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1. Introduction

In this paper we consider cohomological operations in the motivic cohomology
of smooth simplicial schemes over a perfect field k. For the most part we work with
cohomology with coefficients in Z/l where l is a prime different from the characteristic
of k. For such l we construct the reduced power operations

Pi : H∗,∗(−, Z/l) → H∗+2i(l−1),∗+i(l−1)(−, Z/l)

and prove the motivic analogs of the Cartan formulas and the Adem relations. We
also describe the subalgebra in the algebra of all (bistable) operations in the motivic
cohomology with Z/l-coefficients generated by operations Pi, the Bockstein homo-
morphism and the multiplication by the motivic cohomology classes of Spec(k). For
odd l this algebra is isomorphic to the twisted tensor product of the usual topological
Steenrod algebra with the motivic cohomology ring of the point H∗,∗ with respect
to the action of the motivic Steenrod operations on H∗,∗. For l = 2, the situation
is more complicated since the motivic Adem relations involve nontrivial coefficients
from H∗,∗.
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To construct the reduced power operations we follow the approach of [8] where
one first defines the total power operation and then uses the computation of the co-
homology of the product of a space with the classifying space of the symmetric group
Sl to obtain the individual power operations. We also use the ideas of [8] for the proofs
of the relations between power operations and the Bockstein homomorphism, the Car-
tan formula and the Adem relations. Our construction of the total power operations is
not directly similar to any of the standard topological constructions1. One would get its
direct topological analog if one unfolded, to the space-level, the description of power
operations in terms of E∞-structure on the Eilenberg-MacLane spectra. In particular,
the Thom isomorphism in the motivic cohomology and the Euler classes of vector
bundles figure prominently in most of our computations.

Several important results on operations in motivic cohomology are not discussed
in this paper and will be proved in a sequel. We do not show that the operations Pi

are unique. We do not show that the operations Pi and the Bockstein homomorphism
generate all bistable cohomological operations. Finally, we do not prove that bistable
cohomological operations coincide with the endomorphisms of the Eilenberg-Maclane
spectrum in the stable category.

Modulo this identification of bistable operations with the endomorphisms of
HZ/l , the present paper contains proofs of the following results used in [10] for the
proof of the Milnor conjecture: [10, Theorem 3.14 p. 31] is Propositions 3.6 and 3.7;
[10, Theorem 3.16 p. 32] is Theorem 9.5, Lemma 9.8, Proposition 9.7 and Lem-
ma 9.6. As Example 13.7 shows, the inductive construction used in [10] to define the
operations Q i is incorrect unless k contains a square root of −1. Instead we define
them in a different way and prove [10, Theorem 3.17 p. 32] in Proposition 13.4 and
Proposition 13.6. This paper also contains all the results about cohomological opera-
tions necessary for the proof of the Milnor Conjecture given in [15].

The first draft of this paper was written in April 1996 i.e., exactly five years ago.
During these years I discussed problems related to operations in motivic cohomology
with a lot of people and I am greatful to all of them for these conversations. I would
like to especially thank Mike Hopkins, Fabien Morel, Charles Rezk and Alexander
Vishik. I would also like to thank the referee and Peter May for correcting several
mistakes in the previous version of the paper.

This paper was written while I was a member of the Institute for Advanced
Study in Princeton and, part of the time, an employee of the Clay Mathematics Insti-
tute. I am very grateful to both institutions for their support.

Conventions used in the paper. — All schemes are separated; the base field is always
perfect; starting from Section 9, l is a prime different from the characteristics of the
base field.

1 The construction of the total power operations given here is also slightly different from the construction
given in my unpublished notes on the operations written in 1996.
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2. Motivic cohomology and operations

For any p, q ∈ Z and any abelian group A the motivic cohomology of a smooth
scheme X are defined as hypercohomology

Hp,q(X, A) := Hp(XNis, A(q))

where A(q) = Z(q) ⊗ A and Z(q) is a certain complex of sheaves of abelian groups
on (Sm/k)Nis (see [16] or [4]). Let K(p, q, A) be the simplicial abelian sheaf corres-
ponding to the complex A(q)[p]. Considered as a pointed simplicial sheaf of sets it
defines an object of the pointed motivic homotopy category H•(k). The simplicial
sheaves K(p, q, A) are A1-local (see [7] for the definition and [12] for the proof ) and
for a smooth scheme X one has

HomH•(k)(X+, K(p, q, A)) = Hp,q(X, A)

i.e. the objects K(p, q, A) represent motivic cohomology on H•. For any pointed sim-
plicial sheaf F• we define its reduced motivic cohomology by

H̃p,q(F•, A) := HomH•(k)(F•, K(p, q, A)).

Let R be a commutative ring with unit. Then R(q) are complexes of sheaves of free R-
modules and the external product of finite correspondences together with some stan-
dard homological algebra allows one to construct multiplication maps

R(q) ⊗ R(q′) → R(q + q′)

which define, through the Eilenberg-MacLane transformation, morphisms of pointed
sheaves

K(p, q, R) ∧ K(p′, q′, R) → K(p + p′, q + q′, R).(2.1)

Recall that for a smooth scheme X over k we denote by Ztr(X) the presheaf on Sm/k
which takes U to the group of cycles on U × X which are finite and equidimensional
over U (see [4]). For an abelian group A we denote by Atr(X) the presheaf Ztr(X)⊗A.

Let Kn,A be the pointed sheaf of sets associated with the presheaf

Kpre
n,A : U 	→ Atr(An)(U)/Atr(An − {0})(U)

where the quotient is the quotient in the category of abelian groups. A section of Kpre
n

on U is an equivalence class of cycles on U × An with coefficients in A which are
equidimensional and finite over U. If R is a commutative ring then we have the mul-
tiplication maps

Kn,R ∧ Km,R → Kn+m,R(2.2)
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which send the pair of cycles Z, Z′ to the external product cycle Z⊗Z′. The following
result is proved in [12].

Theorem 2.1. — There are A1-weak equivalences Kn,R → K(2n, n, R) which are com-

patible with the multiplication maps.

For pointed sheaves F• , G• the morphisms (2.1) define multiplication maps

H̃∗,∗(F•, R) ⊗ H̃∗,∗(G•, R) → H̃∗,∗(F• ∧ G•, R)(2.3)

which we denote, on elements, by w ⊗ w′ 	→ w ∧ w′. If G• = F• the composition of
(2.3) with the map defined by the diagonal F• → F• ∧ F• defines multiplication maps

H̃∗,∗(F•, R) ⊗ H̃∗,∗(F•, R) → H̃∗,∗(F•, R)(2.4)

which we denote on elements by w ⊗ w′ 	→ ww′.

Theorem 2.2. — The morphisms (2.4) define, for any F•, a structure of an associative

R-algebra on H̃∗,∗(F•, R) which is graded commutative with respect to the first grading.

Proof. — Standard arguments from homological algebra together with the fact
that complexes R(q) do not have cohomology in dimensions > q imply that it is suffi-
cient to check that the multiplication maps

K(2q, q, R) ∧ K(2q′, q′, R) → K(2(q + q′), q + q′, R)

are associative and commutative in H•. By Theorem 2.1 it is sufficient to check that
the multiplication maps (2.2) are commutative and associative in H•. The associativ-
ity condition clearly holds on the level of sheaves. To prove commutativity we should
show that permutation of coordinates on An acts trivially on Kn,R. The action of the
permutation group on Kn,R extends to an action of GLn. Two matricies with the same
determinant can be connected by an A1-path in GLn and therefore the correspond-
ing automorphisms are A1-homotopic. In particular, the transposition of two coordi-
nates is A1-homotopic to the automorphism given by (x1, ..., xn) 	→ (−x1, ..., xn). It
is therefore sufficient to check that this automorphism is the identity in H•. Con-
sider for simplicity of notations the case of one variable i.e. the automorphism φ of
Ztr(A1)/Ztr(A1 − {0}) defined by x 	→ −x. The sheaf Ztr(A1)/Ztr(A1 − {0}) is isomor-
phic to the sheaf Ztr(P1)/Ztr(P1 −{0}) which is weakly equivalent to Ztr(P1)/Z where
the embedding Z → P1 corresponds to the point ∞. Under this weak equivalence our
automorphism becomes the automorphism of Ztr(P1)/Z defined by z 	→ −z. Denote
this automorphism by ψ. One can easily see now that to prove that φ is identity in
H• it is sufficient to construct a section h of Ztr(P1) on P1 × A1 such that

hP1×{1} − hP1×{−1} = Id − ψ.(2.5)



REDUCED POWER OPERATIONS IN MOTIVIC COHOMOLOGY 5

Let ((z0 : z1), t) be the coordinates on P1 × A1 and (x0 : x1) the coordinates on P1.
Then the cycle of the closed subscheme in P1 × A1 × P1 given by the equation z0x2

1 +
tz1x0x1 + (t2 − 1)z1x2

0 defines a section of Ztr(P1) on P1 × A1 which satisfies (2.5).

Denote by H∗,∗ the ring

H∗,∗(Spec(k), R) = H̃∗,∗(S0, R).

Then for any F• the multiplication maps (2.3) define a structure of H∗,∗-module on
H̃∗,∗(F•, R). Theorem 2.2 immediately implies the following fact.

Corollary 2.3. — The multiplication map (2.4) factors through an H∗,∗-module map

H∗,∗(F•, R) ⊗H∗,∗ H∗,∗(F•, R) → H∗,∗(F•, R).(2.6)

Recall that we let S1
s denote the simplicial circle and S1

t the pointed sheaf cor-
responding to (A1 − {0}, {1}). We have canonical classes

σs ∈ H̃1,0
(
S1

s , R
)

σt ∈ H̃1,1
(
S1

t , R
)
.

Multiplication with these classes gives us suspension morphisms

H̃p,q(F•, R) → H̃p+1,q
(
F• ∧ S1

s , R
)

(2.7)

H̃p,q(F•, R) → H̃p+1,q+1
(
F• ∧ S1

t , R
)
.(2.8)

Theorem 2.4. — The suspension morphisms are isomorphisms.

Proof. — Let Z̃ be the functor from sheaves of pointed sets to sheaves of abelian
groups which sends a sheaf of sets to the freely generated sheaf of abelian groups with
the distinguished point set to be zero. Let further N be the normalized chain complex
functor from simplicial abelian sheaves to the complexes of abelian sheaves. Then for
any F• one has

H̃p,q(F•, A) = HomD(NZ̃(F•), A(q)[p])(2.9)

where D is the derived category of complexes of abelian sheaves in the Nisnevich top-
ology (see [12, Prop. 2.3.3]). The fact that (2.7) is an isomorphism follows from the
fact that NZ takes smash product to tensor product (modulo a quasi-isomorphism) and
that NZ(S1

s ) is quasi-isomorphic to Z[1].
To show that (2.8) is an isomorphism consider the suspension morphism2

(−) ∧ σT : H̃p,q(F•, A) → H̃p+2,q+1(F• ∧ T, A)

2 For another proof see [13].
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given by multiplication with the class σT ∈ H̃2,1(T). By [7] there is an A1-weak equiv-
alence S1

s ∧ S1
t → T = hA1/h(A1−{0}) and one verifies easily that with respect to this

isomorphism one has σs ∧ σt = σT. Since the morphism (2.7) is an isomorphism it is
sufficient to show that (−) ∧ σT is an isomorphism. A standard argument allows one
to reduce the problem to the case when F• = (hU)+ where we let hU denote the sheaf
represented by a smooth scheme U over k. Open excision implies that T = P1/A1 and
we get a split short exact sequence

0 → H̃∗,∗((hU)+ ∧ T, A) → H∗,∗(U × P1, A) → H∗,∗(U × A1, A) → 0.

Consider the morphism of sequences (we omit the coefficients to simplify the nota-
tions):

H∗−2,∗−1(U)
(−)∧σ−−−→ H∗,∗(U × P1) −−−→ H∗,∗(U × A1)



�



�



�

H̃∗,∗((hU)+ ∧ T) −−−→ H∗,∗(U × P1) −−−→ H∗,∗(U × A1)

(2.10)

where σ is the restriction of σT to P1, the first vertical arrow is (−) ∧ σT and the rest
of vertical arrows are identities. The fact that (−)∧σT is an isomorphism follows now
from Lemma 2.5 below.

Lemma 2.5. — The upper sequence in (2.10) is a short exact sequence.

Proof. — By [14, Cor. 2] we have natural isomorphisms

Hp,q(U, Z) → CHq(U, 2q − p)

where the target are Bloch’s higher Chow groups and the proof immediately shows
that we have similar isomorphisms for all groups of coefficients

Hp,q(U, A) → CHq(U, 2q − p, A).(2.11)

Consider the diagram:

Hp−2,q−1(U)
(−)∧σ−−−→ Hp,q(U × P1) −−−→ Hp,q(U × A1)



�



�



�

CHq−1(U, 2q−p) −−−→ CHq(U × P1, 2q−p) −−−→ CHq(U × A1, 2q−p)

(2.12)

where in the lower line the first morphism is given by covariant functoriality for the
closed embedding U → U × P1 at the infinity and the second morphism is given
by the contravariant functoriality for the open embedding U × A1 → U × P1. One
verifies using the explicit form of the isomorphism (2.11) that both squares in (2.12)
commute. We conclude that the upper line is a short exact sequence since the lower
one is a short exact sequence by Bloch’s Localization Theorem [1].



REDUCED POWER OPERATIONS IN MOTIVIC COHOMOLOGY 7

We define a cohomological operation of bidegree (i, j) in motivic cohomology
with coefficients in R as a collection of natural transformations of functors on H•(k)

φp,q : H̃p,q(−, R) → H̃p+i,q+j(−, R).

An operation φ is called bistable if it commutes with the suspension morphisms i.e. if
for any x ∈ H̃p,q one has

φp+1,q(x ∧ σs) = φp,q(x) ∧ σs

φp+1,q+1(x ∧ σt) = φp,q(x) ∧ σt.
(2.13)

Denote by σT the canonical element in H̃2,1(T, R) where T = A1/A1 − {0}.

Proposition 2.6. — There is a bijection between the set of bistable cohomological operation

of bidegree (i, j) and the collections of natural transformations

φn : H̃2n,n(−, R) → H̃2n+i,n+j(−, R)

given for all n ≥ 0 such that

φn+1(x ∧ σT) = φn(X) ∧ σT.(2.14)

Proof. — Since T = S1
s ∧ S1

t and σT = σs ∧ σt , the restriction of a bistable
operation to groups of degree (2n, n) satisfies (2.14). On the other hand, for a family
φn we can construct φp,q as follows. For F• we have

H̃p,q(F•) = H̃p+a+b,q+b
(
Sa

s ∧ Sb
t ∧ F•

)

taking a = 2q − p + b and taking b to be greater or equal to max{0,−q, p −2q} we get:

H̃p,q(F•) = H̃2(q+b),q+b
(
Sa

s ∧ Sb
t ∧ F•

)

where a, b, q + b ≥ 0. Using these isomorphisms, the operation φq+b defines a map

φp,q : H̃p,q(F•) → H̃p+i,q+j(F•).

The condition (2.14) implies that this map does not depend on the choice of b and
that the maps φp,q all (p, q) satisfy (2.13).

Combining Theorem 2.1and Proposition 2.6 we get
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Proposition 2.7. — There is a bijection between the set of bistable cohomological operations

of bidegree (i, j) and collections of motivic cohomology classes φn ∈ H̃2n+i,n+j(Kn,R, R) such that

the restriction of φn+1 to Kn,R ∧ T is φn ∧ σT.

Let c : S1
s → S1

s ∨ S1
s be the map in H• corresponding to the usual codiagonal

on the (simplicial) circle.

Lemma 2.8. — Let F• be a pointed simplicial sheaf. Then for any p, q the map

H̃p,q
(
S1

s ∧ F•
) ⊕ H̃p,q

(
S1

s ∧ F•
) → H̃p,q

(
S1

s ∧ F•
)

defined by the codiagonal c is of the form (a, b) 	→ a + b.

Proof. — It follows from the fact that this map is a homomorphism which is the
identity on each of the factors.

Corollary 2.9. — Let α : H̃p,q → H̃r,s be a cohomological operation. Then for any pointed

simplicial sheaf F• the map:

H̃p,q
(
S1

s ∧ F•
) → H̃r,s

(
S1

s ∧ F•
)

defined by α is a homomorphism of abelian groups.

Proof. — Follows from Lemma 2.8 using the naturality of α with respect to the
map defined by the codiagonal c.

Corollary 2.10. — Let α : H̃∗,∗ → H̃∗+i,∗+j be a bistable cohomological operation. Then

for any F• the map

H̃∗,∗(F•) → H̃∗+i,∗+j(F•)

defined by α is a homomorphism of abelian groups.

Proof. — Follows from Corollary 2.9.

3. Operations H̃2d,d → H̃2d+∗,d+i for i ≤ 0

In this section it will be convenient for us to use a different model for the space
Kn,A. We define K′

n,A as the sheaf which sends U to the group of cycles with coef-
ficients in A on U × An which are equidimensional and of relative dimension zero
over U. The main theorem of [14] implies the following result.

Theorem 3.1. — The pointed sheaves Kn,A and K′
n,A are isomorphic in H•.
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Given a pointed sheaf F define its standard simplicial resolution as the simplicial
sheaf G•F with terms of the form

GiF = (
∐

X0→...→Xi; f ∈F(Xi)−{∗}
X0)+

where the coproduct is taken over all sequences of morphisms of length i in some
small subcategory of Sm/k which is equivalent to Sm/k (see [12] for more details). One
verifies easily that the obvious morphism G•F → F is a weak equivalence of pointed
simplicial presheaves.

For a cycle Z on X denote by Supp(Z) the closure of the set of points which
appear in Z with nonzero multiplicity. Consider G•K′

n,A ×An. For each i let Fn,i be the
open subset in

GiK′
n,A × An = (

∐

X0→...→Xi;Z∈K′
n,A(Xi)−{0}

X0 × An)+

whose component corresponding to (X0 → ... → Xi; Z) is the complement to the
closed subset X0 ×Xi Supp(Z). The following lemma is straightforward.

Lemma 3.2. — The collection of subsheaves Fn,i forms a simplicial subsheaf in

G•K′
n,A × An.

Proposition 3.3. — The composition Fn,• → G•K′
n,A × An → K′

n,A is A1-homotopic to

the zero morphism.

Proof. — To prove the proposition it is sufficient to construct for any X and any
Z in Hom(X, K′

n,A) = K′
n,A(X) an A1-homotopy from the map

X × An − Supp(Z) → X → K′
n,A

to zero such that these homotopies are natural in X. Consider the map

h : (X × An − Supp(Z)) × An × A1 → (X × An − Supp(Z)) × An

which sends (x, u, v, t) to (x, u, u(1 − t) + vt). This map is flat over the complement
to X × ∆(An) in the target. Consider the flat pull-back p∗(Z) of Z along the map
p : X × An − Supp(Z) → X. It is a cycle on the target of h and the support of this
cycle does not intersect X × ∆(An). Therefore, the flat pull-back h∗(p∗(Z)) is defined.
One verifies easily that this cycle is equidimensional over (X × An − Supp(Z)) × A1 of
relative dimension zero and hence defines a map:

H : (X × An − Supp(Z)) × A1 → K′
n,A.

The restriction of h∗(p∗(Z)) to t = 0 is p∗(Z) and the restriction to t = 1 is the zero
cycle. Therefore, H is a homotopy of the required form. It is clear that our construc-
tion is functorial in X.
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Corollary 3.4. — The object K′
n,A is a retract, in H•, of G•K′

n,A × An/Fn,•.

We will often use below the following result.

Lemma 3.5. — Let k be a field, X be smooth scheme over k and Z a closed subscheme in

X everywhere of codimension at least c. Then H̃∗,q(X/(X − Z)) = 0 for q < c and

H̃p,c(X/(X − Z), A) =
{

⊕z∈ZcA for p = 2c
0 for p = 2c

where Zc is the set of points of Z which are of codimension c in X.

Proof. — For a closed subset Z′ in Z we have a long exact sequence which relates
the motivic cohomology of X/(X − Z), X/(X − Z′) and (X − Z′)/(X − Z). Since the
base field is perfect this implies by induction on dim(Z) that it is sufficient to prove
the lemma for Z smooth. In this case the result follows from the Gysing exact triangle
(see e.g. [11, Prop. 3.5.4, p. 221]).

Proposition 3.6. — For any n ≥ 0, m < n and any abelian groups A, B one has

H̃∗,m(Kn,A, B) = 0.

Proof. — Follows immediately from Corollary 3.4 and Lemma 3.5.

Proposition 3.7. — For any n > 0 and any abelian groups A, B one has

H̃p,n(Kn,A, B) =
{

Hom(A, B) for p = 2n
0 for p < 2n.

Proof. — The fact that H̃p,n(Kn,A, B) = 0 for p < 2n follows immediately from
Corollary 3.4 and Lemma 3.5. Consider the case p = 2n. We have an obvious map
from Hom(A, B) to H̃2n,n(Kn,A, B). On the other hand, an element of H̃2n,n(Kn,A, B)

considered as an operation defines a map

A = H̃2n,n(Tn, A) → H̃2n,n(Tn, B) = B.

Since T = S1
s ∧ S1

t and n > 0, Corollary 2.9 implies that this map is a homomorph-
ism. Therefore, it is sufficient to show that an element α of H̃2n,n(Kn,A, B) which acts
trivially on H̃2n,n(Tn, A) is zero.

By Corollary 3.4 α is determined by its restriction to G•K
′
n,A × An/Fn,• . Motivic

cohomology of weight n of all the terms of this simplicial sheaf but the zero one are
trivial by Lemma 3.5. Together with the spectral sequence which starts from cohomo-
logy of the terms of a simplicial object and converges to the cohomology of the object
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itself we conclude that the motivic cohomology of G•K
′
n,A × An/Fn,• of the weight n

coincide with the motivic cohomology of its zero terms. We conclude that α is deter-
mined by its action on objects of the form X × An/(X × An − Z) where Z is a closed
subset equidimensional of relative dimension 0 over An.

Let Zsing be the closed subset of singular points of Z. Since k is perfect, Zsing is of
codimension at least n+1 in X×An. Lemma 3.5 implies that the motivic cohomology
of weight n of X × An/(X × An − Z) map to the motivic cohomology of weight n of
(X × An − Zsing)/(X × An − Z) isomorphically. It remains to show that α acts trivially
on

H̃2n,n((X × An − Zsing)/(X × An − Z), A).

The normal bundle to Z − Zsing in X × An − Zsing is trivial. Hence, by the homotopy
purity theorem [7], we have a weak equivalence

(X × An − Zsing)/(X × An − Z) = Σn
T((Z − Zsing)+)

let Zi, i = 1, ..., m be the connected components of Z − Zsing. Then we have a map

Σn
T((Z − Zsing)+) → ∨m

i=1Tn

and H j,0(Zi) is non-zero only for j = 0 where it is A, this map defines an isomorphism
on H̃2n,n(−, A). We conclude that α acts by zero since by assumption it acts by zero
on H̃2n,n(Tn, A).

4. Thom isomorphism and Euler classes

If E is a vector bundle and P(E) is the projective bundle defined by E then the
line bundle O(−1) on P(E) gives a class in H2,1(P(E), Z) which we denote by σ . The
following result is proved in [16].

Theorem 4.1. — For any smooth X over k and a vector bundle E on X of dimension d ,

the elements 1, σ, ..., σ d−1 form a basis of the H∗,∗-module H∗,∗(P(E), Z).

The key ingredient of the proof of this theorem is the following lemma which
we will also use directly.

Lemma 4.2. — Let 0 be the image of the point (0, ..., 0) under the standard embedding

An → Pn. Let further f : Pn → Tn be the composition

Pn → Pn/(Pn − 0) ∼= An/(An − 0) = Tn

and t the tautological class in H̃2n,n(Tn, Z). Then f ∗(t) = (−σ)n.
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Recall that for a vector bundle E on X we denote by Th(E) the pointed sheaf
E/(E − z(X)) where z : X → E is the zero section. Consider the projective bundle
P(E ⊕ O). We have two morphisms

X = P(O) → P(E ⊕ O)

P(E) → P(E ⊕ O).

The complement to the image of the second morphism is E and open excision implies
that

Th(E) = P(E ⊕ O)/P(E ⊕ O) − X.

On the other hand the map P(E) → P(E⊕O)−X is locally of the form Pn−1 → Pn−pt
and therefore it is an A1-weak equivalence. We conclude that the morphism

P(E ⊕ O)/P(E) → Th(E)

is a weak equivalence. If f : E → E′ is a monomorphism of vector bundles and
P( f ) : P(E) → P(E′) is the corresponding morphism of projective bundles then
P( f )∗(O(−1)) = O(−1). Together with Theorem 4.1 this implies that the map on
motivic cohomology defined by P(E) → P(E ⊕ O) is a split mono and that there is
a unique class in H̃2d,d(Th(E), Z) whose image in the cohomology of P(E ⊕ O) is of
the form (−σ)d + ∑

i<d aiσ
i. This class is called the Thom class of E and denoted tE.

The obvious “diagonal” map d : Th(E) → X+ ∧ Th(E) defines multiplication
(x, y) 	→ d∗(x ∧ y) with x ∈ H∗,∗(X), y ∈ H̃∗,∗(Th(E)) and d∗(x ∧ y) ∈ H̃∗,∗(Th(E)). By
abuse of notation we will write xy instead of d∗(x ∧ y).

Proposition 4.3. — For any pointed simplicial sheaf F• the map a 	→ atE is an isomorph-

ism from H̃∗,∗(F• ∧ X+) to H̃∗+2d,∗+d(F• ∧ Th(E)).

Proof. — A standard argument shows that it is sufficient to prove the proposition
for F• = pt+. In this case it follows immediately from out definition of the Thom class
and the projective bundle theorem.

Corollary 4.4. — The Thom class tE is a unique class in H̃2d,d(Th(E)) whose restriction

to any generic point of X is the tautological class in H̃2d,d(Td).

Proof. — The fact that the restriction of tE to the generic point is the tautological
class follows from Lemma 4.2. The fact that tE is determined by this condition follows
from Proposition 4.3 and the fact that if j : ∐

Spec(Ki) → X is the embedding of the
generic points of X, then j∗ defines an isomorphism on H0,0.

For a vector bundle E define the Euler class e(E) in H2d,d(X) as the restriction
of tE with respect to the zero section map X+ → Th(E).

Lemma 4.5. — Let L be a line bundle. Then e(L) coincides with the canonical class of

L in H2,1. In particular, for two line bundles L, L′ one has e(L ⊗ L′) = e(L) + e(L′).
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Proof. — Let −σ + c be the image of tL in H2,1(P(L ⊕O)). The restriction of σ

to P(O) is O(−1) for O i.e. zero. Therefore, e(L) = c. On the other hand c is defined
by the condition that the restriction of −σ + c to P(L) is zero. Since the restriction of
σ is the class of L we conclude that e(L) = L.

Lemma 4.6. — Let E, E′ be two vector bundles. Then e(E ⊕ E′) = e(E)e(E′).

Proof. — Corollary 4.4 implies that the Thom class for the sum of two bundles
is the smash product of Thom classes. In particular, e(E ⊕ E′) = e(E)e(E′).

Lemma 4.7. — Let f : E → E′ be a monomorphism of vector bundles on a quasi-

projective scheme X such that E′/E is again a vector bundle and th( f ) : Th(E) → Th(E′) be

the corresponding map of Thom spaces. Then th( f )∗(t′E) = tEe(E/E′).

Proof. — Since X is quasi-projective we can use the Jouanolou trick to find an
affine torsor X′ → X such that X′ is affine. Since motivic cohomology of X and X′

are the same it is sufficients to prove the lemma for an affine X. Over an affine X the
sequence E → E′ → E′/E splits and we have E′ = E ⊕ E′/E. Let

d : Th(E ⊕ E′/E) → Th(E) ∧ Th(E′/E)

be the obvious morphism. Corollary 4.4 implies that tE′ = d∗(tE ∧ tE′/E) which in turn
implies the statement of the lemma.

5. Total power operations

Construction 5.1. — Let E, L be vector bundles on X and φ : E ⊕ L → ON an
isomorphism. For a cycle Z on E with coefficients in a commutative ring R which is
equidimensional and finite over X consider the cycle on L×X E×X L whose fiber over
a point (x, l) of L is Zx × l. One verifies easily that this cycle is equidimensional and
finite over L. Identifying E ×X L with AN

X by means of φ we get a section of Ztr(AN)

on L. The restriction of this section to L − z(X) where z : X → L is the zero section
lies in Ztr(AN − {0}). Therefore, it gives a map of pointed sheaves Th(L) → KN,R

which we denote a(Z).

Lemma 5.2. — The motivic cohomology class ã(Z) in H2dim(E),dim(E)(X) defined by a(Z)

through the Thom isomorphism does not depend on the choice of L and φ.

Proof. — Given another pair (L′, φ′) consider the isomorphism

L ⊕ ON′ → L ⊕ E ⊕ L′ → L′ ⊕ E ⊕ L → L′ ⊕ ON



14 VLADIMIR VOEVODSKY

and let ψ : Th(L ⊕ON′
) → Th(L ⊕ON) be the corresponding isomorphism of Thom

spaces. We claim that

ψ∗(a(Z)t′N) = a′(Z)tN(5.1)

on the level of cycles. Let x be a generic point of X, Lx the fiber of L over x and
∑

zi the fiber of Z over x. Then, for a generic point l of Lx the fiber over (x, l) of
the cycle representing a(Z) is

∑
φ(zi, l). Therefore, the fiber of a(Z)tN′ over a generic

point (x, l, u) of L ⊕ ON′
is

∑
(φ(zi, l), u) (in ON ⊕ ON′

) which coincides with the
fiber of a′(Z)tN over ψ(x, l, u). Using (5.1) and applying Lemma 4.7 to ψ∗ we get the
statement of our lemma.

Construction 5.3. — Let G be a finite group, r : G → Sn a permutational repre-
sentation of G, U a smooth scheme with free action of G and L a vector bundle on
U/G given together with an isomorphism ξn ⊕ L → ON where ξn is the vector bundle
of dimension n on U/G corresponding to r. Given any such collection and a cycle Z
on X × Ai equidimensional and finite over X define a map

P̃(Z) : X+ ∧ ThU/G(Li) → KiN,R

as follows. Let Z⊗n be the external power of Z. It is a cycle on (X×Ai)n. Let p∗(Z⊗n) be
its flat pull-back to (X×Ai)n×U. Since p∗(Z⊗n) is invariant under the action of G and
the action of G on U is free there exists a unique cycle Z′ on ((X×Ai)n×U)/G whose
pull-back to (X×Ai)n×U is Z. One verifies easily that Z′ is finite and equidimensional
over (Xn ×U)/G. Therefore, we can pull it back to a cycle Z′′ on X× (Ain ×U)/G by
means of the diagonal map X → Xi. The scheme (Ain × U)/G is the vector bundle
ξ i

n over U/G and we define P̃(Z) as a(Z′′). One verifies immediately that if Z lies in
X × (Ai − {0}) then P̃(Z) = 0.

Consider the standard resolution G•Ki,R. Construction 5.3 defines a morphism
G0Ki,R∧ThU/G(Li) → KiN,R and since it is natural with respect to X the compositions
of this morphism with the two boundary maps G1Ki,R → G0Ki,R coincide. Hence we
get a map of simplicial objects

G•Ki,R ∧ ThU/G(Li) → KiN,R

which defines a map:

P̃ : Ki,R ∧ ThU/G(Li) = π0

(
G•Ki,R ∧ ThU/G(Li)

) → KiN,R.(5.2)

Since smash products preserve A1-weak equivalences, this morphism defines an oper-
ation

P̃ : H̃2i,i(−, R) → H̃2iN,iN
( − ∧ThU/G(Li), R

)
.
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By Lemma 4.3 the Thom isomorphism defines a morphism in H• of the form

P : Ki,R ∧ (U/G)+ → Kin,R

or, equivalently an operation

P : H̃2i,i(−, R) → H̃2in,in(− ∧ (U/G)+, R)

such that

P̃(x) = P(x)tLi .(5.3)

Remark 5.4. — In view of our notations a(Z) and ã(Z) it would be more nat-
ural to switch the notations P̃ and P. We choose to use the present notations to keep
compatibility with the topological case where the total power operation is denoted by
P(−).

Lemma 5.2 implies immediately the following result.

Lemma 5.5. — The operation P = PG,r,U,L,φ does not depend on the choice of L and φ.

If U is a quasi-projective scheme with a free action of G then we can find, using
the standard trick, an affine smooth scheme Ũ with a free action of G and an equivari-
ant morphism Ũ → U. Since any vector bundle E on an affine scheme is “invertible”,
i.e. there is an L such that L ⊕ E ∼= ON, we can define P for Ũ. Since Ũ → U
is an A1-weak equivalence this means that we have a well defined operation P for
any G, r : G → Sn and any quasi-projective U with a free G-action. The following
two lemmas are straightforward.

Lemma 5.6. — Let G be a finite group, r : G → Sn a permutational representation of G
and U a smooth quasi-projective scheme with a free action of G. Let further H ⊂ G be a subgroup

of G and q : U/H → U/G the projection. Then one has PH(x) = q∗PG(x).

Lemma 5.7. — Let G be a finite group and r : G → Sn a permutational representation

of G. Let U, V be smooth quasi-projective schemes with free actions of G and f : U → V an

equivariant morphism. Then for any x one has PU(x) = f ∗(PV(x)).

Lemma 5.8. — Let G, r, U, L, φ be as above. Then the following diagram of morphisms

of pointed sheaves commutes

Ki ∧ Kj ∧ ThU/G(Li+j) −−−→ Ki ∧ ThU/G(Li) ∧ Kj ∧ ThU/G(L j)


�



�



� KiN ∧ Kj N


�



�

Ki+j ∧ ThU/G(Li+j) −−−→ K(i+j)N

(5.4)
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Proof. — Direct comparison.

Lemma 5.9. — For a ∈ H̃2i,i(F•) and b ∈ H̃2j,j(F′
•) one has

P(a ∧ b) = ∆∗(P(a) ∧ P(b))(5.5)

where ∆ : U/G → U/G × U/G is the diagonal.

Proof. — By Lemma 5.8 we have P̃(a ∧ b) = δ∗(P̃(a) ∧ P̃(b)) where

δ : ThU/G(Li+j) → ThU/G(Li) ∧ ThU/G(L j).

Therefore by (5.3):

P(a ∧ b)tLi+j = δ∗((P(a)tLi ) ∧ (P(b)tL j )).

Since δ∗(tLi ∧ tL j ) = tLi+j the Thom isomorphism theorem implies (5.5).

For the next lema note that the vector bundle ξ on U/G defined by a permu-
tational representation G → Sn contains a trivial subbundle O → ξ of dimension 1
corresponding to the invariants of the standard linear representation on Sn.

Lemma 5.10. — Let ηi ∈ H̃2i,i(Ti) be the tautological class. Then P(ηi) = δ∗(tξ i) where

δ is the map on Thom spaces defined by the embedding of vector bundles O i → ξ i on U/G.

Proof. — Take Ai/Ai − {0} as a model of Ti such that ηi is given by the tauto-
logical section Z of Ztr(Ai) on Ai. Applying the construction of P̃ to the corresponding
diagonal cycle Z we get the restriction to Th(Li) of the morphism

W : Th(Li ⊕ ξ i) → Ztr(ANi)

corresponding, by Construction 5.1, to the diagonal cycle on ξ2i over ξ i. In view of
Corollary 4.4 W represents the Thom class of the trivial bundle (L ⊕ ξ)i. Applying
Thom isomorphism to get P(Z) we conclude that P(Z) is the restriction of the Thom
class of Th(ξ i) with respect to the morphism δ.

Lemma 5.11. — Let E be a vector bundle on X. Then P(tE) = δ∗(tE⊗ξ ) where δ is the

map on Thom spaces defined by the embedding of vector bundles E⊗O → E⊗ξ on X× (U/G).

Proof. — Follows from Corollary 4.4 and Lemma 5.10.

Let ∗ be a k-point of U/G which lifts to a k-point of U. Let i : S0 → (U/G)+
be the corresponding morphism.

Lemma 5.12. — The composition

Ki,R
Id∧i→ Ki,R ∧ (U/G)+

P→ Kin,R

coincides in H• with the n-th power map.
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Proof. — Let L∗ be the fiber of L over our distinguished point ∗. Then, if we
compute the analog of our composition using P̃ instead of P, we get the map Ki,R ∧
Th(L∗) → KiN,R which is of the form a(Z⊗n) where Z is the tautological cycle on Ki,R

and a(Z) is Construction 5.1 with respect to the isomorphism (ξ⊕i)∗ ⊕ L⊕i
∗ → O iN.

Our result follows now from Lemma 5.2 since ξ∗ = On is the trivial bundle.

6. Motivic cohomology of Bµl and BSl

Let G be a linear algebraic group and G → GL(V) a faithful representation
of G. It defines an action of G on the affine space

A(V) = Spec(S•V∗)

corresponding to V. Denote by Ṽn the open subset in A(V)n where G acts freely. We
have a sequence of closed embeddings Ṽn → Ṽn+1 given by (v1, ..., vn) 	→ (v1, ..., vn, 0).
Set BG = colimnṼn/G where Ṽn/G is the quotient scheme and the colimit is taken in
the category of sheaves. In [7] we used the notation BgmG for BG. As shown there,
the homotopy type of BG does not depend on the choice of G → GL(V). We denote
by ∗ any k-rational point of BG which lifts to a k-rational point in one of the Ṽn’s.
The goal of this section is to describe motivic cohomology of BSl with coefficients in
Z/l. We start with the following general result.

Proposition 6.1. — For any G and V as above the map

in : Ṽn/G → Ṽn+1/G

defines an isomorphism on motivic cohomology of weigh less than n.

Proof. — The morphism Ṽn/G → Ṽn+1/G can be represented by the composi-
tion

Ṽn/G → (Ṽn × V)/G → Ṽn+1/G.

The first of these maps is the zero section of a vector bundle (Ṽn×V)/G → Ṽn/G and
gives an isomorphism on motivic cohomology by homotopy invariance. The second
map is an open embedding of smooth schemes and the complemement to its image
is the intersection of (Vn − Ṽn) × V with Ṽn+1. We may clearly assume that G = e.
Then dim(V) > 0 and therefore the codimension of Vn − Ṽn in Vn is at least n. The
same is true for the codimension of this complement and by Lemma 3.5 we conclude
that in defines an isomorphism on H̃∗,<n.

Corollary 6.2. — One has

H∗,∗(BG) = limnH∗,∗(Ṽn/G).
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Proof. — Given any sequence of maps of pointed simplicial sheaves F•,n → F•,n+1

with the colimit F•,∞ we have a long exact sequence of the form

→
∏

H̃∗−1,∗(F•,n) → H̃∗,∗(F•,∞) →
∏

H̃∗,∗(F•,n) →
∏

H̃∗,∗(F•,n) →.

The limit limnH̃∗,∗(F•,n) is the kernel of the fourth arrow and therefore to prove the
corollary it is sufficient to show that the map

Id −
∏

i∗n :
∏

H∗,∗(Ṽn/G) →
∏

H∗,∗(Ṽn/G)

is an epimorphism. It follows from the proposition.

Denote by µl the groups scheme of l-th roots of unity where l is an integer

µl := ker(Gm
zl→ Gm).

Lemma 6.3. — Let Bµl be defined with respect to the tautological 1-dimensional represen-

tation of µl . Then one has

Bµl = O(−l)P∞ − z(P∞).(6.1)

Proof. — We have Ṽn = An − {0}. The projection An − {0} → Pn−1 is invariant
under the action of µl and therefore gives a map (An − {0})/µl → Pn−1. One verifies
that this map is isomorphic to the complement to the zero section of the line bundle
O(−l) on Pn−1.

Let r : G → GL(V) be a linear representation of G. If U is a scheme with
a free action of G then the projection (A(V) × U)/G → U/G is a vector bundle. We
say that this is the vector bundle defined by r.

Lemma 6.4. — The line bundle on Bµl defined by the tautological representation of µl is

isomorphic with respect to (6.1) to the pull-back of O(1).

Proof. — Let L = A1 with the standard action of Gm and the corresponding
action of µl . The square

(L × (An − {0}))/µl −−−→ (L × (An − {0}))/Gm


�



�

(An − {0})/µl −−−→ (An − {0})/Gm

is pull-back. The fact that the right vertical arrow is O(1) → Pn−1 is standard (e.g. it
is not O(−1) because it has a section other than the zero one).



REDUCED POWER OPERATIONS IN MOTIVIC COHOMOLOGY 19

Lemma 6.3 and the homotopy purity theorem [7, Th. 2.23 p. 115] imply that
one has a cofibration sequence of the form

(Bµl )+ → (O(−l)P∞)+ → Th(O(−l)).(6.2)

For a vector bundle E of dimension d , the composition of the Thom isomorphism
H∗,∗(X) → H̃∗+2d,∗+d(Th(E)) with the restriction to the zero section z∗ : H̃∗,∗(Th(E))

→ H∗,∗(X) is given by

x 	→ z∗(xtE) = xz∗(tE) = xe(E).

By Lemma 4.5, e(O(−l)) = lσ where σ ∈ H2,1(P∞) is the same class as in the pro-
jective bundle theorem 4.1. Therefore, the long exact sequence defined by (6.2) is of
the form

... → H∗−2,∗−1[[σ ]] lσ→ H∗,∗[[σ ]] → H∗,∗(Bµl ) → H∗−1,∗−1[[σ ]] → ... .(6.3)

The short exact sequence of abelian groups

0 → Z → Z → Z/l → 0(6.4)

defines a homomorphism

β̃ : H̃∗,∗(−, Z/l) → H̃∗+1,∗(−, Z).

Let v be Euler class of the line bundle on Bµl corresponding to the tautological rep-
resentation of µl .

Lemma 6.5. — There exists a unique element u ∈ H1,1(Bµl, Z/l) such that the restriction

of u to ∗ is zero and β̃(u) = v.

Proof. — Existence follows from the exact sequence

H1,1(Bµl, Z) → H1,1(Bµl, Z/l) → H2,1(Bµl, Z)
l→ H2,1(Bµl, Z)

and the fact that

lv = −le(O(−1)) = −e(O(−l)) = 0(6.5)

in H2,1(Bµl, Z). The exact sequence (6.3) around H1,1(Bµl, Z) shows that

H1,1(Bµl, Z) = H1,1(k).

This implies the uniqueness.

Proposition 6.6. — For any pointed simplicial sheaf F• the elements vi and uvi , i ≥ 0 form

a basis of H̃∗,∗(F• ∧ (Bµl )+, Z/l) over H̃∗,∗(F•, Z/l).
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Proof. — The standard argument shows that it is sufficient to consider the case
when F• is of the form X+ for a smooth scheme X. The same reasoning as we used
to establish (6.3) applies to the motivic cohomology groups of X×Bµl for any smooth
scheme X and we get the following result.

Lemma 6.7. — For any smooth scheme X there is a long exact sequence of H∗,∗(X)[[σ ]]-
modules of the form

... → H∗−2,∗−1(X)[[σ ]] lσ→ H∗,∗(X)[[σ ]] → H∗,∗(X × Bµl ) →

→ H∗−1,∗−1(X)[[σ ]] → ... .

(6.6)

For Z/l-coefficients we have lσ = 0 and (6.6) becomes a short exact sequence
of H∗,∗(X)[[σ ]]-modules of the form

0 → H∗,∗(X)[[σ ]] → H∗,∗(X × Bµl ) → H∗−1,∗−1(X)[[σ ]] → 0.(6.7)

Let u′ be an element in H1,1(Bµl, Z/l) such that the image of u′ in

H0,0(Spec(k)) = Z/l

is 1 and the restriction of u′ to X×∗ is zero. Since v is the image of σ , the short exact
sequence (6.7) implies that the monomials u′vi and vi form a basis of H∗,∗(X × Bµl )

over H∗,∗(X). On the other hand, the image of u in H0,0(Spec(k)) = Z/l is not zero
and hence u = cu′ where c ∈ (Z/l)∗. This implies that the monomials uvi , vi also form
a basis.

To describe the multiplicative structure of H̃∗,∗(F• ∧ (Bµl )+) it is sufficient to
find an expression for u2. If l = 2 then u2 = 0 since the multiplication in motivic
cohomology is graded commutative. Consider the case l = 2. We can clearly assume
that F• = Spec(k)+. Proposition 6.6 shows that

H2,2(Bµl ) = H0,1(k)v ⊕ H1,1(k)u ⊕ H2,2(k).

The element u2 lies in H2,2 and since u is zero in ∗ the projection of u2 to the last
factor is zero and we get u2 = xv + yu for x ∈ H0,1(k) and y ∈ H1,1(k). To compute y
consider the map

A1 − {0} = (A1 − {0})/µl → Bµl.(6.8)

If we choose the distinguished point of Bµl to be the image of the point (1, 0, ...),
this map is the embedding of the fiber of the line bundle O(−l) − z(P∞) → P∞

which contains the distinguished point. The pull-back along this map coincides with
the composition of the last map of (6.3) with the map H∗,∗[[σ ]] → H̃∗,∗(A1 − {0}, 1)
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which sends 1 to the generator of H̃1,1(A1 − {0}, 1) and σ to zero. In particular, the
pull-back of u along (6.8) is non-zero (this can also be seen from Proposition 6.1). The
following lemma implies now that y = ρ where ρ is the class of −1 in H1,1.

Lemma 6.8. — Let w be the non zero element of

H̃1,1((A1 − {0}, 1), Z/2) = Z/2.

Then w2 = ρw.

Proof. — We need to compare two motivic cohomology classes in H2,2(A1 −{0}).
Let Spec(k(t)) → A1 −{0} be the embedding of the generic point. Since the base field
k may be assumed to be perfect, the Gysin long exact sequence in motivic cohomo-
logy implies that the kernel of the induced map in H2,2 is covered by a direct sum
of groups of the form H0,1(Spec(E), Z). Since such groups are zero it is a monomor-
phism. Therefore, it is sufficient to show that tt = ρt in H2,2(Spec(k(t)), Z). By [9],
this group is isomorphic to KM

2 (k(t)) and we conclude by the well known relation
(a, a) = (−1, a) in the Milnor’s K-theory.

To compute x note that H0,1(k, Z/2) = µ2(k). If char(k) = 2 then this group is
zero. If char(k) = 2 it is Z/2 and we only need to know whether x is zero or not. The
following lemma implies that x = τ is the generator of Z/2.

Lemma 6.9. — Let k be a separably closed field of characteristic not equal to 2. Then

u2 = 0.

Proof. — We have a natural transformation from the motivic cohomology to the
etale cohomology with Z/2-coefficients. For a class u in the etale H1 we have u2 = β(u)
where β is the Bockstein homomorphism. Since k is separably closed and in particular
contains

√−1, the Bockstein in the etale cohomology commutes with the Bockstein in
the motivic cohomology and we conclude that the image of u2 in the etale cohomology
coincides with the image of v = β(u) in the etale cohomology. An etale analog of the
long exact sequence (6.3) shows that the image of v in the etale cohomology is non
zero.

We proved the following result.

Theorem 6.10. — For any field k and a pointed simplicial sheaf F• over k one has:

H̃∗,∗(F• ∧ (Bµl )+, Z/l) = H̃∗,∗(F•, Z/l)[[u, v]]/(u2 = τv + ρu)(6.9)

where:

1. ρ is the class of −1 in H1,1(k)
2. τ is zero if l = 2 or char(k) = 2
3. τ is the generator of H0,1(k, Z/2) = µ2(k) if l = 2 and char(k) = 2.

We also need the following additional fact about cohomology of Bµl .



22 VLADIMIR VOEVODSKY

Lemma 6.11. — Let l be a prime different from char(k), c and element of Aut(µl ) =
(Z/l)∗ and let c be the corresponding automorphism of Bµl . Then c∗(u) = cu and c∗(v) = cv.

Proof. — Let L be the line bundle on Bµl corresponding to the tautological 1-
dimensional representation λ of µl . Then v is the Euler class of L and u is the only
element in H1,1(−, Z/l) which is zero at ∗ and which maps to v under the map the
Bockstein homomorphism β̃ : H1,1(−, Z/l) → H2,1(−, Z). The automorphism c takes
the tautological 1-dimensional representation λ to λ⊗c and, therefore, it takes L to L⊗c.
Our result follows now from Lemma 4.5.

Our next goal is to compute H̃∗,∗(F• ∧ (BSl )+, Z/l) where Sl is the symmetric
group and l is a prime not equal to char(k).

Lemma 6.12. — Let G be a finite group and H a subgroup of G. Assume that [G : H]
is invertible in the coefficients ring R. Then, for any pointed simplicial sheaf F• , the map of motivic

cohomology

H̃∗,∗(F• ∧ BG+, R) → H̃∗,∗(F• ∧ BH+, R)(6.10)

is a split mono and its image is contained in the invariants under the action of the normalizer of H
in G.

Proof. — We will use the notations established at the beginning of Section 6.
Choose a faithful linear representation G → GL(V). The map (6.10) is defined by
the collection of maps pn : Ṽn/H → Ṽn/G with respect to the identification of Corol-
lary 6.2. The maps pn are finite etale of degree [G : H] and the fundamental cycle on
Ṽn/H over Ṽn/G defines a map of freely generated sheaves with transfers

p# : Ztr(Ṽn/G) → Ztr(Ṽn/H).(6.11)

The composition of p#Ztr(p) is the multiplication by [G : H]. Replacing F• by its the
standard simplicial resolution by coproducts of representable sheaves we may assume
that terms of F• are coproducts of sheaves of the form (hU)+ (recall that we let hU

denote the sheaf represented by a smooth scheme U). Then,

H̃p,q(F• ∧ X+, R) = HomDM(N(Z̃tr(F•)) ⊗ Ztr(X), R(q)[p])
where N(−) is the normalized chain complex functor from simplicial sheaves with
transfers to complexes of sheaves with transfers. In particular these groups are functo-
rial in Ztr(X) which implies the first claim of the proposition.

The second claim follows immediately from the fact that the normalizer of H
in G acts on Ṽn/H over Ṽn/G.
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Let ξl be the vector bundle on BSl corresponding to the tautological permuta-
tional representation. Then we have a monomorphism O → ξl and the quotient ξl/O
is again a vector bundle. Let

d := e(ξl/O).

Assume that l is a prime different from char(k) and that there exists a primitive l-th
root of unity ζ in k. The choice of ζ defines a weak equivalence Bµl → BZ/l and
the inclusion Z/l → Sl gives a map

pζ : Bµl → BZ/l → BSl.

Lemma 6.13. — One has:

p∗
ζ (d) = −vl−1.

Proof. — The element p∗
ζ (d) is the Euler class of ξ/O where ξ corresponds to the

regular representation of Z/l under our isomorphism Z/l → µl . Therefore, we have
ξ = ⊕l−1

i=0Li where L is the line bundle corresponding to the tautological 1-dimensional
representation of µl . By Lemma 4.6 and Lemma 4.5 we get

p∗
ζ (d) =

l−1∏

i=1

(iv) = −vl−1.

Theorem 6.14. — Let l be a prime and k a field of characteristic not equal to l. There

exists a unique class c ∈ H2l−3,l−1(BSl, Z/l) such that β̃(c) = d and the restriction of c to ∗ is

zero.

Proof. — For l = 2 we have S2 = Z/2 = µ2 and our result follows from Lem-
ma 6.5. Assume that l > 2. The transfer argument shows that to prove the theorem
for k it is sufficient to prove it for a separable extension of k of degree prime to l. In
particular, we may assume that k contains a primitive l-th root of unity ζ .

To prove the existence of c we need to show that d is an l-torsion element in
H∗,∗(−, Z). For any ring of coefficients where (l −1)! is invertible, the map pζ defines,
by Lemma 6.12, a split injection:

H∗,∗(BSl ) → H∗,∗(Bµl )
Aut(µl ).(6.12)

In particular, since (6.12) is an injection for coefficients in Z localized at l, it is suffi-
cient to prove that the image of d in H∗,∗(Bµl, Z) is an l-torsion element. This follows
from Lemma 6.13 and (6.5).
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To show that c is unique, it is sufficient to check that the map

β̃ : H2l−3,l−1(BSl, Z/l) → H2l−2,l−1(BSl, Z)

is injective. Injectivity of (6.12) for Z/l-coefficients implies that it is sufficient to show
that the map

β̃ : H2l−3,l−1(Bµl, Z/l)Aut(µl ) → H2l−2,l−1(Bµl, Z)Aut(µl )(6.13)

is injective. Lemma 6.11 implies that for Z/l-coefficients the right hand side of (6.12)
is of the form

H∗,∗(Bµl, Z/l)Aut(µl ) = H∗,∗[[x, y]]/(x2 = 0)(6.14)

where x = uvl−2 and y = vl−1. This descriptions shows that

H2l−3,l−1(BSl, Z/l)Aut(µl ) = Z/l

generated by x. We have β̃(x) = vl−1 = 0. Therefore, (6.13) is injective.

Lemma 6.15. — Let l be a prime such that char(k) = l and ζ be an l-th root of unity

in k. Let further pζ : Bµl → BSl be the morphism defined by ζ . Then one has:

p∗
ζ (c) = −uvl−2.

Proof. — We may assume that l > 2. Then, the description (6.14) implies that
p∗
ζ (c) = auvl−2 for an element a ∈ (Z/l)∗. Since

β̃(p∗
ζ (c)) = pζ (β̃(c)) = pζ (d) = −vl−1

and

β̃(uvl−2) = vl−1

we conclude that a = −1.

Theorem 6.16. — For any pointed simplicial sheaf F• over k and any prime l = char(k)
one has:

H̃∗,∗(F• ∧ (BSl )+, Z/l)

=
{

H̃∗,∗(F•, Z/l)[[c, d]]/(c2 = τd + ρc) for l = 2
H̃∗,∗(F•, Z/l)[[c, d]]/(c2 = 0) for l = 2

(6.15)

where:

1. ρ is the class of −1 in H1,1(k)
2. τ is the generator of H0,1(k, Z/2) = µ2(k).
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Proof. — For l = 2 we have S2 = Z/2 = µ2 and our result follows from Theo-
rem 6.10. Assume that l > 2. We need to show that the map

H̃∗,∗(F•)[[c, d]]/(c2 = 0) → H̃∗,∗(F• ∧ (BSl )+, Z/l)

is an isomorphism. By the transfer argument we may assume that k contains a prim-
itive l-th root of unity. By Lemma 6.10 the homomorphism

H̃∗,∗(F• ∧ (BSl )+, Z/l) → H̃∗,∗(F• ∧ (Bµl )+, Z/l)Aut(µl )

defined by a choice of a primitive root ζ is a mono. Therefore, it is sufficient to show
that the composition

H̃∗,∗(F•)[[c, d]]/(c2 = 0) → H̃∗,∗(F• ∧ (BSl )+) → H̃∗,∗(F• ∧ (Bµl)+)Aut(µl )(6.16)

is an isomorphism. The fact that (6.16) is an isomorphism follows from the analog of
formula (6.14) for H̃∗,∗(F• ∧ (Bµl )+)Aut(µl ) and Lemmas 6.13, 6.15.

In the lemma below P is the reduced power operation introduced in Section 5.

Lemma 6.17. — Let M be a line bundle on X and l a prime not equal to char(k). Then

Pl(e(M)) = e(M)l + e(M)d in H∗,∗(X × BSl, Z/l).

Proof. — By the transfer argument we may assume that k contains a primitive
l-th root of unity. In view of Lemma 6.12 it is sufficient to prove our equality in the
motivic cohomology of X × Bµl . By Lemma 5.11 we have P(e(M)) = e(M ⊗ ξl ).
The vector bundle ξl restricted to Bµl splits into the sum of line bundles L0 ⊕ L1 ⊕
... ⊕ Ll−1 where L is the line bundle corresponding to the tautological 1-dimensional
representation of µl . By Lemmas 4.6 and 4.5 we get:

e(M ⊗ ξl ) =
l−1∏

i=0

e(M ⊗ Li) =
∏

i

(e(M) + ie(L))

= e(M)(e(M)l−1 − e(L)l−1).

Since the restriction of d to Bµl is −e(L)l−1 (by Lemma 6.13) this finishes the proof.

7. Symmetry theorem

Let G1, G2 be two finite groups acting freely on U1 and U2 respectively. Let
further ri : Gi → Sni be permutational representations of Gi, i = 1, 2, ξi the corres-
ponding vector bundles on Ui/Gi of dimension ni and Li ⊕ ξi → ONi inverses of ξi.
Consider the action of G1 × G2 on U1 × U2 and let ξ1 ⊗ ξ2 be the vector bundle on
(U1 × U2)/(G1 × G2) corresponding to r1 × r2. Consider the vector bundle

L12 = (L1 ⊗ ξ2) ⊕ LN1
2 .
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Then

L12 ⊕ (ξ1 ⊗ ξ2) = ((L1 ⊕ ξ1) ⊗ ξ2) ⊕ LN1
2 = ξ

N1
2 ⊕ LN1

2 = ON2N1

i.e. L12 is an inverse of ξ1 ⊗ ξ2. The canonical map O → ξ2 gives a monomorphism
j : L1 ⊕ LN1

2 → L12.

Lemma 7.1. — The following diagram of pointed sheaves where P̃ are defined in (5.2),

commutes:

Ki ∧ ThLi
1
∧ ThL

i N1
2

P̃1∧Id−−−→ KiN1 ∧ ThL
i N1
2

Id∧Th( j)



�



�P̃2

Ki ∧ ThL12

P̃12−−−→ KiN1N2

(7.1)

Proof. — Direct comparison.

Proposition 7.2. — Let u be a class in H̃2i,i(F•). Then:

P2(P1(u))e(ξ2/O)N1i = P12(u)e(ξ2/O)N1i

in H̃2iN1N2,iN1N2(F• ∧ (U1/G1 × U2/G2)+), where:

Pj = PGj ,rj ,Uj,Lj

P12 = PG1×G2,r1×r2,U1×U2,L12 .

Proof. — By Lemma 7.1 we have

P̃2(P̃1(u)) = Th( j)∗P̃12(u)

or, equivalently,

P2(P1(u)tLi
1
)tLi N1

2
= Th( j)∗(P12(u)tL12).

By Lemma 4.7 we rewrite it as

P2(P1(u)tLi
1
)tLi N1

2
= P12(u)e((L1 ⊗ (ξ2/O))i)tLi

1
tLi N1

2
.

By Lemma 5.9 we get

P2P1(u)P2(tLi
1
)tLi N1

2
= P12(u)e((L1 ⊗ (ξ2/O))i)tLi

1
tLi N1

2
.

By Lemmas 5.11 and 4.7 we get

P2P1(u)e((L1 ⊗ (ξ2/O))i)tLi
1
tLi N1

2
= P12(u)e((L1 ⊗ (ξ2/O))i)tLi

1
tLi N1

2
.
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By Thom isomorphism 4.3, we get

P2P1(u)e((L1 ⊗ (ξ2/O))i) = P12(u)e((L1 ⊗ (ξ2/O))i).

Multiplying both sides by e((ξ1 ⊗ (ξ2/O))i) we get by Lemma 4.6

P2P1(u)e(ξ2/O)iN1 = P12(u)e(ξ2/O)iN1 .

Corollary 7.3. — In the notations of the proposition assume that r2 is faithful and l is

a prime different from the characteristic of k. Then

P2(P1(u)) = P12(u)

in the cohomology with the Z/l-coefficients.

Proof. — Replacing U2 by an affine torsor we may assume that it is affine. Let
G2 → GL(V) be the linear representation of G2 corresponding to r2 and Ṽm the open
subset of A(V⊕m) where G2 acts freely. Then, by Lemma 7.4, for some m, there exists
a G2-equivariant map U2 → Ṽm. By Lemma 5.7 it is sufficient to prove the corollary
for U2 = Ṽm and G2 = Sn2 . Proposition 7.2 together with Corollary 6.2 shows that we
have

P2(P1(u))e(ξ2/O)N1i = P12(u)e(ξ2/O)N1i

on F• ∧ (U1/G1 × BSl )+. By Theorem 6.16, multiplication with e(ξ2/O) is injective
and we conclude that P2(P1(u)) = P12(u).

Lemma 7.4. — Let G be a finite group, X an affine variety with a free action of G and

G → GL(V) a faithful linear representation of G. Then for some m > 0 there exists an equivariant

morphism X → Ṽm.

Proof. — Let EV = (X × V)/G → X/G be the vector bundle defined by E.
Equivariant morphisms X → V can be identified with the sections of this vector
bundle. The open subschemes Ṽm form, fiber by fiber, an open subscheme Ẽm

V of Em
V

and we need to show that there exists a section of Em
V which lands in Ẽm

V.
Since X is affine so is X/G and hence there is a collection s1, ..., sN of sec-

tions such that for any point x, s1(x), ..., sN(x) generate V as a vector space. The
map ON

X/G → EV defined by s1, ..., sN is equidimensional. The same is then true for
πm : OmN

X/G → Em
V for any m. The codimension of the complement Zm to Ẽm

V goes to in-
finity as m grows and we conclude that the same is true for π−1

n (Zm) ⊂ (X/G) × AmN.
Therefore, for a sufficiently large m we can find a section of OmN which does not meet
π−1

m (Zm). Its composition with πm gives the required section of Ẽm
V.
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Lemma 7.5. — Let U be a scheme with a free action of G and let r : G → Sn be

a permutational representation of G. Consider:

P = PG×G,r×r,U×U−∆(U) : Ki ∧ ((U × U − ∆(U))/(G × G))+ → Kin2 .

Then P is invariant under the permutation of two copies of U.

Proof. — The action of G × G on U × U − ∆(U) extends to a free action of
the semidirect product (G × G) ∝ Z/2. The permutational representation r × r also
extends to a permutational representation of (G×G) ∝ Z/2. By Lemma 5.7 P factors
through the map

Ki ∧ ((U × U − ∆(U))/(G × G))+
→ Ki ∧ ((U × U − ∆(U))/(G × G) ∝ Z/2)+

which implies that it is symmetric.

Lemma 7.6. — Let X be a smooth variety and Z a closed smooth subvariety in X of

codimension c. Then for any pointed simplicial sheaf F• the map

H̃2i,i(F• ∧ X+) → H̃2i,i(F• ∧ (X − Z)+)

is an isomorphism for i < c.

Proof. — Follows from Lemma 3.5.

Lemma 7.7. — Under the assumptions of Lemma 7.5 the morphism

P = PG×G,r×r,U×U : Ki ∧ (U × U/G × G)+ → Kin2

is invariant under the permutation of two copies of U.

Proof. — Replacing U by an affine torsor we may assume that it is affine. Let
G → GL(V) be a faithful liner representation of G and Ṽm the open subset of A(V⊕m)

where G acts freely. Then by Lemma 7.4 there exists m ≥ 0 and a G-equivariant map
U → Ṽm. By Lemma 5.7 it is sufficient to show that P is symmetric for U = Ṽm.
This follows from Lemma 7.5 and Lemma 7.6 since we may choose m such that the
codimension of ∆(Ṽm) is larger than in2.

Corollary 6.2 together with Lemma 5.7 implies that there is a well defined mor-
phism:

Pl : Kn ∧ (BSl )+ → Knl.

Theorem 7.8. — The composition

Ki ∧ (BSl )+ ∧ (BSl )+
P∧Id→ Kil ∧ (BSl )+

P→ Kil2

is invariant under the permutation of two copies of BSl .
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Proof. — Let η be the tautological motivic cohomology class of Ki. We need
to show that P(P(η)) is invariant under the permutation of two copies of BSl. Corol-
lary 7.3 and Corollary 6.2 imply that P(P(η)) = P12(η) where P12 is the power oper-
ation corresponding to Sl × Sl → Sl2 . We conclude by Lemma 7.7 and, again, Corol-
lary 6.2.

8. Power operations and the Bockstein homomorphism

We denote by β the Bockstein homomorphism

H̃∗,∗(−, Z/l) → H̃∗+1,∗(−, Z/l)

which is defined by the short exact sequence of the coefficients

0 → Z/l → Z/l2 → Z/l → 0.

It has the same properties as the Bockstein homomorphism in the ordinary cohomo-
logy. In particular, we have ββ = 0 and for u ∈ H̃p,∗,

β(uv) = β(u)v + (−1)puβ(v).(8.1)

The goal of this section is to prove Theorem 8.4. The method we use follows closely
the method used to prove an analogous result in [8].

Let U and L be as in Construction 5.3. The proper push-forward of cycles de-
fines a “transfer” map

tr : Hom(ThU(Ln), Kn,R) → Hom(ThU/G(Ln), Kn,R)

where Hom(−,−) denotes the internal Hom-object in the category of pointed sheaves.
Let Z(l ) be the local ring of l in Z. Denote by

Φ = Hom(ThU/G(Ln), Knl,Z(l ))/lIm(tr)

the pointed sheaf which corresponds to the quotient of the sheaf of abelian groups
Hom(ThU/G(Ln), Knl,Z(l ) ) by the subgroup of elements of the form lx where x is in the
image of the transfer map.

Lemma 8.1. — The map of pointed sheaves

Kn,Z/l → Hom(ThU/G(Ln), Knl,Z/l)

adjoint to the power operation P̃l lifts to a map of pointed sheaves

Kn,Z/l → Φ.
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Proof. — The pointed sheaf Kn,Z/l is a quotient sheaf of the sheaf Kn,Z(l ) and the
power operation for integral coefficients defines a map

Kn,Z(l ) → Hom(ThU/G(Ln), Knl,Z(l ) ).

It is sufficient to show that the composition of this map with the projection to Φ fac-
tors through Kn,Z/l i.e. that for two cycles Z1, Z2 on X × An with integral coefficients
such that Z1 −Z2 is divisible by l the cycle P̃l(Z1)− P̃l(Z2) is in lIm(tr). Let Z′

i be the
cycle on (Xl × Anl × U)/Sl whose pull-back to Xl × Anl × U is (p : Xl × Anl × U →
Xl × Anl)∗(Z⊗l

i ). It is sufficient to show that Z′
1 − Z′

2 is in lIm(π∗) where

π : Xl × Anl × U → (Xl × Anl × U)/Sl

is the projection or, equivalently, that

p∗(Z⊗l
1

) − p∗(Z⊗l
2

) = lπ∗π∗(Y)

for some Y. We have Z1 − Z2 = lW and the left hand side can be rewritten as
p∗((Z2 + lW)⊗l)−p∗(Z⊗l

2 ). Since any Sl-invariant cycle with coefficients divisible by l is
of the form π∗π∗(−) it is sufficient to consider the summands in this expression with
coefficients not divisible by l2. They are of the form l(Z2 ⊗ ...⊗W⊗ ...⊗Z2). The sum
of all such cycles is, up to multiplication by (l − 1)!, of the form lπ∗π∗(W ⊗ (Z2)

l−1).

Lemma 8.2. — Let u be the tautological class in H̃2n,n(Kn,Z/l). Then βP̃l(u) lies in the

image of the transfer map

H̃2nl+1,nl(ThU(Ln) ∧ Kn,Z/l, Z/l) → H̃2nl+1,nl(ThU/G(Ln) ∧ Kn,Z/l, Z/l).

Proof. — Recall that we let

β̃ : H∗,∗(−, Z/l) → H∗+1,∗(−, Z(l ))

denote the Bockstein homomorphism corresponding to the standard short exact se-
quence (6.4). Since β factors through β̃ it is sufficient to proof the lemma for β̃. Let
b : Ztr(Kn,Z/l ∧ ThU/G(Ln)) → Knl,Z/l be the morphism of sheaves of abelian groups
corresponding to P̃l(u). Then, β̃P̃l(u) corresponds by bijection (2.9), to the morphism
in the derived category of sheaves of abelian groups which is the composition of b and
the morphism Knl,Z/l → Knl,Z(l )[1] which is a part of the distinguished triangle

Knl,Z(l )

l→ Knl,Z(l ) → Knl,Z/l → Knl,Z(l )[1].
Let Φ be as in Lemma 8.1. It is a sheaf of abelian groups which fits into the

short exact sequence:

0 → Hom(ThU(Ln), Knl,Z(l ))
l◦tr→ Hom(ThU/G(Ln), Knl,Z(l ) ) → Φ → 0(8.2)
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where the first arrow is the composition of the transfer map and the multiplication
by l. We let F denote the sheaf of abelian groups Ztr(ThU/G(Ln)). We have a homo-
morphism a : Φ ⊗ F → Knl,Z/l and we let c : Ztr(Kn,Z/l) → Φ denote the homo-
morphism of sheaves of abelian groups such that b = a ◦ (c ⊗ IdF) which exists by
Lemma 8.1. The sequence 8.2 shows that there is an epimorphism Ψ → Ztr(Kn,Z/l)

and a morphism of short exact sequences:

0 −−−→ ker ⊗ F −−−→ Ψ ⊗ F −−−→ Ztr(Kn,Z/l) ⊗ F −−−→ 0

d◦tr



�
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0 −−−→ Knl,Z(l ) −−−→ Knl,Z(l ) −−−→ Knl,Z/l −−−→ 0

such that the left vertical arrow is the transfer of a morphism

d : ker ⊗ Ztr(ThU(Ln)) → Knl,Z(l ) .

We conclude that β̃P̃l(u) is represented by the composition

Ztr(Kn,Z/l ∧ ThU/G(Ln)) = Ztr(Kn,Z/l) ⊗ F → ker[1] ⊗ F → Knl,Z(l )[1]
which is the transfer of the class represented by the composition

Ztr(Kn,Z/l ∧ ThU(Ln)) = Ztr(Kn,Z/l) ⊗ Ztr(ThU(Ln)) →
→ ker[1] ⊗ Ztr(ThU(Ln))

d→ Knl,Z(l )[1].

Lemma 8.3. — For any F•, the transfer map in cohomology

H̃∗,∗(F• ∧ ThESl (L
n), Z/l) → H̃∗,∗(F• ∧ ThBSl (L

n), Z/l)

is zero.

Proof. — The composition of the transfer map with the restriction map is the
multiplication with the degree of the covering, in our case l!. Hence it is sufficient to
show that the restriction map

H̃∗,∗(F• ∧ ThBSl (L
n), Z/l) → H̃∗,∗(F• ∧ ThESl (L

n), Z/l)

is surjective. Since motivic cohomology of ESl are trivial any class on the right can be
written as ut where u is in H̃∗,∗(F•) and t is the Thom class. Any such ut is clearly in
the image of the restriction map.

Theorem 8.4. — For any u ∈ H̃2d,d one has βPl(u) = 0.

Proof. — By Lemma 8.2 and Lemma 8.3 we have β(Pl(u)t) = βP̃l(u) = 0. By
(8.1) we get

β(Pl(u)t) = β(Pl(u))t

and by the Thom isomorphism theorem we conclude that β(Pl(u)) = 0.
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9. Individual power operations: formulas

Starting from this section we assume that l is a prime different from the charac-
teristic of k. Let w be a class in H̃2d,d(F•, Z/l). By Theorem 6.16, the class Pl(w) can
be written uniquely as a linear combination of the form:

Pl(w) =
∑

i≥0

Ci+1,d(w)cdi + Di,d(w)di.(9.1)

This defines cohomological operations:

Ci,d : H̃2d,d(−, Z/l) → H̃2d+2(d−i)(l−1)+1,d+(d−i)(l−1)(−, Z/l)

Di,d : H̃2d,d(−, Z/l) → H̃2d+2(d−i)(l−1),d+(d−i)(l−1)(−, Z/l).

Below we use Ci instead of Ci,d and Di instead of Di,d when no confusion is possible.
Recall that we denote by τ the generator of H0,1(k, Z/2) for char(k) = 2 and by ρ the
class of −1 in H1,1(k, Z/2).

Lemma 9.1. — Let u ∈ H̃2d,d(F•), v ∈ H̃2d ′,d ′
(F′

•). Then for l odd one has:

Di(u ∧ v) =
i∑

r=0

Dr(u) ∧ Di−r(v)

Ci+1(u ∧ v) =
i∑

r=0

Cr+1(u) ∧ Di−r(v) + Dr(u) ∧ Ci−r+1(v)

and for l = 2 one has

Di(u ∧ v) =
i∑

r=0

Dr(u) ∧ Di−r(v) + τ
∑

r=0,...,i−1

Cr+1(u) ∧ Ci−r(v)

Ci+1(u ∧ v) =
i∑

r=0

Cr+1(u) ∧ Di−r(v) + Dr(u) ∧ Ci−r+1(v)

+ ρCr+1(u) ∧ Ci−r+1(v).

Proof. — Follows immediately from Lemma 5.9 and Theorem 6.16.

Lemma 9.2. — Let t ∈ H̃2,1(T, Z/l) be the tautological class. Then one has:

Ci+1(u ∧ t) = Ci(u) ∧ t

Di(u ∧ t) = Di−1(u) ∧ t.
(9.2)
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Proof. — By Lemma 5.10 we have P(t) = δ(T → Th(ξl/O))∗(tξ ). In view of
Lemma 4.7 and the fact that d = e(ξl/O) we get P(t) = t ∧ d i.e. Ci+1(t) = 0 for all
i ≥ 0, D1(t) = t and Di(t) = 0 for i = 1. Applying Lemma 9.1 we get (9.2).

For u ∈ H̃2d,d define;

Pi(u) = Dd−i(u)

Bi(u) = Cd−i(u).

By (9.2) we have Pi(u ∧ t) = Pi(u) ∧ t and Bi(u ∧ t) = Bi(u) ∧ t. As shown in the proof
of Proposition 2.6 we can extend Pi and Bi to bistable operations acting on motivic
cohomology groups H̃p,q for all p, q:

Pi : H̃p,q → H̃p+2i(l−1),q+i(l−1)

Bi : H̃p,q → H̃p+2i(l−1)+1,q+i(l−1).

For l = 2 we denote, following the standard convention,

Sq2i = Pi

Sq2i+1 = Bi.

By Corollary 2.10 these operations are additive.

Remark 9.3. — The apparent differences in signs between our definition of Pi

in terms of Dd−i and the definitions given in [8, p. 112] and [3, p. 182] are explained
by two facts. One is that we only consider here classes of even degree. Another one
is that the image of d in the cohomology of BZ/l is −ul−1 = −w2l−2. Note also that
while the signs in [8] and [3] in general disagree because of a mistake in [8] this
disagreement vanishes for classes of even degree.

Theorem 9.4. — For any i < 0 one has Pi = Bi = 0.

Proof. — This follows from Proposition 3.6.

Theorem 9.5. — One has P0 = Id.

Proof. — Proposition 3.7 implies that P0(u) = au where a is a constant. Lem-
ma 6.17 applied to the canonical line bundle on P1 implies that a = 1.

Lemma 9.6. — One has βBi = 0 and βPi = Bi.

Proof. — Follows immediately from Theorem 8.4, the fact that β(c) = d and the
product formula (8.1) for the Bockstein homomorphism.
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Proposition 9.7. — For u, v ∈ H̃∗,∗ and l = 2 one has:

Pi(u ∧ v) =
i∑

r=0

Pr(u) ∧ Pi−r(v)

Bi(u ∧ v) =
i∑

r=0

(Br(u) ∧ Pi−r(v) + (−1)deg(u)Pr(u) ∧ Bi−r(v)).

For l = 2 we get:

Sq2i(u ∧ v) =
i∑

r=0

Sq2r(u) ∧ Sq2i−2r(v) + τ

i−1∑

s=0

Sq2s+1(u) ∧ Sq2i−2s−1(v)

Sq2i+1(u ∧ v) =
i∑

r=0

(Sq2r+1(u) ∧ Sq2i−2r(v) + Sq2r(u) ∧ Sq2i−2r−1(v)) +

+ ρ

i−1∑

s=0

Sq2s+1(u) ∧ Sq2i−2s−1(v).

Proof. — Follows immediately from Lemma 9.1 and the vanishing result 9.4.

Lemma 9.8. — For u ∈ H̃2n,n one has Pn(u) = ul .

Proof. — Follows from Lemma 5.12.

Lemma 9.9. — For u ∈ H̃p,q and n > p − q, n ≥ q one has Pn(u) = 0.

Proof. — Let i = n+q−p and j = n−q. Then σ i
s σ

j
t (u) is in H̃2n,n. By Lemma 9.8

we get

σ i
sσ

j
t Pn(u) = (

σ i
s σ

j
t (u)

)l
.

By our assumption i > 0 and the right hand side is zero because the diagonal map
S1

s → S1
s ∧ S1

s is zero in H•.

We will also use the total power operation:

R : H̃∗,∗ → H̃∗,∗[[c, d, d−1]]/(c2 = τd + ρc)

where τ = ρ = 0 for l = 2 and for l = 2, τ and ρ are as in Theorem 6.16. We define
R by the formula

R(u) =
∑

i

(Bi−1(u)cd−i + Pi(u)d−i).
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For l = 2 this becomes

R(u) =
∑

i

(Sq2i−1(u)cd−i + Sq2i(u)d−i).

For u ∈ H̃2n,n we have d2nR(u) = P(u). Together with Lemma 5.9 this implies that for
any u and v one has

R(uv) = R(u)R(v)

where the right hand side is to be computed in the ring H∗,∗[[c, d, d−1]]/(c2 = τd+ρc).

10. Adem relations

Lemma 10.1. — Let c1, d1 be generators of H∗,∗(BSl, Z/l) and c2, d2 the generators of

the ring appearing in the definition of R(u). Then one has:

R(d1) = d1(1 − d1/d2)
l−1(10.1)

R(c1) = (c1 + (d1/d2)c2)(1 − d1/d2)
l−2.(10.2)

Proof. — By transfer argument we may assume that k contains a primitive l-th
root of unity ζ . Consider the map

φ = p∗
ζ : H∗,∗(BSl ) → H∗,∗(Bµl )

defined by ζ . Then φ is a mono (by Lemma 6.12) and by Lemmas 6.13, 6.15 one has

φ(d1) = −vl−1

φ(c1) = −uvl−2

where u and v are the generators from Theorem 6.10. We get:

R(vl−1) = R(v)l−1 = d1−l
2 P(v)l−1 = d1−l

2 (vl + vd2)
l−1

where the last equality holds by Lemma 6.17. The right hand side equals to
−φ(d1)(1 − φ(d1)/d2)

l−1 which implies (10.1). For R(uvl−2) we get

R(uvl−2) = R(u)R(v)l−2 = d2−l
2 R(u)P(v) =

= d2−l
2 (P1(u) + B0(u)c2 + P0(u)d2)(vl + vd2)

l−2.

By Theorem 9.5 P0(u) = u, by Lemma 9.6 and since β(u) = v, B0(u) = v. By Lem-
ma 9.9, P1(u) = 0 and therefore our expression equals

d1−l
2

(
vl−1c2 + uvl−2d2

)(
vl−2 + d2

)l−2

= d1−l
2 (−φ(d1)c2 − φ(c1)d2)(−φ(d1) + d2)

l−2.

This implies (10.2).
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Theorem 10.2. — Let l = 2 and 0 < a < 2b. Then for a + b = 0(mod2) one has:

SqaSqb =






∑[a/2]
j=0

(

b − 1 − j
a − 2j

)

Sqa+b−jSq j for a, b odd

∑[a/2]
j=0 τ jmod2

(

b − 1 − j
a − 2j

)

Sqa+b−jSq j for a, b even

and for a + b = 1(mod2) one has:

SqaSqb =
[a/2]∑

j=0

(
b − 1 − j

a − 2j

)

Sqa+b−jSq j + (( j + 1)mod2)ρS(a, b)

where:

S(a, b) =






(

b − 1 − j
a − 2j

)

Sqa+b+jSq j−1 for a even, b odd

(

b − 1 − j
a − 1 − 2j

)

Sqa+b+j−1Sq j for a odd, b even.

Proof. — Consider the class P(P(u)) for u ∈ H̃2n,n. Denote by d1, c1 the genera-
tors of the cohomology of BSl appearing when the first P is applied and by d2, c2 the
generators of the cohomology of BSl appearing when the second P is applied. Accord-
ing to the symmetry theorem 7.8 the resulting expression is symmetric with respect to
the exchange of (d1, c1) and (d2, c2). We have (to simplify the notations we sometimes
omit u from our expressions):

P(u) =
∑

i

Sq2n−2i−1cdi + Sq2n−2id i

P(P(u)) = d2n
2 R(P(u)) = d2n

2

∑

i

(R(Sq2n−2i−1)R(c1)+R(Sq2n−2i))R(d1)
i =

=
∑

i,j

d i
1(d1 + d2)

id2n−j−i
2 ((Sq2j−1Sq2n−2i−1c2 +

+Sq2jSq2n−2i−1)(c1 + (d1/d2)c2)+Sq2j−1Sq2n−2ic2 +Sq2jSq2n−2i).

Consider the coefficients in this expression at 1, c1, c2 and c1c2. At 1 we have:
∑

i,j

d i
1(d1 + d2)

id2n−j−i
2 (Sq2jSq2n−2i + τd1Sq2j−1Sq2n−2i−1).
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At c1c2 we have:
∑

i,j

d i
1(d1 + d2)

id2n−j−i
2 Sq2j−1Sq2n−2i−1.

At c1 we have:
∑

i,j

d i
1(d1 + d2)

id2n−j−i
2 Sq2jSq2n−2i−1.

At c2 we have:
∑

i,j

d i
1(d1 + d2)

id2n−j−i
2 Sq2j−1Sq2n−2i +

+
∑

i,j

d i+1
1 (d1 + d2)

id2n−j−i−1
2 (ρSq2j−1Sq2n−2i−1 + Sq2jSq2n−2i−1).

Set p = i + r, q = 2n − j − r. Then coefficient at dp
1dq

2 is

∑

i

(
i

p − i

)

Sq4n−2p−2q+2iSq2n−2i + τ

(
i − 1
p − i

)

Sq4n−2p−2q+2i−1Sq2n−2i+1.

Coefficient at c1c2dp
1dq

2 is

∑

i

(
i

p − i

)

Sq4n−2p−2q+2i−1Sq2n−2i−1.

Coefficient at c1dp
1dq

2 is

∑

i

(
i

p − i

)

Sq4n−2p−2q+2iSq2n−2i−1.

Coefficient at c2dp
1dq

2 is

∑

i

(
i

p − i

)

Sq4n−2p−2q+2i−1Sq2n−2i +
(

i
p − i − 1

)

Sq4n−2p−2q+2iSq2n−2i−1 +

+ ρ
∑

i

(
i

p − i − 1

)

Sq4n−2p−2q+2i−1Sq2n−2i−1.

Consider the coefficient at c1c2dp
1dq

2 where p = 2s − 1 for sufficiently large s and q = x.

For p of this form, the coefficient
(

i
p − i

)

is non-zero if and only if i = p (follows



38 VLADIMIR VOEVODSKY

from [8, I.2.6]) and we conclude that our coefficient is Sq4n−2x−1Sq2n−2s+1+1. By sym-
metry it equals to the coefficient at c1c2dq

1dp
2. Setting a = 4n −2x −1, b = 2n −2s+1 +1

and j = 2n − 2i − 1 and using the fact that

(
u
v

)

=
(

2u
2v

)

mod 2(10.3)

we can write the later as

∑

j=1 mod 2

(
2n − 1 − j
a − 2j − 1

)

Sqa+b−jSq j .

From the standard relation
(

u
v − 1

)

=
(

u + 1
v

)

+
(

u
v

)

(10.4)

and the fact that
(

u
v

)

= 0 mod 2

if u is even and v is odd we get the first of the equalities stated in the theorem. A very
similar argument starting with the equality between the coefficients at c1dp

1dq
2 and c2dq

1dp
2

gives the third equality – the case of even a and odd b. To prove the case when both
a and b are even consider the coefficient at dp

1dq
2. Consider the second part of this

coefficient i.e. the sum

∑

i

(
i − 1
p − i

)

Sq4n−2p−2q+2i−1Sq2n−2i+1 =

=
∑

j=i−1

(
j

p − 1 − j

)

Sq4n−2( p−1)−2q+2j−1Sq2n−2j−1.

This is the coefficient at c1c2dp−1
1 dq

2 which is equal to the coefficient at c1c2dq
1dp−1

2 i.e. to

∑

j=i−1

(
j

q − j

)

Sq4n−2( p−1)−2q+2j−1Sq2n−2j−1 =

=
∑

i

(
i − 1

q − i + 1

)

Sq4n−2p−2q+2i−1Sq2n−2i+1.
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Equating our new expression for the coefficient at dp
1dq

2 with the old expression for the
coefficient at dq

1dp
2 we get

∑

i

(
i

p − i

)

Sq4n−2p−2q+2iSq2n−2i =

=
∑

i

(
i

q − i

)

Sq4n−2p−2q+2iSq2n−2i +

+ τ
∑

i

((
i − 1

q − i + 1

)

+
(

i − 1
q − i

))

Sq4n−2p−2q+2i−1Sq2n−2i+1.

Setting again p = 2s −1, a = 2n−2q and b = 2n−2p and using the standard relations
between the binomial coefficients one recovers the identity for SqaSqb when both a and
b are even. Finally, to get the identity in the case when a is odd and b is even one uses
Lemma 9.6, the identity for a and b even and the fact that β(τ) = ρ.

The proof of the following theorem which provides Adem relations for odd l
follows the same line of arguments as the proof of the corresponding topological fact
given in [8].

Theorem 10.3. — For l > 2 and 0 < a < lb one has:

PaPb =
[a/l]∑

t=0

(−1)a+t

(
(l − 1)(b − t) − 1

a − lt

)

Pa+b−tPt.

And for a ≥ lb ≥ 0 one has:

PaBb =
[a/l]∑

t=0

(−1)a+t

(
(l − 1)(b − t)

a − lt

)

Ba+b−tPt +

+
[(a−1)/l]∑

t=0

(−1)a+t−1

(
(l − 1)(b − t) − 1

a − lt − 1

)

Pa+b−tBt.

Proof. — These relations are exactly the same as the Adem relations in the topo-
logical Steenrod algebra for odd coefficients. The proof of these relations given in [8,
Theorem VIII.1.6] works in exactly the same way in the motivic context as in the
topological one if one replaces the reference to [8, Corollary VIII.1.2] with the refer-
ence to our symmetry theorem 7.8.
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11. Motivic Steenrod algebra

Define the motivic Steenrod algebra A∗,∗(k, Z/l) as the subalgebra in the alge-
bra of bistable cohomological operations in the motivic cohomology with Z/l coeffi-
cients over k generated by operations Pi, Bi, i ≥ 0 and operations of the form u 	→ au
where a ∈ H∗,∗(k, Z/l).

Let I = (ε0, s1, ε1, s2, ..., sk, εk) be a sequence where εi ∈ {0, 1} and si are non-
negative integers. Denote by PI the product

PI = βε0Ps1...Pskβεk .

A sequence I is called admissible if si ≥ lsi+1 + εi. Monomials PI corresponding to
admissible sequences are called admissible monomials.

Lemma 11.1. — Admissible monomials generate A∗,∗(k, Z/l) as a left H∗,∗-module.

Proof. — This follows from the Adem relations and the Cartan formula 9.7.

Our next goal is to show that the admissible monomials are linearly independent
with respect to the left H∗,∗-module structure on A∗,∗ and, therefore, form a basis of
this module. Consider the submodule H∗,>0A∗,∗ in A∗,∗. The Cartan formulas 9.7 im-
ply that its is a two-sided ideal in A∗,∗. Set

A∗,∗
rig = A∗,∗/H∗,>0A∗,∗.

Using again the Cartan formula one observes that the action of A∗,∗ on H∗,∗(X) de-
fines an action of A∗,∗

rig on H∗,∗(X)/H∗,>0H∗,∗(X). Theorem 6.10 immediately implies
the following result.

Lemma 11.2. — For any l and any k one has:

H∗,∗(Bµl )/H∗,>0H∗,∗(Bµl ) = Z/l[u, v]/(u2 = 0).

Lemma 10.1 implies the following.

Lemma 11.3. — Let u and v be as in Lemma 11.2. Then one has the following equalities

in H∗,∗(Bµl )/H∗,>0H∗,∗(Bµl ):

β(u) = v Pi(u) = 0 for i > 0

β(vk) = 0 Pi(vk) =
(

k
i

)

vk+i(l−1).
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Let d(I) be the degree of an admissible monomial PI i.e. the integer such that
PI is an operation from H̃∗,∗ to H̃∗+d(I),∗+q.

Proposition 11.4. — For any n ≥ 0 there exists N and an element w in H∗,∗((BµL)
N)

such that the elements PI(w), for all I such that d(I) ≤ n, are linearly independent with respect to

the left H∗,∗-module structure on H∗,∗((BµL)
N).

Proof. — It is sufficient to show that there exists w such that PI(w) are linearly in-
dependent in H∗,∗((BµL)

N)/H∗,>0H∗,∗((BµL)
N) with respect to the Z/l-module struc-

ture. One starts with Lemma 11.3 and uses exactly the same reasoning as in the proof
of [8, Proposition VI.2.4]

The following is an immediate corollary of the proof of Proposition 11.4.

Corollary 11.5. — The admissible monomials are linearly independent with respect to the

left H∗,∗-module structure on A∗,∗.

Let l be an odd prime. Denote by A∗,∗
top the Z/l-submodule of A∗,∗ generated

by the admissible monomials. The Adem relations (Theorem 10.3) show that A∗,∗
top is

a subring of A∗,∗. Together with Corollary 11.5 they imply that A∗,∗
top is isomorphic to

the usual topological Steenrod algebra with the second grading given by assigning the
weight (l − 1)i to Pi and the weight 0 to β. The Cartan formula (Proposition 9.7)
shows that the action of elements of A∗,∗

top on products of motivic cohomology classes
has the same expansion as in topology. Taken together these observations show that
all the standard results about the topological Steenrod algebra and its dual in the case
of odd coefficients translate without change to the motivic context. In what follows we
consider both the odd and even coefficients cases but give the proofs only in the even
case where the motivic Steenrod algebra has a more complicated structure than its
topological counterpart.

Below we denote by A∗,∗ ⊗H∗,∗ A∗,∗ the tensor product of left H∗,∗-modules A∗,∗.
The action of A∗,∗ on H̃∗,∗(X) is not, in general, H∗,∗-linear. Hence, we can not speak
of the action of A∗,∗ ⊗H∗,∗ A∗,∗ on H̃∗,∗(X) ⊗H∗,∗ H̃∗,∗(Y). However, since the action of
A∗,∗ is Z/l-linear it defines an action of A∗,∗ ⊗Z/l A∗,∗ on H̃∗,∗(X) ⊗Z/l H̃∗,∗(Y). If x, y
are two elements of A∗,∗ ⊗Z/l A∗,∗ which become equal in the tensor product over H∗,∗

then for any u in H̃∗,∗(X) ⊗Z/l H̃∗,∗(Y) we have x(u) = y(u) in H̃∗,∗(X) ⊗H∗,∗ H̃∗,∗(Y).
Therefore, for x in A∗,∗ ⊗H∗,∗ A∗,∗ and u in H̃∗,∗(X)⊗Z/l H̃∗,∗(Y) there is a well defined
element x(u) in H̃∗,∗(X) ⊗H∗,∗ H̃∗,∗(Y).

Lemma 11.6. — For any element x of A∗,∗ there exists a unique element

ψ∗(x) =
∑

x′
i ⊗ x′′

i
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of A∗,∗ ⊗H∗,∗ A∗,∗ such that for any X and any u ∈ H̃p,∗(X), v ∈ H̃∗,∗(X) one has

x(uv) =
∑

(−1)dim(x′′
i )px′

i(u)x
′′
i (v).

Proof. — Exactly parallel to the proof of [5, Lemma 1, p. 154] where Proposi-
tion 11.4 is used to prove uniqueness.

We will need the following lemma below.

Lemma 11.7. — Let x be an element of A∗,∗ and ψ∗(x) = ∑
x′

i⊗x′′
i . Then for a ∈ H∗,∗

one has:

ψ∗(xa) =
∑

x′
ia ⊗ x′′

i =
∑

x′
i ⊗ x′′

i a.

Proof. — By uniqueness part of Lemma 11.6 it is enough to check that for any
u, v ∈ H̃∗,∗(X) one has:

(
∑

x′
i a ⊗ x′′

i )(u ⊗ v) = (
∑

x′
i ⊗ x′′

i a)(u ⊗ v) = (xa)(uv).

This follows immediately from definitions.

Since H∗,∗ is not in the center of A∗,∗, the ring structure on A∗,∗ ⊗Z/l A∗,∗ does
not define a ring structure on A∗,∗ ⊗H∗,∗ A∗,∗. The best we can get in general is an
action of A∗,∗ ⊗H∗,∗ A∗,∗ on A∗,∗ ⊗Z/l A∗,∗ with values in A∗,∗ ⊗H∗,∗ A∗,∗ given by

(u ⊗ v)(u′ ⊗ v′) = uu′ ⊗ vv′.

We say that an element f of A∗,∗ ⊗H∗,∗ A∗,∗ is an operator-like element if for any two
elements x, y of A∗,∗ ⊗Z/l A∗,∗ which belome equal in the tensor product over H∗,∗

one has fx = fy. For an operator-line element f and any other element x the product
fx is well defined. If f and g are two operator-like elements the product fg is again
operator-like. This shows that operator-like elements form a ring which we denote by
(A∗,∗ ⊗H∗,∗ A∗,∗)r .

Lemma 11.8. — For any x in A∗,∗, ψ∗(x) is an operator-like element. The map

ψ∗ : A∗,∗ → (A∗,∗ ⊗H∗,∗ A∗,∗)r

is a ring homomorphism.

Proof. — Let y, z be two elements of A∗,∗ ⊗Z/l A∗,∗ which become equal mod-
ulo H∗,∗. To check that ψ∗(x) y = ψ∗(x)z it is sufficient, in view of Proposition 11.4,
to check that for any X and any w1, w2 ∈ H̃∗,∗(X) one has ψ∗(x) y(w1 ⊗ w2) =
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ψ∗(x)z(w1 ⊗ w2). Let c : H̃∗,∗(X) ⊗ H̃∗,∗(X) → H̃∗,∗(X) be the cup product. Then
by definition of ψ we have

ψ∗(x) y(w1 ⊗ w2) = x(c( y(w1 ⊗ w2)))

ψ∗(x)z(w1 ⊗ w2) = x(c(z(w1 ⊗ w2))).

Our assumption on y, z implies that c( y(w1 ⊗ w2)) = c(z(w1 ⊗ w2)).
To prove that ψ∗ is a ring homomorphism we have to check that for x, y ∈ A∗,∗

and w1, w2 ∈ H̃∗,∗(X) we have

ψ(xy)(w1 ⊗ w2) = ψ(x)(ψ( y)(w1 ⊗ w2)).

This follows immediately from definitions.

Lemma 11.9. — The comultiplication map ψ∗ is associative and commutative.

Proof. — The associativity follows immediately from the definition. To verify
commutativity it is sufficient, in view of Lemma 11.8, to verify it on the generators of
the algebra A∗,∗ i.e. on operations Pi and Bi. For this operations commutativity follows
directly from the Cartan formulas (Proposition 9.7).

12. Structure of the dual to the motivic Steenrod algebra

Let f : A∗,∗ → H∗,∗ be a homomorphism of left H∗,∗-modules. Such a homo-
morphism is said to be homogeneous of bidegree (p, q) if for any i, j ≥ 0 it takes Ai,j

to Hi−p,j−q. We denote by A∗,∗ the “bigraded dual” to A∗,∗ i.e. the group of the left
H∗,∗-module maps from A∗,∗ to H∗,∗ which are finite sums of homogeneous maps.

Let PI be the basis of admissible monomials in A∗,∗ and θ(I)∗ the dual basis in
A∗,∗. An element x from Ap,q can be written uniquely as a sum of the form

x =
∑

aIθ(I)∗(12.1)

where θ(I)∗ ∈ Ar,s and aI ∈ Hi,j such that p = r − i, q = s − j. Since Hi,j = 0 for i > j
we get

r − s = p − q + i − j ≤ p − q.

Since for any I, r ≥ 2s and s ≥ 0 we further have

2s ≤ r ≤ p − q + s

which implies:

0 ≤ s ≤ p − q; 2s ≤ r ≤ 2(p − q).
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Therefore, the sum (12.1) is always finite. This fact implies in particular that taking
the bigraded dual to A∗,∗ we get back the original A∗,∗. It also implies that A∗,∗ is
a free H∗,∗ module.

We have a homomorphism H∗,∗ → A∗,∗ which takes a ∈ Hp,q to the map φ 	→
aφ(1) which lies in A−p,−q and which we also denote by a. The homomorphism ψ∗

defines a homomorphism φ∗ : A∗,∗⊗H∗,∗ A∗,∗ → A∗,∗. Lemma 11.9 immediately implies
the following result.

Proposition 12.1. — The homomorphism φ∗ makes A∗,∗ into an associative ring which is

graded commutative with respect to the first grading.

Let ei ∈ Api ,qi be a basis of A∗,∗ over H∗,∗ such that:

1. e0 = 1 and qi > 0 for i > 0
2. pi ≥ 2qi

3. for any q there are only finitely many i with qi ≤ q.

An example of such a basis is given by the basis of admissible monomials. Let ei be
the dual basis of A∗,∗. Let X be a smooth scheme over k. Then Hp,q(X) = 0 for
p > q + dim(X) and therefore for any w ∈ H∗,∗(X) there is only finitely many i’s such
that ei(w) = 0. We can define a map

λ∗,∗ : H∗,∗(X) → H∗,∗(X) ⊗H∗,∗ A∗,∗

by the formula

λ∗,∗(w) =
∑

ei(w) ⊗ ei.

The following lemma is straightforward.

Lemma 12.2. — The map λ∗,∗ is a ring homomorphism which does not depend on the

choice of ei.

Note that in the case when X = Spec(k) this homomorphism does not coincide
with the “scalar” map H∗,∗ → A∗,∗ which is described above since the action of ei ’s
on H∗,∗ may be nontrivial. In particular λ∗,∗ is not a H∗,∗-module homomorphism.

If we consider Bµl as a colimit of smooth schemes we can write a formal analog
of λ∗,∗. In particular for the canonical generators u and v we get:

λ∗,∗(v) =
∞∑

i=0

(uvi ⊗ xi + vi ⊗ yi)

λ∗,∗(u) =
∞∑

i=0

(uvi ⊗ x′
i + vi ⊗ y′

i)
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where xi, yi, x′
i, y′

i are some well defined elements in A∗,∗(k, Z/l). We denote:

ξi = y′
li ∈ A2(l i−1),l i−1(k, Z/l)

τi = yl i ∈ A2l i−1,l i−1(k, Z/l).

Since for any basis of A∗,∗ such that e0 = 1 we have dim(ei) > 0 (where dim refers to
the first degree of an element) for i = 0 we conclude that ξ0 = 1. Denote by Mk the
monomial Plk−1

Plk−2
...P1.

Lemma 12.3. — We have in H∗,∗(Bµl ):

Mk(v) = vlk Mkβ(u) = vlk .(12.2)

If f is any monomial in Pi and β other than Mk (resp. other than Mkβ) then f (v) = 0 (resp.

f (u) = 0).

Proof. — The equations (12.2) follow from Lemma 9.8 and the fact that β(u) = v.
The other statement follows from Lemma 9.9, Lemma 6.17 and multiplicativity of P.

Taking the basis of admissible monomials to compute λ∗,∗ and using Lem-
ma 12.3 we conclude that

λ∗,∗(v) = v ⊗ 1 +
∞∑

i=0

vl i ⊗ τi

λ∗,∗(u) = u ⊗ 1 +
∞∑

i=0

vl i ⊗ ξi.

(12.3)

For an element φ in A∗,∗ and an element ψ in A∗,∗ let 〈ψ,φ〉 ∈ H∗,∗ be the value of
ψ on φ. Then we have:

φ(u) = 〈ξ0, φ〉u +
∑

i

〈τi, φ〉vl i
(12.4)

φ(v) =
∑

i

〈ξi, φ〉vl i
.(12.5)

Let I be a sequence of the form (ε0, r1, ε1, r2, ..., ) where εi ∈ {0, 1}, ri ≥ 0 are non-
negative integers and I has only finitely many nontrivial terms. Following [5] we set:

ω(I) = τ
ε0
0 ξ

r1
1 τ

ε1
1 ξ

r2
2 ...

in Ap(I),q(I)(k, Z/l) where

p(I) = ε0 +
∑

i≥1

(εi(2l i − 1) + 2ri(l i − 1))

q(I) =
∑

i≥1

(εi + ri)(l i − 1)
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and

θ(I) = βε0Ps1βε1Ps2...

where

sn =
∑

i≥n

(εi + ri)li−n.

Simple computation shows that θ(I) belongs to A p(I),q(I)(k, Z/l).
In the following theorem we consider, following [6], the lexicographical order

on the set of sequences I such that (1, 2, 0, ...) < (0, 0, 1, ...).

Theorem 12.4. — For I < J one has 〈θ(I), ω( J)〉 = 0 and for I = J one has

〈θ(I), ω( J)〉 = ±1.

Proof. — The value of 〈θ(I), ω( J)〉 is a homogeneous element of H∗,∗ of degree
zero. Hence, it is sufficient to show that the image of 〈θ(I), ω( J)〉 in H∗,∗/H∗,>0 is 0 or
±1 depending on whether I < J or I = J. This is done using the action of A∗,∗/A∗,>0

on H∗,∗(Bµl )/H∗,>0H∗,∗(Bµl ) described in Lemma 11.3 in exactly the same way as in
the proof of [5, Lemma 8, p. 160].

Corollary 12.5. — Elements ω(I) (resp. θ(I)) form a basis of the H∗,∗-module

A∗,∗(k, Z/l) (resp. A ∗,∗(k, Z/l)).

Proof. — Elements θ(I) are exactly the admissible monomials. They form a basis
of A∗,∗ by Lemma 11.1 and Corollary 11.5. The fact that elements ω(I) form a basis
of A∗,∗ follows now from Theorem 12.4.

For the following theorem note that multiplication with an element of bidegree
(p, q) of H∗,∗ shifts the degree of an element of A∗,∗ by (−p,−q). E.g. multiplication
with ρ shifts the degree by (−1,−1).

Theorem 12.6. — The (graded commutative) algebra A∗,∗(k, Z/l) over H∗,∗ is canonically

isomorphic to the (graded commutative) algebra with generators

τi ∈ A2l i−1,l i−1

ξi ∈ A2l i−2,l i−1

and relations

1. ξ0 = 1

2. τ2
i =

{

0 for l = 2
τξi+1 + ρτi+1 + ρτ0ξi+1 for l = 2.
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Proof. — We already know by Corollary 12.5 that A∗,∗(k, Z/l) has a basis which
consist of monomials in ξi, τi which are of degree ≤ 1 in each τi. The relation τ2

i = 0
for odd l is a corollary of graded commutativity. Thus we may assume that l = 2
in which case we have only to show that τ2

i = τξi+1 + ρτi+1 + ρτ0ξi+1. The required
relation follows immediately from (12.3), the multiplicativity of λ∗,∗ and the relation
u2 = τv + ρu in the motivic cohomology ring of Bµ2.

Lemma 12.7. — For any φ ∈ A∗,∗ one has:

φ(vl j
) =

∑

i

〈ξ l j

i , φ〉vli+j
.(12.6)

Proof. — Let x1, x2 be any elements of A∗,∗. If ψ∗(φ) = ∑
φ′

k ⊗ φ′′
k we have, by

definition of product in A∗,∗:

〈x1x2, φ〉 =
∑

〈x1, φ
′
k〉〈x2, φ

′′
k 〉.

This implies by induction starting with (12.5) that for any n one has

φ(vn) =
∑

( j1,...,jn)

〈ξj1 ...ξjn, φ〉vl j1+...+jn
.

For n = l j all the terms except for the ones which show up in the right hand side of
(12.6) cancel out since we work with Z/l-coefficients.

Proposition 12.8. — Let φ,ψ be elements of A∗,∗ such that

〈ξk, ψ〉, 〈τk, ψ〉 ∈ Z/l ⊂ H∗,∗.

Then one has:

〈ξk, φψ〉 =
∑

i

〈
ξ l i

k−i, φ
〉〈ξi, ψ〉

〈τk, φψ〉 = 〈τk, φ〉〈ξ0, ψ〉 +
∑

i

〈
ξ l i

k−i, φ
〉〈τi, ψ〉.

Proof. — We have by (12.5)

φψ(v) =
∑

〈ξi, φψ〉vl i
.

On the other hand by (12.5) and (12.6) we get:

φψ(v) = φ(
∑

〈ξi, ψ〉vl i
) =

∑

i,j

〈
ξ l i

j , φ
〉〈ξi, ψ〉vli+j

.
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Comparing coefficients at powers of v we get the first of the required equalities. To
get the second one we write

φψ(u) = 〈ξ0, φψ〉u +
∑

i

〈τi, φψ〉vl i

by (12.4). And by (12.4) and (12.6) we get:

φψ(u) = 〈ξ0, ψ〉φ(u) +
∑

i

〈τi, ψ〉φ(vl i
) =

= 〈ξ0, φ〉〈ξ0, ψ〉u +
∑

i

〈τi, φ〉〈ξ0, ψ〉vl i +
∑

i,j

〈
ξ l i

j , φ
〉〈τi, ψ〉vli+j

.

Comparing coefficients we get the second equality.

Now we can describe the dual to the ring structure on A∗,∗. We have two H∗,∗
module structures on A∗,∗. The first one, the left module structure which we used all
the time, is given by

a ∗l φ(x) = φ(ax) = aφ(x)

where φ ∈ A∗,∗, a ∈ H∗,∗ and x ∈ A∗,∗. The other one is the right module structure
given by

φ ∗r a(x) = φ(xa).

Lemma 11.7 implies that (φφ′) ∗r a = φ(φ′ ∗r a) and, in particular, that φ ∗r a =
φ(1 ∗r a). The map a 	→ 1 ∗r a coincides with the map λ∗,∗ for X = Spec(k) and we
denote it by λ. Therefore, the two module structures are defined by two ring homo-
morphisms a 	→ aξ0 and a 	→ λ(a) from H∗,∗ to A∗,∗.

Denote by A∗,∗ ⊗r,l A∗,∗ the tensor product with the property

(φ ∗r a) ⊗ ψ = φ ⊗ (a ∗l ψ).

Similarly, denote by A∗,∗ ⊗r,l A∗,∗ the tensor product with the property

xa ⊗ y = x ⊗ ay.

The following lemma is taken from [2, Lemma 3.3].

Lemma 12.9. — Let f , g be elements of A∗,∗ and x, y elements of A∗,∗. The formula:

〈θ( f ⊗ g), x ⊗ y〉 = (−1)deg(g)deg( f )〈 f , x〈g, y〉〉(12.7)

defines an isomorphism

θ : A∗,∗ ⊗r,l A∗,∗ → (A∗,∗ ⊗r,l A∗,∗)∗

where the upper star on the right hand side denotes the bigraded dual of left H∗,∗-module maps from

A∗,∗ ⊗H∗,∗ A∗,∗ to H∗,∗.
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Proof. — One verifies easily that θ is indeed well defined by (12.7). To prove that
it is an isomorphism consider the basis ω(I) in A∗,∗ and let ω(I)∗ be the dual basis in
A∗,∗. The elements ω(I) ⊗ ω( J) clearly generate A∗,∗ ⊗r,l A∗,∗ as a left H∗,∗-module.
The image of ω(I) ⊗ ω( J) with respect to θ is the functional which equals one on
ω(I)∗ ⊗ω( J)∗ and zero on all other elements of the form ω(I′)∗ ⊗ω( J′)∗. This implies
that ω(I)⊗ω( J) are linearly independent in A∗,∗⊗r,l A∗,∗ and hence form a basis of this
left H∗,∗-module. It also implies that θ maps this basis to a basis of (A∗,∗ ⊗H∗,∗ A∗,∗)∗

and therefore θ is an isomorphism.

Composing the dual to the multiplication map A∗,∗ ⊗A∗,∗ → A∗,∗ with θ we get
a map

ψ∗ : A∗,∗ → A∗,∗ ⊗r,l A∗,∗.(12.8)

By construction, the map ψ∗ is defined by the property that ψ∗( f ) = ∑
f ′
i ⊗ f ′′

i and
for any x, y ∈ A∗,∗ one has:

∑

〈 f ′
i , x〈 f ′′

i , y〉〉 = 〈 f , xy〉.(12.9)

Lemma 12.10. — The map (12.8) is a ring homomorphism.

Proof. — It follows from a direct computation and Lemma 11.7.

In view of Lemma 12.10 and Theorem 12.6, the map ψ∗ is completely deter-
mined by its values on the generators ξi, τi.

Lemma 12.11. — One has:

ψ∗(ξk) =
k∑

i=0

ξ l i

k−i ⊗ ξi

ψ∗(τk) =
k∑

i=0

ξ l i

k−i ⊗ τi + τk ⊗ 1.

Proof. — Follows from Proposition 12.8 and the formula (12.9).

Remark 12.12. — The rings H∗,∗ and A∗,∗, two homomorphisms H∗,∗ → A∗,∗,
the homomorphism A∗,∗ → H∗,∗ which takes τi for i ≥ 0 and ξi for i > 0 to zero
and the homomorphism ψ∗ form together a Hopf algebroid H (k, Z/l). We can not
give its complete description because we do not know the structure of H∗,∗ and the
explicit form of the homomorphism λ which involves the action of the reduced power
operations and the Bockstein in H∗,∗. One can easily see however that these are the
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only two pieces of information missing. In the case when l > 2 we have a coaction
of the topological dual Steenrod algebra A∗(l) (given the second grading in the way
explained above) on H∗,∗ and H (k, Z/l) is the twisted product of A∗(l) and H∗,∗

with respect to this coaction. For l = 2 consider the Hopf algebroid H (2) over Z/2
defined as follows:

Ring of objects is Z/2[ρ, τ] where deg(ρ) = (−1,−1) and deg(τ) = (0,−1).

Ring of morphisms is

Z/2[ρ, τ, τi, ξi+1]i≥0/
(
τ2

i − τξi+1 − ρτi+1 − ρτ0ξi+1

)

i≥0
.

Coface maps are given by

d0(ρ) = ρ d0(τ) = τ

d1(ρ) = ρ d1(τ) = τ + ρτ0.

Codegeneracy map is given by

s0(ρ) = ρ s0(τ) = τ

s0(τi) = 0 for i ≥ 0
s0(ξi) = 0 for i > 0.

Co-composition is given by

ψ∗(ρ) = ρ ⊗ 1 = 1 ⊗ ρ

ψ∗(τ) = τ ⊗ 1 = 1 ⊗ τ + ρτ0 ⊗ 1

ψ∗(ξk) =
k∑

i=0

ξ l i

k−i ⊗ ξi

ψ∗(τk) =
k∑

i=0

ξ l i

k−i ⊗ τi + τk ⊗ 1.

Note that our formulas imply that H (2) is, in fact, a Hopf algebroid over Z/2[ρ].
This Hopf algebroid co-acts on H∗,∗ and H (k, Z/2) is the twisted product of H (2)

and H∗,∗ with respect to this coaction.

13. Operations ρ(E, R) and their properties

Let R = (r1, r2, ...) be a sequence of non-negative integers which are almost all
zero and E = (ε0, ε1, ...) a sequence of zeros and ones which are almost all zeros.
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Corollary 12.5 implies that elements of the form

τ(E)ξ(R) :=
∏

i≥0

τ
εi
i

∏

j≥1

ξ
rj
j

form a basis of A∗,∗ over H∗,∗. Let ρ(E, R) be the dual basis of A∗,∗. In particular, we
define, following Milnor,

PR = ρ(0, R)

Q (E) := ρ(E, 0)

and

Q i = Q (0, ..., 0, 1, 0, ...)

where 1 is on the i-th place i.e. Q i is the dual to τi.
If l is odd operations ρ(E, R) and, in particular, Q (E), PR and Q i, have the

same properties as their topological counterparts defined in [5]. In what follows we
assume that l = 2.

Lemma 13.1. — P(n,0,...,0,...) = Pn.

Proof. — Follows immediately from Theorem 12.6.

Proposition 13.2. — ρ(E, R) = Q (E)PR.

Proof. — We have to compute the pairing of Q (E)PR with τ(E′)ξ(R′) and show
that it is 1 for E′ = E, R′ = R and zero otherwise. By (12.9) we have:

〈τ(E′)ξ(R′), Q (E)PR〉 =
∑

〈 f ′
i , Q (E)〈 f ′′

i ,PR〉〉(13.1)

where
∑

f ′
i ⊗ f ′′

i = ψ∗(τ(E′)ξ(R′)) = ψ∗(τ(E′))ψ∗(ξ(R′)).

We can choose our representation
∑

f ′
i ⊗ f ′′

i such that f ′′
i are of the form ρ(E′′, R′′)

and, in particular, 〈 f ′′
i ,PR〉 are in Z/2. Then, the expression (13.1) depends only on

the class of ψ∗(τ(E′)ξ(R′)) in A∗,∗/I ⊗r,l A∗,∗ where I is the ideal generated by ξi for
i > 0. In this quotient ring we have:

ψ∗(ξk) = 1 ⊗ ξk

ψ∗(τk) = 1 ⊗ τk + τk ⊗ 1.

This easily implies that (13.1) is non-zero if and only if E = E′ and R = R′.
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Let ρ be, as before, the class of −1 in H1,1. Denote by B∗,∗ the Z/2[ρ]-sub-
module in A∗,∗ generated by elements of the form Q (E). Let B∗,∗ be the Z/2[ρ]-dual
of B∗,∗. Then

B∗,∗ ⊗Z/2[ρ] H∗,∗ = A∗,∗/({ξi}).
Lemma 12.11 implies that for f ∈ I = ({ξi}), one has

ψ∗( f ) ∈ I ⊗ A∗,∗ + A∗,∗ ⊗ I

and, therefore, ψ∗ defines a comultiplication on B∗,∗ ⊗Z/2[ρ] H∗,∗ which takes τk to
τk ⊗ 1 + 1 ⊗ τk. From this one easily gets the following result.

Proposition 13.3. — As a Z/2[ρ]-algebra, B∗,∗ is of the form

B∗,∗ = Z/2[ρ][τ0, ..., τn, ...]/
(
τ2

i = ρτi+1

)
.

The map ψ∗ defines a Hopf algebra structure on B∗,∗ over Z/2[ρ], satisfying:

φ∗(τi) = τi ⊗ 1 + 1 ⊗ τi.

Dualizing we get the following theorem on the structure of B∗,∗.

Proposition 13.4. — As a Z/2[ρ]-algebra, B∗,∗ is the exterior algebra with generators Q i.

For E = (ε0, ..., εn) one has Q (E) = ∏
Q εi

i . The coproduct is given on Q i’s by

ψ∗(Q i) = 1 ⊗ Q i + Q i ⊗ 1 + ρ
∑

E,E′
cE,E′Q (E) ⊗ Q (E′)

where E, E′ run through sequences of zeros and ones which are almost all zeros and cE,E′ are elements

of H∗,∗.

The following three results complete the proof of all the properties of operations
Q i used in [15].

Lemma 13.5. — Q 0 = β.

Proof. — Since operations ρ(E, R) form a basis we can write β as a formal linear
combination

∑
aE,Rρ(E, R). Since the weight of β is zero this implies that β = cQ 0

for c ∈ Z/l. Since β(u) = v, formula (12.4) implies that c = 1.

Proposition 13.6. — Let i ≥ 1 and qi = P0,...,0,1,0,... be the dual to ξi. Then one has

Q i = [Q 0, qi].
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Proof. — We have to show that qiQ 0 = Q 0qi + Q i i.e. that the only monomials
which pair non-trivially with qiQ 0 are τ0ξi and ξi and that for those monomials the
pairing gives 1. Using formula (12.9) we see that it is sufficient to show that the only
monomials M = τ(E)ξ(R) such that ξi⊗τ0 appears in the decomposition of ψ∗(M) are
τ0ξi and τi and that for those monomials ξi ⊗ τ0 appears with coefficient 1. The later
follows immediately from Lemma 12.11. To prove the former note that the question
of whether or not ξi ⊗ τ0 appears in the expression for ψ∗(M) depend only on the
class of ψ∗(M) in A∗,∗ ⊗r,l A∗,∗/J where J is generated by τk for k > 0. In this quotient
ψ∗(τk) = ξk ⊗ τ0 + τk ⊗ 1 and τ2

0 = τξ1 + ρτ0ξ1. This shows that the only way to get
ξi ⊗ τ0 is to consider ψ∗(τi) or ψ∗(τ0ξi).

The following example shows that not all of the standard topological formulas
for Q i’s hold in the motivic context.

Example 13.7. — In topology, one can define operations Q i in terms of the
Steenrod squares inductively by the formula Q 0 = Sq1, Q i+1 = [Q i, Sq2i+1]. Let us
show that in the motivic Steenrod algebra Q 2 = [Q 1, Sq4] if ρ = 0 i.e. if k does
not contain the square root of −1. Using (12.9) and Lemma 12.11 we can compute
Sq4Q 1 in terms of the basis dual to τ(E)ξ(R). We get:

Sq4Q 1 + Q 1Sq4 = Q 2 + ρQ 0Q 1Sq2.

14. Operations and characteristic classes

The goal of this section is to prove Theorem 14.2. For a smooth scheme X, let
K0(X) be the Grothendieck group of vector bundles on X. All schemes in this section
are assumed to be quasi-projective.

Theorem 14.1. — For any symmetric polynomial s = s(t1, ..., tn, ...) there exists a unique

natural transformation of contravariant functors from smooth quasi-projective varieties to pointed sets

of the form:

cs : K0(−) → ⊕n≥0H2n,n(−, Z)

such that for a collection of line bundles L1, ..., Ln on X one has

cs(⊕n
i=1Li) = s(e(L1), ..., e(Ln)).

Proof. — It follows in the standard way from Theorem 4.1.

Let φ ∈ Ap,q be a cohomological operation. For any X and a vector bundle V
on X the value of φ on the Thom class tV is, by Proposition 4.3, of the form cφ(V)tV
where cφ(V) is a well defined class in Hp,q(X, Z/l).
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Theorem 14.2. — Let E = (ε0, ..., εd), R = (r1, ..., rn) be as in Section 13. Then for

a vector bundle V one has:

1. cρ(E,R)(V) = 0 if E = 0
2. cP(R)(V) = sR(V) where sR is the reduction modulo l of the characteristic class corres-

ponding by Theorem 14.1 to the symmetric polynomial

∑

f

∏

j∈{0,...,n}
(

∏

i∈f −1( j)

ti)l j−1

where f runs through all functions {1, ..., m, ...} → {0, ..., n} such that for any i, n ≥ i > 0 one

has | f −1(i)| = ri.

Corollary 14.3. — Let qn = P(0, ..., 0, 1, 0, ...) be the operation dual to ξn. Then one

has

qn(tV) = sln−1(V)tV

where sj is the characteristic class corresponding, by Theorem 14.1, to the symmetric function
∑

t j
i .

Corollary 14.4. — One has

Pn(tV) = cn,l−1(V)tV

where cn,j is the characteristic class corresponding, by Theorem 14.1, to the symmetric function
∑

t j
i1 ...t

j
in .

The proof of this theorem occupies the rest of this section.

Lemma 14.5. — Let X be a smooth scheme and w an element in H2,1(X, Z/l) which

is the reduction modulo l of an integral class. Then there exists a map f : X+ → (Bµl )+ in H•
such that w = f ∗(v).

Proof. — Since X is quasi-projective the Jouanolou trick shows that there exist an
affine scheme X′ and an A1-weak equivalence X′ → X. Therefore, we may assume
that X is affine. By Lemma 4.5, any element of H2,1(X, Z) is of the form e(L) for
a line bundle L. Since X is affine there is a map g : X → PN for some N such that
L = g∗(O(1)). On the other hand the reduction of e(O(1)) modulo l is p∗(v) where
p : PN → Bµl is the standard morphism. This proves the lemma.

Remark 14.6. — The assertion of the lemma also holds without the assumption
that w is the image of an integral class.
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Lemma 14.7. — Let X be a smooth scheme and w an element in H2,1(X, Z/l) which

is the reduction modulo l of an integral class. Let further φ be an operation of the form ρ(E, R).

Then one has

φ(w) =
{

wln if φ = qn

0 otherwise.

Proof. — By Lemma 14.5 it is sufficient to prove our statement for X = Bµl

and w = v. In this case our result follows from (12.5).

Lemma 14.8. — Let L be a line bundle and σ the class of O(−1) in the ring H∗,∗(P(L ⊕
O), Z). Then one has σ 2 = −e(L)σ .

Proof. — Using standard argument we can reduce the problem to the case
X = PN and L = O(1). The restriction of σ to P(O) is zero. Hence, σ 2 = xσ for
some x. The restriction of σ to P(L) is −e(L). Hence −e(L)x = e(L)2. Since e(O(1))

is not a zero divisor, we conclude that x = −e(L).

Lemma 14.9. — Let L be a line bundle and φ an operation of the form ρ(E, R). Then

one has

φ(tL) =
{

e(L)ln−1tL for φ = qn

0 otherwise.

Proof. — Consider the standard projection p : P(O ⊕ L) → Th(L). As shown in
Section 4, it defines a monomorphism on motivic cohomology. Together with Lem-
ma 14.7 this immediately implies that φ(tL) = 0 if φ = qn for some n. As shown in
the proof of Lemma 4.5 we have p∗(tL) = −σ + e(L). Hence, by Lemma 14.7 and
Lemma 14.8 we have

p∗qn(tL) = qnp∗(tL) = (−σ + e(L))ln = e(L)ln−1(−σ + e(L)).

Since p∗ is a monomorphism we conclude that qn(tL) = e(L)ln−1tL.

Remark 14.10. — Lemma 14.9 has the following analog for the basis of admis-
sible monomials instead of Milnor’s basis ρ(E, R). Recall, that Mk denotes the mono-
mial Plk−1

...PlP1. If L is a line bundle and φ an admissible monomial then one has

φ(tL) =
{

e(L)lk−1tL for φ = Mk

0 otherwise.
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Let I be the two-sided ideal of A∗,∗ generated by Q 0 = β. Proposition 13.6 implies
that it coincides with the two-sided ideal generated by Q (E) for E = 0. Since ψ∗(β) =
β ⊗ 1 + 1 ⊗ β for any φ ∈ I we have ψ∗(φ) ∈ A∗,∗ ⊗ I + I ⊗ A∗,∗. In particular, if
w, w′ are motivic cohomology classes such that φ(w) = 0, φ(w′) = 0 for any φ ∈ I
then φ(ww′) = 0 for any φ ∈ I. Together with the splitting principle and Lemma 14.9
this implies the following result.

Lemma 14.11. — For any E = 0 and any vector bundle V one has cρ(E,R)(V) = 0.

Let R = (r1, ..., rn) be a sequence of non-negative integers. To prove the second
statement of Theorem 14.2 we have to compute P(R)(tL1 ∧ tLm) for a collection of
line bundles L1, ..., Lm. Let ψ∗

m be the m-fold iteration of the comultiplication map for
A∗,∗ and

ψ∗
m(P(R)) =

∑

a(E1,R1,...,Em,Rm)ρ(E1, R1) ⊗ ... ⊗ ρ(Em, Rm).

By Lemma 14.9 we have

P(R)(tL1 ∧ ... ∧ tLm) = (
∑

a(R1,...,Rm)

m∏

i=1

cP(Ri)(Li)) ∧ tL1 ∧ ... ∧ tLm

where the only non-trivial terms are those for which Ri is of the form

Ri = (0, ..., 0, 1, 0, ...).

On the other hand we have

a(R1,...,Rm) = 〈ψ∗
m(P(R)), ξ(R1) ⊗ ... ⊗ ξ(Rm)〉 =

= 〈P(R), ξ(R1)...ξ(Rn) =
{

1 if
∑

Ri = R
0 otherwise.

A sequence of Ri’s of the form (0, ..., 0, 1, 0, ...) can be thought of as a function
f : i → f (i) such that Ri = qf (i) where q0 is assumed to be 1. The condition

∑
Ri = R

means that we consider the functions which take the value i > 0 exactly ri times.
Together with the fact that cqn(L) = e(L)ln−1 this proves the last statement of Theo-
rem 14.2.
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