Champs de Hurwitz (2011)


Bertin, José; Romagny, Matthieu
Mémoires de la Société Mathématique de France, Tome 125-126 (2011) 219 p
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consulter l'article sur le site de la revue
doi : 10.24033/msmf.437
URL stable : http://www.numdam.org/item?id=MSMF_2011_2_125-126__1_0

Bibliographie

[1] D. Abramovich, A. Corti & A. Vistoli« Twisted bundles and admissible covers », Comm. Algebra 31 (2003), p. 3547–3618. Zbl 1077.14034 | MR 2007376

[2] D. Abramovich & T. J. Jarvis« Moduli of twisted spin curves », Proc. Amer. Math. Soc. 131 (2003), p. 685–699. Zbl 1037.14008 | MR 1937405

[3] D. Abramovich & A. Vistoli« Compactifying the space of stable maps », J. Amer. Math. Soc. 15 (2002), p. 27–75. Zbl 0991.14007 | MR 1862797

[4] E. Arbarello & M. Cornalba« Combinatorial and algebro-geometric cohomology classes on the moduli spaces of curves », J. Algebraic Geom. 5 (1996), p. 705–749. Zbl 0886.14007 | MR 1486986

[5] A. Arsie & A. Vistoli« Stacks of cyclic covers of projective spaces », Compos. Math. 140 (2004), p. 647–666. Zbl 1169.14301 | MR 2041774

[6] M. Asada, M. Matsumoto & T. Oda« Local monodromy on the fundamental groups of algebraic curves along a degenerate stable curve », J. Pure Appl. Algebra 103 (1995), p. 235–283. Zbl 0867.14011 | MR 1357788

[7] H. Bass« Covering theory for graphs of groups », J. Pure Appl. Algebra 89 (1993), p. 3–47. Zbl 0805.57001 | MR 1239551

[8] A. Beauville« Prym varieties and the Schottky problem », Invent. Math. 41 (1977), p. 149–196. Zbl 0333.14013 | | MR 572974

[9] S. Beckmann« Ramified primes in the field of moduli of branched coverings of curves », J. Algebra 125 (1989), p. 236–255. Zbl 0698.14024 | MR 1012673

[10] A. A. Beĭlinson & Y. I. Manin« The Mumford form and the Polyakov measure in string theory », Comm. Math. Phys. 107 (1986), p. 359–376. Zbl 0604.14016 | MR 866195

[11] A. J. Bene« Combinatorial classes, hyperelliptic loci, and Hodge integrals », preprint arXiv :math.GT/0610603.

[12] D. J. BensonRepresentations and cohomology. I, Cambridge Studies in Advanced Math., vol. 30, Cambridge Univ. Press, 1991. MR 1110581

[13] J. Bertin« Compactification des schémas de Hurwitz », C. R. Acad. Sci. Paris Sér. I Math. 322 (1996), p. 1063–1066. Zbl 0879.14011 | MR 1396641

[14] J. Bertin & S. Maugeais« Déformations équivariantes des courbes semi-stables », Ann. Inst. Fourier (Grenoble) 55 (2005), p. 1905–1941. Numdam | Zbl 1095.14022 | | MR 2187940

[15] J. Bertin & A. Mézard« Déformations formelles des revêtements sauvagement ramifiés de courbes algébriques », Invent. Math. 141 (2000), p. 195–238. MR 1767273

[16] M. Boggi & M. Pikaart« Galois covers of moduli of curves », Compositio Math. 120 (2000), p. 171–191. Zbl 0959.14010 | MR 1739177

[17] J. Bryan, T. Graber & R. Pandharipande« The orbifold quantum cohomology of 2 / 3 and Hurwitz-Hodge integrals », J. Algebraic Geom. 17 (2008), p. 1–28. Zbl 1129.14075 | MR 2357679

[18] J.-L. Brylinski« Propriétés de ramification à l’infini du groupe modulaire de Teichmüller », Ann. Sci. École Norm. Sup. 12 (1979), p. 295–333. Numdam | Zbl 0432.14004 | | MR 559345

[19] A. Cadoret & A. Tamagawa« Stratification of Hurwitz spaces by closed modular subvarieties », Pure Appl. Math. Q. 5 (2009), p. 227–253. Zbl 1213.14025 | MR 2520460

[20] D. Chen« Covers of the projective line and the moduli space of quadratic differentials », preprint arXiv :mathAG/1005.3120. Zbl 1271.14036 | MR 3032687

[21] C. Chevalley & A. Weil« Über das Verhalten der Integrale erster Gattung bei Automorphismen des Funktionenkörpers », Abh. Math. Sem. Hamburg Univ. 10 (1934), p. 358–361. Zbl 60.0098.01 | MR 3069638

[22] A. Chiodo« Towards an enumerative geometry of the moduli space of twisted curves and rth roots », Compos. Math. 144 (2008), p. 1461–1496. Zbl 1166.14018 | MR 2474317

[23] T. Coates & A. Givental« Quantum Riemann-Roch, Lefschetz and Serre », Ann. of Math. 165 (2007), p. 15–53. Zbl 1189.14063 | MR 2276766

[24] K. Coombes & D. Harbater« Hurwitz families and arithmetic Galois groups », Duke Math. J. 52 (1985), p. 821–839. Zbl 0601.14023 | MR 816387

[25] A. F. Costa & S. M. Natanzon« Topological classification of p m actions on surfaces », Michigan Math. J. 50 (2002), p. 451–460. Zbl 1044.14021 | MR 1935145

[26] P. Dèbes« Arithmétique et espaces de modules de revêtements », in Number theory in progress, Vol. 1 (Zakopane-Kościelisko, 1997), de Gruyter, 1999, p. 75–102. MR 1689500

[27] P. Dèbes & M. Emsalem« Harbater-Mumford components and towers of moduli spaces », J. Inst. Math. Jussieu 5 (2006), p. 351–371. Zbl 1101.12003 | MR 2243760

[28] P. Deligne« Le lemme de Gabber », Astérisque 127 (1985), p. 131–150. MR 801921

[29] —, « Le déterminant de la cohomologie », in Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), Contemp. Math., vol. 67, Amer. Math. Soc., 1987, p. 93–177. MR 902592

[30] P. Deligne & D. Mumford« The irreducibility of the space of curves of given genus », Publ. Math. I.H.É.S. 36 (1969), p. 75–109. Numdam | Zbl 0181.48803 | | MR 262240

[31] P. Deligne & M. Rapoport« Les schémas de modules de courbes elliptiques », in Modular functions of one variable, II (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Math., vol. 349, Springer, 1973, p. 143–316. Zbl 0281.14010 | MR 337993

[32] M. Demazure & P. GabrielGroupes algébriques, North-Holland, 1970.

[33] S. P. Diaz« On the Natanzon-Turaev compactification of the Hurwitz space », Proc. Amer. Math. Soc. 130 (2002), p. 613–618. Zbl 1001.57003 | MR 1866008

[34] S. P. Diaz & D. Edidin« Towards the homology of Hurwitz spaces », J. Differential Geom. 43 (1996), p. 66–98. Zbl 0848.14005 | MR 1424420

[35] R. Dijkgraaf« Mirror symmetry and elliptic curves », in The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser, 1995, p. 149–163. Zbl 0913.14007 | MR 1363055

[36] C. J. Earle« On the moduli of closed Riemann surfaces with symmetries », in Advances in the theory of riemann surfaces (Proc. Conf., Stony Brook, N.Y., 1969), Princeton Univ. Press, 1971, p. 119–130. Ann. of Math. Studies, No. 66. MR 296282

[37] B. Edixhoven« Néron models and tame ramification », Compositio Math. 81 (1992), p. 291–306. Numdam | Zbl 0759.14033 | | MR 1149171

[38] A. L. Edmonds« Surface symmetry. I », Michigan Math. J. 29 (1982), p. 171–183. Zbl 0511.57025 | MR 654478

[39] T. Ekedahl« Boundary behaviour of Hurwitz schemes », in The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser, 1995, p. 173–198. Zbl 0862.14018 | MR 1363057

[40] T. Ekedahl, S. Lando, M. Shapiro & A. Vainshtein« Hurwitz numbers and intersections on moduli spaces of curves », Invent. Math. 146 (2001), p. 297–327. Zbl 1073.14041 | MR 1864018

[41] G. Ellingsrud & K. Lønsted« An equivariant Lefschetz formula for finite reductive groups », Math. Ann. 251 (1980), p. 253–261. Zbl 0425.14012 | | MR 589254

[42] M. Emsalem« Familles de revêtements de la droite projective », Bull. Soc. Math. France 123 (1995), p. 47–85. | MR 1330787

[43] A. Eskin, M. Kontsevich & A. Zorich« Lyapunov spectrum of square-tiled cyclic covers », J. Mod. Dyn. 5 (2011), p. 319–353. Zbl 1254.32019 | MR 2820564

[44] C. Faber & R. Pandharipande« Hodge integrals and Gromov-Witten theory », Invent. Math. 139 (2000), p. 173–199. Zbl 0960.14031 | MR 1728879

[45] G. Faltings« Moduli-stacks for bundles on semistable curves », Math. Ann. 304 (1996), p. 489–515. Zbl 0847.14018 | | MR 1375622

[46] M. D. Fried« Fields of definition of function fields and Hurwitz families—groups as Galois groups », Comm. Algebra 5 (1977), p. 17–82. Zbl 0478.12006 | MR 453746

[47] —, « Introduction to modular towers : generalizing dihedral group–modular curve connections », in Recent developments in the inverse Galois problem (Seattle, WA, 1993), Contemp. Math., vol. 186, Amer. Math. Soc., 1995, p. 111–171. Zbl 0957.11047 | MR 1352270

[48] M. D. Fried & H. Völklein« The inverse Galois problem and rational points on moduli spaces », Math. Ann. 290 (1991), p. 771–800. Zbl 0763.12004 | | MR 1119950

[49] W. Fulton« Hurwitz schemes and irreducibility of moduli of algebraic curves », Ann. of Math. 90 (1969), p. 542–575. Zbl 0194.21901 | MR 260752

[50] B. Van Geemen & F. Oort« A compactification of a fine moduli space of curves », in Resolution of singularities (Obergurgl, 1997), Progr. Math., vol. 181, Birkhäuser, 2000, p. 285–298. Zbl 1002.14006 | MR 1748624

[51] D. GiesekerLectures on moduli of curves, Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 69, Published for the Tata Institute of Fundamental Research, Bombay, 1982. Zbl 0534.14012 | MR 691308

[52] T. Graber & R. Vakil« Hodge integrals and Hurwitz numbers via virtual localization », Compositio Math. 135 (2003), p. 25–36. Zbl 1063.14032 | MR 1955162

[53] A. Grothendieck (éd.) – Revêtements étales et groupe fondamental, Lecture Notes in Math., vol. 224, Springer, 1971, Séminaire de Géométrie Algébrique du Bois Marie 1960–1961 (SGA 1). MR 354651

[54] J. Harris, T. Graber & J. Starr« A note on Hurwitz schemes of covers of a positive genus curve », preprint arXiv :math.AG/0205056.

[55] J. Harris & I. MorrisonModuli of curves, Graduate Texts in Math., vol. 187, Springer, 1998. Zbl 0705.14026 | MR 1631825

[56] J. Harris & D. Mumford« On the Kodaira dimension of the moduli space of curves », Invent. Math. 67 (1982), p. 23–88. Zbl 0506.14016 | | MR 664324

[57] R. HartshorneResidues and duality, Lecture Notes in Math., vol. 20, Springer, 1966, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64. | MR 222093

[58] T. J. Jarvis« Torsion-free sheaves and moduli of generalized spin curves », Compositio Math. 110 (1998), p. 291–333. Zbl 0912.14010 | MR 1602060

[59] —, « Geometry of the moduli of higher spin curves », Internat. J. Math. 11 (2000), p. 637–663. Zbl 1094.14504 | MR 1780734

[60] —, « The Picard group of the moduli of higher spin curves », New York J. Math. 7 (2001), p. 23–47. Zbl 0977.14010 | | MR 1838471

[61] T. J. Jarvis, R. Kaufmann & T. Kimura« Pointed admissible G-covers and G-equivariant cohomological field theories », Compos. Math. 141 (2005), p. 926–978. Zbl 1091.14014 | MR 2148194

[62] —, « Stringy K-theory and the Chern character », Invent. Math. 168 (2007), p. 23–81. Zbl 1132.14047 | MR 2285746

[63] T. J. Jarvis & T. Kimura« Orbifold quantum cohomology of the classifying space of a finite group », in Orbifolds in mathematics and physics (Madison, WI, 2001), Contemp. Math., vol. 310, Amer. Math. Soc., 2002, p. 123–134. Zbl 1065.14069 | MR 1950944

[64] —, « A representation-valued relative Riemann-Hurwitz theorem and the Hurwitz-Hodge bundle », preprint arXiv :math.AG/08102488.

[65] E. Kani« Hurwitz spaces of genus 2 covers of an elliptic curve », Collect. Math. 54 (2003), p. 1–51. Zbl 1077.14529 | | MR 1962943

[66] G. Katz« How tangents solve algebraic equations, or a remarkable geometry of discriminant varieties », Expo. Math. 21 (2003), p. 219–261. Zbl 1045.14021 | MR 2006010

[67] N. M. Katz & B. MazurArithmetic moduli of elliptic curves, Annals of Math. Studies, vol. 108, Princeton Univ. Press, 1985. Zbl 0576.14026 | MR 772569

[68] F. F. Knudsen« The projectivity of the moduli space of stable curves. II. The stacks M g,n », Math. Scand. 52 (1983), p. 161–199. Zbl 0544.14020 | | MR 702953

[69] F. F. Knudsen & D. Mumford« The projectivity of the moduli space of stable curves. I. Preliminaries on “det” and “Div” », Math. Scand. 39 (1976), p. 19–55. Zbl 0343.14008 | | MR 437541

[70] A. Kokotov, D. Korotkin & P. Zograf« Isomonodromic tau function on the space of admissible covers », Adv. Math. 227 (2011), p. 586–600. Zbl 1218.30119 | MR 2782203

[71] M. Kontsevich« Enumeration of rational curves via torus actions », in The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser, 1995, p. 335–368. Zbl 0885.14028 | MR 1363062

[72] S. Lando« Ramified coverings of the two-dimensional sphere and intersection theory in spaces of meromorphic functions on algebraic curves », Uspekhi Mat. Nauk 57 (2002), p. 29–98. MR 1918855

[73] G. Laumon & L. Moret-BaillyChamps algébriques, Ergebnisse Math. Grenzg., vol. 39, Springer, 2000. MR 1771927

[74] E. Looijenga« Smooth Deligne-Mumford compactifications by means of Prym level structures », J. Algebraic Geom. 3 (1994), p. 283–293. Zbl 0814.14030 | MR 1257324

[75] —, « Correspondences between moduli spaces of curves », in Moduli of curves and abelian varieties, Aspects Math., E33, Vieweg, 1999, p. 131–150. Zbl 0979.14014 | MR 1722542

[76] Y. I. ManinFrobenius manifolds, quantum cohomology, and moduli spaces, American Mathematical Society Colloquium Publications, vol. 47, Amer. Math. Soc., 1999. Zbl 0952.14032 | MR 1702284

[77] S. Mochizuki« The geometry of the compactification of the Hurwitz scheme », Publ. Res. Inst. Math. Sci. 31 (1995), p. 355–441. Zbl 0866.14013 | MR 1355945

[78] L. Moret-Bailly« Construction de revêtements de courbes pointées », J. Algebra 240 (2001), p. 505–534. Zbl 1047.14013 | MR 1841345

[79] I. Morrison & H. Pinkham« Galois Weierstrass points and Hurwitz characters », Ann. of Math. 124 (1986), p. 591–625. Zbl 0624.14018 | MR 866710

[80] D. Mumford« Towards an enumerative geometry of the moduli space of curves », in Arithmetic and geometry, Vol. II, Progr. Math., vol. 36, Birkhäuser, 1983, p. 271–328. MR 717614

[81] D. Mumford, J. Fogarty & F. KirwanGeometric invariant theory, Ergebnisse Math. Grenzg., vol. 34, Springer, 1994. Zbl 0797.14004 | MR 1304906

[82] S. M. Natanzon« Moduli of Riemann surfaces, Hurwitz-type spaces, and their superanalogues », Uspekhi Mat. Nauk 54 (1999), p. 61–116. Zbl 0948.32018 | MR 1706839

[83] J. Nielsen« Die Struktur periodischer Transformationen von Flächen », Mat.-Fys. Medd. Danske Vid. Selsk. 15 (1937), p. 1–77 ; traduction anglaise : in Collected Papers 2, Birkhäuser (1986). Zbl 63.0553.03

[84] A. Okounkov & R. Pandharipande« Gromov-Witten theory, Hurwitz numbers, and matrix models », in Algebraic geometry—Seattle 2005. Part 1, Proc. Sympos. Pure Math., vol. 80, Amer. Math. Soc., 2009, p. 325–414. Zbl 1205.14072 | MR 2483941

[85] M. Pikaart & A. J. De Jong« Moduli of curves with non-abelian level structure », in The moduli space of curves (Texel Island, 1994), Progr. Math., vol. 129, Birkhäuser, 1995, p. 483–509. Zbl 0860.14024 | MR 1363068

[86] M. Raynaud« p-groupes et réduction semi-stable des courbes », in The Grothendieck Festschrift, Vol. III, Progr. Math., vol. 88, Birkhäuser, 1990, p. 179–197. MR 1106915

[87] —, « Spécialisation des revêtements en caractéristique p>0 », Ann. Sci. École Norm. Sup. 32 (1999), p. 87–126. | MR 1670532

[88] M. Romagny« Sur quelques aspects des champs de revêtements de courbes algébriques », thèse de doctorat, Université Grenoble 1, 2002.

[89] —, « The stack of Potts curves and its fibre at a prime of wild ramification », J. Algebra 274 (2004), p. 772–803. Zbl 1083.14508 | MR 2043375

[90] —, « Group actions on stacks and applications », Michigan Math. J. 53 (2005), p. 209–236. Zbl 1100.14001 | MR 2125542

[91] M. Saïdi« Revêtements modérés et groupe fondamental de graphe de groupes », Compositio Math. 107 (1997), p. 319–338. MR 1458754

[92] J-P. SerreReprésentations linéaires des groupes finis, 5e éd., Hermann, 1988. MR 352231

[93] —, Topics in Galois theory, second éd., Research Notes in Math., vol. 1, A K Peters Ltd., 2008.

[94] C. S. Seshadri« Geometric reductivity over arbitrary base », Advances in Math. 26 (1977), p. 225–274. Zbl 0371.14009 | MR 466154

[95] V. P. SnaithExplicit Brauer induction, Cambridge Studies in Advanced Math., vol. 40, Cambridge Univ. Press, 1994. Zbl 0991.20005 | MR 1310780

[96] H.-H. Tseng« Orbifold quantum Riemann-Roch, Lefschetz and Serre », Geom. Topol. 14 (2010), p. 1–81. Zbl 1178.14058 | MR 2578300

[97] A. Vistoli« Intersection theory on algebraic stacks and on their moduli spaces », Invent. Math. 97 (1989), p. 613–670. Zbl 0694.14001 | | MR 1005008

[98] B. Wajnryb« Orbits of Hurwitz action for coverings of a sphere with two special fibers », Indag. Math. (N.S.) 7 (1996), p. 549–558. Zbl 0881.57001 | MR 1620132

[99] S. Wewers« Construction of Hurwitz spaces », Thèse, Universität Duisburg-Essen, 1998. Zbl 0925.14002

[100] —, « Deformation of tame admissible covers of curves », in Aspects of Galois theory (Gainesville, FL, 1996), London Math. Soc. Lecture Note Ser., vol. 256, Cambridge Univ. Press, 1999, p. 239–282. Zbl 0995.14008 | MR 1708609