Microlocalization of subanalytic sheaves  [ Microlocalisation des faisceaux sous-analytiques ] (2013)


Prelli, Luca
Mémoires de la Société Mathématique de France, Tome 135 (2013) vi-91 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.445
URL stable : http://www.numdam.org/item?id=MSMF_2013_2_135__1_0

Bibliographie

[1] E. AndronikofMicrolocalisation tempérée, Mémoires Soc. Math. France, vol. 57, 1994. Zbl 0655.35005 | | MR 1273991

[2] A. BeckContinuous flows in the plane, Grundlehren der Math., vol. 201, Springer-Verlag, New York-Heidelberg, 1974. Zbl 0206.26001 | MR 500869

[3] E. Bierstone & D. Milmann« Semianalytic and subanalytic sets », Publ. IHÉS 67 (1988), p. 5–42. Numdam | Zbl 0674.32002 | | MR 972342

[4] J. E. BjörkAnalytic 𝒟-modules and applications, Math. Appl., vol. 247, Kluwer Academic Publishers Group, Dordrecht, 1993. MR 1232191

[5] V. Colin« Formal microlocalization », C. R. Acad. Sci. Paris Math. 327 (1998), p. 289–293. Zbl 0945.58019 | MR 1650274

[6] —, « Specialization of formal cohomology and asymptotic expansions », Publ. RIMS, Kyoto Univ. 37 (2001), p. 37–69. Zbl 0980.32004 | MR 1815994

[7] M. CosteAn introduction to o-minimal geometry, Istituti Editoriali e Poligrafici Internazionali, Pisa, 2000, Dip. Mat. Univ. Pisa, Dottorato di Ricerca in Matematica.

[8] A. D’Agnolo & P. Schapira« Leray’s quantization of projective duality », Duke Math. J. 84 (1996), p. 453–496. Zbl 0879.32011 | MR 1404336

[9] M. Edmundo & L. Prelli« Sheaves on 𝒯-topologies », arXiv:1002.0690. MR 3454562

[10] S. Guillermou« DG-methods for microlocalization », Publ. RIMS, Kyoto Univ. 47 (2011), p. 99–140. Zbl 1223.35019 | MR 2827724

[11] N. Honda & L. Prelli« Multi-specialization and multi-asymptotic expansions », Advances in Math. 232 (2013), p. 432–498. Zbl 1262.32012 | MR 2989990

[12] M. Kashiwara« The Riemann-Hilbert problem for holonomic systems », Publ. RIMS, Kyoto Univ. 20 (1984), p. 319–365. Zbl 0566.32023 | MR 743382

[13] —, « 𝒟-modules and microlocal calculus », in Transl. Math. Monogr., Iwanami Series in Modern Math., vol. 217, Amer. Math. Soc., Providence, 2003.

[14] M. Kashiwara & P. SchapiraSheaves on manifolds, Grundlehren der Math., vol. 292, Springer-Verlag, Berlin, 1990. MR 1074006

[15] —, Moderate and formal cohomology associated with constructible sheaves, Mémoires Soc. Math. France, vol. 64, 1996. Numdam | Zbl 0881.58060 |

[16] —, « Ind-sheaves », Astérisque 271 (2001). Zbl 0993.32009

[17] —, « Microlocal study of ind-sheaves I: microsupport and regularity », Astérisque 284 (2003), p. 143–164. Zbl 1053.35009

[18] —, Categories and sheaves, Grundlehren der Math., vol. 332, Springer-Verlag, Berlin, 2006. Zbl 1118.18001

[19] M. Kashiwara, P. Schapira, F. Ivorra & I. Waschkies« Microlocalization of ind-sheaves », in Studies in Lie theory, Progress in Math., vol. 243, Birkhäuser, 2006, p. 171–221. Zbl 1098.35008 | MR 2214250

[20] S. Łojaciewicz« Sur le problème de la division », Studia Mathematica 8 (1959), p. 87–136.

[21] B. MalgrangeIdeals of differentiable functions, Tata Institute, Oxford University Press, 1967. MR 212575

[22] —, Équations différentielles à coefficients polynomiaux, Progress in Math., vol. 96, Birkhäuser, 1991.

[23] A. R. Martins« Functorial properties of the microsupport and regularity for ind-sheaves », Math. Zeitschrift 260 (2008), p. 541–556. Zbl 1152.32008 | MR 2434469

[24] G. Morando« An existence theorem for tempered solutions of 𝒟-modules on complex curves », Publ. RIMS, Kyoto Univ. 43 (2007), p. 625–659. Zbl 1155.32018 | MR 2361790

[25] —, « Tempered solutions of 𝒟-modules on complex curves and formal invariants », Ann. Inst. Fourier 59 (2009), p. 1611–1639. Numdam | Zbl 1218.32015 | | MR 2566969

[26] L. Prelli« Sheaves on subanalytic sites », Thèse, Universities of Padova and Paris VI, 2006. Zbl 1171.32002

[27] —, « Microlocalization of subanalytic sheaves », C. R. Acad. Sci. Paris Math. 345 (2007), p. 127–132. Zbl 1159.14034 | MR 2344810

[28] —, « Sheaves on subanalytic sites », Rend. Sem. Mat. Univ. Padova 120 (2008), p. 167–216. Numdam | Zbl 1171.32002 | | MR 2492657

[29] —, « Cauchy-Kowaleskaya-Kashiwara theorem with growth conditions », Math. Zeitschrift 265 (2010), p. 115–124. Zbl 1198.32004 | MR 2606951

[30] —, « Microlocalization with growth conditions of holomorphic functions », C. R. Acad. Sci. Paris Math. 348 (2010), p. 1263–1266. Zbl 1238.32009 | MR 2745336

[31] —, « Conic sheaves on subanalytic sites and Laplace transform », Rend. Sem. Mat. Univ. Padova 125 (2011), p. 173–206. Numdam | Zbl 1239.32009 | | MR 2866126

[32] P. SchapiraMicrodifferential systems in the complex domain, Grundlehren der Math., vol. 269, Springer-Verlag, Berlin, 1985. Zbl 0554.32022 | MR 774228

[33] P. Schapira & J. P. Schneiders« Index theorem for elliptic pairs », Astérisque 224 (1994). Zbl 0893.35004

[34] J. P. Schneiders« An introduction to 𝒟-modules », Bull. Soc. Roy. Sci. Liège 63 (1994), p. 223–295. Zbl 0816.35004 | MR 1282516

[35] SGA4 – Séminaire Géom. Algébrique du Bois-Marie by M. Artin, A. Grothendieck, J.-L. Verdier, Lecture Notes in Math., vol. 269, Springer-Verlag, Berlin, 1972.

[36] Y. SibuyaLinear ordinary differential equation in the complex domain: problems of analytic continuation, Transl. Math. Monogr., vol. 82, Amer. Math. Soc., Providence, 1990. MR 1084379

[37] G. TammeIntroduction to étale cohomology, Universitext, Springer-Verlag, Berlin, 1994. Zbl 0815.14012 | MR 1317816

[38] L. Van Den DriesTame topology and o-minimal structures, Lecture Notes Series, vol. 248, Cambridge University Press, Cambridge, 1998. Zbl 0953.03045 | MR 1633348

[39] I. Waschkies« Microlocal perverse sheaves », Bull. Soc. Math. de France 132 (2004), p. 397–462. Numdam | Zbl 1112.32015 | | MR 2081221

[40] A. J. Wilkie« Covering definable open sets by open cells », in O-minimal Structures, M. Edmundo, D. Richardson, and A. Wilkie, eds, Proceedings of the RAAG Summer School Lisbon 2003, Lecture Notes in Real Algebraic and Analytic Geometry, Cuvillier Verlag, 2005.