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ABSTRACT

Let G be a locally compact group with cocompact connected component. We prove that the assembly map
from the topological K-theory of G to the K-theory of the reduced C∗-algebra of G is an isomorphism. The same
is shown for the groups of k-rational points of any linear algebraic group over a local field k of characteristic zero.
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1. Introduction and statement of results

The main result of this paper is a proof of the Connes-Kasparov conjecture as
formulated in [3,29]. In addition, an analogue result is obtained for all linear alge-
braic groups over local fields of characteristic zero. To be more precise, we prove the
following theorem:

Theorem 1.1. — Let G be a second countable almost connected group (i.e., G/G0 is com-

pact, where G0 denotes the connected component of G) or the group of k-rational points of a linear

algebraic group over a local field k of characteristic zero (i.e., k = R or C – in which cases G is

also almost connected – or k is a finite extension of some p-adic number field Q p). Then G sat-

isfies the Baum-Connes conjecture with trivial coefficient C, i.e., if Ktop
∗ (G) denotes the topological

K-theory of G, then the Baum-Connes assembly map

µ : Ktop
∗ (G) → K∗(C∗

r (G))

is an isomorphism.

� This research has been supported by the Deutsche Forschungsgemeinschaft (SFB 478) and the EU-Network
Quantum Spaces – Noncommutative Geometry (HPRN-CT-2002-00280).
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It is well known (see [3] and the discussion in §7 below) that the original Connes-
Kasparov conjecture is equivalent to the Baum-Connes conjecture with trivial coeffi-
cient for almost connected groups. So the above theorem gives a complete solution
to the Connes-Kasparov conjecture and to its natural extension to linear algebraic
groups over local fields of characteristic zero. For almost connected groups, Kasparov
has shown in [31] that the result is true if the group is also amenable. In fact, by
a more recent result of Higson and Kasparov, we know that the Baum-Connes conjec-
ture with arbitrary coefficients holds for any amenable group. By work of A. Wasser-
mann [54], extending earlier work of Valette [53], we also know that Theorem 1.1
is true for all connected reductive linear Lie groups. More recently, Lafforgue used
quite different methods to give a proof in the case where G is a real reductive group
whose semi-simple part has finite centre (see [38, §4.2] – we should point out that this
does not cover all real reductive groups) or where G is a reductive p-adic group, which
then also extends a result of Baum, Higson and Plymen on p-adic GL(n) (see [4]). The
main idea of the proofs of our general results is to use the Mackey-machine approach,
as outlined in [12], in order to reduce to the reductive case. The strategy for doing
this relies heavily on some ideas presented in Pukánszky’s recent book [49] where he
reports on his deep analysis of the representation theory of connected groups. In par-
ticular the methods of his proof that locally algebraic connected real Lie groups are
type I, presented on the first four pages of his book, were most enlightening.

The result on almost connected groups in Theorem 1.1 is actually a special case
of a more general result which we shall explain below. If G is a second countable lo-
cally compact group, then by a G-algebra A we shall always understand a C∗-algebra
A equipped with a strongly continuous action of G by ∗-automorphisms of A. Let
E (G) denote a locally compact universal proper G-space in the sense of [33] (we refer
to [13] for a discussion about the relation to the notion of universal proper G-space as
introduced by Baum, Connes and Higson in [3]). If A is a G-algebra, the topological
K-theory of G with coefficient A is defined as

Ktop
∗ (G; A) = lim

X
KKG

∗ (C0(X), A),

where X runs through the G-compact subspaces of E (G) (i.e., X/G is compact)
ordered by inclusion, and KKG

∗ (C0(X), A) denotes Kasparov’s equivariant KK-theory.
If A = C, we simply write Ktop

∗ (G) for Ktop
∗ (G; C).

The construction of Baum, Connes and Higson presented in [3, §9] produces
a homomorphism

µA : Ktop
∗ (G; A) → K∗(A �r G),

usually called the assembly map. We say that G satisfies BC for A (i.e., G satisfies the
Baum-Connes conjecture for the coefficient algebra A), if µA is an isomorphism. The
result on almost connected groups in Theorem 1.1 is then a special case of



CONNES-KASPAROV CONJECTURE 241

Theorem 1.2. — Suppose that G is any second countable locally compact group such that

G/G0 satisfies BC for arbitrary coefficients, where G0 denotes the connected component of G. (By

the results of Higson and Kasparov [26] this is in particular true if G/G0 is amenable or, more

general, if G/G0 satisfies the Haagerup property.) Then G satisfies BC for K (H), H a separable

Hilbert space, with respect to any action of G on K (H).

It is well known that in case of almost connected groups, the topological K-
theory Ktop

∗ (G; A) has a very nice description in terms of the maximal compact sub-
group L of G. In fact, under some mild extra conditions on G, the group Ktop

∗ (G; A)

can be computed by means of the K-theory of the crossed product A � L. We give
a brief discussion of these relations in §7 below. As was already pointed out in [50],
our results have interesting applications to the study of square-integrable representa-
tions. In fact, combining our results with [50, Theorem 4.6] gives

Corollary 1.3 (cf [50, Corollary 4.7]). — Let G be a connected unimodular Lie group.

Then all square-integrable factor representations of G are type I. Moreover, G has no square-integrable

factor representations if dim(G/L) is odd, where L denotes the maximal compact subgroup of G.

The paper is outlined as follows: In our preliminary section, §2, we recall the
main results from [11,12] (which have been extended more recently in [14]) on the
permanence properties of the Baum-Connes conjecture which are needed in this work.
We will also use these results to perform some first reductions of the problem. In §3
we prove a result on continuous fields of actions, showing under some mild conditions
on the group G and the base space X of the field, that G satisfies the Baum-Connes
conjecture for the algebra of C0-sections of the field if it satisfies the conjecture for all
fibres. This result will be another basic tool for the proof of our main theorem.

In §4 we are concerned with the conjecture for reductive groups. Using (and
slightly extending) some recent results of Lafforgue [38], we will show that the results
on continuous fields obtained in §3 imply that the conjecture (with trivial coefficient)
holds for all reductive real groups without any extra conditions. In §5 we will then use
Pukánszky’s methods in combination with an extensive use of the permanence prop-
erties for BC to give the final steps for the proof of Theorem 1.1 in case of almost
connected groups. In §6 we shall give the proof of Theorem 1.1 for linear algebraic
groups over local fields k which are finite extensions over Q p. Since algebraic groups
over R or C are almost connected, this will complete the proof of Theorem 1.1. Fi-
nally, in §7 we shall discuss the connection between the K-theory of the reduced group
algebra of an almost connected group G with the representation ring of the maximal
compact subgroup L of G as given in the original formulation of the Connes-Kasparov
conjecture.

This paper has been circulated as a preprint since fall 2001. The only difference
(up to some minor modifications) between the preprint and the present paper is the
inclusion of the case of linear p-adic groups into this paper.
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2. Some preliminaries and first reductions

Let us collect some general facts which were presented in [12] – for the defini-
tions of twisted actions and twisted equivariant KK-theory we refer to [11]. Assume
that G is a second countable group and let B be a G-C∗-algebra. We say that G sat-
isfies BC with coefficient B if the assembly map

µB : Ktop
∗ (G; B) → K∗(B �r G)

is an isomorphism. If N is a closed normal subgroup of G, there exists a twisted ac-
tion of (G, N) on B �r N such that the twisted crossed product (B �r N) �r (G, N)

is canonically isomorphic to B �r G. Moreover, we can use the twisted equivariant
KK-theory of [11] to define the topological K-theory Ktop

∗ (G/N; B �r N) with respect
to the twisted action of (G, N) on B �r N, and a twisted version of the assembly
map

µB�rN : Ktop
∗ (G/N; B �r N) → K∗((B �r N) �r (G, N)).

In [11] we constructed a partial assembly map

µG
N,B : Ktop

∗ (G; B) → Ktop
∗ (G/N; B �r N)

such that the following diagram commutes

Ktop
∗ (G; B)

µG
N,B−−−→ Ktop

∗ (G/N; B �r N)

µB



�



�µB�r N

K∗(B �r G)
∼=−−−→ K∗((B �r N) �r (G, N)).

Extending earlier results of [11,12,46], the following theorem is shown in [14, Theo-
rem 2.1]:
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Theorem 2.1. — Let N be a closed normal subgroup of G and let B be a separable G-

algebra. Assume that the following condition (A) holds:

(A) If N ⊆ L is a closed subgroup of G and L/N is compact, then L satisfies BC for B.

Then G satisfies BC for B if and only if (G, N) satisfies BC for B �r N.

Remark 2.2. — We know from [26] that all groups having the Haagerup prop-
erty (in particular all amenable groups) satisfy BC for all coefficients. Hence, it fol-
lows from [15, Example 6.1.6] that condition (A) is automatically satisfied if N has
the Haagerup property.

In order to avoid the use of twisted actions we may use the version of the Packer-
Raeburn stabilization trick as given in [47,21]:

Proposition 2.3 (cf [47, Theorem 3.4] and [21, Corollary 1]). — Assume that G
is a second countable group and let N be a closed normal subgroup of G. Let (α, τ) be a twisted

action of (G, N) on the separable C∗-algebra A. Then there exists an ordinary action β : G/N →
Aut(A ⊗ K ), K = K (l2(N)), such that β is stably exterior equivalent (and hence Morita

equivalent) to (α, τ).

Note that BC is invariant under passing to Morita equivalent actions. Thus,
in order to conclude that (G, N) satisfies BC for B �r N, it is enough to show that
G/N satisfies BC for (B �r N) ⊗ K with respect to an appropriate action of G/N
on (B �r N) ⊗ K. In particular, if G/N is amenable, it follows that µB�rN :
Ktop

∗ (G/N; B �r N) → K∗((B �r N) �r (G, N)) is always an isomorphism.
In what follows we need to study the following special situation: Assume that α :

G → Aut(K ) is an action of G on K = K (H) for some separable Hilbert space H.
Since Aut(K ) ∼= PU(H) = U(H)/T1, we can choose a Borel map V : G → U(H)

such that αs = Ad Vs for all s ∈ G. Since α is a homomorphism, we see that there
exists a Borel cocycle ω ∈ Z2(G, T) such that

VsVt = ω(s, t)Vst for all s, t ∈ G.

The class [ω] ∈ H2(G, T) is called the Mackey obstruction for α being unitary. Let

1 �→ T → Gω → G → 1

be the central extension of G by T corresponding to ω, i.e., we have Gω = G × T
with multiplication given by

(g, z)(g′, z′) = (gg′, ω(g, g′)zz′),

and the unique locally compact group topology which generates the product Borel
structure on G × T (see [44]). Then the following is true

Lemma 2.4. — For each n ∈ Z let χn : T → T;χn(z) = zn. Let α : G → Aut(K )

and Gω be as above. Then α is Morita equivalent to the twisted action (id, χ1) of (Gω, T) on C.
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Proof. — Let V : G → U(H) be as in the discussion above, i.e., αs = Ad Vs

and VsVt = ω(s, t)Vst for all s, t ∈ G. Then it is easy to check that Ṽ : Gω → U(H)

defined by Ṽ(s,z) = zVs is a homomorphism which implements the desired equivalence
on the K − C bimodule H (we refer to [21] for an extensive discussion of Morita
equivalence for twisted actions). 	


Another important result is the continuity of the Baum-Connes conjecture with
respect to inductive limits of the coefficients, at least if G is exact. For this we need

Lemma 2.5. — Assume that (Bi)i∈I is an inductive system of G-algebras and let B =
limi Bi be the C∗-algebraic inductive limit. Assume further that one of the following conditions is

satisfied:

(i) All connecting maps Bi → Bj , i ≤ j ∈ I are injective, or

(ii) G is exact.

Then B �r G = limi(Bi �r G) with respect to the obvious connecting homomorphisms.

Proof. — If all connecting maps are injective, we may regard each Bi as a sub-
algebra of B. But this implies that we also have Bi �r G as subalgebras of B �r G, and
hence the inductive limit limi(Bi �r G) = ∪{Bi �r G : i ∈ I} sits inside B �r G. But it
is easy to check that ∪{Cc(G, Bi) : i ∈ I} ⊆ lim(Bi �r G) is dense in B �r G.

Suppose now that G is exact. In this situation we want to reduce the proof to
situation (i). Consider the canonical homomorphisms φi : Bi → B. Let Ii = ker φi and
let Iij = ker φij , where the φij : Bi → Bj denote the connecting homomorphisms for
j ≥ i. Of course, if i ≤ j ≤ j ′ then Iij ⊆ Iij ′ , so for each i ∈ I the system (Iij)j≥i is an
inductive system with injective connecting maps. It follows directly from the definition
of the inductive limit that Ii = ∪{Iij : j ≥ i} = limj≥i Iij , and hence it follows from
(i) that Ii �r G = limj≥i(Iij �r G). By exactness of G it follows that Ii �r G is the
kernel of φi �r G : Bi �r G → B �r G. By the previous discussion it follows that
Ii �r G = limj≥i(Iij �r G) is also the kernel of the canonical homomorphism Bi �r G →
lim(Bj �r G). Thus, dividing out the kernels, i.e., by considering the system (B′

i)i∈I with
B′

i = Bi/Ii we conclude from another use of (i) that

B �r G = lim(B′
i �r G) = lim(Bi �r G). 	


As a direct consequence we obtain

Proposition 2.6. — Assume that the G-algebra B is an inductive limit of the G-algebras

Bi, i ∈ I, such that G satisfies BC for all Bi. Assume further that G is exact or that all connecting

homomorphisms Bi → Bj are injective. Then G satisfies BC for B.

Proof. — It follows from Lemma 2.5 and the continuity of K-theory that
K∗(B �r G) = limi K∗(Bi �r G). On the other side, it is shown in [12, Proposition 7.1]
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that Ktop
∗ (G; B) = limi Ktop

∗ (G; Bi). Since by assumption Ktop
∗ (G; Bi) ∼= K∗(Bi �r G) via

the assembly map, and since the assembly map commutes with the K-theory maps
induced by the G-equivariant homomorphism Bi → Bj, the result follows. 	


As a first application we get

Proposition 2.7. — Let G be a separable locally compact group such that G/G0 satisfies

BC for arbitrary coefficients. Then the following are equivalent:

(1) For every central extension 1 → T → Ḡ → G → 1 the group Ḡ satisfies BC for C.

(2) G satisfies BC for the compact operators K ∼= K (H) for all separable Hilbert spaces

H and with respect to all possible actions of G on K .

Proof. — Assume that (1) holds. Let α : G → Aut(K ) be any action of G on
K and let [ω] ∈ H2(G, T) denote the Mackey obstruction for this action. Let

1 → T → Gω → G → 1

denote the central extension determined by ω. It follows from Lemma 2.4 that α is
Morita equivalent to the twisted action (id, χ1) of (Gω, T) on C. By assumption, we
know that Gω satisfies BC for C. It follows from Theorem 2.1 that (Gω, T) satisfies BC
for C∗(T) ∼= C0(Z), or, equivalently, that G satisfies BC for C0(Z,K ) with respect to
the appropriate action of G (use Proposition 2.3).

Writing C0(Z) = ⊕

n∈Z C, the twisted action of (Gω, T) is given by the twisted
action (id, χn) of (Gω, T) on the n’th summand. Let q1 : C0(Z) → C be the projection
on the summand corresponding to 1 ∈ Z. Consider the diagram

Ktop
∗ (G; C0(Z))

µC0(Z)−−−→ K∗(C0(Z) �r (Gω, T))

q1,∗


�



�q1,∗

Ktop
∗ (G; C) −−−→

µC

K∗(C �r (Gω, T)).

(Here the topological K-theory Ktop
∗ (G; C) is computed with respected to the twisted

action (id, χ1) of G ∼= Gω/T and µC denotes the twisted assembly map!) Since the
vertical arrows are split-surjective and the upper horizontal arrow is bijective, it follows
that the lower horizontal arrow is also bijective. Thus we see that (Gω, T) satisfies BC
for C with respect to the twisted action (id, χ1). By Morita equivalence this implies
that G satisfies BC for K with respect to α.

For the opposite direction assume that (2) holds. Let 1 → T → Ḡ → G → 1 be
as in (1). From Theorem 2.1, it follows that Ḡ satisfies BC for C if (Ḡ, T) satisfies BC
for C∗(T) = C0(Z). Using the stabilization trick, the latter is true if G satisfies BC for
C0(Z,K ) with respect to an appropriate action of G on C0(Z,K ) which fixes the
base Z. Using continuity of BC, this follows easily from the fact that G satisfies BC
for arbitrary actions on K . 	
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We also need a result on induced algebras as obtained in [12]. For this recall
that if H is a closed subgroup of G and A is an H-algebra, then the induced algebra
IndG

H A is defined as

IndG
H A ={

f ∈ Cb(G, A) : f (sh) = h−1( f (s)) and
(

sH �→ ‖ f (s)‖) ∈ C0(G/H)
}

.

Equipped with the pointwise operations and the supremum-norm, IndG
H A becomes a

C∗-algebra with G-action defined by

s · f (t) = f (s−1t).

The following result follows from [12, Theorem 2.2]:

Theorem 2.8. — Let G, H, A and IndG
H A be as above. Then G satisfies BC for IndG

H A
if and only if H satisfies BC for A.

The result becomes most valuable for us when combined with the following re-
sult of [20]:

Proposition 2.9. — Suppose that H is a closed subgroup of G and B is a G-algebra.

Let B̂ denote the set of equivalence classes of irreducible representations of B equipped with the usual

G-action defined by s · π(b) = π(s−1 · b). Then B is isomorphic (as a G-algebra) to IndG
H A for

some H-algebra A if and only if there exists a G-equivariant continuous map ϕ : B̂ → G/H.

Moreover, if ϕ : B̂ → G/H is such a map, then A can be chosen to be B/I, with I = ∩{ker π :
ϕ(π) = eH} equipped with the obvious H-action.

As a corollary of Theorem 2.8 and Proposition 2.9 we get in particular:

Corollary 2.10. — Suppose that G is a locally compact group and B is a G-algebra

which is type I and such that G acts transitively on B̂. Let π ∈ B̂ and let Gπ denote the stabilizer

of π for the action of G on B̂. Then G satisfies BC for B if and only if Gπ satisfies BC for

B/ ker π ∼= K (Hπ), where Hπ denotes the Hilbert space of π.

Proof. — Since there is only one orbit for the G-action on B̂, it follows from
results of Glimm [24], that B̂ is homeomorphic to G/Gπ via sGπ �→ s·π. In particular,
it follows that B̂ is Hausdorff, which implies that B/ ker π ∼= π(B) = K (Hπ). The
inverse of the above map is clearly a continuous G-equivariant map of B̂ to G/Gπ ,
and Proposition 2.9 then implies that B ∼= IndG

Gπ
(B/ ker π). The result then follows

from Theorem 2.8. 	

We now give a short outline of the proof of Theorem 1.1. The main work is

required for proving the following proposition:
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Proposition 2.11. — Assume that G is a Lie group with finitely many components and let

α : G → Aut(K ) be an action of G on the compact operators on some separable Hilbert space H.

Then G satisfies BC for K .

The body of this paper is devoted to give a proof of this proposition by using
induction on the dimension of G. From Proposition 2.11, we deduce the following
statement which implies Theorem 1.2 by an easy application of Theorem 2.1.

Proposition 2.12. — Let G be any almost connected group and let α : G → Aut(K )

be any action of G on the compact operators on some separable Hilbert space H. Then G satisfies

BC with coefficient K .

Proof. — By the structure theory of almost connected groups (e.g. see [45]) we
can find a compact normal subgroup C ⊆ G such that G/C is a Lie group with
finitely many components. Using Theorem 2.1 we see that G satisfies BC for K if
and only if G/C satisfies BC for K � C (with respect to an appropriate twisted ac-
tion). Since C is compact, it follows that X := (K � C)̂ is discrete, and (after
stabilizing if necessary) K � C ∼= C0(X,K ). Let G̃ := G/C and let X/G̃ denote
the space of G̃-orbits in X. Since X is discrete, the same is true for X/G̃, and we
get a decomposition C0(X,K ) ∼= ⊕

G̃(x)∈X/G̃ C0(G̃(x),K ). By continuity of BC (see
Proposition 2.6), we conclude that G̃ satisfies BC for C0(X,K ) if and only if G̃ sat-
isfies BC for C0(G̃(x),K ) for all x ∈ X. Using Corollary 2.10, this will follow if all
stabilizers G̃x ⊆ G̃ satisfy BC for K . But since X is discrete, it follows that each sta-
bilizer G̃x contains the connected component G̃0 of G̃. Thus, each stabilizer is a Lie
group with finitely many components and the result will follow from Proposition 2.11.

	

As mentioned above, the main idea for the proof of Proposition 2.11 is to use in-

duction on the dimension dim(G) of the Lie group G. For this we were very much in-
fluenced by Pukánszky’s proof of the fact that locally algebraic groups (i.e., Lie groups
having the same Lie algebra as some real algebraic group) have type I group C∗-
algebras as presented in his recent book [49]. We split the induction argument into
two main parts, which deal with the cases whether G is semi-simple or not. Note that
even in the semi-simple case the result does not follow directly from the existent re-
sults, since all known results only work for the trivial coefficient and require that the
groups have finite centers.

3. Baum-Connes for continuous fields of C∗-algebras

Let G be a separable locally compact group. Then G is called K-exact, if the
functor A �→ K∗(A �r G) is half-exact, that is: whenever 0 → I → A → A/I → 0 is
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a short exact sequence of G-algebras, then the sequence

K∗(I �r G) → K∗(A �r G) → K∗(A/I �r G)

is exact in the middle term. Clearly, every exact group is K-exact. Note that every
almost connected group is exact by [35, Corollary 6.9]. Also, if k is a finite extension
of the p-adic numbers Q p, then every linear algebraic group G over k is exact. To see
this notice that by [10, Proposition 9.3] every such group has a solvable cocompact
subgroup. Hence exactness of G follows from [35, §7]. Note that this gives in par-
ticular a correct proof for the statement of [12, Remark 4.4] that GL(n, Q p) is exact
(unfortunately, the argument given in [12] contains a mistake!).

Recall also that an element γ ∈ KKG
0 (C, C) is called a γ -element for G if there

exists a locally compact proper G-space Y, a C∗-algebra D equipped with a nonde-
generate and G-equivariant ∗-homomorphism φ : C0(Y) → ZM(D), the center of the
multiplier algebra M(D) of D, and (Dirac and dual-Dirac) elements

α ∈ KKG
0 (D, C) β ∈ KKG

0 (C, D)

such that

γ = β ⊗D α and p∗
Z(γ) = 1 ∈ RKKG

0 (Z; C, C)

for all locally compact proper G-spaces Z, where pZ : Z → {pt}. It is a basic result of
Kasparov [32, Theorem 5.7] that every almost connected group has a γ -element and
it follows also from the work of Kasparov (but see also [52, §5]) that a γ -element of
G is unique and that it is an idempotent with the remarkable property that for every
G-algebra B the image µB

(

Ktop
∗ (G; B)

)

of the assembly map is equal to the γ -part

γ · K∗(B �r G) := {x ⊗B�rG jG(σB(γ)) : x ∈ K∗(B �r G)}.
Here and below, we denote by jG : KKG

∗ (A, B) → KK∗(A �r G, B �r G) the (re-
duced) descent homomorphism of Kasparov and we denote by σB : KKG

∗ (A, D) →
KKG

∗ (A ⊗ B, D ⊗ B) the external tensor product homomorphism (see [32, Defin-
ition 2.5]). Note that it follows from the above discussion that a group G with γ -
element satisfies BC for a given G-algebra B if and only if γ (i.e., jG(σB(γ))) acts as
the identity on K∗(B�r G). We want to exploit these facts to prove the following basic
result:

Proposition 3.1. — Suppose that X is a separable locally compact space which satisfies one

of the following conditions:

(a) X can be realized as the geometric realization of a (possibly infinite) finite dimensional

simplicial complex.

(b) X is totally disconnected.
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Let A be the algebra of C0-sections of a continuous field of C∗-algebras {Ax : x ∈ X}, and let

α : G → Aut(A) be a C0(X)-linear action of G on A. Assume further that G is exact and

has a γ -element γ ∈ KKG
0 (C, C). Then, if G satisfies BC for each fibre Ax, G satisfies BC

for A.

For the general notion of continuous fields of C∗-algebras and their basic prop-
erties we refer to [23,22,6,34].

The idea of the proof is to show first that it holds for any closed interval I ⊆ R.
Then a short induction argument will show that it holds for any cube in Rn. Then
the result will follow from a Mayer-Vietoris argument. For the proof we first need the
following lemma.

Lemma 3.2. — Assume that G is a K-exact group with a γ -element γ ∈ KKG
0 (C, C).

Let A be a G-algebra and let I ⊆ A be a G-invariant closed ideal of A. Then there is a natural

six-term exact sequence

(1 − γ) · K0(I �r G) −−−−→ (1 − γ) · K0(A �r G) −−−−→ (1 − γ) · K0(A/I �r G)

	





�

(1 − γ) · K1(A/I �r G) ←−−−− (1 − γ) · K1(A �r G) ←−−−− (1 − γ) · K1(I �r G).

Proof. — Since G is K-exact, it follows that A �→ K∗(A �r G) is a homotopy
invariant and half-exact functor on the category of G-C∗-algebras which also satisfies
Bott-periodicity (with respect to the trivial G-action on C0(R2)). Then it follows from
some general arguments (e.g., see [5, Chapter IX]) that there exists a six-term exact
sequence

K0(I �r G) −−−→ K0(A �r G) −−−→ K0(A/I �r G)
	





�

K1(A/I �r G) ←−−− K1(A �r G) ←−−− K1(I �r G).

We want to show that all maps in the sequence commute with multiplication with the
γ -element. By the construction of the connecting maps in the above sequence as given
in [5, Chapters VIII and IX], it is enough to show that for any pair of G-algebras A
and B and any y ∈ KKG

∗ (A, B)

K∗(A �r G) → K∗(B �r G); x �→ x ⊗A�rG jG( y)

commutes with multiplication with γ . But for this it is enough to show that

jG( y) ⊗B�rG jG(σB(γ)) = jG(σA(γ)) ⊗A�rG jG( y).
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This follows from the fact that the descent homomorphism jG is compatible with Kas-
parov products and the fact that

y ⊗B σB(γ) = y ⊗C γ = γ ⊗C y = σA(γ) ⊗A y,

which follows from [32, Theorem 2.14].
It follows now that multiplication with 1−γ also commutes with all maps in the

above commutative diagram. Since 1 − γ is an idempotent, it is now easy to see that
the full six-term exact sequence restricts to a six-term exact sequence on the 1 − γ -
parts of the respective K-theory groups of the crossed products. 	


Remark 3.3. — It is now a direct consequence of the above proposition that if
G is a K-exact group possessing a γ -element, and if 0 → I → A → A/I → 0 is
a short exact sequence of G-algebras, then G satisfying BC for two of the algebras in
this sequence implies that G satisfies BC for all three algebras in the sequence. The
same result holds without the assumption on the γ -element (see [12, Proposition 4.2]
– which was actually deduced as an easy consequence of a result of Kasparov and
Skandalis in [33]).

We also need the following easy lemma.

Lemma 3.4. — Assume that X is a locally compact space and that A is the algebra of

C0-sections of the continuous field {Ax : x ∈ X} of C∗-algebras. Assume further that z ∈ Ki(A),

i = 0, 1, such that qx,∗(z) = 0 for some evaluation map qx : A → Ax. Then there exists a compact

neighborhood C of x such that qC,∗(z) = 0 in K0(A|C), where A|C denotes the restriction of A to

C and qC : A → A|C denotes the quotient map.

Proof. — We may assume without loss of generality that X is compact. Using
suspension, it is enough to give a proof for the case i = 0. In what follows, if B is
any C∗-algebra, we denote by B1 the algebra obtained from B by adjoining a unit
(even if B is already unital). Then {A1

x : x ∈ X} is a continuous field of C∗-algebras in
a canonical way. The algebra Ã of sections can be written as the set of pairs {(a, f ) :
a ∈ A, f ∈ C0(X)} with multiplication given pointwise by the multiplication rule of
the fibres A1

x . Moreover, we have an obvious unital embedding A1 → Ã.
Assume now that z ∈ K0(A) and x ∈ X are as in the lemma. We represent z

as a formal difference [p − p′] for some projections p, p′ ∈ Ml(A1). Since qx,∗(z) = 0
we may assume (after increasing dimension if necessary) that there exists a unitary
ux ∈ Ml(A1

x ) such that uxpxu∗
x = p′

x. After passing to
(

u 0
0 u∗

)

if necessary, we may fur-
ther assume that ux lies in the connected component of the identity of U(Ml(A1

x)).
Thus, there exists a unitary u ∈ Ml(A1) such that qx(u) = ux. Since u is a continu-
ous section in Ã, it follows that there exists a compact neighborhood C of x such that
‖uypyu∗

y − p′
y‖ < 1 for all y ∈ C, which implies that [pC] = [uCpCu∗

C] = [p′
C] ∈ K0(A|1

C),
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where pC, uC, and p′
C denote the restrictions of p, u, p′ to C, respectively. But this shows

that qC,∗(z) = [pC − p′
C] = 0 in K0(A|C). 	


Proof of Proposition 3.1. — Since G is exact, it follows from [34, Theorem] that
the crossed products {Ax �r G : x ∈ X} form a continuous bundle such that A �r G is
the algebra of continuous sections of this bundle.

Assume first that we are in situation (a), i.e. that X is a geometric realization
of a finite dimensional simplicial complex. Indeed, we first consider the special case
where X = [0, 1] ⊆ R.

Recall from the above discussions that G satisfies BC for a given G-algebra B if
and only if (1−γ)·K∗(B�r G) = {0}. In particular, it follows from our assumptions that
(1−γ) ·K∗(Ax �r G) = {0} for all x ∈ [0, 1]. Assume now that z ∈ (1−γ) ·Ki(A�r G),
i = 0, 1, and let qx : A �r G → Ax �r G denote the evaluation maps for each x ∈ X.
Then qx,∗(z) ∈ (1−γ)·Ki(Ax�r G) = {0} for all x ∈ [0, 1]. Thus, using Lemma 3.4, we
see that there exists a partition 0 = x0 < x1 < · · · < xl = 1 such that q[xj−1,xj ],∗(z) = 0
in Ki(A|[xj−1,xj ] �r G). Now let O = [0, 1] \ {x0, . . . , xl} and let A|O = C0(O) · A ∼=
⊕l

j=1 A|(xj−1,xj). It follows from the exact sequence

(1 − γ) · Ki(AO �r G) → (1 − γ) · Ki(A �r G) →
l

⊕

j=0

(1 − γ) · Ki(Axj �r G) = {0}

that there exists a z′ ∈ (1 − γ) · Ki(AO �r G) such that z is the image of z′ under the
inclusion. Since

(1 − γ) · Ki(AO �r G) =
l

⊕

j=1

(1 − γ) · Ki

(

A|(xj−1,xj) �r G
)

,

we may write z′ = ∑l
j=1 z′

j with z′
j ∈ (1 − γ) · Ki

(

A|(xj1 ,xj) �r G
)

for each 1 ≤ j ≤ l.
Thus it is enough to show that z′

j = 0 for each 1 ≤ j ≤ l. In what follows, we write

Aj = A|(xj−1,xj) and Āj = A|[xj−1,xj ]. Since (1 − γ) · Ki(Axk �r G) = {0} for all 0 ≤ k ≤ l
we obtain a six-term exact sequence

(1 − γ) · K0(Aj �r G) −−−−→ (1 − γ) · K0(Āj �r G) −−−−→ 0
	





�

0 ←−−−− (1 − γ) · K1(Āj �r G) ←−−−− (1 − γ) · K1(Aj �r G).

Since the image of z′
j in Ki(Āj �r G) coincides with the image of z in Ki(Āj �r G), we

see that z′
j maps to 0 under the isomorphism (1−γ)·K0(Aj�rG) → (1−γ)·K0(Āj�rG),

so z′
j = 0.



252 JÉRÔME CHABERT, SIEGFRIED ECHTERHOFF, RYSZARD NEST

We now show by induction on n that the result is true for [0, 1]n ⊆ Rn. For
this assume that {Ax : x ∈ [0, 1]n} is a continuous field over the cube and A is the
algebra of continuous sections of this field. We write [0, 1]n = ∪y∈[0,1]{ y} × [0, 1]n−1

and put Ay = A|{ y}×[0,1]n−1 . Then {Ay : y ∈ [0, 1]} is a continuous field over [0, 1] and
A is also the section algebra of this bundle. If α is a C([0, 1]n)-linear action on A, it
is also C([0, 1])-linear with respect to the bundle structure of A over [0, 1] coming
from the above decomposition of the cube. Moreover, the actions on the fibres Ay are
clearly C([0, 1]n−1)-linear, so by the induction assumption we know that G satisfies BC
with coefficient Ay for all y ∈ [0, 1]. We now apply the above result to the bundle
{Ay : y ∈ [0, 1]} to conclude that G satisfies BC with coefficient A.

In a next step we show that the result holds for the open cubes (0, 1)n ⊆ Rn.
By similar arguments as given above it suffices to show that the result holds for open
intervals. So assume that {Ax : x ∈ (0, 1)} is a continuous field with section algebra A.
Let x1 < x2 ∈ (0, 1). Then it follows from the first part of the proof that G satisfies BC
with coefficient A[x1,x2]. Since, by assumption, G also satisfies BC for the fibres, a six-
term sequence argument shows that it also satisfies BC with coefficient A(x1,x2). Writing
A = limn→∞ A|( 1

n ,1− 1
n )

and using continuity of the BC conjecture, it follows that G
satisfies BC for A.

Since the result of the proposition is clearly invariant under replacing the spaceX
by a homeomorphic space Y, we now see that the result holds for all open or closed
simplices. We now prove the general result for simplicial complexes via induction on
the dimension of the complex. By continuity of the conjecture, the result is clear for
zero-dimensional complexes. If X has dimension n, let Wn denote the interiors of all
n-dimensional simplices in X. Then Wn is homeomorphic to a disjoint union of open
n-dimensional cubes, so the result holds for Wn. Since X � Wn is a simplicial com-
plex of dimension n − 1, the result is true for X � Wn by the induction assumption.
The result then follows from another easy application of the six-term sequence (see
Remark 3.3).

We now come to the situation where X is totally disconnected. Let z ∈ (1 − γ) ·
K∗(A �r G) and let qx : A �r G → Ax �r G denote evaluation at x. Then qx,∗(z) ∈
(1 − γ) · K∗(Ax �r G) = {0} for all x ∈ X. By Lemma 3.4, each x ∈ X has a compact
neighborhood C such that qC,∗(z) = 0. Since X is totally disconnected, we therefore
find a disjoint covering (Ci)i∈I by compact open subsets of X such that qCi,∗(z) = 0
for all i ∈ I. But then we have A �r G = ⊕

i∈I(A �r G)|Ci from which it follows that
K∗(A �r G) ∼= ⊕

i∈I K∗
(

(A �r G)|Ci

)

. Since the projection (qCi ,∗(z))i∈I is zero for all
i ∈ I, it follows that z = 0. 	


Remark 3.5. — Let G be a second countable locally compact group and let X be
a second countable locally compact almost Hausdorff G-space (a topological space X
is called almost Hausdorff if every closed subset C ⊆ X contains a relatively open dense
Hausdorff subset O ⊆ C). Following Glimm we say that the quotient space X/G is
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countably separated, if all orbits G(x) are locally closed, i.e. G(x) is open in its closure
G(x). Glimm showed in [24, Theorem] that X/G being countably separated is equiva-
lent to each of the following conditions:

(1) The canonical map G/Gx → G(x), gGx �→ g · x is a homeomorphism for
each x ∈ X.

(2) X/G is almost Hausdorff.
(3) There exists a sequence of G-invariant open subsets {Uν}ν of X, where ν

runs through the ordinal numbers such that
(a) Uν ⊆ Uν+1 for each ν and

(

Uν+1 � Uν)/G is Hausdorff.
(b) If ν is a limit ordinal, then Uν = ∪µ<νUµ.
(c) There exits an ordinal number ν0 such that X = Uν0 .

A classical example of an almost Hausdorff space is the space Â of all equivalence
classes of irreducible representations of a type I C∗-algebra A equipped with the Ja-
cobson topology (see [18]). Recall that A is type I if and only if π(A) contains the
compact operators K (Hπ) whenever π : A → B(Hπ) is an irreducible representa-
tion of A. If A is a type I G-algebra, and if Gπ is the stabilizer of π ∈ Â under the
action of G, then the restriction of the G-action to Gπ factorizes to a canonical action
of Gπ on Aπ := K (Hπ) and we get:

Theorem 3.6. — Suppose that G is an exact group with γ -element γ ∈ KKG
0 (C, C)

and let A be a type I G-algebra such that the action of G on Â is countably separated. Suppose

that there exists an ascending sequence {Uν}ν of Â as in item (3) of the above remark such that the

difference sets Uν+1 � Uν satisfy the following conditions:

(i) There exists a locally compact Hausdorff space Xν and a continuous and open surjection

qν : Uν+1�Uν → Xν such that, for all x ∈ Xν, q−1
ν ({x}) is a finite union of G-orbits

in Uν+1.

(ii) The space Xν of (i) is (the geometric realization of) a finite dimensional simplicial complex

or Xν is totally disconnected.

Then G satisfies BC for A, if the stabilizer Gπ satisfies BC for Aπ = K (Hπ) for all π ∈ Â.

Proof. — For each ordinal ν let Aν denote the ideal of A corresponding to the
open subset Uν of Â (see [18, Chapter 3]). We show by transfinite induction that G
satisfies BC with coefficient Aν for each ν. Since A = Aν0 for some ν0, the result will
follow.

We start by showing that G satisfies BC with coefficient A1. Since the quotient
map q1 : U1 → X1 is open, we can regard A1 as a section algebra of a continuous
bundle over X1 with fibres isomorphic to A|q−1

1 (x) (see [41]). By condition (ii) it follows
from Proposition 3.1 that it suffices to prove that G satisfies BC for A|q−1

1 (x) for all
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x ∈ X1. Fix x ∈ X1 and put Z := q−1
1 (x). Since Z is a finite union of G-orbits, we find

a finite sequence

Z = Z0 ⊇ Z1 ⊇ · · · ⊇ Zl = ∅
of open invariant subsets of Z such that

(

Zi−1�Zi

)

/G is a discrete finite set. To see this
let C1 be the union of all closed G-orbits in Z (such orbits must exist by the finiteness
of Z/G). Then C1 is closed in Z and C1/G is discrete. Put Z1 = Z � C1 and then
define the Zi’s, i > 1, inductively by the same procedure. Using six-term sequences
(e.g., see Remark 3.3), G satisfies BC for A|Z if G satisfies BC for all A|Zi−1�Zi , which
in turn follows if G satisfies BC for A|G(π) for any G-orbit G(π) ⊆ Z ⊆ Â (where A|G(π)

denotes the subquotient of A corresponding to the locally closed subset G(π) of Â).
But this follows from the assumption that Gπ satisfies BC for Aπ and Corollary 2.10.
This completes the proof for A1.

Assume now that ν is an ordinal number and that we have already shown that
G satisfies BC for Aµ for all µ < ν. If ν = µ + 1 for some ordinal µ, it follows from
the same reasoning as for the case ν = 1 that G satisfies BC for Aν/Aµ. Since G
satisfies BC for Aµ by the induction assumption, it follows from Remark 3.3 that G
satisfies BC for Aν.

Assume now that ν is a limit ordinal and G satisfies BC for Aµ for each µ < ν.
Then Uν = ∪µ<νUµ which implies that Aν = limµ<ν Aµ is the inductive limit of
the Aµ. Thus it follows from Proposition 2.6 that G satisfies BC for Aν. 	


4. The semi-simple case

In this section we want to show that Proposition 2.11 is true if G is semi-simple.
For this we first have to obtain a slight extension of Lafforgue’s results on the Baum-
Connes conjecture for semi-simple groups with finite center.

Let us first recall the basic idea of Lafforgue’s proof of the Baum-Connes conjec-
ture for such groups. If G is a locally compact group we let Cc(G) denote the convo-
lution algebra of G consisting of continuous functions with compact supports. A norm
‖ · ‖ on Cc(G) is called unconditional if convolution is continuous with respect to this
norm and if ‖ f ‖ only depends on the absolute value of f for all f ∈ Cc(G) (i.e.,
‖ f ‖ = ‖| f |‖ for all f ∈ Cc(G)). An unconditional completion A (G) of Cc(G) is a com-
pletion with respect to an unconditional norm on Cc(G). Note that L1(G) is always
an unconditional completion of Cc(G), but C∗(G) and C∗

r (G) are in general not un-
conditional completions of Cc(G).

If A (G) is an unconditional completion of Cc(G), then Lafforgue constructed
an assembly map

µA (G) : Ktop
∗ (G; C) → K∗(A (G)).
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Moreover, if the identity on Cc(G) extends to a continuous embedding ι : A (G) →
C∗

r (G), he also shows that the assembly map µ : Ktop
∗ (G; C) → K∗(C∗

r (G)) factors
through K∗(A (G)), i.e.,

µ = ι∗ ◦ µA (G)

(see [38, Proposition 1.7.6]). Thus, if we know that µA (G) is an isomorphism for all
unconditional completions of Cc(G), and if we further know that there exists an un-
conditional completion A (G) ⊆ C∗

r (G) such that the inclusion ι∗ : K∗(A (G)) →
K∗(C∗

r (G)) is an isomorphism, it follows that µ : Ktop
∗ (G; C) → K∗(C∗

r (G)) is an
isomorphism. Note that ι∗ : K∗(A (G)) → K∗(C∗

r (G)) is an isomorphism whenever
A (G) is closed under holomorphic functional calculus in C∗

r (G). Now Lafforgue was
able to prove the following deep results:

Theorem 4.1 (cf [38, Théorème 1.7.12 and Chapitre 3]). — Assume that G is

a second countable locally compact group such that G satisfies one of the following conditions:

(a) G acts isometrically and properly on a Riemannian manifold with nonpositive sectional

curvature which is bounded below and has bounded covariant derivative (see [38, p. 61]
for the details).

(b) G acts properly and isometrically on a “bolic” space (X, d) in the sense of [38, Defin-

ition 2.2.1].

Then µA (G) : Ktop
∗ (G; C) → K∗(A (G)) is an isomorphism for every unconditional completion

A (G) of Cc(G).

In fact, Lafforgue was even able to show that the above result holds with arbi-
trary C∗-algebra coefficients, but we do not need this more general result here. Note
that if G is semi-simple with finite center, then the Riemannian manifold of the theo-
rem can be chosen to be the symmetric space G/K, where K is the maximal compact
subgroup of G.

In the second step for the proof of BC for semi-simple groups, Lafforgue con-
structed a Schwartz algebra S (G) ⊆ C∗

r (G) which is an unconditional completion of
Cc(G) which is closed under holomorphic functional calculus in C∗

r (G). In fact, this
construction followed a more general principle, which we are now going to describe
in more detail.

Assume that G is a unimodular group and K is a compact subgroup of G. Then,
following Lafforgue (see [38, Chapitre 4]), we say that the pair (G, K) satisfies prop-
erty (HC) if the following conditions are satisfied

(HC1) There exists a continuous function d : G → [0,∞) such that d(e) = 0,
d(kgk′) = d(g) for all k, k′ ∈ K, g ∈ G and d(gg′) ≤ d(g) + d(g′) for all
g, g′ ∈ G.
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(HC2) There exists a continuous function φ : G → (0, 1] such that φ(e) = 1,
φ(g−1) = φ(g), φ(kgk′) = φ(g) for all g ∈ G and k, k′ ∈ K, and
∫

K
φ(gkg′) dk = φ(g)φ(g′) for all g, g′ ∈ G,

with respect to the normalized Haar measure on K.
(HC3) There exists a t0 ∈ R such that

(

t �→ φ(g)(1 + d(g))−t
) ∈ L2(G) for all

t > t0.

If G is a connected semi-simple group with finite center, and if K is the maximal com-
pact subgroup of G, then Lafforgue was able to show that (G, K) satisfies (HC). The
following theorem then completes the proof of BC for connected semi-simple groups
with finite center.

Theorem 4.2 (cf [38, Proposition 4.1.2]). — Assume that G is a unimodular group

and K is a compact subgroup of G such that the pair (G, K) satisfies (HC). Then there exists an

unconditional completion S (G) ⊆ C∗
r (G) of Cc(G) such that S (G) is closed under holomorphic

functional calculus in C∗
r (G).

In order to extend Lafforgue’s methods to extensions of semi-simple groups, we
first show that property (HC) is closed under compact extensions.

Lemma 4.3. — Assume that (G, K) satisfies property (HC). Assume further that

1 → C → G̃
q→ G → 1

is a group extension with C compact. Let K̃ = q−1(K) ⊆ G̃. Then (G̃, K̃) satisfies (HC).

Proof. — Since compact extensions of unimodular groups are unimodular, G̃ is
unimodular. Let (d, φ) be a pair of functions which satisfy HC1, HC2, and HC3 with
respect to (G, K). Define d̃(g) = d(q(g)) and φ̃(g) = φ(q(g)). Then a straightforward
computation shows that (d̃, φ̃) satisfies HC1, HC2, and HC3 with respect to (G̃, K̃).

	

The second result is slightly more technical.

Lemma 4.4. — Assume that G is a unimodular Lie group with finitely many components

and let K be a maximal compact subgroup of G. Let G0 denote the connected component of G and

let K0 be a maximal compact subgroup of G0 such that (G0, K0) satisfies (HC). Then (G, K)

satisfies (HC), too.

Proof. — First note that we may assume that K0 = K ∩ G0. To see this observe
first that, since K0 is a compact subgroup of G, we may assume without loss of gen-
erality that K0 ⊆ K ∩ G0. But the maximality of K0 then implies equality. It follows
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from this that K0 is a normal subgroup of K and since G/K is connected, it follows
that the inclusion K → G induces a group isomorphism K/K0

∼= G/G0.
Let (d0, φ0) be a pair of functions satisfying conditions HC1–HC3 for (G0, K0).

It follows from the above remarks that we can write every element of G as a product
kg with k ∈ K, g ∈ G0. We then define

d(kg) =
∫

K
d0(lgl−1) dl and φ(kg) =

∫

K
φ0(lgl−1) dl.

To see that d and φ are well defined assume that we have two factorizations kg = k ′g′

with k, k ′ ∈ K, g, g′ ∈ G0. Then g = k−1k ′g′ with h := k−1k ′ ∈ K0. Since K normal-
izes K0, it follows from the left and right K0-invariance of d0 that

d(kg) =
∫

K
d0(lgl−1) dl =

∫

K
d0(lhg′l−1) dl =

∫

K
d0

(

(lhl−1)(lg′l−1)
)

dl

=
∫

K
d0(lg′l−1) dl = d(k′g′).

A similar computation shows that φ is well defined.
We are now going to check properties HC1–HC3 for (d, φ). It follows directly

from the definition of d and φ that they are left invariant under the action of K. To
see right invariance, we compute for h ∈ K:

d(kgh) = d(khh−1gh) = d(h−1gh)

=
∫

K
d0(lh−1ghl−1) dl l �→lh=

∫

K
d0(lhl−1) dl = d(kg).

So d is also right invariant and a similar computation show that the same is true for φ.
Since Haar measure on K is normalized, it follows that d(e) = 0 and φ(e) = 1. More-
over, if kg, hg′ ∈ G with k, h ∈ K, g, g′ ∈ G0 we get

d(kghg′) = d(khh−1ghg′) =
∫

K
d0(lh−1ghg′l−1) dl =

∫

K
d0(lh−1ghl−1lg′l−1) dl

≤
∫

K
d0(lh−1ghl−1) dl +

∫

K
d0(lg′l−1) dl = d(kg) + d(hg′).

In order to prove the multiplication rule for φ we use Weil’s formula

∫

K
ϕ(l) dl =

∫

K/K0

(∫

K0

ϕ(lm) dm
)

dl̇ =
∫

K

(∫

K0

ϕ(lm) dm
)

dl,
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with respect to normalized Haar measures on K, K0, and K/K0 to compute
∫

K
φ(kglhg′) dl =

∫

K
φ(glhg′h−1) dl =

∫

K

∫

K0

φ(glmhg′h−1) dm dl

(∗)=
∫

K

∫

K0

φ(l−1glmhg′h−1) dm dl

=
∫

K

∫

K0

∫

K
φ0(nl−1glmhg′h−1n−1) dn dm dl

(∗∗)=
∫

K

∫

K

∫

K0

φ0(nl−1gln−1mnhg′h−1n−1) dm dl dn

(∗∗∗)=
∫

K

∫

K
φ0(nl−1gln−1)φ0(nhg′h−1n−1) dl dn

l �→l−1n=
(∫

K
φ0(lgl−1) dl

)(∫

K
φ0(ng′n−1) dn

)

= φ(kg)φ(hg′).

Here the equation (*) follows from the K-invariance of φ, (**) follows from Fubini
together with the transformation m �→ n−1mn, and (***) follows from property HC2
for φ0. This completes the proof of HC1 and HC2.

For the proof of HC3 we write Fs(g) := φ(g)(1+d(g))−s, s > 0. Since G = KG0,
it follows from the K-invariance of φ and d that the integrals of F2

s over the G0-cosets
coincide. Thus, since G/G0 is finite, it is enough to show that Fs|G0 ∈ L2(G0) for
some s > 0. For this we first choose a set of representatives t1, ..., tn ∈ K for K/K0

with t1 = e. Then, for g ∈ G0, we obtain the inequality

1 + d(g) = 1 + 1
n

n
∑

i=1

d0

(

tigt−1
i

) ≥ 1 + 1
n

d0(g),

from which it follows that (1 + d(g))n ≥ 1 + d0(g) for all g ∈ G0. Thus, if t ∈ R such
that

(

g �→ φ0(g)(1 + d0(g))−t
) ∈ L2(G0), then we also have

(

g �→ φ0(g)(1 + d(g))−nt
) ∈

L2(G0). So let s = nt with t as above. Then we get

Fs(g) = φ(g)(1 + d(g))−s = 1
n

n
∑

i=1

φ0

(

tigt−1
i

)

(1 + d(g))−s

= 1
n

n
∑

i=1

φ0

(

tigt−1
i

)(

1 + d
(

tigt−1
i

))−s
.

Since G is unimodular, it follows that each summand
(

g �→ φ0(tigt−1
i )(1+ d(tigt−1

i ))−s
) ∈

L2(G0), and hence Fs|G0 ∈ L2(G0). 	
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We are now ready to combine the above results to get

Proposition 4.5. — Let G be a locally compact group with finitely many components. Assume

further that G has a compact normal subgroup C ⊆ G0 such that G0/C is a real semi-simple Lie

group with finite center. Then G satisfies BC with trivial coefficient.

Proof. — Let K0 denote the maximal compact subgroup of G0. Then G0/K0
∼=

(G0/C)/(K0/C) is a symmetric space and therefore has nonpositive sectional curva-
ture. Moreover, if K is a maximal compact subgroup of G such that K ∩ G0 = K0,
we see that G/K ∼= G0/K0 as a Riemannian manifold. Since G acts isometrically and
properly on G/K, G satisfies the assumptions of Theorem 4.1. By Lafforgue’s results
we also know that (G0/C, K0/C) satisfies (HC). Lemmas 4.3 and 4.4 then imply that
(G, K) also satisfies property (HC). Thus, it follows from the combination of Theo-
rem 4.1 with Theorem 4.2 that G satisfies BC with coefficient in C. 	


Using the results on continuous fields of actions as presented in the previous
section, we are now able to prove

Proposition 4.6. — Assume that G is a real Lie group with finitely many components such

that G0 is reductive, i.e., the Lie algebra g of G is a direct sum of two ideals g = s⊕ z with s

semi-simple and z abelian. Then G satisfies BC for C.

Proof. — Let Z = Z(G0) denote the center of G0. Using Theorem 2.1 it is
enough to show that G/Z satisfies BC with coefficient C∗(Z)⊗K ∼= C0(Ẑ,K ), where
the action of G/Z on the dual space Ẑ of Z is given via conjugation. Since Z is central
in G0, it follows that this action factors through an action of the finite group G/G0.
Moreover, since Ẑ is a manifold (since Z is a compactly generated abelian group), it
follows that the quotients of the orbit-types in Ẑ are manifolds. From this we easily
obtain a finite decomposition sequence

∅ = U0 ⊆ U1 ⊆ · · · ⊆ Ul = Ẑ

of open G-invariant subsets of Ẑ such that the quotients of the differences Uj�Uj−1 are
homeomorphic to geometric realizations of finite dimensional simplicial complexes.
Moreover, since all stabilizers for the action of G/Z on Ẑ contain G0/Z, which is semi-
simple with trivial center, it follows from a combination of Proposition 4.5 with Propo-
sition 2.7 that all stabilizers satisfy BC for K . The result then follows from Theo-
rem 3.6. 	


Since any central extension of a semi-simple group is reductive, we now get the
desired result for general semi-simple groups.



260 JÉRÔME CHABERT, SIEGFRIED ECHTERHOFF, RYSZARD NEST

Corollary 4.7. — Let G be a semi-simple Lie group with finitely many components and let

1 → T → Ḡ → G → 1

be a central extension of G by T. Then Ḡ satisfies BC for C. As a consequence (using Proposi-

tion 2.7), G satisfies BC for K with respect to arbitrary actions of G on K .

Remark 4.8. — When we first wrote down this article, we only had a copy of
the original thesis of Lafforgue, where he shows that connected semi-simple Lie groups
with finite center satisfy BC with trivial coefficient. In the meantime Lafforgue has
extended this result (see [38]) to all reductive groups G with finitely many components
such that the semi-simple part of the connected component G0 of G has finite center
(i.e. the semi-simple subgroup S ⊆ G0 corresponding to the Levi summand s ⊆ g
has finite center). Using this more general result, we could have avoided Lemma 4.4,
but we decided to stick to our original arguments. As was pointed out by Lafforgue,
the results of [38] do not cover all reductive real groups. For instance, the universal

covering group S̃L2(R) of SL2(R) is a semi-simple group with infinite center.

We close this section with a result on p-adic groups:

Proposition 4.9. — Let k be a finite extension of some Q p and let G be the group of k-

rational points of a reductive linear algebraic group over k. Then G satisfies BC for K with respect

to any action of G on K .

Proof. — Using Proposition 2.7, it suffices to show that every central extension G̃
of G by T satisfies BC with trivial coefficient. By the results of [33,38] we know that G
acts properly and isometrically on a “bolic” space (X, d) in the sense of [38, Definition
2.2.1] and that G has a compact subgroup K such that (G, K) satisfies property (HC)
(see [38, Théorème 2.2.2, Proposition 4.1.2 and §4.3]). Lemma 4.3 then implies that
(G̃, K̃), where K̃ denotes the inverse image of K in G̃, has the same properties. Hence
the result follows from Theorems 4.1 and 4.2. 	


5. The general case of almost connected groups

We now prove Proposition 2.11. As outlined in §2, this implies Theorem 1.2 and
therefore finishes the case of almost connected groups in Theorem 1.1. As indicated
before, we are going to use an induction argument on the dimension n = dim(G).
Since any one-dimensional Lie group with finitely many components is amenable, and
since amenable groups satisfy BC for arbitrary coefficients, the case n = 1 is clear. As-
sume now that G is an arbitrary Lie group with finitely many components. Let G0 de-
note the connected component of G. Let N denote the nilradical of G and let n and g
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denote the Lie algebras of N and G, respectively. If n = {0}, then G is semi-simple
and the result follows from the previous section. So we may assume that n �= {0}.

It is shown in [49, Lemma 4 on p. 24] that the subgroup H of G0 corresponding
to the subalgebra h = [g, g]+n of g is closed in G0. Further, if s is a Levi section in g,
i.e., s is a maximal semi-simple subalgebra of g, then h = s+n (e.g., see the discussion
in the proof of [49, Sublemma on p. 24]). In particular, H/N is semi-simple. Clearly,
H is a normal subgroup of G and G/H is a finite extension of a connected abelian
Lie group. Let M denote the inverse image of any compact subgroup of G/H in G.
It follows then from Theorem 2.1 that G satisfies BC for K if all such M satisfy BC
for K . From now on, let M denote the inverse image of a fixed compact subgroup of
G/H. Note that the connected component of M/H is a compact connected abelian
Lie group, hence a torus group.

Thus, replacing G by M, we may from now on assume that G has the following
structure: There exist closed normal subgroups

N ⊆ H ⊆ G0 ⊆ G(5.1)

such that N is a non-trivial connected nilpotent Lie group, H/N is semi-simple, G0/H
is a torus group and G/G0 is finite. Moreover, by induction we may assume that every
almost connected Lie group with smaller dimension satisfies BC for K with respect to
arbitrary actions on K , or, equivalently (by Proposition 2.7), every central extension
by T satisfies BC for C. It is now useful to recall the following result of Chevalley (see
[16, Proposition 5, p. 324]):

Proposition 5.1. — Let g ⊆ gl(V) be a Lie-algebra of endomorphisms of the finite di-

mensional real vector space V. Then g is algebraic (i.e. it corresponds to a real algebraic subgroup

G ⊆ GL(V)) if and only if there exist subalgebras s, a,n of g with g = s + a + n, s is

semi-simple, n is the largest ideal of g consisting of nilpotent endomorphisms, and a is an algebraic

abelian subalgebra of gl(V) consisting of semi-simple endomorphisms such that [s, a] ⊆ a.
Using Ado’s theorem (see [16, Théorème 5 on p. 333]) and Proposition 5.1, it

follows that the group H considered above is locally algebraic, i.e., the Lie algebra h
has a faithful representation as an algebraic Lie subalgebra into some gl(V).

Using this structure, the main idea is to apply the Mackey machine to a suitable
abelian subgroup S of N which is normal in G. The fact that G is very close to an
algebraic group implies that the action of G on the dual Ŝ of S has very good topo-
logical properties, which is precisely what we need to make everything work. As a first
hint that this approach is feasible we prove:

Lemma 5.2. — Assume that G is a Lie group with finitely many components. Let H ⊆ G0

be a connected closed normal subgroup of G such that H is locally algebraic, and such that G/H
is compact. Let N denote the nilpotent radical of H, and let S ⊆ N be a connected abelian normal
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subgroup of G. Let Ŝ denote the character group of S and let G act on Ŝ via conjugation. Then the

following assertions are true:

(i) The orbit space Ŝ/G is countably separated, i.e., all G-orbits in Ŝ are locally closed.

(ii) If Gχ is the stabilizer of some χ ∈ Ŝ for the action of G on Ŝ, then Gχ/(Gχ)0 is

amenable.

Proof. — We first show that it is sufficient to prove the result for the case G = H.
Indeed, if we already know that Ŝ/H is countably separated, then we observe that Ŝ/H
is a topological G/H-space such that Ŝ/G ∼= (̂S/H)/(G/H). But it is an easy exercise
to prove that the quotient space of a countably separated space by a compact group
action is countably separated.

Assume now that Gχ is the stabilizer of some χ ∈ Ŝ in G. Then Hχ = Gχ ∩ H
is the stabilizer in H. It follows that Hχ is a normal subgroup of Gχ such that Gχ/Hχ

is compact. If Hχ/(Hχ)0 is amenable, it also follows that Gχ/(Hχ)0, and hence also
Gχ/(Gχ)0 are amenable.

So, for the rest of the proof we assume that G = H. In the next step we re-
duce to the case where H is simply connected. For this let H̃ denote the universal
covering group of H. Then H̃ has the same Lie algebra as H, and therefore it is lo-
cally algebraic. Let q : H̃ → H denote the quotient map and let C = ker q. Then
C is a discrete central subgroup of H̃. Let r ⊆ h denote the Lie algebra of S and
let S̃ denote the connected closed normal subgroup of H̃ corresponding to r. Then S̃
is a vector subgroup of the nilpotent radical Ñ of H̃ and the quotient map H̃ → H
maps S̃ surjectively onto S, i.e., we have S ∼= S̃/(S̃ ∩ C). In particular, it follows that
we may view Ŝ as a closed H̃-invariant subspace of ̂̃S, and we have Ŝ/H = Ŝ/H̃ (since
the central subgroup C acts trivially on Ŝ). Thus, if ̂̃S/H̃ is countably separated, the
same is true for Ŝ/H.

We now consider the stabilizers. It follows from the above considerations that if
Hχ is the stabilizer of some χ ∈ Ŝ, then q−1(Hχ) ⊆ H̃ is the stabilizer of χ in H̃.
Thus it follows that Hχ = H̃χ/(C ∩ H̃χ). Since the connected component of H̃χ is
mapped onto the connected component of Hχ under the quotient map, it follows that
Hχ/(Hχ)0 is a quotient of H̃χ/(H̃χ)0. Thus, if the latter is amenable, the same is true
for Hχ/(Hχ)0.

Thus, in what follows we may assume without loss of generality that H is simply
connected. We are then in precisely the same situation as in the proof of Case (A) of
the proof of the Theorem on page 2 of [49], and from now on we can follow the line
of arguments as given on pages 2 and 3 of [49] to see that Ŝ/H is countably separated.
Moreover, the arguments presented in steps c) and d) on page 3 of Pukánszky’s book
imply that for each stabilizer Hχ the quotient Hχ/(Hχ)0 is a finite extension of an
abelian group, and hence is amenable. 	
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Remark 5.3. — Note that we want to use our induction assumption on the sta-
bilizers Gχ . This is not directly possible, since in general the groups Gχ are not almost
connected. However, if we know that every almost connected Lie group with dimen-
sion dim(G) < n satisfies BC for K , then, by an easy application of Theorem 2.1, the
same is true for all Lie groups G with dim(G) < n and G/G0 amenable!

Unfortunately, the result on the orbit space Ŝ/G is not sufficient for a direct
application of Theorem 3.6. So we need to obtain more information on the structure
of Ŝ/G. To do this we have to do two steps:

(i) Reduce to cases where the action of G on Ŝ factors through an algebraic
action of some real algebraic group G′ (or a subgroup of finite index in G′).

(ii) Show that that the topological orbit-spaces of algebraic group actions on
real affine varieties have nice stratifications as required by Theorem 3.6.

Note that Pukánszky does the first reduction for the cocompact subgroup H of G,
which allowed us to draw the conclusions of the previous lemma. However, with a bit
more work we obtain a similar conclusion for G. The following result is certainly well-
known to the experts, but since we didn’t find a direct reference we included the easy
proof.

Lemma 5.4. — Assume that G is a Lie group with finitely many components such that G
has a connected closed normal subgroup H with H semi-simple and G0/H a torus group. Let V be

a finite dimensional real vector space and let ρ : G → GL(V) be any continuous homomorphism.

Then the Zariski closure G′ of ρ(G) is a (reductive) real algebraic group which contains ρ(G) as

a subgroup of finite index.

Proof. — Let R : g → gl(V) denote the differential of ρ and let h denote the
ideal of g corresponding to H. Then R(h) is semi-simple (or trivial). Since ρ(H) is
a semi-simple subgroup of GL(V) it is closed in GL(V). This follows from the fact that
every semi-simple subalgebra of gl(V) is algebraic (by Proposition 5.1), which implies
that ρ(H) is the connected component of some algebraic linear subgroup of GL(V).
Since G/H is compact, it follows that ρ(G) is a closed subgroup of GL(V), too.

To simplify notation we assume from now on that G itself is a closed subgroup
of GL(V) and that ρ is the identity map. Let g = s + z be a Levi decomposition
of g. Since G0/H is abelian and H is semi-simple, it follows that s = [g, g] = h and
[h, z] = [z, z] = {0}. Thus g = h⊕

z is reductive.
We now show that g is an algebraic subalgebra of gl(V). By Proposition 5.1

it suffices to show that z is algebraic and consists of semi-simple elements. But this
will follow if we can show that Z = exp(z) ⊆ GL(V) is compact, and hence a torus
group. Since Z ∩ H is finite (since every linear semi-simple group has finite center),
the restriction to Z of the quotient map q : G → G/H has finite kernel. Since q(Z) =
G0/H, q(Z) is compact by assumption, and hence Z is compact, too.
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It follows that the algebraic closure G̃ of G0 is a reductive algebraic group which
contains G0 as a subgroup of finite index. Since every element of G fixes the Lie alge-
bra g via the adjoint action, it also normalizes G̃. Therefore, G′ = GG̃ is a reductive
algebraic group which contains G as a subgroup of finite index. 	


We now show that quotients of linear algebraic group actions on affine varieties
have nice stratifications in the sense of Theorem 3.6. We are very grateful to Jörg
Schürmann and Peter Slodowy for some valuable comments, which helped us to re-
place a previous version of the following result (which, as was pointed out to us by
Jörg Schürmann, contained a gap) by

Proposition 5.5. — Suppose that G is a closed subgroup of finite index of a Zariski closed

subgroup G′ of GL(n, R) and that V ⊆ Rn is a G′-invariant Zariski closed subset of Rn. Then

there exists a stratification

∅ = V0 ⊆ V1 ⊆ · · · ⊆ Vl = V

of open G-invariant subsets Vi of V such that (Vi \Vi−1)/G admits a continuous and open finite-

to-one map onto a differentiable manifold.

Since every manifold has a triangulation, the above result really gives what we
need to apply Theorem 3.6. For the proof we need the following lemma about certain
decompositions of continuous semi-algebraic maps.

Lemma 5.6. — Let X, Y be semi-algebraic sets and let f : X → Y be a continuous

semi-algebraic map (see [7] for the notations). Then there exists a stratification

∅ = Z0 ⊆ Z1 · · · ⊆ Zl = f (X),

with each Zi open in f (X), Zi \ Zi−1 is a differentiable manifold and

f : f −1(Zi \ Zi−1) → Zi \ Zi−1

is open (in the euclidean topology) for all 1 ≤ i ≤ l.

Proof. — Since the image of a semi-algebraic set under a semi-algebraic map
is semi-algebraic (see [7, Proposition 2.2.7]), we may assume without loss of general-
ity that Y = f (X). By [7, Corollary 9.3.3] there exists a closed semi-algebraic sub-
set Y1 ⊆ Y with dim(Y1) < dim(Y), such that Y \ Y1 is a finite disjoint union
of connected components (combine with [7, Theorem 2.4.5]) and such that the re-
striction of f to the inverse image of each component is a projection, hence open.
Thus f : f −1(Y \ Y1) → Y \ Y1 is open, too. Indeed, the construction (using [7, Propo-
sition 9.18]) implies that Y \ Y1 is homeomorphic to a submanifold of some Rm. Put
Z0 = Y \ Y1. Since dim(Y1) < dim(Y), the result follows by induction. 	
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Remark 5.7. — Let G ⊆ GL(n, R) be a real linear algebraic group, and let
GC ⊆ GL(n, C) be its complexification. Then it follows from [9, Proposition 2.3] that
each GC-orbit in Cn contains at most finitely many G-orbits in Rn ⊆ Cn.

Proof of Proposition 5.5. — We first note that we may assume without loss of gen-
erality that G = G′. Indeed, since G has finite index in G′, every G′-orbit decomposes
into finitely many G-orbits. Thus, if ∅ = V0 ⊆ V1 ⊆ · · · ⊆ Vl = V is a stratification
of V for the G′-action with the required properties, it is also a stratification for the
G-action with the same properties. Thus we assume from now on that G is a Zariski
closed subgroup of GL(V).

Let VC ⊆ Cn denote the complexification of V. Consider the diagram

V −−−→ VC


�



�

V/G −−−→ VC/GC.

By the theorem of Rosenlicht ([51], but see also [36, Satz 2.2 on p. 23]), there exists
a sequence

VC = W0 ⊇ W1 ⊇ W2 ⊇ · · · ⊇ Wr = ∅,

of Zariski-closed GC-invariant subsets of strictly decreasing dimension such that
Wi \ Wi+1 has closed GC-orbits and the geometric quotient by GC of Wi \Wi+1 exists.
This means that the quotient (Wi \ Wi+1)/GC can be realized as an algebraic set and
the quotient map is also algebraic. Let O be the first of the sets Wi \ Wi+1 which has
nonempty intersection with V. Restricting the maps in the above diagram gives

V ∩ O −−−→ O


�



�

(V ∩ O)/G −−−→ O/GC.

The resulting map f from V∩O to O/GC is an algebraic map, and hence it is a con-
tinuous semi-algebraic map. Thus it follows from Lemma 5.6 that, if Y denotes the
image of X := V ∩ O in O/GC, then Y has a stratification

∅ = Z0 ⊆ Z1 ⊆ · · · ⊆ Zs = Y

such that f : f −1(Zi \ Zi−1) → Zi \ Zi−1 is open for all 1 ≤ i ≤ s, each Zi is open
in Y, and the difference sets Zi \ Zi−1 are submanifolds of some Rm. Put Vi = f −1(Zi)

for 0 ≤ i ≤ s. Then Vs = V ∩ O. By Remark 5.7, if we pass through the lower left
corner of the diagram, the corresponding maps (Vi \ Vi−1)/G → Zi \ Zi−1 are open,
finite-to-one, onto the manifolds Zi \ Zi−1.
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Now replace V by the invariant Zariski-closed subset V\O. Repeating the above
arguments finitely many times gives the desired stratification (the procedure stops after
finitely many steps, since any increasing sequence of Zariski open sets eventually sta-
bilizes). 	


Using the above results, we are now able to prove

Proposition 5.8. — Suppose that G is a Lie group with finitely many components and with

connected closed normal subgroups N ⊆ H ⊆ G0 ⊆ G as in (5.1), i.e., N is the nilradical of H,

H/N is semi-simple and G0/H is a torus group. Let S ⊆ Z(N) be a connected closed subgroup

which is normal in G, where Z(N) denotes the center of N. Then Ŝ decomposes into a countable

disjoint union of open G-invariant sets Vn such that each Vn has a stratification

∅ = U0 ⊆ U1 ⊆ · · · ⊆ Ul = Vn

(where l may depend on n) of open G-invariant subsets of Vn, and continuous open surjections

qi : Ui � Ui−1 → Yi, 1 ≤ i ≤ l,

such that each Yi is a differentiable manifold and inverse images of points in Yi are finite unions of

G-orbits in Vn for all 1 ≤ i ≤ l.

Proof. — Let s denote the ideal of g corresponding to S. Then we may identify Ŝ
with a closed G-stable subset of s∗ of the form R×Z with R being a vector subgroup
of s∗ and Z a finitely generated free abelian group. Note that Z can be identified with
the dual of the maximal compact subgroup in S, and therefore we can decompose Z
into a disjoint union of G-orbits, which are all finite since G0 acts trivially on Z. It
then follows that Ŝ can be decomposed into a disjoint union of G-invariant sets of the
form R × F with F ⊆ Z finite.

The action of G on Ŝ is given via the coadjoint representation Ad∗
s : G →

GL(s∗). Since S ⊆ Z(N), it follows that this representation factors through a repre-
sentation of G/N. Thus it follows from the general assumptions on G and Lemma 5.4
that the algebraic closure G′ of Ad∗

s(G) in GL(s∗) is a reductive algebraic group which
contains the image of Ad∗

s(G) as a subgroup of finite index. Since the G-stable sets
of the form R × F of the previous paragraph are closed algebraic subvarieties of s∗, it
follows that these sets are also invariant under the action of the Zariski closure G′ of
Ad∗
s(G). Thus it follows from Proposition 5.5 that for each such set we obtain a strat-

ification

∅ = U0 ⊆ U1 ⊆ · · · ⊆ Ul = R × F

with the required properties. 	
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We are now ready for the final step:

Proof of Proposition 2.11. — By the discussion at the beginning of this section we
may assume without loss of generality that G is as in (5.1), i.e., we have connected
closed normal subgroups

N ⊆ H ⊆ G0 ⊆ G

such that N is a nontrivial nilpotent group H/N is semi-simple and G0/H is a torus
group. For the induction step we have to show that every central extension

1 → T → Ḡ → G → 1

satisfies BC for C. Let N̄, H̄ and Ḡ0 denote the inverse images of N, H and G0 in Ḡ.
Then the sequence of normal subgroups

N̄ ⊆ H̄ ⊆ Ḡ0 ⊆ Ḡ

has the same general properties as the sequence N ⊆ H ⊆ G0 ⊆ G, in particular,
N̄ is the nilradical of H̄ and H̄ is locally algebraic. Let T denote the central copy of
T in Ḡ coming from the given central extension. We now divide the proof into the
following cases:

C(1) The center S = Z(N̄) of N̄ has dimension greater or equal to two.
C(2) Z(N̄) = T.

We start with Case C(1): By Theorem 2.1 (and the discussion following that
theorem) it suffices to show that Ḡ/S satisfies BC with coefficient C0(̂S,K ) where
the action of Ḡ/S on Ŝ is given by conjugation. By Theorem 3.6 it suffices to show
that all stabilizers (Ḡ/S)χ = Ḡχ/S satisfy BC for K and that Ŝ has a nice stratifica-
tion. While the latter follows from Proposition 5.8, the requirement on the stabilizers
follows from Lemma 5.2, Remark 5.3, and the induction assumption since

dim(Ḡχ/S) ≤ dim(Ḡ) − 2 < dim(G).

This finishes the proof in Case C(1).
For the proof of Case C(2) we have to do some more reduction steps in order to

use the same line of arguments as in C(1). For this it is useful to consider the following
two subcases:

(2)a If Z̄(N) denotes the inverse image of the center Z(N) of N in Ḡ, then
Z(Z̄(N)) = T.

(2)b dim
(

Z(Z̄(N))
) ≥ 2.
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In Case (2)a we consider the normal subgroup S = Z̄(N) of G. Then S is
a connected two-step nilpotent Lie group with one-dimensional center T, and there-
fore a Heisenberg group. It follows that C∗

r (S) = C∗(S) can be written as the direct
sum

C∗(S) =
⊕

χ∈T̂

Aχ

with

Aχ
∼= K , if χ �= 1, and A1 = C0(Ŝ/T).

Since Ḡ acts trivially on T̂, it follows that the decomposition action of Ḡ/S on
C∗(S) ⊗ K induces an action on each fibre Aχ , and, by Theorem 2.1 together with
Proposition 2.6, it follows that Ḡ satisfies BC with coefficient C if Ḡ/S satisfies BC
with coefficient Aχ ⊗ K for each χ ∈ T̂. If χ �= 1, we get Aχ ⊗ K ∼= K , and the
desired result follows from the induction assumption and the fact that dim(Ḡ/S) <
dim(G).

So we only have to deal with the case χ = 1, where we have to deal with the
fibre C0(Ŝ/T,K ) = C0(Ẑ(N),K ). But here we are exactly in the same situation as
in the proof of Case C(1), since the action of Ḡ on Ẑ(N) factors through an action of
G/N and all stabilizers of the characters of Z(N) have dimension strictly smaller than
dim(G).

We have to work a bit more for the Proof of Case (2)b. Here we put S =
Z(Z̄(N)). Then S is a connected abelian subgroup of N̄ and it follows from
Lemma 5.2, Remark 5.3, the fact that dim(Ḡ/S) < dim(G) and the induction as-
sumption that all stabilizers for the action of Ḡ/S on Ŝ satisfy BC for K .

Again we study the structure of the orbit space Ŝ/Ḡ. For each χ ∈ T̂ we define

Ŝχ = {µ ∈ Ŝ : µ|T = χ}.
Since T is central in Ḡ, it follows that Ḡ acts trivially on T̂, and hence that Ŝχ is
Ḡ-invariant for all χ ∈ T̂. Since T̂ is discrete, we may write

C0(̂S,K ) ∼=
⊕

χ∈T̂

C0(̂Sχ,K )

with fiberwise action of Ḡ/S. Thus by continuity of BC it suffices to deal with the
single fibers. For χ = 1 we are looking at the action of Ḡ/S ∼= G/(S/T) on Ŝ1

∼= Ŝ/T,
and since S/T is a central subgroup of N we may again argue precisely as in the proof
of Case C(1) to see that Ḡ/S satisfies BC for C0(̂S1,K ).
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In order to deal with the other fibers we are now going to show that Ḡ acts
transitively on Ŝχ for each nontrivial character χ ∈ T̂. It follows then directly from
Corollary 2.10 that Ḡ/S satisfies BC for C0(̂Sχ,K ). In fact, Lemma 5.9 below shows
that N̄ already acts transitively on Ŝχ for χ �= 1 and Proposition 2.11 will follow from
that lemma. 	


The following lemma is certainly well known to the experts on the representa-
tion theory of nilpotent groups. For the readers convenience we give the elementary
proof.

Lemma 5.9. — Assume that N is a connected nilpotent Lie group with one-dimensional

center Z(N) = T. Let S be a closed connected abelian normal subgroup of N such that T ⊆ S
and S/T ⊆ Z(N/T). Let 1 �= χ ∈ T̂ and let Ŝχ = {µ ∈ Ŝ : µ|T = χ}. Then N acts

transitively on Ŝχ by conjugation.

Proof. — We may assume without loss of generality that N is simply connected.
In fact, if this is not the case, we pass to the universal covering group Ñ of N and
the universal covering S̃ ⊆ Ñ of S and observe that there exists a discrete subgroup
D ⊆ T̃ = Z(Ñ) such that N = Ñ/D, S = S̃/D, T = T̃/D and Ŝχ can then be
(equivariantly) identified with ̂̃Sχ for all χ ∈ T̂ ⊆ ̂̃T.

Let n, s and t denote the Lie algebras of N, S and T, respectively. Since N is
simply connected, we can write

N = {exp(X) : X ∈ n}
with multiplication given by the Campbell-Hausdorff formula. In particular, if Y ∈ s,
then

exp(X) exp(Y) = exp(X + Y + [X, Y])
for all X ∈ n, since it follows from the assumption that S/T ⊆ Z(N/T) that [X, Y] ∈ t
= z(n) and all commutators with [X, Y] vanish. In particular, if we conjugate exp(Y)

by exp(X) we get the formula

exp(X) exp(Y) exp(−X) = exp(Y + [X, Y])(5.2)

for all Y ∈ s.
Assume now that dim(s) = n + 1 and let 0 �= Z ∈ t. There exists a basis

{Y1, ..., Yn, Z} of s and elements X1, ..., Xn ∈ n such that

[Xi, Yi] = Z and [Xi, Yj] = 0(5.3)

for all 1 ≤ i, j ≤ n, i �= j. Indeed this follows from an easy Schmidt-orthogonalization
procedure applied to the bilinear form

(·, ·) : n× s→ R; (X, Y) = λ ⇔ [X, Y] = λZ.
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We identify S with s (via exp) and Ŝ with s∗. The conjugation action of N on Ŝ is
then transferred to the coadjoint action Ad∗. If { f1, ..., fn, g} is a dual basis for the
basis {Y1, ..., Yn, Z} of s, the result will follow if we can show that

Ad∗(N)(λg) = span{ f1, ..., fn} + λg

for all 0 �= λ ∈ R. By rescaling we may assume that λ = 1. But for λ1, ..., λn ∈ R we
can compute

(

Ad∗(exp(λ1X1 + · · · + λnXn))(g)
)

(Yi) = g(Yi + λi[Xi, Yi])
= λig(Z) = λi.

Since Z is central in n it follows that
(

Ad∗(exp(X))(g)
)

(Z) = g(Z) = 1 for all X ∈ n.
Thus

Ad∗(exp(λ1X1 + · · · + λnXn))(g) = λ1 f1 + · · · + λn fn + g. 	


6. The p-adic case

In this section, k denotes a finite extension of some field of p-adic numbers Q p.
By a k-group G we shall always understand a Zariski closed subgroup of GL(n, k). As
pointed out in §3, all k-groups are exact. It is shown in [33] that all k-groups have a
γ -element. Hence all k-groups G satisfy the general assumptions made in §3.

Since k has characteristic zero, it follows from general structure theory (e.g., see
[27, VIII, Theorem 4.3]) that G is a semidirect product N � R of the unipotent rad-
ical of G (which is a k-group) by some reductive k-subgroup R of G. We want to
show by induction on the dimension of G (i.e., the dimension of the Lie-algebra g of
G), that G satisfies the Baum-Connes conjecture with trivial coefficient. In fact, as in
the real case, to perform the argument it is necessary to generalize the result a little
bit, since we need to include certain actions of G on the algebra of compact opera-
tors K (H).

We first need some information on the unitary representation theory of unipo-
tent k-groups. For this let n denote the Lie-algebra of N, and let exp : n → N and
log : N → n denote the exponential map and its inverse. Let n∗ denote the dual space
of the underlying vector space of n and let Ad∗ : N → GL(n∗) denote the coadjoint
representation of N on n∗. By Kirillov’s theory, established for p-adic unipotent groups
by Moore in [43], there exists a bijection between the quotient space n∗/ Ad∗(N) and
the unitary dual N̂ of N as follows: Fix any character ε ∈ k̂ of order zero in the sense
of [55, II, Definition 4]. For f ∈ n∗, let mf be a maximal subalgebra of n such that
f ([mf ,mf ]) = {0}. Let Mf = exp(mf ) ⊆ N. Then m �→ χ f (m) := ε( f (log(m))) is
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a character of Mf and the induced representation πf := indN
Mf

χ f is an irreducible
representation of N, whose equivalence class does not depend on the choice of mf .
The resulting map

n∗ → N̂; f → πf

is constant on Ad∗(N)-orbits and induces a bijection between n∗/ Ad∗(N) and N̂. By
[28, Theorem II], this bijection is a homeomorphism. Since the Ad∗(N)-orbits in n∗

are closed, it follows that the points of N̂ = Ĉ∗(N) are closed, which implies that
C∗(N) is type I (cf [43, Theorem 4]).

We are now going to specify the actions of G on K (H) which we want to in-
clude into our picture: For this suppose that G and G′ are k-groups such that G′ is
an algebraic semi-direct product G′ = M � G with M a normal unipotent k-subgroup
of G′. Then C∗

r (G
′) = C∗(M) �r G and the unipotent radical N′ of G′ equals M � N,

where N denotes the unipotent radical of G.
Let π ∈ M̂ ∼= Ĉ∗(M) such that the unitary equivalence class of π is G-invariant.

Since C∗(M) is type I, the action of G on C∗(M) factors through an action of G on
K (Hπ), and we may define

Definition 6.1. — Suppose that G is a k-group and that H is a Hilbert-space. An action

of G on K (H) is called unipotent, if there exists an extension G′ = M � G as above, and a

G-invariant element π ∈ M̂ such that H = Hπ and the action of G on K (Hπ) is induced from

the action of G on C∗(M) as above.

Now, the p-adic case of Theorem 1.1 will follow from

Proposition 6.2. — Let k be a finite extension of Q p and let G be a k-group acting unipo-

tently on K (H). Then G satisfies BC for K (H).

Proof. — Let G be any k-group. If dim G = 1, then G is almost abelian, and the
result is true by the general fact that all amenable groups satisfy BC for arbitrary co-
efficients ([26]). Assume now that dim(G) > 1. If G is reductive, then the result is true
by Proposition 4.9. If G is not reductive, then G = N � R, where N is the unipotent
radical of G and R is a reductive k-subgroup of G with dim(R) strictly smaller than
the dimension of G. Let α : G → K (H) be any unipotent action of G. Since R is
totally disconnected and since N is an amenable closed subgroup of G, it follows from
Theorem 2.1 that it suffices to show that R satisfies BC for A := K (H) � N with re-
spect to the canonical action of R on this algebra (since the extension of R by N is
split, there is no need to consider twisted actions at this point).

Let G′ = M � G be a semidirect product of G by a unipotent k-group M as
in Definition 6.1, and let π ∈ Ĉ∗(M) be G-invariant such that H = Hπ and such
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that α is induced from the action of G on C∗(M). Since π is also N-invariant, A =
K (H) � N is the quotient of C∗(M � N) ∼= C∗(M) � N corresponding to the closed
G-invariant subset L := {ρ ∈ N̂ � M : ker ρ|M = ker π} (where the kernels are taken
in C∗(M)). In particular, we have L = Â. Moreover, since C∗(M) is type I, the same
is true for A.

Now write N′ = M�N and let n′ denote the Lie algebra of N′. Let Ad∗ : G′ →
GL((n′)∗) denote the adjoint action of G′ on (n′)∗. Since this is an algebraic action,
all Ad∗(G′)-orbits in (n′)∗ are locally closed in the Zariski topology, and therefore also
in the Hausdorff topology. For ρ ∈ N̂′ let f ∈ (n′)∗ such that ρ = πf . Then the R-orbit
R(ρ) ⊆ N̂′ corresponds to the Ad∗(G′)-orbit of f under the Kirillov correspondence
for N̂′ (e.g., see [42, §4]). Since the Kirillov correspondence is a homeomorphism be-
tween (n′)∗/ Ad∗(N′) and N̂′, it follows that N̂′/R is homeomorphic to (n′)∗/ Ad∗(G′).
In particular, it follows that every R-orbit in N̂′ is locally closed. It follows that the ac-
tion of R on N̂′ and on Â ⊆ N̂′ is countably separated (see Remark 3.5).

By Glimm’s Theorem ([24, Theorem]) we obtain an ascending family {Uν}ν of
open subsets of N̂′ satisfying the conditions as described in item (3) of Remark 3.5.
Moreover, since all difference sets Uν+1 � Uν are orbit spaces of locally compact sub-
sets of the totally disconnected space (n′)∗, it follows that all these difference sets are
totally disconnected, and hence the Hausdorff quotients (Uν+1 � Uν)/R are totally
disconnected. Thus, taking the intersections UA

ν := Â ∩ Uν, we obtain an ascending
family {UA

ν }ν of Â satisfying the conditions of Theorem 3.6.
Using Theorem 3.6 the proposition will follow as soon as we have checked that

for all ρ ∈ C∗(N′) (and hence for all ρ ∈ Â ⊆ C∗(N′)), the stabilizer Rρ of ρ in R
satisfies BC for K (Hρ). By [19, Lemme 12], if ρ = πf for some f ∈ (n′)∗, then
Rρ = G′

f ∩ R, where G′
f denotes the stabilizer of f in G′. Since the action of G′

on (n′)∗ is algebraic, G′
f and hence Rρ is a k-group with dimension strictly smaller

than dim(G). Since the action of Rρ on K (Hρ) is clearly unipotent, the result follows
from our induction assumption. 	


7. Relations to the K-theory of the maximal compact subgroup

In this section we want to describe the relations between the K-theory of C∗
r (G)

and the K-theory of C∗(L), where L denotes the maximal compact subgroup of the
almost connected group G (we chose the letter L to avoid confusion). We should men-
tion that all results presented here (except the conclusions drawn out of our main theo-
rem) are well known, but since they have important impact on our results, we found
it useful to give at least a brief report. The main references for these results are [17,
30,31], and we refer especially to [17, §4] for a more geometric discussion of some of
the results presented in this section.
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If G and L are as above, it follows from work of Abels (see [1]) that G/L is
a universal proper G-space. Thus we have

Ktop
∗ (G; A) ∼= KKG

∗ (C0(G/L), A)
resG

L∼= KKL
∗(C0(G/L), A),

where the second isomorphism follows from [32, Corollary to Theorem 5.7]. Also by
the work of Abels [1], G/L is a Riemannian manifold which is L-equivariantly diffeo-
morphic to the tangent space V := TeL equipped with the adjoint action of L on V. It
follows then from Kasparov’s work in [30] (see [11, Lemma 7.7] for a more extensive
discussion) that tensoring with C0(V) gives a natural isomorphism

σC0(V) : KKL
∗(C0(V), A) → KKL

∗(C0(V) ⊗ C0(V), A ⊗ C0(V)),

and by Kasparov’s Bott-periodicity theorem (see [30, Theorem 7 of §5]) we know that
C0(V) ⊗ C0(V), equipped with the diagonal action, is KKL-equivalent to C (but see
also the discussion below). Thus we obtain the following chain of isomorphisms

KKL
∗(C0(G/L), A) ∼= KKL

∗(C0(V), A)
σC0(V)∼= KKL

∗(C0(V)⊗C0(V), A⊗C0(V))

∼= KKL
∗(C, A⊗ C0(V)) = K∗

(

(A⊗C0(V)) � L
)

,

where the last isomorphism follows from the Green-Julg theorem. Hence, as a direct
consequence of Theorem 1.2 we can deduce

Theorem 7.1. — Assume that G is an almost connected (second countable) group with max-

imal compact subgroup L. Let K = K (H) be the algebra of compact operators on the separable

Hilbert space H equipped with any action of G. Then K∗(K �r G) is naturally isomorphic to

K∗
(

(K ⊗C0(V)) � L
)

.

By Kasparov’s Bott-periodicity theorem (see [30, Theorem 7 of §5]) it follows
that C0(V) is KKL-equivalent to the graded complex Clifford algebra Cl(V) (with re-
spect to a compatible inner product on V), equipped with the action of L induced by
the given action on V. So we can replace C0(V) by the graded C∗-algebra Cl(V), but
then we have to use graded K-theory!

Let us look a bit closer to the implications of this Bott-periodicity theorem. As-
sume for the moment that V is even dimensional and that the action of L on V
preserves a given orientation of V, i.e., the action factors through a homomorphism
ϕ : L → SO(V). We have a central extension

0 → T → Spinc(V) → SO(V) → 0
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of SO(V), where Spinc(V) ⊆ Cl(V) denotes the group of complex spinors (e.g. see [2]).
The corresponding action of L on Cl(V) is given by the homomorphism

L → SO(V) ∼= Spinc(V)/T = Ad(Spinc(V)).

Now choose a fixed orthonormal base {e1, ..., en} of V. Then the grading of Cl(V)

is given by conjugation with the symmetry J = e1 · e2 · · · en ∈ Cl(V). One can show
that, up to a sign, J does not depend on the choice of this basis, and the sign only
depends on the orientation of the basis. In particular, J is invariant under conjugation
with elements in Spinc(V). From this it follows that the graded L-algebra Cl(V) is
L-equivariantly Morita equivalent to the trivially graded L-algebra Cl(V) – a Morita
equivalence is given by the module Cl(V) with given L-action and grading automor-
phism given by left multiplication with J. Moreover, since n = dim(V) is even, Cl(V)

is isomorphic to the simple matrix algebra M2n(C).
Assume now that dim(G/L) is odd. Then, replacing G by G × R (with trivial

action of R on K ) we get

K∗(K �r G) = K∗+1(K �r (G × R)).

Moreover, if the action of L on V = TeL is orientation preserving, the same is true
for the resulting action of L on V × R, which we identify with the tangent space
at eL in the group G × R. Hence, modulo a dimension shift, we can use the above
considerations also for this case. Thus, as a consequence of Theorem 7.1 we obtain

Theorem 7.2. — Assume that G is an almost connected group with maximal compact

subgroup L such that the adjoint action of L on V = TeL is orientation preserving. Then there are

natural isomorphisms

K∗(K �r G) ∼= K∗
(

(K ⊗ Cl(V)) � L
)

if dim(G/L) is even and

K∗+1(K �r G) ∼= K∗
(

(K ⊗ Cl(V × R)) � L
)

if dim(G/L) is odd. Here all algebras are trivially graded!

Perhaps, the above result has its most satisfying formulation if translated into the
language of twisted group algebras. For this let ω ∈ Z2(G, T) denote a representative
of the Mackey obstruction for the action of G on K (see the discussion preceding
Lemma 2.4). Then K �r G is isomorphic to C∗

r (G, ω)⊗K , where C∗
r (G, ω) denotes

the reduced twisted group algebra C∗
r (G, ω) (e.g., see [25, Theorem 18]). Recall that

C∗
r (G, ω) can be defined either as the reduced twisted crossed product C �r (Gω, T)

with respect to the twisted action (id, χ1) (which, by Lemma 2.4, is Morita equivalent
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to the given action on K ), or as the completion of L1(G) ⊆ B(L2(G)), where L1(G)

acts on L2(G) by the twisted convolution

f ∗ ξ(s) =
∫

G
f (t)ω(t, t−1s)ξ(t−1s) dt, f ∈ L1(G), ξ ∈ L2(G).

Up to isomorphism, C∗
r (G, ω) only depends on the class [ω] ∈ H2(G, T). Conversely,

given any cocycle, the representation λω : G → U(L2(G)) given by
(

λω(t)ξ
)

(s) = ω(t, t−1s)ξ(t−1s)

determines an action of G on K (L2(G)) with Mackey obstruction represented by ω.
Note that the Mackey obstruction for the action of L on K is given by the

restriction of ω to L and the obstruction for the action of L on Cl(V) ∼= M2n(C) (if
dim(V) is even) is given by the pull-back, say µL, to L of a cocycle representing the
central extension

1 → T → Spinc(V) → SO(V) → 1.

Since Spinc(V) ∼= (T × Spin(V))/Z2 (diagonal action), where

1 → Z2 → Spin(V) → SO(V) → 1

is the extension given by the real group of spinors, the cocycle µL can be chosen to
take values in the subgroup Z2 ⊆ T, and therefore µ2

L = 1. Note that µL is trivial
if and only if the homomorphism ϕ : L → SO(V) factorizes through Spinc(V) (i.e.,
if and only if G/L carries a G-invariant Spinc-structure). If dim(V) is odd, we may
define µL in the same way as above, noticing that this cocycle is equivalent to the
pull back of (a cocycle representing) the extension

1 → T → Spinc(V × R) → SO(V × R) → 1,

which follows from the fact that L acts trivially on R! Since the Mackey obstruction
of a tensor product of actions is the product of the Mackey obstructions of the factors,
we obtain

Theorem 7.3. — Assume that G is an almost connected group with maximal compact sub-

group L such that the adjoint action of L on V = TeL is orientation preserving. Let n = dim(G/L)

and let ω ∈ Z2(G, T) be any cocycle on G. Then

K∗
(

C∗
r (G, ω)

) ∼= K∗+n

(

C∗(L, ω · µL)
)

.

In particular, in the special case where ω is trivial, we obtain an isomorphism

K∗
(

C∗
r (G)

) ∼= K∗+n

(

C∗(L, µL)
)

.
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Again, µL is trivial if and only if G/L carries a G-invariant Spinc-structure. In
general, since C∗(L, ω · µL) is the quotient of the C∗-group algebra of the central
extension Lω·µL of L by T corresponding to the character χ1 of T, it follows that
C∗(L, ω · µL) is a direct sum of (possibly infinitely many) matrix algebras. Thus as
a direct corollary of the above result we obtain:

Corollary 7.4. — Assume that G, L and ω are as in Theorem 7.3. Then K0+n(C∗
r (G, ω))

is isomorphic to a free abelian group in at most countably many generators and K1+n(C∗
r (G, ω))

= {0}.
This result has interesting consequences towards the question of existence of

square integrable representations of connected unimodular Lie groups. In fact, com-
bining the above corollary with [50, Theorem 4.6] gives:

Corollary 7.5 (cf [50, Corollary 4.7]). — Let G be a connected unimodular Lie group.

Then all square-integrable factor representations of G are type I. Moreover, G has no square-integrable

factor representations if dim(G/L) is odd, where L denotes the maximal compact subgroup of G.

We refer to [50] for more detailed discussions on this kind of applications of
the positive solution of the Connes-Kasparov conjecture. Note that Theorem 7.3 and
Corollary 7.4 do not hold in general without the assumption that the action of L on
V = TeL is orientation preserving. In fact an easy six-term-sequence argument shows
that it cannot hold for the group G = R � Z2, where Z2 acts on R by reflection
through 0.
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