One-dimensional general forest fire processes  [ Processus de feux de forêt généraux en dimension 1 ] (2013)


Bressaud, Xavier; Fournier, Nicolas
Mémoires de la Société Mathématique de France, Tome 132 (2013) vi-138 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.442
URL stable : http://www.numdam.org/item?id=MSMF_2013_2_132__1_0

Bibliographie

[1] Aldous (D. J.)Emergence of the giant component in special Marcus-Lushnikov processes, Random Structures Algorithms, t.12 (1998), pp.179–196. Zbl 1002.60564

[2] —, Deterministic and stochastic models for coalescence (aggregation, coagulation): A review of the mean-field theory for probabilists, Bernoulli, t.5 (1999), pp.3–48. Zbl 0930.60096

[3] —, The percolation process on a tree where infinite clusters are frozen, Math. Proc. Cambridge Philos. Soc., t.128 (2000), pp.465–477. Zbl 0961.60096

[4] Amaral (L .A. N.) & Lauritsen (K. B.) – Self-organized criticality in a rice-pile model, Phys Rev. E., t.54 (1996), pp.4512–4515.

[5] Bak (P.), Tang (C.) & Wiesenfeld (K.)Self-organized criticality: an explanation of 1/f noise, Phys. Rev. Letters, t.59 (1987), pp.381–384.

[6] —, Self-organized criticality, Phys. Rev. A, t.38 (1988), pp.364–374. Zbl 1230.37103

[7] Van Den Berg (J.) & Brouwer (R.)Self-organized forest-fires near the critical time, Comm. Math. Phys., t.267 (2006), pp.265–277. Zbl 1111.60080

[8] Van Den Berg (J.), Brouwer (R.) & Vágvölgyi (B.)Box-crossings and continuity results for self-destructive percolation in the plane, pp. 117–136 in In and Out of Equilibrium 2, Progress in Probability, vol.60, Birkhäuser, 2008. Zbl 1173.82329

[9] Van Den Berg (J.) & Járai (A. A.)On the asymptotic density in a one-dimensional self-organized critical forest-fire model, Comm. Math. Phys., t.253 (2005), pp.633–644. Zbl 1079.82010

[10] Van Den Berg (J.) & Tóth (B.)A signal-recovery system: asymptotic properties, and construction of an infinite-volume process, Stochastic Process. Appl., t.96 (2001), pp.177–190. Zbl 1058.60093

[11] Bertoin (J.)Random fragmentation and coagulation processes, Cambridge Studies in Advanced Math., t.102 (2006). Zbl 1107.60002

[12] —, Burning cars in parkings, preprint, http://hal.archives-ouvertes. fr/ccsd-00505206/en/, 2010.

[13] Borgne (Y. Le) & Rossin (D.) – On the identity of the sand pile group, Discrete Math., t.256 (2002), pp.775–790.

[14] Bressaud (X.) & Fournier (N.)On the invariant distribution of an avalanche process, Ann. Probab., t.37 (2009), pp.48–77. Zbl 1171.60022

[15] —, Asymptotics of one-dimensional forest fire processes., Ann. Probab., t.38 (2010), pp.1783–1816. Zbl 1205.60167

[16] Brouwer (R.)A modified version of frozen percolation on the binary tree, preprint, 2005, arXiv: math/0511021v1.

[17] Brouwer (R.) & Pennanen (J.)The cluster size distribution for a forest-fire process on , Electron. J. Prob., t.11 (2006), pp.1133–1143. Zbl 1128.60080 |

[18] Brylawski (T.)The lattice of integer partitions, Discrete Math., t.6 (1973), pp.201–219. Zbl 0283.06003

[19] Cafiero (R.), Pietronero (L.) & Vespignani (A.)Persistence of screening and self-criticality in the scale invariant dynamics of diffusion limited aggregation, Phys. Rev. Lett., t.70 (1993), pp.3939–3942.

[20] Christensen (K.), Corral (A.), Frette (V.), Feder (J.) & Jossang (T.)Tracer dispersion in a self-organized critical system, Phys. Rev. Lett., t.77 (1996), pp.107–110.

[21] Cocozza-Thivent (C.)Processus stochastiques et fiabilité des systèmes, Springer-Smai, 1997.

[22] Corral (A.), Telesca (L.) & Lasaponara (R.)Scaling and correlations in the dynamics of forest-fire occurrence, Phys. Rev. E, t.77 (2008), 016101, 7 pp.

[23] Cui (W.) & Perera (A. H.)What do we know about forest fire size distribution, and why is this knowledge useful for forest management?, Internat. J. Wildland Fire, t.17 (2008), pp.234–244.

[24] Damron (M.), Sapozhnikov (A.) & Vágvölgyi (B.)Relations between invasion percolation and critical percolation in two dimensions, Ann. Probab., t.37 (2009), pp.2297–2331. Zbl 1247.60134

[25] Dhar (D.)Self-organized critical state of sand pile automaton models, Phys. Rev. Lett., t.64 (1990), pp.1613–1616. Zbl 0943.82553

[26] —, Theoretical studies of self-organized criticality, Phys. A, t.369 (2006), pp.29–70.

[27] Drossel (B.) & Schwabl (F.)Self-organized critical forest-fire model, Phys. Rev. Lett., t.69 (1992), pp.1629–1632.

[28] Drossela (B.), Clar (S.) & Schwabl (F.)Exact results for the one-dimensional self-organized critical forest-fire model, Phys. Rev. Lett., t.71 (1993), pp.3739–3742.

[29] Dürre (M.)Existence of multi-dimensional volume self-organized critical forest-fire models, Electron. J. Prob., t.11 (2006), pp.513–539. Zbl 1109.60081 |

[30] —, Uniqueness of multi-dimensional infinite volume self-organized critical forest-fire models, Electronic Comm. Prob., t.11 (2006), pp.304–315. Zbl 1130.60091 |

[31] —, Self-organized critical phenomena: Forest fire and sand pile models, Thèse, LMU München, 2009.

[32] Erdős (P.) & Rényi (A.)On the evolution of random graphs, Bull. Inst. Internat. Statist., t.38 (1961), pp.343–347. Zbl 0106.12006

[33] Fournier (N.) & Laurençot (P.)Marcus Lushnikov processes, Smoluchowski’s and Flory’s models, Stochastic Process. Appl., t.119 (2009), pp.167–189. Zbl 1169.60027

[34] Goles (E.), Latapy (M.), Magnien (C.), Morvan (M.) & Phan (H. D.)Sand pile models and lattices: a comprehensive survey, Theoret. Comput. Sci., t.322 (2004), pp.383–407. Zbl 1054.05007

[35] Grassberger (P.)Critical behaviour of the Drossel-Schwabl forest fire model, New J. Physics, t.4 (2002), pp.17.

[36] Grimmett (G.)Percolation, Springer-Verlag, New York, 1989. Zbl 0691.60089

[37] Henley (C. L.)Self-organized percolation: a simpler model, Bull. Am. Phys. Soc., t.34 (1989), pp.838.

[38] Holmes (T. P.), Huggett (R. J.) & Westerling (A. L.)Statistical analysis of large wildfires, pp. 59–77 in The Economics of Forest Disturbances: Wildfires, Storms, and Invasive Species, Springer, Dordrecht, 2008.

[39] Holroyd (A. E.), Levine (L.), Meszaros (K.), Y. Peres (J. Propp) & Wilson (D.) – Chip-Firing and Rotor-Routing on Directed Graphs, pp. 331–364 in In and Out of Equilibrium 2, Progr. Probab., vol.60, 2008.

[40] Honecker (A.) & Peschel (I.)Critical properties of the one-dimensional forest-fire model, Physica A, t.229 (1996), pp.478–500.

[41] Jacod (J.) & Shiryaev (A. N.)Limit theorems for stochastic processes, Springer, 1982.

[42] Járai (A. A.)Thermodynamic limit of the abelian sand pile model on d , Markov Process. Related Fields, t.11 (2005), pp.313–336.

[43] Jensen (H. J.)Self-organized criticality, Cambridge Lecture Notes in Physics, vol.10, Cambridge University Press, 1998.

[44] Kingman (J.)The coalescent, Stochastic Process. Appl., t.13 (1982), pp.235–248. Zbl 0491.60076

[45] Liggett (T. M.)Interacting particle systems, Springer, 1985. Zbl 0559.60078

[46] Lübeck (S.) & Usadel (K. D.)The Bak-Tang-Wiesenfeld sand pile model around the upper critical dimension, Phys. Rev. E, t.56 (1997), pp.5138–5143.

[47] Maes (C.), Redig (F.) & Saada (E.)The infinite volume limit of dissipative abelian sand piles, Commun. Math. Phys., t.244 (2004), pp.395–417. Zbl 1075.82013

[48] Majumdar (S. N.)Exact fractal dimension of the loop-erased random walk in two dimensions, Phys. Rev. Lett., t.68 (1992), pp.2329–2331.

[49] Mangiavillano (A.)Multi-scalarité du phénomène feu de forêt en régions méditerranéennes françaises de 1973 à 2006, Thèse, Université d’Avignon, 2008.

[50] Olami (Z.), Feder (H. J. S.) & Christensen (K.)Self-organized criticality in a continuous, nonconservative cellular automaton modeling earthquakes, Physical Review Letters, t.68 (1992), pp.1244–1247.

[51] Pietronero (L.), Tartaglia (P.) & Zhang (Y. C.)Theoritical studies of self-organized criticality, Physica A, t.173 (1991), pp.22–44.

[52] Priezzhev (V. B.), Dhar (D.), Dhar (A.) & Krishnamurthy (S.)Eulerian walkers as a model of self-organised criticality, Phys. Rev. Lett., t.77 (1996), pp.5079–5082.

[53] Pruessner (G.) & Jensen (H. J.)A new, efficient algorithm for the forest fire model, 2003.

[54] Ráth (B.)Mean field frozen percolation, J. Statist. Physics, t.137 (2009), pp.459–499. Zbl 1181.82034

[55] Ráth (B.) & Tóth (B.)Erdős-Rényi random graphs + forest fires = self-organized criticality, Electronic J. Probab., t.14 (2009), pp.1290–1327. Zbl 1197.60093 |

[56] Redig (F.)Mathematical aspects of the abelian sand pile model, pp. 657–730 in Mathematical statistical physics, Elsevier, Amsterdam, 2006.

[57] Scheidegger (A. E.)A stochastic model for drainage patterns into a intramontane trench, Bull. Assoc. Sci. Hydrol., t.12 (1967), pp.15–20.

[58] Smoluchowski (M.)Drei Vorträge über Diffusion, Brownsche Molekularbewegung und Koagulation von Kolloidteilchen, Physik. Zeitschr., t.17 (1916), pp.557–599.

[59] Sornette (D.)Critical market crashes, Physics Reports, t.378 (2003), pp.1–98. Zbl 1011.91036

[60] Stahl (A.)Personnal communication, 2010.

[61] Stauffer (D.) & Sornette (D.)Self-organized percolation model for stock market fluctuations, Physica A, t.271 (1999), pp.496–506.

[62] Tardos (G.)Polynomial bound for a chip firing game on graphs, SIAM J. Discrete Math., t.1 (1988), pp.397–398. Zbl 0652.68089

[63] Velenik (Y.)Le modèle d’Ising, (2009), http://cel.archives-ouvertes.fr /cel-00392289.

[64] Volkov (S.)Forest fires on + with ignition only at 0, preprint, http:// arxiv.org/abs/0907.1821, 2009. Zbl 1276.60060 | MR 2565360

[65] Zhang (Y. C.)Scaling theory of self-organized criticality, Phys. Rev. Lett., t.63 (1989), pp.470–473.

[66] Zinck (R.) & Grimm (V.)More realistic than anticipated: a classical forest-fire model from statistical physics captures real fire shapes, The Open Ecology J., t.1 (2008), pp.8–13.

[67] Zinck (R.), Johst (K.) & Grimm (V.)Wildfire, landscape diversity and the Drossel-Schwabl model, Ecological Modelling, t.221 (2010), pp.98–105.