NOUVELLES ANNALES

MATHEMATIQUES.






/
| NOUVELLES ANNALES

MATHEMATIQUES

JOURNAL DES CANDIDATS

AUX ECOLES SPECIALES, A LA LICENCE ET A L’AGREGATION,

REDIGE PAR

C.-A. LAISANT,

Docteur és Sciences,
Répétiteur et examinateur d'admission a I'Ecole Polytechnique.

C. BOURLET, R. BRICARD,
Docteur &s Sciences, Ingénieur des Manufactures de I'Etat,
Professeur au Conservatoire des Arts et Métiers. Professeur au Conservatoire des Arts ct Métiers,

Répétiteur a I'Ecole Polytechnique.

- > © c—

PUBLICATION FONDEE EN 1842 PAR GERONo ET TERQUEM,
ET CONTINUEE PAR PROUHET, BOURGET, BRISSE, ROUCHE, ANTOMARI ET DUPORCQ.

QUATRIEME SERIE.
TOME XI.

(LXX® VOLUME DE LA COLLECGTION.)

O E——— s

PARIS,

GAUTHIER-VILLARS, IMPRIMEUR-LIBRAIRE
DU BUREAU DES LONGITUDES, DE L’ECOLE POLYTECHNIQUE,
Quai des Grands-Augustins, 55.

1911



Tous droits de traduction et de reproduction réservés.



NOUVELLES ANNALES

DE

MATHEMATIQUES.

[M*5)]
SUR LA QUATRIEME CONGRUENCE DE CUBIQUES GAUCHES
DE M. STUYVAERT;

Par M. Lucien GODEAUX.

Dans de belles recherches de Géométrie, couronnéces
par ’Académie royale de Belgique ('), M. Stuyvaert a
défini six types de congruences linéaires de cubiques
gauches. Ce sont les congruences dont chaque courbe
est représentée par I'évanouissement de la matrice

on(x,2) o1a(x,a) 91a(x,2)

921(Z,2) 9a(z,2) ¢u(z,a)

’

les six fonctions o étant linéaires par rapport aux coor-
données ponctuelles (zy, z,, x;, ;) el par rapport aux
paramélres (o, s, a3).

Parmi ces congruences, les deux premiers types ont
été étudiés par M. Stuyvaert(2); j'ai ensuite établi

(') Cing €tudes de Géometrie analytique (Prix Francois Deruyts,
1906). Gand, Librairie Van Geethem, 1907, p. 94-119 (2° étude).

(*) Une congruence linéaire de cubiques gauches (Bull. de
UAcad. roy. de Belgique, 1907); Deuxiéme congruence linéaire

Ann. de Mathémat., §° série, t. XI. (Janvier 1g11.) 1
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qu’une certaine transformation birationnelle de I’espace
fournit immédiatement la plupart des propriétés des
types I, III et VI(*). Dans la Note suivante, j’établis
une transformation birationnelle de I'espace qui trans-
forme le type IV en une congruence bilinéaire de
droites. La méme transformation fournit de nouveaux
types de congruences linéaires de cubiques que je
signale.

Rappelons avant de commencer les propriétés de la
congruence IV de M. Stuyvaert. Cette congruence est
représentée par la matrice

@y 4+ b+ a3c, a4+ azel, oy ay -+ azch

= o.
aydy—+ % fr 2y dly aydy

Les cubiques qui la forment s’appuient quatre fois
sur la sextique de genre trois

ay a, day 1)‘,-l

/ "
Cr Cp Cg o |l=o,
de dy dv fol

cinq fois sur la cubique gauche

I ! "
la)y o, d

ap o odi | T
et une fois sur la droite
d.=d),= o.
La transformation birationnelle T. — 1. Soient

de cubiques gauches (Rendiconti del Circ. Matem. di Palermo,
1908, t. XXVI).

(') Nouveauzx types de congruences linéaires de cubiques
gauches (Nouv. Ann. de Math., 4° série, t. IX); Sur la siziéme
congruence de cubiques gauches de M. Stuyvaert (Bull. de
UAcad. roy. de Belgique, 1909).
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C? une sextique gauche de genre trois et (3 une cubique
gauche dont les équations sont respectivement

ay, by c,p dp
’ ! ! 4
(G}) ay by cp dy||=o,
al, b0, cy d
ay ai, aly

(Ga) be by

La courbe C; s’appuie donc en huit points sur C3(*).

Il y a une infinité de surfaces cubiques F, formant
un faisceau, qui passent par les courbes G et Cy; elles
ont pour équalion

o 0 A A
ax by cp dp
ay by ¢, d

dy by oy dy

= 0,

Ay et ), étant des paramétres variables.

Désignons par Oy, Oy, O;, O, les sommets du té-
traé¢dre fondamental.

Etablissons une homographie H entre les surfaces F
et les plans passant par la droite d =0, O;. Nous pren-
drons pour 'équation du plan correspondant 4 la sur-

, M
face F donnée par le rapport w

)q Ji— )\2)’(, = 0.

Une bisécante de la cubique C4 peut étre représentée
par les équations
par+ pay+ pay=o,

(1)
wby 4+ Wby + b= o.

(1) STuYVAERT, loc. cit. (Etude I, p. 27).
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Si nous écrivons les relations

N

—_— 3_-

Y2
B

=
w3

elles feront correspondre 4 la droite unissant le point
P(y4, %2, 3, ¥4) au point Oy, la bisécante de C; re-
présentée par les équations (1), el réciproquement.
Nous aurons ainsi une correspondance birationnelle K
entre la gerbe de sommet O, et la congruence des
bisécantles de C;.

La correspondance K est telle qu’au plan

Ve Ya+ V3 Y3+ 9V, ), =0
correspond la quadrique

[} V3 V4
Cot " .
a,y a, ay|=o.

b O bl

En général, & un céne d’ordre n et de sommet O,,
la transformation K fait correspondre une surface
d’ordre 2n passant n fois par Gy, et réciproque-
ment. .

2. A laide de I'homographie H et de la transforma-
tion K, nous pouvons établir une correspondance bi-
rationnelle T entre les points (z) et (y) de Pespace.
Remarquons pour cela qu’une corde de C, rencontre
une surface F en trois points dont deux sont sur Cs;
les coordonnées du troisiéme point peuvent donc s’écrire
en fonctions rationnelles des coefficients de I'équation
de F.

Sotent P(z,, 23, z3, ;) et Q (1, ¥2, 73, ¥s) deux

points de I'espace. Nous dirons que ces points se cor-
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respondent par T si les conditions suivantes sont véri-
fiées :

a. L’homographie H fait correspondre le plan Q0,0 3
et la surface F passant par P.

b. La droite QO et la corde de C; issue de P se cor-
respondent dans la transformation K.

Une telle transformation T est évidemment biration-
tionnelle.

p étant un facteur de proportionnalité et les déter-
minants cubiques élant dénotés par leur premiére ligne,
les coordonnées de Q s’exprimeront au moyen de celles
de P par les formules

pyi=| ar bz d.|(a.b,— ayby),
p¥e=| ar by cr|(ayby—aybl),
p¥s=1| ar by cx |(apb,— aybdy),
pY= l ar by cp '(a:tb.lz‘— ayzby).

Dans la suite, nous désignerons par 3, Z, les es-
paces lieux des points respectivement de coordonnées

(z1, 9, T3, Z4), (y.,ya,ys,)u)-
La transformation T mute un plan de 2, d’équation

Uy Y1+ UgYa—+ Us Y3+ UYL= O,

en une surface du cinquiéme ordre dont 'équalion
peut s’écrire

o o Uy Uy Uz u,
ay ay ay ay dy al
(l) ' U ’ " = 0.
be b, b, || 6. 0L b,
( a: by cx l t az; by dx l

La derniére ligne s’annule pour les points de la
courbe C}, donc la surface passe par cette courbe.
Tous les termes du déterminant précédent s’annulent
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pour les points de C,, donc cette courbe est double
pour la sarface (1). Enfin, si 'on introduit 'hypothése

ar b, cx
=0,

(CYy)

ay by ¢

les termes de la premiére colonne sont nuls, donc la
surface (1) passe simplement par la cubique gauche C;.

Les équations des courbes Ci, C; et C; ne dépendant
pas des coefficients u,, u,, us, 4, on peut énoncer le
théoréme suivant :

Les plans de 2, se transforment en des surfaces
du cinquieme ordre passant simplement par les deu.x
courbes C, C. et doublement par la cubique C,.

Les trois courbes G2, C; et C} sont évidemment sin-
gulicres pour la transformation T'; nous allons voir que
cc sont les seules dans 'espace Z,. Pour cela, il nous
suffira de démontrer que I'intersection de deux surfaces
telles que (1) se compose de ces courbes et d’une
courbe variable du quatriéme ordre, ou encore que la
courbe de Z, correspondant & une droite de X,, est du
quatriéme ordre.

La courbe correspondant ala droite

iy=o, vy=o0
est représentée par

o o Uy uz u,
ar ap ay||az ap ay

by b, b || 6. &, &,

(2) o o v ve P3O, =o.
ary a, ay ay a, aj

br B B ||bs b, B

| az by cz || az ba dxl
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Cetle matrice s'annule pour les points d’une courbe
du seiziéme ordre. Mais C3 annule tous les termes de (2)
et G} tous les termes de la premiére colonne; par suite
la courbe du seiziéme ordre se décompose en trois
fois Cj, une fois G et en une courbe d’ordre quatre
mobile.

A une droite de I, correspond une courbe du qua-
tricme ordre.
Les seules lignes singulicres de Z, sont C3, Cs

!/
et Cj.

3. Recherchons quels lieux engendrent les points
de Z; qui correspondent aux points singuliers de Z,.

A un point P de C} correspondent évidemment tous
les points d’une droite passant par O, et que la trans-
formation K fait correspondre a la corde de G, issue
de P. Le lieu de teiles cordes esl une surface d’ordre
huit passant quatre fois par C;; par suite la transfor-
mation K la mute en un cone du quatriéme ordre de
sommet O, et la surface correspondant a C? est déter-
minée. On peut affirmer que ce cone est dépourvu de
singularités, car il est de genre trois, ses génératrices
étant en correspondance birationnelle avec les points

de C.

La surface [ C}] lieu des points de T, qui se trans-
Jorment en des points de C est un céne du quatriéme
ordre de sommet O,.

Soit [ C;] le lieu des points de ¥; qui correspondent
aux points de Cy. Pour que le transformé d’un point
Q de 2, soit sur Cg, 1l faut et il suffit que. la surface
cubique F correspondante au plan 0,0;Q et lacorde
de G; correspondante a la droite O,Q, se touchent.
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(Le point de contact, qui correspond a Q, est en effet
nécessairement sur G;.)

Le lieu des cordes de C, qui touchent une surface I
(nécessairement le long de C;) est une surface d’ordre
dix passant cinq fois par C,; la transformation K la
mute donc en un cbéne d’ordre cinq de sommet O,.
L’homographie H fait correspondre 4 la surface F con-
sidérée, un plan passant par O,O; et ce plan rencontre
donc [C;] en une courbe du cinquiéme ordre. D’autre
part, on constale aisément (ue par un point de 0,0,
passent deux pareilles courbes, donc la surface [C,]
passe doublement par cette droite et est d’ordre sept.
Enfin, une droite issue de O, rencontre encore la sur-
face [G;] en deux points, donc O, est un point quin-
tuple.

La surface [Cy ], liew des points auzxquels corres-
pondent des points de Gy, est d’ordre sept, passe dou-
blement par la droite 0,0,, et posséde un point
quintuple O,.

1l est facile de montrer qu’a un point de C; corres-
pondent les points d’une conique de la surface [Cy].
Considérons un point P de Cy; au coéne projetant G,
de P, la transformation K fait correspondre un plan =
passant par O,. Une surface cubique F est tangeate
en P a chaque génératrice du coéne, et inversement
une seule génératrice touche une surface I en P; par
suite, si nous considérons dans = les faisceaux droites
dontles sommels sont O, et le point de rencontre de =
avec 0,03, ils sont homographiques et le lieu des in-
tersections des rayons correspondants est la conique
transformée du point P.

Soit enfin | C,] la surface transformée de C, nous
allons voir qu’elle coincide avec le plan O, 0,0;. A ce
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plan, la transformation K fait correspondre la qua-

drique

ayb,—alby=o,

et 'homographie H, la surface cubique

larx by cx|=o0.

Ces deux surfaces se rencontrent en deux courbes
Cs, C,. Inversement, & un point de C; correspond une
droite du plan O, 0,0, passant par O,, par suite.

La surface [C,), lieu des points de T, auxquels
correspondent des points de C, coincide avec le
plan 0,0,0;,.

Une droite de 2, rencontre les surfaces [C}], [Cs]
et [C,] respectivement en qualre, sept et un point; on
en conclut que :

Auzx droites de 2, correspondent des courbes du
quatriéme ordre s’appuyant quatre fois sur G,
L . ,
sept fois sur C; et une fors sur C.

4. Soit = un plan de Z,; d’aprés la théorie des
transformations birationnelles, on sait déja qu’il lui
correspond dans Z; une surface du quatriéme ordre.
Nous allons voir que cette surface passe par la droite
0,0, et est un monoide dont le sommet est en O,.

Soit 7' un plan passant par 050j3. Il lui correspond
par H une surface cubique F. Les cordes de C; qui
s’appuient sur linlersection de cette surface avec le
plan = forment une surface d’ordre six passant trois
fois par C;. La transformation K mute cette surface en
un céne cubique de sommet O, et = rencontre donc la
surface du quatriéme ordre transformée de = en une
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cubique, done cette surface passe simplement par la
droite 0, 0;.

A une droite issue de O,, K fait correspondre une
corde de C,. Par le point d’intersection de celle-ci
avec m, passe une surface F. Le plan correspondant a
cette surface dans '’homographie H marque un seul
pointde la transformée de w; par suite cette transformée
a un point triple en O,.

A une droite de I, correspond dans X, une courbe
du cinquié¢me ovdre. Deux surfaces du quatriéme ordre,
transformées de deux plans de ¥, ont donc en commun,
outre d, une courbe variable d’ordre cinq et une
courbe C,, d’ordre dix.

Auz plans de 2, correspondent des monoides du
quatriécme ordre dont le point multiple est en O, et
qui passent par la droite 0,0, et par la courbe C,.

La transformation T posséde dans Z, un point
singulier isolé, une droite et une courbe d’ordre dix
singulicres.

5. Désignons par [0, ], [0.05], [C,] les surfaces
de 2, dont les points correspondent respectivement au
point O, et aux points des courbes 0,03, Cy,.

On arrive aisément aux théorémes suivants :

La surface [ O] lieu des points de 2, correspon-
dants @ O, est la surface cubique que homogra-
phie H fait correspondre au plan 0,0,0;.

Lasurface[0204] lieu des points de X, correspond
a ceux de 0,0, est la quadrique transformée du
plan 0,0,0; au moyen de la transformation K.

Passons a la recherche de la surface [C,,].
Sur une surface cubique F, passant par C? et Cs, il
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se trouve six cordes de C;. A tous les points d’une de
ces cordes, correspond un méme point unique de Z,.
Recherchons le lieu C de ce point.

Le lieu des cordes de C; appartenant & une surface F,
est une surface S du huitiéme ordre. Considérons en
effet un plan =, une droite z extérieure a ce plan et
ne rencontrant pas C; et deux ponctuelles (X,), (X;)
de support z. Par un point X, passe une corde de Cs;
par le point ol cette corde rencontre r passe une sur-
face F qui marque sur z trois points X,. Inversement,
a un point X, correspondent six points X,. Une coin-
cidence des points X,, X, est généralement un point
de la surface S; il y a une exception pour le point
commun au plan = et & la droite 2z, qui absorbe une
coincidence. D’aprés le principe de Chasles, S est
donc g — 1 = 8. Cette surface contient C] el a été ren-
contrée plus haut.

La transformation K mute S en un coéne [C}] du
quatriéme ordre de sommet O,. La courbe C se trouve
évidemment sur ce cone. Un plan passant par O, con-
tient quatre génératrices de [Cj]; chacune d’elles
contient, en dehors de O,, un et un seul point de C.
Sur la surface [ O, ], se trouvent six cordes de C;, donc
C passe six fois par O, et celte courbe est du dixiéme
ordre; par suite elle coincide avec Co. Un plan pas-
sant par O,0, contient six points de C,, en dehors
de O,0;, donc cette droite est une quadrisécante.

La courbe singuli¢re C,, a un point sextuple en
O, et sappuie quatre fois sur la droite 0,0,.

La surface [C,,] lieu des points de £, correspon-
dant auzx points de C,, est du huitiéme ordre, passe
quatre fois par Cy et une fois par Cj.

Une droite de Z, rencontre [O,], [0205], [Cio]
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respectivement en trois, deux et huit points; donc :

Aux droites de X, correspondent des courbes du
cinquiéme ordre s’appuyant deuz fois sur 0,0s;
huit fois sur Cy, et ayant un point triple en Oy.

On remarquera que G,, fait partie de I'intersection
de [C;] et de [Cy], d’aprés la théorie des transforma-
tions birationnelles. On vérifiera alors aisément que
[C;] passe doublement par C,,, car une droite issue
de O, et s’appuyant sur C,, ne rencontre [C;] qu'en
deux points distincts.

Congruences linéaires de cubiques gauches. —
6. La transformation T mute une droite @ de X, s’ap-
puyant sur la droite O, O3, en une courbe du quatrieme
ordre qui dégénére en une cubique gauche vy et une
bisécante @’ de C,.

Si P est le point d’appui de a sur O, O3, la droite o'
correspond, par la transformation K, 4 la droite PO, ;
celte droite @' se trouve donc sur la quadrique

ayby—aybr=o,

et s’appuie ainsi en un point sur Cj. En utilisant un
théoréme précédent, nous pouvons énoncer celui-ci :

A une droite de 3, s’appuyant sur la droite 0,0,
correspond dans T, une cubigue gauche s’appuyant
en quatre points sur C? et en cing points sur C,.

Supposons que la droite @ appartiennent a une con-
gruence linéaire G (O, O; étant naturellement singu-
liére pour cette congruence). Les cubiques y corres-
pondantes formeront évidemment une congruence T
dont l'ordre est égal a l'unité, car si par un point P
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de X, passaient plusieurs courbes de T', par le point
de 3, correspondant a P passeraient plusieurs droites
de G, ce qui n’a généralement pas lieu.

La classe de T est, comme on sait, le nombre de ses
courbes y s’appuyant en deux points sur une droite.
En transformant au moyen de T, on voit que la classe
de T est le nombre de droites de G s’appuyant en deux
points sur une courbe d’ordre cinq possédant un point
triple en O, et deux points simples sur O, Oj.

Nous examinerons les différents cas qui peuvent se
présenter pour les congruences T'.

7. Prenons pour G la congruence formée par les
droites s’appuyant sur O,O; et sur une courbe D,
d’ordre n, s’appuyant n— 1 fois sur 0,0; m fois
sur G, (') et enfin passant m, fois par O, (m, étant
égal a zéro ou un).

La transformée de D, débarrassée des composantes
provenant des points communs & D et aux éléments
singuliers de T dans Z,, est une courbe A d’ordre
3n—m—+41—3m,. La congruence I' est donc le lieu
des cubiques gauches y s’appuyant en un point sur A.

La courbe A s’appuie sur G}, C;, G| respectivement
en 4(n—my)—m, dn—om—+2—5m,;, 1—m,
points ; ces points d’appui sont fournis par les inter-
sections de D avec les surfaces [C3], [Cy], [C}] en
dehors des points singuliers de T dans Z,.

Passons a la recherche de la classe de I'. Les bisé-
cantes d’une courbe du cinquiéme ordre transformée
d’une droite de 2,, s'appuyant sur 0,0, forment une
surface d’ordre cing passant deux fois par 0,0; et
ayant un point triple en O,. Cela étant, d’aprés la

(') En dehors de O,.
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remarque faite tantét, la classe de I' sera le nombre des
points d'intersection de D avec cette surface, en dehors
de 0,0; et de O, ; c’est-a-dire 3n 42 — 3 m,.

Selon que m prendra les valeurs o ou 1, nous obtien-
drons deux congruences T, I'; dont nous résumerons
les propriétés dans les tableaux a double entrée sui-
vants (le nombre placé a4 l'intersection d’une ligne et
d’une colonne fournit le nombre de points communs
aux deux courbes de téte) :

[0 C; C! A
C 8 8 fn—m
C, 8 5 Sn—am-+2
C} 8 5 1
A bn—m |5n—2m-2 1
Y 4 5 o "x

(ry) (classe = 3n + 2).

(o} C, A Y
C3 8 bn—m—4 4
C, 8 5n—2m——3; 5
A fn—m—4l5n—2m+3 1
Y 4 5 1

(ry) (classe = 3n—1).

On voit que la congruence IV de M. Stuyvaert s'ob-
tient pour n==1, m =o0; car A devient alors une bisé-
cante de C;.

La transformation T mute les cubiques de la
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congruence IV de M. Stuyvaert en les droites d'une
congruence bilinéaire.

8. La congruence G peut étre formée par des fais-
ceaux de rayons dont les plans passent par 0,0, et
dont les sommets sont sur cette droite, un point de
0,0; élant le sommet de n faisceaux et un plan par
0,0, conlenant un seul faisceau.

Les cubiques de la congruence I' correspondante se
distribuent par faisceaux sur les surfaces du troisieme
ordre F passant par G} et C,, une surface contenant
un seul faisceau.

Le centre d’un faisceau de rayons de G, étant sur
0,03, est transformé en une droite de la quadrique
[0:03], dont équation est

ayb,— a,by=o.

Une telle droite est donc rencontrée par les cubiques
de n faisceaux de I'. Une surface F' ne contenant qu'un
seul de ces faisceaux et toutes les surfaces F ne conte-
nant pas les génératrices de [ 0,04 ], les cubiques d'un
faisceau de T' passent par un méme point de la généra-
trice correspondante de la quadrique [ 0,0,].

Pour chercher la classe de ', considérons la surface
S; lieu des bisécantes de la transformée d’une droite
de Z,, s'appuyant sur O,03; cette droite est double
pour S;. Soient (X,), (X;) deux ponctuelles situées
sur O, 0;. Par un point X, menons les deux généra-
trices de Sy, les plans passant par O, 0, et contenant
ces génératrices contiennent chacun un faisceau de
droites de G; les sommets de ces faisceaux marquent
sur O, 0; deux points X,. Inversement, 3 un point X,
correspondent 3 n points X,. D’aprés le principe de
Chasles, il y a 3n+ 2 coincidences et T est de classe
3 n+-2 d’aprés la remarque faite plus haat.
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Si lon établit une correspondance (n, 1) entre les
surfaces cubiques F passant par G}, C; et les géné-
ratrices bisécantes de Cy de la quadrique

! !
arby—arbr=o,

la cubique gauche s'appuyant quatre fois sur G,
cing fois sur Cgy et une fois sur la génératrice de la
quadrique correspondant & la surfaceF sur laguelle
cette cubique se trouve, engendre une congruenceT'y
d’ordre un et de classe 3n—+ 2.

9. A une droite de I, correspond une courbe d’ordre
cing; & an point de C} correspond une droite passant
par O, et s’appuyant sur O,O,. On en conclut qu’a
une bisécante de C) correspond dans X, une courbe
d’ordre cinq dégénérée en deux droites passant par O,
et situées dans le plan O, O, 0;, et une cubique gauche y
passant par O, el s’appuyant encore huit fois sur Gy,.
Les bisécantes de C| forment une congruence linéaire,
par suite les courbes v’ forment une congruence
lindaire T,.

Par un raisonnement employé plus haut, on verra
que la classe de T, est le nombre de bisécantes de C;
s’appuyant en deux points sur la transformée d’une
droite de 2,. Une telle courbe est d’ordre quatre et
s'appuie une fois sur C}; par suite la classe cherchée
est égale & quinze.

Les cubiques s’appuyant en huit points sur une
courbe du dixiéme ordre et passant par un point
sextuple de cette courbe, forment une congruenceT,
d’ordre un et de classe quinze.

10. Prenons pour C} et C; les équations employées
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par M. Stuyvaert et rappelées dans l'introduction de
ce travail, c’est-a-dire

vl
ay a, ay, by
(C¥) ¢y ¢ ¢ o |l=o,
"
de dy dy fx

a, ¢, d
(Cy) B S ll=o.

ay ¢y dy

La cubique C) a maintenant pour équations

1 "
c a, ay by _
( 3) ’ ” = 0,
¢y % o

et dégénére donc en une droite et une conique.
Les équations de la transformation T deviennent

VERNERNERD £
r " ! "
ay a, a’ , , a, ay by @
_ ' " A, Cy |, , " Cy x
= ey o o o o | ¢, ¢ o o
, " x Cp , " x x
d, d, d d, d) fx
! " Ii "
a, a, by ‘ d , al, a, b, C
N y x Qx| | " a,; Cp .
¢, ¢\ o a o | o o o I
d d' x x 4. d x x©
£ x fz‘ x £ fI

Cette transformation fait correspondre aux cubiques
gauches de la congruence de M. Stuyvaert les droites
s’appuyant sur les droites

Ya2=Yi=0, Y2=Y3=0.

On raménera par la transformation T toute propriété
d’une congruence bilinéaire de droites & une propriété
de la congruence de cubiques.

Ann. de Mathémat., }° série, t. XI. (Janvier 1g11.) 2
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[D4c]

SUR LE DEVELOPPEMENT DE TAYLOR
D'UNE FONCTION MEROMORPHE;

Par M. G. VALIRON.

M. Borel a démontré Ja proposition suivante :
Une fonction méromorphe, dans tout le plan, ne peut
étre représentée par une série

@
ap,
=& pn
b,
1

ou a, et b, sont des entiers et on C/I—I;:] reste fini
lorsque [b,| ne renferme pas de facteurs premiers dont
le module soit infini avec n, & moins qu’elle ne se
réduise a une fraction rationnelle & coefficients en-
tiers (*).

On peut, dans une certaine mesure, étendre le théo-
réme au cas ou le dénominateur contient des facteurs
premiers qui deviennent infinis avec 2. On a le résultat
suivant,

La série

«©

R G
1

ou a, el b, sont des entiers réels ou complexes, |b,|
satisfaisant aux conditions précédentes et ou les p

(1) Voir BoreL, Bulletin des Sciences Mathématiques, 18y}, ct
Lecons sur les fonctions meéromorphes, p. 37. — HapaMaRD, La
série de Taylor et son prolongement analytique, p. 97.
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nombres A, ...kp sont eutiers et réels, ne peut repré-
senter une fonction méromorphe dans tout le plan.
(Lorsque certains des nombres £; sont négatifs les
coefficients ne sont de la forme indiquée qu’a partir
d’une certaine valeur de n). '
Posons

©

f(”)=2—_“ﬂ;"

’P
1 b,,l—[(n &)
1

Si f(x)est une fonction méromorphe il en est de méme
de la fonction

o

Si(x) =z fa) :2

)
P

! 1)" I I(IZ -l—‘/(,')
1

et par conséquent de sa dérivée

a,z+hy

a, xt+ky—1

Salw) = file) =y —

p—1 ’
'op, II()L —+ k)
1

cette dérivée est de la méme forme que f(z) avec un
terme de noins en dénominateur. (Il est nécessaire,
lorsque &, est négatif, de supprimer un certain nombre
de termes qui conliennent des puissances négalives
de z).

Ep opérant de méme avec f; (z) et ainsi de suite on
arrivera & la fonction

an{,,-u+l.‘,+...+/r’,—p

lei(w)=2 on )

1

qui devra étre une fonclion méromorphe. Mais ce ne
peut étre qu’une fraction rationnelle  coefficients en-
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tiers d’aprés le théoréme de M. Borel. La fonction f(x)
et toules les fonctions intermédiaires sont donc aussi
des fractions rationnelles puisqu’elles ont les mémes
poles que fop().

Mais on sait que lorsque la fonction primitive d’une
fraction rationnelle est une fraction rationnelle, on
Pobtient par des opérations rationnelles, donc en re-
montant de proche en proche la suite des fonctions
Jap_i(Z), ..., f(x), on voit que toules ces fonctions
sont des fonctions rationnelles & coefficients entiers.

Finalement hypothése que f(x) est méronvorphe
dans tout le plan conduit a la conclusion que c’est une
fraction rationnelle a coefficients entiers, ce qui est
impossible, car le développement en séric d’une telle
fonction est de la forme

o
A
—_—h
25
1

ib,,l satisfaisant 4 la condition énoncée. Par conséquent
le développement

@
[ a,xn
»

o o ko
1

>

ne peut pas représenter une fonction méromorphe dans
tout le plan.
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AGREGATION DES SCIENCES MATHEMATIQUES
(GONCOURS DE 1910).

GOMPOSITION
SUR LE CALCUL DIFFERENTIEL ET INTEGRAL (').

SoLution AR M. TURRIERE.

On considére la famille de quadriques (Q)

ax?+ by?-- ¢32= const.,

«, b, ¢ élant des nombres distincts donnés (2), les axes
coordonnés étant rectangulaires. Les courbes (v)
trajectoires orthogonales de ces quadriques sont les
intégrales du systéme

dr dy d
by ¢z’
et leurs équations sont
r = zyle, ¥ =yotb, 3 = 3o ¢,

Zo, Vo, 5o étant des constantes et ¢ étant un paramétre;

pour simplifier les calculs, je poserai ¢ = e* et prendrai
pour équations des courbes () :

1) z =moe,  y =yoeb, 3 = Zget.

(*) Voir I’énoncé page 403 des Nouvelles Annales de 1g10.
(*) Sauf avis contraire, je ne fais aucune restriction relativement
aux signes dea, b, c.
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Les surfaces (S) trajectoires orthogonales des qua-
driques (Q) sont intégrales de I'équation linéaire
aux dérivées partielles du premier ordre

(E) azrp +~byg=cs;

les caractéristiques de cetle équation sont les courbes (y).
Pour définir I'intégrale générale (S), il suffit de se
donner une courbe distincte d’une caractéristique

z=20(0), y=y(v), -3=23z(v),

et de résoudre le probléme de Cauchy pour cette
courbe imposée; on est ainsi conduit aux équations
paramétriques suivantes de l'intégrale générale (S) :

x = xy(v)ean, ¥ =yo(v)edn, 3= z¢(v)ecs;

la courbe imposée est la courbe = o0; les caracté-
ristiques sont les courbes coordonnées v = const.
Il résulte de ces équations que I’équation générale

des surfaces (S) s'obtient en égalant a zéro une
1 1

1
Sfonction homogéne quelconque de z°, y°, z° (1).
Comme exemples remarquables, je citerai des
surfaces d’équation
m n y

Ar® By? - Cz" = o,

A, B, G, m étant des constantes quelconques. Plus
particuliérement encore, pour A =o, B=o, C=o,
on obtient trois familles de cvlindres.

(') Dans toutes les questions concernant les trajectoires ortho-
gonales de surfaces, il y a lieu de chercher s’il existe un systéme
triple-orthogonal constitué par ces surfaces ct deux familles de
surfaces trajectoires, et il y a le plus grand intérét & mettre ce
systéme en évidence. Dans le cas actuel de quadriques (Q) concen-
triques et homothétiques, il n’existe pas de tel systéme, confor-
mément d’ailleurs au théoréme de M. Maurice Lévy,
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Comme autre exemple, je citerai les surfaces

a By
27y? z° = const.,

a, B, 7 élant trois constantes assujetties a la condition
a+B4+y=o.
Ces surfaces ventrent dans le type des surfaces
) yd 3V = const.,

qui furent étudiées par Lie et par Klein. Pour a« =o,
=0,y = 0, ona trois familles de cylindres identiques
aux précédentes.

I. Nous avons trouvé les équations
(S‘) x = xoean, ¥ .:),oelm’ 5 = gyecw,

pour représenter les surfaces (S): zq, ¥4, 3¢ sont trois
fonctions arbitraires d’un parameétre ¢. Ce sont bien la
des expressions de la forme spécifiée dans 'énoncé.

Déterminons les asymplotiques de cette surface (S).
Les déterminants D, D', D" de Gauss (notations de
M. Darboux) ont pour expressions

D = Djela+btein, D' = ])/l e(a—&-h—rc}u7 D"= D"' ela+b+cu,
en désignant par D,, D', D’ trois fonctions de ¢ seul:

atry by, ¢z,

Di=| axy by, c3zy [|=Zbe(b— c)xyq3,,
o ye &
azry byy c3

Di=| axy, by, cz |=Za(c—b)zyy,3,,

=
Il
2
3

by, c¢zy |= 2“”3(1’703/‘)_030.}"0);
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Z,, vy, 5, 2o, ¥, 5, désignent les dérivées des trois
gy ¥ Tor Tgr Vs 5y désignent les
fonctions z,, ¥, 2, de la variable ¢.

De la circonstance remarquable que D, D', D" sont
proportionnels & trois fonctions de ¢ seul, il résulte que
les asymptotiques sont déterminables par quadratures.
Leur équation différcntielle étant

D; du? -+ 2D} du dv =~ D'} dv2= o,

les deux familles d’asymptotiques sont représentées par
I'équation

D . v D?—D,D)
u—+-.[ird¢ - ef—T

dv = const.,
ot ’on fait successivement e=1 et ¢=— 1. L'en-
semble'des asymptotiques dépend donc de deux qua-
dratures.

Ce résultat de pur calcul tient & une propriété pro-
jective de toute surface (S) d’étre invariante dans la
transformation homographique particuliére

xr=p2X, y=2"Y, 3= oL,
dépendant du paramétre o ().
II. Pour que la courbe imposée u = o soit asympto-

tique de (S), 1l faut et il suffit que D” et, par consé-
quent, I} soient nuls.

Par le fait que la courbe imposée est asympto-
tique, toutes les courbes u = const. sont des asymp-
totiques.

(') On remarquera l'analogie d’équation et de génération des
surfaces (S) et des cones ayant lorigine des coordonnées pour
sommet; la transformation homographique précédente est analogue
a 'homothétie ayant ce point pour pdle.
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La condilion trouvée exprime que la courbe imposée
jouit de la propriété géométrique suivante: En tout
point M de cette courbe, le rayon vecteur OM et la
binormale sont conjugués en direction pm rapporl a
toute quadrique (Q).

Cette relation est une sorte d’équation de Monge-
Pfaff du second ordre ; sur une surface quelconque de
I'espace, elle se réduit a une équation différentielle du
second ordre; pav suite, sur loute surface, il ¥y a au
moins une intégrale de cette équation, distincte d’une
caractéristique de (E). On ne diminue donc pas la
généralité du probléeme de Cauchy, en le résolvant
pour la courbe intégrale générale de cette relation
D', =o; cn d’autres termes, si 'on résout le probléme
de Cauchy pour la courbe la plus générale qui satisfait
a cetle relation, on aura 'intégrale générale (S) de (E).
On connaitra alors une famille d’asymptotiques

u = const.;

autre famille sera définie par une équation réductible
a une quadrature

’

du=-—2 D_,([v

Or, pour trouver toutes les courbes qui satisfont a la
relation D', = o, il suffit de considérer une solution de
chacune des trois équations différentielles linéaires du
second ordre

ry = La,+ Maz,,

Yo=Lyy+ Mby,,

3y = Lz}, +~ Mcaz,,

dans lesquelles L et M sont deax fonctions arbitraires
de v : sizg, ¥, 30 sont trois solutions, la courbe, lieu

du point (zy, 3%, 2,) lorsque ¢ varie, est une courbe
pour laquelle D est nul.
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Considérons I'une de ces trois équations analogues;
soit
7'y = Lz, + Mawz,;

en posant (2 étant une constante arbitraire)

{l‘/-viflv
Ty= e ,

cette équation homogeéne se transforme en une équa-
tion de Riccati

=M+ LV, — @&1.

Une telle équation n’est pasintégrable, en général, mais
on peut profiter du fait que L. et M sont deux fonctions
arbitraires de ¢ pour se donner a priori deux intégrales
de cette équation de Riccati : I'intégrale générale s’ob-
tient alors par une quadrature.

Passons maintenant & 1'étade de I'enveloppe des
asymptotiques. Considérons une surface (S) et une
asymptotique distincte d'une caractéristique de I'équa-
tion (E): imposons celte asymptlotique comme courbe
u = const.; toutles les courbes u = const. sont alors
des asymptotiques d’une méme famille. En excluant des
surfaces particuliéres sur lesquelles nous reviendrons
au 3°, les asymptoliques d’une famille peuvent donc
étre représentées par I’équation u = const. : ce sont les
courbes

— wo(")‘PGU’ ,7:)’0(9)?[)”; 5 = 50(")90"7

correspondant aux diverses valeurs de «. Supposons
que ces courbes aient une enveloppe; cette enveloppe
sera une courbe d’équations

z=o0(u), y=yxu), z3=4yu);

il doit exister une fonction ¢ de « rendant compatibles
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les équations

zo(v)ert = ¢(u), Yo(v)ebt =y (u), zo(v)ect =Y (u),
, do

Ty o =g¢'(u)e et —aop(u)e-au, ceey el

il en résulte que I'on a

c’est-a-dire que l'enveloppe, si elle existe, est une
caractéristique de I’équation (E). Soit 9= ¢, I'équation
de cette caraclérislique ; pour ¢ = ¢, on a alors

. .’ 4!
Xy Jo

ar, by, ¢z

et réciproquement.

La condition nécessaire et suffisante d’existence
de Uenveloppe de la famille u = const. d’asympto-
tiques est donc que les équations en ¢

! / !
Ty Yo _ %o

axr, by, ¢z
sotent compatibles pour une certaine valeur v, de v;
Uenceloppe est la caractéristique v = v,.

Cette condition exprime que la courbe imposée est
tangente & une caractéristique particuliére; ou
encore, ce qui revient au méme, que la courbe imposée
est normale a une quadrique (Q) particulicre.

Proposons-nous maintenant de déterminer toutes les
suriaces (S) dontune famille d’asymptotiques est douée
d’enveloppe ; observons que la condition

’ r !
Zo Yo _ %o
axry by, czg

devient
V1 = v’ = Va,
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en posant, comme précédemment,

nf\', do (‘fvarlv
Zo—=1ae Zy=ve

a, 3, v ¢tant trois constantes arbitraires, et V,, V,, V,
trois fonctions de V.

On considérera donc les trois équations de Riccati
suivantes :

1;/\',111'
Yo= fBe

El ’ ’

h=M+LV,—aV?,
V=M - LV,— V3,
Vo= M+ LV,— ¢V3,

L et M étant deux fonctions arbitraires de ¢; on se
donnera deux nombres quelconques ¢, et Vg, et I'on
considérera la solution de chacune de ces trois équa-
tions qui se réduit a V, pour ¢ = ¢,. Les trois fonc-
tions V,, V,, V, ainsi obtenues conviennent a la sur-
face générale cherchée.

On aura des exemples simples en particularisant les
fonctions L et M, en prenant L et M constants, par
exemple.

Ezemple 1. — Parmi les surfaces (S), il en est qui
sont réglées : elles sont représentées par les équations

= (a0 +m)ear, y=(BoBy)ett, 3= (Y0 10)ect;

leurs asymptotiques sont les courbes « = const., et les
courbes

u=—25u(c—>b)Pyx, /‘RLQ%;
out R(¢) est un polynome du second degré en ¢

R(¢)=—afy(a—08)(b—c)(c—a)v?
+oSbe(b—c)z(Pyo=+1Po) + Sbe(b — c)aByvo.

Pour un choix convenable des constantes, si 1'ex-
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pression
Sa(c—b)Bya,

est nulle, les deux familles d’asymptotiques sont con-
fondues suivant les génératrices rectilignes © = const.,
les surfaces (S) correspondantes sont développables.
C’est le résultat que I'on obtient en appliquant ce qui
précéde au cas L =10, M=o0; on trouve ainsi les sur-
faces développables

zr=a(av-+1)te,
y=B(bo +1)t,

z 4+ y(cv +1)t;

I’aréte de rebroussement est la courbe ¢ = o.

Ezemple 1. — Comme second exemple, je prendrai
L nul et M constant ; en supposant a, b, ¢ tous trois
positifs, si 'on pose

xo=2(chyav + yashyav),
yo=8(chybe + Vb shyby),
3, = 1(chyco +eshycp),

xo=a(cosyav + yasinyav),:
o= 8(cosy/Bo + VB siny/Be),
3y = Y(cos‘/z«r + /e sin \/Ev),

on obtient des surfaces (S) pour lesquelles les asym-
ptotiques u = const. ont pour enveloppe la caractéris-
tique ¢ = o. Lorsque y/a, /b, y/c sont proportionnels
a des nombres rationnels, les surfaces obtenues sont
unicursales, ainsi que les courbes coordonnées (u)
et (v).

Examinons maintenant les particularités d’une sur-
face (S) au voisinage de I'enveloppe d’une famille

ou bien
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d’asymplotiques. Tout ce que I'on peut dire des sur-
faces (S) est une conséquence des propriétés générales
de I'enveloppe d’une famille d’asymptotiques d’une sur-
face quelconque. On sait que la seconde famille
d’asymptoliques a la méme enveloppe, qu’en un point
de contact les directions asymptotiques sont confon-
dues, qu’en un tel point I'indicatrice se décompose en
deux droites paralléles. La courbure totale de la suar-
face le long de I’enveloppe est nulle, ainsi que la torsion
des asymptotiques; le plan osculateur de 'asympto-
tique au point de contact a un contact d’ordre supérieur
avec la courbe.

IIl. Nous avonsimplicitement supposé plus haut que
la famille d’asymptotiques u = const. n’était pas con-
stituée par les caractéristiques de I'équation (E). Etant
donnée I'équation

Sp, gz, y,8)=axp+byqg—cs=o,

la condition donnée par Lie pour que les caracléris-
tiques soient asymptotiques de toute intégrale n’est
pas satisfaite, car on a

0 0 d of /0 of
l<l+,-/>+f<_~£+ f

=L =L Y=o 2y g —cz=0"
dp \ ox 93 dg \dy qdz) @rzp+blyg—ctz=o;

ce ne sera donc que sur des surfaces (S) particuliéres
que les caractéristiques seront des asymptotiques ; ces
surfaces seront les intégrales communes aux deux équa-
lions linéaires

arp +byqg —cs =o,

alzp +b2yqg—crz=o;

elles seront donc orthogonales non seulement aur
quadriques (Q), mais encore aux quadriques

ax?+ b2yt c25%= const,
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Telle est la définition géométrique demandée des
surfaces que nous allons étudier () : on observera com-
bien puissante est la méthode de Lie puisqu’elle permet
de déterminer et de définir ces surfaces sans connaitre
Vintégrale générale de 'équation (E).

Reprenons maintenant la méme question sous un
autre point de vue. Les caractéristiques ¢ = const.
devant étre des asymptotiques, le déterminant D, doit
étre nul. On obtiendra donc les surfaces cherchées en
choisissant pour courbe de Cauchy une intégrale quel-
conque de I'équation de Pfaff (2)

be(b—c)@y yozo+calc—a)yysoxe+abla—b)zyxyo=0;
0J

(') Comme autres propriétés géométriques des surfaces

he(b—c) yrealc—a) gab{a=b) = const.,

on peut signaler celles qui ont été données par Lie et par Klein.
On peut encore considérer les surfaces

Zy* 2¥ = const.

comme se transformant en des plans par la logarithmische Albil-
dung de Sophus Lie, cette transformation curieuse qui lui a permis
de déduire de tout plan une surface qui est de translation d’une
infinité de facons.

(%) A cause de ce qui a été dit au début du 2° et de ce qui va
étre dit au début du 4°, une remarque s’impose pour expliquer
comment en prenant une intégrale générale de I’équation de Pfafl
ci-dessus considérée et en résolvant le probléme de Cauchy pour
cette courbe, on n’obtient pas l'intégrale générale de I'équation (E).
Etant donnée une surface quelconque, sur cette surface, Péquation
de Pfaff devient uue équation différentielle de premier ordre; si la
surface est la surface intégrale de I'équation (E) (exception étant
faite pour les surfaces gbte(t—e)ycale~a gabla—b— copst.) cette équation
différentielle définit précisément les caractéristiques qui engendrent
Pintégrale considérée. Il n’existe donc pas sur I'intégrale générale
de (E), sauf exception, d’intégrale de P'équation de Pfaff qui soit
distincte d’une caractéristique.
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celle-ci s’écrit

d
T (xgc(b-c)y(.‘;a(c—a) z%b(a-/,)) =o;

’ensemble des intégrales de I’équation de Pfaff est donc
constituée par les courbes tracées sur les surfaces
L 1

belb—c) 5,.calc-a) rabla-b) —
xo Jo Zo = const.

On se donne donc une telle courbe distincte d’une
caractéristique et ’on doit résoudre pour cette courbe le
probléme de Cauchy. Or, d’aprés ce qui a été dit au
début du probléme, les surfaces précédentes sont des
intégrales (S) particuliéres : les surfaces cherchées ne
sont donc autres que les surfaces

z[ﬂb‘([/—c)yt‘lt([,‘—a)zll/)(d—ll) = const.;

on vérifie immédiatement qu’elles sont Lrajectoires
orthogonales des quadriques

@?z?+ b2y ¢232= conslt.

On peut prendre pour équations paramétriques de
ces surfaces

X = ai¢ 9”’,
y= pll;(jlﬂ’
5 = Yt00‘3a7

ou les équations équivalentes :

= euu+u!v’

y= pebu—l»b'-'v’

5=y ecutcty R

pour une telle surface, rapportée aux courbes (u) et
(¢), ona

D =o,

D' = abe(ce —b)(b—c)(c —a)rys,

D'=albec(w - b-i-e)(a—b)(b—c)(c— a)rys,
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et les asymptotiques (') sont donc les courbes

v = const. et 21 + (@ + b + ¢)v = const.

N’ayant fait aucune hypothése de signes sur a, b, c,
je peux, en particulier, considérer lecassa+b+c=o:
dans le cas de quadriques (Q) équilateres, les
asymptotiques de la surface considérée sont donc
les courbes coordonnées uw = conslt. et ¢ = const.; on
observera que, dans ce méme cas, ces surfaces (S)
particulieres sont orthogonales non seulement auz
quadriques (Q) et auzx quadriques d’équation :

a?x?+ bry?+4 c?3?= const.,
mais encore aux quadriques d’équation :
atx?-- bdy? - ¢* 5% = const.
IV. En général, lcs courbes coordonnées ne sont
pas conjuguées sur la surface (S) (2). Pour qu’il en
soil ainsi, il est nécessaire et suffisant que D’ soit nul,

c’est-a-dire que la courbe imposée soit intégrale de
I'équation de Monge

(b —c)xyyysy+bc—a)yyshay+c(a— b)sgzhy yy=o0;

(') Iy alieu d’examiner si les asymptotiques v = const, admettent
ou non une enveloppe : ce serait 1a un exemple d’enveloppe d’autant
plus remarquable que cette envcloppe serait courbe intégrale de
I’équation (E). On s’assure aisément que cette enveloppe n’existe
pas.

(*) Les surfaces d’équations :

JS(0) < fi(u),
Yy =9(v) < ¢ (u),
3=y (9) X ¢, (u),

x

telles que les courbes coordonnées sont conjuguées, ont donné licu
a divers Mémoires de PETERSON, M. JAMET, LiE et RAFFy.

Ann. de Mathémat., l° série, t. XI. (Janvier 1g11.) 3
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on reconnait I'équation de Monge que Lie associe au
complexc tétraédral constitué par les normales aux
quadriques (Q). La condition pour que les courbes
coordonnées soient conjuguées sur la surface (S) est
que la courbe de Cauchy soit une courbe de ce com-
plexe tétraédral. S'il en est ainsi, toules les courbes
u = const. sont des courbes de ce méme complexe.

Sur une surface (S) intégrale générale de (E), cette
¢quation de Monge se réduit 4 une équation différen-
tielle distincte de 'équation diftérentielle des caracté-
ristiques situées sur celte surface. 1l en résulte que,
sans diminuerla généralité du probléme de Cauchy, on
peut choisir la courbe imposée parmi les courbes déter-
minées par Lie et dont les tangentes appartiennent au
complexe tétraédral. La surface (S) seraalors rapportée
a un systéme conjugué, les courbes ¢ = const. élant les
caracléristiques de (E).

Considérons alors une surface quelconque (S,) rap-
portée a un systéme conjugué (u) (¢) et qui n’est pas
nécessairement une surface (S) particuliére. Réalisons
la déformation (') de (S,) qui consiste a faire corres-
poundre & tout point M de (S,) le point M’ ot la tan-
gente a la courbe « = const. qui passe par M touche
Paréte de rebroussement de la développable circonscrite
a (Sy) le long de la courbe ¢ = const. qui passe par M.
Les coordonnées de M élant x, y, 3, celles de M/ seront

ox , Jd . 3
X=z+r, Y =y+x5§, L=z+rs

ot A est une cerlaine fonction dewetde v; z,y, 3sont

(') 1l s’agit bien entendu d'unc correspondance entre points des
deux surfaces (S;) et (%) et non d’une déformation avec conser-
vation de I'élément linéaire.
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trois solutions d’'une méme équation du second ordre

020 _ 00 pb
duoe ou o’
on a donc
oX . ox O\ oz
-a—u-:(l —|—-&A)-d— <B)\—r— E)x:
X A
W—<‘+5; prinie ol
02X 2} ox
g2 7 AN
S e [A(H—AM—&- ~(1—|— )J
02A 1 ox
[B(|+Ax)+ <B>~)+0,WJ
o\ 2z
<B)\ du)W'

En se reportantalors & la démonstration du théoréme
de Dupin sur les systémes conjugués, on voit que le A
10X 0X X
A’ Wt’ v ou dv
i2xr

du point M est précisément égal & —
se trouvent étre des fonctions linéaires de 55 et dc
seulement, et il existe, par conséquent, une relatlon
02X  JX X
duoe’ ou’ o0
par les dérivées de Y et par celles de Z ; les courbes u
et ¢ sont donc conjuguées sur la surface (Z,) lieu du
point M'.

Celle propriété générale n’est autre que celle bien

linéaire enlre —— s cette relation étant vérifiée

connue (ui concerne les congruences de droites, leurs
développables et leurs surfaces focales.

.

V. Les formules précédentes, dans lesquelles on ne

suppose plus & égal & — %, permettent d’oblenir une
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équation aux dérivées partielles du second ordre

02 1 Ok O\ oB

Ju dy A du oy BTy

— )1 %(A)\ “- 1) — <B)\+ %) dLog(Ah+1) LOg(;;)\_'—') = o,
qui résout la question pour une surface quelconque
rapportée 4 un systéme conjugué.

Proposons-nous de déterminer les intégrales de cette
équalion qui sont uniquement fonction de la variable ¢,
en supposant que A el B sont deux fonctions de ¢ : pour
une surface (S) intégrale de 'équation (E), on a, en
effet,

ary=Aax,+ Bz, ey Cy

A et B étant des fonctions de ¢ seul. Enprenant B=—v¢,
ce que I'on peut toujours supposer si B est distinct de
zéro, on oblient précisément les équations des courbes
du complexe tétraédral que forme Lie ; mais je ne ferai
aucune hypothése sur la forme des fonctions A et B de
¢. En prenant pour fonction A une fonction de ¢ seule-
ment, on fait correspondre & la surface (S,) une sur-
face (2,) de méme nature

X = e (zy+ Ay ),
Y = el ( o+ hr),
Z = ect (39 +N3y);

cette surface (X,) est la surface intégrale de (E) qui
passe par la courbe imposée

z = xy+ Az}, Y =Yoo+ Ayo, 5 =34+ M35

celle-ci s’obtient & partir de la courbe imposée pour
(S)), en portant un certain segment fonction de ¢ sur

les tangentes a cette courbe. La question proposée
revient & chercher s'il est possible de déterminer A par
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la condition que les deux courbes imposées soient des
courbes du complexe tétraédral.
On peut donc déterminer les déformations considé-
rées de deux maniéres. En partant de I'équation aux
dérivées partielles du second ordre, on obtient une

. . . dh C
équation diftérentielle entre -’ %, ¢, dont lintégrale

générale est
1+ A\
B

= const.

On peut encore écrire que l'on a trois relations de la

forme
aXy=LaX,+ MX);

on obtient ainsi, aprés division par azx,, une expres-
sion en a qui doit étre nulle; par analogie cette méme
expression doit étre nulle lorsqu’on remplace @ par b
ou ¢. Or, on constale que, mise sous forme enliére,
Pexpression considérée est un trinome du second degré :
I'équation du second degré devant avoir trois racines
distinctes a, b, ¢, les coefficients doivent étre nuls, ce
qut donne

LO+AN)=AQ+AX) + AN+ AN,
LB(2 4+ AN) —M[A(1+ AN)+ A X -+ AN
=B(A'A+AX) + A(B—2AR),
M[B(A'A -+ AN) -+ A(B —AB")] = LB?;

en éliminant L. et M entre ces Lrois équations linéaires.
on forme une équation en A. En posant

AN 41
5 =

on met L et M sous la forme suivante :

B’ L
L= ! om— = —
A+0+B) M BL—#—A)\G"
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et I'équation diftérentielle devient
. B\
b (A + -§> —o.

Si donc A + B-Eest distinct de zéro, § doit étre nul

et I'on trouve ainsi

Ah+1 const
B - ”
B
L=A+—B—’ M=B

. . B’
Examinons le cas oun A -+ g est nul. La courbe
(24, ¥, 30) satisfait alors a la condition

@, B B’

on peut donc poser, 2, 3, v élant des constantes arbi-
traires,

xy=2(14+ av), YYo= B(1+ bv), So=y(1+cv);

ce cas correspond donc aux surfaces (S) dévelop-
pables.

Ecartons ce cas et supposons quil s’agit d’une sur-
face (S,) non développable. L’équation différentielle
des asymptotiques de (Z,) se déduira de celle des
asymplotliques de (S,) en remplacant A par A + %:
cela résulte des expressions Lrouvées pour L et pour M.
Lorsque 6 varie, en restant constant, on obtient une
famille 4 un paramétre de surfaces (Z,); I'équation dif-
férentielle des asymptotiques de ces surfaces ne dépend
pas de 0 : les asymptotiques se correspondent donc sur
les surfaces (Z,).

Dans le cas ot L se réduit & A, et dans ce cas seule-
ment, les asymptotiques des surfaces (Z,) correspon-
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dent aux asymptotiques de la surface (3,) initiale; on
a alors B’ = o, B = const., etla courbe imposée a pour

equahons ‘
a« 14 «

b— R

xy=av* " Yo=fv ¥ So=7ye¢ T,

PSRN ol s 1 .
ce qui revient & prendre A égal & —- Par suite, on a

A= lko,

, - ka )
\0-(I‘0<l>y~m ]

kb
Y,= y0<l~}— —-——~b—B>}

: ke
/,(,:;0(1—‘,~~—|; 5
\ Cc— 0D

la déformation considérée est donc une transformation
homographique dépendant d’an paramétre arbitraire 4.
Les surfaces (Z,), qui comprennent la surlace initiale
(Sy), onl pour équation

xl;(‘l[)—l?)(a—-ll)‘ycu(cv(t)(l}*-“);u/}‘.rt—[})((‘-li) = const.,

et rentrent, conséquemment, dans la famille

)yt gV = const.

SOLUTIONS DE QUESTIONS PROPOSEES.

Avis.

Nous prions les lecteurs qui nous adressent des solutions de
questions proposées de vouloir bien se conformer aux pres-
criptions suivantes :

1° N’écrire que sur un coté de chaque feuillet;
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2* Dessiner avee soin les figures sur des feuilles a part;

3 En téte de chaque solution, indiquer le numéro de la
question, puis année et la page du Volume o I'énoncé a
paru; reproduire intégralement I'énoncé, en indiquant entre
parenthéses le nom de Iauteur; enfin, faire précéder la
solution proprement dite de l'indication :

SoLuTION,

par M....

2127.

(1909, p. 192.)

D'un point P> on méne quatre normales & une conique :
svienta, 3, y, 0 les centres de courbure situés sur ces quatre
normales. De chacun des points x, 8, v, ¢ on peut mener
deux autres normales & la conique. Démontrer que ces
huit droites sont tangentes & une méme conique.

(G. Cuny.)

SOLUTION

Par M. R. BouvaIsT.

On connait le théoréme suivant : S¢ parmi les n* points
d’intersection de deux courbes d’ordre n, np se trouvent
sur une courbe de degré p(p < n), les n(n-— p) points res-
tant seront situés sur une courbe d’ordre n — p. (Voir, par
exemple, SALMON, Géométrie analytique, t. 11, p. 26.) En
particulier si 'on considére une courbe du quatriéme ordre
et une droite la coupant ena, 8, ¥, ¢. les points d’intersection
de la courbe autres que 2, B, v, & avec les tangentes a celle-ci
en ces points seront sur une conique.

Corrélativement, si I'on considére une courbe de quatriéme
classe et un point P, sia, 8, v, 8 sont les contacts des tan-
gentes & la courbe issues de P, les tangentes a cette derniére
issues de «, §, v, & seront tangentes & une conique.
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2140.

(1909, p. 480.)

D'un point P on méne les trois normales a une para-
bole. Soient P' le symétrique du point P par rapport a
l’aze de la parabole; G le centre de gravité du triangle
ayant pour sommets les centres de courbure situés sur les
trois normales; R le point de rembroussement de la déve-
loppée. Démontrer que les trois points R, P, G sont en
ligne droite, et que l'on a RP'= PG, (G. Cuny.)

SOLUTION

Par M. PARRoD.

Soient y* = oz I'équation de la parabole, (2, y,) les coor-
données du point P et (X, Y) celles d’'un point de contact
d’une normale menée de P avec la développée; y étant l'or-
donnée du pied d'une normale, on a

yi+ay(xe—1)+2y,=0
etles coordonnées d’un point de contact XY sont:
. 3y?
X =14 -Ly
2
Y= —ys.

Les coordonnées du point G sont :

2 2 2
=g (Xi+ X+ Xy) = 1+ LB,

t
1=Vt Yo Yoy =— (0t +yi+oi)i
done
§=o22y—1,

n = —2¥¢-
On voit ainsi la propriété énoncée.

Autres solutions par MM. BARISIEN, BouvAIST, GAEDECKE, Pi- -
LISSIER.
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E=N
~

~

2142,

(1909, p. 576.)

S¢ un céne du second ordre est circonscrit a un
tétraedre, tout plan passant par le sommet du céne coupe
celui-ci et les quatre faces du tétraédre suivant six droites
langentes & une conique. (Tmg.)

SOLUTION

Par M. R. Bouvaisr.

Soient ABCD lc tétraédre, S le sommet du cone considéré,
P un plan sécant passant par S. Soient enfin a, «/, £, 8, v, ¥
les traces sur le plan P des arétes AB, CD, AC, BD, AD, BC.
Les cones de sommet S circonscrits au tétraédre forment un
faisceau ponctuel et les génératrices suivant lesquelles ils
sont coupés par le plan P forment un faisceau en involution F
dont trois couples de rayons homologues sont Sa, S«', S§3, S,
S+, SY¥', chacun d’eux correspondant aux cas de décomposition
du cOne en un systéme de deux plans. D’autre part les tan-
gentes menées par S aux coniques inscrites dans le quadrangle
ax'BR'yy' forment un faisceau involutif ® qui, ayant trois
couples de rayons communs avec F, se confond avec lui. La
proposition & démontrer en résulte immédiatement,

Solution semblable par M. KLue.

2143.

(1910, p. i8.)

Soient ABCD un tétraédre et P un point quelconque de
Uespace. La droite PA rencontre la face BCD en A, et les
droites BA;, CA,, DA, coupent CD, DB, BC en L, M, N. On
joint le milieu 1 de AA; aucentre O de la conique inscrite
a BCD en L, M, N. 4 chacun des sommets du tétraédre
correspond une droite 10.

Démontrer que ces quatre droites sont concourantes.

(So~par.)
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SOLUTION

Par M. R. Bouvaisr.

Il existe une quadrique = tangente aux faces du tétraédre
ABCD aux points Ay, By, G;, Dy, ou les droites PA, PB, PC,
PD coupent les faces de celui-ci. Soient T le cone de sommet A
circonscrit a =; L, M, N les points ou les droites ABy, AC,,
AD,; coupent CD, BD, BC, et enfin soient «, 8, v les points ol
LM, MN, LN coupent respectivement BC, BD, CD.

Soit O le centre de la conique o, section du cone I' par
BCD, la droite OA, est par rapport a s le diamétre conjugué
de 28y. Le plan B, C; D; détermine par ses intersections
avec les faces ABC, ABD, ACD un triangle circonscrit a la
conique s’, de raccordement de la quadrique = et du cone T,
les droites a Dy, 8By, v Cy, sont les tangentes & ¢’ en Dy, By, Cy,
et le plan AA; O coupe le plan B, C;D, suivant le diamétre
conjugué de 23y dans ¢'; c'est par suite un plan diamétral. de
la quadrique =. Soient R et S les points d’intersection de la
droite A;{O avec la conique o;le plan AA; O coupe X suivant
une section centrale inscrite dans le triangle RAS et tangente
a RS en A;; or le licu des centres des coniques inscrites dans
RAS et touchant RS en A, n’est autre gue la droite 10 qui,
dés lors, passe par le centre w de X. Les trois autres droites
analogues a IO passent de méme par w.

Autre solution par M. KLu:.

2448.
(1910, p. 144.)
Pour chaque normale a l’ellipse inclinée a 45° sur les
azes de l'ellipse, le centre de courbure du pied de la nor-

male est au milieu de la corde de 1'ellipse interceptée par
la normale. (E.-N. BARISIEN.)

SOLUTION
Par M. THIE.

M étant un point quelconque d’une ellipse, on sait que le
cercle osculateur en M peut se construire de la facon suivante:
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on méne dans Pellipse la corde MN, que fait avec les axes les
mémes angles que la tangente en M; le cercle osculateur
cherché est le cercle tangent a I'ellipse en M et passant en N.

Dans le cas od la normale en M et par suite la tangente au
méme point sont inclinées a j5° sur les axes, la corde MN se
confond avec la normale; le cercle osculateur en M est donc
le cercle de diamétre MN, ce qui établit la proposition.

Autres solutions par MM. KLue et Lgz.

2146.

(1910, p. 96.)

On considére la conchoide centrale de la podaire cen-
trale de l’ellipse (axes 2a et 2b), obtenue en augmentant
ou diminuant les rayons vecteurs de la podaire de la lon-
gueur K. St A désigne l’aire de la podaire et s le péri-
metre de Uellipse E, on a pour les aires de chacune des
deux courbes constituant la conchoide

Uy =A+nK2+ Ks \ _ar b
U= A +=K2 —Ks ( - __2_)

(E.-N. BaARisien.)

SOLUTION

Par M. Tuig.

Plus généralement supposops que E soit une courbe fermée
plane quelconque, et que le point O par rapport auquel on
construit la podaire de E, puis une conchoide de cetle po-
daire, soit quelconque a l'intérieur de E. Soient, en prenant
le point O pour péle avec un axe polaire quelconque :

p, w les coordonnées polaires d’un point de E;
r, 8 les coordonnées polaires du point correspondant de la
podaire.
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On a pour expression de I'aire de la conchoide :

I 27
U,:—f (r+K)do
[}

2

[ 27 27
=_f ,-2de+1(f rdb -+ = K?
2 Jo o
27
=A+1:K2+Kf rdo.
0

Soit V I'angle que fait la tangente a K avec le rayon vec-
teur; on a

r=psinV, 0:(0+V-—§.

On peut donc écrire

27 -
[ I'df):/ psinV(dw + dV),
E

“0

le second membre pouvant étre considéré comme une inté-

grale curviligne prise le long de E. Mais on a, avec les nota-
tions habituelles,
pdw = sinVds,

d’ou

27T

f »db =/'sin=Vds+fpsin\'dv.
0 E E

Pour évaluer la derniére intégrale, intégrons par parties. Il
vient

fpsianV=(—gcos\’)g+fcosVdp.
E “E

Le premier terme du second membre est évidemment nul,
et 'on a de plus

dp = cosV ds;

on a donc finalement

27
f rdﬁ=fsin2Vds+f0052Vds=fds=s,
0 “E E E

s étant le périmétre de E. En portant cette valeur dans l'ex-
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pression de Uy, on obtient
U; = A + =K2+ Ky,
ce qui est bien Ja valeur indiquée dans I’énoncé. On véri-

fierait de méme la valeur de U,.

Autre solution par M. BouvaisT.

2447.

(1910, p. 143.)

Ecrire, en employant les neuf chiffres autres que zéro,
trots nombres ayant respectivement deux, trois et quatre
chiffres, tels que le troisi¢me de ces nombres soit égal au
produit des deuz premiers.

On a, par exemple,

12 < {83 = 5796.
Il y a d’autres solutions. On demande de les trouver

toutes. (R. B.)

SOLUTION
Par M. Tuie.

Soient A, B, C les sommes respectives des chiffres du pre-
mier, du second et du troisiéme nombre. On doit avoir, en
appliquant la preuve par g,

(1) AB=C (modg).
D’autre part
A+ B+ C=j5,
d'odr
=—A—B (modg).
(1) peut done s'éerive

AB=—A—B (modg)

(29 (A+1)(B+1)=1 (modg)
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Observons d’autre part que A est au moins égala 1 +2 =3
et au plus égal a 8 + 9 =17; B est au moins égal a
1 +2+3==6 et au plus égal & 7 + 8 - g = 24. L’équation
indéterminée (2) n’a donc qu’un nombre limité de solutions
en A et B. On les examinera successivement pour voir si elles
correspondent a des solutions du probléme.

Il serait fastidieux de reproduire complétement cette ana-
lyse, qu'on abrégera en tirant parti de diverses remarques.
Pour donner un exemple de la marche a suivre, examinons en
partie le cas

A =12, B =15;

on a bien
A+NB+nN=13x16=4x7=28=1 (modg).
A est alors P'un des nombres
39, 48, 57, 75, 84, 93.
Lissayons A = 39. Le premier chiffre de B ne peut étre que
1 ou 2, sinon le produit AB aurait 5 chiffres; si ce chiffre

est 1, B est nécessairement 'un des nombres

168, 186.
On trouve
39 X 168 = 6552, 39 < 186 = 7234.

La seconde multiplication donne seule une solution.
Si le premier chiffre de B est 2, B est'un des nombres

258, 285.

285 est inadmissible, car G serait encore terminé par 5;
258 ne convient pas non plus, car le produit 39 x 258 a
5 chiffres.

On essaiera de méme les autres valeurs de A correspondant
au cas examiné.

On reconnait en définitive que la question proposée n’ad-
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met que les sept solutions suivantes :

12 X< 483 = 5796, 18 X< 297 = 5346,

27 X 198 = 5346, 28 X< 157 = 4396,

39 < 186 = 7254, 42 < 138 = 5796,
48 > 159 = 7632.

On peut encore chercher a résoudre le probléme, en sup-
posant que les nombres de chiffres de A, B, C sont respecti-
vement 1, 4 et j. On trouve les deux solutions

4 >< 1738 = 6952,
4 > 1963 = 785a.

Les neuf solutions indiquées ci-dessus ont été données aussi
par M. H.-E. Dudeney, dans le numéro d’aoit 1910 de la
revue anglaise The Strand Magaszine.

Enfin j’ai cherché a étendre le probléme au cas ou I'on
admet le chiffre o parmi ceux qui composent les nombres A,
B, C. J'ai obtenu les résultats suivants :

§ < 3907 = 15628,
4 X 7039 = 28156,
27 X 594 = 16038,
39 X< 402 = 15678,
54 < 297 = 16038.

Comme l'analyse devient ici assez laborieuse, je ne puis
absolument garantir que je n’ai laissé échapper aucune solu-
tion.
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[K!18g]

SUR LES COORDONNEES PENTASPHERIQUES GENERALES;

Par M. J. HAAG,

Chargé de cours a la Faculté des Sciences
de Clermont-Ferrand.

On sait qu’étant donné un systéme de cinq sphéres
deux a deux orthogonales, on peut lui faire corres-
pondre un systéme de coordonnées, appelées coor-
données pentasphériques, dont I'introduction en Géo-
métrie est due 3 M. Darboux. Mais on peut aussi
définir des coordonnées pentasphériques en partant de
cinq sphéres quelconques (*); et, bien qu'on puisse
les déduire des coordonnées orthogonales par une
simple substitution linéaire, nous croyons cependant
qu’il soit intéressant et utile d’en donner une exposi-
tion directe. C’est ce que nous allons essayer de faire
icl.

1. Nous commencerons par donner quelques défini-
tions qui faciliteront, dans la suite, I'énoncé de plu-
sieurs propositions.

Considérons la fonction

S=hk(x?+yr+ 2*)+ 227 +2by +acs+d

des coordonnées rectangulaires z, y, z. Nous disons
qu’elle définit un feuillet sphérigue (*) de coordon-

(') Voir G. DarBoux, Sur une classe remargquable de courbes
et de surfaces, p. 270.

(?) Cette dénomination correspond au feuillet plan de Grassmann
(Blatt, ou Plangrésse).

Ann. de Mathémat., 4 série, t. X1. (Février 1g11.) 4
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nées («, b, ¢, d, k) ('), porté par la sphére dont
I’équation est obtenue en annulant S. Le nombre k sera
dit 'indice du feuillet. Un feuillet d’indice nul est donc
porté par un plan et sera dit feuillet plan. Un feuillet
de Uinfini a pour coordonnées a =b=c=k=o,
d#o. Il est porté par le plan de l'infini, et il équi-
vaut, e¢n somme, a un coefficient d, qui sera dit le
coefficient du feuilles. .

Etant donné un feuillet a distance finie, nous appel-
lerons point du feuillet tout point M dont les coor-
données z, y, zannulent la fonction S correspondante.
~ Nous ne considérerons donc, comme points du
feuillet, que des points a distance finie. Nous appelle-
rons vecteur normal (*) du feuillet, relatif au point M,
le vecteur (MN) dont les projections sur les axes sont

(1) a+kez, b+ ky, ¢+ ks.

Si & n’est pas nul, ce vecteur varie avec M, et si 'on
appelle I le centre de la sphére qui porte le feuillet, ou
centre du feudllet, on a I'égalité géométrique

(2) (MN) = k(IM).

- On voit que (MN) est dirigé vers I'extérieur ou vers
Fintérieur du feuillet, suivant que k est positif ou
négatif. Il définit le coté positif du feuillet, ainsi qu'un
sens de rolation dans le plan tangent en M (3).

Si k=0, le vecteur (MN) demeure équipollent a
lui-méme quand M décrit le feuillet.

() Ces coordonnées sunt toujours supposées finies.

(%) C'est le Normalenstrecke de Grassmaunn, dans le cas du feuilict
plan.

(®) Ceci est toutefois en défaut pour un feuillet de puissance nulle
car (MN) est alors dans le plan tangent, suivant la droite isotrope
double de ce plan.
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Dans tous les cas, des expressions (1) on déduit
(3) MN' = a4 b1+ c*— kd.

Cette quantité, qui va jouer un rdle fondamental,
sera appelée la puissance du feuillet. Un feaillet de
puissance nulle et d’indice non nul sera dit feurllet-
point; il est porté par une sphére de rayon nul. Un
feuillet plan de puissance nulle et situé a distance finie
sera un feutllet isotrope; il est porté par un plan iso-
trope. Bien que nous n’ayons pas défini le vecteur
normal pour un feuillet de I'infini, nous conviendrons
de regarder encore, dans ce cas, l'expression (3)
comme représentant la puissance du feuillet, laquelle
est donc nulle (*).

Supposons deux feuillets (S) et (S') possédant au
moins un point commun M a distance finie. Nous ap-
pellerons puissance commune des deux feuillets,
ou puissance de (S) par rapport & a ('), [ou de (§)
par rapport a (S)], le produit scalaire des vecteurs
normaux (MN), (MN’) des deux feuillets, c’est-a-dire

(') On démontrera sans peine les propositions suivantes:

Si un feuillet (S) varie de fagon que son centre I tende vers une
position limite I,, située A distance finie, et que son indice tende
vers zéro, ou, ce qui revient au méme, que son rayon augmente
indéfiniment, sa limite est un feuillet de 'infini. 1l en est de méme
si Is'¢loigne indéfiniment dans une direction non isotrope, le rayon
de (S) prenant d’ailleurs une suite de valeurs quelconques.

Si I s’¢loigne indéfiniment dans une direction isotrope («, B8, v),
et sile rayon reste fini, le feuillet (S) a pour limite un feuillet
dont les coordonnées sont:

a=—)\a, b=— B, c=—N\y, d, k=o,

en désignant par A la limite du rapport E’_s’—-i-—t” ou (§,m,§ 0)

sont les coordonnées homogénes du point 1. Comme cette hmlte est
indélerminée, il en est de méme de cclle du feuillet.
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la quantité

P(S,8") = MN.MN'.cos(MN, MN') (1).

On établit aisément la formule
kd+k'd

(%) p(S,8") = aa'+ bb'+ ¢’ — 22

Dans le cas od les deux feuillets n’ont pas de point
commun a distance finie, cette derniére expression
servira de définition a leur puissance commune.

Il est clair que la puissance d’un feuillet par rapport
a lui-méme n’est autre que la puissance de ce feuillet.

Enfin, si deux feuillets ont un point commun M a
distance finie, nous appellerons angle des deuz feuil-
lets Pangle des vecteurs normaux correspondants. Le
cosinus de cet angle est entiérement déterminé et il est
donné par la formule

, 5,8

(3 °°’<S’S>=ﬁ%‘m—1\3’
, , , kd+kd
aa +bb+cc———-2—

B vart+ b+ c?—kdya'?+ bt + ci—kd

les radicaux devant étre pris avec leurs valeurs arith-
métiques, quand ils sont réels (2).

On vérifiera sans peine les propriétés suivantes :

Si les feuillets (S) et (S') ont des indices non nuls,
on a, en appelant LetI' les centres et R et R’ les rayons
des sphéres qui les portent,

rh i P(S,S’)
— R2— —_—— —
(6)‘ II R R'? 2

(') Gette définition du produit scalaire est illusoire quand l'un
des vecteurs est isotrope; il vaut mieux prendre comme expression
de cette quantité la somme XX'+ YY'+ ZZ', ou X, Y, Z, et X', Y,
Z' sont les composantes des deux vecleurs suivant trois axes rectan-
gulaires.

(?) Il estindéterminé pour deux feuillets de puissances et de puis-
sance commune nulles.
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Le premier membre de cette égalité a été désigné
par M. Darboux sous le nom de puissance commune
des deux sphéres. 1l a, comme on voit, 'inconvénient
de devenir infini dés que l'un des feuillets devient
plan.

Si (S) est a indice non nul et si (§') est un feuillet

(5,89
k

plan a distance finie, le quotient)D
produit scalaire des vecteurs (IM') et (M'N’), en dési-
gnant par M’ un point quelconque de (S'). En particu-
lier, si (') n’est pas isotrope, on peut prendre pour
M’ la projection de I sur (§'), et 'on a

est égal au

0 PES) s,
Si (S) et (S') sont tous deux des feuillets plans a
distance finie, leur puissance commune est égale au
produit scalaire des vecteurs normaux (MN) et (M'N’)
relatifs & deux points quelconques des feuillets.

Si (S') est a l'infini, on a simplement

(8) p(S,S’):—%k.

2. Ces préliminaires étant exposés, choisissons cinq
feuillets déterminés linéairement indépendants (c’est-
a-dire dont les coordonnées de méme nom ne sont pas
liées par une relation linéaire et homogéne), que nous
appellerons les feuillets fondamentauz. Le feuillet S;,
par exemple, sera défini par la fonction

Si=ki(2+ yr+ 22) 4+ 2a;% + 2b;y +2¢;3 + d;.

Il est clair que tout feuillet (S) peut étre défini par

la fonction
$
S szyfst.

i=t
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ol ¥y, ¥2, ¥3, ¥s, ¥s sont des nombres algébriques
déterminés. Ces nombres seront appelés les coor-
données pentasphériques, ou simplement les coordon-
nées, du feuillet (S), que nous nommerons aussi le
feuillet (). Le feuillet (S;) a évidemment toutes ses
coordonnées nulles, sauf y;, qui est égal a un.

Si l'on applique la formule (3), on voit que la puis-
sance du feuillet (y) s’exprime par une forme quadra-
tique, de discriminant non nul ('), des coordonnées y;;
nous la désignerons par la notation @ (y).Quant a
Pindice 4, il devient une forme linéaire

5
F(J’)=Z kiyi
i=1
qui ne peut étre identiquement nulle, si 'on veut que
les feuillets fondamentaux soient lindairement indé-
pendants. Les formes Q(y) et F(y) seront appelées
respectivement la forme quadratique et la forme
linéaire fondamentales.
D’aprés cela, I'équation

(9) 2(y)=o0
caractérise les feuillets de puissance nulle; 1'équation
(10) F(y)=o

caractérise les feuillets plans; ces deux équations si-
multanées caractérisent les feuillets isotropes. Un
feuillet de I'infini a des coordonnées déterminées 3 un
facteur prés, qui est, par exemple, le coefficient du
feaillet (n°1); ces coordonnées doivent satisfaire a (g)
et a (10).

(') Si les feuillets (8;) sont réels, cette forme quadratique est
unc somme de quatre carrés positifs et d’'un carré négatif, en vertu
de la loi d’inertie.
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Si 'on se reporte a la formule (4), et si I'on se
rappelle les propriétés d’invariance de la forme polaire
d’une forme quadratique, on voit que la puissance

commune des deux feuillets (y) et (y') estégale a la
5
, 0Q

forme polaire Q(y[y'") E;‘ 2 Vi
=1 -
D’aprés la formule (3), angle des deux feuillets est
donné par
: er/y)
(11) cos(y, ') = e
vVay)ve)

La condition d’orthogonalité est donc
Qyly)=o.

On déduit de ce qui précéde une interprétation trés
simple des coeflicients de Q (). Si 'on pose

e(y) EZZ Aijyiyis

le coefficient A;j est égal a la puissance commune des
feuillets fondamentaux (S;) et (S;).

3. Nous appellerons coordonnées adjointes du
feuillet () les cinq quantités

T daQ
2 dy;

xrp=

Avec ces nouvelles variables, la forme quadratique

Q(y) se transforme en son adjointe w (), et la forme

linéaire F () devient une nouvelle forme linéaire f( ).

La puissance du feuillet (y), ou feuillet (2), s’écrit.
alors

P(y)=20(y)=uw(z) =Z-‘”t}’i-
i=1
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La puissance commune des feuillets () et (') s’écrit
de méme

H 5
Py =0(yly) = w(@|e) =N aipi= Y20

i=1 i=1

Il y a lieu d’introduire maintenant les feuillets (s;)
dont toutes les coordonnées adjointes sont nulles,
sauf z;, qui est égal a un. Ces feuillets seront les
Sfeuillets adjoints fondamentauz. Le feuillet (s;) est
entiérement défini par les conditions d’étre ortho-
gonal a (S;), pour j3£i¢, et d’avoir 'unité pour
puissance par rapport a (5;).

Si Pon pose
w(z) Ezzaﬁxuxi,

le coefficient a;; est égal &4 la puissance commune
de (s;) et de (s;) ().

Grice a l'introduction des feuillets adjoints fonda-
mentaux, il est facile d’avoir la signification géomé-
trigue des coordonnées d'un feuillet quelconque.
Remarquons, en eftet, qu'on a

5
p(S, s:) =Z-‘t"i}’t=y1-
i=1

De méme
5
P(S,80) =Y yiwi= .
i=1

Donc, les coordonnées y; et x; d’un feuillet sont
respectivement égales aux puissances de ce feuillet
par rapport as; et a S;.

U

A
(') On sait d'ailleurs que a; = %: en appelant A le discrimi-

nant de Q (y) et A}/ le mineur relatif & A"i dans ce discriminant.
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4. Considérons un feuillet-point, de centre M. Si
I'on fait varier son indice, ses cinq coordonnées varient
proportionnellement; nous pouvons donc les considérer
comme des coordonnées homogénes du point M. A
tout point M correspondent donc un systéme de coor-
données homogeénes y;, qui sont proportionnelles & ce
qu’on peut appeler les puissances du point par rapport
aux feuillets (s;), et un systéme de coordonnées homo-
génes z;, qui sont proportionnelles aux puissances
de M par rapport aux feuillets (S;).

Ces coordonnées doivent vérifier respectivement
I'équation (g) et I’équation

(12) w(r)=o.

Si I'on applique la formule (6) aux deux points M
et M/, on a

MM = 2D 8y —y) _ w@—2)
FOFQO)  FOFQ)  fl@)f(a)

en vertu de la formule de Taylor et des équations (g)
et (12). En particulier, si les deux points sont infini-
ment voisins, on a I’élément linéaire de 'espace

(FOOT ~ F@F
Les feuillets orthogonaux en M 4 la droite MM’ ont
pour coordonnées hy; + udyi, h et p désignant deux
paramétres variables. De la résulte que la condition
d’orthogonalité des deux droites MM’ et MM, ou M”
désigne un autre point voisin (y 4 8y), est

ds? = Q(dy) w(dr)

2(dy|8) =o,
w(dz [3z) = o.

ou bien

Une surface quelconque est représentée par une
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équation homogéne
(13) G(y)=o.

En particulier, la sphére qui porle le feuillet (z') a
pour équation
21”,-}/5:0,

c’est-a-dire I’équation linéaire la plus générale. Les
sphéres tangentes en un point M de la surface (13) ont
pour coordonnées adjointes

zh = T?’: -+ Azy,
) désignant une constante arbitraire et z; les coordon-
nées adjointes de M. On aura, en particulier, le X du
plan tangent en écrivant que f(z') est nul. On voit
aussi que la condition d’orthogonalité de la surface (14)
et d’une autre surface passant par le méme point,

s'écrit
9G oG\
b oy’ 3'}7) =%

s1 G'(y) = o désigne I'équation de la seconde surface.

Il est facile, enfin, d’élablir les formules relatives a
I'inversion. Soit un feuillet (Y) porté par la sphére
d’inversion I (qui peut se réduire a un plan). Nous
voulons les coordonnées y;du point M'inverse de M (y).
Ce point appartient au faisceau (M, Z); il a donc des
coordonnées de la forme ); + LY;; de plus, on doit
avoir Q(y¥ +AY)=o0, ou, en lenant compte de ce
que Q(y) est nul,

A= 28(/Y)
- a(Y)

En particulier, si (y) est le feuillet fondamental (S;),
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les coordonnées de M’ sont
oQ

Yi=yi (J#b), y’i=yr—%-
Toutes les formules qui précédent ont leurs analo-
gues relativement aux coordonnées adjointes. On
pourrait encore en établir beaucoup d’autres, mais
nous nous en tiendrons la au point de vue des généra-
lités, et nous allons maintenant examiner quelques
systémes particuliers.

5. Cherchons d’abord un systéme pour lequel les
feuillets adjoints (s;) coincident avec les feuillets (S;).
Il faut et suffit, pour cela, que (S;) soit vrthogonal
aux quatre autres feuillets fondamentaux et ait pour
puissance 1 (n° 3). Nous retombons sur le systéme des
coordonnées orthogonales, étudié en détail par M. Dar-
boux.

Les deux formes Q(y) et w (z) s’écrivent alors

Les coordonnées adjointes d’un feuillet sont égales
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