THÈSES DE L'ENTRE-DEUX-GUERRES

NIKOLA OBRECHKOFF Sur la sommation des séries divergentes

Thèses de l'entre-deux-guerres, 1933

http://www.numdam.org/item?id=THESE_1933__147__1_0

L'accès aux archives de la série « Thèses de l'entre-deux-guerres » implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

№ D'ORDRE: 2271 Série A. № de Série 1406.

THÈSES

PRÉSENTÉES

À LA FACULTÉ DES SCIENCES DE PARIS

POUR OBTENIR

LE GRADE DE DOCTEUR ÈS SCIENCES MATHÉMATIQUES

PAR NIKOLA OBRECHKOFF

1^{re} THÈSE. — Sur la sommation des series divergentes. 2^e THESE. — Le principe de la moindre action.

devant la Commission d'examen.

Soutenues le

 $\begin{array}{c} \text{MM, \'EMILE BOREL,} & \textit{Pr\'esident} \\ & \text{MONTEL} \\ & \text{VALIRON} \end{array} \} \textit{Examinateurs.}$

S O F I A IMPRIMERIE GRAFICA 1933

Faculté des Sciences de l'Université de Paris.

MM. Doyen. C. MAURAIN, Professeur, Physique du globe. Doven honoraire. M. MOLLIARD H. Le CHATELIER. H. LEBESGUE. A. FERNBACH. A. LEDUC. Professeurs Émile PICARD. honoraires Rémy PERRIER. Léon BRILLOUIN. A. DEREIMS. E. GOURSAT Analyse supérieure et algèbre supérieure. Électrotechnique générale. P. JANET . . F. WALLERANT . . Minéralogie. P. PAINLEVÉ.... Mécanique analytique et mécanique céleste. M. CAULLERY . . . Zoologie (Évolution des êtres organisés). Émile BOREL... Calcul de probabilités et Physique mathématique. Physique. H. ABRAHAM.... M. MOLLIARD . . . Physiologie végétale. E. CARTAN Géométrie supérieure. Gabriel BERTRAND Chimie biologique. Jean PERRIN Chimie physique. L. LAPICQUE.... Physiologie générale. Mme P. CÜRIE . . . Physique générale et radioactivité. G. URBAIN Chimie générale. L. MARCHIS. Aviation. E. VESSIOT Théorie des fonctions et théorie des transformations. A. COTTON.... Physique générale. J. DRACH Application de l'analyse à la géométrie. Charles FABRY . . . Physique. R. LESPIEAU Théories chimiques. Professeurs P. PORTIER.... Physiologie comparée. Charles PÉREZ . . . Zoologie. É. BLAISE. Chimie organique. P. A. DANGEARD . Botanique. Léon BER1RAND. . Géologie structurale et géologie appliquée. E. RABAUD Biologie expérimentale. G. JULIA Calcul différentiel et calcul intégral. Paul MONTEL ... Mécanique rationnelle. V. AUGER..... Chimie appliquée. P. WINTERBERT . . Anatomie et histologie comparées. O. DUBOSCQ.... Biologie maritime. Eugène BLOCH. . . Physique théorique et physique céleste. L. LUTAUD Géographie physique et géologie dynamique. Henri VILLAT . . . Mécanique des fluides et applications. Ch. JACOB Géologie P. PASCAL Chimie minérale. E. ESCLANGON . . Astronomie. H. BENARD.... Mécanique expérimentale des fluides. C. MAUGUIN.... Minéralogie. L. BLARINGHEM . Botanique. A. GUILLIERMOND Botanique (P. C. N.). A. DFNJOY Mathématiques générales. A. DUFOUR.... Physique (P. C. N.). H. BEGHIN Mécanique physique et expérimentale. DE BROGLIE . . . Théories physiques.

E. PÉCHARD Chimie (Enseigt. P. C. N') A. GUILLET Physique. M. GUICHARD Chimie minérale.

A. MICHEL-LÉVY... Pétrographie. H. MOUTON Chimie physique.

L. DUNOYER Optique appliquée. M. JAVILLIER Chimie biologique.

ROBERT-LÉVY Zoologie. A. DEBIERNE.... Radioactivité.

E. DARMOIS Physique. G. BRUHAT. Physique.

F. PICARD Zoologie (Évolution des êtres organisés)* L. JOLEAUD Paléontologie. Calcul des probabilités et Physique ma-

M. FRÉCHET thématique. Mme RAMART-LUCAS Chimie organique.

Mécanique expérimentale des fluides. FOCH PAUTHENIER Physique (P. C. N.).

VILLEY Mécanique physique et expérimentale. LABROUSTE Physique du Globe.

FREUNDLER Zoologie. PRENANT Chimie générale. P. JOB , Optique appliquée.

Chimie (P. C. N.).

Physique (P. C. N.).

CHRÉTIEN Zoologie (P. C. N.). BOHN Chimie (P. C. N.). COMBES Sciences naturelles (P. C. N.)

GARNIER Mécanique rationnelle. PÉRÉS...... Mécanique des fluides.

LAUGIER Physiologie générale. Technique Aéronautique. TOUSSAINT

A. PACAUD.

HACKSPILL

M. CURIE......

Secrétaire honoraire . . D. TOMBECK.

PREMIÈRE THÈSE

-----®®-----

SUR

LA SOMMATION DES SÉRIES DIVERGENTES.

Le problème fondamental de la théorie de sommaticn des séries divergentes est le suivant: faire correspondre à chaque série d'une classe aussi large que possible un nombre appelé somme de la série jouant le même rôle dans les calculs que la somme d'une série convergente. On a deux méthodes générales pour la sommation de la série

(1)
$$\sum_{n=0}^{\infty} a_n.$$

La première transforme à l'aide d'une matrice $A = (a_{nm})$, n, m = 0, 1, 2, ... la suite

$$s_n = a_0 + a_1 + \cdots + a_n,$$

en une autre suite convergente

$$\sigma_n = \sum_{p=0}^{\infty} a_{np} s_p.$$

La seconde méthode se sert d'une suite de fonctions $\varphi_n(x)$ définies pour x > a: si la série

$$\sum_{n=0}^{\infty} s_n \varphi_n(x)$$

est convergente pour chaque $x > x_0$ et tend vers une limite s quand $x \to \infty$, la série $\sum a_n$ est sommable par cette méthode.

Pour avoir une application plus étendue, chaque procédé de sommation doit satisfaire à la condition de permanence, c'est à dire que chaque série convergente doit etre sommable avec la même somnie. Il est évident que les sommations ci dessus satisfont a la condition de distributivité qui consiste en ceci: si les séries

$$\sum_{n=0}^{\infty} a_n$$
 et $\sum_{n=0}^{\infty} b_n$ sont sommables avec les sommes A et B, la sé

rie
$$\sum_{n=0}^{\infty} (\alpha a_n + \beta b_n)$$
 sera aussi sommable avec la somme $\alpha A + \beta B$.

Un procédé de sommation est plus utile dans les calculs et a une application plus étendue s'il possede les propriétés qu'ont les series convergentes. Ces propriétés bien mises en lumière par M. Emile Boiel, 1) qui est le fondateur de la théorie des séries divergentes, sont les suivantes:

I. Sıla série

(2)
$$a_0 + a_1 + a_2 + \cdots$$

est sommable avec la somme s, la série

(3)
$$0 + a_0 + a_1 + a_2 + \cdots$$

est aussi sommable avec la somme s.

II. Si la série (3) est sommable avec la somme s, la série (2) est aussi sommable avec la somme s.

Lorsque les conditions I et ll sont remplies on peut supprimer ou ajouter des termes nouveaux dans une série sans interrompre la sommabilité.

La valeur pratique d'un procéde de sommation dépend encore de la possibilité de sommation de la série produit de Cauchy des deux séries données, qui sont sommables par ce procédé; elle est plus grande s'il satisfait a la condition suivante qui en général n'appartient pas aux séries convergentes.

III. Sıla série $\sum_{n=0}^{\infty} a_n$ est sommable par un pro-

cédé avec une somme s et la série $\sum_{n=0}^{\infty} b_n$ est som-

mable par le même procédé avec la somme t, la série produit de Cauchy

¹⁾ Emile Borel — Leçons sur les séries divergentes, Paris, I édit 901, II éd. 1928.

$$\sum_{n=0}^{\infty} c_n, \quad c_n = a_0 b_n + a_1 b_{n-1} + \cdots + a_n b_0,$$

sera sommable avec la somme st.

Un procédé de sommation qui satisfait aux conditions I, II, III est celui par les moyennes de Cesàro. La série (2) est sommable par les moyennes d'ordre k, k > -1, ou sommable (C, k), si l'expression

$$\frac{S_n^k}{A_n^k}$$
, $S_n^k = \sum_{\mu=0}^n A_{\mu-\mu}^k a_{\mu}$, $A_m^k = \binom{m+k}{m}$,

tend vers une limite quand $n \to \infty$. Malgré l'importance de ce procédé de som nation la classe des séries sommables (C) est très bornée, et la série de Taylor d'une fonction analytique ne peut être prolongée au delà de son cercle de convergence.

Une methode plus puissante est celle de M. Dorel qui est la base de toutes les méthodes modernes pour le prolongement analytique par des séries divergentes. Elle consiste un ceci:

Soit $\Phi(x)$ la fonction

$$\Phi(x) = e^{-x} \sum_{n=0}^{\infty} \frac{s_n x^n}{n!}$$

que nous supposons entière. La série (1) est sommable par la méthode exponentielle de M. Borel, ou sommable (B) avec la somme s, si $\Phi(x)$ tend vers la limite s lorsque $x \to \infty$. Comme l'a montré M. Hardy, ce procédé de sommation ne satisfait pas à la condition II et naturellement à la condition III. M Borel, comme on sait, a donné une autre méthode de sommation plus restrictive — la sommation absolue — qui satisfait à toutes les conditions I, II, III, mais une série convergente pourrait ne pas être absolument sommable.

En combinant la sommation de M. Borel avec la sommation de Cesaro, M. Doetsch¹) a obtenu une sommation qui satisfait à toutes les conditions I, II, III.

M. Riesz²) a créé une méthode nouvelle, analogue à celle de Cesàro pour la sommation des séries de Dirichlet

¹⁾ G. Doetsch — Uber die Cesàrosche Summabilität bei Reihen und eine Erweiterung des Grenzwertbegriffs Lei integrablen Funktionen, Mathematische Zeitschrift, 11 (1921), p. 161-179 Dissertation inaugurale de 1920.

²) G. H. Hardy and M. Riesz. — The general Theory of Dirichlet's series, Cambridge Tracts, 1915.

(4)
$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}, \quad 0 \leq \lambda_1 < \lambda_2 < \cdots, \quad \lambda_n \to \infty.$$

Selon M. Riesz la série (4) est sommable par les moyennes typiques de la première espèce d'ordre k, k > 0, ou sommable (R, λ, k) avec la somme s, si l'expression

$$\frac{C_{\lambda}^{k}(x)}{x^{k}}, \quad C_{\lambda}^{k}(x) = \sum_{\lambda_{n} < x} c_{n}(x - \lambda_{n})^{k}, \quad c_{n} = a_{n}e^{-\lambda_{n}s},$$

tend vers la limite s lorsque $x \to \infty$. La série (4) est sommable par les moyennes typiques de la deuxième espèce d'ordre k ou sommable (R, l, k), si l'expression

$$\frac{C_l^k(x)}{x^k}, \quad C_l^k(x) = \sum_{l_n < x} c_n(x - l_n)^k, \quad l_n = e^{\lambda_n},$$

tend vers une limite lorsque $x \to \infty$. On a beaucoup développé la théorie de cette méthode de sommation, vu son importance dans la théorie des série de Dirichlet et de la théorie analytique des nombres.

Nous donnons un nouveau procédé de sommation pour les séries de Dirichlet jouissant de toutes les propriétés que possède la sommation de M. Riesz qui est un cas particulier de la nôtre.

Comme les méthodes de démonstration de MM. Riesz et Hardy ne s'appliquent plus, nous avons employé une méthode nouvelle en nous basant sur la transformation de Laplace. Le procédé que nous proposons est le suivant:

Soit $\varphi(x)$ une fonction continue; $\varphi(0) = 0$, non décroissante pour x > 0 et telle que si $\varphi(x) \to \infty$ pour $x \to \infty$, on ait

(5)
$$\lim_{x \to \infty} \frac{\varphi(x+\delta)}{\varphi(x)} = 1$$

quel que soit le nombre fini δ . Nous disons que la série (4) est sommable (φ, λ) avec la somme s, si l'expression

$$\frac{A_{\varphi}(x)}{\varphi(x)}$$
, $A_{\varphi}(x) = \sum_{\lambda_n < x} c_n \varphi(x - \lambda_n)$

tend vers la limite s lorsque $x \to \infty$. La condition (5) assure que chaque série convergente est aussi sommable avec la même somme. Nous démontrons pour la série (4) qu'il existe une abscisse α_{φ} de sommabilité (φ, λ) et des théorèmes qui généralisent les résultats de MM. Riesz et Hardy.

Ensuite nous donnons un procédé de sommation des séries divergentes aussi général que possible et qui satisfait aux conditions I, II, III. Soient $\varphi_0(x)$, h(x) des fonctions intégrables pour x>0 et telles que

$$\int_{0}^{\infty} \varphi_{0}(x) dx = 1, \quad \int_{0}^{\infty} h(x) dx = 1, \quad \varphi_{0}(x) > 0,$$

l'intégrale

$$\int_{0}^{\infty} |h(x)| dx,$$

étant convergente. Soit $\varphi(x)$ une fonction positive, non décroissante pour x > 0 et telle que si $\varphi(x) \to \infty$ lorsque $x \to \infty$, on ait

$$\lim_{x\to\infty}\frac{\varphi(x+\delta)}{\varphi(x)}=1$$

pour chaque nombre fini à. Nous disons que la série

$$a_0 + a_1 + a_2 + \cdots$$

est sommable (φ_0, h, φ) avec la somme s, si l'expression

$$\frac{1}{\varphi(x)}\int_0^x \varphi(x-t)\,u(t)\,dt\,,\quad u(x)=\sum_{n=0}^\infty a_{n+1}\,\varphi_n(x)\,,$$

$$\varphi_n(x) = \int_0^x \varphi_{n-1}(t) h(x-t) dx,$$

then vers la limite $s - a_0$ lorsque $x \rightarrow \infty$.

Comme application on obtient une généralisation de la sommation de Mittag-Leffler, sommation qui est plutôt une méthode de prolongement analytique qu'une méthode de sommation des séries divergentes et ne possède pas les propriétés qu'ont les séries convergentes. Ainsi nous donnons une extension de cette sommation qui a toutes les propriétés dont jouissent les séries convergentes et permet de sommer la série produit de Cauchy des deux séries sommables.

Nous disons que la série (6) est sommable $(E_{\alpha}^{p}, \varphi)$, si l'expression

$$\frac{1}{\varphi(x)}\int_0^x \varphi(x-t)\,u_\alpha(t)\,dt,$$

$$u_{\alpha}(x) = e^{-x} \sum_{n=0}^{\infty} \frac{a_{n+1} x^{\alpha n+p}}{\Gamma(\alpha n+p+1)}, \quad \alpha > 0, \quad p > 0,$$

tend vers une limite lorsque $x \to \infty$. Nous déterminons aussi la région exacte de la sommation $(E_{\alpha}^{p}, \varphi)$ de la série de Taylor

d'une fonction analytique; nous donnons aussi la sommation sur le contour de cette région dans des cas assez généraux. Si l'on pose $\alpha = 1$, p = 0, on obtient une généralisation de la sommation de M. Borel qui contient comme cas particulier la méthode de sommation de M. Doetsch.

Enfin nous obtenons une méthode de sommation des sé-

ries de Dirichlet analogue à la méthode $(E_{\alpha}^{p}, \varphi)$.

Nous avons donne¹) un résumé de ce travail dans quelques Notes publiées dans les Comptes Rendus des Séances de l'Académie des Sciences de Paris.

En terminant cette introduction je tiens à exprimer ma profonde reconnaissance à M. Emile Borel pour le bienveillant accueil qu'il a accordé à mes travaux en les présentant à l'Académie des Sciences, à M. P. Montel pour l'intérêt avec lequel il a suivi mes recherches et à M. G. Valiron pour les importantes remarques qu'il a bien voulu me faire.

Chapitre I.

Une méthode nouvelle pour la sommation des séries de Dirichlet.

1. Avant d'exposer la méthode nous ferons quelques remarques. Nous disons que la fonction positive $\varphi(x)$, non décroissante, satisfait à la condition A) si l'on a $\lim \frac{\varphi(x+\delta)}{\varphi(x)} = 1$ quell que soit le nombre fini δ.

Si $\varphi(x) \longrightarrow \infty$ lorsque $x \longrightarrow \infty$, on peut facilement démontrer que la croissance de la fonction $\varphi(x)$ est plus faible que la croissance de la fonction $e^{\delta x}$ où $\delta > 0$ est fini et arbitraire. En effet, soit g>0 un nombre plus petit que δ . Soit x_1 un nombre choisi de façon que pour $x \ge x_1$ on ait constamment

Des inégalités
$$\frac{\frac{\varphi(x+a)}{\varphi(x)} < e^g, \quad 0 < a < 1.}{\frac{\varphi(x_1+b)}{\varphi(x_1)} < e^g,}$$

$$\frac{\frac{\varphi(x_1+b)}{\varphi(x_1+b)} < e^g,}{\frac{\varphi(x_1+ab)}{\varphi(x_1+nb)} < e^g,}$$

¹⁾ N. Obrechkoff — Sur la sommation 'exponentielle de M. Borel, t. 191 (1930), p. 825; — Sur la sommation des séries de Dirichlet, t. 192 (1931), p. 1936; - Sur une généralisation de la sommation de Mittag-Leffler, t. 194 (1932), p. 353; — Sur une méthode générale de sommation des séries divergentes, t. 195 (1932), p. 572.

où $nb = x - x_1$, on obtient par multiplication

(1)
$$\varphi(x) < \varphi(x_1) e^{ng} = \varphi(x_1) e^{\frac{g(x-y_1)}{b}}.$$

Le nombre b peut être choisi assez près de l'unité pour que $\frac{g}{b}$ soit inférieur à δ . Alors on prend x_0 tel que le second membre de l'inégalité (1) soit plus petit que $e^{\delta x}$. Grâce à cette proposition la croissance de la fonction $\varphi(x)$ est assez bien caractérisée. Prenons par exemple $\varphi(x) = e^{x\omega(x)}$ où $\omega(x)$ tend d'une manière monotone vers zéro quand $x \longrightarrow \infty$. Nous avons

$$\log \frac{\varphi(x+a)}{\varphi(x)} = (x+a) \omega(x+a) - x\omega(x) \leq a\omega(x),$$

quantité qui tend vers zéro.

Nous démontrons le théorème suivant:

1 Soient $\varphi(x)$ et $\psi(x)$ deux fonctions positives pour x>0 qui satisfont à la condition A). Alors si on a pour deux fonctions $\alpha(x)$ et $\beta(x)$

$$\alpha(x) \sim s \rho(x)$$
, $\beta(x) \sim t \psi(x)$,

on aura

$$\omega(x) = \int_0^x \alpha(t) \, \beta(x-t) \, dt \sim st\tau(x), \quad \tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt.$$

Nous démontrons d'abord que

(2)
$$\lim_{x\to\infty}\frac{\tau(x)}{\varphi(x)}=\infty.$$

En effet, soit a choisi de façon que

$$\int_{0}^{a} \psi(x) dx > P,$$

où P est un nombre arbitrairement grand. Nous avons

$$\frac{\tau(x)}{\varphi(x)} \ge \int_0^a \psi(t) \frac{\varphi(x-t)}{\varphi(x)} dt,$$

d'où l'on déduit, en tenant compte de $\lim_{x\to\infty}\frac{\varphi(x-t)}{\varphi(x)}=1$, $0\leq t\leq a$

$$\lim_{x\to\infty}\frac{\tau(x)}{\varphi(x)}\geq\int_0^a\psi(t)\,dt>P,$$

c'est-à-dire (2).

D'après les conditions du théorème on a

$$\alpha(x) = s \varphi(x) + \varepsilon \varphi(x), \quad \beta(x) = t \psi(x) + \eta \psi(x),$$

où $\varepsilon \to 0$, $\eta \to 0$ lorsque $x \to \infty$. Nous avons

$$\omega(x) = st \, \tau(x) + t \int_0^x \varphi(u) \psi(x-u) \, du + s \int_0^x \eta \, \varphi(x-u) \, \psi(u) \, du$$

$$+\int_0^x \varepsilon \eta \varphi(x-u) \psi(u) du = st\tau(x) + ti_1 + si_2 + i_3.$$

Nous démontrerons que

(3)
$$i_1 = o(\tau(x)), \quad i_2 = o(\tau(x)), \quad i_3 = o(\tau(x)).$$

Soit a choisi de façon que pour $x \ge a$ on ait $|\varepsilon| < \varepsilon_0$ où ε_0 est un nombre arbitrairement petit. Nous avons pour x > a

$$\frac{|i_1|}{\tau(x)} \leq \int_0^a |\varepsilon| \frac{\psi(u) \varphi(x-u)}{\tau(x)} du + \varepsilon_0 \int_a^x \frac{\varphi(u) \psi(x-u)}{\tau(x)} du = c + \mathbf{d}.$$

Comme

$$\frac{\varphi(x-u)}{\tau(x)} = \frac{\varphi(x-u)}{\varphi(x)} \cdot \frac{\varphi(x)}{\tau(x)}, \quad 0 \le u \le a,$$

tend vers zéro lorsque $x \rightarrow \infty$, on aura

$$\overline{\lim}_{x\to\infty}\frac{i_1}{\tau(x)}\leq \varepsilon_0$$

c'est-à dire $\lim \frac{i_1}{\tau(x)} = 0$, ce qu'il fallait démontrer. On démontre d'une manière analogue les autres relations (3).

2. Soit

$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}. \quad 0 \le \lambda_1 < \lambda_2 < \cdots, \quad \lambda_n \to \infty$$

une série de Dirichlet. Nous donnons une méthode générale pour la sommation de cette série qui contient comme cas particulier la méthode de M. Riesz.

Soit $\varphi(x)$ une fonction continue pour $x \ge 0$, $\varphi(0) = 0$, non décroissante et telle que, si $\varphi(x) \to \infty$ lorsque $x \to \infty$, on ait

$$\lim_{x\to\infty}\frac{\varphi(x+a)}{\varphi(x)}=1$$

quel que soit le nombre fini a.

Nous disons que la série

$$\sum c_n, \quad c_n = a_n e^{-\lambda_n s}$$

est sommable (φ, λ) avec la somme s, si l'expression

$$\frac{A_{\varphi}(x)}{\varphi(x)}$$
, $A_{\varphi}(x) = \sum_{\lambda_n < x} c_n \varphi(x - \lambda_n)$

tend vers s lorsque $x \rightarrow \infty$.

Si la série (4) est convergente, elle est aussi sommable (φ, λ) avec la même somme.

Si l'on pose $\varphi(x) = x^k$, k > 0, on a la sommation (R, λ, k) de M. Riesz de la première espèce avec les moyennes typiques

$$x^{-k} \sum_{\lambda_n < x} c_n (x - \lambda_n)^k.$$

D'après M. Riesz la série (4) est sommable avec les moyennes typiques du seconde espèce ou sommable (R, l, n) avec la somme ρ , si l'expression

$$\frac{C_l^k(x)}{x^k}$$
, $C_l^k(x) = \sum_{l_n < x} c_n(x - l_n)^k$, $l_n = e^{\lambda_n}$,

tend vers la limite s lorsque $x \rightarrow \infty$. Posons $e^y = x$; on peut alors donner à l'expression ci dessus la forme suivante:

$$x^{-k}C_{l}^{k}(x) = e^{-ky} \sum_{\lambda_{n} \leq y} c_{n}(e^{y} - e^{\lambda_{n}})^{k} = \sum_{\lambda_{n} \leq y} c_{n}(1 - e^{-(y - \lambda_{n})})^{k}.$$

On voit donc que la sommation (R, l, k) est une sommation (φ, λ) où

$$\varphi(x) = (1 - e^{-k})^k$$
.

Les théorèmes que nous démontrerons s'appliquent donc tout de suite à la sommation de M. Riesz.

Nous donnerons d'abord quelques propositions qui sont des conséquences presque immédiates de la définition.

a) Si la série $\sum_{1}^{\infty} a_n$ est sommable (φ, λ) avec la somme s_r la série $\sum_{1}^{\infty} b_n$ sommable (φ, λ) avec la somme t, alors la série $\sum_{1}^{\infty} (\alpha a_n + \beta b_n)$ est également sommable (φ, λ) avec la somme $\alpha s + \beta t$.

β) Si la série $\sum_{1}^{\infty} a_n e^{-\lambda_n s}$ est sommable (φ, \cdot) avec la somme f(s), la série

$$a_{m+1}e^{-\lambda_{m+1}s} + a_{m+2}e^{-\lambda_{m+2}s} + \cdots$$

est sommable (φ, μ) où $\mu_n = \lambda_{m+n}$ avec la somme

$$f(s) - a_1 e^{-\lambda_1 s} - a_2 e^{-\lambda_2 s} - \cdots - a_m e^{-\lambda_m s}$$

 γ) Si la série $\sum_{1}^{\infty} a_n e^{-\lambda_n s}$ est sommable (φ, λ) avec la somme f(s), la série

$$\sum_{1}^{\infty} a_{n} e^{-(\lambda_{n} - \lambda_{1})s}$$

est sommable (φ, μ) avec la somme $e^{\lambda_1 s} f(s)$ où $\mu_n = \lambda_n - \lambda_1$. En effet, on a

$$\frac{1}{\varphi(x)} \sum_{\mu_n < \omega} a_n e^{-\mu_n s} \varphi(\omega - \mu_n)$$

$$= e^{\lambda_1 s} \frac{\varphi(\omega + \lambda_1)}{\varphi(\omega)} \cdot \frac{1}{\varphi(\omega + \lambda_1)} \sum_{\lambda_n < \omega + \lambda_1} a_n e^{-\lambda_n s} \varphi(\omega + \lambda_1 - \lambda_n)$$

et cette expression tend vers la limite $e^{\lambda_1 s} f(s)$, puisque $\frac{\varphi(\omega + \lambda_1)}{\varphi(\omega)} \to 1$ lorsque $\omega \to \infty$.

Considérens les séries $\sum_{1}^{\infty} a_n$ et $\sum_{1}^{\infty} b_n$ et la série produit de Dirichlet $\sum_{1}^{\infty} c_n$ où $c_n = \sum_{\lambda_p + \mu_q = \nu_n} a_p b_q$, ν_n étant les nombres

 $\lambda_p + \mu_q$ ordonnés par ordre de grandeurs croissantes et

$$0 \leq \lambda_1 < \lambda_2 < \cdots; \quad 0 \leq \mu < \mu_2 < \cdots, \quad \lambda_n \to \infty, \quad \mu_n \to \infty.$$

Nous avons les théorèmes suivants:

II. Si la série $\sum_{1}^{\infty}a_{n}$ est sommable (φ,λ) avec la somme s, la série $\sum_{1}^{\infty}b_{n}$ sommable (ψ,μ) avec la somme t, la série produit de Dirichlet $\sum_{1}^{\infty}c_{n}$ est sommable (τ,ν) avec la somme st, où

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x - t) \, dt.$$

Nous donnerons d'abord une autre forme de la fonctions $A_{\varphi}(x)$. Posons

$$A(x) = \sum_{\lambda_n \leq x} a_n, \quad \lambda_n < x \leq \lambda_{n+1};$$

alors on a

$$A_{\varphi}(x) = \sum_{\lambda_n \leq x} a_n \varphi(x - \lambda_n) = -\int_0^x A(t) d\varphi(x - t) = \int_0^x A(x - t) d\varphi(t),$$

l'intégrale étant prise au sens de Stieltjes.

Désignons alors par $A_{\varphi}(x)$, $B_{\psi}(x)$, $C_{\tau}(x)$ les fonctions correspondantes à ces trois séries, c'est-à dire

$$A_{\varphi}(x) = \sum_{\lambda_n < x} a_n \varphi(x - \lambda_n), \quad B_{\psi}(x) = \sum_{\mu_n < x} b_n \psi(x - \mu_n),$$

$$C_{\tau}(x) = \sum_{\lambda_n < x} c_n \tau(x - \nu_n).$$

Il est facile d'obtenir la formule

$$C_{\tau}(x) = \int_{0}^{x} A_{\varphi}(t) B_{\psi}(x-t) dt.$$

Considérons en effet le terme $a_m b_n$ dans les deux membres de cette formule.

Le coefficient de $a_m b_n$ dans $C_{\tau}(x)$ est égal à

$$\tau(x-\lambda_m-\mu_n)$$
, $\lambda_m+\mu_n < x$.

Le coefficient de a_n dans $A_{\varphi}(t)$ est égal à $\varphi(t-\lambda_m)$, $\lambda_m < t$, le coefficient de b_n dans $B_{\psi}(x-t)$ est égal à $\psi(x-t-\mu_n)$, $\mu_n < x-t$. Par conséquent le coefficient de $a_m b_n$ dans le second membre est égal à

$$\int_{\lambda_m}^{x-\mu_n} \varphi(t-\lambda_m) \, \psi(x-t-\mu_n) \, dt = \tau(x-\lambda_m-\mu_n)$$

et la formule est démontrée.

Pour obtenir le théorème énoncé, on applique le théorème I à $C_{\tau}(x)$.

III. Si la série $\sum_{1}^{\infty} a_n$ est absolument convergente et a la somme s, si la série $\sum_{1}^{\infty} b_n$ est sommable (ψ, μ) avec la somme t, alors la série produit de Dirichlet $\sum_{1}^{\infty} c_n$ est sommable (ψ, ν) avec la somme st.

Nous avons la relation

$$C_{\psi}(x) = \sum_{\lambda_m + \mu_n < x} a_m b_n \psi(x - \lambda_m - \mu_n) = \sum_{\lambda_m < x} a_m B_{\psi}(x - \lambda_m).$$

Soit $\varepsilon > 0$ un nombre arbitraire et soit p un nombre choisi de manière que l'on ait

$$\sum_{n=p+1}^{\infty} |a_n| < \varepsilon.$$
Comme $\frac{B_{\psi}(x)}{\psi(x)} \to t$, $|B_{\psi}(x)| < \psi(x)$, on aura, $x > \lambda_p$

$$\frac{C_{\psi}(x)}{\psi(x)} = \sum_{m=1}^{p} a_m \frac{B(x - \lambda_m)}{\psi(x)} + \sum_{m=p+1}^{\lambda_n < x} a_m \frac{B_{\psi}(x - \lambda_m)}{\psi(x)} = i + j$$

$$\lim_{\lambda \to \infty} i = \sum_{n=1}^{p} a_n \lim_{k \to \infty} \frac{B(x - \lambda_m)}{\psi(x - \lambda_m)} \cdot \frac{\psi(x - \lambda_m)}{\psi(x)} = t \sum_{n=1}^{p} a_n,$$

$$|j| < \sum_{m=p+1}^{\lambda_n < x} |a_m| \frac{|B(x-\lambda_m)|}{\psi(x-\lambda_m)} \frac{\psi(x-\lambda_m)}{\psi(x)} < \mu \sum_{m=p+1}^{\infty} |a_m| < \mu \varepsilon.$$

Par conséquent

$$\overline{\lim_{x\to\infty}}\left|\frac{C_{\psi}(x)}{\psi(x)}-st\right|<\varepsilon(|s|+\mu), \quad \lim_{x\to\infty}\frac{C_{\psi}(x)}{\psi(x)}=st,$$

et le théorème est démontré.

Si l'on pose $\varphi(x) = x^k$, on obtient comme cas particulier un théorème de Hardy pour la sommation (R, λ, k) .

3. Nous démontrerons maintenant qu'il existe pour chaque série de Dirichlet (4) un nombre σ_{φ} qui peut être égal à $\pm \infty$ tel que la série (4)

$$f(s) = \sum_{1}^{\infty} a_n e^{-\lambda_n s}, \quad s = \sigma + it,$$

est sommable (φ, λ) pour chaque s, $\mathbf{R}(s) = \sigma > \alpha_{\varphi}$ et n'est pas sommable (φ, λ) pour $\mathbf{R}(s) < \alpha_{\varphi}$. lei α_{φ} est l'abscisse de sommabilité (φ, λ) . Nous faisons quelques hypothèses sur la fonction $\varphi(x)$. Dans les démonstrations des théorèmes qui suivront nous emploierons la transformation de Laplace

$$\Phi(z) = L(\varphi) = \int_{0}^{\infty} e^{-zt} \varphi(t) dt.$$

On voit facilement, en vertu de $|\varphi(x)| < e^{\delta \tau}$, que la fonction $\Phi(z)$ existe et est régulière pour chaque z, $\mathbf{R}(z) > 0$. Nous faisons sur la fonction $\Phi(z)$ les hypothèses suivantes qui sont toujours satisfaites pour les fonctions qu'on rencontre le plus souvent. Il existe un contour L défini de la mamère suivante: $L = L_1 + L_2 + L_3$: si $z = \tau + it$ on a pour L_1 : $\sigma = -\alpha$, $0 < \alpha$, $-\infty < t \le \beta$, $\beta > 0$; L_3 : $\sigma = -\alpha$, $\beta \le t < \infty$; L_2 : $z = \rho e^{i\varphi}$, $\varphi = -\vartheta$, $0 \le \rho \le \tau$, $\varphi = \vartheta$, $0 \le \rho \le \tau$, $\frac{\pi}{2} < \vartheta < \pi$, $\alpha = -\tau \cos \vartheta$, $\beta = \tau \sin \vartheta$, tel que la fonction $\Phi(z)$ est:

- 1) holomorphe à droite de L et n'a sur L que le point z=0 comme point singulier;
- 2) $\Phi(z) = \frac{A}{z} + \frac{\mu(z)}{z^R}$, k > 1, $\mu(z)$ étant bornée à droite de L pour $|z| \to \infty$ et A étant une constante;
 - 3) $\Phi(z) \neq 0$ dans la même région.

4) Si $\mu(\tau)$ désigne le maximum de $|\Phi(z)|$ pour $|z|=\tau$, on a pour $x \to \infty$

$$\mu\left(\frac{1}{x}\right) = O(x\,\varphi(x)).$$

Nous supposons encore que, si s est un nombre arbitraire, $\mathbf{R}(s) > 0$, la fonction

$$\frac{\Phi(z+s)-\Phi(z)}{\Phi(z+s)}$$

satisfait aussi aux conditions 1), 2).

Nous démontrons le lemme survant:

α) Si la fonction $\Phi(z)$ satisfait aux conditions 1), 2), 3), 4), 5) il existe une fonction $\psi(x)$ telle que

$$\frac{\Phi(u) - \Phi(s+u)}{\Phi(s+u)} = \int_0^\infty e^{-ux} \, \psi(x) \, dx = L(\psi)$$

et pour $x \rightarrow \infty$ on a

$$\psi(x) = \frac{\varphi(x)}{\Phi(s)} + \epsilon(\varphi(x)).$$

L'existence de la fonction $\psi(x)$ résulte d'un théorème de MM. Norlund¹) er Pincherle.²) Pour trouver une formule asymptotique de la fonction $\psi(x)$ pour $x \to \infty$, nous considérons la fonction

$$F(u) = \frac{\Phi(u) - \Phi(s+u)}{\Phi(s+u)} - \frac{\Phi(u)}{\Phi(s)}.$$

La fonction F(u) est représentée comme intégrale de Laplace

$$F(u) = \int_{0}^{\infty} e^{-ux} g(x) dx, \quad g(x) = \psi(x) - \frac{\varphi(x)}{\Phi(s)}.$$

Nous démontrons la formule

$$g(x) = o(\varphi(x)), \quad x \to \infty.$$

Nous avons

$$g(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} F(u) du, \quad c > 0.$$

¹⁾ N. E. Norlund – Leçons sur les séries d'interpolation, Paris, 1926, p. 184-187.

²) S. Pincherle — Sur les fonctions déterminantes, Annales scientifiques de l'École normale supérieure, t. 2², 1905, p. 9-68.

Soit L un contour dans le plan de la variable u défini de la manière suivante: $L = L_1 + L_2 + L_3 + L_4 + L_5$; pour L_1 on a $u = \sigma + it$, $\sigma = -\alpha$, $0 < \alpha$, $-\infty \le t \le \beta$, $0 < \beta$;

,
$$L_2$$
 , $u = \rho e^{i\varphi}$, $\frac{1}{x} \le \rho \le d$, $\varphi = -\theta$, $\frac{\pi}{2} < \theta < \pi$,

 $d\cos\theta = -\alpha$, $d\sin\theta = \beta$;

,
$$L_3$$
 , $\rho = \frac{1}{x}$, $-\theta \leq \varphi \leq \theta$;

,
$$L_4$$
 , $\frac{1}{r} \leq \rho \leq d$, $\varphi = \theta$;

,
$$L_5$$
 , $\sigma = -\alpha$, $\beta \leq t \leq \infty$.

Les nombres finis α , β sont choisis de façon que les conditions 1), 2), 3) soient satisfaites pour les fonctions $\Phi(u)$ et F(u). Alors comme $F(u) \rightarrow 0$ lorsque $|u| \rightarrow \infty$, on peut remplacer dans la formule (5), d'après le théorème de Cauchy, le contour d'intégration $c - i \infty \cdots c + i \infty$ par L; on aura donc

$$g(x) = \frac{1}{2\pi^{i}} \int e^{ux} F(u) du.$$

Soit $\epsilon > 0$ un nombre arbitrairement petit et soit d > 0 choisi de façon que, si u est un point arbitraire de L_2 , L_3 , L_4 , on ait

$$\left|\frac{1}{\Phi(s+u)}-\frac{1}{\Phi(u)}-\frac{1}{\Phi(s)}\right|<\varepsilon.$$

Ceci est toujours possible, parce que cette fonction tend vers zéro lorsque $|u| \rightarrow 0$. Alors nous avons

$$\left| \int_{L_3} e^{xu} F(u) du \right| < \frac{2\pi e}{x} M\left(\frac{1}{x}\right) z < 2\tau e z_{\tau}(x),$$

$$\left| \int_{L_4} e^{xu} F(u) du \right| < \varepsilon \int_{\frac{1}{x}}^{d} e^{-xk\rho} \varphi\left(\frac{1}{\rho}\right) \frac{d\rho}{\rho}$$

$$< \varepsilon x \varphi(x) \int_{\frac{1}{x}}^{\infty} e^{-xk\rho} d\rho = \frac{\varepsilon}{k} \varphi(x), k > 0.$$

Comme

$$F(u) = \frac{A}{u} + \frac{\mu(u)}{u^k},$$

on a

$$F'(u) = -\frac{A}{u^2} + \frac{\mu'(u)}{u^k} - \frac{k\mu(u)}{u^{k+1}}$$

De la formule de Cauchy

$$\mu'(u) = \frac{1}{2\pi i} \int_{\zeta} \frac{\mu(\zeta) d\zeta}{(\zeta - u)^2},$$

étendue sur une circonférence C avec un rayon fini convenablement choisi, on déduit que $|\mu'(u)| < M$, M étant fini et constant. Par conséquent sur L_1 et L_5 on aura $|F'(u)| < \frac{M}{|u|^k}$, k > 1 Nous aurons alors

$$\left| \int_{\mathcal{L}_{5}} e^{xu} F(u) du \right| = \left| \frac{1}{x} F(-\alpha + i\beta) e^{x(-\alpha + i\beta)} + \frac{1}{x} \int_{\mathcal{L}_{5}} e^{ux} F'(u) du \right|$$

$$< \frac{e^{-\alpha x}}{x} A_{1} + \frac{e^{-\alpha x}}{x} M_{1} \int_{\mathcal{R}}^{\infty} \frac{dt}{t^{k}} = o(1) = o(\varphi(x)).$$

On a des résultats analogues pour les intégrales sur les contours L_1 et L_4 . Il s'ensuit

$$\overline{\lim_{x\to\infty}}\frac{g(x)}{\varphi(x)}\leq \varepsilon_1$$

pour chaque nombre $\varepsilon_1 > 0$ c'est à-dire $\lim_{x \to \infty} \frac{g(x)}{\varphi(x)} = 0$ ce qu'il fallait démontrer.

Nous avons besoin encore du lemme suivant:

β) Si la fonction $\Phi(s) h(s)$ satisfait aux conditions 1), 2), 4) et si la fonction h(s) est holomorphe dans chaque domaine fini dans le demi plan $\mathbf{R}(z) > -\delta$, $\delta > 0$, alors pour la fonction $\tau(x)$, $L(\tau) = \Phi(s) h(s)$ nous avons

$$\tau(x) = \varphi(x) h(0) + o(\varphi(x)),$$

pour $x \rightarrow \infty$.

La démonstration est semblable à celle du lemme α).

4. Nous démontrons maintenant pour les séries de Dirichlet le théorème fondamental suivant:

IV. Si la série

(6)
$$f(s) = \sum_{1}^{\infty} a_n e^{-\lambda_n s}$$

est sommable (φ, λ) pour s=0 elle est aussi sommable (φ, λ) pour chaque s, $\mathbf{R}(s)>0$ avec la somme

$$\frac{1}{\Phi(s)}\int_{0}^{\infty}A_{\varphi}(\tau)\,e^{-s\tau}\,d\tau.$$

Soit $\mathbf{R}(s) > 0$ et posons

$$C_{\varphi}(x) = \sum_{\Lambda_n \leq x} a_n e^{-\lambda_n s} \varphi(x - \lambda_n);$$

alors si l'on pose

$$A(x) = \sum_{n \le x} a_n$$

on a

(7)
$$C_{\varphi}(x) = -\int_{0}^{x} A(\tau) d[e^{-s\tau} \varphi(x-\tau)].$$

Entre cette équation et l'équation

(8)
$$A_{\varphi}(x) = -\int_{0}^{x} A(\tau) d\varphi(x - \tau)$$

nous éliminons la fonction $A(\tau)$ en nous servant de la transformation de Laplace. En effectuant la transformation de Laplace des deux membres de (7) et (8) et, en utilisant la relation

$$L\left(\int_{0}^{x} d\varphi(t) \, \psi(x-t)\right) = zL(\varphi) \, L(\psi),$$

on obtient

$$L(e^{sx} C_{\varphi}(x)) = zL(A) L(e^{sx} \varphi(x)),$$

$$L(A_{\varphi}(x)) = zL(A_{\varphi}) L(\varphi(x)).$$

Mais nous avons

$$L(e^{sx} \varphi(x)) = \int_{0}^{\infty} e^{-zx} e^{sx} \varphi(x) dx = \Phi(z - s), \quad \mathbf{R}(z) > \mathbf{R}(s);$$

par conséquent, si nous éliminons L(A), nous aurons

(9)
$$L(e^{sx}C_{\varphi}(x)) = \frac{\Phi(z-s)}{\Phi(z)} L(A_{\varphi}(x))$$

$$= L(A_{\varphi}(x)) + \frac{\Phi(z-s) - \Phi(z)}{\Phi(z)} L(A_{\varphi}(x)).$$

Comme la fonction $\frac{\Phi(z-s)-\Phi(z)}{\Phi(z)}$ satisfait à la condition (2), on peut d'après un théorème de M.M. Norlund et Pincherle représenter cette fonction au moyen de l'intégrale de Laplace

(10)
$$\frac{\Phi(z-s)-\Phi(z)}{\Phi(z)}=L(h(x))=\int_{0}^{\infty}e^{-z\lambda}h(x)\,dx.$$

Mais, comme réciproquement, si l'on a

$$L(\tau) = L(\varphi) L(\psi),$$

 $\varphi(x)$, $\psi(x)$, $\tau(x)$ étant trois fonctions continues, il s'ensuit que

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt;$$

de l'équation (9) nous tirons la formule

(11)
$$C_{\varphi}(x) = e^{-sx} A_{\varphi}(x) + e^{-sx} \int_{0}^{x} h(t) A_{\varphi}(x-t) dt$$
.

C'est une formule fondamentale pour nos recherches. Cette relation a été obtenue en supposant l'existence de la transformation de Laplace pour la fonction $A(\tau)$. Mais (11) est ure identité entre les nombres a_1, a_2, \ldots, a_n, n étant fini et $\lambda_n < x < \lambda_{n+1}$, et

nous pouvons choisir a_{n+1}, a_{n+2}, \ldots de façon que la série $\sum_{\mathbf{1}}^{\infty} a_n$

soit convergente (par exemple $a_{n+1} = a_{n+2} = \cdots = 0$).

Posons z = s + u, on aura

$$\frac{\Phi(u)-\Phi(s+u)}{\Phi(s+u)}=\int_{0}^{\infty}e^{-(s+u)x}h(x)dx=\int_{0}^{\infty}e^{-sx}\psi(x)dx=L_{n}(\psi),$$

οù

$$\psi(x) = e^{-sx} h(x).$$

D'après le lemme a) nous avons la formule

$$h(x) = e^{sx} \frac{\varphi(x)}{\Phi(s)} + e^{sx} g(x), \quad g(x) = o(\varphi(x)),$$

et en portant dans (11) nous avons

$$\frac{C_{\varphi}(x)}{\varphi(x)} = e^{-sx} + \frac{A_{\varphi}(x)}{\varphi(x)} + \frac{1}{\Phi(s)\,\varphi(x)} \int_{0}^{x} e^{-s(x-t)} \varphi(t) A_{\varphi}(x-t) dt + \frac{1}{\varphi(x)} \int_{0}^{x} e^{-s(x-t)} g(t) A_{\varphi}(x-t) dt = e^{-sx} \frac{A_{\varphi}(x)}{\varphi(x)} + \frac{i}{\Phi(s)} + j.$$

L'intégrale $\int_0^\infty e^{-s\tau} A_{\varphi}(\tau) d\tau$ est absolument convergente pour

chaque nombre s, $\mathbf{R}(s) > 0$ puisque $|A_{\varphi}(\tau)| < M\varphi(\tau) < Me^{\delta \tau}$, δ étant arbitraire. Soit $\varepsilon > 0$ un nombre arbitrairement petit et a un nombre tel que

$$\int_{0}^{\infty} e^{-\sigma \tau} |A_{\varphi}(\tau)| d\tau < \varepsilon, \quad \sigma = \mathbf{R}(s).$$

On a pour x > a

$$i = \int_0^a e^{-s\tau} A_{\varphi}(\tau) \frac{\varphi(x-\tau)}{\varphi(x)} d\tau + \int_a^x e^{-s\tau} A_{\varphi}(\tau) \frac{\varphi(x-\tau)}{\varphi(x)} d\tau = i_1 + i_2.$$

Comme $0 \le \tau \le a$, à cause de la condition α) on a

$$\lim_{x\to\infty}i_1=\int\limits_0^a e^{-s\tau}A_{\varphi}(\tau)\,d\tau\,.$$

D'autre part.

$$|i_2| < \int_{\alpha}^{x} e^{-\sigma \tau} |A_{\varphi}(\tau)| d\tau < \varepsilon,$$

donc

$$\overline{\lim_{x \to \infty}} \left| i - \int_0^\infty e^{-s\tau} A_{\varphi}(\tau) d\tau \right| < 2\varepsilon$$
,

-c'est-à-dire

$$\lim_{x\to\infty}i=\int_0^\infty e^{-s\tau}A_{\varphi}(\tau)\,d\tau.$$

Comme $\lim \frac{A_{\varphi}(x)}{\varphi(x)}$ existe, le premier membre de la formule (12) tend vers zéro. Comme plus haut on démontre facilement

que j tend aussi vers zéro lorsque $x \rightarrow \infty$ et le théorème est démontré.

5. Nous ferons des applications à la théorie de la sommation de M. Riesz. Posons $\varphi(x) = x^k$, k > 0, on a

$$\Phi(s) = \int_{0}^{\infty} e^{-st} t^{k} dt = \frac{\Gamma(k+1)}{s^{k+1}}.$$

La fonction $\Phi(s)$, comme on le voit immédiatement, satisfait à toutes les conditions susmentionnées. On obtient le théo-

rème de M. Riesz: si la série $\sum_{1}^{\infty} a_n e^{-\lambda_n s}$ est sommable (R, λ, k)

pour s = 0, elle est aussi sommable (R, λ, k) pour chaque s, $\mathbf{R}(s) > 0$, avec la somme

$$\frac{s^{k+1}}{\Gamma(k+1)}\int_{0}^{\infty}e^{-s\tau}A_{\lambda}^{k}(\tau)\,d\tau.$$

Posons $\varphi(x) = (1 - e^{-x})^k$, k > 0 on a

$$\Phi(s) = \int_0^\infty e^{-st} (1 - e^{-t})^k dt = \frac{\Gamma(k+1)\Gamma(s)}{\Gamma(k+1+s)}.$$

La fonction $\Phi(s)$ satisfait à toutes les conditions 1), 2), 3), 4); nous avons donc le théorème: si la serie $\sum_{1}^{\infty} a_n e^{\lambda_n s}$ est sommable (R, l, k) pour s = 0 elle est aussi sommable (R, l, k) pour s, $\mathbf{R}(s) > 0$ avec la somme

$$\frac{\Gamma(k+1+s)}{\Gamma(k+1)\Gamma(s)}\int_{0}^{\infty}e^{-s\tau}A_{\varphi}(\tau)\,d\tau.$$

En posant $e^{\tau} = u$, $A_l^k(x) = \sum_{l_n < x} a_n(x - l_n)^k$, on voit facilement

que cette intégrale est égale à

$$\frac{\Gamma(k+1+s)}{\Gamma(k+1)\Gamma(s)}\int_{1}^{\infty}A_{l}^{k}(u)u^{-s-k-1}du,$$

ce qui est le second théorème de M. Riesz. Les démonstrations de MM. Riesz et Hardy de ces théorèmes sont assez longues.

Nous donnerons un autre exemple de sommation (ϕ, λ) qui est plus puissant que la sommation de M. Riesz. Considérons la fonction

$$\varphi(x) = e^{-\frac{1}{x}}, \quad x > 0, \quad \varphi(0) = 0.$$

Nous démontrerons que la fonction de Laplace

$$\Phi(s) = \int_{0}^{\infty} e^{-sx - \frac{1}{x}} dx$$

satisfait aux conditions 1), 2), 3), 4), 5) du lemme α).

En faisant le changement de variable $x = \frac{y}{\sqrt{s}}$, s > 0, o obtient

$$\Phi(s) = \frac{1}{\sqrt{s}} \int_{0}^{\infty} e^{-\sqrt{s} \left(y + \frac{1}{y}\right)} dy,$$

et en posant $y + \frac{1}{y} = u$, nous avons

$$\Phi(s) = \frac{1}{\sqrt{s}} \int_{\infty}^{2} \frac{e^{-u\sqrt{s}}}{2} \left(1 - \frac{u}{\sqrt{u^{2} - 4}}\right) du$$

$$+ \frac{1}{\sqrt{s}} \int_{2}^{\infty} \frac{e^{-u\sqrt{s}}}{2} \left(1 + \frac{u}{\sqrt{u^{2} - 4}}\right) du = \frac{1}{\sqrt{s}} \int_{2}^{\infty} \frac{e^{-u\sqrt{s}} du}{\sqrt{u^{2} - 4}}.$$

Si nous posons $u = 2 + 2\tau$, nous aurons

(14)
$$\Phi(s) = \frac{2e^{-2\sqrt{s}}}{\sqrt{s}} \int_{0}^{\infty} \frac{e^{-2\tau\sqrt{s}}(\tau+1)}{\sqrt{\tau^{2}+2\tau}} d\tau = \frac{2e^{-z}}{z} \psi(z),$$

où l'on a posé

$$2\sqrt{s} = z, \quad \psi(z) = \int_0^\infty \frac{e^{-z\tau}(\tau+1)}{\sqrt{2\tau+\tau^2}} d\tau,$$

l'integrale étant convergente pour chaque z avec $\mathbf{R}(z) > 0$. Donc la fonction (14) représente le prolongement analytique dans $|\arg s| < \theta$, pour chaque $\theta < \pi$, de la fonction (13). Ici par \sqrt{s} on comprend la branche de la fonction qui prend des valeurs positits pour s > 0. D'après cela il est évident que la condition 1) est satisfaite.

Nous avons

$$\psi(z) = \int_0^\infty \left(\frac{\tau + 1}{\sqrt{2\tau + \tau^2}} - 1\right) e^{-z\tau} d\tau + \int_0^\infty e^{-z\tau} d\tau$$

$$= \frac{1}{z} + \int_0^\infty \frac{e^{-z\tau} d\tau}{2\tau + \tau^2 + (1+\tau)\sqrt{2\tau + \tau^2}}$$

$$= O\left(\frac{1}{|z|}\right) + O\left(\int_0^\infty \frac{d\tau}{(1+\tau)^2}\right) = O\left(\frac{1}{|z|}\right),$$

donc

$$\Phi(s) = O\left(\frac{1}{|s|}\right) = O(x) = O(x \varphi(x)),$$
$$|s| = \frac{1}{x}, \quad x \to \infty, \quad |\arg s| < \theta,$$

et la condition 4) est satisfaite.

Or M. Pólya¹) a démontré le théorème suivant: si f(x) est une fonction positive, non décroissante, $0 < x \le 1$, la fonction entière

$$\int_{0}^{1} f(x) e^{zx} dx$$

a seulement des zéros dans le demi-plan $\mathbf{R}(z) \leq 0$. En changeant x par 1-t on voit que si $\varphi(x)$ est une fonction positive, non croissante, la fonction

$$\int_{0}^{1} \varphi(t) e^{-zt} dt$$

a seulement des zéros dans le demi-plan $\mathbf{R}(z) \leq 0$. La fonction $\frac{\tau+1}{\sqrt{\tau^2+2\tau}}$ est décroissante pour $\tau>0$, donc la fonction

$$\psi_n(z) = \int_0^n \frac{e^{-z\tau}(\tau+1)}{\sqrt{2\tau+\tau^2}} d\tau$$

n'a pas des zéros dans $\mathbf{R}(z) > 0$. Comme les fonctions $\psi_n(z)$ tendent uniformément vers la fonction $\psi(z)$ lorsque $n \to \infty$, dans

¹) G. Pólya — Uber die Nullstellen gewisser ganzer Funktionen, Mathematische Zeitschrift, t. 2, 1918, p. 352—383.

chaque domaine fini à droite de l'axe imaginaire, il s'ensuit, d'après un théorème connu de Hurwitz, que la fonction limite $\psi(z)$ n'a pas des zéros dans le demi-plan $\mathbf{R}(z) > 0$. La fonction $\Phi(s)$ sera ± 0 dans $|\arg s| < \theta$, $\theta < \pi$. Donc la condition 3) est satisfaite.

Comme $\Phi(s)$ croit moins vite que $e^{-\lambda \sqrt{s}}$, $\lambda > 0$, on voit immédiatement que les conditions 2) et 5) sont aussi satisfaites. Alors si pour la série

$$f(s) = \sum_{n=1}^{\infty} a_n e^{-\lambda_n s}, \quad c_n = a_n e^{-\lambda_n s},$$

on pose

$$A_{\varphi}(x) = \sum_{\lambda_n < x} c_n e^{-\frac{1}{x - \lambda_n}},$$

on obtient une sommation plus puissante que la sommation de Riesz, puisque pour la fonction f(s) on a

$$f(s) = o(e^{\lambda \sqrt{|s|}}), \quad \lambda > 2, \quad |s| \to \infty.$$

En appliquant la même méthode pour la fonction

$$\varphi(x) = e^{-\frac{1}{x^p}}, \quad p > 0, \quad \varphi(0) = 0,$$

on obtient la sommation

$$A_{\varphi}(x) = \sum_{\lambda_n < x} c_n e^{-\frac{1}{(x - \lambda_n)^p}}$$

et pour la fonction f(s) on a

$$f(s) = o(e^{\lambda_1 |s|^{\frac{p}{p+1}}}), \quad |s| \longrightarrow \infty.$$

On peut prendre p assez grand pour que $e^{\lambda_1 |s|} \frac{p}{p+1}$ soit aussi près de la fonction $e^{\lambda_1 |s|}$ que l'on veut.

Une sommation de la forme (φ, λ) avec une fonction spéciale $\varphi(x)$ qui est différente des notres, a été considérée par M. G. Valiron.¹)

¹⁾ G, Valiron — Sur les solutions d'une équation différentielle fonctionnelle, Bulletin de la Société mathématique de France, t. 54 (1926), p. 53-68.

6. Du théorème il s'ensuit qu'il existe un nombre α_{φ} , tel que la série (6) est sommable (φ, λ) pour chaque s dont $\mathbf{R}(s) > \alpha_{\varphi}$ et ne l'est pas pour $\mathbf{R}(s) < \alpha_{\varphi}$. Le nombre α_{φ} s'appelle l'abscisse de sommabilité (φ, λ) . Nous en donnons une expression explicite.

V. Si $\sigma_{\varphi} \geq 0$ nous avons

$$\alpha_{\varphi} = \overline{\lim_{x \to \infty}} \frac{\lg |A_{\varphi}(x)|}{x} .$$

Soit d'abord

(15)
$$\alpha = \overline{\lim}_{x \to \infty} \frac{\lg |A_{\varphi}(x)|}{x}, \quad A_{\varphi}(x) = \sum_{\lambda_n \le x} a_n \varphi(x - \lambda_n),$$

et posons $s = \alpha + 2\varepsilon$, $\varepsilon > 0$ et arbitraire

$$C_{\varphi}(x) = \sum_{\lambda_n \leq x} a_n e^{-\lambda_n s} \varphi(x - \lambda_n).$$

On déduit de (15) qu'il existe un nombre $x_0 = x_0(\varepsilon)$ tel que pour $x > x_0$ on ait

$$|A_{\omega}(x)| < e^{x(\alpha+\varepsilon)}$$
.

Pour $C_{\varphi}(x)$ nous avons obtenu la formule

$$\frac{C_{\varphi}(x)}{\varphi(x)} = e^{-sx} \frac{A_{\varphi}(x)}{\varphi(x)} + \frac{1}{\Phi(s) \varphi(x)} \int_{0}^{\tau} e^{-s\tau} A_{\varphi}(\tau) \varphi(x - \tau) d\tau
+ \frac{1}{\varphi(x)} \int_{0}^{x} e^{-s\tau} A_{\varphi}(\tau) g(x - \tau) d\tau = e^{-sx} \frac{A_{\varphi}(x)}{\varphi(x)} + \frac{i}{\Phi(s)} + j.$$

Comme

$$e^{-sx}A_{\varphi}(x) = O(e^{-(\alpha+2\varepsilon)x}e^{(\alpha+\varepsilon)x}) = O(e^{-\varepsilon x}) = o(1),$$

l'intégrale

$$\int_{0}^{\infty} e^{-s\tau} A_{\varphi}(\tau) d\tau$$

est absolument convergente et on conclut comme plus haut que la limite du $\frac{C_{\varphi}(x)}{\varphi(x)}$ existe pour $x \longrightarrow \infty$ et est égale à

$$\frac{1}{\Phi(s)}\int_{0}^{\infty}e^{-st}A_{\varphi}(t)\,dt.$$

Par conséquent la série (6) est sommable (φ, λ) pour chaque s avec $\mathbf{R}(s) > \alpha$.

Réciproquement soit donnée la série (6), sommable (φ, λ) pour $s = \alpha \ge 0$. Si l'on pose $s = \alpha + \varepsilon$, $\varepsilon > 0$ et arbitraire,

$$C_{\varphi}(x) = \sum_{\lambda_n \leq \lambda} a_n e^{-\lambda_n s} \varphi(x - \lambda_n),$$

on déduit de la formule (9),

$$L(A_{\varphi}(x)) = \frac{\Phi(z)}{\Phi(z-s)} L(e^{sx} C_{\varphi}(x))$$

$$= \frac{\Phi(z) - \Phi(z-s)}{\Phi(z-s)} L(e^{sx} C_{\varphi}) + L(e^{sx} C_{\varphi}).$$

Nous avons donc

(16)
$$A_{\varphi}(x) = e^{sx}C_{\varphi}(x) + \int_{0}^{x} e^{s(x-t)}C_{\varphi}(x-t)\eta(t) dt,$$

οù

$$\frac{\Phi(z)-\Phi(z-s)}{\Phi(z-s)}=L(\eta).$$

Si l'on fait l'hypothèse que $\Phi(s) \neq 0$ pour s < 0, on obtient en appliquant le lemme α)

$$\eta(x) = \frac{\Phi(x)}{\Phi(-s)} + g(x), \quad g(x) = o(\varphi(x))$$
$$|\eta(x)| < M\varphi(x).$$

Comme $|C_{\varphi}(x)| < N_{\varphi}(x)$, on déduit de (16)

$$|A_{\varphi}(x)| < Ne^{(\alpha+\epsilon)\tau} \varphi(x) + M \int_{0}^{x} e^{(\alpha+\epsilon)t} N \varphi(t) \varphi(x-t) dt$$

$$< Ne^{\tau(\alpha+2\epsilon)} + MNxe^{(\alpha+3\epsilon)x} < e^{(\alpha+4\epsilon)x}$$

pour $x > x_0 = x_0(\varepsilon)$.

7. VI. Supposons la série (6) sommable pour s=0. Pour $\mathbf{R}(s) \geq s > 0$ on a uniformément

$$f(s) = o\left(\frac{1}{|\Phi(s)|}\right).$$

Posons $s = \sigma + it$ et considérons d'abord le cas $|t| < M\sigma$, M étant un nombre fini. De la formule

$$f(s) = \frac{1}{\Phi(s)} \int_{0}^{\infty} e^{-st} A_{\varphi}(t) dt$$

on obtient

$$|f(s)| \leq \frac{1}{|\Phi(s)|} \int_0^\infty e^{-\sigma t} |A_{\varphi}(t)| dt$$

où l'intégrale est convergente pour chaque $\sigma > 0$ et tend vers zéro lorsque $\sigma \to \infty$. Par conséquent la formule (17) est démontrée dans le cas $|t| < M\sigma$. Soit $|t| > M\sigma$. Posons

$$A\varphi(x) = A\varphi(x) + \omega(x), \quad \omega(x) = o(\varphi(x));$$

on a

$$f(s) = A + \frac{1}{\Phi(s)} \int_0^\infty e^{-s\tau} \omega(\tau) d\tau = A + j.$$

Soit $\varepsilon > 0$ un nombre arbitraire et a un nombre choisi de façon que pour $x \ge a$ on ait

$$|\omega(x)| < \varepsilon \varphi(x)$$
.

Nous avons

$$j = \frac{1}{\Phi(s)} \int_{0}^{a} e^{-(\sigma+\iota t)\tau} \omega(\tau) d\tau + \frac{1}{\Phi(s)} \int_{a}^{\infty} e^{-(\sigma+\iota t)\tau} \omega(\tau) d\tau = i_1 + i_2$$
,

$$i_1 = \frac{1}{\Phi(s)} \int_{-1}^{a} e^{-it\tau} \psi(\tau) d\tau$$
, où $e^{-\sigma\tau} \omega(\tau) = \psi(\tau)$,

$$i_1 = \frac{1}{\Phi(s)t} \left[e^{-ita} \psi(a) - \int_0^a e^{-it\tau} d\psi(\tau) \right] = o\left(\frac{1}{|\Phi(s)|}\right),$$

$$|i_2| \leq \frac{1}{|\Phi(s)|} \int_a^{\infty} e^{-\sigma \tau} |\omega(\tau)| d\tau < \frac{\varepsilon}{|\Phi(s)|} \int_a^{\infty} e^{-\delta \tau} \varphi(\tau) d\tau < \frac{\varepsilon \Phi(\delta)}{|\Phi(s)|}.$$

Par conséquent

$$\overline{\lim_{|s|\to\infty}} |\Phi(s)j| < \varepsilon \Phi(\mathfrak{H})$$

quel que soit le nombre $\varepsilon > 0$ c'est-à-dire $\lim j\Phi(s) = 0$. Comme $A = o\left(\frac{1}{|\Phi(s)|}\right)$ le théorème est démontré.

8. VII. Supposons la série (6) sommable (φ, λ) pour $s = \beta$ et soit c un nombre c > 0, $c > \beta$. On a

$$\sum_{\lambda_n < x} a_n \varphi(x - \lambda_n) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{xs} \Phi(s) f(s) ds.$$

Démontrons d'abord la formule

(18)
$$\int_{c-t\infty}^{c+t\infty} e^{xs} \Phi(s) ds = 0, \quad x \leq 0.$$

La fonction $\Phi(s)$ a la forme

$$\Phi(s) = \frac{A}{s} + \frac{\mu(s)}{s^k}, \quad k > 1, \quad |\mu(s)| < M,$$

On peut facilement montrer que A=0. En effet, soit s un nombre réel et $\epsilon>0$ un nombre arbitrairement petit. Soit $\delta>0$ un nombre choisi de façon qu'on ait

$$|\varphi(x)| < \varepsilon, \quad 0 \le x \le \delta.$$

Nous avons

$$s\Phi(s) = \int_0^{\delta} s \, e^{-s\tau} \, \varphi(\tau) \, d\tau + \int_{\delta}^{\infty} s \, e^{-s\tau} \varphi(\tau) \, d\tau = u + v,$$

$$u < \varepsilon \int_0^{\delta} s \, e^{-s\tau} d\tau < \varepsilon \int_0^{\infty} s \, e^{-s\tau} d\tau = \varepsilon,$$

$$v < M \int_{\delta}^{\infty} s \, e^{-s\tau + q\tau} d\tau = \frac{Ms}{s - q} \, e^{-s(\delta - q)} \longrightarrow 0, \quad 0 < q < \delta.$$

Par conséquent $s\Phi(s) \to 0$ lorsque $s \to \infty$, il s'ensuit que A = 0. Soit alors C le demi-cercle |s-c| = R, on a d'après le théorème de Cauchy

$$\int_{c-iR}^{c+iR} e^{xs} \Phi(s) ds = \int_{C} e^{xs} \Phi(s) ds.$$

On a donc

$$\left|\int\limits_{S} e^{xs} \Phi(s) ds \right| < \frac{2\pi M}{R^{k-1}} e^{xR} \le \frac{2\pi M}{R^{k-1}},$$

quantité qui tend vers zéro lorsque $R \rightarrow \infty$, ce qui démontre la formule (18).

Soit $\lambda_m < x < \lambda_{m+1}$ et considérons la fonction

$$g(s) = e^{xs}(f(s) - \sum_{\lambda_n < x} a_n e^{-\lambda_n s}) = e^{(x-\lambda_m + 1)s} h(s).$$

A la fonction h(s) correspond la série de Dirichlet

$$h(s) = a_{m+1} + a_{m+2} e^{-(\lambda_{m+2} - \lambda_{m+1})s} + \cdots$$

St nous posons $\mu_n = \lambda_{n+m} - \lambda_{m+1}$ cette série, en vertu de la proporsition 3), est sommable (φ, μ) pour $s = \beta$. Alors pour $\mathbf{R}(s) \ge \beta + \varepsilon > \beta$ nous avons

$$h(s) = o\left(\frac{1}{|\Phi(s)|}\right).$$

Nous avons alors

$$\frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} e^{xs} f(s) \, \Phi(s) \, ds = \sum_{\lambda_n < x} a_n \, \varphi(x - \lambda_n) + \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} g(s) \, \Phi(s) \, ds.$$

Il faut démontrer que

$$\int_{c-t^{\infty}}^{c+t^{\infty}} g(s) \, \Phi(s) \, ds = 0.$$

Soit d > c un nombre arbitraire et $\omega > 0$. Nous avons

$$\int_{c-i\omega}^{c+i\omega} g(s) \Phi(s) ds = \int_{c-i\omega}^{d-\omega} g(s) \Phi(s) ds
+ \int_{d-i\omega}^{d+i\omega} \Phi(s) ds + \int_{d-i\omega}^{c+i\omega} g(s) \Phi(s) ds.$$

Comme

$$g(s) = e^{-\mu s}h(s), \quad \mu = \lambda_{m+1} - x > 0,$$

on a pour

$$\mathbf{R}(s) = d$$
, $g(s) = o\left(\frac{1}{|\Phi(s)|}\right)e^{-\mu d} = o(1)$.

Par conséquent, si dans (19) on fait croître d indéfiniment, on obtient

$$\int_{c-\iota\omega}^{c+\iota\omega} g(s) \Phi(s) ds = \int_{c-\iota\omega}^{\infty-\iota\omega} g(s) \Phi(s) ds = \int_{\infty+\iota\omega}^{c+\iota\omega} g(s) \Phi(s) ds.$$

En désignant par m le maximum de $|h(s)\Phi(s)|$ pour $c \leq \mathbf{R}(s) < \infty$, on a

$$\left| \int_{c-\iota\omega}^{\infty-.\omega} g(s) \Phi(s) \, ds \right| \leq \int_{c}^{\infty-\mu\tau} e^{-\mu\tau} m \, d\tau,$$

et en supposant $\omega \longrightarrow \infty$, on a

$$\lim_{\omega \to \infty} \int_{c-t\omega}^{\infty - t\omega} g(s) \, \Phi(s) \, ds = 0.$$

D'un manière analogue on a

$$\lim \int_{\infty + i\omega}^{c+i\omega} g(s) \, \Phi(s) \, ds = 0$$

et le théorème est démontré.

Si l'on prend $\varphi(x) = x^k$, $\varphi(x) = (1 - e^{-x})^k$, $k \ge 0$, on obtient comme cas particuliers les théorèmes suivants de M. Riesz:

 γ) Si la série (6) est sommable (R, λ , k) pour $s=\beta$ et si c>0, $c>\beta$, on a

$$\frac{1}{\Gamma(k+1)} \sum_{\lambda_n < x} a_n(x - \lambda_n)^k = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{f(s)}{s^{k+1}} ds.$$

Le théorème de MM. Hadamard et Perron est un cas particulier de ce théorème pour k=0.

δ) Si la serie (6) est sommable (R, l, k) pour $s = \beta$, cn aura

$$x^{-k} \sum_{l_n < x} a_n (x - l_n)^k = \frac{1}{2\pi i} \int_{c - l \infty}^{c + l \infty} \frac{\Gamma(k+1)\Gamma(s)}{\Gamma(k+1+s)} x^s ds, \quad c > 0, \quad c > \beta.$$

En suivant la même marche de démonstration que pour le théorème VII, on démontre un théorème plus général:

VIII. Supposons la série (6) sommable (φ, λ) pour $s = \beta$. Si $s_0 = \sigma_0 + it_0$, $c > \sigma_0$, $c > \beta$, on a

$$\sum_{\lambda_n < x} a_n e^{-\lambda_n s_0} \varphi(x - \lambda_n) = \frac{1}{2\pi^{\iota}} \int_{c-\iota_{\infty}}^{c+\iota_{\infty}} f(s) \Phi(s - s_0) e^{x(s-s_0)} ds.$$

9. Nous démontrerons encore un théorème sur la sommation (ξ, λ) . Soit la série

(20)
$$c_1 + c_2 + c_3 + \cdots$$

sommable (φ, λ) , où la fonction $\varphi(x)$, admet une dérivée $\varphi'(x)$ telle que la fonction

$$\Phi_1(s) = L(\varphi') = \int_0^\infty e^{-st} \varphi'(t) dt,$$

soit holomorphe pour $R(s) \ge -\alpha$, $\alpha > 0$ et $\varphi(x) \to 1$ pour $x \to \infty$. Soit $\psi(x)$ une autre fonction positive, $\psi(0) = 0$, non décroissante pour x > 0 qui tend vers l'infini, mais de manière que $\lim_{x \to \infty} \frac{\psi(x+a)}{\psi(x)} = 1$ pour chaque nembre fini α .

Suposons que $\psi(x)$ satisfait aux conditions 1), 2), 3), 4) du § 3 et admet une dérivée. Nous avons le théorème suivant:

IX. La série (20) étant sommable (ρ, λ) supposons que $\lim \frac{\Psi_1(s)}{\Phi_r(s)} = k$ existe lorsque $s \to \infty$ où

$$\Psi_1(s) = \int_0^\infty e^{-st} \psi'(t) dt.$$

Supposons encore que la fonction $g(s) = \frac{\Psi_1(s)}{\Phi_1(s)} - k$ satisfait aux conditions 1', 2), 4), du § 3. Alors la série (20) sera sommable (ψ, λ) avec la même somme.

En effet, posons

$$A_{\varphi}(x) = \sum_{\lambda_n < x} a_n \varphi(x - \lambda_n) = \int_0^x A(x - t) \varphi'(t) dt$$

$$A_{\psi}(x) = \sum_{\lambda_n < x} a_n \psi(x - \gamma_n) = \int_0^x A(x - t) \psi'(t) dt, \quad A(x) = \sum_{\lambda_n < x} a_n$$

on obtient

$$L(A_{\varphi}) = L(A) \Phi_{1}(s),$$

$$L(A_{\varphi}) = L(A) \Psi_{1}(s),$$

d'où

$$L(A_{\varphi}) = kL(A_{\varphi}) + \left[\frac{\Psi_{1}(s)}{\Phi_{1}(s)} - k\right]L(A_{\varphi}),$$

ce qui nous montre que

(21)
$$A_{\psi}(x) = kA_{\varphi}(x) + \int_{0}^{x} A_{\varphi}(x-t) h(t) dt,$$

Юù

$$g(s) = L(h)$$
.

En écrivant la fonction g(s) sous la forme

$$g(s) = \left(\frac{1}{\Phi_1(s)} - 1\right) \Psi_1(s) - k + \Psi_1(s)$$

on obtient facilement, en remarquant que $\Phi_1(0) = 1$ et appliquant le lemme β), § 3,

(22)
$$h(x) = \psi'(x) + o(\psi'(x)).$$

D'après les conditions du théorème, on a

(23)
$$\lim_{x \to \infty} \frac{A_{\varphi}(x)}{\varphi(x)} = s.$$

De (21), (22) et (23) on déduit facilement

$$\lim_{x\to\infty}\frac{A_{\psi}(x)}{\psi(x)}=s,$$

et le théorème est démontre.

Pour la sommation (R, l, p) de M. Riesz on a

$$\varphi(x) = (1 - e^{-x})^p$$
, $L(\varphi') = \Phi_1(s) = \frac{\Gamma(p+1)\Gamma(s+1)}{\Gamma(p+1+s)}$,

et pour la sommation (R, 7, p) on a

$$\psi(x) = x^p, \quad L(\psi') = \Psi_1(s) = \frac{\Gamma(p+1)}{s^p}.$$

La fonction $\Phi_1(s)$ est holomorphe pour $\mathbf{R}(s) > -1$ et la fonction

$$\frac{\Psi_{1}(s)}{\Phi_{1}(s)} - 1 = \frac{\Gamma(p+1+s)}{\Gamma(s+1)s^{p}} - 1$$

satisfait aux conditions d'inversion. En effet, pour $|s| \to \infty$ on a

$$\frac{\Gamma(p+1+s)}{\Gamma(s+1)s^p}-1=\frac{q_1}{s}+\frac{q_2}{s'}+\cdots+\cdots=\frac{q_1}{s}+\frac{\mu(s)}{s^2},\quad |\mu(s)|< M.$$

Le théorème IX contient donc le théorème de MM. Riesz et Hardv:

Si une série est sommable (R, l, p), p > 0, elle est aussi sommable (R, λ, p) avec la même somme. Mais la démonstration de MM. Riesz et Hardy n'est pas applicable dans le cas général que nous avons considéré.

Chapitre II.

Une méthode générale pour la sommation des séries divergentes.

1. Nous nous proposons de donner un procédé aussi général que possible de sommation des séries divergentes qui satisfasse aux conditions I, II, III, c'est à dire qui permette de supprimer ou ajouter des termes nouvaux dans une série sommable sans altérer la sommabilité et de multiplier les séries divergentes sommables.

Soient $\varphi_0(x)$, h(x) des fonctions définies pour $x \ge 0$, intégrables et telles que

$$\int_{0}^{\infty} \varphi_0(x) dx = 1, \quad \int_{0}^{\infty} h(x) dx = 1,$$

l'intégrale

$$\int_{0}^{\infty} |h(x)| dx$$

étant convergente. Posons pour $n \ge 1$

$$\varphi_n(x) = \int_0^x \varphi_{n-1}(t) h(x-t) dt.$$

Soit $\varphi(x)$ une fonction positive, non décroissante, s'annulant pour x=0 et telle que, si $\varphi(x)$ tend vers l'infini lorsque $x\longrightarrow \infty$, on ait

$$\lim_{\lambda\to\infty}\frac{\varphi(\lambda\perp a)}{\varphi(x)}=1$$

quel que soit le nombre fim a.

Nous disons que la série

$$a_0 + a_1 + a_2 + \cdots$$

est sommable (φ_0, h, φ) avec la somme s si la série

$$u(x) = \sum_{n=0}^{\infty} a_{n+1} \varphi_n(x)$$

est normalement convergente dans chaque intérvalle fini (0, X) et l'expression

$$g(x) = \frac{1}{\varphi(x)} \int_0^x \varphi(x-t) u(t) dt$$

tend vers la limite $s - a_0$ lorsque $x \rightarrow \infty$.

Comme on sait, une série

$$u_0(x) + u_1(x) + u_2(x) + \cdots$$

est dite normalement convergente dans (a, b) si l'on a dans (a, b)

$$|u_n(x)| < \sigma_n$$

et la série

$$\alpha_0 + \alpha_1 + \alpha_2 + \cdots$$

est convergente.

On peut facilement démontrer que

$$\int_{0}^{\infty} \varphi_{n}(x) dx = 1, \quad n = 1, 2, 3, \dots$$

Nous établirons cette égalité par induction, en supposant qu'elle est vraie pour $\varphi_{n-1}(x)$, c'est à dire que

$$\int_{0}^{\infty} \varphi_{n-1}(x) dx = 1.$$

Alors on a

$$\int_0^x \varphi_n(t)dt = \int_0^x dt \int_0^t h(\tau) \varphi_{n-1}(t-\tau) d\tau = \int_0^x h(\tau)d\tau \int_\tau^x \varphi_{n-1}(t-\tau) dt$$

$$= \int_0^x h(\tau) g(x-\tau) d\tau,$$

où l'on a posé

$$g(x) = \int_{0}^{x} \varphi_{n-1}(t) dt$$
, $g(x) \to 1$ pour $x \to \infty$.

Soit $\varepsilon > 0$ un nombre arbitrairement petit et x_0 tel que-

$$\int_{x_0}^{\infty} |h(\tau)| d\tau < \varepsilon.$$

Alors pour $x > x_0$ nous avons

$$\int_0^x \varphi_n(t) dt = \int_0^{x_0} h(\tau) g(x-\tau) d\tau + \int_{x_0}^x h(\tau) g(x-\tau) d\tau.$$

Si l'on laisse x_0 fixe, on a

$$\lim_{x \to \infty} i = \lim_{0} \int_{0}^{x_{0}} h(\tau) g(x - \tau) d\tau = \int_{0}^{x_{0}} h(\tau) d\tau,$$

$$\left| \int_{x_{0}}^{x} h(\tau) g(x - \tau) d\tau \right| < kz, \quad |g(x)| < k$$

pour chaque e. Donc

c'est-à-dire

$$\int_{0}^{\infty} \varphi_{n}(x) dx = 1,$$

ce qu'il fallait démontrer.

2. Nous allons montrer que notre procédé de sommation satisfait aux condition I, II.

X. Si la série (1) est sommable (φ₀, h, φ), la série

(2)
$$0 + a_0 + a_1 + a_2 + \cdots$$

sera aussi sommable (φ_0, h, φ) avec la même somme Posons

$$u(x) = \sum_{n=0}^{\infty} a_{n+1} \varphi_n(x), \quad g(x) = \int_0^x u(x-t) \varphi(t) dt,$$

$$u_1(x) = \sum_{n=0}^{\infty} a'_{n+1} \varphi(x) = \sum_{n=0}^{\infty} a_n \varphi_n(x), \quad g_1(x) = \int_0^x \varphi(t) u_1(x-t) dt.$$

Pour la simplification de la démonstration supposons que a_0 =0, ce qui ne diminue pas la généralité. D'après les conditions du théorème on a

$$\lim_{x\to\infty}\frac{g(x)}{\varphi(x)}=s;$$

il faut démontrer que $\lim_{x\to\infty} \frac{g_1(x)}{\varphi(x)} = s$. On obtient facilement la formule

(3)
$$g_1(x) = \int_0^x h(x-t)g(t) dt.$$

En effet le second membre de cette formule est égal à $\int_0^x h(x-t) dt \int_0^t u(t-\tau) \varphi(\tau) d\tau = \int_0^x \varphi(\tau) d\tau \int_\tau^x h(x-t) u(t-\tau) dt$ $= \int_0^x \varphi(\tau) d\tau \int_0^x u(\zeta) h(x-\tau-\zeta) d\zeta.$

Mais

$$u_1(x) = \sum_{1}^{\infty} a_n \int_{0}^{x} \varphi_{n-1}(t) h(x-t) dt = \int_{0}^{x} u(t) h(x-t) dt;$$

donc

$$\int_{0}^{x} h(x-t)g(t)dt = \int_{0}^{x} \varphi(\tau) u_{1}(x-\tau) d\tau = g_{1}(x),$$

et la formule (3) est démontrée.

Soit ε>0 un nombre arbitrairement petit et tel que

$$\int_{x_0}^{\infty} |h(\tau)| d\tau < \varepsilon.$$

D'après (3) on a pour $x>x_0$

$$\frac{g_1(x)}{\varphi(x)} = \frac{1}{\varphi(x)} \int_0^{x_0} h(x-t)g(t) dt + \frac{1}{\varphi(x)} \int_{x_0}^{x} h(x-t)g(t) dt = i + j.$$

Puisque $\frac{\varphi(x+\delta)}{\varphi(x)} \rightarrow 1$ pour chaque nombre fini δ , on **a**

$$\lim_{x\to\infty}i=s\int_0^{x_0}h(\tau)\,d\tau.$$

Pour j on obtient

$$|j| < k \int_{x_{\Lambda}}^{x} |h(au)| \left| rac{g(x- au)}{arphi(x)}
ight| d au < k arepsilon$$
 ,

et le théorème énoncé suit immédiatement des inégalités obtenues.

XI. Supposons que la série (1) est sommable (φ_0, h, φ) et qu'il existe une fonction $\eta(x)$ telle que

$$\int_{0}^{x} h(x-t) \, \psi_{0}(t) \, dt = \int_{0}^{x} \eta(t) \, \varphi_{0}(x-t) \, dt \,, \quad \int_{0}^{\infty} \eta(x) \, dx = 1,$$

l'intégrale $\int_0^\infty |\eta(x)| dx$ étant convergente. Alors la série (2) sera sommable (ψ_0, h, φ) avec la même somme.

Supposons encore $a_0 = 0$. Posons

$$g(x) = \int_0^x \varphi(t) u(x-t) dt, \quad g_1(x) = \int_0^x \varphi(t) u_1(x-t) dt,$$

$$u(x) = \sum_{n=0}^{\infty} a_{n+1} \varphi_n(x), \qquad u_1(x) = \sum_{n=0}^{\infty} a_{n+1} \psi_{n+1}(x).$$

Nous démontrerons facilement la relation

(4)
$$g_1(x) = \int_0^x \eta(t) g(x-t) dt$$
.

D'abord on voit que

(5)
$$\psi_{n+1}(x) = \int_0^x \varphi_n(t) \, \eta(x-t) \, dt.$$

Cela est évident pour n = 0 puisque

$$\psi_1(x) = \int_0^x \psi_0(t) \, n(x-t) \, dt = \int_0^x \varphi_0(t) \, \eta(x-t) \, dt.$$

Supposons que (5) est vrai pour $\psi_n(x)$, c'est-à-dire

$$\psi_n(x) = \int_0^x \varphi_{n-1}(x-t) \, \eta(t) \, dt.$$

Alors on a

$$\begin{split} \psi_{n+1}(x) &= \int_0^x h(x-t) dt \int_0^t \varphi_{n-1}(t-\tau) \eta(\tau) d\tau \\ &= \int_0^x \eta(\tau) d\tau \int_\tau^x \varphi_{n-1}(t-\tau) h(x-t) dt \\ &= \int_0^x \eta(\tau) d\tau \int_0^{x-\tau} \varphi_{n-1}(u) h(x-\tau-u) du = \int_0^x \eta(\tau) \varphi_n(x-\tau) d\tau. \end{split}$$

De (5) il s'ensuit

(6)
$$u_1(x) = \int_0^x \eta(t) \varphi(x-t) dt.$$

Donc nous avons

$$\begin{split} g_1(x) &= \int_0^x \varphi(x-t) \, u_1(t) \, dt = \int_0^x \varphi(x-t) \, dt \int_0^t u(t-\tau) \, \eta(\tau) \, d\tau \\ &= \int_0^x \eta(\tau) d\tau \int_\tau^x u(t-\tau) \, \varphi(x-t) \, dt = \int_0^x \eta(\tau) \, g(x-\tau) \, d\tau \end{split}$$

et la formule (4) est démontrée.

En suivant une méthode déjà employée par nous, (chapitre I, § 3), on conclut facilement en vertu de la relation (4) que de

$$\lim_{x\to\infty}\frac{g(x)}{\varphi(x)}=s$$

découle

$$\lim_{x\to\infty}\frac{g_1(x)}{\varphi(x)}=s$$

et le théorème est démontré.

XII. Si la série (2) est sommable (φ_0, h, φ) , la série (1) est sommable (ψ_0, h, ψ) avec la même somme si l'on pose

$$\psi_0(x) = \int_0^x \varphi_0(t) h(x-t) dt = \varphi_1(x), \quad \psi(x) = \int_0^x \varphi(t) dt.$$

Supposons encore que $a_0 = 0$ et posons

$$g_1(x) = \int_0^x \varphi(t) u_1(x-t) dt, \quad g(x) = \int_0^x \psi(t) u(x-t) dt$$

$$u(x) = \sum_{n=0}^{\infty} a_{n+1} \psi_n(x), \qquad u_1(x) = \sum_{n=0}^{\infty} a_n \varphi_n(x).$$

Comme $\psi_0(x) = \varphi_1(x)$, on a $\psi_n(x) = \varphi_{n+1}(x)$, donc

$$(7) u(x) = u_1(x).$$

Alors nous avons

$$g(x) = \int_0^x d\tau \int_\tau^x \varphi(t - \tau) \ u(x - t) \ dt$$

$$= \int_0^x d\tau \int_0^{x - \tau} \varphi(\zeta) \ u(x - \tau - \zeta) \ d\zeta = \int_0^x g_1(x - \tau) \ d\tau = \int_0^x g(t) \ dt.$$
Puisque $\frac{g_1(x)}{\varphi(x)} \to s$, on a $g_1(x) = s\varphi(x) + \varepsilon(x)$, $\frac{\varepsilon(x)}{\varphi(x)} \to 0$,
$$g(x) = s \ \psi(x) + \int_0^x \varepsilon(t) \ dt,$$

$$\frac{g(x)}{\psi(x)} = s + \frac{1}{\psi(x)} \int_0^x \varepsilon(t) \ dt = s + j,$$

et comme $\psi'(x) = \varphi(x)$, on obtient facilement

$$\lim_{x\to\infty}j=0.$$

XIII. Supposons la série (2) sommable (φ_0, h, φ) et posons

$$\psi(x) = \int_0^x \varphi(x-t) \, \eta(t) \, dt \,, \quad \psi_0(x) = \int_0^x \varphi_0(t) \, h(x-t) \, dt = \varphi_1(x) \,,$$

 $\eta(x)$ étant une fonction telle que $\frac{\eta(x+\delta)}{\eta(x)} \longrightarrow 1$ pour chaque nombre fini δ . Alors la série (1) sera sommable (ψ_0, h, ψ) avec la même somme.

Posons

$$g(x) = \int_0^x \psi(\tau) \, \eta(x - \tau) \, d\tau \,, \quad g_1(x) = \int_0^x \varphi(\tau) \, u_1(x - \tau) \, d\tau \,,$$

$$u(x) = \sum_{n=0}^\infty a_{n+1} \, \psi_n(x) \,, \qquad u_1(x) = \sum_{n=0}^\infty a_n \, \varphi_n(x) \,.$$

Comme $\psi_0 = \varphi_1$, on a pour chaque n, $\psi_n = \varphi_{n+1}$, donc $u(x) = u_1(x)$. Alors nous avons

$$\begin{split} g(x) &= \int_0^x u_1(x-t) \, dt \int_0^t \eta(\tau) \, \varphi(t-\tau) \, d\tau \\ &= \int_0^x \eta(\tau) \, d\tau \int_\tau^x u_1(x-t) \, \varphi(t-\tau) \, dt \\ &= \int_0^x \eta(\tau) \, d\tau \int_0^{x-\tau} u_1(x-\tau-v) \, \varphi(v) \, dv = \int_0^x \eta(\tau) \, g_1(x-\tau) \, d\tau \, . \end{split}$$

D'après les conditions du théorème on a

$$\lim_{x\to\infty}\frac{g_1(x)}{\varphi(x)}=s.$$

En se basant sur le théorème I, on conclut que

$$\lim_{x\to\infty}\frac{g(x)}{\psi(x)}=s, \quad \psi(x)=\int_0^x \eta(\tau)\,\varphi(x-\tau)\,d\tau$$

et le théorème est démontré.

- 3. Avant de démontrer le théorème sur la multiplication des séries sommables, nous donnerons quelques théorèmes préliminaires :
- α) Supposons que $\varphi(x)$, $\psi(x)$ sont des fonctions positives, non décroissantes, définies pour x>0 et telles que

$$\lim_{x \to \infty} \frac{\varphi(x+\delta)}{\varphi(x)} = 1, \quad \lim_{x \to \infty} \frac{\psi(x+\delta)}{\psi(x)} = 1$$

pour chaque nombre fini 5. Alois si l'on pose

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt \,,$$

on a

1)
$$\lim_{x\to\infty} \frac{\tau(x+\delta)}{\tau(x)} = 1$$
 pour chaque nombre fini δ ;

2)
$$\lim_{x\to\infty} \frac{\tau(x)}{\varphi(x)} = \infty$$
, $\lim_{x\to\infty} \frac{\tau(x)}{\psi(x)} = \infty$.

En effet, soit P > 0 un nombre arbitrairement grand et soit a choisi de telle façon que

$$\int_{0}^{a} \varphi(x) dx > P.$$

Alors pour x > a nous avons

$$\frac{\mathbf{\tau}(x)}{\psi(x)} \ge \int_0^a \varphi(t) \frac{\psi(x-t)}{\psi(x)} dt, \quad \lim_{x \to \infty} \frac{\mathbf{\tau}(x)}{\psi(x)} \ge \int_0^a \varphi(t) dt > P,$$

c'est-à-dire

$$\lim_{x\to\infty}\frac{\operatorname{\tau}(x)}{\psi(x)}=\infty.$$

Nous avons pour chaque nombre $\delta > 0$

$$\tau(x+\delta) - \tau(x) = \int_0^x \varphi(t) \left[\psi(x+\delta - t) - \psi(t) \right] dt$$
$$+ \int_0^{x+\delta} \varphi(t) \psi(x+\delta - t) dt > 0,$$

$$\tau(x+\delta) = \int_0^\delta \varphi(t) \, \psi(x+\delta-t) \, dt + \int_\delta^{x+\delta} \varphi(t) \, \psi(x+\delta-t) \, dt$$

$$= \int_0^\delta \varphi(t) \, \psi(x+\delta-t) \, dt + \int_\delta^x \varphi(t+\delta) \, \psi(x-t) \, dt = \alpha+\beta.$$

Puisque $\frac{\varphi(x+\delta)}{\varphi(x)} \to 1$, on obtient, d'après le théorème I, $\lim \frac{\beta}{\tau(x)} = 1$.

Si nous posons
$$\varphi_1(x) = \int_0^x \varphi(t) dt$$
, nous aurons

$$\alpha \leq \varphi_1(\delta) \psi(x + \delta) = o(\tau(x)),$$

et la proposition est démontrée.

β) Si la série (1) est sommable (φ_0, h, φ) , elle sera aussi sommable (τ_0, h, φ) avec la même somme si l'on pose

$$\tau_0(x) = \int_0^x \varphi_0(t) \, \psi_0(x-t) \, dt, \quad \int_0^\infty \psi_0(x) \, dx = 1.$$

En effet, posons

$$g(x) = \int_0^x u(t) \varphi(x-t) dt, \qquad g_1(x) = \int_0^x u_1(t) \varphi(x-t) dt,$$

$$u(x) = \sum_{n=0}^{\infty} a_{n+1} \varphi_n(x),$$
 $u_1(x) = \sum_{n=0}^{\infty} a_{n+1} \tau_n(x).$

On obtient facilement

(8)
$$u_1(x) = \int_0^x u(x-t) \psi_0(t) dt$$
, $g_1(x) = \int_0^x g(x-t) \psi_0(t) dt$.

D'après les conditions du théorème on a

$$\lim_{x\to\infty}\frac{g(x)}{\varphi(x)}=s.$$

De la formule (8) on déduit facilement

$$\lim_{x\to\infty}\frac{g_1(x)}{\varphi(x)}=s\,,$$

ce qu'il fallait démontrer.

 γ) Soit la série (1) sommable (φ_0, h, φ) avec la somme s. Alors si $\psi_0(x)$, $\psi(x)$ sont des fonctions positives telles que

$$\int_{0}^{\infty} \psi_{\eta}(x) dx = 1, \quad \lim_{x \to \infty} \frac{\psi(x+\delta)}{\psi(x)} = 1,$$

pour chaque nombre fini δ et $\psi(x)$ étant non décroissante, la série (1) sera sommable (τ_0, h, τ) avec la somme s si l'on pose

$$\tau_0(x) = \int_0^x \varphi_0(t) \, \psi_0(x-t) \, dt, \quad \tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt.$$

Posons, en effet,

$$g(x) = \int_0^x u(t) \varphi(x-t) dt, \quad u(x) = \sum_0^\infty a_{n+1} \varphi_n(x),$$

$$g_1(x) = \int_0^x u_1(t) \, \tau(x-t) \, dt, \quad u_1(x) = \sum_0^\infty a_{n+1} \, \tau_n(x).$$

D'après la définition on a

$$u_1(x) = \int_0^x \psi_0(x-t) u(t) dt.$$

Si nous posons

(9)
$$v(x) = \int_0^x g(t) \psi(x-t) dt,$$

nous aurons la formule

(10)
$$g_1(x) = \int_0^x v(t) \,\psi_0(x-t) \,dt.$$

En effet, nous avons

$$v(x) = \int_0^x \psi(x-t) dt \int_0^t u(h) \varphi(t-h) dh$$

$$= \int_0^x u(h) dh \int_h^x \psi(x-t) \varphi(t-h) dt$$

$$= \int_0^x u(h) dh \int_0^{x-h} \varphi(\zeta) \psi(x-h-\zeta) d\zeta = \int_0^x u(h) \tau(x-h) dh.$$

Si l'on désigne par i le second membre de (10), on a

$$i = \int_{0}^{x} \tau(h) dh \int_{h}^{x} \psi_{0}(x - t) u(t - h) dt$$
$$= \int_{0}^{x} \tau(h) u_{1}(x - h) dh = g_{1}(x)$$

et la formule (10) est démontrée.

D'après les conditions du théorème on a

$$\lim_{x\to\infty}\frac{g(x)}{\varphi(x)}=s.$$

Donc, d'après le théorème I on a

$$\lim_{x\to\infty}\frac{v(x)}{\operatorname{t}(x)}=s,$$

et de la relation (10) on conclut que

$$\lim_{x\to\infty}\frac{g_1(x)}{\tau(x)}=s\int_0^\infty \psi_0(t)\,dt=s,$$

ce qu'il fallait démontrer.

δ) S₁ une série est sommable (φ_0, h, φ) avec la somme s, et sommable (ψ_0, h, ψ) avec la somme t, on aura s = t.

Le théorème est une conséquence immédiate de la proposition γ) en prenant

$$\tau_0(x) = \int_0^x \varphi_0(t) \, \psi_0(x-t) \, dt \,, \quad \tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt \,.$$

ε) Soient $f_1(x)$, $f_2(x)$, $\varphi_1(x)$, $\varphi_2(x)$ quatre fonctions intégrables pour $x \ge 0$ et posons

$$\sigma_1(x) = \int_0^x f_1(t) \, \varphi_1(x-t) \, dt, \quad \sigma_2(x) = \int_0^x f_2(t) \, \varphi_2(x-t) \, dt,$$

$$f_0(x) = \int_0^x f_1(t) f_2(x-t) dt, \quad \varphi_0(x) = \int_0^x \varphi_1(t) \varphi_2(x-t) dt.$$

$$\sigma_0(x) = \int_0^x f_0(t) \, \varphi_0(x-t) \, dt,$$

alors on a

(11)
$$\sigma_0(x) = \int_0^x \sigma_1(t) \, \sigma_2(x-t) \, dt.$$

Nous avons

$$\sigma_0(x) = \int_0^x \varphi_0(x-\alpha) d\alpha \int_0^\alpha f_1(\alpha-\beta) f_2(\beta) d\beta$$

$$= \iint f_1(\alpha-\beta) f_2(\beta) \varphi_0(x-\alpha) d\alpha d\beta,$$

l'intégrale étant étendue au triangle Δ ; (0, 0), (x, 0), (x, x).

Désignons par D(x) le second membre de (11). Nous avons

$$D(x) = \int_0^x dy \int_0^y f_1(u) \varphi_1(y-u) du \int_0^{x-y} f_2(v) \varphi_2(x-y-v) dv$$

=
$$\iiint f_1(u) \varphi_1(y-u) f_2(v) \varphi_2(x-y-v) dy du dv,$$

l'intégrale étant étendue à la région

$$0 \le v \le x - y$$
, $0 \le u \le y$, $0 \le y \le x$.

Intégrons d'abord par rapport à y, en laissant u et v fixes, c'est à-dire dans l'intervalle $u \le y \le x - v$; on a

$$D(x) = \iint f_1(u) f_2(v) du dv \int_u^{x-v} \varphi_1(y-u) \varphi_2(x-y-v) dy.$$

En faisant le changement de variable y = u + t, on obtient

$$\int_{u}^{x-v} \varphi_{1}(y-u) \varphi_{2}(x-y-v) dy$$

$$= \int_{0}^{x-v-u} \varphi_{1}(t) \varphi_{2}(x-v-u-t) dt = \varphi_{0}(x-v-u).$$

Si l'on fait alors la transformation

$$u = \alpha - \beta$$
, $v = \beta$,

on déduit de (12) que $D(x) = \sigma_0(x)$, ce qu'il fallait démontrer.

4. XIV. Soit la série

$$u_0 + u_1 + u_2 + \cdots$$

sommable (φ_0, h, φ) avec la somme s, et la série

$$v_0 + v_1 + v_2 + \cdots$$

sommable (0, h, 0) avec la somme t. Alors la série produit de Cauchy

(15) $w_0 + w_1 + w_2 + \cdots$, $w_n = u_0 v_1 + u_1 v_{n-1} + \cdots + u_n v_0$, est sommable (τ_0, h, τ) avec la somme st, si

$$\tau_0(x) = \int_0^x \varphi_0(t) \, \psi_0(x-t) \, dt \,, \quad \tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt \,.$$

Nous démontrerons le théorème dans le cas $u_0 = v_0 = 0$.

$$u(x) = \sum_{0}^{\infty} u_{n+1} \varphi_n(x), \quad v(x) = \sum_{0}^{\infty} v_{n+1} \psi_n(x), \quad w(x) = \sum_{0}^{\infty} w_{n+1} \tau_n(x)$$

(16)
$$m(x) = \int_{0}^{x} u(t) \, v(x-t) \, dt \,,$$

alors on a

(17)
$$w(x) = \int_{0}^{x} m(\tau) h(x - \tau) d\tau.$$

En effet, nous avons

(19)
$$m(x) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n+1} v_{m+1} \int_{0}^{x} \varphi_{n}(t) \, \psi_{m}(x-t) \, dt \, .$$

Mais on voit facilement que pour chaque n et m on a

(19)
$$\tau_{n+m}(x) = \int_{0}^{\tau} \varphi_{n}(t) \psi_{m}(x-t) dt.$$

Cette rélation est vraie pour n=m=0, d'après les conditions du théorème. Pour n+m+1 on aura

$$\tau_{n+m+1}(x) = \int_{0}^{x} \tau_{n+m}(t) h(x-t) dt$$

$$= \int_{0}^{x} h(x-t) dt \int_{0}^{t} \varphi_{n}(\tau) \psi_{m}(t-\tau) d\tau$$

$$= \int_{0}^{x} \varphi_{n}(\tau) d\tau \int_{\tau}^{x} h(x-t) \psi_{m}(t-\tau) dt$$

$$= \int_0^x \varphi_n(\tau) d\tau \int_0^{x-\tau} h(v) \psi_m(x-\tau-v) dv$$

$$= \int_0^x \varphi_n(\tau) \psi_{m+1}(x-\tau) d\tau = \int_0^x \varphi_{n+1}(\tau) \psi_m(x-\tau) d\tau,$$

donc elle est vraie pour chaque m, n.

Alors d'après (18) on a

$$m(x) = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n+1} v_{m+1} \tau_{n+m}(x) = \sum_{\lambda=0}^{\infty} \tau_{\lambda}(x) \sum_{n=0}^{\lambda} u_{n+1} v_{\lambda+1-n}$$
$$= \sum_{k=0}^{\infty} w_{\lambda+2} \tau_{\lambda}(x),$$

d'où il suit

$$w(x) = \sum_{\lambda=0}^{\infty} w_{\lambda+2} \tau_{\lambda+1}(x) = \int_{0}^{x} m(\tau) h(x-\tau) d\tau,$$

et la formule (17) est démontrée.

Posons

$$g_1(x) = \int_0^x u(t) \, \varphi(x - t) \, dt \,, \qquad g_2(x) = \int_0^x v(t) \, \psi(x - t) \, dt \,,$$

$$g_0(x) = \int_0^x m(t) \, \tau(x - t) \, dt \,, \qquad G(x) = \int_0^x w(t) \, \tau(x - t) \, dt \,,$$

alors d'après la proposition ε) nous avons

$$g_0(x) = \int_0^x g_1(t) g_2(x-t) dt.$$

Puisque d'après les conditions du théorème on a

$$\lim_{x\to\infty}\frac{g_1(x)}{\varphi(x)}=s\,,\quad \lim_{x\to\infty}\frac{g_2(x)}{\psi(x)}=t\,,$$

on obtient, en vertu de théorème I,

$$\lim_{x\to\infty}\frac{g_0(x)}{\tau(x)}=st.$$

On peut facilement démontrer la formule

(20)
$$G(x) = \int_{0}^{x} g_{0}(t) h(x-t) dt.$$

En effet, le second membre de cette formule est égal à

$$\int_{0}^{x} h(x-t) dt \int_{0}^{t} \tau(u) m(t-u) du = \int_{0}^{x} \tau(u) du \int_{u}^{x} h(x-t) m(t-u) dt$$

$$= \int_{0}^{x} \tau(u) du \int_{0}^{x-u} m(v) h(x-u-v) dv = \int_{0}^{x} \tau(u) w(x-u) du.$$

Alors de $\lim_{x \to \infty} \frac{g_0(x)}{\tau(x)} = st$ il suit que

$$\lim_{x\to\infty}\frac{1}{\tau(x)}\int_0^x g_0(x-t)h(t)\,dt = \lim_{x\to\infty}\frac{G(x)}{\tau(x)} = st\int_0^\infty h(x)\,dx = st,$$

et le théorème est démontré dans le cas $u_0 = v_0 = 0$.

Le cas général s'obtient facilement. La série

(21)
$$0 + u_1 + u_2 + \cdots$$

est sommable (φ_0, h, φ) avec la somme $s - u_0$. La série

(22)
$$0 + v_1 + v_2 + \cdots$$

est sommable (ψ_0, h, ψ) avec la somme $t - v_0$. La série produit de Cauchy des séries (21) et (22)

(23)
$$w_0' + w_1' + w_2' + \cdots$$

est sommable (τ_0, h, τ) avec la somme

$$(s-u_0)(t-v_0).$$

La série (15) s'obtient à partir de la série (23) en ajoutant aux termes de celle-ci les termes des séries

(24)
$$u_0v_0 + u_0v_1 + \cdots + u_0v_n + \cdots$$

$$(25) 0+v_0u_1+\cdots+v_0u_n+\cdots$$

D'après la proposition γ) les séries (24) et (25) sont sommables (τ_0, h, τ) avec les sommes u_0t et $v(s-u_0)$. Par conséquent la série (15) sera sommable (τ_0, h, τ) avec la somme

$$(s-u_0)(t-v_0)+u_0t+v_0(s-u_0)=st$$

ce qu'il fallait démontrer.

On a le théorème suivant plus général:

5. XV. Supposons la série (13) sommable (φ_0, h, φ) avec la somme s, et la série (14) sommable (ψ_0, h, ψ) avec la somme t. Supposons qu'il existe une fonction $\tau_0(x)$ definie pour x>0, positive, intégrable et telle que

$$\int_{0}^{\tau} \tau_{0}(t) h(x-t) dt = \int_{0}^{x} \varphi_{0}(t) \psi_{0}(x-t) dt, \quad \int_{0}^{\infty} \tau_{0}(x) dx = 1,$$

Alors la série (15) sera sommable au moins par une des méthodes

$$(\varphi_0, h, \varphi), (\psi_0, h, \psi), (\tau_0, h, \tau)$$

avec la somme st, où

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt.$$

Considérons d'abord le cas $u_0 = v_0 = 0$. Posons

$$g_1(x) = \int_0^x u(x-t) \varphi(t) dt, \quad u(x) = \sum_0^\infty u_{n+1} \varphi_n(x),$$

$$g_2(x) = \int_0^x v(x-t) \psi(t) dt, \quad v(x) = \sum_0^\infty v_{n+1} \psi_n(x),$$

$$g(x) = \int_0^x w(x-t) \, \tau(t) \, dt, \quad w(x) = \sum_0^\infty w_{n+1} \tau_n(x),$$

Nous avons la relation

(26)
$$w(x) = \int_0^x u(t) v(x-t) dt.$$

En effet, d'après les conditions du théorème on obtient

$$\tau_{n+m+1}(x) = \int_0^x \varphi_n(t) \, \psi_m(x-t) \, dt \,,$$

donc

$$\int_{0}^{x} u(t) v(x-t) dt = \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n+1} v_{m+1} \int_{0}^{x} \varphi_{n}(t) \psi_{m}(x-t) dt$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} u_{n+1} v_{m+1} \tau_{n+m+1}(x)$$

$$= \sum_{\lambda=0}^{\infty} w_{\lambda+1} \tau_{\lambda}(x) = w(x).$$

D'après la proposition γ) nous avons

(27)
$$g(x) = \int_0^x g_1(t) g_2(x-t) dt.$$

Parce que

$$g_1(x) \sim s \varphi(x), \quad g_2(x) \sim t \psi(x),$$

on aura, d'après le théorème I,

$$g(x) \sim s t \tau(x)$$
,

ce qui démontre le théorème énoncé Le cas général se traite comme précédemment.

Nous avons la généralisation survante du théorème classique de Mertens:

6. XVI. Supposons la série (13) sommable (φ_0, h, φ) avec la somme s, la fonction h(x) étant non négative pour $x \ge 0$. Supposons la série (14) absolument convergente et soit t sa somme. Alors la série (15) sera sommable (φ_0, h, φ) avec la somme st.

Posons

$$g(x) = \int_0^x u(x-t) \varphi(\underline{t}) dt, \quad u(x) = \sum_0^\infty u_{n+1} \varphi_n(x),$$

$$g_1(x) = \int_0^x w(x-t) \varphi(t) dt$$
, $w(x) = \sum_0^\infty w_{n+1} \varphi_n(x)$,

et supposons d'abord que $u_0 = w_0 = 0$. Nous avons

$$w(x) = \sum_{0}^{\infty} w_{n+1} \varphi_n(x) = \sum_{n=0}^{\infty} \varphi_n(x) \sum_{\lambda=1}^{n} v_{\lambda} u_{n+1-\lambda}$$
$$= \sum_{\lambda=1}^{\infty} v_{\lambda} \sum_{n=\lambda}^{\infty} u_{n+1-\lambda} \varphi_n(x) = \sum_{\lambda=1}^{\infty} v_{\lambda} \sum_{m=0}^{\infty} u_{m+1} \varphi_{m+\lambda}(x).$$

Mais on démontre facilement que

$$\varphi_{m+\lambda}(\lambda) = \int_0^x \varphi_m(x-t) h_{\lambda-1}(t) dt,$$

où l'on pose pour $\lambda = 0$, $h_{\lambda}(x) = h(x)$ et pour $\lambda > 0$,

$$h_{\lambda}(x) = \int_{0}^{x} h_{\lambda-1}(t) h(x-t) dt.$$

Donc nous avons

$$w(x) = \sum_{\lambda=1}^{\infty} v_{\lambda} \sum_{m=0}^{\infty} u_{m+1} \int_{0}^{x} \varphi_{m}(x-t) h_{\lambda-1}(t) dt$$
$$= \sum_{\lambda=1}^{\infty} v_{\lambda} \int_{0}^{x} u(x-t) h_{\lambda-1}(t) dt.$$

Par conséquent nous obtenons pour $g_1(x)$

$$g_1(x) = \int_0^x w(t) \varphi(x-t) dt$$

$$= \int_0^x \sum_{\lambda=1}^\infty v_\lambda h_{\lambda-1}(\tau) d\tau \int_\tau^x \varphi(x-t) u(t-\tau) dt$$

$$= \int_0^x g(x-\tau) d\tau \sum_{\lambda=1}^\infty v_\lambda h_{\lambda-1}(\tau) = \int_0^x g(x-\tau) \eta(\tau) d\tau,$$

où l'on pose

$$\eta(x) = \sum_{\lambda=1}^{\infty} v_{\lambda} h_{\lambda-1}(x).$$

Comme auparavant on voit facilement que

$$\int_{0}^{\infty} h_{\lambda}(x) \, dx = 1.$$

Nous démontrerons que

$$\int_{0}^{\infty} \eta(x) \, dx = t.$$

En effet, soit $\varepsilon > 0$ un nombre arbitrairement petit et soit m ainsi choisi que

$$\sum_{\lambda=m+1}^{\infty} |v_{\lambda}| < \varepsilon$$
.

Alors on a

$$\int_{0}^{x} \eta(t) dt = \sum_{\lambda=1}^{\infty} v_{\lambda} \int_{0}^{x} h_{\lambda-1}(\tau) d\tau = \sum_{1}^{m} + \sum_{m+1}^{\infty} = i + j.$$

Si l'on fait tendre x vers l'infini, on obtient $\lim_{x\to\infty} i = \sum_{1}^{m} v_{\lambda}$, et puisque

$$|j| < \sum_{m+1}^{\infty} |v_{\lambda}| \left| \int_{0}^{x} h_{\lambda-1}(\tau) d\tau \right| < \varepsilon,$$

iil s'ensuit

$$\overline{\lim}_{x\to\infty}\bigg|\int_0^x \eta(\tau)\,d\tau-t\bigg|<2\varepsilon,$$

«c'est-à-dire

$$\int_{0}^{\infty} \eta(\tau) d\tau = t.$$

Mais d'après les conditions du théorème on a

$$\lim_{x\to\infty}\frac{g(x)}{\varphi(x)}=s.$$

En suivant une méthode déjà employée par nous (chapitre I, § 3), on déduit alors de la formule obtenue ci-dessus

$$g_1(x) = \int_0^x g(x-t) \, \eta(t) \, dt$$

que $\frac{g_1(x)}{\varphi(x)} \longrightarrow st$, et le théorème est démontré dans le cas $u_0 = v_0 = 0$. Comme dans la démonstration du théorème XIV le cas général se ramène au cas particulier $u_0 = v_0 = 0$ que nous avons considéré, en remarquant que chaqune série absolument convergente est sommable (φ_0, h, φ) , ce qui se vérifie facilement.

Chapitre III.

Applications à quelques généralisations des sommations de M. Borel et Mittag Leffler.

1. Nous allons considérer ici quelques cas particuliers de la sommation (φ_0, h, φ) . Supposons que

$$\varphi_0(x) = e^{-x}, \quad h(x) = e^{-x};$$

on obtient facilement

$$\varphi_n(x) = \frac{e^{-x} x^n}{n!}.$$

La série

$$(1) u_0 + u_1 + u_2 + \cdots$$

est sommable $(e^{-x}, e^{-x}, \varphi(x))$ avec la somme s, si la fonction

$$u(x) = e^{-x} \sum_{n=0}^{\infty} \frac{u_{n+1}x^n}{n!} \quad ...$$

est entière et l'expression

$$y = \frac{1}{\varphi(x)} \int_0^x u(x^2 - t) \, \varphi(t) \, dt$$

ltend vers la limite $s-u_0$ lorsque $x \to \infty$. Si nous intégrons par partie et posons

$$\Phi(x) = e^{-x} \sum_{0}^{\infty} \frac{s_n x^n}{n!}, \quad s_n = u_0 + u_1 + \cdots + u_n,$$

l'expression y se transforme en

$$y = u_0 + \frac{1}{\varphi(x)} \int_0^x \Phi(x-t) d\tilde{\varphi}(t),$$

où l'intégrale est prise au sens de Stieltjes. Nous désignerons la sommation $(e^{-x}, e^{-x}, \varphi)$ ainsi obtenue par la notation plus brève (B, φ) . C'est une généralisation de la sommation de M. Borel. Donc la série (1) est dite sommable (B, φ) avec la somme s, si l'expression

$$\frac{1}{\varphi(x)}\int_0^x \Phi(x-t)\,d\varphi(t) \,\,\varphi$$

tend vers la limite s lorsque $x \rightarrow \infty$. En appliquant les théorèmes I, XII, XIV, XVI à cette sommation, nous obtenons immédiatement les propositions suivantes:

a. Si la série

(2)
$$u_0 + u_1 + u_2 + \cdots$$

est sommable (B, φ) avec la somme s, la série

(3)
$$u_0 + u_0 + u_1 + u_2 + \cdots$$

sera sommable (B, φ) avec la somme s.

b. Si la série (3) est sommable (B, φ) , la série (2) sera sommable (B, φ_1) avec la même somme en prenant

$$\varphi_1(x) = \int_0^x \varphi(t) dt.$$

c. Supposons la série

$$u_0+u_1+u_2+\cdots$$

sommable (B, φ) avec la somme s, et la série

(5)
$$v_0 + v_1 + v_2 + \cdots$$

sommable (B, ψ) avec la somme t. Alors la série produit de Cauchy

$$(6) w_0 + w_1 + w_2 + \cdots, w_n = u_0 v_n + u_1 v_{n-1} + \cdots + u_n v_0,$$

est sommable (B, τ) avec la somme st en prenant

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x - t) \, dt.$$

d. Supposons la série (4) sommable (B, φ) avec la somme s et la série (5) absolument convergente avec la somme t. Alors la série (6) sera sommable (B, φ) avec la somme st.

Dans le cas particulier $\varphi(x) = x^k$, $k \ge 0$ nous obtenons tous les résultats de M. Doetsch, qui furent le point de départ de nos recherches.

Comme autre application nous considérerons une généralisation de la sommation de Mittag-Leffler, qui possède toutes les propriétés I, II, III.

Supposons que

$$\varphi_0(x) = e^{-x} \frac{x^p}{\Gamma(p+1)}, \quad h(x) = e^{-x} \frac{x^{\alpha-1}}{\Gamma(\alpha)}, \quad \alpha > 0, \quad p \ge 0,$$

alors nous avons

$$\varphi_n(x) = e^{-x} \frac{x^{\alpha n + \rho}}{\Gamma(\alpha n + \rho + 1)}, \quad u(x) = e^{-x} \sum_{n=0}^{\infty} \frac{u_{n+1} x^{\alpha n + \rho}}{\Gamma(\alpha n + \rho + 1)}.$$

Nous désignerons la sommation $\left(e^{-x}\frac{x^p}{\mathbf{F}(p+1)}, e^{-x}\frac{x^{\alpha-1}}{\mathbf{F}(\alpha)}, \varphi\right)$ plus brièvement par le symbole (E_{α}^p, φ) .

Donc la série

$$u_0 + u_1 + u_2 + \cdots$$

sera dite sommable $(E_{\alpha}^{p}, \varphi)$ avec la somme s_{i} si l'expression

$$\frac{1}{\varphi(x)}\int_{0}^{x}u(x-t)\varphi(t)dt$$

converge pour chaque x>0 et tend vers une limite $s-u_0$, lorsque $x\to\infty$.

Le théorème X nous donne alors cette proposition:

e. Si la série

(8)
$$u_0 + u_1 + u_2 + \cdots$$

est sommable $(E_{\alpha}^{p}, \varphi)$, alors la série (3) est sommable $(E_{\alpha}^{p}, \varphi)$, avec la même somme.

Appliquons le théorème XI. Soient alors

$$\varphi_0(x) = e^{-x} \frac{x^p}{\Gamma(p+1)}, \quad h(x) = e^{-x} \frac{x^{\alpha-1}}{\Gamma(\alpha)},$$

$$\psi_0(x) = e^{-x} \frac{x^q}{\Gamma(q+1)}, \quad \varphi(x) = \psi(x).$$

Si nous prenons

$$\eta(x) = e^{-x} \frac{x^{\delta-1}}{\Gamma(\delta)},$$

où $\delta = \alpha + q - p > 0$, on voit facilement que les conditions du théorème XI sont satisfaites car on a la relation

$$\int_0^x \frac{t^q}{\Gamma(q+1)} e^{-t} \frac{(x-t)^{\alpha-1}}{\Gamma(\alpha)} e^{-(x-t)} dt = \int_0^x \frac{e^{-t}t^{\delta-1}}{\Gamma(\delta)} \frac{(x-t)^p}{\Gamma(p+1)} e^{-(x-t)} dt.$$

Par conséquent nous avons la proposition suivante:

f. Si la série (2) est sommable $(E_{\alpha}^{p}, \varphi)$, la série (3) sera sommable $(E_{\alpha}^{q}, \varphi)$ avec la même somme pour chaque $q > p - \alpha$.

Comme consequence de la proposition γ) nous obtenons le

résultat :

g. Si une série est sommable $(E_{\alpha}^{p}, \varphi)$, elle sera aussi sommable $(E_{\alpha}^{p_{1}}, \varphi)$ avec la même somme pour chaque $p_{1} > p$.

Le théorème XII nous donne:

h. Si la série (3) est sommable $(E_{\alpha}^{p}, \varphi)$, la série (2) sera sommable $(E_{\alpha}^{\alpha+p}, \varphi_{1})$ avec la même somme en prenant

$$\varphi_1(x) = \int_0^x \varphi(t) dt.$$

Nous avons les théorèmes suivants pour la multiplication des séries:

i. Supposons la série

(9)
$$u_0 + u_1 + u_2 + \cdots$$

sommable $(E_{\alpha}^{p}, \varphi)$ avec la somme s, et la série

(10)
$$v_0 + v_1 + v_2 + \cdots$$

sommable $(E_{\alpha}^{p_1}, \psi)$ avec la somme t. Alors la série produit $\hat{\mathbf{d}}$ e Cauchy

(11) $w_0+w_1+w_2+\cdots+w_n=u_0v_n+u_1v_{n-1}+\cdots+u_nv_0$, est sommable $(E_{\alpha}^{p+p_1+1}, \tau)$ avec la somme st en prenant

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt.$$

Le théorème énoncé s'obtient en appliquant le théorème XIV. Dans ce cas particulier on a

$$\varphi_0(x) = e^{-x} \frac{x^p}{\Gamma(p+1)}, \quad \psi_0(x) = e^{-x} \frac{x^{p_1}}{\Gamma(p_1+1)}, \quad \tau_0(x) = e^{-x} \frac{x^{p+p_1+1}}{\Gamma(p+p_1+2)}.$$

j. Supposons la série (9) sommable $(E_{\alpha}^{p}, \varphi)$ avec la somme s, la série (10) sommable (E_{α}^{q}, ψ) avec la somme t. Alors la série (11) sera sommable (E_{α}^{s}, τ) avec la somme st, si

$$\tau(x) = \int_{0}^{x} \varphi(t) \, \psi(x-t) \, dt$$
, $g = \max(p, q, p+q-\alpha+1)$.

La proposition s'obtient en appliquant le théorème XV.

Nous démontrerons maintenant un théorème relatif à la comparaison de deux procédés $(E_{\alpha}^{p}, \varphi)$ et (E_{α}^{p}, ψ) .

Soit $\varphi(x)$ une fonction positive, non décroissante pour x > 0, $\lim_{x \to \infty} \varphi(x) = 1$ et admettant une dérivée telle que la fon ction analytique

$$L(\varphi') = \Phi_1(s) = \int_0^\infty e^{-st} \, \varphi'(t) \, dt$$

soit holomorphe pour $\mathbf{R}(s) > -\alpha$, $\alpha > 0$ dans chaque domaine fini. Soit encore $\psi(x)$ une fonction dérivable, non décroissante, telle que $\psi(x) \to \infty$ si $x \to \infty$,

$$\lim_{x\to\infty}\frac{\psi(x+\delta)}{\psi(x)}=1$$

pour chaque nombre fini 3, et posons

$$\psi_1(s) = \int_0^\infty e^{-st} \, \psi'(t) \, dt.$$

k. Supposons que la série (1) soit sommable $(E_{\alpha}{}^{p}, \varphi)$ avec la somme s, que $\lim_{s\to\infty}\frac{\Psi_{1}(s)}{\Phi_{1}(s)}=\lambda$ existe et que la fonction $\Psi_{1}(s)$ — λ satisfasse aux conditions d'inversion, données dans la partie I, § 3. Alors la série (1) sera sommable $(E_{\alpha}{}^{p}, \psi)$ avec la même somme.

Posons

$$g(x) = \int_0^x u(x-t) \varphi(t) dt, \quad g_1(x) = \int_0^x u(x-t) \psi(t) dt,$$

'd'où

$$g(x) = \int_0^x v(x-t) \varphi'(t) dt$$
, $g_1(x) = \int_0^x v(x-t) \psi'(t) dt$,

où v'(x) = u(x). En appliquant la transformation de Laplace, nous avons

(12)
$$L(g) = L(v) \Phi_1(s), \quad L(g_1) = L(v) \Psi_1(s),$$
$$L(g_1) = L(g) \left[\frac{\Phi_1(s)}{\Psi_1(s)} - \lambda \right] + \lambda L(g).$$

D'après les conditions du théorème il existe une fonction $\eta(x)$ définie pour x>0 et telle que

$$\frac{\Psi_1(s)}{\Phi_1(s)} - \lambda = L(\eta(x)).$$

Alors de la relation (12) nous avons

$$g_1(x) = \frac{1}{2}g(x) + \int_0^x g(x-t) \, \eta(t) \, dt.$$

Comme la fonction $\Phi_1(s)$ est holomorphe pour s=0 et $A_1(s)$

$$\Phi_{1}(0) = \int_{0}^{\infty} \varphi(x) dx = 1,$$

en appliquant le lemme β), § 3 (chapitre I), nous obtenons

$$\eta(x) = \psi'(x) + o(\psi'(x)).$$

Alors, puisque $\lim_{x\to\infty} \frac{g(x)}{\varphi(x)} = s$, de (13) on déduit facilement.

$$\lim_{x\to\infty}\frac{g_1(x)}{\psi(x)}=\lim_{x\to\infty}\frac{1}{\psi(x)}\int_0^x g(x-t)\,\eta(t)\,dt=s,$$

et le théorème est démontré.

Nous donnerons une application de ce théorème à la comparaison des méthodes de sommation de MM. Doetsch et Knopp. D'après M. Doetsch la série

$$u_0+u_1+u_2+\cdots$$

est sommable (B, k) si la fonction

$$\Phi(x) = e^{-\lambda} \sum_{n=0}^{\infty} \frac{s_n x^n}{n!}$$

est entière et l'expression

$$k x^{-k} \int_{0}^{x} \Phi(x-t) t^{k-1} dt$$

tend vers une limite lorsque $x \to \infty$. D'après M. Knopp la série $\sum_{n=0}^{\infty} u_n$ est sommable B_k si la série

$$f_k(x) = e^{-x} \sum_{0}^{\infty} \frac{s_n x^{n+k}}{\Gamma(n+k+1)}$$

converge pour chaque x et $f_k(x)$ tend vers une limite s lorsque $\alpha \to \infty$. Pour k > 0 nous avons

$$f_k(x) = \frac{1}{\Gamma(k)} \int_0^x \Phi(x-t) e^{-t} t^{k-1} dt.$$

Donc la sommation B_k est une sommation (B, φ) avec

$$\varphi(x) = \frac{1}{\Gamma(k)} \int_0^x e^{-t} t^{k-1} dt,$$

et la sommation (B, k) est la sommation (B, ψ) avec $\psi(x) = x^k$ Comme

$$\lim_{x\to\infty} \varphi(x) = 1, \quad L(\varphi') = \Phi_1(s) = \frac{1}{\Gamma(k)} \int_0^\infty e^{-(s+1)x} x^{k-1} dx = \frac{1}{(s+1)^k},$$

$$L(\psi') = k \int_{s}^{\infty} e^{-st} t^{k-1} dt = \frac{\Gamma(k+1)}{s^k} = \Psi_1(s),$$

la fonction $\frac{\Phi_1(s)}{\Psi_1(s)} - \Gamma(k+1)$ satisfait aux conditions d'inversion. Nous avons, comme application, le théorème suivant: 1)

l Sı la série $\sum_{0}^{\infty} u_{\tau}$ est sommable B_{k} , k > 0, elle est aussi

sommable (B, k) avec la même somme.

Neus avons encore le théorème:

¹⁾ Voir N. Obrechkoff — Journal fur de reine und angew. Mathematik, t. 166 (1932), p. 208-219.

m. Supposons la série $\sum_{0}^{\infty} u_n$ sommable $(E_{\alpha}^{p}, \varphi)$ et soit

 $p_1 < p$, $\delta = p - p_1$. La série $\sum_{0}^{\infty} u_n$ sera sommable $(E_{\alpha}^{p_1}, \varphi_1)$ avéc

la même somme, si l'on pose

$$\varphi_1(x) = \frac{1}{\Gamma(\delta)} \int_0^x \varphi(\tau) (x - \tau)^{\delta - 1} d\tau.$$

En effet, posons

$$g(x) = \int_{0}^{x} u(x-t) \varphi(t) dt, \qquad g_{1}(x) = \int_{0}^{x} u_{1}(x-t) \varphi_{1}(t) dt,$$

$$u(x) = e^{-x} \sum_{0}^{\infty} \frac{u_{n+1} x^{\alpha n+p}}{\Gamma(\alpha n+p+1)}, \quad u_{1}(x) = e^{-x} \sum_{0}^{\infty} \frac{u_{n+1} x^{\alpha n+p_{1}}}{\Gamma(\alpha n+p_{1}+1)};$$

$$L(u) = \sum_{0}^{\infty} \frac{u_{n+1}}{(s+1)^{\alpha n+p+1}}, \qquad L(u_{1}) = \sum_{0}^{\infty} \frac{u_{n+1}}{(s+1)^{\alpha n+p_{1}+1}},$$

$$\frac{L(u_{1})}{L(u)} = (s+1)^{\delta}, \qquad L(\varphi_{1}) = \frac{L(\varphi)}{s^{\delta}},$$

$$L(g) = L(u) L(\varphi), \qquad L(g_{1}) = L(u_{1}) L(\varphi_{1}),$$

(14)
$$L(g_1) = L(g) \frac{L(\varphi_1)}{L(\varphi)} \cdot \frac{L(u_1)}{L(u)} = L(g) \left(\frac{s+1}{s}\right)^{\delta} = L(g) + L(g) \left[\frac{(s+1)^{\delta}}{s^{\delta}} - 1\right]$$

La fonction

$$\left(\frac{s+1}{s}\right)^{\delta}-1$$

satisfait aux conditions d'inversion du chapitre I (§ 3); donc il existe une fonction $\eta(x)$ définie pour x>0 et telle que

$$\left(\frac{s+1}{s}\right)^{\delta}-1=L(\eta).$$

D'après la formule (14) on obtient alors la relation

(15)
$$g_1(x) = g(x) + \int_0^x g(t) \, \eta(x-t) \, dt$$
.

En appliquant le lemme β), § 3 (chapitre I), on obtient fa-cilement

$$\eta(x) = \frac{x^{\delta-1}}{\Gamma(\delta)} + o(x^{\delta-1}), \quad x \to \infty.$$

Puisque $\eta(\alpha) \propto \frac{x^{2-1}}{\Gamma(5)}$, $g(x) \propto s\varphi(x)$, on aura d'après le théorème I

$$\int_{0}^{\alpha} g(t) \, \eta(x-t) \, dt \sim \frac{s}{\Gamma(\delta)} \int_{0}^{x} \varphi(t) (x-t)^{\delta-1} \, dt = s \varphi_1(x).$$

Mais il est facile de démontrer que

$$\frac{\varphi_1(x)}{\varphi(x)} \longrightarrow \infty.$$

En effet, soit a un nombre fixe. Nous avons

$$\varphi_1(x) = \frac{1}{\Gamma(\delta)} \int_0^x \varphi(t) (x-t)^{\delta-1} dt > \frac{1}{\Gamma(\delta)} \int_{x-a}^x \varphi(t) (x-t)^{\delta-1} dt$$

$$\cdot (16) > \frac{\varphi(x-a)}{\Gamma(\delta)} \int_{x-a}^{x} (x-t)^{\delta-1} dt = \frac{\varphi(x-a)}{\Gamma(\delta+1)} a^{\delta}, \lim_{x \to \infty} \frac{\varphi_1(x)}{\varphi(x)} \ge \frac{a^{\delta}}{\Gamma(\delta+1)} \cdot$$

Si l'on prend a assez grand, le second membre de la formule (16) peut devenir aussi grand que l'on veut, c'est à-dire

$$\lim_{x\to\infty}\frac{\varphi_1(x)}{\varphi(x)}=\infty.$$

Divisons alors les deux membres de la formule (15) par $\varphi_1(x)$ et faisons tendre x vers l'infini. On obtient

$$\lim_{x\to\infty}\frac{g_1(x)}{\varphi_1(x)}=s.$$

et le théorème est démontré.

3. Nous déterminerons maintenant la région exacte de la sommabilité de la série de Taylor d'une fonction analytique.

Soit f(z) une fonction analytique, holomorphe pour z=0 fet donnée par sa série de Taylor

(17)
$$f(z) = a_0 + a_1 z + a_2 z^2 + \cdots$$

Dans la méthode de Mittag Leffler, ou l'on considére la onction entière

$$E_{\alpha}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(\alpha n+1)}, \quad \alpha > 0,$$

on sait que la série (17) est sommable dans une région $M_{\alpha_{\underline{\omega}}}$ ainsi définie:

Soit G_{α} la région $z = re^{i\varphi}$,

$$\begin{vmatrix}
-\frac{\pi}{2} \alpha \leq \varphi \leq \frac{\pi}{2} \alpha, & r \leq \left(\cos\frac{\varphi}{\alpha}\right)^{-\alpha} \\
\frac{\pi}{2} \alpha < \varphi < 2\pi - \frac{\pi}{2} \alpha, & r < \infty
\end{vmatrix} \quad 0 < \alpha < 2$$

$$0 \leq \varphi < 2\pi, \quad r \leq \left(\cos\frac{\varphi}{\alpha}\right)^{-\alpha} \quad \alpha \geq 2.$$

Alors M_{α} est la région commune de toutes les régions ζG_{α} , où ζ parcourt les affixes de tous les points singuliers de la fonction f(z). La série (17) n'est pas sommable par cette méthode en dehors du domaine M_{α} .

Nous étudierons la sommabilité $(E_{\alpha}^{p}, \varphi)$ de la série (17) en déterminant la région exacte de sommabilité. Nous avons le théorème suivant:

XVIII. Supposons que la fonction $\varphi(x)$ satisfait aux conditions d'inversion, données dans le Chapitre I. Alors le domaine de sommabilité est la région M_{Z} de Mittag Leffler.

La démonstration du théorème est basée sur deux propositions :

$$\alpha$$
. Désignons par Γ_{α} la courbe $t=\rho e^{i\varphi}$, $\rho=\left(\cos\frac{\varphi}{\alpha}\right)^{\alpha}$, $|\varphi|\leq \alpha\frac{\pi}{2}$, $0<\alpha\leq 2$, et $0\leq \varphi<2\pi$ pour $\alpha>2$. Soit z un point arbitraire mais tel que sur la courbe $z\Gamma_{\alpha}$ et à l'intérieur de cette courbe la fonction $f(z)$ soit holomorphe. Alors la série (17) est sommable $(E_{\alpha}{}^{p},\ \varphi)$ pour z avec la somme $f(z)$.

On peut supposer que z=1. Définissons g(x) par

$$g(x) = \int_0^x \varphi(x-t) \, u(t) \, dt, \quad u(x) = e^{-x} \sum_{n=0}^\infty \frac{a_{n+1} \, x^{\alpha n+p}}{\Gamma(\alpha n+p+1)}.$$

En appliquant la transformation de Laplace, nous avons

$$L(g) = \Phi(s) \sum_{n=1}^{\infty} \frac{a_{n+1}}{(s+1)^{n+p+1}}, \quad \Phi(s) = L(\varphi).$$

D'après le théorème de Cauchy nous avons

$$a_n = \frac{1}{2\pi i} \int_C \frac{f(\zeta)}{\zeta^{n+1}} d\zeta.$$

Donc on a

$$L(\mathbf{g}) = \frac{\Phi(s)}{2\pi i} \int_{\mathcal{C}} \frac{f(\zeta)}{\zeta^s} \cdot \frac{1}{(s+1)^{p+1}} \sum_{0}^{\infty} \frac{1}{[\zeta(s+1)^n]^n} d\zeta.$$

La série

$$\sum_{0}^{\infty} \frac{1}{\left[\zeta(s+1)^{\alpha}\right]^{n}}$$

est absolument convergente pour $|\zeta(s+1)^{\alpha}| > q > 1$, ce qui est satisfait pour |s| assez grand. Nous avons alors

$$L(g) = \frac{\Phi(s)}{2\pi i (s+1)^{p+1}} \int_{c}^{c} \frac{f(\zeta)}{\zeta^{2}} \cdot \frac{d\zeta}{1 - \frac{1}{\zeta(s+1)^{\alpha}}} = \Phi(s) \Psi(s).$$

Supposons que le contour simple C comprend dans son intérieur la courbe Γ_{α} , et soit C choisi de manière que sur C et dans C la fonction f(z) soit holomorphe, ce qui est toujours possible d'après les conditions du théorème. Il est facile de voir que sur C on a

$$\mathbf{R}\frac{1}{\zeta^{\beta}} < 1 - \delta, \ \beta = \frac{1}{\alpha},$$

où $\delta > 0$ est un nombre fixe. Donc pour $\mathbf{R}(s) > -\delta$ la fonction $\Psi(s)$ est holomorphe dans chaque domaine fini et la fonction $\Phi(s)\Psi(s)$ satisfait aux conditions d'inversion. En applicant le lemme β), \S 3, chapitre I, on obtient

$$g(x) = \varphi(x)\Psi(0) + o(\varphi(x)).$$

Mais

$$\psi(0) = \frac{1}{2\pi i} \int_{C} \frac{f(\zeta)}{\zeta^{2}} \frac{d\zeta}{1 - \frac{1}{\zeta}} = \frac{1}{2\pi i} \int_{C} \frac{f(\zeta) d\zeta}{\zeta - 1} - \frac{1}{2\pi i} \int_{C} \frac{f(\zeta)}{\zeta} d\zeta$$
$$= f(1) - a_{0}.$$

Donc d'après (18) la série (17) est sommable $(E_{\alpha}^{p}, \varphi)$ pour z = 1 avec la somme f(1).

 β . Supposons que la série (17) est sommable $(E_{\alpha}{}^{p}, \varphi)$ pour une valeur z_{0} de z. Alors la série (17) sera sommable $(E_{\alpha}{}^{p}, \varphi)$ sur le segment OM si l'on désigne par O le point z=0 et par M le point $z=z_{0}$. De plus la somme de cette série sur OM est une fonction analytique qui n'a pas de points singuliers dans la courbe $z\Gamma_{\alpha}$.

On peut naturellement supposer que z=1. Posons alors

$$g(x) = \int_0^x \varphi(x-t) u(t) dt, \quad u(x) = e^{-x} \sum_0^\infty \frac{a_{n+1} x^{\alpha n+p}}{\Gamma(\alpha n+p+1)},$$

$$\lim_{x \to \infty} \frac{g(x)}{\varphi(x)} = s,$$

$$g_{1}(x) = \int_{0}^{x} \varphi(x-t) u_{p}(t) dt, \ u_{p}(x) = e^{-x} \sum_{0}^{\infty} \frac{a_{n+1} \varphi^{n+1} x^{\alpha n+p}}{\Gamma(\alpha n+p+1)},$$

$$0 < \rho < 1.$$

En appliquant la transformation de Laplace, on obtient

(19)
$$G(s) = \Phi(s) U(s), \quad G_1(s) = \Phi(s) U_1(s)$$

où l'on pose

$$G(s) = L(g)$$
, $G_1(s) = L(g_1)$, $U(s) = L(u)$, $U_1(s) = L_1(u_1)$.
Puisque

$$u_{\rho}(x) = \rho^{1-p\beta} u(\rho^{\beta x}) e^{(\rho\beta-1)x}, \quad \beta = \frac{1}{\alpha}$$

on aura

$$U_1(s) = \int_0^\infty e^{-sx} u_{\rho}(x) dx = \rho^{1-p\beta} \int_0^\infty e^{-sx + (\rho^3 - 1)x} u(\rho^{\beta x}) dx.$$

Si l'on fait le changement de variable $\rho^{\beta}x = t$, on obtient

(20)
$$U_1(s) = \rho^{1-\rho\beta-\beta} U\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right).$$

Des relations (19), (20) nous déduisons

$$G(s) = \Phi(s) U(s), \quad G_1(s) = \Phi(s) \rho^{1-\rho} -3 U\left(\frac{s+1-\rho}{\rho}\right).$$

et, en écrivant

$$G\left(\frac{s+1-\rho^3}{\rho^3}\right) = \Phi\left(\frac{s+1-\rho^3}{\rho^3}\right) U\left(\frac{s+1-\rho^3}{\rho^3}\right),$$

nous obtenons

$$G_1(s) = \rho^{\lambda} \frac{\Phi(s)}{\Phi\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right)} G\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right), \quad \lambda = 1 - p\beta - \beta,$$

(21)
$$G_1(s) = \rho^{\lambda} G\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right) + \rho^{\lambda} G\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right) \frac{\Phi(s) - \Phi\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right)}{\Phi\left(\frac{s+1-\rho^{\beta}}{\rho^{\beta}}\right)}.$$

Posons $1 - \rho^{\beta} = \delta$

$$\frac{\Phi(s) - \Phi\left(\frac{s+\delta}{1-\delta}\right)}{\Phi\left(\frac{s+\delta}{1-\delta}\right)} = u(s) = L(h), \quad G\left(\frac{s+\delta}{1-\delta}\right) = L(\psi),$$

c'est-à-dire

$$G\left(\frac{s+\delta}{1-\delta}\right) = \int_{0}^{\infty} e^{-sx} \, \psi(x) \, dx.$$

En posant $\frac{s+\delta}{1-\delta} = z$, on obtient

$$G(z) = \int_{0}^{\infty} e^{\delta x - \rho^{\beta} z x} \, \psi(x) \, dx,$$

d'où il suit par, la transformation $e^{\beta}x = y$,

$$G(z) = \int_{0}^{\infty} e^{\frac{\delta y}{1-\delta} - yz} \psi\left(\frac{y}{1-\delta}\right) \frac{dy}{1-\delta}.$$

Cette relation nous montre que

$$g(x) = e^{\frac{\delta x}{1-\delta}} \psi\left(\frac{x}{1-\delta}\right) \frac{1}{1-\delta},$$

$$\psi(x) = e^{\beta} e^{-\delta x} g(e^{\beta x}).$$

c'est-à-dire

(22)
$$\psi(x) = \rho^{\beta} e^{-\delta x} g(\rho^{\beta x}).$$

De la formule (21) on déduit

(23)
$$g_{1}(x) = \rho^{\lambda} \psi(x) + \rho^{\lambda} \int_{0}^{x} h(x-t) \psi(t) dt$$
$$= \rho^{\lambda+\beta} e^{-\delta x} g(\rho^{\beta} x) + \rho^{\lambda+\beta} \int_{0}^{x} h(x-t) e^{-\delta t} g(\rho^{\beta} t) dt.$$

Puisque $\rho < 1$, $\delta > 0$, $g(x) = O(\varphi(x))$, l'intégrale

$$\int_{0}^{\infty} e^{-\delta t} g(\rho^{\beta} t) dt$$

est absolument convergente. En appliquant le lemme α), § 3, chapitre I, on obtient la formule asymptotique

(24)
$$h(x) = \frac{\varphi(x)}{\Phi\left(\frac{\delta}{1-\delta}\right)} + o(\varphi(x)).$$

D'après les conditions du théorème l'expession $\frac{g(x)}{\varphi(x)}$ tend vers la limite s lorsque $x \longrightarrow \infty$. Donc l'expression

$$\frac{e^{-\delta x}g(\rho^{\beta}x)}{\varphi(x)} = \frac{e^{-\delta x}g(\rho^{\beta}x)}{\varphi(\rho^{\beta}x)} \cdot \frac{\varphi(\rho^{\beta}x)}{\varphi(x)}, \quad \frac{\varphi(\rho^{\beta}x)}{\varphi(x)} \leq 1,$$

tend vers zéro lorsque $x \rightarrow \infty$. Alors en se basant sur la formule (24), on déduit facilement de la relation (23)

$$\lim_{x\to\infty}\frac{g_1(x)}{\varphi(x)}=\frac{\rho^{\lambda+\beta}}{\Phi\left(\frac{\delta}{1-\delta}\right)}\int_0^\infty e^{-\delta t}g(\rho^{\beta}t)\,dt=i(\rho).$$

Donc la série (17) est sommable $(E_{\alpha}^{p}, \varphi)$ pour $z = \rho$ avec la somme $i(\rho)$.

Si l'on pose dans $i(\rho)$, $\rho^{\beta}t = x$, on obtient

$$i(\rho) = \frac{\rho^{\lambda}}{\Phi\left(\frac{\delta}{1-\delta}\right)} \int_{0}^{\infty} e^{-\frac{\delta}{1-\delta}x} g(x) dx.$$

Si z est un point arbitraire à l'intérieur de Γ_{α} , on a $R(z^{-\beta}-1)>0$, l'intégrale

$$F(z) = \frac{z^{\lambda}}{\Phi(z^{-\beta}-1)} \int_{0}^{\infty} e^{-(z^{-\beta}-1)x} g(x) dx$$

est donc absolument convergente et représente une fonction holomorphe dans Γ_{α} . Cette fonction est le prolongement analytique de la fonction $i(\rho)$ définie pour $0 < \rho < 1$.

Alors en suivant une marche connue, on déduit facilement les propositions α) et β) du théorème énoncé.

4. Nous démontrerons ici que dans des cas assez généraux la sommation $(E_{\alpha}{}^{p}, \varphi)$ permet de sommer la série de Taylor (17) sur le contour du domaine de sommabilité. Comme exemple simple nous considérons la sommabilité $(E_{\alpha}{}^{p}, x^{k})$ que nous désignerons ainsi $E_{\alpha,k}{}^{p}$ Nous dirons qu'un point singulier $\alpha = re^{i\varphi}$ de la fonction f(z) satisfait à la condition C_{k} , $k \ge 0$, si autour de a, dans un espace angulaire

$$\varphi + \delta \leq \arg(z - a) \leq \varphi + 2\tau - \delta_1, \quad 0 < \delta < \frac{\pi}{2}, \quad 0 < \delta_1 < \frac{\pi}{2},$$

$$\rho = |z - a| < r_1,$$

la fonction f(z) est holomorphe à l'exception de a et si l'expression $(z-a)^{k+1}f(z)$ tend uniformément vers zéro lorsque $z \rightarrow a$. Nous démontrons le théorème suivant:

XIX. Soit Z un point régulier de la fonction f(z) qui se trouve sur le contour du domaine M_{α} , tel que la courbe $z\Gamma_{\alpha}$ passe seulement par un point singulier $a=re^{i\varphi}$ satisfaisant à la condition C_k . Alors la série (17) sera sommable $E_{\alpha \cdot k}{}^p$ pour z avec la somme f(z).

Par une transformation linéaire on peut supposer que z=1. On sait alors que sur la courbe Γ_{α} il n'y a pas d'autres points singuliers que le point a. Soit Γ une courbe fermée, simple, qui contient la courbe Γ_{α} . Soit encore E un contour simple et fermé, qui contient les points z=0 et z=1 et dans lequel et sur lequel la fonction f(z) est holomorphe. E se compose des segments E_1 , E_2 , E_3 autour de a et de D, définis ainsi:

 E_1 est donné par $z-a=\rho e^{i\psi}$, $\psi=\varphi+\delta$, $0< y\leq \rho\leq d$ $a+de^{i(\varphi+\delta)}$ étant un point de Γ ;

$$E_2$$
 - par $\rho = y$, $\delta \le \psi - \varphi \le 2\pi - \delta_1$;

 E_3 — par $y \le \rho \le d_1$, $\psi = \varphi - \delta_1$, $a + de^{i(\varphi - \delta_1)}$ étant un point de Γ . La partie D est un arc de Γ tel que $\varphi + \delta \le \psi \le 2\pi + \varphi - \delta_1$.

Soit U un autre contour, défini ainsi:

$$z = \rho e^{i\varphi}, \text{ pour } - (1+\varepsilon)\frac{\pi}{2} \leq \varphi \leq (1+\varepsilon)\frac{\pi}{2}, \quad \rho = r = \text{const.};$$

$$\text{pour } \varphi = -(1+\varepsilon)\frac{\pi}{2}, \text{ ou } \varphi = (1+\varepsilon)\frac{\pi}{2}, \text{ on a } 0 \leq \rho \leq r, \varepsilon > 0$$

étant un nombre arbitrairement petit. D'après la formule classique de Hankel on a

(25)
$$\frac{1}{\Gamma(\gamma+1)} = \frac{1}{2\pi i} \int_{U} e^{\frac{1}{x}} x^{\gamma} \frac{dx}{x}.$$

Soit x>0 et r ainsi choisi que r^2x^2 soit plus petit que le rayon de convergence de la série (17) Alors, en appliquant la formule (25) à la fonction

$$u(x) = e^{-x} \sum_{0}^{\infty} \frac{\alpha^{\alpha n}}{\Gamma(\alpha n + 1)},$$

on obtient

$$u(x) = \frac{e^{-x}}{2\pi i} \int_{U} e^{\frac{1}{v}} F(x^{2}v^{2}) \frac{dv}{v},$$

où l'on a posé

$$F(z) = \sum_{0}^{\infty} a_{n+1} z^{n} = \frac{f(z) - a_{0}}{z}$$

Pour simplifier la démonstration on peut supposer que $a_0 = 0$. En faisant le changement de variable $x^{\alpha}v^{\alpha} = \tau$ nous avons

$$u(x) = \frac{e^{-x}}{2\pi i} \int_{U_{\alpha}} e^{\frac{x}{\tau^{\beta}}} F(\tau) \frac{d\tau}{\tau},$$

où U_{α} désigne le contour d'intégration transformé. Nous choisissons le contour E de telle façon que les segments de U_{α} autour de z=0 appartiennent à E. Alors d'après le théorème de Cauchy on ${\bf a}$

$$u(x) = \frac{e^{-x}}{2\pi^{1/2}} \int_{F} e^{\frac{x}{\tau^{\beta}}} F(\tau) \frac{d\tau}{\tau}.$$

Si nous désignons par g(x) l'expression

$$g(x) = \int_0^x (x-t)^k u(t) dt,$$

nous aurons

$$g(x) = \frac{1}{2\pi i\alpha} \int_{F} \frac{F(z)}{z} dz \int_{0}^{x} (x-t)^{k} e^{t\lambda} dt, \quad \lambda = z^{-\beta} - 1.$$

En changeant l'ordre d'intégration, on obtient

(26)
$$g(x) = -\frac{1}{2\pi i\alpha} \int_{E}^{F(z)} \frac{x^{k}}{z} dz + \frac{1}{2\pi i\alpha} \int_{E}^{F(z)} \frac{f(z)}{z\lambda} h(x) dz$$
$$= f(1)x^{k} + \frac{1}{2\pi i\alpha} i,$$
$$h(x) = k \int_{0}^{x} (x - t)^{k-1} e^{t\lambda} dt,$$

puisque le résidu de la fonction $\lambda = z^{-\beta} - 1$ pour z = 1 est égal $\lambda = \alpha$.

Nous allons démontrer que $\lim_{x\to\infty} x^{-k}i = 0$.

On peut facilement démontrer les inégalités suivantes: Si z est sur E_2 , il existe une constante finie K telle que

(28)
$$\mathbf{R}(z^{-\beta}-1) < K\rho, \ \rho = |z-a|.$$

Si z est sur E_1 ou sur E_3 , il existe une constante s > 0 telle que

(29)
$$\mathbf{R}(z^{-\beta}-1) < -s\rho.$$

Soient alors i', i'' les intégrales de la fonction $\frac{f(z)}{z^2 \lambda} h(x)$ suivant les contours $E' = E_1 + E_2 + E_3$ et D.

En appliquant la transformation de Laplace à la fonction h(x) on a

$$L(h) = f(s) = \frac{\Gamma(h)}{s^{k}} \cdot \frac{1}{s-\lambda},$$

d'où il suit

$$h(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \frac{\Gamma(k)}{s^k(s-\lambda)} ds.$$

En appliquant le lemme β), § 3 (chapitre I) et le théorème de Cauchy, on obtient la formule asymptotique

$$h(x) = \frac{e^x \Gamma(k)}{\lambda^k} - \frac{\Gamma(k)}{\lambda} x^{k-1} + o(x^{k-1}).$$

Donc nous aurons

$$i' = \int_{E_I} \frac{f(z)}{z^2} \cdot \frac{e^{x\lambda}\Gamma(k)}{\lambda^k} dz + O(x^{k-1}).$$

Soit *m* le maximum de $\left|\frac{1}{z^2\lambda}\right|$ pour E_i , i=1, 2, 3 et $M(\rho)$ le maximum de la fonction |F(z)|, $|z-a|=\rho$ sur E_2 . Prenons pour E_2 , $\rho \ge \frac{1}{r}$, nous aurons

(30)
$$\alpha^{-k} \left| \int_{E_2}^{\infty} \frac{f(z)}{z^2} \frac{e^{x\lambda} \Gamma(k)}{\lambda^k} dz \right| < 2\pi m \, x^{-k} \Gamma(k) \, e^k \, \rho \, M(\rho) = 2\pi m,$$
$$e^k \rho^{k+1} M(\rho) \longrightarrow 0, \quad m_1 = m \, \Gamma(k),$$

lorsque $\lambda \rightarrow 0$. Pour E_1 soit d choisi de façon que

$$\rho^{k+1} M(\rho) < \varepsilon, \quad p < \rho \leq d$$

où $\varepsilon > 0$ est un nombre donné arbitrairement petit. Alors nous avons

(31)
$$x^{-k} \left| \int_{E_1}^{f(z)} \frac{f(z)}{z^2} \frac{e^{x\lambda} \Gamma(k)}{\lambda^k} dz \right| < m_1 \varepsilon x^{-k} \int_{\frac{1}{x}}^{d} \frac{e^{-sx\rho} d\rho}{\rho^{k+1}}$$

$$< m_1 \varepsilon x \int_{\frac{1}{x}}^{\infty} e^{-sx\rho} d\rho = \frac{m_1 \varepsilon}{s} e^{-s}.$$

On a un résultat analogue pour l'intégrale étendue sur E_3 . On conclut des formules (30), (31) que $\lim_{x\to\infty} \frac{\iota'}{x^k} = 0$. Mais, en fi-

xant d et d_1 , on a l'inégalité $|e^{\lambda x}| < e^{-\mu x}$, $\mu > 0$, $|z| > \delta > 0$ pour D, d'où il s'ensuit que l'intégrale prise suivant D tend vers zéro lorsque $x \to \infty$.

Si l'on prend $\sigma = 1$, on retombe en particulier sur les résultats de M. Doetsch¹) relatif au cas, où le point singulier a est un pôle.

5. La sommation (E_{α}^p, φ) , $p \ge 0$ peut être étendue au cas p < 0. La définition se modifie de la manière suivante:

Soit m assez grand tel que $\alpha m + p > 0$. Alors nous disons que la série

(32)
$$u_0 + u_1 + u_2 + \cdots$$

est sommable $(E_{\alpha}{}^{p}, \varphi), p \gtrsim 0$ si la série

$$u(x) = e^{-x} \sum_{n=m}^{\infty} \frac{u_{n+1} x^{\alpha n+\rho}}{\Gamma(\sigma n+\rho+1)}$$

converge pour chaque x et l'expression

$$\frac{1}{\varphi(x)} \int_{0}^{x} \varphi(x-t) u(t) dt$$

¹⁾ G Doetsch — Uber die Summabilitat der Potenzreihen auf dem Rande des Borelschen Summabilitatspolygons, Mathematische Annalen, t. 84 (1921), p. 245—251.

tend vers une limite s lorsque $x \rightarrow \infty$. Le nombre

$$s + u_0 + \cdots + u_{m-1} + u_m$$

est la somme de la série (32). On voit facilement que la sommation ainsi définie ne dépend pas de *m*. Nous allons démontrer que les séries convergentes sont sommables par cette méthode.

XX. Supposons que la fonction $\varphi(x)$ satisfasse aux conditions d'inversion du chapitre I, § 3. Alors chaque série convergente est aussi sommable avec la même somme.

En effet, posons

$$g(x) = \int_0^x \varphi(x-t) \, u(t) \, dt, \qquad u(x) = e^{-x} \sum_{n=m}^\infty \frac{u_{n+1} \, x^{\alpha n+p}}{\Gamma(\alpha n+p+1)} \cdot$$

En prenant la transformée de Laplace, on obtient

$$L(g) = \Phi(s) \sum_{m=0}^{\infty} \frac{u_{n+1}}{(s+1)^{2n+p+1}} = \Phi(s) H(s).$$

Pour $|s| \to \infty$ la fonction L(g) a la forme $\frac{\mu(s)}{s^{k+1}}$, k > 0; donc on a

$$g(x) = \frac{1}{2\pi i} \int_{c-i\infty}^{c+i\infty} \Phi(s) H(s) ds, \ c > 0.$$

Puisque $H(0) = \sum_{m=0}^{\infty} u_{n+1} = s - u_0 - \cdots - u_m$, en appliquant le

lemme β), on obtient la formule

$$g(x) = \varphi(x) (s - u_0 - \cdots - u_m) + o(\varphi(x)),$$

c'est à dire la série (32) est sommable (E_{α}^{p}, z) avec la somme s. On peut facilement voir que les théorèmes que nous avons dés montrés pour la sommation $(E_{\alpha}^{p}, \varphi)$, $p \ge 0$, sont aussi valable-pour la sommation $(E_{\alpha}^{p}, \varphi)$ dans le cas $p \ge 0$. Par exemple nous avons le théorème:

XXI. Supposons la série,

$$u_0 + u_1 + u_2 + \cdots$$

sommable $(E_{\alpha}{}^{p}, \varphi)$ avec la somme s, la série

$$v_0 + v_1 + v_2 +$$

sommable $(E_{\alpha}^{p_1}, \varphi)$ avec la somme t. Alors la série produit de Cauchy

$$w_0 + w_1 + w_2 + \cdots, \ w_n = u_0 v_n + u_1 v_{n-1} + \cdots + u_n v_0$$

sera sommable $(E_{\alpha}^{p_2}, \tau)$ avec

$$\tau(x) = \int_0^x \varphi(t) \, \psi(x-t) \, dt, \quad p_2 = p + p_1 + 1.$$

En effet, soit m choisi de manière que

$$\alpha m + p > 0$$
, $\alpha m + p_1 > 0$, $\alpha m + p_2 > 0$.

Alors, si nous posons

$$g_1(x) = \int\limits_0^x \varphi(x-t) \, u(t) \, dt \,, \quad u(x) = e^{-x} \sum_{n=m}^\infty -\frac{u_{n+1} x^{\alpha n+p}}{\Gamma(\alpha n+p+1)} \,,$$

$$g_2(x) = \int_0^x \psi(x-t) \, v(t) \, dt$$
, $v(x) = e^{-x} \sum_{n=m}^{\infty} \frac{v_{n+1} x^{\alpha n + p_1}}{\Gamma(\alpha n + p_1 + 1)}$

$$g_3(x) = \int_0^x \tau(x-t) w(t) dt, \quad w(x) = e^{-x} \sum_{n=m}^{\infty} -\frac{w_{n+1}x^{\alpha n+p_2}}{\Gamma(\alpha n+p_2+1)},$$

on démontre facilement la formule

$$g_3(x) = \int_0^x g_1(t) g_2(x-t) dt$$

d'où découle que

$$\lim_{x\to\infty}\frac{g_3(x)}{\tau(x)}=st,$$

et le théorème est démontré dans le cas $u_0 = u_1 = \cdots = u_m = v_0 = \cdots = v_m = 0$.

Le cas général s'obtient par la marche déjà employée au chapitre II, § 4.

Je dois faire la remarque que M. Doetsch¹) a pour la première fois employé la transformation de Laplace dans des questions de sommabilité des séries divergentes.

¹⁾ G. Doetsch, Mathematische Annalen, t. 104 (1931), p. 403-414.

6. On peut facilement généraliser le procédé (φ_0, h, φ) pour la sommation des séries de Dirichlet. Soit h(x) une fonction définie pour $x \ge 0$ telle que

$$\int_{0}^{\infty} h(x)dx = 1,$$

l'intégrale étant absolument convergente. Supposons que la fonction transformée de Laplace H(s) = L(h) satisfait aux conditions suivantes :

- 1) $H(s) \neq 0$, $\mathbf{R}(s) > 0$.
- 2) $H(s) = \frac{k}{s\delta} + \frac{\mu(s)}{s^k}$, $0 < \delta$, k > 1 pour les grandes valeurs de |s|.

Soit encore $\varphi_0(x)$ une autre fonction définie pour x>0 et telle que

$$\int_{0}^{\infty} \varphi_0(x) dx = 1,$$

 $L(\varphi_0)$ ayant la forme 2). D'après le théorème de MM. Pincherle et Norlund il existe pour chaque k > 0 une fonction $\varphi_k(x)$, définie pour x > 0, telle que

$$L(\varphi_k) = L(\varphi_0)H^k(s) = \frac{T}{s!^{\mu}} + \frac{\mu_1(s)}{s^{k_1}}, \ \mu > 0, \ k_1 > 1.$$

Elle est donnée par la formule

$$\varphi_k(x) = \frac{1}{2\pi i} \int_{c-t\infty}^{c+t\infty} e^{xs} H^k(s) L(\varphi_0) ds, \quad c > 0.$$

Si l'on pose $H^k(s) = L(h_k)$, la fonction $\varphi_k(x)$ est donnée par

$$\varphi_k(x) = \int_0^x \varphi_0(t) h_k(x-t) dt.$$

Soit $\varphi(x)$ une fonction positive pour x > 0, non décroissante et telle que

$$\lim_{x\to\infty}\frac{\varphi(x+a)}{\varphi(x)}=1$$

pour chaque nombre fini a. Alors nous disons que la série de Dirichlet

(33)
$$\sum_{n=1}^{\infty} a_n e^{-\lambda_n s} = \sum_{n=1}^{\infty} c_n$$

est sommable $(\varphi_0, h, \varphi, \lambda)$ avec la somme s, si la série

$$u(x) = \sum_{1}^{\infty} c_n \, \varphi_{\lambda_n}(x)$$

est normalement convergente dans chaque intervalle (0, A) etc l'expression

$$\frac{1}{\varphi(x)}\int_{0}^{x}\varphi(x-t)\,u(t)\,dt$$

tend vers la limite s lorsque $x \rightarrow \infty$.

On peut facilement généraliser les théorèmes que nous-avons démontrés pour la sommation (φ_0, h, φ) . Par exemple nous démontrerons le théorème relatif à la sommation $(\varphi_0, h, \varphi, \lambda)$ de la série produit de Dirichlet de deux séries.

XXII. Soit la série

(34)
$$a_1 + a_2 + a_3 + \cdots$$

sommable $(\varphi_0, h, \varphi, \lambda)$ avec la somme s, la série

(35)
$$b_1 + b_2 + b_3 + \cdots$$

sommable (ψ_0,h,ψ,μ) avec la somme t. Alors la série produit de Direchlet

$$c_1 + c_2 + c_3 + \cdots, \quad c_n = \sum_{\substack{h_p + \mu_q = \lambda_n}} a_n b_q,$$

 l_n étant les nombres $\lambda_p + \mu_q$ ordonnés par des vaseurs croissantes, sera sommable (τ_0, h, τ, ν) avec law yomme st si l'on prend

$$\tau_0(x) = \int_0^x \varphi_0(t) \, \psi_0(x-t) \, dt, \ \tau(x) = \int_0^x \varphi(t) \, \psi(x-t) dt.$$

En effet, posons

$$\begin{cases} g_{1}(x) = \int_{0}^{x} \varphi_{0}(x-t) u(t) dt, \ g_{2}(x) = \int_{0}^{x} \psi(x-t) v(t) dt, \\ u(x) = \sum_{1}^{\infty} c_{n} \varphi_{\lambda_{n}}(x), \qquad v(x) = \sum_{1}^{\infty} b_{n} \psi_{\mu_{n}}(x) \\ g(x) = \int_{0}^{x} \tau(x-t) w(t) dt, \ w(x) = \sum_{1}^{\infty} c_{n} \tau_{\nu_{n}}(x). \end{cases}$$

On démontre facilement que

$$w(x) = \int_{0}^{x} u(t) \, v(x-t) \, dt.$$

Des relations (36), (37) il s'ensuit, d'après la proposition ϵ), § 3, chap. II, que

$$g(x) = \int_0^x g_0(t) g_2(x-t) dt.$$

Mais d'après les conditions du théorème on a

$$g_1(x) \sim s\varphi(x), \quad g_2(x) \sim t\psi(x);$$

donc, en se basant sur le théorème I, on obtient

$$g(x) \propto st \tau(x)$$

et le théorème est démontré.