φ∗(Df Td/S(X)) ⊂ Df Td/T(XT), and φ∗(Df Ed/S(X)) ⊂ Df Ed/T(XT).
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Lemma 2.38 ([K1]). — If φ : T → S is a base change faithful for a pair (X, Y),

and f is projective then we have ΦKTφ
∗ = φ∗ΦK, ΦKφ∗ = φ∗ΦKT , Φ!

KT
φ∗ = φ∗Φ!

K, and

Φ!
Kφ∗ = φ∗Φ!

KT
.

Proposition 2.39 ([K1]). — If φ is faithful for a pair (X, Y), varieties X and Y are

projective over S and smooth, and K ∈ Db(X ×S Y) is a kernel such that ΦK : Db(X) →
Db(Y) is fully faithful then ΦKT : Db(XT) → Db(YT) is fully faithful.

Theorem 2.40 ([K1]). — If Db(Y) = 〈ΦK1(D
b(X1)), ...,ΦKn(D

b(Xn))〉 is a semi-

orthogonal decomposition, with Ki ∈ Db(Xi ×S Y), the base change φ is faithful for all pairs

(X1, Y), ..., (Xn, Y), and all varieties X1, ..., Xn, Y are projective over S and smooth then

Db(YT) = 〈ΦK1T(D
b(X1T)), ...,ΦKnT(D

b(XnT))〉 is a semiorthogonal decomposition.

Note that though X1, ..., Xn, Y are smooth in the assumptions of the the-
orem, their pullbacks X1T, ..., XnT, YT under the base change φ are singular in
general.

We will need also the following theorem.

Theorem 2.41. — If S and Y are smooth and for any point s ∈ S there exists

an open neighborhood U ⊂ S such that Db(YU) = 〈ΦK1U(Db(X1U)), ...,ΦKnU(Db(XnU))〉
is a semiorthogonal decomposition then Db(Y) = 〈ΦK1(D

b(X1)), ...,ΦKn(D
b(Xn))〉 is also

a semiorthogonal decomposition.

Proof. — We must check that for every i = 1, ..., n the functor ΦKi : Db(Xi) →
Db(Y) is fully faithful. Equivalently, we must show that the morphism of func-
tors idDb(Xi) → Φ!

Ki
ΦKi is an isomorphism. Note that Db(XiU) being a semior-

thogonal summand of an Ext-bounded category Db(YU) is Ext-bounded, hence XiU

is smooth, hence Xi is smooth for any i. Therefore the functors Φ!
Ki

are kernel
functors. Note also that the morphism of functors idDb(Xi) → Φ!

Ki
ΦKi is induced by

morphism of kernels. Moreover, restricting this morphism of kernels from S to U
we obtain precisely the morphism of kernels corresponding to the canonical mor-
phism of functors idDb(Xi U) → Φ!

Ki U
ΦKi U . Since the latter morphism is an isomorph-

ism by assumptions for suitable U, it follows that the corresponding morphism of
kernels is an isomorphism over U. Since this is true for a suitable neighborhood
of every point s ∈ S, we deduce that the morphism of kernels is an isomorphism
over the whole S, hence ΦKi is fully faithful.

Further, we must check the semiorthogonality. Equivalently, we must show
that the functor Φ!

Kj
ΦKi is zero for all 1 ≤ i < j ≤ n. As above we note that this

functor is a kernel functor. Restricting its kernel from S to U we obtain precisely
the kernel of the functor Φ!

Kj U
ΦKi U . Since the latter functor is zero by assumptions

for suitable U, it follows that the corresponding kernel is zero over U. Since this
is true for a suitable neighborhood of every point s ∈ S, we deduce that the kernel
is zero over the whole S, hence Φ!

Kj
ΦKi = 0.
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Finally, we must check that our semiorthogonal collection generates Db(Y).
Assume that there is an object in the orthogonal to 〈ΦK1(D

b(X1)), ...,ΦKn(D
b(Xn))〉.

Then it is easy to see that its restriction from S to U is in the orthogonal to
〈ΦK1U(Db(X1U)), ...,ΦKnU(Db(XnU))〉. By assumptions we deduce that this object is
zero over U. Since this is true for a suitable neighborhood of every point s ∈ S,
we deduce that the object is zero over the whole S. �

3. Splitting functors

Assume that A and B are triangulated categories and Φ : B → A is an
exact functor. Consider the following full subcategories of A and B:

Ker Φ = {B ∈ B | Φ(B) = 0} ⊂ B,

Im Φ = {A ∼= Φ(B) | B ∈ B} ⊂ A .

Note that Ker Φ is a triangulated subcategory of B, and if Φ is fully faithful then
Im Φ is also triangulated. However, if Φ is not fully faithful, in general Im Φ is
not triangulated. If Φ admits an adjoint functor then we have

Hom(Ker Φ, Im Φ!) = 0, if Φ admits a right adjoint Φ!,
Hom(Im Φ∗, Ker Φ) = 0, if Φ admits a left adjoint Φ∗,

(evidently follows from the adjunction).

Definition 3.1. — An exact functor Φ : B → A is called right splitting if Ker Φ
is a right admissible subcategory in B, the restriction of Φ to (Ker Φ)⊥ is fully faithful, and

Im Φ is right admissible in A (note that Im Φ = Im(Φ(Ker Φ)⊥) is a triangulated subcategory

of A ). An exact functor Φ : B → A is called left splitting if Ker Φ is a left admissible

subcategory in B, the restriction of Φ to ⊥(Ker Φ) is fully faithful, and Im Φ is left admissible

in A .

Lemma 3.2. — A right (resp. left) splitting functor has a right (resp. left) adjoint

functor.

Proof. — If Ker Φ is right admissible then (Ker Φ)⊥ is left admissible and
we have a semiorthogonal decomposition B = 〈(Ker Φ)⊥, Ker Φ〉 by Lemmas 2.4
and 2.3. Since Φ vanishes on the second term and is fully faithful on the first
term it follows that Φ ∼= j ◦ φ ◦ i∗, where i : (Ker Φ)⊥ → B and j : Im Φ → A
are the inclusion functors, i∗ is a left adjoint to i, and φ : (Ker Φ)⊥ → Im Φ is an
equivalence of categories induced by Φ. Therefore Φ! := i ◦φ−1 ◦ j ! is right adjoint
to Φ (functor j ! right adjoint to j exists because Im Φ is right admissible). �

Theorem 3.3. — Let Φ : B → A be an exact functor. Then the following conditions

are equivalent (1r) ⇔ (2r) ⇔ (3r) ⇔ (4r) and (1l) ⇔ (2l) ⇔ (3l) ⇔ (4l), where
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(1r) Φ is right splitting;

(2r) Φ has a right adjoint functor Φ! and the composition of the canonical morphism

of functors idB → Φ!Φ with Φ gives an isomorphism Φ ∼= ΦΦ!Φ;

(3r) Φ has a right adjoint functor Φ!, there are semiorthogonal decompositions

B = 〈Im Φ!, Ker Φ〉, A = 〈Ker Φ!, Im Φ〉,
and the functors Φ and Φ! give quasiinverse equivalences Im Φ! ∼= Im Φ;

(4r) there exists a triangulated category C and fully faithful functors α : C → A ,

β : C → B, such that α admits a right adjoint, β admits a left adjoint and

Φ ∼= α ◦ β∗.

(1l) Φ is left splitting;

(2l) Φ has a left adjoint functor Φ∗ and the composition of the canonical morphism of

functors Φ∗Φ → idB with Φ gives an isomorphism ΦΦ∗Φ ∼= Φ;

(3l) Φ has a left adjoint functor Φ∗, there are semiorthogonal decompositions

B = 〈Ker Φ, Im Φ∗〉, A = 〈Im Φ, Ker Φ∗〉,
and the functors Φ and Φ∗ give quasiinverse equivalences Im Φ∗ ∼= Im Φ;

(4l) there exists a triangulated category C and fully faithful functors α : C → A ,

β : C → B, such that α admits a left adjoint, β admits a right adjoint and

Φ ∼= α ◦ β!.

Proof. — (1r) ⇒ (2r): using the formula of Lemma 3.2 for Φ! we deduce that
Φ!Φ ∼= iφ−1j !jφi∗ ∼= ii∗. Composing with Φ we obtain ΦΦ!Φ ∼= jφi∗ii∗ ∼= jφi∗ ∼= Φ.

(2r) ⇒ (3r): for any B ∈ B let KB be the object defined from the triangle

KB → B → Φ!ΦB.(1)

Applying the functor Φ to this triangle and using the assumption we deduce that
Φ(KB) = 0, i.e. KB ∈ Ker Φ. Thus any object B can be included as the sec-
ond vertex in a triangle with first vertex in Ker Φ and the third vertex in Im Φ!.
Since these categories are semiorthogonal, we obtain the desired semiorthogonal
decomposition for B. Moreover, it follows from (2r) that for A ∈ Im Φ we have
A ∼= ΦΦ!A, hence we have an isomorphism of functors id ∼= ΦΦ! on Im Φ. On the
other hand, if B ∈ Im Φ! then KB = 0 since KB is the component of B in Ker Φ
with respect to the semiorthogonal decomposition B = 〈Im Φ!, Ker Φ〉. Therefore,
id ∼= Φ!Φ on Im Φ!. Thus Φ and Φ! are quasiinverse equivalences between Im Φ

and Im Φ!. Finally, we note that for any B ∈ Im Φ!, A ∈ A we have

HomA (ΦB, A) ∼= HomB(B,Φ!A) ∼= HomA (ΦB,ΦΦ!A)

since Φ is fully faithful on Im Φ!, hence ΦΦ! : A → Im Φ is a right adjoint to
the inclusion functor Im Φ → A , hence Im Φ is right admissible, we have A =
〈(Im Φ)⊥, Im Φ〉 and it remains to note that (Im Φ)⊥ = Ker Φ!.
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(3r) ⇒ (4r): take C = Im Φ with α being the inclusion functor Im Φ → A
and β being the composition of the equivalence Im Φ ∼= Im Φ! and of the inclusion
functor Im Φ! → B. Then α admits a right adjoint because Im Φ is right admissible
in A and β admits a left adjoint because Im Φ! is left admissible in B and we
evidently have Φ ∼= α ◦ β∗.

(4r) ⇒ (1r): Im Φ = α(C ) is right admissible because α admits a right adjoint
functor; on the other hand Ker Φ = Ker(β!) = ⊥β(C ) is right admissible as the left
orthogonal to β(C ) which is left admissible because β admits a left adjoint functor.
Finally, Φ = α◦β∗ restricted to (Ker Φ)⊥ = β(C ) is isomorphic to the composition
of an equivalence β(C ) ∼= C and of a fully faithful functor α : C → A , hence
fully faithful.

The equivalences (1l) ⇔ (2l) ⇔ (3l) ⇔ (4l) are proved by similar argu-
ments. �

Corollary 3.4. — If Φ is a right (resp. left) splitting functor and Ψ is its right (resp.

left) adjoint then Ψ is a left (resp. right) splitting functor.

Proof. — Compare (3r) and (3l) for Φ and Ψ. �
Lemma 3.5. — If either A or B is saturated and Φ : B → A is a right (resp.

left) splitting functor then Φ is also a left (resp. right) splitting.

Proof. — Assume that B is saturated and Φ is right admissible. Then Ker Φ
and (Ker Φ)⊥ are saturated by Lemma 2.10. Moreover, Im Φ ∼= (Ker Φ)⊥, hence
Im Φ is also saturated. Hence by Lemma 2.11 both Ker Φ and Im Φ are left ad-
missible. Moreover, it is easy to see that the restriction of Φ to ⊥(Ker Φ) is iso-
morphic to the composition of the restriction of Φ to (Ker Φ)⊥ with the mutation
functor LKer Φ

(Ker Φ)⊥

��Φ KK
KK

KK
KK

K
⊥(Ker Φ).

yy Φ
ss
ss
ss
ss
ss

oo LKer Φ

Im Φ

But the upper arrow LKer Φ is fully faithful on ⊥(Ker Φ) by Lemma 2.6, hence Φ

is fully faithful on ⊥(Ker Φ). �
We will also need an analog of the faithful base change theorem for splitting

functors.

Proposition 3.6. — In the notations of Proposition 2.39 if φ : T → S is a faithful

base change for a pair (X, Y) over a smooth base scheme S, X and Y are projective over S
and smooth, and K ∈ Db(X ×S Y) is a kernel such that the functor ΦK : Db(X) → Db(Y)

is splitting then the functor ΦKT : Db(XT) → Db(YT) is also splitting.



174 ALEXANDER KUZNETSOV

Proof. — Analogous to the proof of Proposition 2.42 of [K1] using crite-
rion (2r) or (2l) to check that the functors are splitting. �

The class of splitting functors is a good generalization of the class of fully
faithful functors having an adjoint. Recall that it was proved by Orlov in [O2] that
any fully faithful functor having an adjoint between derived categories of smooth
projective varieties is isomorphic to a kernel functor. It would be nice to prove
the same result for splitting functors.

Conjecture 3.7. — A splitting functor between bounded derived categories of coherent

sheaves on smooth projective varieties is isomorphic to a kernel functor.

4. Lefschetz decompositions

Assume that X is an algebraic variety with a line bundle OX(1) on X.

Definition 4.1. — A Lefschetz decomposition of the derived category Db(X) is

a semiorthogonal decomposition of Db(X) of the form

Db(X) = 〈A0,A1(1), ...,Ai−1(i − 1)〉,(2)

0 ⊂ Ai−1 ⊂ Ai−2 ⊂ · · · ⊂ A1 ⊂ A0 ⊂ Db(X),

where 0 ⊂ Ai−1 ⊂ Ai−2 ⊂ · · · ⊂ A1 ⊂ A0 ⊂ Db(X) is a chain of admissible subcategories

of Db(X). Lefschetz decomposition is called rectangular if Ai−1 = Ai−2 = · · · = A1 = A0.

Let ak denote the right orthogonal to Ak+1 in Ak. The categories a0, a1,

..., ai−1 will be called primitive categories of the Lefschetz decomposition (2). By
definition we have the following semiorthogonal decompositions:

Ak = 〈ak, ak+1, ..., ai−1〉.(3)

If the Lefschetz decomposition is rectangular then we have a0 = a1 = · · · = ai−2

= 0 and ai−1 = Ai−1.
Assume that the bounded derived category of coherent sheaves on X, Db(X)

admits a Lefschetz decomposition (2) with respect to OX(1). If X is smooth and
projective then its derived category Db(X) is saturated and admits a Serre functor.
Therefore for every 0 ≤ k ≤ i − 1 the category Ak is saturated and has a Serre
functor too. Moreover, for every 0 ≤ k ≤ i − 1 the primitive category ak is also
saturated and has a Serre functor.

Let αk : Ak(k) → Db(X) denote the embedding functor and let α∗
k , α

! :
Db(X) → Ak(k) be the left and the right adjoint functors. Let SX denote a Serre
functor of Db(X), SX(F) ∼= F ⊗ ωX[dim X], and let S0 denote a Serre functor
of A0.
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Consider the restriction of the functor α∗
0 : Db(X) → A0 to the subcategory

Ak(k + 1) ⊂ Db(X). It follows from (2) that α∗
0(Ak+1(k + 1)) = 0, hence it factors

through the quotient (Ak/Ak+1)(k + 1).

Lemma 4.2. — The functor α∗
0 : (Ak/Ak+1)(k + 1) → A0 is fully faithful.

Proof. — It is clear that ak(k + 1) is the right orthogonal to Ak+1(k + 1) in
Ak(k + 1), hence we have to check that α∗

0 is fully faithful on ak(k + 1). For this
we note that

ak(k + 1) ⊂ 〈Ak+1(k + 1), ...,Ai−1(i − 1)〉⊥ = 〈A0,A1(1), ...,Ak(k)〉,(4)

since for l > k + 1 we have Hom(Al(l), ak(k + 1)) = Hom(Al(l − 1), ak(k)) and
Al(l − 1) ⊂ Al−1(l − 1), ak(k) ⊂ Ak(k), while Hom(Ak+1(k + 1), ak(k + 1)) =
Hom(Ak+1, ak) = 0 by definition of ak. On the other hand, we have

ak(k + 1) ⊂ ⊥〈A1(1), ...,Ak(k)〉,(5)

since for 1 ≤ l ≤ k we have Hom(ak(k + 1),Al(l)) = Hom(ak(k),Al(l − 1)) and
Al(l − 1) ⊂ Al−1(l − 1), ak(k) ⊂ Ak(k). It follows from (4) that the functor α∗

0
restricted to ak(k+1) is just the left mutation of ak(k+1) through 〈A1(1), ...,Ak(k)〉.
But the left mutation through an admissible subcategory induces an equivalence of
its left orthogonal to its right orthogonal by Lemma 2.6, and ak(k + 1) lies in the
left orthogonal to 〈A1(1), ...,Ak(k)〉 by (5). �

Lemma 4.3. — We have the following semiorthogonal decomposition of A0

〈α∗
0(a0(1)), α∗

0(a1(2)), ..., α∗
0(ai−1(i))〉.

Proof. — For any F ∈ A0, F′ ∈ al we have

Hom(α∗
0(F

′(l + 1)), F) = Hom(F′(l + 1), F) = Hom(F, SX(F′(l + 1)))∗

= Hom(F, α!
0SX(F′(l + 1)))∗,

therefore (α∗
0(al(l + 1)))⊥ = ⊥(α!

0SX(al(l + 1))). Thus for the semiorthogonality
we should check that for any k < l we have Hom(α∗

0(ak(k + 1)), α!
0SX(al(l + 1)))

= 0. For this we note that the inclusion (5) (with k replaced by l ) implies that
al(l + 1) ⊂ 〈Al+1(l + 1), ...,Ai−1(i − 1), S−1

X A0〉 by Lemma 2.18, hence

SX(al(l + 1)) ⊂ 〈SX(Al+1(l + 1)), ..., SX(Ai−1(i − 1)),A0〉.
Comparing this with the inclusion (4) for ak(k+1) and taking into account that by
Lemma 2.18 we have a semiorthogonal decomposition Db(X) =〈SX(Al+1(l +1)),
..., SX(Ai−1(i − 1)),A0,A1(1), ...,Al(l)〉, we deduce that Hom(α∗

0(ak(k + 1)),

α!
0SX(al(l + 1))) = Hom(ak(k + 1), SX(al(l + 1))) which by the Serre duality is dual
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to Hom(al(l + 1), ak(k + 1)) = Hom(al(l), ak(k)) which is zero since al(l) ⊂ Al(l)
and ak(k) ⊂ Ak(k).

Now assume that F lies in the right orthogonal to the collection 〈α∗
0(a0(1)),

α∗
0(a1(2)), ..., α∗

0(ai−1(i))〉 in A0. By adjunction α0(F) is in the right orthogonal
to 〈a0(1), a1(2), ..., ai−1(i)〉 in Db(X). But α0(F) ∈ A0 = 〈A1(1), ...,Ai−1(i − 1)〉⊥,
therefore

α0(F) ∈ 〈a0(1),A1(1),a1(2),A2(2), ...,ai−2(i − 1),Ai−1(i − 1),ai−1(i)〉⊥.

It remains to note that by definition of subcategories a0, ..., ai−1 we have
〈a0(1),A1(1)〉 = A0(1), 〈a1(2),A2(2)〉 = A1(2), ..., 〈ai−2(i − 1),Ai−1(i − 1)〉 =
Ai−2(i−1), and ai−1(i) = Ai−1(i), so we see that α0(F) ∈ 〈A0(1),A1(2), ...,Ai−1(i)〉⊥

which means that F = 0 since 〈A0(1),A1(2), ...,Ai−1(i)〉 is evidently a semior-
thogonal decomposition of Db(X). �

Lemma 4.4. — We have α∗
0 (〈A0(1), ...,Ar−1(r)〉) ∈ 〈α∗

0(a0(1)), ..., α∗
0(ar−1(r))〉.

Proof. — We have Ak(k+1) = 〈ak(k+1),Ak+1(k+1)〉 and α∗
0(Ak+1(k+1)) = 0

for any 0 ≤ k ≤ r − 1. �
Lemma 4.5. — Triangulated subcategory of Db(X) generated by A0,A0(1), ...,

A0(r − 1) coincides with 〈A0,A1(1), ...,Ar−1(r − 1)〉.
Proof. — It is clear that the latter category lies in the former. On the

other hand, it is clear that A0,A0(1), ...,A0(r − 1) ⊂ 〈Ar(r), ...,Ai−1(i − 1)〉⊥ =
〈A0,A1(1), ...,Ar−1(r − 1)〉. �

5. Universal hyperplane section

Assume that X is a smooth projective variety with an effective line bundle
OX(1) on X and assume that we are given a Lefschetz decomposition (2) of its
derived category. Let V∗ ⊂ Γ(X,OX(1)) be a vector space of global sections. Put
N = dim V. We assume that

N > i.(6)

Consider the product X × P(V∗). Let Ak(k) � Db(P(V∗)) denote the trian-
gulated subcategory of Db(X × P(V∗)) generated by objects F�G with F ∈ Ak(k)
⊂ Db(X) and G ∈ Db(P(V∗)). Note that

Ak(k)�Db(P(V∗)) =
〈Ak(k)�OP(V∗),Ak(k)�OP(V∗)(1), ...,Ak(k)� OP(V∗)(N − 1)〉.



HOMOLOGICAL PROJECTIVE DUALITY 177

Indeed, the RHS is evidently contained in the LHS. On the other hand, take any
F�G with F ∈ Ak(k) and G ∈ Db(P(V∗)) and consider the decomposition of G
with respect to the semiorthogonal decomposition Db(P(V∗)) = 〈OP(V∗),OP(V∗)(1),

...,OP(V∗)(N − 1)〉. Tensoring by F we deduce that F�G is in the RHS.
Every category Ak(k)�OP(V∗)(l) is equivalent to Ak, hence saturated, hence

admissible, therefore Ak(k)�Db(P(V∗)) is also admissible and saturated. Moreover,
it is clear that we have the following semiorthogonal decomposition

Db(X × P(V∗)) =〈
A0 �Db(P(V∗)),A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))

〉
.

Indeed, semiorthogonality in the RHS follows from the Küneth formula

RHomX×P(V∗)(F1 �G1,F2 �G2) ∼= RHomX(F1,F2) ⊗ RHomP(V∗)(G1,G2)

for all F1, F2 ∈ Db(X), G1, G2 ∈ Db(P(V∗)) and admissibility of components of
the RHS was verified above. Finally, taking any F ∈ Db(X), G ∈ Db(P(V∗)),
considering the decomposition of F with respect to (2), and tensoring it by G we
deduce that F� G is in the RHS. Since Db(X × P(V∗)) is generated by objects
of the form F�G we see that the RHS equals to the LHS.

Consider the universal hyperplane section of X, that is the zero locus X1 ⊂
X × P(V∗) of the canonical section of a line bundle OX(1) � OP(V∗)(1). Let
π : X1 → X and f : X1 → P(V∗) denote the projections, and let i : X1 →
X × P(V∗) denote the embedding. Note that X1 ⊂ X × P(V∗) is a divisor of
bidegree (1, 1) and we have the following resolution of its structure sheaf

0 → OX(−1)� OP(V∗)(−1) → OX×P(V∗) → i∗OX1 → 0.(7)

The following lemma is useful for calculations of Hom’s between decompos-
able objects in Db(X1).

Lemma 5.1. — For any F1, F2 ∈ Db(X), G1, G2 ∈ Db(P(V∗)) we have an exact

triangle

RHomX(F1, F2(−1)) ⊗ RHomP(V∗)(G1, G2(−1))

→ RHomX(F1, F2) ⊗ RHomP(V∗)(G1, G2)

→ RHomX1(i
∗(F1 �G1), i∗(F2 �G2)).

Proof. — Tensoring resolution (7) by (F∗
1 ⊗ F2)� (G∗

1 ⊗ G2) and applying RΓ

we obtain the following exact triangle

RΓ(X × P(V∗), (F∗
1 ⊗ F2(−1))� (G∗

1 ⊗ G2(−1)))

→ RΓ(X × P(V∗), (F∗
1 ⊗ F2)� (G∗

1 ⊗ G2))

→ RΓ(X1, i∗((F∗
1 ⊗ F2)� (G∗

1 ⊗ G2))).
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Rewriting RΓ in terms of RHom’s and applying Küneth formula we obtain the
desired triangle. �

Corollary 5.2. — The functor π∗ : Db(X) → Db(X1) is fully faithful. Moreover, for

any F1, F2 ∈ Db(X) and 1 ≤ k ≤ N − 2 we have RHomX1(π
∗F1, π

∗F2 ⊗ f ∗OP(V∗)(−k))
= 0.

Proof. — Take G1 = OP(V∗), G2 = OP(V∗)(−k). Then we have isomorphisms
i∗(F1 � G1) ∼= π∗F1, and i∗(F2 � G2) ∼= π∗F2 ⊗ f ∗OP(V∗)(−k). Since
RHomP(V∗)(OP(V∗),OP(V∗)(−k)) = 0 for 1 ≤ k ≤ N − 1 and RHomP(V∗)(OP(V∗),OP(V∗))

= k, the first term in the triangle of the lemma vanishes for 0 ≤ k ≤ N − 2 and
the second term equals RHomX(F1, F2) for k = 0 and vanishes for 1 ≤ k ≤ N − 1
whereof we obtain the claim. �

Lemma 5.3. — For any 1 ≤ k ≤ i − 1 the functor Ak(k) � Db(P(V∗)) ⊂
Db(X × P(V∗))

i∗−−→ Db(X1) is fully faithful, and the collection(
A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))

) ⊂ Db(X1)

is semiorthogonal.

Proof. — Let 1 ≤ k ≤ l ≤ i − 1, take F1 ∈ Al(l), F2 ∈ Ak(k), G1, G2 ∈
Db(P(V∗)) and consider the triangle of Lemma 5.1. Its first term vanishes since
F1 ∈ Al(l) and F2(−1) ∈ Ak(k − 1) ⊂ Ak−1(k − 1). Therefore, in the case k = l
we see that the functor i∗ : Ak(k)�Db(P(V∗)) → Db(X1) is fully faithful. On the
other hand, for 1 ≤ k < l ≤ i−1 the second term vanishes as well, since F1 ∈ Al(l)
and F2 ∈ Ak(k). Therefore the above collection is semiorthogonal.

It remains to check that categories Ak(k) � Db(P(V∗)) are admissible
in Db(X1). For this we note that they are saturated, hence admissible in Db(X1).

�
Let C denote the right orthogonal to the subcategory 〈A1(1)�Db(P(V∗)), ...,

Ai−1(i − 1)�Db(P(V∗))〉 in Db(X1),

C = 〈
A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))

〉⊥
Db(X1)

.(8)

Let γ : C → Db(X1) denote the inclusion functor. Since the subcategories
A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗)) are admissible it follows that C is
left admissible, hence the functor γ has a left adjoint functor γ ∗ : Db(X1) → C .

Note that the subcategory 〈A1(1) � Db(P(V∗)), ...,Ai−1(i − 1) � Db(P(V∗))〉
⊂ Db(X1) is P(V∗)-linear. In particular, the functor F �→ F ⊗ f ∗OP(V∗)(1),
Db(X1) → Db(X1) restricts to an endofunctor of C which we denote simply
by F �→ F(1).

Consider the composition of functors π∗ ◦ γ : C → Db(X).
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Lemma 5.4. — The image of the functor π∗ ◦ γ is contained in the strictly full

subcategory A0 ⊂ Db(X).

Proof. — If F ∈ Ak(k), 1 ≤ k ≤ i − 1, and F′ ∈ C then we have
Hom(F, π∗(γ(F′))) = Hom(π∗F, γ(F′)) = 0 since π∗F ∈ Ak(k) � Db(P(V∗)). Thus
π∗(γ(F′)) is contained in the right orthogonal to the subcategory 〈A1(1), ...,

Ai−1(i − 1)〉, which by (2) coincides with A0. �
Consider the functor γ ∗ ◦ π∗ : Db(X) → C which is left adjoint to π∗ ◦ γ .

In Proposition 5.7 below we will show that the restriction of this functor to the
subcategory A0 ⊂ Db(X) is fully faithful. We start with two lemmas.

For any object F ∈ Db(X) consider the decomposition of π∗F ∈ Db(X1)

F⊥C → π∗F → FC(9)

with FC ∈ C , F⊥C ∈ ⊥C = 〈A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))〉. Then
it is clear that

FC = γγ ∗π∗F.(10)

Lemma 5.5. — If RHom(F, π∗(F′
⊥C

(0, k))) = 0 then we have a canonical isomorph-

ism

HomDb(X1)(π
∗F, π∗F′(0, k)) ∼= HomC (γ ∗π∗F, (γ ∗π∗F′)(k)).

Proof. — Applying the functor RHom(π∗F,−) to the exact triangle F′
⊥C (0,k)→

π∗F′(0,k)→F′
C (0,k) and taking into account the isomorphism RHom(π∗F,F′

⊥C
(0,k))∼= RHom(F,π∗(F′

⊥C
(0,k))) = 0 we deduce Hom(π∗F,π∗F′(0,k)) ∼= Hom(π∗F,F′

C (0,k)).
It remains to note that

HomDb(X1)(π
∗F, F′

C (0, k)) ∼= HomDb(X1)(π
∗F, γγ ∗π∗F′(0, k))

∼= HomC (γ ∗π∗F, γ ∗π∗F′(k)). �
Recall the semiorthogonal decomposition A0 = 〈α∗

0(a0(1)), ..., α∗
0(ai−1(i))〉 con-

structed in Lemma 4.3.

Lemma 5.6. — Let F ∈ 〈α∗
0(a0(1)), ..., α∗

0(ak(k + 1))〉 ⊂ A0 ⊂ Db(X). Then

F⊥C ∈
〈A1(1)�OP(V∗)(−k), A1(1)�OP(V∗)(1 − k), ..., A1(1)� OP(V∗)(−1)

A2(2)�OP(V∗)(1 − k), ..., A2(2)� OP(V∗)(−1)···
Ak(k)� OP(V∗)(−1)

〉
.

Proof. — Consider the decomposition of π∗F with respect to the semior-
thogonal decomposition Db(X1) = 〈C ,A1(1)�Db(P(V∗)), ...,Ai−1(i−1)�Db(P(V∗))〉.
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Then F⊥C is glued from its components in the subcategories A1(1)�Db(P(V∗)), ...,
Ai−1(i − 1) � Db(P(V∗)). First of all let us compute the component of π∗F in
Ai−1(i−1)�Db(P(V∗)). It is given by applying to π∗F the right adjoint functor to
the inclusion functor Ai−1(i − 1)�Db(P(V∗)) → Db(X1). To compute this we take
F1 ∈ Ai−1(i − 1), G1 ∈ Db(P(V∗)), F2 = F, G2 = OP(V∗) and consider the triangle
of Lemma 5.1. The second term of this triangle vanishes because F1 ∈ Ai−1(i − 1)

and F2 ∈ A0 and the first term vanishes because

RHomX(F1, F2(−1)) = RHomX(F1(1), F2) = RHomA0(α
∗
0(F1(1)), F2)

and since F1 ∈ Ai−1(i − 1) = ai−1(i − 1) we have α∗
0(F1(1)) ∈ α∗

0(ai−1(i)) which
is orthogonal to the category 〈α∗

0(a0(1)), ..., α∗
0(ak(k + 1))〉 by Lemma 4.3. There-

fore the component of the object π∗F in the category Ai−1(i − 1) � Db(P(V∗))
is zero. Similar arguments show that the components of π∗F in Ai−2(i − 2) �
Db(P(V∗)), ...,Ak+1(k + 1)�Db(P(V∗)) are also zero.

Now let us compute the component of π∗F in Ak(k)�Db(P(V∗)). It is given
by applying to π∗F the right adjoint functor to the inclusion functor Ak(k) �
Db(P(V∗)) → Db(X1). To compute this we take F1 ∈ Ak(k), G1 ∈ Db(P(V∗)),
F2 = F, G2 = OP(V∗) and consider the triangle of Lemma 5.1. Note again that the
second term vanishes because F1 ∈ Ak(k) and F2 ∈ A0, hence

RHomX1(F1 �G1, π
∗F) ∼=

RHomX(F1, F(−1)) ⊗ RHomP(V∗)(G1,OP(V∗)(−1))[1],
and since the embedding of Ak(k) � Db(P(V∗)) into Db(X1) is fully faithful by
Lemma 5.3, we conclude that the component of π∗F in Ak(k)�Db(P(V∗)) equals
αkα

!
k(F(−1))�OP(V∗)(−1)[1].

Now let us compute the component of π∗F in Ak−1(k −1)�Db(P(V∗)). It is
given by applying to the fiber of the morphism αkα

!
k(F(−1))�OP(V∗)(−1)[1] → π∗F

the right adjoint functor to the inclusion functor Ak−1(k − 1) � Db(P(V∗)) →
Db(X1). To compute this we take F1 ∈ Ak−1(k − 1), G1 ∈ Db(P(V∗)), and either
F2 = αkα

!
k(F(−1)), G2 = OP(V∗)(−1)[1], or F2 = π∗F, G2 = OP(V∗). Repeating the

above arguments we see that the projection of the target equals αk−1α
!
k−1(F(−1))�

OP(V∗)(−1)[1], and the projection of source is the cone of the morphism
αkα

!
k(F(−1))(−1)�OP(V∗)(−2)[1] → αk−1α

!
k−1αkα

!
k(F(−1))�OP(V∗)(−1)[1]. Both pro-

jections are contained in Ak−1(k − 1) � 〈OP(V∗)(−2),OP(V∗)(−1)〉, hence the same
is true for the corresponding component of F⊥C .

Proceeding in the same manner we deduce the rest of the lemma. �
Now we can prove

Proposition 5.7. — The restriction of the functor γ ∗ ◦ π∗ : Db(X) → C to the

subcategory A0 ⊂ Db(X) is fully faithful.
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Proof. — Take F, F′ ∈ A0. Then F′
⊥C ∈ π∗(Db(X)) ⊗ 〈OP(V∗)(1 − i), ...,

OP(V∗)(−1)〉 by Lemma 5.6. On the other hand, by Corollary 5.2 the pushforward
functor π∗ : Db(X1) → Db(X) takes the subcategory π∗(Db(X)) ⊗
〈OP(V∗)(2 − N), ...,OP(V∗)(−1)〉 to zero. Since N > i by assumption (6), we con-
clude that π∗F′

⊥C
= 0. Therefore, by Lemma 5.5 we have Hom(γ ∗π∗F, γ ∗π∗F′) ∼=

Hom(π∗F, π∗F′) which is isomorphic to Hom(F, F′) by Corollary 5.2. �
The following corollary is not needed below, however we put it here as an

illustration.

Corollary 5.8. — The functors π∗γ : C → Db(X) and γ ∗π∗ : Db(X) → C are

splitting.

Proof. — The first functor is right adjoint to the second one, hence it suffices
to check that γ ∗π∗ is splitting. Since Im(π∗γ) ⊂ A0 by Lemma 5.4 and γ ∗π∗ is
fully faithful on A0 we deduce that Ker(γ ∗π∗) = ⊥A0 = 〈A1(1), ...,Ai−1(i − 1)〉
hence is admissible. Moreover, Im(γ ∗π∗) is equivalent to A0 and A0 is saturated,
hence Im(γ ∗π∗) is admissible. �

Let

j = N − 1 − max{k | Ak = A0}(11)

(note that j > 0 by (6)). Then ak = 0 for k < N − 1 − j. Consider the subcategories

Ck = γ ∗(π∗(〈α∗
0(a0(1)), ..., α∗

0(aN−k−2(N − k − 1))〉))(12)
⊂ C0 = γ ∗(π∗(A0)),

where we put al = 0 for l ≥ i for convenience. Note that

Ck = 0 for k ≥ j.(13)

If the initial Lefschetz decomposition is rectangular then j = N − i and Cj−1 =
Cj−2 = · · · = C1 = C0.

Lemma 5.9. — The chain of subcategories

0 = Cj−1 ⊂ Cj−2 ⊂ · · · ⊂ C1 ⊂ C0 ⊂ C

is a chain of admissible subcategories in C .

Proof. — The category 〈α∗
0(a0(1)), ..., α∗

0(aN−k−2(N − k − 1))〉 is generated by
a semiorthogonal collection (see Lemma 4.3) of admissible subcategories of A0,
hence admissible in A0, hence saturated. Therefore its image under fully faithful
functor γ ∗π∗ : A0 → C is admissible. �
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Almost the same arguments show the following

Proposition 5.10. — The collection 〈Cj−1(1− j),Cj−2(2− j), ...,C1(−1),C0〉 is semi-

orthogonal in C .

Proof. — Take F ∈ A0, F′ ∈ 〈α∗
0(a0(1)), ..., α∗

0(aN−k−2(N − k − 1))〉. Then by
Lemma 5.6 we have an inclusion F′

⊥C
∈ π∗(Db(X))�〈O(0, k+2−N), ...,O(0,−1)〉,

hence π∗(F′
⊥C

(0,−k)) = 0 by Corollary 5.2. Therefore, by Lemma 5.5 we have
an isomorphism Hom(γ ∗π∗F, γ ∗π∗F′(0,−k)) = Hom(π∗F, π∗F′(0,−k)) which equals
zero for 1 ≤ k ≤ j − 1 by Corollary 5.2 (note that j − 1 ≤ N − 2 by (11)). �

In the following section we prove that the semiorthogonal collection of the
proposition generates C . For the proof we use some additional assumptions, though
the fact must be true without them. It would be interesting to find a direct proof.

We conclude the section with a couple of lemmas that will be useful later.

Lemma 5.11. — We have Im π∗γ = A0, Ker γ ∗π∗ = 〈A1(1), ...,Ai−1(i−1)〉, and

similarly Im γ ∗π∗ = C0, Ker π∗γ = C ⊥
0 ⊃ 〈Cj−1(1 − j), ...,C1(−1)〉.

Proof. — Since Im π∗γ ⊂ A0 by Lemma 5.4 and the functor γ ∗π∗ (which is
left adjoint to π∗γ ) is fully faithful on A0 by Lemma 5.7, we deduce that Im π∗γ
= A0, Ker γ ∗π∗ = ⊥A0 = 〈A1(1), ...,Ai−1(i − 1)〉, and Im γ ∗π∗ = γ ∗π∗(A0) = C0.
Therefore Ker π∗γ = C ⊥

0 ⊃ 〈Cj−1(1 − j), ...,C1(−1)〉 by Proposition 5.10. �
Lemma 5.12. — We have γ ∗π∗(〈A0(1), ...,Ar−2(r − 1)〉⊥) ⊂ CN−r .

Proof. — Since 〈A1(1), ...,Ai−1(i − 1)〉 = Ker(γ ∗π∗) we have γ ∗π∗(F) =
γ ∗π∗α∗

0(F) for any F ∈ Db(X). On the other hand, by Lemma 4.4 we have
α∗

0(〈A0(1), ...,Ar−2(r − 1)〉⊥) ⊂ 〈α∗
0(a0(1)), ..., α∗

0(ar−2(r − 1))〉 and by definition
of CN−r we have γ ∗π∗(〈α∗

0(a0(1)), ..., α∗
0(ar−2(r − 1))〉) = CN−r . �

Remark 5.13. — Consider any smooth base scheme S (not necessarily com-
pact) and assume that p : X → S is an algebraic S-variety, projective over S with
an S-linear Lefschetz decomposition. Then all results of this section can be proved
by essentially the same arguments. We only should replace RHomX by p∗ RHomX,
and the Serre functor of X by the relative Serre functor of X over S (see [K1]).

6. Homological projective duality

Recall the assumptions of the previous section: we have a smooth projective
variety X with an effective line bundle OX(1), a Lefschetz decomposition (2) of
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its derived category, a vector space of global sections V∗ ⊂ Γ(X,OX(1)) such
that (6) holds, i.e. N = dim V > i (i is the number of terms in the Lefschetz
decomposition). Assume also that the space V∗ generates OX(1), so that we have
a regular morphism f : X → P(V).

Recall that we denoted by X1 ⊂ X ×P(V∗) the universal hyperplane section
of X and by C the right orthogonal to the subcategory 〈A1(1) � Db(P(V∗)), ...,
Ai−1(i − 1)�Db(P(V∗))〉 in Db(X1),

C = 〈
A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))

〉⊥
Db(X1)

.

Note that the category C is a module category over the tensor category Db(P(V∗)):
if F ∈ C and G ∈ Db(P(V∗)) then F ⊗ f ∗G ∈ C .

Now we need some additional assumptions. Assume that C is geometric, mean-
ing that C is equivalent to the derived category of coherent sheaves on some al-
gebraic variety Y. Let Φ : Db(Y) → Db(X1) denote the composition of the equiv-
alence Db(Y) → C with the inclusion functor γ : C → Db(X1). Further assume
that the module structure on C is geometric, meaning that there is an algebraic
morphism g : Y → P(V∗), such that there is an isomorphism of bifunctors

Φ(F ⊗ g∗G) ∼= Φ(F) ⊗ f ∗G, F ∈ Db(Y), G ∈ Db(P(V∗)).

In other words, the functor Φ is assumed to be P(V∗)-linear. Note also that the
functor Φ : Db(Y) → Db(X1) is fully faithful, hence by Orlov’s Theorem [O2] it
can be represented by a kernel on Y × X1, at least if Y and X are projective.
Moreover, it is easy to see that P(V∗)-linearity of the functor Φ implies that the
kernel of Φ is supported set-theoretically on the fiber product Y×P(V∗)X1. Actually,
it is natural to conjecture that the kernel is supported even scheme-theoretically on the
fiber product (this must be a relative version of the Orlov’s Theorem). However, we
don’t address this question here, taking this as an additional assumption. Finally,
note that

Y ×P(V∗) X1 = Q (X, Y) := (X × Y) ×P(V)×P(V∗ ) Q ,

where Q = {(v, H) ∈ P(V) × P(V∗) | v ∈ H} is the incidence quadric.

Definition 6.1. — An algebraic variety Y with a projective morphism g : Y → P(V∗)
is called homologically projectively dual to f : X → P(V) with respect to a Lefschetz

decomposition (2), if there exists an object E ∈ Db(Q (X, Y)) such that the functor Φ =
ΦE : Db(Y) → Db(X1) is fully faithful and gives the following semiorthogonal decomposition

Db(X1) =(14) 〈
Φ(Db(Y)),A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))

〉
.
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In the next section we will explain the relation of homological projective
duality to the classical projective duality, and now we will state and prove the
main theorem about homologically projectively dual varieties.

For every linear subspace L ⊂ V∗ we consider the corresponding linear sec-
tions of X and Y:

XL = X ×P(V) P(L⊥), YL = Y ×P(V∗) P(L),

where L⊥ ⊂ V is the orthogonal subspace to L ⊂ V∗.

Definition 6.2. — A subspace L ⊂ V∗ is called admissible, if

(a) dim XL = dim X − dim L, and

(b) dim YL = dim Y + dim L − N.

The main result of this paper is the following

Theorem 6.3. — If Y is homologically projectively dual to X then

(i ) Y is smooth and Db(Y) admits a dual Lefschetz decomposition

Db(Y) = 〈Bj−1(1 − j), ...,B1(−1),B0〉,
0 ⊂ Bj−1 ⊂ · · · ⊂ B1 ⊂ B0 ⊂ Db(Y)

with the same set of primitive subcategories: Bk = 〈a0, ..., aN−k−2〉;
(ii ) for any admissible linear subspace L ⊂ V∗, dim L = r, there exist a triangulated

category CL and semiorthogonal decompositions

Db(XL) = 〈CL,Ar(1), ...,Ai−1(i − r)〉
Db(YL) = 〈Bj−1(N − r − j), ...,BN−r(−1),CL〉.

This theorem can be illustrated by the following picture:

FIG. 1. — Illustration of Theorem 6.3: N = 20, i = 6, j = 19, r = 3
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The bold Young diagram on the left represents the Lefschetz decomposition
of Db(X) and the rest of the rectangle represents the dual Lefschetz decomposition
of Db(Y). We divide the picture by a vertical line after the column with number
r = 3. The hatched area on the right of this line represents the part of the
Lefschetz decomposition of Db(X) which is present in Db(XL), and the hatched
area on the left of this line represents the part of the Lefschetz decomposition of
Db(Y) which is present in Db(YL).

In fact the Lefschetz decomposition of Db(Y) was constructed in the pre-
vious section. Indeed, by definition of homological projective duality the cate-
gory Db(Y) is equivalent to C and we have constructed a Lefschetz collection
Cj−1(1 − j), ...,C1(−1),C0 ⊂ C in Proposition 5.10. The additional claim of the
first part of the theorem is that this collection generates Db(Y) ∼= C .

The claim of the second part of the theorem can be reformulated as fol-
lows. Derived categories of orthogonal admissible linear sections of homologically
projectively dual varieties admit semiorthogonal decompositions, one part of which
comes from the Lefschetz decompositions of the ambient varieties, and the addi-
tional parts are equivalent. This behavior, analogous to the Lefschetz theory for
cohomology of linear sections, was a motivation for our terminology.

Remark 6.4. — Actually, to prove the claim of Theorem 6.3 we don’t even
need to know that Y is homologically projectively dual to X. Instead assume
that Y is an algebraic variety, g : Y → P(V∗) is a projective morphism,
E ∈ Db(X1 ×P(V∗) Y) and

(1) the functor ΦE : Db(Y) → Db(X1) factors as ΦE = γ ◦ ϕE , where ϕE :
Db(Y) → C is fully faithful;

(2) the functor Φ∗
Eπ∗ : Db(X) → Db(Y) is fully faithful on the components

α∗
0(ak(k + 1)) of the semiorthogonal decomposition of the category A0 ⊂

Db(X) constructed in Lemma 4.3;
(3) the subcategories Bk = Φ∗

Eπ∗(〈α∗
0(a0(1)), ..., α∗

0(aN−k−2(N − k − 1))〉) =
ϕ∗

E (Ck) ⊂ B0 = ϕ∗
E (C0) form a semiorthogonal collection 〈Bj−1(1 − j),

Bj−2(2 − j), ...,B1(−1),B0〉 in Db(Y).

Then we prove that ϕE : Db(Y) → C is an equivalence (so that a posteriori Y
is homologically projectively dual to X) and that the claims of Theorem 6.3 hold
true. Note also that if Y is homologically projectively dual to X then the assump-
tions (1)–(3) above are satisfied, so our arguments prove Theorem 6.3 as well.

From now on we take the assumptions 6.4(1)–(3).

6.1. Universal families of linear sections. — To prove the main theorem it is
convenient to consider the universal families of linear sections of X and Y. All
r-dimensional subspaces L ⊂ V∗ are parameterized by the Grassmannian Gr(r, V∗)
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which we denote for short by Gr . Let Lr ⊂ V∗ ⊗ OGr be the tautological rank r
subbundle on the Grassmannian Gr and let L ⊥

r := (V∗ ⊗ OGr/Lr)
∗ ⊂ V ⊗ OGr

be the orthogonal subbundle. Then the universal families of linear sections of X
and Y are

Xr = (X × Gr) ×P(V)×Gr PGr(L
⊥
r ) ⊂ X × Gr,

Yr = (Y × Gr) ×P(V∗)×Gr PGr(Lr) ⊂ Y × Gr.

It is clear that both Xr and Yr are fibred over Gr = Gr(r, V∗) with fibers XL

and YL over a point corresponding to a subspace L ⊂ V∗.
Consider the fiber product Xr ×Gr Yr and the projection πr : Xr ×Gr Yr →

X×Y. Since for any vector subspace L ⊂ V∗ the product P(L⊥)×P(L) is contained
in the incidence quadric Q ⊂ P(V) × P(V∗) it follows that πr factors via a map
ζr : Xr ×Gr Yr → Q (X, Y) ⊂ X × Y.

Consider the object Er = ζ ∗
r E ∈ Db(Xr ×Gr Yr) as a kernel on Xr × Yr . It

gives the following kernel functors Φr = ΦEr : Db(Yr) → Db(Xr) and Φ!
r = Φ!

Er
:

Db(Xr) → Db(Yr). We will check below that the functors Φr are splitting for all r
and that there exist the following semiorthogonal decompositions

Db(Xr) = 〈
Cr,Ar(1)�Db(Gr), ...,Ai−1(i − r)�Db(Gr)

〉
,

Db(Yr) = 〈
Bj−1(N − r − j)�Db(Gr), ...,BN−r(−1)�Db(Gr),Cr

〉
,

where Cr = Im Φr . After that we deduce from this the main Theorem 6.3 using
the faithful base change Theorem 2.40.

For the proof of the above decompositions we use induction in r. Note that
for r = 1 we have G1 = P(V∗), Y1 = Y, X1 is the universal hyperplane section
of X and E1 = E , hence the base of induction is given by the definition of
homological projective duality (C1 = C = Db(Y)).

To compare the universal families Xr−1, Yr−1 and Xr, Yr we take for a base
scheme

Sr = Fl(r − 1, r; V∗) ⊂ Gr(r − 1, V∗) × Gr(r, V∗) = Gr−1 × Gr,

the partial flag variety. The scheme Sr parameterizes flags Lr−1 ⊂ Lr ⊂ V∗ such
that dim Lr−1 = r − 1, and dim Lr = r. Let φ : Sr → Gr−1 and ψ : Sr → Gr

denote the natural projections. Let L̃r−1 = φ∗Lr−1, L̃r = ψ∗Lr , L̃ ⊥
r−1 = φ∗L ⊥

r−1,
L̃ ⊥

r = ψ∗L ⊥
r . Then we have the universal flags of subbundles

L̃r−1 ⊂ L̃r ⊂ V∗ ⊗ OSr , L̃ ⊥
r ⊂ L̃ ⊥

r−1 ⊂ V ⊗ OSr .(15)

Denote

X̃r−1 = Xr−1 ×Gr−1 Sr ⊂ X × Sr, X̃r = Xr ×Gr Sr ⊂ X × Sr,

˜Yr−1 = Yr−1 ×Gr−1 Sr ⊂ Y × Sr, ˜Yr = Yr ×Gr Sr ⊂ Y × Sr.
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Note that

X̃r−1 = (X × Sr) ×P(V)×Sr PSr(L̃
⊥

r−1), X̃r = (X × Sr) ×P(V)×Sr PSr(L̃
⊥

r ),

˜Yr−1 = (Y × Sr) ×P(V∗)×Sr PSr(L̃r−1), ˜Yr = (Y × Sr) ×P(V∗)×Sr PSr(L̃r).

Therefore the embeddings (15) induce embeddings ξ : X̃r → X̃r−1 and
η : ˜Yr−1 → ˜Yr . Consider the following commutative diagrams (the squares marked
with EC are exact cartesian by Lemma 2.32, because the maps φ and ψ are flat)

Sr

��
ψ EC

˜Yr
oo gr

��
ψ

˜Yr−1

��
φ

oo η

��

ψ̂

��
��
��
��

��gr−1 Sr

��
φEC

Gr Yr
oo gr

Yr−1
��gr−1 Gr−1

Sr

��
ψ EC

X̃r
oo fr

��
ψ

��ξ

��

φ̂

DD
DD

DD
DD

X̃r−1

��
φ

��fr−1 Sr

��
φEC

Gr Xr
oo fr

Xr−1
��fr−1 Gr−1

(16)

where fr−1, fr , gr−1 and gr are the natural projections and φ̂ = φ ◦ ξ , ψ̂ = ψ ◦ η.
Let Ẽ r−1 ∈ D(X̃r−1 ×Sr

˜Yr−1) and Ẽ r ∈ D(X̃r ×Sr
˜Yr) denote the pullbacks

of the objects Er−1 and Er via the projections X̃r−1 ×Sr
˜Yr−1 → Xr−1 ×Gr−1 Yr−1,

X̃r ×Sr
˜Yr → Xr ×Gr Yr . Then we have the corresponding kernel functors Φ̃r−1, Φ̃r

e.t.c. between the derived categories of X̃r−1, ˜Yr−1, X̃r and ˜Yr .
The induction step is based on relation of the functors Φr−1, Φr , Φ̃r−1 and

Φ̃r to the base change functors ψ∗, ψ∗, φ∗, φ∗ and to the functors of the push-
forward and pullback via ξ and η. The relation to ψ∗, ψ∗, φ∗ and φ∗ is given by
Lemma 2.38. The relation to ξ and η in a sense is the key point of the proof.
We prove that ξ∗Φ̃r−1

∼= Φ̃rη∗ and that the “difference” between ξ∗Φ̃r and Φ̃r−1η
!

is given by a very simple functor.
Other results in this section (e.g. the above semiorthogonal decompositions)

are proved by similar arguments using (either ascending or descending) induction
in r.

The section is organized as follows. We start with some preparations con-
cluding with a description of the relation of the functors Φ̃r−1 and Φ̃r to the
pushforward and pullback via ξ and η. Then we use induction in r to prove the
semiorthogonal decompositions.

6.2. Preparations

Lemma 6.5. — Y is smooth.

Proof. — By assumption 6.4(1) the category Db(Y) is a full subcategory of
Db(X1). On the other hand, it is easy to see that the projection X1 → X is
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a projectivization of a vector bundle (the fiber of X1 over a point x ∈ X consists
of all hyperplanes in P(V) passing through f (x) ∈ P(V) which is nothing but the
projectivization of the fiber of the vector bundle f ∗ΩP(V)(1) at x). In particular, the
map X1 → X is smooth, hence X1 is smooth as well. It follows that the category
Db(X1) is Ext-bounded by Lemma 2.25. Therefore Db(Y) is also Ext-bounded,
hence Y is smooth again by Lemma 2.25. �

Recall that Gr = Gr(r, V∗) is the Grassmannian parameterizing linear sections
of X and Y, and Xr, Yr are the universal families over Gr of linear sections. For
any variety equipped with a map to X × Y (e.g. for Q (X, Y) or Xr ×Gr Yr ) we
denote by O(k, l) the pullback of OX(k)�OY(l) for brevity.

Lemma 6.6. — The projections Xr → X, Yr → Y and ζr : Xr ×Gr Yr → Q (X, Y)

are smooth. In particular, Xr and Yr are smooth and

dim Xr = dim X + dim Gr − r, dim Yr = dim Y + dim Gr + r − N,

dim Xr ×Gr Yr = dim X + dim Y + dim Gr − N.

Moreover, the maps fr : Xr → Gr and gr : Yr → Gr are projective.

Proof. — Note that we have the following isomorphisms

Xr = GrX(r,VX), Yr = GrY(r − 1,VY),

Xr ×Gr Yr = GrQ (X,Y)(r − 1,VQ )

with the relative Grassmannians, where the bundles VX, VY are defined from exact
sequences

0 → VX → V∗ ⊗ OX → OX(1) → 0,

0 → OY(−1) → V∗ ⊗ OY → VY → 0,

and VQ is the middle cohomology bundle of the complex

OQ (X,Y)(0,−1) → V∗ ⊗ OQ (X,Y) → OQ (X,Y)(1, 0).

From this and Lemma 6.5 we easily deduce the smoothness and compute the
dimensions. It is also clear that the fibers of the projections Xr → Gr, and Yr →
Gr are linear sections of X and Y corresponding to subspaces L ∈ Gr , so they are
projective. �

Lemma 6.7. — In parts (i ) and (ii ) below k stands either for r or for r − 1.

(i ) X̃k is the zero locus of a section of vector bundle OX(1)� L̃
∗

k on X × Sr ;

(ii ) ˜Y k is the zero locus of a section of vector bundle OY(1)� L̃
⊥∗
k on Y × Sr;
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(iii ) X̃r is the zero locus of a section of line bundle OX(1) ⊗ (L̃r/L̃r−1)
∗ on X̃r−1;

(iv) ˜Yr−1 is the zero locus of a section of line bundle OY(1) ⊗ (L̃ ⊥
r−1/L̃

⊥
r )∗ ∼=

OY(1) ⊗ (L̃r/L̃r−1) on ˜Yr .

All these sections are regular.

Proof. — The parts (i ) and (ii ) evidently follow from the definition of X̃ k ⊂
X × Sr . The parts (iii ) and (iv) follow from the exact sequences

0 → (L̃r/L̃r−1)
∗ → L̃

∗
r → L̃

∗
r−1 → 0,

0 → (L̃ ⊥
r−1/L̃

⊥
r )∗ → (L̃ ⊥

r−1)
∗ → (L̃ ⊥

r )∗ → 0.

Finally, it follows from Lemma 6.6 that dim X̃r−1 = dim X + dim Sr − (r − 1),
dim X̃r = dim X + dim Sr − r, since the base changes Sr → Gr−1 and Sr → Gr are
flat. Therefore the sections in the parts (i ) and (iii ) are regular. The sections in
the parts (ii ) and (iv) are regular by similar reasons. �

Lemma 6.8. — For any r ≤ k ≤ i − 1 the functors Ak � Db(Gr) ⊂ Db(X × Gr)
i∗−−→ Db(Xr) are fully faithful, and the collection (Ar(1) � Db(Gr), ...,Ai−1(i − r) �

Db(Gr)) ⊂ Db(Xr) is semiorthogonal.

Similarly, for any N − r ≤ k ≤ j − 1 the functors Bk � Db(Gr) ⊂ Db(Y × Gr)
i∗−−→ Db(Yr) are fully faithful, and the collection (Bj−1(N− r − j)�Db(Gr), ...,BN−r(−1)

�Db(Gr)) ⊂ Db(Yr) is semiorthogonal.

Proof. — Analogous to the proof of Lemma 5.3 using the Koszul resolutions
of OXr on X × Gr and of OYr on Y × Gr (for the second part we use assump-
tion 6.4(3)). �

Now we describe the maps ψ and φ.

Lemma 6.9. — The maps φ, ψ, φ̂ and ψ̂ are projectivizations of vector bundles.

Explicitly, φ is the projectivization of V∗ ⊗ O/Lr−1, ψ is the projectivization of L ∗
r , φ̂ is

the projectivization of VX/Lr−1, and ψ̂ is the projectivization of (Lr/OP(V∗)(−1))∗, where

the embedding OP(V∗)(−1) → Lr is induced by the projection Yr → PGr(Lr) → P(V∗).

Proof. — By definition of Sr the fiber of φ is the set of all lines in V∗/Lr−1

and the fiber of ψ is the set of all hyperplanes in Lr . Similarly, the fiber of φ̂ is
the set of all lines in V∗/Lr−1 contained in Vx, where Vx is the fiber at x of the
vector bundle VX on X defined in the proof of Lemma 6.6, and the fiber of ψ̂

is the set of all hyperplanes in Lr passing through a point y ∈ P(Lr). �
Applying results of [O1] we deduce the following.



190 ALEXANDER KUZNETSOV

Corollary 6.10. — The functors φ∗, ψ∗, φ̂∗ and ψ̂
∗

are fully faithful and we have

φ∗φ∗ ∼= id, ψ∗ψ∗ ∼= id, φ̂∗φ̂
∗ ∼= id, ψ̂∗ψ̂

∗ ∼= id.

Recall that we have defined the objects Er on Xr ×Gr Yr as the pullbacks of
E ∈ Db(Q (X, Y)) via the map Xr ×Gr Yr → Q (X, Y), and the objects Ẽ r−1 and Ẽr

as the pullbacks of Er−1 and Er via the maps φ : X̃r−1 ×Sr
˜Yr−1 → Xr−1 ×Gr−1 Yr−1

and ψ : X̃r ×Sr
˜Yr → Xr ×Gr Yr. The functors Φr−1, Φr , Φ!

r−1, Φ!
r , Φ̃r−1, Φ̃r ,

Φ̃!
r−1, and Φ̃!

r are kernel functors of the first and second type corresponding to
the kernels Er−1, Er , Ẽr−1 and Ẽ r respectively.

Lemma 6.11. — The functors Φr−1, Φr , Φ̃r−1 and Φ̃r have right adjoint functors

Φ!
r−1, Φ!

r , Φ̃!
r−1, and Φ̃!

r , and left adjoint functors Φ∗
r−1, Φ∗

r , Φ̃∗
r−1 and Φ̃∗

r . All these

functors take bounded derived categories to bounded derived categories.

Proof. — First of all note that Er = ζ ∗
r E is bounded because ζr : Xr ×Gr Yr →

Q (X, Y) is smooth by Lemma 6.6. Since Xr and Yr are smooth by Lemma 6.6 it
follows that the pushforward of Er to Xr × Yr is a perfect complex. In particular
it has finite Tor and Ext-amplitude over Xr and Yr . On the other hand, the
projections of Xr ×Gr Yr to the factors are projective because the projections of
Xr and Yr to Gr are projective by Lemma 6.6. Therefore by Lemma 2.27 the
functor Φ!

r is right adjoint to Φr and by Lemma 2.28 there exists a left adjoint
functor Φ∗

r to Φr . Moreover, all these functors take bounded derived categories
to bounded derived categories. The same arguments prove the rest of the lemma.

�
Proposition 6.12. — We have functorial isomorphisms

φ∗Φr−1
∼= Φ̃r−1φ

∗, ψ∗Φr
∼= Φ̃rψ

∗,

φ∗Φ̃r−1
∼= Φr−1φ∗, ψ∗Φ̃r

∼= Φrψ∗.

Proof. — Note that the base changes φ and ψ are smooth, hence they are
faithful by Lemma 2.36 and we conclude by Lemma 2.38. �

Now we go to the relation of the functors Φ̃r−1 and Φ̃r to the pushforward
and pullback via ξ and η.

Consider the following diagram

X̃r ×Sr
˜Yr−1

��η

��
ξ

X̃r ×Sr
˜Yr

��
ξ

X̃r−1 ×Sr
˜Yr−1

��η

X̃r−1 ×Sr
˜Yr

��π̃ X × Y

where π̃ is the composition X̃r−1 ×Sr
˜Yr ⊂ X̃r−1 × ˜Yr ⊂ (X×Sr)×(Y×Sr) → X×Y.
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Lemma 6.13. — The maps ξ and η in the above diagram are divisorial embeddings

and

ξ !(−) = ξ∗(−) ⊗ O(1, 0) ⊗ (L̃r/L̃r−1)
∗[−1],

η!(−) = η∗(−) ⊗ O(0, 1) ⊗ (L̃r/L̃r−1)[−1].(17)

Moreover, we have the following scheme-theoretical equalities

(X̃r−1 ×Sr
˜Yr−1) ∩ (X̃r ×Sr

˜Yr ) = X̃r ×Sr
˜Yr−1,

(X̃r−1 ×Sr
˜Yr−1) ∪ (X̃r ×Sr

˜Yr ) = π̃−1(Q (X, Y))
(18)

and the following square is exact carthesian

(X̃r−1 ×Sr
˜Yr−1) ∪ (X̃r ×Sr

˜Yr )
��i

��
ζ̃

X̃r−1 ×Sr
˜Yr

��
π̃

Q (X, Y) ��i X × Y

EC

.

(19)

Proof. — Consider the projections of X̃r ×Sr
˜Yr−1, X̃r−1 ×Sr

˜Yr−1, X̃r ×Sr
˜Yr

and X̃r−1 ×Sr
˜Yr to X × Y. It is easy to check that their fibers over a point

(x, y) ∈ (X, Y) are subsets of the flag variety Fl(r − 1, r; V∗) = Sr consisting of all
flags Lr−1 ⊂ Lr satisfying the following incidence conditions

y ⊂ Lr−1

∩
Lr ⊂ Vx

,

y ⊂ Lr−1 ⊂ Vx

∩
Lr

,

Lr−1

∩
y ⊂ Lr ⊂ Vx

and

Lr−1 ⊂ Vx

∩
y ⊂ Lr

respectively. In particular, the first three fibers are empty if (x, y) �∈ Q (X, Y). On
the other hand, over Q (X, Y) the first three fibers are irreducible, have dimension
(r − 1)(N − r) − 1, (r − 1)(N − r) and (r − 1)(N − r) respectively, and the first of
them is the intersection of the other two. The fourth fiber is irreducible and
(r −1)(N− r)-dimensional if (x, y) �∈ Q (X, Y) and for (x, y) ∈ Q (X, Y) it coincides
with the union of the second and the third fibers (if y ⊂ Vx and y �⊂ Lr−1 then
Lr = 〈 y, Lr−1〉 ⊂ Vx). It follows that images of ξ and η have pure codimension 1.
Since they are also zero loci of line bundles by Lemma 6.7(iii ) and (iv), we
conclude that ξ and η are divisorial embeddings.
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The above arguments also prove the first equality of (18) on the scheme-
theoretical level and the second equality on the set-theoretical level. Taking into
account that the RHS of the second equality is the zero locus of the line bundle
OX(1) ⊗ OY(1) by definition of Q (X, Y), and that the LHS of the equality is
the zero locus of the line bundle (OX(1) ⊗ (L̃r/L̃r−1)

∗) ⊗ (OY(1) ⊗ (L̃r/L̃r−1)) by
Lemma 6.7(iii ) and (iv), and noting that these bundles are isomorphic, we deduce
that the second equality is also true on the scheme-theoretical level.

Finally, we note X×Y is Cohen–Macaulay, and that it follows from the above
description of fibers of π̃ that X̃r−1 ×Sr

˜Yr is Cohen–Macaulay as well. Therefore
the square (19) is exact cartesian by Lemma 2.32(iii ). �

Consider the pullback Ê = ζ̃ ∗E of E from Q (X, Y) to (X̃r−1 ×Sr
˜Yr−1) ∪

(X̃r ×Sr
˜Yr). The following lemma gives a relation of Ẽr−1 and Ẽ r .

Lemma 6.14. — We have the following exact triangle on X̃r−1 ×Sr
˜Yr :

ξ∗Ẽr(0,−1) ⊗ (L̃r/L̃r−1)
∗ → i∗Ê → η∗Ẽ r−1.(20)

Moreover, we have an isomorphism on X̃r ×Sr
˜Yr−1:

η∗Ẽ r
∼= ξ∗Ẽ r−1(21)

and an isomorphism on X̃r−1 ×Sr
˜Yr

i∗Ê ∼= π̃∗i∗E .(22)

Proof. — Since the square (19) is exact cartesian we have i∗Ê = i∗ζ̃∗E =
π̃∗i∗E which gives us (22). Triangle (20) can be obtained by tensoring the resolution
(the twist of the left term is determined by Lemma 6.7(iv))

0 → OX̃r×Sr Ỹr
(0,−1) ⊗ (L̃r/L̃r−1)

∗ → O(X̃r−1×Sr Ỹr−1)∪(X̃r×Sr Ỹr)

→ OX̃r−1×Sr Ỹr−1
→ 0

with Ê and applying i∗, since the pullback of Ê to X̃r−1 ×Sr
˜Yr−1 and X̃r ×Sr

˜Yr

coincides with Ẽ r−1 and Ẽr respectively. Finally, (21) is evident, because both sides
are isomorphic to the pullback of Ê. �

Corollary 6.15. — We have the following exact triangles of functors between Db(X̃r−1)

and Db( ˜Yr):

Φ̃r−1η
! → ξ∗Φ̃r → Φi∗Ê (0,1)⊗(L̃r/L̃r−1)

,(23)

Φ∗
i∗ Ê (0,1)⊗(L̃r/L̃r−1)

→ Φ̃∗
r ξ

∗ → η∗Φ̃∗
r−1(24)
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and the following canonical isomorphism of functors from Db( ˜Yr−1) to Db(X̃r):

ξ∗Φ̃r−1
∼= Φ̃rη∗.(25)

Proof. — Twisting triangle (20) by O(0, 1) ⊗ (L̃r/L̃r−1), considering its terms
as kernels, and taking into account the second formula of (17) we obtain trian-
gles (23) and (24) by Lemma 2.30. Finally, isomorphism of kernels (21) gives an
isomorphism of functors (25). �

Lemma 6.16. — (i ) The map Xr×Gr Yr → Yr×YQ (X, Y) induced by the projection

Xr ×Gr Yr → Yr and by the map ζr : Xr ×Gr Yr → Q (X, Y) is a closed

embedding and its image is a zero locus of a regular section of the vector bundle

(Lr/OY(−1))∗ ⊗ OX(1) on Yr ×Y Q (X, Y).

(ii ) The map Xr ×Gr Yr → Xr ×X Q (X, Y) induced by the projection Xr ×Gr Yr

→ Xr and by the map ζr : Xr ×Gr Yr → Q (X, Y) is a closed embedding and its

image is a zero locus of a regular section of the vector bundle (L ⊥
r /OX(−1))∗ ⊗

OY(1) on Xr ×X Q (X, Y).

Proof. — Recall the notation of the proof of Lemma 6.6. It is clear that we
have

Xr ×Gr Yr = GrQ (X,Y)(r − 1,VQ ),

Yr ×Y Q (X, Y) = GrQ (X,Y)(r − 1,VY), and
Xr ×X Q (X, Y) = GrQ (X,Y)(r,VX).

Also, the tautological bundle on GrQ (X,Y)(r − 1,VY) is isomorphic to Lr/OX(−1),
and the tautological bundle on GrQ (X,Y)(r,VX) is isomorphic to Lr . Moreover, by
definition of vector bundles VX, VY and VQ we have VQ = Ker(VY → OX(1)) =
Coker(OY(−1) → VX). Finally, it is clear that the map Xr ×Gr Yr → Yr ×Y Q (X, Y)

is induced by the embedding VQ → VY, hence it is a zero locus of a section of
the dual tautological bundle on GrQ (X,Y)(r − 1,VY) tensored by OX(1), which is
nothing but (Lr/OY(−1))∗ ⊗ OX(1) in this case. Similarly, the map Xr ×Gr Yr →
Xr ×X Q (X, Y) is induced by the projection VX → VQ , hence it is a zero locus
of a section of the tautological quotient bundle on GrQ (X,Y)(r − 1,VY) tensored by
OY(1), which is nothing but (L ⊥

r /OX(−1))∗ ⊗ OY(1) in this case. The regularity
of both sections is evident. �

Lemma 6.17. — We have

(i ) Im Φr ⊂ [〈Ar(1), ...,Ai−1(i − r)〉�Db(Gr)
]⊥ ⊂ Db(Xr);

(ii ) 〈Bj−1(N − r − j), ...,BN−r(−1)〉�Db(Gr) ⊂ Ker Φr ⊂ Db(Yr).
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Proof. — (i ) Consider the following commutative diagram

Yr Xr ×Gr Yr
oo q ��p

��
j

Xr

��

πYr

��
π EC

Yr ×Y Q (X, Y)

��
π

oo q

Y Q (X, Y)oo q ��p
X

(the square marked with EC is exact cartesian by Lemma 2.32 since the map
π : Yr → Y is smooth by Lemma 6.6). One can check that the functor π∗ ◦ Φr :
Db(Yr) → Db(X) is a kernel functor with kernel j∗Er on Yr ×Y Q (X, Y). Further,
by definition Er = (π ◦ j)∗E ∼= j∗π∗E , hence j∗Er

∼= j∗ j∗π∗E ∼= π∗E ⊗ j∗OXr×Gr Yr . On
the other hand, by Lemma 6.16 we have a Koszul resolution

0 → Λr−1(Lr/OY(−1)) ⊗ OX(1 − r)

→ · · · → Λ2(Lr/OY(−1)) ⊗ OX(−2)

→ (Lr/OY(−1)) ⊗ OX(−1) → OYr×YQ (X,Y) → j∗OXr×Gr Yr → 0.

Considering π∗E ⊗Λt(Lr/OY(−1))⊗OX(−t) ∼= π∗(E ⊗OX(−t))⊗q∗Λt(Lr/OY(−1))

as a kernel on Yr ×Y Q (X, Y) we note that the corresponding kernel functor
Ψt : Db(Yr) → Db(X) takes form

G �→ p∗π∗
(
π∗(E ⊗ OX(−t)) ⊗ q∗Λt(Lr/OY(−1)) ⊗ q∗G

)
∼= p∗

(
E ⊗ OX(−t) ⊗ π∗q∗(Λt(Lr/OY(−1)) ⊗ G

))
∼= p∗

(
E ⊗ q∗π∗

(
Λt(Lr/OY(−1)) ⊗ G

) ⊗ OX(−t)
)

∼= ΦE

(
π∗

(
Λt(Lr/OY(−1)) ⊗ G

)) ⊗ OX(−t)

(in the second isomorphism we used exactness of the square marked with EC

symbol). Note that the kernel functor ΦE : Db(Y) → Db(X) given by the ker-
nel E ∈ Db(Q (X, Y)) is isomorphic to the composition of the kernel functor
ΦE : Db(Y) → Db(X1) (which coincides with γ ◦ ϕE by 6.4(1)) and of the push-
forward functor π∗ : Db(X1) → Db(X). Therefore Im Ψt ⊂ (Im π∗γ) ⊗ OX(−t)
which coincides with A0(−t) by Lemma 5.11. It follows that Im(π∗Φr) ⊂
〈A0(1 − r), ...,A0(−1),A0〉. But the latter subcategory of Db(X) coincides with
〈A0(1 − r), ...,Ar−1〉 = 〈Ar(1), ...,Ai−1(i − r)〉⊥ by Lemma 4.5. Therefore we have
Im(π∗Φr) ⊂ 〈Ar(1), ...,Ai−1(i − r)〉⊥. Since the functor Φr is Gr-linear it follows
that Im(Φr) ⊂ [〈Ar(1), ...,Ai−1(i − r)〉�Db(Gr)]⊥.
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(ii ) Similarly, consider the following commutative diagram

Yr

��

π

Xr ×Gr Yr
oo q ��p

��
j

Xr

Xr ×X Q (X, Y)

��
π

��p
Xr

��
πEC

Y Q (X, Y)oo q ��p
X

(the square marked with EC is exact cartesian by Lemma 2.32 since the map
π : Xr → X is smooth by Lemma 6.6) and functor Φr ◦ π∗ : Db(Y) → Db(Xr)

which is a kernel functor with kernel π∗E ⊗ j∗OXr×Gr Yr on Xr ×X Q (X, Y). On
the other hand, by Lemma 6.16 we have a Kozsul resolution

0 → ΛN−r−1(L ⊥
r /OX(−1)) ⊗ OY(1 + r − N)

→ · · · → Λ2(L ⊥
r /OX(−1)) ⊗ OY(−2)

→ (L ⊥
r /OX(−1)) ⊗ OY(−1) → OXr×XQ (X,Y) → j∗OXr×Gr Yr → 0.

The kernel functors Ψt : Db(Y) → Db(Xr) given by the terms of this resolution
tensored by π∗E take form

Ψt : G �→ π∗ΦE (G(−t)) ⊗ Λt(L ⊥
r /OX(−1)), t = 0, ..., N − r − 1.

If G ∈ 〈Bj−1(N − r − j), ...,BN−r(−1)〉 then for any t = 0, 1, ..., N − r − 1 we have

G(−t) ∈ 〈Bj−1(1 − j), ...,B1(−1)〉 ⊂ B⊥
0 = (ϕ∗

E (C0))
⊥

by assumption 6.4(3). By adjunction we have ϕE (G(−t)) ∈ C ⊥
0 , and by Lemma 5.11

this implies that ΦE (G(−t)) = π∗γϕE (G(−t)) = 0. In other words, we have
Ψt(G) = 0. Thus we obtain an inclusion 〈Bj−1(N − r − j), ...,BN−r(−1)〉 ⊂
Ker(Φr ◦ π∗), and the claim follows since Φr is Gr-linear. �

Lemma 6.18. — We have Φ∗
i∗Ê (0,1)

([〈Ar−1(1), ...,Ai−1(i − r + 1)〉�Db(Sr)]⊥) ⊂
BN−r(−1)�Db(Sr).

Proof. — First of all we note that the claim is equivalent to

Φ∗
i∗ Ê

([〈Ar−1(1), ...,Ai−1(i − r + 1)〉�Db(Sr)
]⊥) ⊂ BN−r �Db(Sr)
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which we will prove. Consider the following commutative diagram

˜Yr

EC

��
j

X̃r−1 ×Sr
˜Yr

oo q ��p

��
j

X̃r−1

Y × Sr

��
π

X̃r−1 × Y

��
π

oo q ��p
X̃r−1

��
π

Y X × Yoo q ��p
X

EC

(the squares marked with EC are exact cartesian: the first by Lemma 2.32(iii ) and
the second by Lemma 2.32(i )). Note also that π ◦ j = π̃, hence i∗Ê ∼= j∗π∗i∗E
by (22). It follows that

Φi∗ Ê (G) ∼= p∗(i∗Ê ⊗ q∗G) ∼= p∗ j∗( j∗π∗i∗E ⊗ q∗G) ∼= p∗(π∗i∗E ⊗ j∗q∗G)

∼= p∗(π∗i∗E ⊗ q∗j∗G) = Φπ∗ i∗E ( j∗G),

that is Φi∗ Ê
∼= Φπ∗ i∗E ◦ j∗, whereof by adjunction we have Φ∗

i∗ Ê
∼= j∗ ◦ Φ∗

π∗ i∗E .
Therefore it suffices to check that

Φ∗
π∗ i∗E

([〈Ar−1(1), ...,Ai−1(i − r + 1)〉�Db(Sr)
]⊥) ⊂ BN−r �Db(Sr)

in Db(Y × Sr).

The LHS is evidently Sr-linear, hence this is equivalent to

π∗Φ∗
π∗ i∗E

([〈Ar−1(1), ...,Ai−1(i − r + 1)〉�Db(Sr)
]⊥) ⊂ BN−r

in Db(Y).

But

Φπ∗ i∗E (π∗G) = p∗(π∗i∗E ⊗ q∗π∗G) ∼= p∗(π∗i∗E ⊗ π∗q∗G)

∼= p∗π∗(i∗E ⊗ q∗G) ∼= π∗p∗(i∗E ⊗ q∗G) = π∗Φi∗E (G),

that is Φπ∗ i∗E ◦ π∗ ∼= π∗ ◦ Φi∗E whereof by adjunction we deduce π# ◦ Φ∗
π∗ i∗E

∼=
Φ∗

i∗E ◦ π#, where π# is the left adjoint functor to π∗. Now note that for the
projection π : Y × Sr → Y we have π∗(F) ∼= π !(F) ⊗ω−1

Sr
[− dim Sr], hence π#(G) =

π∗(G ⊗ ωSr [dim Sr]). On the other hand, the projection π : X̃r−1 → X factors as
X̃r−1 → X × Sr → X, hence by Lemma 6.7(i ) we have

π#(F) = π∗(F ⊗ OX(r − 1) ⊗ ωSr ⊗ det L̃
∗

r−1[dim Sr − r + 1]).
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Since line bundles ωSr and det L̃
∗

r−1 are pullbacks from Sr, it remains to check
that

Φ∗
i∗E (〈Ar−1(r), ...,Ai−1(i)〉⊥) ⊂ BN−r in Db(Y).

But it is clear that Φ∗
i∗E = ϕ∗

Eγ ∗π∗, hence we have Φ∗
i∗E (〈Ar−1(r), ...,Ai−1(i)〉⊥) =

ϕ∗
Eγ ∗π∗(〈Ar−1(r), ...,Ai−1(i)〉⊥) ⊂ ϕ∗

E (CN−r) by Lemma 5.12, and ϕ∗
E (CN−r) = BN−r

by 6.4(3). �

Lemma 6.19. — For all r we have

Φ∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

◦ Φ̃r−1 = 0, if r ≤ N − j

Φ̃r ◦ Φ∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

= 0, if r ≥ i + 1
Φ̃r ◦ Φ∗

i∗Ê (0,1)⊗(L̃r/L̃r−1)
◦ Φ̃r−1 = 0, in other cases.

Proof. — Note that by Lemma 6.17(i ), we have, by base change to Sr, that
Im Φ̃r−1 ⊂ [〈Ar−1(1), ...,Ai−1(i − r + 1)〉�Db(Sr)]⊥ and if r ≥ i + 1 then the RHS
equals Db(X̃r−1). On the other hand, by Lemma 6.17(ii ) we have BN−r(−1) ⊗
Db(Sr) ⊂ Ker Φ̃r and if r ≤ N − j then N − r ≥ j hence BN−r = 0 by (13). Thus it
suffices to check that for all r we have

Φ∗
i∗ Ê (0,1)⊗(L̃r/L̃r−1)

([〈Ar−1(1), ...,Ai−1(i − r + 1)〉�Db(Sr)
]⊥)

⊂ BN−r(−1)�Db(Sr).

This easily follows from Lemma 6.18 (the functor Φ∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

differs from

Φ∗
i∗Ê (0,1)

by the (L̃r/L̃r−1)-twist, and the line bundle (L̃r/L̃r−1) is a pullback
from Sr ). �

6.3. The induction arguments

Proposition 6.20. — The functors Φr are left splitting functors for all r.

Proof. — We use induction in r. The functor Φ1 is fully faithful and its
image is left admissible by 6.4(1) (we have Y1 = Y and Φ1 = ΦE : Db(Y) →
C ⊂ Db(X1)), hence Φ1 is left splitting. Assume that Φr−1 is left splitting. Then
the functor Φ̃r−1 is left splitting by Proposition 3.6. Now consider the functor
Φ̃rΦ̃

∗
r Φ̃rη∗. Composing the isomorphism of functors (25) with Φ̃rΦ̃

∗
r we obtain an

isomorphism

Φ̃rΦ̃
∗
r Φ̃rη∗ ∼= Φ̃rΦ̃

∗
r ξ

∗Φ̃r−1.
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Composing the exact triangle of functors (24) with Φ̃r (on the left) and Φ̃r−1 (on
the right) we obtain an exact triangle of functors

Φ̃rΦ
∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

Φ̃r−1 → Φ̃rΦ̃
∗
r ξ

∗Φ̃r−1 → Φ̃rη∗Φ̃∗
r−1Φ̃r−1.

Composing (25) with Φ̃∗
r−1Φ̃r−1 we obtain an isomorphism

Φ̃rη∗Φ̃∗
r−1Φ̃r−1

∼= ξ∗Φ̃r−1Φ̃
∗
r−1Φ̃r−1.

Using the induction assumption, criterion 3.3(2l) and isomorphism (25) we deduce

ξ∗Φ̃r−1Φ̃
∗
r−1Φ̃r−1

∼= ξ∗Φ̃r−1
∼= Φ̃rη∗.

On the other hand, Φ̃rΦ
∗
i∗ Ê (0,1)⊗(L̃r/L̃r−1)

Φ̃r−1 = 0 by Lemma 6.19. Summarizing,
we deduce that

Φ̃rΦ̃
∗
r Φ̃rη∗ ∼= Φ̃rη∗.

Finally since ψ∗η∗ψ̂
∗ = ψ̂∗ψ̂

∗ = id by Corollary 6.10, we have

ΦrΦ
∗
r Φr

∼= ΦrΦ
∗
r Φrψ∗η∗ψ̂

∗ ∼= ψ∗Φ̃rΦ̃
∗
r Φ̃rη∗ψ̂

∗

∼= ψ∗Φ̃rη∗ψ̂
∗ ∼= Φrψ∗η∗ψ̂

∗ ∼= Φr

by Proposition 6.12. Therefore Φr is left splitting by Theorem 3.3. �

Corollary 6.21. — We have the following semiorthogonal collections in Db(Xr) and

Db(Yr): 〈
Im Φr,Ar(1)�Db(Gr), ...,Ai−1(i − r)�Db(Gr)

〉 ⊂ Db(Xr)〈
Bj−1(N − r − j)�Db(Gr), ...,BN−r(−1)�Db(Gr), Im Φ∗

r

〉 ⊂ Db(Yr).

Moreover, the functors Φr and Φ∗
r induce an equivalence Im Φr

∼= Im Φ∗
r .

Proof. — Combine Theorem 3.3 with Proposition 6.17 and Lemma 6.8. �

It remains to check that these semiorthogonal collections are full, i.e. that
they generate the derived categories of Xr and Yr . We begin with the case of Yr .

Proposition 6.22. — For all r we have

Db(Yr) = 〈
Bj−1(N − r − j)�Db(Gr), ...,BN−r(−1)�Db(Gr), Im Φ∗

r

〉
.
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Proof. — Note that for s ≥ j we have Bs = 0 by (13). Hence for r ≤ N − j
the RHS coincides with Im Φ∗

r , and since we already know that Φr is splitting, for
r ≤ N − j it suffices to check that Ker Φr = 0, that is that Φr is fully faithful. The
arguments are the same as in the proof of Proposition 6.20, the only difference is
that we use the first equality of Lemma 6.19 instead of the third.

We use induction in r. In the case r = 1 we have Y1 = Y and Φ1 is fully
faithful by 6.4(1). Now let 1 < r ≤ N − j and assume that Φr−1 is fully faithful.
Then the functor Φ̃r−1 is fully faithful by Proposition 2.39. Now consider the
functor Φ̃∗

r Φ̃rη∗. Composing the isomorphism of functors (25) with Φ̃∗
r we obtain

an isomorphism

Φ̃∗
r Φ̃rη∗ ∼= Φ̃∗

r ξ
∗Φ̃r−1.

Composing the exact triangle of functors (24) with Φ̃r−1 we obtain an exact tri-
angle of functors

Φ∗
i∗ Ê (0,1)⊗(L̃r/L̃r−1)

Φ̃r−1 → Φ̃∗
r ξ

∗Φ̃r−1 → η∗Φ̃∗
r−1Φ̃r−1.

Since the functor Φ̃r−1 is fully faithful we have

η∗Φ̃∗
r−1Φ̃r−1

∼= η∗.

On the other hand, Φ∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

Φ̃r−1 = 0 by Lemma 6.19 since r ≤ N − j.
Summarizing, we deduce that

Φ̃∗
r Φ̃rη∗ ∼= η∗.

Finally since ψ∗η∗ψ̂
∗ = ψ̂∗ψ̂

∗ = id by Corollary 6.10, we have

Φ∗
r Φr

∼= Φ∗
r Φrψ∗η∗ψ̂∗ ∼= ψ∗Φ̃∗

r Φ̃rη∗ψ̂∗ ∼= ψ∗η∗ψ̂∗ ∼= idYr

by Proposition 6.12. Therefore Φr is fully faithful.
For r ≥ N− j we also use induction in r. However the arguments are slightly

different in this case. Assume that r ≥ N − j + 1 and the claim for r − 1 is
true. Assume that G is in the right orthogonal to the category 〈Bj−1(N − r − j)
�Db(Gr), ...,BN−r(−1)�Db(Gr), Im Φ∗

r 〉. By Proposition 6.12 we have Φ̃r(ψ
∗G) =

ψ∗Φr(G). But Φr(G) = 0 since G ∈ (Im Φ∗
r )

⊥, hence Φ̃r(ψ
∗G) = 0, thus ψ∗G ∈

(Im Φ̃∗
r )

⊥. On the other hand, for any F ∈ BN−r+t(−1 − t), H ∈ Db(Sr) we have

ψ∗ RHom(ψ∗F ⊗ H, ψ∗G) ∼= ψ∗(RHom(ψ∗F, ψ∗G) ⊗ H∗)
∼= ψ∗(ψ∗ RHom(F, G) ⊗ H∗)
∼= RHom(F, G) ⊗ ψ∗(H∗)
∼= RHom(F ⊗ (ψ∗(H∗))∗, G)
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whereof we deduce that ψ∗G ∈ (BN−r+t(−1 − t) ⊗ Db(Sr))
⊥. Combining these

two inclusions we see that ψ∗G ∈ 〈Bj−1(N − r − j) � Db(Sr), ...,BN−r(−1) �
Db(Sr), Im Φ̃∗

r 〉⊥. Recalling Lemma 6.18 we note that ψ∗G is in the right orth-
ogonal to the image of the first two terms of the triangle (24) applied to the
subcategory [〈Ar−1(1), ...,Ai−1(i − r + 1)〉 � Db(Sr)]⊥. Therefore ψ∗G is in the
right orthogonal to the image of η∗Φ̃∗

r−1 applied to the subcategory [〈Ar−1(1), ...,

Ai−1(i − r + 1)〉 � Db(Sr)]⊥. But from Lemma 6.17 it follows by adjunction that
[〈Ar−1(1), ...,Ai−1(i − r + 1)〉� Db(Sr)] ⊂ Ker Φ̃∗

r−1. Therefore ψ∗G is in the right
orthogonal to the image of the functor η∗Φ̃∗

r−1. By adjunction we deduce η!ψ∗G ∈
(Im Φ̃∗

r−1)
⊥.

On the other hand, by Lemma 6.7(iv) we have the following resolution

0 → OỸr
(−1) ⊗ (L̃r/L̃r−1)

∗ → OỸr
→ η∗OỸr−1

→ 0

which implies that η∗(BN−r+t(−1 − t)�Db(Sr)) ⊂ 〈BN−r+t(−2 − t),BN−r+t(−1 − t)〉
�Db(Sr) for any t, and since we have BN−r+t ⊂ BN−r+t−1 we conclude that

η∗〈Bj−1(N − r − j + 1), ...,BN−r+1(−1)〉�Db(Sr)

⊂ 〈Bj−1(N − r − j), ...,BN−r(−1)〉�Db(Sr).

Therefore η!ψ∗G ∈ [〈Bj−1(N − r − j + 1), ...,BN−r+1(−1)〉�Db(Sr)]⊥. Summarizing
we deduce that η!ψ∗G = 0 by the induction hypothesis. But η!ψ∗G = η∗ψ∗G ⊗
OY(1)⊗(L̃r/L̃r−1)[−1] by Lemma 6.7(iv), and η∗ψ∗ = ψ̂

∗
is a fully faithful functor

by Corollary 6.10, hence G = 0. �
Corollary 6.23. — We have Db(Y) = 〈Bj−1(1 − j), ...,B1(−1),B0〉.
In particular, we deduce that ϕE : Db(Y) → C is an equivalence, hence Y

is homologically projectively dual to X.

Proof. — Note that GN is a point, YN = Y, XN = ∅, and apply Prop-
osition 6.22 for r = N. �

Fullness of the semiorthogonal decomposition of Db(Xr) will be proved by
a decreasing induction. The base of induction is given by the following

Lemma 6.24. — We have Im ΦN−1 = Db(XN−1).

Proof. — Note that XN−1 = X and the projection π : XN−1 → X is the iden-
tity. Therefore, the functor π∗ ◦ ΦN−1 considered in the proof of Lemma 6.17(i )

coincides with ΦN−1. Further, note that by Lemma 6.6 we have YN−1
∼=

GrY(N − 2,VY) ∼= PY(V ∗
Y ), the projection to Y coincides with π and, moreover,
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OYN−1/Y(−1) ∼= L ⊥
N−1, where OYN−1/Y(−1) is the Grothendieck line bundle. It easily

follows that

Ω1
YN−1/Y(1) ∼= Ker(VY → L ⊥∗

N−1)
∼= LN−1/OY(−1).

Therefore, we have π∗(Λt(LN−1/OY(−1)) ⊗ Su(L ⊥
N−1))

∼= π∗(Ωt
YN−1/Y(t − u)) for

any t, u. It is easy to check that for 0 ≤ t, u ≤ N − 2 we have

π∗
(
Ωt

YN−1/Y(t − u)
) ∼=

{
OY[−t], if t = u
0, otherwise.

Hence in the notation of the proof of Lemma 6.17(i ) we have

Ψt

(
π∗G ⊗ Su(L ⊥

N−1)
) ∼=

{
ΦE (G) ⊗ OX(−t)[−t], if t = u
0, otherwise.

It follows that

ΦN−1

(
π∗G ⊗ Ss(L ⊥

N−1)
) ∼= ΦE (G) ⊗ OX(−s).

But Im ΦE = A0 by Lemma 5.11 and Corollary 6.23, hence Im ΦN−1 contains
A0(−u) for 0 ≤ u ≤ N − 2. It remains to note that Im ΦN−1 is triangulated subcat-
egory of Db(X) since ΦN−1 is a splitting functor by Proposition 6.20, and on the
other hand by Lemma 4.5 we have 〈A0(2 − N), ...,A0〉 = 〈A0(2 − N), ...,Ai−1(i +
1 − N)〉 (note that N > i by assumption (6)), and the latter category evidently
coincides with Db(X) = Db(XN−1). �

Proposition 6.25. — For all r we have

Db(Xr) = 〈
Im Φr,Ar(1)�Db(Gr), ...,Ai−1(i − r)�Db(Gr)

〉
.

Proof. — The arguments are analogous to those used in the proof of Prop-
osition 6.22.

Note that for s ≥ i we have As = 0. Hence for r ≥ i the RHS coincides
with Im Φr , and since we already know that Φr is splitting, for r ≥ i it suffices to
check that Ker Φ∗

r = 0, that is that Φ∗
r is fully faithful. For this we use descending

induction in r.
In the case r = N − 1 we know that Im ΦN−1 = Db(XN−1) by Lemma 6.24.

Now let i < r ≤ N − 1 and assume that Φr is fully faithful. Then the functor
Φ̃r is fully faithful by Proposition 2.39. Now consider the functor ξ∗Φ̃r−1Φ̃

∗
r−1.

Composing exact triangle of functors (24) with Φ̃r we obtain an exact triangle of
functors

Φ̃rΦ
∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

→ Φ̃rΦ̃
∗
r ξ

∗ → Φ̃rη∗Φ̃∗
r−1.
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Composing isomorphism of functors (25) with Φ̃∗
r−1 we obtain an isomorphism

Φ̃rη∗Φ̃∗
r−1

∼= ξ∗Φ̃r−1Φ̃
∗
r−1.

Since the functor Φ̃r is fully faithful we have

Φ̃rΦ̃
∗
r ξ

∗ ∼= ξ∗.

On the other hand, Φ̃rΦ
∗
i∗Ê (0,1)⊗(L̃r/L̃r−1)

= 0 by Lemma 6.19 since r ≥ i + 1.
Summarizing, we deduce that

ξ∗Φ̃r−1Φ̃
∗
r−1

∼= ξ∗.

Finally, since φ̂∗ξ∗φ∗ = φ̂∗φ̂∗ = id by Corollary 6.10, we have

Φr−1Φ
∗
r−1

∼= φ̂∗ξ
∗φ∗Φr−1Φ

∗
r−1

∼= φ̂∗ξ
∗Φ̃r−1Φ̃

∗
r−1φ

∗ ∼= φ̂∗ξ
∗φ∗ ∼= idXr−1

by Proposition 6.12. Therefore Φ∗
r−1 is fully faithful.

For r < i we also use induction in r. However the arguments are slightly
different in this case. Assume that r ≤ i and the claim for r is true. Assume
that F is in the left orthogonal to Im Φr−1 and in the right orthogonal to the
category 〈Ar−1(1) � Db(Gr−1), ...,Ai−1(i − r + 1) � Db(Gr−1)〉. Then by the same
arguments as in the proof of Proposition 6.22 we check that φ∗F is in the left orth-
ogonal to Im Φ̃r−1 and in the right orthogonal to the category 〈Ar−1(1)�Db(Sr), ...,

Ai−1(i− r +1)�Db(Sr)〉. Note that by adjunction it follows from Lemma 6.18 that

Φi∗ Ê (0,1)⊗(L̃r/L̃r−1)

([
BN−r(−1)�Db(Sr)

]⊥)
⊂ 〈

Ar−1(1)�Db(Sr−1), ...,Ai−1(i − r + 1)�Db(Sr−1)
〉⊥⊥

.

We deduce that φ∗F is in the left orthogonal to the image of the first and the
third terms of the triangle (23) applied to the subcategory [BN−r(−1)�Db(Sr)]⊥.
Therefore φ∗F is in the left orthogonal to the image of ξ∗Φ̃r applied to the subcat-
egory [BN−r(−1)�Db(Sr)]⊥. But [BN−r(−1)�Db(Sr)] ⊂ Ker Φ̃r by Lemma 6.17,
hence φ∗F is in the left orthogonal to the image of the functor ξ∗Φ̃r and by
adjunction we deduce that ξ∗φ∗F ∈ ⊥(Im Φ̃r).

On the other hand, by Lemma 6.7(iii ) we have the following resolution

0 → OX̃r−1
(−1) ⊗ (L̃r/L̃r−1) → OX̃r−1

→ ξ∗OX̃r
→ 0

which implies that ξ∗(Ar+t(1 + t) � Db(Sr)) ⊂ 〈Ar+t(t),Ar+t(1 + t)〉 � Db(Sr) for
any t, and since we have Ar+t ⊂ Ar+t−1 we conclude that

ξ∗
〈
Ar(1)�Db(Sr), ...,Ai−1(i − r)�Db(Sr)

〉
⊂ 〈

Ar−1 �Db(Sr−1), ...,Ai−1(i − r)�Db(Sr−1)
〉
.

Therefore ξ !φ∗F(−1) ∈ 〈Ar(1)�Db(Sr), ...,Ai−1(i − r)�Db(Sr)〉⊥. Finally, we have
ξ !φ∗F(−1) ∼= ξ∗φ∗F ⊗ (L̃r/L̃r−1)

∗[−1] by Lemma 6.7(iii ). Summarizing we deduce
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that ξ∗φ∗F = 0 by the induction hypothesis. But ξ∗φ∗ = φ̂∗ is fully faithful by
Corollary 6.10, hence F = 0. �

6.4. Proof of the main theorem. — In this subsection we prove Theorem 6.3
and describe some of its generalizations.

First of all, the first claim of the theorem is proved in Lemma 6.5 and
Corollary 6.23. For the second claim, let L ⊂ V∗ be an admissible subspace,
dim L = r. Then the map λ : Spec k → Gr induced by L is a faithful base change
for the pair (Xr,Yr) by Lemmas 2.32(iii ), 6.7, 6.6 and the definition of admissible
subspace. Therefore we can apply the faithful base change Theorem 2.40. Then
Theorem 6.3 follows from Proposition 6.25 and Proposition 6.22. �

Remark 6.26. — An interesting question is what can we say about derived
categories of XL and YL when L is not admissible. Certainly, in this case the base
change λ is no longer faithful, so we cannot apply Theorem 2.40. Looking into
the proof of this theorem one can see that the problem consists in nonexactness of
some cartesian squares. A natural way to fix this problem is by defining “derived
fiber products”, which are DG-schemes with underlying topological space being the
usual fiber product carrying appropriate sheaf of DG-algebras, and by replacing
all fiber products by the derived fiber products. The definition of the derived fiber
product should imply exactness of all derived cartesian squares, so it would give an
analogue of Theorem 2.40 for any base change. Applying it to the base change λ

we would obtain semiorthogonal decomposition of Theorem 6.3 for the “derived

linear sections” of X and Y (i.e. for the derived fiber products X
L×P(V) P(L⊥)

and Y
L×P(V∗) P(L)). However, up to our knowledge, the theory of derived fiber

products is not yet worked out.

The same argument with Spec k replaced by any base scheme T proves
a relative version of Theorem 6.3:

Theorem 6.27. — Assume that T is a smooth algebraic variety and L ⊂ V∗ ⊗ OT

is a vector subbundle, rank L = r, such that the corresponding families of linear sections of X
and Y

XL = (X × T) ×P(V)×T PT(L ⊥) ⊂ X × T,

YL = (Y × T) ×P(V∗)×T PT(L ) ⊂ Y × T,

and their fiber product XL ×T YL have expected dimension

dim XL = dim X + dim T − r, dim YL = dim Y + dim T + r − N,

dim XL ×T YL = dim X + dim Y + dim T − N.
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Then there exist a triangulated category CL and semiorthogonal decompositions

Db(XL ) = 〈
CL ,Ar(1)�Db(T), ...,Ai−1(i − r)�Db(T)

〉
Db(YL ) = 〈

Bj−1(N − r − j)�Db(T), ...,BN−r(−1)�Db(T),CL

〉
.

Remark 6.28. — Another relative version of Theorem 6.3 can be obtained
as follows. Consider a base scheme S (not necessarily compact), assume that X
and Y are algebraic varieties over S, replace the assumptions of projectivity of the
maps f : X → P(V) and g : Y → P(V∗) in the definition of homological projective
duality by projectivity of the maps X → S × P(V) and Y → S × P(V∗), and
assume that we are given a Lefschetz decomposition of Db(X) which is S-linear.
We will say that Y is homologically projectively dual to X relatively over S if there
exists an object E ∈ Db(Q (X, Y) ×S×S S) (the fiber product is taken with respect
to the canonical map Q (X, Y) ⊂ X × Y → S × S and the diagonal embedding

S
∆−−→ S × S) such that the functor ΦE is fully faithful and gives semiorthogonal

decomposition (14). One can prove by the same arguments that Theorem 6.3 and
Theorem 6.27 are true in this case as well.

7. Properties of homological projective duality

We believe that phenomenon of homological projective duality deserves to
be thoroughly investigated. In this section we will discuss some basic properties of
homological projective duality.

The first natural question is when a homologically projectively dual variety
for a given algebraic variety X exists. From the definition of the homological
projective duality it follows that it always exists on a categorical level, we always
know the derived category of the homologically projectively dual variety. On the
other hand, the question of existence of a homologically projectively dual variety on

a geometric level seems to be of a philosophical nature. Indeed, in some sense every
sufficiently good triangulated category can be considered as the derived category of
coherent sheaves on a noncommutative algebraic variety. In fact, this is one of the ways
to understand what a noncommutative algebraic variety is. From this point of view
the question of existence of a homologically projectively dual variety as a usual
commutative variety does not seem to be very natural and it is hard to expect
a nice answer (especially if we remember that the notion of homological projective
duality depends on a choice of a line bundle and a Lefschetz decomposition).

The next question is whether a homologically projectively dual variety is
unique. Certainly this is true if it is a Fano variety by the Reconstruction Theorem
of Bondal and Orlov [BO4]. However, in general it doesn’t need to be Fano, so
there are examples of several different homologically projectively dual varieties.
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Another important question is how one should construct a homological pro-
jectively dual variety for a given variety X. A natural approach is to consider
a moduli space of objects in Db(X) with a given class in K0(X) and supported

on hyperplane sections of X. However, there are two problems with this approach.
The first one is of a technical nature – we don’t have a good theory of moduli
spaces of objects in triangulated categories yet (moduli spaces in a “good theory”
should depend on a choice of stability conditions and should be “noncommutative”
in general). The second problem is more complicated – how to choose a correct
class in K0(X). There is a trivial restriction on this class – it should be orth-
ogonal to subcategories A1(1), ...,Ai−1(i − 1) of the Lefschetz decomposition of X.
Sometimes, these restrictions determine unique class in K0(X) up to a multiplicity.
However, examples considered in [K1] show that the choice of correct multiplicity
turns out to be quite mysterious.

Now we turn to more specific questions.

7.1. Disjoint unions and products. — If algebraic variety X is a disjoint union,
X = X′ � X′′ then its derived category is a completely orthogonal direct sum,
Db(X) = Db(X′) ⊕ Db(X′′). If we are given Lefschetz decompositions Db(X′) =
〈A ′

0,A
′

1(1), ...,A ′
i′−1(i

′ − 1)〉, Db(X′′) = 〈A ′′
0 ,A ′′

1 (1), ...,A ′′
i′′−1(i

′′ − 1)〉, then we have
a Lefschetz decomposition

Db(X) = 〈A ′
0 ⊕ A ′′

0 , (A ′
1 ⊕ A ′′

1 )(1), ..., (A ′
i−1 ⊕ A ′′

i−1)(i − 1)〉,
i = max{i′, i′′}.

If we know homologically projectively dual varieties to X′ and X′′, it is natural
to ask what the homologically projectively dual to X′ � X′′ will be? The answer is
quite simple.

Proposition 7.1. — If Y′ and Y′′ are homologically projectively dual to X′ and X′′

respectively then Y = Y′ � Y′′ is homologically projectively dual to X = X′ � X′′.

This immediately follows from the fact that the derived category of a disjoint
union has a completely orthogonal decomposition into the derived categories of the
disjoint components. In other word, homological projective duality commutes with

disjoint unions.
Now assume that X = X′ × F and take OX(1) = p∗OX′(1), where p : X → X′

is the projection along F. Then we have a Lefschetz decomposition

Db(X) = 〈
A ′

0 �Db(F),
(
A ′

1 �Db(F)
)
(1), ...,

(
A ′

i′−1 �Db(F)
)
(i′ − 1)

〉
.

Proposition 7.2. — If Y′ is homologically projectively dual to X′ then Y = Y′ × F is

homologically projectively dual to X = X′ × F.
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Proof. — Note that the universal hyperplane section of X can be repre-
sented as X1 = X ′

1 × F. Tensoring semiorthogonal decomposition Db(X ′
1) =

〈Db(Y′),A ′
1(1)�Db(P(V∗)), ...,A ′

i′−1(i
′ − 1)�Db(P(V∗))〉 with Db(F) we get

Db(X1) = 〈
Db(Y′)�Db(F),

(
A ′

1 �Db(F)
)
(1)�Db(P(V∗)),

...,
(
A ′

i′−1 �Db(F)
)
(i′ − 1)�Db(P(V∗))

〉
which shows that Y = Y′ × F is homologically projectively dual to X = X′ × F.

�
7.2. Duality. — In this subsection we are going to check that the relation of

homological projective duality is a duality indeed.

Theorem 7.3. — If g : Y → P(V∗) is homologically projectively dual to f : X →
P(V) then f : X → P(V) is homologically projectively dual to g : Y → P(V∗).

Proof. — Indeed, let Db(X) = 〈A0,A1(1), ...,Ai−1(i − 1)〉 be the Lefschetz
decomposition of Db(X) and let Db(Y) = 〈Bj−1(1− j), ...,B1(−1),B0〉 be the dual
Lefschetz decomposition of Db(Y) given by Theorem 6.3. Dualizing, we obtain
a Lefschetz decomposition Db(Y) = 〈B∗

0,B
∗
1(1), ...,B∗

j−1( j−1)〉. Let us show that X
is homologically projectively dual to Y with respect to this Lefschetz decomposition.

Indeed, consider XN−1 and YN−1. Note that GN−1 = Gr(N − 1, V∗) ∼= P(V),
XN−1

∼= X (its embedding into X×Gr(N−1, V∗) = X×P(V) is given by the graph
of f ) and YN−1 ⊂ Y × P(V) is the universal hyperplane section of Y. Dualizing
the decomposition of Proposition 6.22 with r = N − 1 we obtain a semiorthogonal
decomposition

Db(YN−1) =〈
Db(XN−1)

∗,B∗
1(1)�Db(P(V)), ...,B∗

j−1( j − 1)�Db(P(V))
〉
.

Moreover, the embedding functor Db(XN−1) → Db(YN−1) is obtained by conjuga-
tion with the duality functor of the functor Φ∗

N−1. Note that YN−1 ×P(V) XN−1 =
Q (X, Y) and it is easy to check that the embedding functor Db(XN−1)→Db(YN−1)

is a kernel functor with kernel scheme-theoretically supported on Q (X, Y). Thus X
is homologically projectively dual to Y. �

7.3. Dimension of the dual variety. — It is natural to ask, what can we say about
the dimension of the homologically projectively dual variety to a given variety X.
This question can be answered precisely in the special case of rectangular Lefschetz
decomposition of X (i.e. when A0 = A1 = ... = Ai−1).

Proposition 7.4. — If g : Y → P(V∗) is homologically projectively dual to f : X →
P(V) with respect to a rectangular Lefschetz decomposition with i terms, then the number of
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terms j in the dual Lefschetz decomposition of Db(Y) and the dimension of Y equal

j = N − i, dim Y = dim X + N − 2i,

where N = dim V.

Proof. — The formula for j follows immediately from (11). To get the formula
for the dimension we note that in the case of rectangular Lefschetz decompositions
for any i-dimensional admissible subspace L ⊂ V∗ we have by Theorem 6.3 an
equivalence of categories Db(XL) = Db(YL). It follows that dim XL = dim YL. But
dim XL = dim X − i and dim YL = dim Y − (N − i). �

Remark 7.5. — In general however it seems that it is impossible to give an
explicit formula for j and dim Y in terms of i and dim X. The only thing we can
get is an inequality

j ≥ N − i,

which follows immediately from (11). It also seems very plausible that we have in
general an inequality of dimensions

dim Y ≥ dim X + N − 2i,

where N = dim V. The proof could go as follows. Consider a generic i-dimensional
admissible subspace L ⊂ V∗ and note that by Theorem 6.3 we have a fully faithful
functor Db(XL) → Db(YL). Since dim XL = dim X− i and dim YL = dim Y− (N− i)
it would be sufficient to check that dim XL ≤ dim YL. However, it seems that
there is yet no proof for the inequality of dimensions of varieties whose derived
categories admit a fully faithful functor between them.

Another question is the relation of the number of terms of a Lefschetz
decomposition to the dimension of X.

Proposition 7.6. — Assume that X is connected, Db(X) = 〈A0,A1(1), ...,

Ai−1(i − 1)〉 is a Lefschetz decomposition and Ai−1 �= 0. Then dim X ≥ i − 1 and equality

is possible only if f : X → P(V) is birational onto a linear subspace P i−1 ⊂ P(V) and

Ai−2 = Ai−1. If moreover A0 = Ai−1 then X = P i−1.

Proof. — Consider generic subspace L ⊂ V∗ of dimension i − 1. Then XL is
a complete intersection of i − 1 hyperplanes in X. By Theorem 6.3 the restriction
functor Ai−1 ⊂ Db(X) → Db(XL) is fully faithful. Therefore Db(XL) �= 0, so XL is
not empty. Since this is true for generic L we conclude that dim X ≥ i − 1.
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Assume that dim X = i − 1 and consider generic subspace L ⊂ V∗ of dimen-
sion i−2. Then XL is a complete intersection of i−2 hyperplanes in X, so XL is
a smooth connected curve for generic L. By Theorem 6.3 the restriction functors
Ai−2 ⊂ Db(X) → Db(XL) and Ai−1 ⊂ Db(X) → Db(XL) are fully faithful and
〈Ai−2,Ai−1(1)〉 is a semiorthogonal collection in Db(XL). But by Lemma 9.2 the
only smooth connected curve admitting a nontrivial Lefschetz decomposition is P1

and the decomposition necessarily takes the form Db(P1) = 〈OP1(k),OP1(k + 1)〉.
Therefore XL

∼= P1 and OP(V)(1)|XL
∼= OXL(1), hence f restricted to XL is an iso-

morphism onto a line P1 ⊂ P(V). Since this is true for generic L, it follows that
the degree of f is 1, hence f (X) = P i−1 ⊂ P(V), and the map f : X → P i−1 is
birational. Moreover, taking any indecomposable object E ∈ Ai−1 we deduce that
its restriction to Db(XL) is isomorphic (up to a shift) to OP1(k) (the only indecom-
posable object in 〈OP1(k)〉). Hence E is exceptional and (E, E(1), ..., E(i − 1)) is
an exceptional collection on X.

Finally, if A0 = Ai−1 then Db(X) = 〈E, E(1), ..., E(i − 1)〉, hence the
Grothendieck group K0(X) is a free abelian group of rank i. On the other hand,
it is easy to see that if the birational map X → P i−1 is not trivial then the rank
of K0(X) is strictly greater then i. Hence X = P i−1. �

Remark 7.7. — If X = P(W) ⊂ P(V), a linear subspace, dim W = i, consid-
ered with the Lefschetz decomposition Db(X) = 〈 f ∗OP(V)(k), ..., f ∗OP(V)(k + i − 1)〉,
then it follows from Corollary 8.3 below that Y = P(W⊥) ⊂ P(V∗) is homologic-
ally projectively dual to X, where W⊥ ⊂ V∗ is the orthogonal subspace (just take
S = Spec k and E = W).

Corollary 7.8. — If g : Y → P(V∗) is homologically projectively dual to f : X →
P(V) then either dim X + dim Y = dim V − 2, or dim X + dim Y ≥ dim V. Moreover,

the first case is possible only when X = P(W) ⊂ P(V) and Y = P(W⊥) ⊂ P(V∗) where

W ⊂ V is a vector subspace.

Proof. — Note that i + j ≥ dim V, hence if dim X ≥ i and dim Y ≥ j then
dim X + dim Y ≥ dim V. Assume that dim X = i − 1. If A0 �= Ai−1 = Ai−2 then
i + j ≥ dim V + 2, hence dim X + dim Y ≥ (i − 1) + ( j − 1) = i + j − 2 ≥ dim V.
Finally, if A0 = Ai−1 then X = P(W) and Y = P(W⊥) by Proposition 7.6 and
Remark 7.7. �

7.4. Homological projective duality and classical projective duality. — Given a pro-
jective morphism f : X → P(V) we denote by X∨ ⊂ P(V∗) the set of all points
H ∈ P(V∗) such that the corresponding hyperplane section XH of X is singular. It
is clear that X∨ is a Zariski closed subset in P(V∗). Note that if f : X → P(V)

is an embedding then X∨ is the classical projectively dual variety to X.



HOMOLOGICAL PROJECTIVE DUALITY 209

The main result of this subsection is the following

Theorem 7.9. — Assume that g : Y → P(V∗) is homologically projectively dual to

f : X → P(V). Then the set sing( g) := {critical values of g} coincides with X∨, the

classical projectively dual variety of X.

Proof. — Consider the universal hyperplane section X1 of X and the maps
f1 : X1 → P(V∗) and g : Y → P(V∗). Note that by definition of homological
projective duality we have a semiorthogonal decomposition (14). Note also that
X∨ = sing( f1) is the set of critical values of the map f1. Thus we have to check
that sing( f1) = sing( g).

First of all, assume that sing( g) �⊂ sing( f1). Let H ∈ P(V∗) be a point in
sing( g) such that H �∈ sing( f1). Then it is clear that there exists a smooth hyper-
surface D ⊂ P(V∗) such that H ∈ D, YD := Y ×P(V∗) D has a singularity over H,
and dim YD = dim Y − 1. Let T = D \ sing( f1). Then H ∈ T, YT := Y ×P(V∗) T has
a singularity over H, and dim YT = dim Y − 1. On the other hand, f1 is smooth
over T, hence X1T = X1 ×P(V∗) T is smooth and both X1T and X1T ×T YT have
expected dimension. Therefore the base change T → P(V∗) is faithful for the pair
(X1, Y) and we obtain by the faithful base change Theorem 2.40 a semiorthogonal
decomposition

Db(X1T) = 〈
Db(YT),A1(1)�Db(T), ...,Ai−1(i − 1)�Db(T)

〉
.(26)

But category Db(X1T) is Ext-bounded since X1T is smooth, while category Db(YT)

is not Ext-bounded since YT is singular (see Lemma 2.25). This is a contradiction,
which shows that we must have an embedding sing( g) ⊂ sing( f1).

Similarly, assume that sing( f1) �⊂ sing( g). Let H ∈ P(V∗) be a point in
sing( f1) such that H �∈ sing( g). Then it is clear that there exists a smooth hyper-
surface D ⊂ P(V∗) such that H ∈ D, X1D := X1 ×P(V∗) D has a singularity over H,
and dim X1D = dim X1 −1. Let T = D\ sing( g). Then H ∈ T, X1T := X1 ×P(V∗) T
has a singularity over H, and dim X1T = dim X1 − 1. On the other hand, g is
smooth over T, hence YT = Y ×P(V∗) T is smooth and both YT and X1T ×T YT

have expected dimension. Therefore the base change T → P(V∗) is faithful for
the pair (X1, Y) and we again obtain by the faithful base change Theorem 2.40
a semiorthogonal decomposition (26). Now we note that category Db(YT) is Ext-
bounded since YT is smooth, and categories A1(1)�Db(T), ...,Ai−1(i −1)�Db(T)

are Ext-bounded because T is smooth. Therefore category Db(X1T) is Ext-bounded
by Lemma 2.26. But this is a contradiction with the fact that X1T is singular.

�
7.5. Homological projective duality and triangulated categories of singularities. — Re-

call that in [O3] to every algebraic variety X there was associated a triangulated
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category Dsg(X) := Db(X)/Dperf(X), the quotient category of the bounded derived
category of coherent sheaves by the subcategory of perfect complexes, which was
called the triangulated category of singularities of X. This definition easily generalizes
to any triangulated category.

Definition 7.10 ([O4]). — Let D be a triangulated category. An object F ∈ D is

homologically finite if for any G ∈ D the set {n ∈ Z | Hom(F, G[n]) �= 0} is finite.

The full subcategory of D consisting of homologically finite objects is denoted
by Dhf. It is a triangulated subcategory. The quotient category Dsg := D/Dhf is
called the triangulated category of singularities of D.

Lemma 7.11 ([O4]). — If D = 〈D1,D2, ...,Dm〉 is a semiorthogonal decomposition

of D then its triangulated category of singularities has the following semiorthogonal decomposition

Dsg = 〈D1sg,D2sg, ...,Dmsg〉.
Theorem 7.12. — If g : Y → P(V∗) is homologically projectively dual to f : X →

P(V) and L ⊂ V∗ is an admissible subspace then Dsg(XL) ∼= Dsg(YL).

Proof. — Since X is smooth by assumptions and Y is smooth by Theorem 6.3
it follows from Lemma 7.11 that

A0sg = A1sg = · · · = A(i−1)sg = 0 and
B0sg = B1sg = · · · = B( j−1)sg = 0,

where Db(X) = 〈A0,A1(1), ...,Ai−1(i − 1)〉 and Db(Y) = 〈Bj−1(1 − j), ...,
B1(−1),B0〉 are the Lefschetz decompositions of X and Y respectively. Using
again Theorem 6.3 and Lemma 7.11 we deduce that Dsg(XL) ∼= (CL)sg

∼= Dsg(YL).
�

8. Projective bundles

Let S be a smooth (not necessarily compact) base scheme with a vector
bundle E of rank i. Let X = PS(E) be a projectivization of this vector bundle with
the projection p : X → S, and let OX(1) be the Grothendieck line bundle on PS(E)

over S (such that p∗OX(1) ∼= E∗). Let V∗ ⊂ Γ(S, E∗) = Γ(X,OX(1)) be a space
of global sections generating E∗, and let f : X → P(V) be the corresponding
morphism. Let A0 = p∗(Db(S)) ⊂ Db(X). Then by the result of Orlov [O1] we
have a semiorthogonal decomposition

Db(X) = 〈A0,A1(1), ...,Ai−1(i − 1)〉(27)

with A0 = A1 = · · · = Ai−1 = p∗(Db(S)).
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Let X1 ⊂ X × P(V∗) be the universal hyperplane section of X. Since X ×
P(V∗) is the projectivization of the pullback of E to S ×P(V∗), it follows that the
fiber of X1 over the generic point of S × P(V∗) is a hyperplane in the projec-
tivization of the fiber of E over the corresponding point of S, and over a certain
closed subset of S × P(V∗) the fiber of X1 coincides with the whole projectiviza-
tion of the fiber of E. This closed subset Y ⊂ S × P(V∗) is the zero locus of
the section of the vector bundle E∗ � OP(V∗)(1), corresponding to the identity in
Γ(S × P(V∗), E∗�OP(V∗)(1)) = Γ(S, E∗) ⊗ Γ(P(V∗),OP(V∗)(1)) ⊃ V∗ ⊗ V. Note that

Lemma 8.1. — We have Y ∼= PS(E⊥), where E⊥ = Ker(V∗ ⊗ OS → E∗). In

particular, Y is smooth and

codimS×P(V∗) Y = i.(28)

Proof. — The fiber of Y over a point s ∈ S consists of all sections H ∈ V∗ ⊂
H0(S, E∗), that vanish at s, i.e. which are contained in the fiber of E⊥ over S. �

Let f : X1 → S × P(V∗) be the canonical projection. Let g : Y → S × P(V∗)
be the embedding. Let Z = Y ×(S×P(V∗)) X1 be the fiber product, and denote by
φ : Z → Y and i : Z → X1 the projections. So we have the following cartesian
square

PY(E) ∼= Z ��i

��
φ

X1

��
f

Y ��g
S × P(V∗).

Note that by definition of Y we have Z ∼= PY(E) ∼= X ×S Y. We consider the
kernel E = (φ × i)∗OZ ∈ Db(Y × X1) and the corresponding kernel functor ΦE :
Db(Y) → Db(X1). Note that the functor ΦE is (S × P(V∗))-linear.

The main result of this section is the following

Theorem 8.2. — In the above notation and assumptions we have a semiorthogonal

decomposition

Db(X1) =〈
ΦE (Db(Y)),A1(1)�Db(P(V∗)), ...,Ai−1(i − 1)�Db(P(V∗))

〉
.

Comparing this theorem with the definition of relative homological projective
duality (see Remark 6.28) we obtain the following

Corollary 8.3. — If E is generated by global sections then Y = PS(E⊥) is homologic-

ally projectively dual to X = PS(E) relatively over S.
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We start the proof with some preparations. Denote by π : X1 → X the
projection.

Lemma 8.4. — The subscheme Z ⊂ X1 is a zero locus of a section of the vector

bundle π∗ΩX/S(1) ⊗ f ∗OP(V∗)(1) on X1, where ΩX/S is the sheaf of relative differentials.

Proof. — Note that it follows from the definitions that X1 is a zero locus of
a section of the line bundle OX(1)�OP(V∗)(1) on X×P(V∗) and Z is a zero locus
of a section of the vector bundle p∗E∗ � OP(V∗)(1) on X × P(V∗). Moreover, it is
clear that the canonical epimorphism p∗E∗ � OP(V∗)(1) → OX(1) � OP(V∗)(1) takes
the latter section to the former. Therefore, the latter section restricted to the zero
locus of the former section is contained in the kernel of the epimorphism which
is isomorphic to (ΩX/S(1) � OP(V∗)(1))|X1

∼= π∗ΩX/S(1) ⊗ f ∗OP(V∗)(1), and its zero
locus coincides with Z. �

Corollary 8.5. — The sheaf i∗OZ is quasiisomorphic to the Koszul complex,

i∗OZ
∼= Kosz(π∗TX/S(−1) ⊗ f ∗OP(V∗)(−1))

:= Λ•(π∗TX/S(−1) ⊗ f ∗OP(V∗)(−1)).

In particular, i∗OZ is a perfect complex on X1 and i : Z → X1 has finite Tor-dimension.

Proof. — Since X1 has pure codimension 1 in X×P(V∗) it follows from (28)
that Z has codimension i − 1 in X1, therefore the corresponding section of the
vector bundle π∗ΩX/S(1) ⊗ f ∗OP(V∗)(1) is regular and i∗OZ is quasiisomorphic to
the Koszul complex. In particular it is a perfect complex. Finally, it follows from
the projection formula that i∗i∗F ∼= F ⊗ i∗OZ for any F ∈ Db(X1), and since i∗ is
exact and conservative it follows that the Tor-dimension of i is finite. �

Proposition 8.6. — The functor ΦE is fully faithful.

Proof. — Note that E = (φ × i)∗OZ is perfect on Z, Z is projective over Y
and over X1, and E has finite Ext-amplitude over X1 by Corollary 8.5. Therefore
by Lemma 2.28 the kernel functor ΦE # : Db(X1) → Db(Y) with the kernel

E # = RHom((φ × i)∗OZ, ωX1×Y/Y[dim X1])
∼= (φ × i)∗ RHom(OZ, (φ × i)!(ωX1×Y/Y[dim X1]))
∼= (φ × i)∗ωZ/Y[dim Z/Y]

is left adjoint to ΦE . Further, the composition ΦE # ◦ ΦE : Db(Y) → Db(Y) is given
by

F �→ φ∗(i∗i∗φ∗F ⊗ ωZ/Y[dim Z/Y]) ∼= φ∗(ΦK(φ∗F) ⊗ ωZ/Y[dim Z/Y])(29)
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where K ∈ Db(Z × Z) is the kernel of the functor i∗i∗ : Db(Z) → Db(Z). By
Lemma 2.31 we have H −t(K) ∼= ∆∗ΛtN ∗

Z/X1
, where ∆ : Z → Z×Z is the diagonal

embedding. On the other hand, by Lemma 8.4 we have N ∗
Z/X1

∼= (π∗TX/S(−1) ⊗
f ∗OP(V∗)(−1))|Z and since Z ∼= PY(E) ∼= Y ×S X we have (π∗TX/S)|Z ∼= TZ/Y, so we
conclude that

H −t(K) ∼= ∆∗
(
Λt TZ/Y(−t) ⊗ φ∗g∗OP(V∗)(−t)

)
.

Consider the functor Db(Y) → Db(Y) defined by the RHS of the formula (29)
with K replaced by H −t(K). This functor takes F ∈ Db(Y) to

φ∗(ΦH −t(K)(φ
∗F) ⊗ ωZ/Y[dim Z/Y])(30)

∼= φ∗
(
φ∗F ⊗ Λt TZ/Y(−t) ⊗ φ∗g∗OP(V∗)(−t) ⊗ ωZ/Y[dim Z/Y])

∼= F ⊗ φ∗
(
Λt TZ/Y(−t) ⊗ φ∗g∗OP(V∗)(−t) ⊗ ωZ/Y[dim Z/Y]).

Note that

φ∗
(
Λt TZ/Y(−t) ⊗ φ∗g∗OP(V∗)(−t) ⊗ ωZ/Y[dim Z/Y])

∼= φ∗ RHom
(
Ωt

Z/Y(t), φ!( g∗OP(V∗)(−t))
)

∼= RHom
(
φ∗

(
Ωt

Z/Y(t)
)
, g∗OP(V∗)(−t)

)
.

But for t �= 0 we have φ∗(Ωt
Z/Y(t)) = 0, while for t = 0 we have φ∗(Ωt

Z/Y(t)) = OY.
It follows that the functor (30) is zero for t �= 0 and is identity for t = 0. Using
a devissage argument we deduce that the functor (29) is the identity. But as we
have seen above this is the composition of ΦE with its left adjoint. Therefore ΦE

is fully faithful. �
Denote by α : X1 → X × P(V∗) the embedding.

Lemma 8.7. — The functor f ∗g∗ : Db(Y) → Db(X1) is a kernel functor, f ∗g∗ ∼=
ΦK( f ,g), and its kernel K( f , g) ∈ Db(Y × X1) fits into exact triangle

K( f , g) → (φ × i)∗OZ → (φ × i)∗(i∗π∗OX(−1) ⊗ φ∗g∗OP(V∗)(−1))[2].
In particular, for any F ∈ Db(Y) we have an exact triangle in Db(X1)

f ∗g∗F → i∗φ∗F → i∗φ∗(F ⊗ g∗OP(V∗)(−1)) ⊗ π∗OX(−1)[2].
Proof. — Consider the following commutative diagram

X1

yy
α

ss
ss
ss
ss
ss

��

f

��
��
��
��
��
��
��
��
�

Z

EC

��

i

ggggggggggggggggggggggggggggg ��α◦i

��
φ

X × P(V∗)

��
p

Y ��g
S × P(V∗).
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Note that Z = Y ×(S×P(V∗)) (X × P(V∗)) and the square in the diagram is exact
cartesian, because p is flat. It follows that

f ∗g∗ = α∗p∗g∗ = α∗(α ◦ i)∗φ∗ = α∗α∗i∗φ∗.

On the other hand, it is clear that α is a divisorial embedding and X1 is the
zero locus of the line bundle OX(1)�OP(V∗)(1), therefore α∗α∗ is a kernel functor
and by Lemma 2.31 its kernel Kα ∈ Db(X1 × X1) fits into the exact triangle

Kα → ∆∗OX1 → ∆∗α∗(OX(−1)�OP(V∗)(−1))[2],
where ∆ : X1 → X1 × X1 is the diagonal embedding. Computing the convolution
of this triangle with the kernel (φ×i)∗OZ of the functor i∗φ∗ we obtain the desired
triangle for the kernel K( f , g) since i∗α∗(OX(−1)� OP(V∗)(−1)) ∼= i∗π∗OX(−1) ⊗
i∗f ∗OP(V∗)(−1) and i∗f ∗OP(V∗)(−1) ∼= φ∗g∗OP(V∗)(−1). �

Proof of Theorem 8.2. — Note that by (27) we have Ak(k) � Db(P(V∗)) =
f ∗Db(S × P(V∗)) ⊗ π∗OX(k), and that ΦE (Db(Y)) = i∗φ∗(Db(Y)), so we need to
prove that we have the following semiorthogonal decomposition

Db(X1) = 〈
i∗φ∗(Db(Y)), f ∗(Db(S × P(V∗))) ⊗ π∗OX(1),(31)

..., f ∗(Db(S × P(V∗))) ⊗ π∗OX(i − 1)
〉
.

The semiorthogonality in question is verified quite easily. Using Lemma 5.3 and
Proposition 8.6, the question reduces to checking that Hom( f ∗F ⊗ π∗OX(k), i∗φ∗G)

= 0 for all F ∈ Db(S × P(V∗)), G ∈ Db(Y) and 1 ≤ k ≤ i − 1. But

Hom( f ∗F ⊗ π∗OX(k), i∗φ∗G) = Hom( f ∗F, (i∗φ∗G) ⊗ π∗OX(−k))
= Hom( f ∗F, i∗(φ∗G ⊗ OZ/Y(−k)))
= Hom(F, f∗i∗(φ∗G ⊗ OZ/Y(−k)))
= Hom(F, g∗φ∗(φ∗G ⊗ OZ/Y(−k)))
= Hom(F, g∗(G ⊗ φ∗OZ/Y(−k)))

and φ∗OZ/Y(−k) = 0 for 1 ≤ k ≤ i − 1 since φ is a projectivization of a rank i
vector bundle.

It remains to check that the RHS of (31) generates Db(X1). First of all we
will show that it contains i∗φ∗(Db(Y)) ⊗ π∗OX(k) for 0 ≤ k ≤ i − 1. Indeed, for
any F ∈ Db(Y) the triangle of Lemma 8.7 twisted by π∗OX(1) takes the form

f ∗g∗F ⊗ π∗OX(1) → i∗φ∗F ⊗ π∗OX(1) → i∗φ∗(F ⊗ g∗OP(V∗)(−1))[2].
Note that its first term is contained in f ∗(Db(S × P(V∗))) ⊗ π∗OX(1) and the last
term is contained in i∗φ∗(Db(Y)), therefore the middle term is contained in the
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RHS of (31). Twisting this triangle by π∗OX(1) we get

f ∗g∗F ⊗ π∗OX(2) → i∗φ∗F ⊗ π∗OX(2)

→ i∗φ∗(F ⊗ g∗OP(V∗)(−1)) ⊗ π∗OX(1)[2].
Note that its first term is contained in f ∗(Db(S × P(V∗))) ⊗ π∗OX(2) and the last
term is contained in i∗φ∗(Db(Y))⊗π∗OX(1), therefore the middle term is contained
in the RHS of (31). Continuing in this way we deduce the claim by induction.

Now assume that G is contained in the left orthogonal to the RHS of (31).
Then it follows from above that for any 0 ≤ k ≤ i − 1 and any F ∈ Db(Y) we
have Hom(G, i∗φ∗F⊗π∗OX(k)) = 0. But by adjunction it equals to Hom(i∗G, φ∗F⊗
OZ/Y(k)) and since by [O1] the subcategories φ∗(Db(Y))⊗OZ/Y(k) with 0 ≤ k ≤ i−1
generate Db(Z) it follows that i∗G = 0. This means that G is supported on X1\Z.
But X1 \Z is a P i−2-bundle over (S×P(V∗))\Y, hence the orthogonality of G to
the subcategory 〈 f ∗(Db(S×P(V∗)))⊗π∗OX(1), ..., f ∗(Db(S×P(V∗)))⊗π∗OX(i−1)〉
implies that G = 0. �

Now we are going to apply Theorems 6.3 and 6.27 for this special case of
homological projective duality.

Let F be another vector bundle on S, rank(F) = r, and let φ : F → E∗

be a morphism of vector bundles. Consider the projectivizations PS(E) and PS(F).
Let p : PS(E) → S and q : PS(F) → S be the projections and let OPS(E)/S(1)

and OPS(F)/S(1) denote the Grothendieck ample line bundles. Note that φ induces
a section of the vector bundle p∗F∗ � OPS(E)/S(1) on PS(E), and a section of the
vector bundle q∗E∗�OPS(F)/S(1) on PS(F). Let XF ⊂ PS(E) and YF ⊂ PS(F) denote
their zero loci.

Theorem 8.8. — Assume that codimPS(E) XF = rank F, codimPS(F) YF = rank E and

dim XF ×S YF = dim S − 1. Then there exist semiorthogonal decompositions

Db(XF) =〈
Db(YF), p∗Db(S) ⊗ OPS(E)/S(1), ..., p∗Db(S) ⊗ OPS(E)/S(i − r)

〉
, if r < i,

Db(YF) =〈
q∗Db(S) ⊗ OPS(F)/S(i − r), ..., q∗Db(S) ⊗ OPS(F)/S(−1),Db(XF)

〉
, if r > i,

(32)

and an equivalence Db(XF) ∼= Db(YF) if r = i.

Proof. — First of all, consider the case when the morphism φ : F → E∗ can
be represented as a composition F → V∗⊗OS → E∗ of a monomorphism of vector
bundles to a trivial vector bundle followed by an epimorphism of vector bundles.
In this case the claim of the theorem follows from Theorem 6.27.

Indeed, take r = rank F, T = GrS(r, V∗ ⊗ OS), the relative Grassmannian, and
let L ⊂ V∗ ⊗ OT be the tautological subbundle of rank r. Then XL and YL
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in the notations of Theorem 6.27 are the universal families of linear sections of
X = PS(E) and Y = PS(E⊥) respectively. It is easy to see that the dimension
assumptions of Theorem 6.27 are satisfied, hence we have semiorthogonal decom-
positions

Db(XL ) =〈
Db(YL ), p∗Db(T) ⊗ OPS(E)/S(1), ..., p∗Db(T) ⊗ OPS(E)/S(i − r)

〉
, if r < i,

Db(YL ) =〈
q∗Db(T) ⊗ OPS(F)/S(i − r), ..., q∗Db(T) ⊗ OPS(F)/S(−1),Db(XL )

〉
,

if r > i,

and an equivalence Db(XL ) ∼= Db(YL ), if r = i.
The embedding F → V∗ ⊗ OS gives a section σ : S → T = GrS(V∗ ⊗ OS)

such that F ∼= σ ∗L . Consider σ as a base change. Note that XL ×T S = XF.
On the other hand, YL ×T S is the zero locus of a section of the vector bundle
OPS(E⊥)/S(1) ⊗ F⊥∗ on PS(E⊥). But looking at the commutative diagram

E⊥ �OS
��φ⊥
OS � F⊥∗

E⊥ �OS
�� V∗ ⊗ OS � OS

��

OO

E∗ �OS

OS � F

OO

OS � F

OO

φ

it is easy to deduce that it also can be represented as the zero locus of a section
of the vector bundle E∗ ⊗ OPS(F)/S(1) on PS(F), i.e. that YL ×T S = YF.

Finally note that the dimension assumptions of the theorem and Lemma 2.36
imply that this base change is faithful for a pair (XL ,YL ). Applying the faithful
base change Theorem 2.40 we deduce the claim.

The general case follows from the above case by Theorem 2.41. Indeed,
all inclusion functors in the desired decompositions are S-linear and for every
point s ∈ S there exists an open neighborhood U ⊂ S over which the morphism
φ|U : F|U → E∗

|U can be represented as a composition F|U → V∗ ⊗ OU → E∗
|U of

a monomorphism of vector bundles followed by an epimorphism of vector bundles.
�

Consider the case r = i. Then the dimension assumptions of Theorem 8.8
can be rewritten as

dim XF = dim YF = dim XF ×S YF = dim S − 1.
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Note that D := p(XF) = q(YF) ⊂ S is the degeneration locus of φ, i.e. the zero
locus of det φ : det F → det E∗. Since dim D = dim S − 1 it follows that p : XF → D
and q : YF → D are birational. Therefore q−1 ◦ p is a birational transformation
XF

����� YF . It is easy to check that ωXF
∼= ωYF

∼= ωD
∼= ωS ⊗det E∗ ⊗det F∗, hence

this transformation is a flop.

Corollary 8.9. — If dim XF = dim YF = dim XF ×S YF = dim S−1 then the kernel

functor with kernel given by the structure sheaf of the fiber product XF ×D YF = XF ×S YF is

an equivalence of categories Db(XF) ∼= Db(YF).

For example, let S = P4, E = OS(−1)⊕OS(−1), F = OS⊕OS and φ : F → E∗

given by the matrix φ = (
x y
z u ), where (x : y : z : u : v) are the homogeneous

coordinates on S. Then D ⊂ S is the cone over P1 × P1 (given by equation
xu − yz = 0), XF and YF are small resolutions of D and XF

����� YF is the
standard flop.

9. Examples

In this section we will give several examples of homologically projectively
dual varieties.

9.1. A stupid example. — Let X be any smooth algebraic variety with a pro-
jective map f : X → P(V). Then taking A0 = Db(X) we get a Lefschetz decom-
position with only one term. We will call it the stupid Lefschetz decomposition.

Proposition 9.1. — The universal hyperplane section X1 ⊂ X × P(V∗) with the pro-

jection X1 → P(V∗) is homologically projectively dual to X → P(V) with respect to the

stupid Lefschetz decomposition.

Proof. — Just take E to be the structure sheaf of the diagonal in X1 × X1.
�

Alternatively, one can consider the stupid Lefschetz decomposition as a par-
ticular case of the decomposition (27) since any algebraic variety can be considered
as a projectivization of a line bundle over itself.

Let us describe the claim of Theorem 6.3 in this case. Let Y = X1 be
the universal hyperplane section of X. Let L ⊂ V∗ be a vector subspace. Then
YL is the family of hyperplane sections of X parameterized by P(L). It is fibered
over X with fiber equal to P(L) over XL, and a hyperplane in P(L) over X\XL.
Theorem 6.3 implies that we have a semiorthogonal decomposition

Db(YL) = 〈
Db(X) ⊗ OP(L)(1 − dim L), ...,Db(X) ⊗ OP(L)(−1),Db(XL)

〉
.
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E.g. for dim L = 1 we have YL = XL and for dim L = 2 we have YL is the
blowup of XL in X. In the latter case the obtained semiorthogonal decomposition
coincides with the standard decomposition of the blowup.

9.2. Curves. — Now, assume that X is a smooth projective curve.

Lemma 9.2. — The derived category of a smooth connected projective curve X admits

a nontrivial Lefschetz decomposition with respect to an effective line bundle OX(1), only if

X ∼= P1. In this case OX(1) is the positive generator of Pic X, and the decomposition takes

form Db(X) = 〈OP1(k),OP1(k + 1)〉 for some k.

Proof. — Assume that we have a nontrivial Lefschetz decomposition of Db(X),
so that A1 �= 0. Let F be a nontrivial object in A1. By definition of a Lefschetz
decomposition we have

RHom(F(1), F) = 0.

Since X is a curve, every object in Db(X) is a direct sum of its cohomology
sheaves, and every sheaf on X is a direct sum of a torsion sheaf and of a locally
free sheaf. If G is a nontrivial torsion sheaf some shift of which is a direct sum-
mand of F, then G(1) ∼= G, hence Hom(G(1), G) �= 0, hence Hom(F(1), F) �= 0.
Therefore F is a direct sum of shifts of locally free sheaves.

Since A1 is closed under direct summands and triangulated, there exists a lo-
cally free sheaf F ∈ A1. Then

RHom(F(1), F) = RΓ(X, F ⊗ F∗(−1)).

But F ⊗ F∗ has OX as a direct summand, hence the condition RHom(F(1), F) = 0
implies that the line bundle OX(−1) on X has no cohomology. By Riemann–Roch
this is possible only if deg OX(1) = 1 − g, where g is the genus of X. So, if g ≥ 1
then OX(1) cannot be effective. Therefore for g ≥ 1 we cannot have a nontrivial
Lefschetz decomposition.

Now assume that g = 0, so X ∼= P1. Then the above arguments show that
OX(1) is the positive generator of the Pic X. Moreover, since any locally free sheaf
on P1 is a direct sum of line bundles, it follows that A1 = 〈OP1(k)〉 for some
k ∈ Z. Then

〈OP1(k)〉 = A1 ⊂ A0 ⊂ A1(1)⊥ = 〈OP1(k + 1)〉⊥ = 〈OP1(k)〉,
and we are done. �

The above lemma shows that the only way to get a homological projective
duality for a curve of positive genus is to consider the stupid Lefschetz decom-
position. Then as we have shown in Proposition 9.1 the homologically projectively



HOMOLOGICAL PROJECTIVE DUALITY 219

dual variety is the universal hyperplane section. Note that in this case the map
X1 → P(V∗) is a finite covering (of degree equal to the degree of X in P(V))
ramified over the classical projectively dual hypersurface X∨ ⊂ P(V∗).

The case of X = P1 with the Lefschetz decomposition Db(X) =
〈OP(V)(k),OP(V)(k + 1)〉 was considered in Remark 7.7.

9.3. Hirzebruch surfaces. — Let S = P1 and E = OS ⊕ OS(−d), so that X =
PS(E) is the Hirzebruch surface Fd . Take V∗ = H0(S, E∗) ∼= k⊕kd+1. Then f : X →
P(V) = Pd+1 maps X onto a cone over a Veronese rational curve of degree d
(the exceptional section of X is contracted to the vertex of the cone).

In this case E⊥ = Ker(V∗ ⊗ OS → E∗) ∼= OS(−1)d , hence Y = PS(E⊥) ∼=
P1 × Pd−1. The map g : Y → P(V∗) is a d-fold covering onto the hyperplane in
Pd ⊂ P(V∗), corresponding to the vertex of the cone.

9.4. Two-dimensional quadric. — Let S = P1 and E = OS(−1) ⊕ OS(−1), so
that X = PS(E) ∼= P1 ×P1 is the two dimensional quadric. Take V∗ = H0(S, E∗) ∼=
k4. Then f : X → P(V) = P3 is the standard embedding.

In this case E⊥ = Ker(V∗ → E∗) ∼= OS(−1) ⊕ OS(−1), hence Y is also
isomorphic to P1 × P1 and the map g : Y → P(V∗) = P3 identifies it with the
projectively dual quadric to X.

In a forthcoming paper [K2] we will describe homological projective duality
for all quadrics.

9.5. Springer–Grothendieck resolution. — Let G be a semisimple algebraic group,
S = G/B the flag variety of G (the set of all Borel subgroups in G), g the Lie
algebra of G, and b ⊂ g⊗ OS, (resp. n ⊂ g⊗ OS) the vector subbundle with fiber
over a point of G/B given by the corresponding Borel subalgebra (resp. nilpotent
subalgebra) of g. Take E = n, which is, in fact, isomorphic to the cotangent bundle
of S, so that X = PS(E) = PG/B(n) ∼= PG/B(T∗

G/B), and V∗ = g∗ ∼= H0(G/B,n∗).
Then f : X → P(g) maps X onto the projectivization of the nilpotent cone in g
and is well known as the (projectivized) Springer resolution of the nilpotent cone.

In this case E⊥ = Ker(g∗ → n∗) ∼= Ker(g→ g/b) = b (we identify g with g∗

by the Killing form), hence Y is isomorphic to PG/B(b) and the map g : Y → P(g)

is known as the (projectivized) simultaneous Springer–Grothendieck resolution. Its
generic fiber consists of |W| points where W is the Weyl group of G.
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