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MATHÉMATIQUES.

DISCOURS
Prononcé dans la séance d'ouverture du Cours de Calcul des Probabilités,

à la Faculté des Sciences, le 2 3 novembre 1 8 5 0 -r

PAR M. LAMÉ,
Membre de l'Institut.

Avant de commencer le cours dont je suis chargé, j'ar
besoin d'entrer dans quelques détails préliminaires, pour
expliquer le rôle qui me paraît destiné au calcul des pro-
babilités, dans renseignement fait à la Faculté <Jjes
Sciences.

Le faisceau des sciences exactes, des mathématiques
en général, comprend des parties plus voisines des appli-
cations, qui forment, pour ainsi dire, leur laboratoire
d'essais. C'est laque les théories naissent, se complètent
et se perfectionnent; que les procédés, les instruments
dont le géomètre dispose, sont façonnés, et en quelque
sorte aiguisés, pour les rendre propres à résoudre des
questions qui intéressent les sciences d'observation, la
pratique industrielle, et la société en général.

Voilà ce qu'ont de commun les deux sciences auxquelles
on a donné les noms de physique mathématique* et de
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calcul des probabilités. La première s'occupe spéciale-
ment des applications qui concernent la nature inorga-
nique, et dont le caractère principal est la continuité;
ce qui réduit le plus souvent son travail à rechercher
certaine* fonctions continues, <jui vérifient des conditions
donàéea par diis équations diflerentialles; c'est-à-dire à
résoudre des problèmes de par calcul intégral.

La seconde science, appelée calcul des probabilités,
ne se borne pas aux faits physiques : elle étudie et com-
pare les nombres donnés par l'expérience, par l'observa-
tion , accumulés par toutes les statistiques. Elle déduit de
cette étude, et de cette comparaison, non l'explication,
ou la succession nécessaire et indéfinie des phénomènes,
mais seulement les limites entre lesquelles se trouveront,
le plus probablement, les phénomènes à venir. Ses don-
nées et ses résultats sont presque toujours discontinus; et
ce n'est que par approximation qu'ils peuvent revêtir la
forme des fonctions continues. Ses conditions sont plus
souvent exprimées par des inégalités que par des équa-
tions. Le calcul infinitésimal ne lui est pas précisément
applicable; c'est plutôt le calcul direct et inverse des dif-
férences finies. En réalité, son arme naturelle est la
théorie des combinaisons, mais beaucoup plus étendue,
plus générale, que dans l'algèbre ordinaire.

Les grandes découvertes les plus récentes des sciences
exactes, les progrès réels qu'elles ont faits dans ce siècle,
se rapportent presque exclusivement à la physique ma-
thématique, et au calcul des probabilités. (Car la théorie
des transcendantes elliptiques, elle-même, peut être con-
sidérée comme un appendice au calcul intégral, que ré-
clamaient la mécanique rationnelle, et les autres appli-
cations de l'analyse à la physique.) Sur ces deux sciences
sont venus se concentrer les efforts de nos plus illustres
géomètres. C'est surtout en les étudiant, qu'une personne,



attirée vers les mathématiques, perfectionnera ses facultés
spéciales, et parviendra à les utiliser.

Sous ce point de vue, les deux sciences dont il s'agit
ont des qualités différentes : la physique mathématique,
plus difficile peut-être, donne plus immédiatement des
applications nouvelles, quand on est parvenu à la faire
avancer sur quelque point. Mais le calcul des probabilités
exerce plus efficacement l'esprit de recherches, par la va-
riété des questions qu'il se propose, et celle des solutions
qu'il trouve, par l'absence même d'une méthode géné-
rale, qui puisse s'adapter à tous les sujets. Cette variété
et cette lacune tiennent constamment en haleine l'atten-
tion , la perspicacité du géomètre, le forcent à passer en
revue toutes ses ressources, à essayer tous ses moyens
d'action-, lutte incessante, qui le familiarise avec les dif-
ficultés de l'analyse, et le rend plus capable que tout
autre de les surmonter.

Les caractères que je viens de signaler justifient pleine-
ment l'introduction d'un cours de calcul des probabi-
lités dans l'enseignement de nos Facultés. Rien ne fait
mieux comprendre l'esprit, le but, la liaison des diffé-
rentes parties des mathématiques, que d'étudier Une
science où tous leurs procédés sont successivement mis en
jeu, pour obtenir les solutions d'une multitude de pro-
blèmes nouveaux, très-variés, qu'il serait difficile de
ramener à un petit nombre de types.

Les autres cours de mathématiques, par leur régula-
rité , leur permanence, par les méthodes générales qui les
constituent, montrent en quoi consistent les anciennes
applications de l'analyse, et comment les géomètres sont
parvenus à vaincre les difficultés qu'elles présentaient.
Mais, à moins de s*e transformer, et de se lancer dans la
physique mathématique, ces cours classiques, réunis sous
la singulière dénomination de mathématiques pures, ne
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donnent tout au plus que des indications vagues, sur la
marche qu'il faudrait suivre pour aborder de nouvelles
applications. Ils constatent, énumèrent, perfectionnent
les travaux du passé ; ils ne s'occupent pas des travaux à
venir.

Les savants qui les ont exclusivement étudiés, et qui
sont animés du goût des recherches, ou ne trouvent plus
qu'à glaner sur ce terrain des anciennes découvertes, ou
bien consument leurs efforts à s'ouvrir une route dans
une direction stérile, en quête de quelque théorie, qui
n'a en vue aucune application, et qui ne sera peut-être
jamais d'aucune utilité. Au contraire, qu'ils étudient, en
outre, les deux sciences que j'ai définies, encore incom-
plètes, où il y a tant à faire, dans lesquelles les explorations
commencées signalent tant d'activité, d'originalité, de vues
nouvelles ; ils seront là sur un terrain presque neuf, où la
place ne leur manquera pas, où les applications se pré-
sentent d'elles-mêmes, d'où parfois peu de travail fait
surgir une découverte utile. Et s'ils retournent aux an-
ciennes théories, pour les étendre et les perfectionner,
Ils sauront dans quelle direction il convient d'agir, quels
genres de progrès réclament les nouvelles applications.

Malgré tant d'avantages incontestables, l'existence de
ces cours nouveaux, imparfaitement définis, est souvent
remise en question. Mais, supposons que l'on supprime,
dans l'enseignement des Facultés, tout cours de mathé-
matique qui n'est pas classique, qui s'occupe d'une science
inachevée; qu'on le remplace par un cours appelé pra-
tique, sur un genre d'application dont les limites res-
treintes sont atteintes depuis longtemps, tel que serait,
par exemple, un cours de géométrie descriptive ; qu'on se
borne à enseigner comment l'analyse et la géométrie se
sont tirées d'affaire dans tous les problèmes depuis long-
temps résolus, pour toutes les applications usuelles; on
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satisfera sans doute à l'un des besoins de la pratique 5

mais d'une manière permanente, stationnaire, rétrograde
peut-être.

Car, si une nouvelle application surgit, si quelque
problème imprévu se présente dans une ancienne appli-
cation , rien dans l'enseignement ne répondra à ce nouvel
appel fait à la science ; nos praticiens classiques, qui sa-
vaient si bien se servir des instruments qu'on leur a mis
en main, les trouveront muets, inutiles, encombrants
même dans cette occurrence nouvelle 5 ils seront incapables
de s'en forger d'autres. Et, si la difficulté est vaincue, ce
sera par quelque voyageur étranger qui, ayant quitté les
routes battues pour séjourner quelque temps sur le ter-
rain des sciences d'exploration, y aura appris comment
les obstacles se surmontent.

D'ailleurs les cours qui embrassent quelque grande ap-
plication, qui s'y renferment scrupuleusement pour la
compléter ou la simplifier, ont une place naturelle autre
part qu'à la Faculté des Sciences : destinés à perpétuer
certaines découvertes scientifiques, ils sont enseignés, avec
tous les développements qu'ils peuvent comporter, dans
les amphithéâtres du Conservatoire des Arts et Métiers.
Mais vouloir les substituer à des cours qui, souvent, in-
diquent comment les découvertes se sont faites, se font
et se pourront faire, quelles ressources a la science quand
elle aborde des questions nouvelles, quels instruments il
faut créer ou perfectionner pour parvenir à des solutions;
c'est fermer la porte à tout progrès scientifique\ c'est, en
quelque sorte, emprisQnner l'industrie humaine, la con-
traindre à se contenter des récoltes faites, et l'empêcher
de semer pour en obtenir de nouvelles.

Si l'on considère les cours de la Faculté comme plus
spécialement destinés à fortifier, à compléter les éludes



;
faites par les personnes qui se vouent à l'enseignement,
il est aisé de reconnaître •> dans ce but, l'utilité du cours
qui nous occupe.

Il est un principe évident, quoique souvent méconnu,
c'est que, pour enseigner avec fruit une science exacte, il
faut au moins savoir la science voisine. Ainsi, nul ne
sera bon professeur d'arithmétique s'il ne sait au moins
l'algèbre, de géométrie s'il ne connaît l'analyse appliquée,
de statique s'il ne sait la dynamique, d'algèbre s'il n'a
pas étudié le calcul infinitésimal. Et, dans ces sciences
particulières, se trouvent des chapitres importants et
étendus qui ne peuvent être bien compris, et conséquent-
ment bien enseignés, que par des personnes qui connais-
sent certaines sciences, en général peu cultivées.

Ainsi, la divisibilité, les théories des facteurs, des car-
rés, des cubes, en arithmétique; l'analyse indéterminée
et les fractions continues, en algèbre, et même l'inscrip-
tion des polygones, en géométrie, sont bien mieux saisies
par ceux qui savent la théorie des nombres. Ainsi, dans
le calcul infinitésimal, le choix et Futilité des transcen-
dantes et des intégrales définies, les méthodes et les pro-
cédés du calcul aux différences partielles, ne peuvent
être complètement enseignés que par une personne qui
connaît la physique mathématique. Enfin, la théorie des
combinaisons, celle des factorielles, le développement
des puissances des polynômes, les propriétés des produits
d'un nombre indéfini de facteurs, les théories des ap-
proximations, des limites d'erreur, et même des séries, le
calcul aux différences finies, tant,direct qu'inverse, sont
présentés d'une manière plus complète par un professeur
qui connaît le calcul des probabilités.

Il est un dernier point de vue sous lequel on doit envi-
sager l'utilité que le professorat peut tirer de l'étude des
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sciences d'exploration. Pour le bien définir, je vais abor-
der, en passant, Une question dont on comprendra faci-
lement toute l'actualité.

Depuis longtemps, les personnes qui s'occupent ex-
clusivement de la pratique, font, à celles qui se vouent à
l'enseignement des sciences, le reproche de développer
trop de théories} celles-ci répondent que l'on méconnaî-
trait le but élevé de l'enseignement, en le réduisant aux
règles et aux formules actuellement utilisables. Sujet de
discussion qui menace d'être éternel, entre gens que leurs
intérêts, leurs connaissances exclusives et restreintes,
mettent en opposition constante.

J'ai des amis des deux parts*, j'ai vécu et servi dans les
deux camps$ souvent renié par l'un et par l'autre, lorsque
j'essayais de combattre des reproches immérités, ou au
moins exagérés, et d'opérer une fusion peut-être impos-
sible. Je pense donc être en mesure d'éclairer cette ques-
tion, et de la réduire à sa juste valeur.

On ne saurait trop le répéter, l'étude des sciences
exactes a pour utilité principale et première, de faire
naître, d'exercer, de perfectionner le raisonnement $ d'as-
surer en quelque sorte son infaillibilité, en l'appliquant
constamment, et pendant de longues années, à des sujets
qui sont à l'abri de toute controverse. Une personne, bien
et longtemps nourrie par cette étude, pourra oublier suc-
cessivement les premiers instruments de cette gymnas-
tique prolongée (comme nous avons tous oublié nos pre-
miers sujets de lecture), mais elle conservera toujours la
facilité de raisonner juste, c'est-à-dire de déduire vite et
sûrement les conséquences d'un principe posé. Quant à
l'art de bien choisir les principes qui servent de base au
raisonnement, les sciences exactes ne l'exercent pas; il
faut avoir recours à d'autres études, à celles des sciences



physiques, par exemple, qui complètent ce qu'on peut
appeler l'éducation de la logique.

C'est cette utilité principale de l'étude des sciences
exactes qui forme le but le plus élevé et le plus général de
leur enseignement. L'utilité spéciale de chacune de ces
sciences, son application directe, sa pratique enfin, ne
peuvent venir qu'en seconde ligne, car elles exigent im-
périeusement que la condition première soit pleinement
satisfaite.

Ainsi, d'abord des écoles générales, où renseignement
des sciences évitera de s'étendre sur les applications, afin
de conserver, de diriger tous ses efforts vers le but prin-
cipal que je viens de définir, plus difficile à atteindre
qu'on ne le suppose généralement. Puis des écoles d'ap-
plication spéciales, où les sciences exactes seront consi-
dérées sous le point de vue de la pratique. Sans cette sé-
paration bien nettement établie, on n'obtiendra jamais
que des résultats incomplets. Les deux systèmes existent
actuellement5 qu'on les examine, qu'on en compare les
produits, sans prévention aucune, avec une complète im-
partialité, et je% ne doute pas que l'on ne reconnaisse la
supériorité des doubles écoles.

Mais s'il convient que , dans les écoles générales, l'en-
seignement s'occupe principalement des théories scienti-
fiques, il importe aussi, tant pour bien faire saisir toute
la portée de ces théories elles-mêmes, que pour prépa-
rer aux cours des écoles spéciales, d'indiquer les appli-
cations , de les esquisser en quelque sorte , d'établir sur-
tout les principes généraux qui leur servent de base;
principes qu'il serait difficile de saisir, de dégager, s'ils
étaient, dès l'abord, accompagnés de détails trop minu-
tieux.

C'est pour se mettre en état de traiter convenablement



cettejpartie de leur travail, que les personnes vouées à
l'enseignement des mathématiques doivent étudier les
deux sciences d'exploration que j'ai citées. Là se trouvent
recueillis et coordonnés les travaux des géomètres sur tous
les genres d'application que l'analyse a pu aborder. Ces
travaux sont sans doute incomplets} beaucoup même ne
sont qu'amorcés; mais ils indiquent les points où la
science s'arrête aujourd'hui, et quels progrès elle doit
faire.

Il ne peut appartenir qu'aux professeurs des écoles spé-
ciales, praticiens distingués dans leur art, de suppléer
aux lacunes actuelles d'une analyse rigoureuse, par des
formules empiriques qu'ils reconnaissent comme suffi-
santes pour la pratique. Si, sous prétexte de rendre plus
complètes les études préliminaires des écoles générales par
rapport aux applications, on introduit ces formules em-
piriques dans les cours de théorie, on détruira d'un côté
ce que l'on aura fait de l'autre, car la rigueur du raison-
nement en sera relâchée. L'élève verra beaucoup trop tôt
qu'en fait de sciences, on peut se contenter d'à peu près *,
il en conclura que, chercher mieux, serait se donner des
peines inutiles, et les progrès des sciences exactes ne tar-
deront pas à s'arrêter.

Pour éviter cette décadence imminente, il importe de
préserver au moins la Faculté des Sciences de l'envahisse-
ment , de la tendance exagérée et exclusive des cours ap-
pelés pratiques. Que les sciences exactes continuent à y
développer leurs théories, complétées par l'indication des
applications actuelles et futures, mais en s'arrêtant où
cesse la rigueur mathématique. Que les travaux des géo-
mètres sur les nouvelles applications y composent des
cours, nécessairement imparfaits, mais oùj'esprit de re-
cherches trouve aliment et excitation.

Je m'arrête à ce vœu, et je conclus, des différents points



que j'ai traités, que le calcul des probabilités doit être en-
seigné ici, comme un complément indispensable et utile
aux, autres cours de mathématiques; comme présentant,
par la nature et la variété de ses problèmes et de leurs
solutions, une sorte de résumé de toutes les ressources
de l'analyse ; comme mettant sur la voie de plusieurs ap-
plications, constatant la nécessité de certaines théories,
indiquant les progrès qu'elles doivent faire

EXPOSITION DE LA MÉTHODE DE M. (A l Cil Y
Pour le calent, par approximations successives certaines, des racines

réelles des équations algébriques. — Comment cette méthode se réduit à
celle de Newton, quand la méthode de Newton est applicable. — Caractère
analytique simple et sûr auquel on reconnaît que la méthode de Newton
est applicable ;

PAR M. I/ABBÉ MOIGNO,
Aumônier du lycée Louis-le-Grand.

La résolution des équations algébriques comprend
quatre grands problèmes : 1 ° démontrer que toute équa-
tion a une racine; 20 déterminer le nombre des racines
comprises entre deux limites données ; 3° séparer les ra-
cines *, 4° enfin calculer la valeur numérique de ces racines.
M. Cauchy a eu le bonheur et la gloire d'arriver ïe pre-
mier à des solutions vraiment élémentaires, simples et
praticables de ces quatre problèmes.

On n'a rien ajouté à sa démonstration du théorème, que
toute équation algébrique a une racine ; cette démonstra-
tion seulement n'a pas été présentée encore sous la forme
extrêmement simple qu'on peut lui donner. Je le ferai
bientôt dans ce Journal.

M. Sturm a rendu plus facile, théoriquement parlant,
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le calcul du nombre des racines réelles comprises entre
des limites données. De mon côté, j'ai publié, en partant
des principes établis par M. Caucfay, la démonstratif^ la
plus naturelle et la plus directe, non-seulement du théo-
rème de M. Sturm, mais des théorèmes analogues de Des-
cartes, Rolle, Budan, Fourier, etc., et même du théorème
de M. Cauchy relatif au nombre des racines imaginaires.
M. Terquem a bien voulu insérer, dans les Nouvelles
Annales, un abrégé de mon Mémoire (t. III, p 188);
je lui demanderai de revenir moi-même sur ce sujet, et
de ramener ma démonstration à des termes tellement
simples, qu'on soit désormais forcé de lui donner place
dans l'enseignement.

Il y a plus de trente ans que M. Cauchy nous a appris
à calculer immédiatement, sans qu'il soit nécessaire de
recourir à l'équation aux carrés des différences, une quan-
tité plus petite que la différence entre deux racines quel-
conques d'une équation algébrique, et, chose extraordi-
naire, incompréhensible, c'est à peine si le magnifique
théorème du plus grand mathématicien des temps mo-
dernes commence à pénétrer dans nos traités élémen-
taires} c'est à peine si on l'a bien compris. Je vois avec
la plus vive douleur que l'un de. nos jeunes professeurs
les plus distingués et les plus progressifs, M. Joseph
Bertrand, dans son Traité élémentaire d'Algèbre qui
vient de paraître, n'a pas même indiqué l'admirable mé-
thode de calcul des fonctions symétriques des racines
d'une équation, méthode sur laquelle repose la séparation
des racines.

Enfin voilà quatorze ans que les Comptes rendus des
séances de l* Académie des Sciences renferment la so-
lution, simple à l'excès et tout à fait élémentaire, du
quatrième problème abordé, sans assez de succès , il faut
bien le dire, par les géomètres les plus éminents, La-



grange, Poisson, Fourier, etc. Celte solution me fut
adressée de Prague par M. Cauchy, avec ce préambule :
a Ĵ a méthode que je vais exposer est tellement simple,
qu'il y a Jieu de s'étonner qu'elle ne se soit pas présentée
plus tôt à l'esprit des géomètres. D'un autre côté, elle est
tellement générale, qu'elle fournit immédiatement des
valeurs aussi approchées qu'on le désire de toutes les
racines réelles des équations algébriques, souvent même
des équations transcendantes Enfin les approximations
successives sont non-seulement très-faciles, mais encore
très-rapides5 aussi rapides, pour le moins, que dans la
méthode newtonienne, et il arrive bientôt un moment où
le nombre des chiffres décimaux est plus que doublé à
chaque opération nouvelle. » M. Cauchy ajoutait : « Les
avantages de la nouvelle méthode sont tellement sensibles,
qu'une fois livrée au public , elle ne peut manquer, ce me
semble, d'être adoptée et mise en pratique par tous les
amis des sciences. »

Qu'est-il arrivé cependant; j'ai livré au public, en i835,
ce procédé si élégant, si simple, si sûr, et les trop nom-
breux traités d'algèbre rédigés depuis cette époque lui
sont restés fermés, et il est à peine deux ou trois profes-
seurs ou amateurs qui le connaissent, tant est forte la
tendance de l'homme à ne prendre pour guide que l'habi-
tude, la routine et ses petites pensées.

Avant d'exposer la nouvelle solution avec tous les dé-
veloppements qu'elle doit et qu'elle peut recevoir, je crois
devoir la réduire à sa plus simple expression.

Voici d'abord l'énoncé analytique et géométrique tour
à tour du problème proposé.

Enoncé analytique. On a trouvé une première valeur
approchée a de la plus petite a des racines réelles d'une
équation donnéey(.r ) = o , comprises entre a et A, et Ton
demande une seconde valeur plus approchée a1 de cette
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même racine «. La première valeur approchée a peut être,
si l'on veut, la limite inférieure / des racines de l'équa-
tion proposée, limite que l'on calcule immédiateme^et
Ton peut prendre pour A la limite supérieure de ces
mêmes racines.

Le problème pourrait encore s'énoncer analytiquement
comme il suit : Étant donnée une première valeur appro-
chée ade la plus petite a des racines de l'équation f (x) = o;
former, en partant de a et àef[x) = o, une équation
du premier degré dont la racine unique at soit une va-
leur plus approchée de ce que a.

Énoncé géométrique. La courbe représentée par l'équa-
tion^ =j (x) passe par le point M [x = a,y = b=f( a)] ,
et Ton demande de mener une droite qui parte de ce même
point, dont l'ordonnée soit toujours plus petite en valeur
numérique que l'ordonnée de la courbe, et qui, par con-
séquent, rencontre l'axe des x plus tôt que la courbe
y =f (x), ou en un point dont l'abscisse x = at soit com-
prise entre x = a et x = a.

Disons-le franchement, ce problème, si simple dans
son énoncé analytique ou géométrique , a épuisé, jusqu'en
i836, les forces des mathématiciens les plus habiles, et
Fourier en a fait implicitement le sujet d'un gros vo-
lume sans le résoudre! 11 est donc vrai que les difficul-
tés les plus abordables en elles-mêmes, sont souvent celles
dont on triomphe le plus tard, et que le génie seul peut
les surmonter. Les bras tomberont aux lecteurs de cet
article quand nous leur aurons révélé le mot de l'énigme \
ils n'en croiront pas à leurs yeux, ils penseront peut-être
que nous plaisantons.

Solution. Pour plus de simplicité, nous supposerons,
ce qui est toujours permis, que la racine a est positive,
et que,/(«), ou l'ordonnée du point de départ, est elle-
même positive.

Ann. de Maihémai., t. X. (Janvier 1851 ) 2



( '8 )
Posons

OU

F (x) sera, comme on sait, une fonction entière. Décom-
posons-la en deux parties, Tune y (x) formée de l'en-
semble des termes positifs, l'autre x ix) formée de l'en-
semble des termes négatifs ; nous aurons

V(x) = i(x)-X(x),

et chacune des parties 9(^)5 X {x)i prise séparément, croî-
tra indéfiniment avec X, ou quand x passera de la valeur
a a la valeur A. Dès lors, si l'on donne à x dans <f (x) ou
dans la somme des termes positifs sa plus petite valeur a,
dans x (x) o u dans la somme des termes négatifs sa plus
grande valeur A, et que l'on prenne la différence

celte différence sera, dans l'intervalle de « à A, toujours
inférieure aux valeurs de F (.r) ; on aura donc

et, par suite, puisque, dans l'intervalle dont il s'agit
x — a est positif.

La fonction donnée/'(x) et la fonction du premier de-
gré y (a) 4- m, (x— a) ont ainsi entre elles les relations
suivantes : i° pour x= a, elles prennent la même valeur
positive/*(a); 20 la fonction du premier degré, positive
au départ, a une valeur numérique toujours inférieure à
«elle de / ( J ) ; donc, quandy(.r) sera devenue zéro pour



( ' 9 )
x = a, la quantité/ (a) -4- mt (x — a) sera devenue né-
gative, après s'être évanouie pour une valeur ay de x com-
prise entre a et a , et donnée par l'équation

/ (a ) H-/».

d'où Ton tire

a, z= a —'•

«, est précisément la seconde valeur plus approchée de la
racine ex. En désignant par a.2, az, «4,... des valeurs dé-
duites de «i, «25 «3 comme at l'a été de «, on obtiendra
une série de quantités

m,

qui approcheront de plus en plus de la plus petite racine a;
on pourra donc calculer cette racine avec tel degré d'ap-
proximation qu'on voudra.

Géométriquement. La droite y =j'(a) -+- m^ (.r — a)
part, comme la courbe y =f (x) du point x=a,
y = y ( a ) , et son ordonnée est constamment plus petite
que celle de la courbe*, elle rencontrera donc Taxe des x
plus tôt, et l'abscisse de ce point de rencontre est la valeur
plus approchée de la racine a.

Si Ton se rappelle que la correction donnée parla mé-
thode de Newton est, dans le cas que nous avons consi-
déré, — ' ? ff (x) étant le polynôme dérivé àef(x),

on verra que la nouvelle correction ne difïère de l'an-
cienne que par la substitution à / ' (a) , de la différence
o (a)—x(^) aussi facile à calculer. Mais la nouvelle
correction est certaine, tandis que Tancienne était sou-
vent incertaine, et éloignait quelquefois de la véritable
racine au lieu d'en rapprocher.



On démontre facilement, et Ton trouve démontrée dans
plusieurs Algèbres élémentaires, la formule suivante :

f (*)=/(<*)+{x-a)/'[x + 9(x-a)]9

6 (x— a) indiquant une fraction de (x— a) , ou 6 un
nombre plus petit que l'unité. En comparant cette équa-
tion à celle qui définit F (x),

on voit qu'entre a et A, la valeur de F {x) est toujours
une des valeurs que prend la dérivée/ ' (x) dans ce même
intervalle.

Si l'on décompose f (x) comme on Fa fait de F (x) en
deux parties , l'une 1 (x) formée de l'ensemble des termes
positifs, l'autre — y. {x) formée de l'ensemble des termes
négatifs, on aura

f{x) = > ( * ) - p (x), f (x) =z Y(x) - * ' (*) .

De plus, comme la différence à' (a) — pf (A) sera, dans
l'intervalle de a à A , plus petite que toutes les valeurs de
la dérivée; cette même différence sera aussi toujours plus
petite que F (#), et Ton pourra la prendre à la place do
//*!. La correction devient alors

tandis que celle de Newton est

la ditïérence consiste donc dans la substitution de la limite
supérieure A à la limite inférieure a dans la somme des
termes négatifs} et cette substitution suffit pour que l'ap-
proximation , incertaine d'abord ou même illusoire., de-
vienne certaine et rigoureuse.



Et voilà le secret qui, pendant trois siècles, a échappé à
toutes les investigations des géomètres !

Considérons le cas particulier où le polynôme dérivé
f{x) est toujours croissant ou toujours décroissant entre
les limites «, A, c'est-à-dire le cas où le polynôme dérivé
de second ordre/" (x) est toujours positif ou toujours né-
gatif. La valeur de départ X' (a) — pf (a) dans le premier
cas, ou lorsque le polynôme dérivé est toujours positif*, la
valeur d'arrivée lf (A) — /*'(A) dans le second cas, ou
lorsque le polynôme dérivé est toujours décroissant, seront
inférieures à toutes les valeurs de F (.r) ; on pourra d*onc
faire

w f = X ' ( t f ) — \i! { a ) o u / /? , = A ' ( A ) — p / ( A ) ,

et la correction sera

-/(a) _ /(«) o([ -/(a) __ /(«) .
> / ( « ) - ( / ( « ) - /'(a) X'(A)-(/(A)- / ' ( A ) '

ce sont précisément les corrections indiquées par Newton.
La nouvelle méthode, aussi simple en elle-même et d'une
efficacité absolue, comprend donc comme cas particulier
la méthode de Newton,

Mais existe-t-il un caractère analytique facile, auquel
on puisse reconnaître sûrement que la dérivée seconde est
toujours positive ou toujours négative? Oui, et ce carac-
tère, si longtemps poursuivi par Fourier, ressort sans peine
des considérations qui précèdent. On a

et si Ton fait tour à tour, dans la somme des termes posi-
tifs x = a, x =zz A, dans la somme des termes négatifs
x = A , x = a, on obtiendra deux différences,

V'(«)-X"(A), X"(A)- X "H,

dont la première est évidemment inférieure, la seconde



évidemment supérieure à toutes les valeurs de l"[x) — \jif (x)
ou de/7 ' (x), dans l'intervalle de a à A : donc si ces deux
différences, l'une inférieure, l'autre supérieure à toutes les
valeurs de la dérivée seconde, sont toutes deux de même
signe, la dérivée seconde elle-même conservera constam-
ment le même signe \ et, par conséquent, pour être sûr que
cette dérivée seconde est toujours positive ou toujours né-
gative, il suffit de voir si le rapport

est positif; le caractère cherché est donc

Je ne sache pas qu'il y ait dans l'histoire des mathéma-
liques un exemple plus frappant d'abord d'une somme
énorme de force vive dépensée presque en vain pour éta-
blir le plus facile des théorèmes , pour résoudre le plus ac-
cessible des problèmes ; puis, d'une inspiration plus heu-
reuse , d'un bonheur plus inouï. On avait construit un
levier immense pour soulever un atome qu'une paille suf-
h'sait à jeter au vent! Je me trompe, la théorie des fonc-
tions symétriques, que je rappelais au commencement de
cet article, est un fait de ce genre plus étonnant encore5
car, cette fois, le problème était en lui-même très-ardu,
(.les inspirations, ces bonheurs arrivent surtout à M. Cau-
cliy, et, qu'on daigne le croire, elles sont le caractère et
l'apanage du génie.

C'est une bonne leçon de philosophie des sciences que
de faire remarquer les petits artifices de calcul, de décom-
position ou de raisonnement qui amènent ces grands
triomphes, ces succès inespérés. La théorie et le calcul
des fonctions symétriques découlent de cette remarque



ires-ridicule en apparence : Si Ton divise un polynôme
entier F (a) par un autre polynôme entier/(a) nul en
valeur numérique, ou tel que Ton a i t / (a) = o , le reste de
la division sera égal à F (a).

Ce qui a rendu'possible et excessivement simple le cal -
cul d'une valeur certainement plus approchée de la racine,
ce qui a permis d'établir le caractère auquel on reconnaît
que la méthode de Newton est applicable, c'est la décom-
position, au premier aspect sans portée, de F (x) en deux
parties, l'une <j> (x) formée de la somme des termes posi-
tifs, l'autre ^ (x) formée de la somme des termes néga-
tifs.

Voilà tout le secret, ou la clef qui a permis d'ouvrir .
ces trésors si longtemps cachés.

Il nous reste, et cela ne sera pas inutile, à donner une
rédaction plus détaillée, plus complète, plus savante
de cette excellente méthode que tous doivent connaître,
admirer et pratiquer.

NOMBRES PREMIERS RELATIFS
( voir t. l, p. 466; t. IV, p. 77 ) ;

PAR M. A. GUILMIN,
Professeur.

PROBLÈME. Trouver combien il y a de nombres pre-
miers avec un nombre N et moindres que N.

Lemme I. Sil y a K nombres premiers avec un nom-
bre À et moindres que A, il y a mK nombres premiers
avec A et moindres que m. A.

En effet, A' étant un nombre quelconque moindre
que A , pour que n A -+- A' soit premier avec A, il faut



et il suffit que A' soit premier avec A. Par suite, entre
deux multiples consécutifs de A, n A et ( n -h i ) A, il y a
K nombres premiers avec A. Or, par hypothèse, de
o à A il y a K nombres premiers avec A ; de o à 2 A il y en
a donc 2K, de o à 3 A il y en a 3K,...fde o à m A il y
en a mK.

Letnme II. A étant un nombre quelconque, et p un
nombre premier absolu qui ne divise pas A, s'il y a K
nombres premiers avec A et moindres que A, il y a
K (p — 1) nombres premiers avec A,p et moindres
que Ap.

En ci Jet, d'après le lemnie I , il y a Kp nombres
premiers avec A et moindres que Ap ; parmi ces Kp
nombres, il nous faut supprimer les multiples de j>
premiers avec A et moindres que A Xp. Or, pour qu'un
multiple nxp de p, soit premier avec A et moindre
que A, il faut et il suffit que n soit premier avec A et
moindre que A. Il nous suffit donc, pour obtenir les
multiples en question, de multiplier successivement p par
les K nombres qui sont premiers avec A et moindres
que A. Si parmi les Kp nombres, ci-dessus indiqués,
premiers avec A et moindres que Ax/^, on supprime
ces K multiples de /?, il reste Kp — K = K(p — 1)
nombres premiers avec A x p e t moindres que Axp.

Nou# allons maintenant résoudre le problème proposé.
Décomposons N en ses facteurs premiers, et soit

N =zanbP ci. . , .

Tout nombre premier avec N est premier avec abc, et
réciproquement; de sorte qu'il nous suffit de chercher
combien il y a de nombres premiers avec abc et moindres
que Nrsa icXfl 1 1 " 1 ^" 1 ^" 1 . . . .

Supposons qu'il y ait K nombres premiers avec abc et
moindres que a ^ ; il y aura Ka"~* bf"~l c'*"1 nombres



premiers avec abc et moindres que N (lemrae I) ; il nous
faut trouver K.

Il y a a — i nombres premiers avec a et moindres
que r/, savoir 1,2, 3,... , a — i. H y a donc (a—i) (b—i)
nombres premiers avec a i et moindres que ab (lemmeïï)-,
il y a ^a — 1} (b—i) (c— i) nombres premiers avec
abc et moindres que abc,

K = (a — 1) (b — i) (c — i), et, par suite, le nombre
demandé relatif à N est donc

(a—i) (b—i) (c — \)an-xbP~{c<i-{.

Note. Voir Gauss , Disquisitiones, § 38. Nous donne-
rons prochainement une formule, consignée dans Crelle,
pour trouver la somme d'une fonction symétrique des
nombres premiers à A et moindres que A. O. T.

SOLUTION DE LA QUESTION M
(TOlr t. I, p. 520);

PAR M. ARMAND HUE,

Professeur d'hydrographie à Bayonne.

La question doit être rectifiée de la manière suivante :
a, b, c étant les trois côtés d'un triangle sphérique, et

e l'excès sphérique, on a
a b c e

i -+- cos 2a - j - cos 2 b -+- cos ic -h 32cos2 - cos2 - cos2 - sin2 -
2 2 2 2

= cos (a -h b -\- c) -\- cos(a -h b — c) -f- cos(« -h c — b)
-h cos ( b -f- c — a ) •

Démonstration. On a d'abord, comme on sait,

C— i8o°,



d'où

. e A-f-B-hC
sin - = — cos

2 i

Développant cos à Faide des formules con-

nues (Delambre),

a—b a-\-b
C°S. A-f-B C C ° S " T ~ A + B . C C O S T

s m = cos — ? cos = . sm - • —— >
C 2 C

= cos — ? cos =. sm
2 2 C 2 2 C

cos - cos -
2 2

il vient

. C C
sm-cos- , . , .

. e 2 2 / a — b a 4- b
sin - = [ cos cos

2 c \ 2 2
cos -

2

d'où l'on tire

. c c . a . b
sin — cos - = sin - sin - sm C,

22 22

et , par suite ,

c c a . b .
( 1) sm2 - c o s 2 - — s m 2 - sin2 - sm2C.
v ; 2 2 2 2

Exprimons sin2C en fonction des côtés du triangle;

nous aurons

( cos c — cos a cos b )7

=: I - C O S - C ~ I — i — — - -
sm2a sin2b

(1 — cos2a) (1 —cos2^) —cos2c — cos'2 a cos-/; -f- 2 cos a cos b c
sin2 a sin * b

_^ 1 -f- 2 cos a cos 6 cos c — ros - a — cos2 b — cos2 c

sin'tf sin2^>

4 cos a cos £ cos c — cos 1 a — cos 2 b — cos ic — 1
o • , a • b a ,b02 s m 2 - s i n 2 - cos cos 2 -



Portant cette valeur dans l'équation (i), et réduisant,
on obtient

i-4- cos 2a -+- cos 2b + cos 2c -{- 3a cos2 - cos7- cas2 - sin * -

4 c = r : 2cos(a -f- b) cosc-h acos(a— b)cosc
= cos (a 4- £-4- c) -4- cos(« 4- 6 — c) 4-cos(«-+-c—- fc)

BIBLIOGRAPHIE.
Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques

se trouvent chez M. BACHELIER, libraire, quai des Augustins, n° 55.

RECHERCHES SUR LES DROITS SUCCESSIFS DES ENFANTS NA-

TURELS } par M. Louis Gros, docteur en droit, avocat
à la Cour d'Appel de Lyon. Paris, i85o; in-8° de
144 pages.

La question qui fait l'objet de ces Recherches a déjà
été traitée dans les Nouvelles Annales, tomeIV, page s53.
L'auteur, à la fois jurisconsulte et mathématicien, chose
rare (*), discute avec beaucoup de sagacité les opinions
de ses devanciers, et appuie les siennes propres par d'ex-

( * ) Rare en France, mais pas en Europe. Ainsi, en Angleterre , le cé-
lèbre lord Brougham, ancien avocat, cultive les hautes mathématiques
et la haute physique. 11 y a encore d'autres personnages considérables en
ce pays qui se livrent aux sciences. L'Allemagne possède l'illustre baron
Alexandre de Humboldt, et vient de perdre le célèbre sélénographe Guil-
laume Béer, frère de l'illustre compositeur; il était banquier. Dans l'an-
cienne France, le maître des requêtes Viète, le président au Parlement
Fermât, le gentilhomme Descartes, le marquis de l'Hôpital, le financier
Pascal père, le rentier Pascal fils, le rentier Desargues, le minime Mer-
senne , Voratorien Mallebranche, étudiaient les mathématiques pour elles-
mêmes. Aujourd'hui, nous ne les étudions que pour répondre à des examens
et nous ouvrir une carrière. Nos hommes de loisirs s'appliquent aux spé-
culations de l'ambitiond de la fortune , et ne s'intéressent qu'aux sciences



eellentes raisons. Le système qu'il propose nous paraît
renfermer l'interprétation la plus raisonnable possible
d'un texte dont le législateur lui-même ne semble pas
avoir bien calculé toute la portée.

D'après l'article 757 du Code civil, « le droit de l'enfant
naturel sur les biens de ses père et mère décédés est ré-
glé ainsi qu'il suit : si le père ou la mère a laissé des
descendants légitimes, ce droit est d'un tiers de la por-
tion héréditaire que Venfant naturel aurait eue s'il eût
été légitime9 etc. »

Quand il n'y a qu'un enfant naturel, l'application de
cet article ne soulève aucune difficulté. Après avoir donné
une règle pratique très-simple pour opérer, dans ce cas,
le partage de la succession, M. Gros fait remarquer que
le rapport entre la part de l'enfant naturel et celle d'un
enfant légitime varie avec le nombre des enfants légi-
times : égal à •£• quand il n'y en a qu'un de cette dernière
classe, il augmente, quand il y en a plusieurs , jusqu'à {,
sa valeur limite.

M. Gros voit là, avec raison, une inconséquence du
législateur. «.Lorsqu'on a reconnu, dit-il, que le respect
de la famille et les principes de moralité les plus essen-
tiels exigent que l'enfant naturel ait des droits moins

utiles à ces spéculations. Uutilisme dans les classes instruites et le com-
munisme dans les classes ignorantes, sont deux manifestations de la même
doctrine : le matérialisme. Il est singulier que cette doctrine dégradante,
qui place l'homme au-dessous de l'animal, car celui-ci n'est pas susceptible
de corruption, il est singulier que cette doctrine se soit répandue no-
nobstant que nos philosophes arborent et font parader partout le drapeau
du spiritualisme. Toutefois, notre pays offre une honorable exception
dans la personne d'un éminent fonctionnaire qui a consacré un beau
talent au culte d'Uranie; nous espérons un jour entretenir nos lecteurs
d'une Astronomie où la dynamique des cieux est poétiquement et fidèle-
ment racontée en vers de l'ancienne France, par le célèbre traducteur
d'Horace, par le comte Daru , ce grand administrateur auquel s'appliquent
si bien ces paroles de Velleius : Vir, ubi ras vigiliam exigeret, sane exsonmis,
providens nique agendi sciens (II , LXXXVIII. > ). <>.



étendus que l'enfant légitime, il faut, pour être logique,
les comparer l'un à l'autre, établir une fois pour toutes >
par un chiffre (ou coefficient), le degré de défaveur qui
s'attache à l'enfant naturel, puis conserver soigneusement
ce rapport, quel que soit le nombre des enfants de Tune
ou l'autre classe. On ne peut, en effet, trouver aucune
raison pour le faire varier d'après le nombre des en-
fants (*). »

( *) La société n'a pas pour objet la perpétuité des individus comme chez
les animaux, mais la perpétuité d'esprits indéfiniment perfectionnâmes
par la culture morale et intellectuelle : double culture qui ne peut géné-
ralement s'obtenir que dans la famille. Avant toute chose, la société a
donc en vue la constitution et la perpétuité des familles qu'elle réunit et
protège par des lois. La plus fondamentale de ces lois est celle qui assure
aux enfants la transmission du travail patrimonial, des biens qu'il a créés ;
n'importe la forme , mobile ou immobile. L'homme ayant seul, sur notre
globe, le sentiment de l'avenir et de sa fin personnelle prochaine , la Pro-
vidence l'a doué en même temps d'un désir irrésistible de travailler pour
un avenir qu'il ne verra pas, et de préparer à ses enfants un bien-être
auquel il n'aura aucune part. Le bien-être diminuant avec le nombre des
partageants, la lei s'oppose avec justice à l'introduction des étrangers et ne
se montre indulgente que pour les enfants naturels reconnus. Le père qui
introduit des enfants naturels fait tort à ses enfants légitimes, et le tort
est d'autant plus grand que le nombre de ces derniers est plus grand, car
rien que ce nombre suffit déjà pour affaiblir leur part. Pour diminuer ce tort,
il faut que la part delà succession détournée vers une source étrangère soit
en raison inverse, et du nombre des enfants légitimes, et du nombre des en-
fants naturels. 11 semble que telle a été la pensée du législateur. 11 ne
parle que d'un seul enfant, naturel, est-ce à dire qu'il ne connaissait pas
le cas où il y aurait plusieurs enfants naturels? Supposition inadmis-
sible. Au fait, le législateur ne concède qu'un seul enfant naturel, sauf,
quand il y en a plusieurs, à se partager entre eux cette part d'un enfant
unique. Soient n, /, les nombres des enfants naturels et légitimes. D'après le

Code, la partd'un seul enfant naturel est r- - ; dans le cas actuel, la
6{i -hl)

part de chaque enfant naturel est -— — , et la part de chaque enfant

3 / l 9

légitime est .r-— ~; de sorte que la part de l'enfant légitime est indé-

pendante du nombre des enfants nés hors mariage. Telle semble être l'in-

terprétation la plus naturelle de la penséo du législateur. O. TEROUEM.



Le Code d'Haïti est, en ce point, beaucoup plus ration-
nel que le nôtre : il donne, dans tous les cas, à l'enfant
naturel, le tiers de la part d'un enfant légitime; il pousse
même la complaisance jusqu'à indiquer lui-même la règle
à suivre pour opérer le partage.

Dans le cas de plusieurs enfants naturels, la législation
française donne lieu à de graves difficultés. Pour les
résoudre, plusieurs systèmes ont été proposés, dont le
plus défectueux, nous devons le dire, est celui qui est
adopté dans la pratique (tome IV, page 255 , note).

Voici maintenant ce que propose l'auteur.
Du texte de la loi et des discussions qui ont eu lieu à

ce sujet au Conseil d'Etat, M. Gros conclut que le légis-
lateur n'a pas prévu le cas où plusieurs enfants natu-
rels viendraient réclamer la succession de leurs père et
mère (*). Ceci admis, que faut-il faire ? Évidemment con-
server entre les deux sortes de parts le rapport établi par
le législateur dans le cas qu'il a incontestablement prévu.

Pour obtenir ce résultat, M. Gros ne considère d'abord
qu'un enfant naturel et un enfant légitime, et, après avoir
fait le partage dans cette hypothèse , il attribue aux autres
enfants naturels une part égale à celle prélevée par le pre-
mier. Mais comme, alors, la somme des parts surpasse-
rait la totalité de la succession, il les réduit proportion-
nellement, comme s'il s'agissait de répartir entre des
créanciers un actif inférieur à la somme de leurs créances.
C'est ce que M. Gros nomme le système de répartitioib-.

L'auteur examine ensuite les autres systèmes. Tous
font varier le rapport entre les deux sortes de parts, non-
seulement d'après le nombre des enfants légitimes, ce qui

(*) Nous ne sommes pas compétent pour juger cette assertion, qui
nous paraît la partie contestable du travail de M. Gros. Nous n'apprécions
que les conséquences. PROUHET.



( 3i )
est inévitable, mais encore d'après le nombre des enfants
naturels , ce qui est arbitraire, puisque la loi ne fournit
aucunement les bases de cette seconde graduation. Cette
seule remarque suffirait pour les réfuter; mais M. Gros
va plus loin : il s'attaque à leur principe, en démontre
le vice, et fait voir qu'en les rectifiant, on retombe tou-
jours sur le système de répartition.

L'ouvrage dont nous venons de donner une rapide ana-
lyse aurait gagné à un plus fréquent emploi des symboles
algébriques-, mais il fallait être entendu des juriscon-
sultes, et ces sortes de lecteurs s'effrayent plus volontiers
de deux pages de calcul que de vingt volumes de commen-
taires. Force a donc été de recourir le plus souvent à des
exemples numériques, et de traduire en longues péri-
phrases quelques formules simples et élégantes. C'est une
imperfection, mais elle n'est pas imputable à M. Gros,
et, comme l'on dit au Palais, la responsabilité en doit
être renvoyée à qui de droit (*) E. PROUHET.

(*) Dans une note qui termine un premier travail sur le même.sujet
( Revue de dioit français et étranger, tome Ie r ), M. Gros faisait des ré-
tlexions fort judicieuses sur l'utilité des mathématiques dans l'étude du
droit. Nous regrettons qu'il n'ait pas reproduit ce passage, qui est encore
et qui sera toujours plein d'à propos.



GÉOMÉTRIE DESCRIPTIVE ÉXECUTION DES ÉPURES;
PAR M. BARDIN,

Ancien élève dé l'École Polytechnique.

« Comment éviter les dégoûts attachés à de premiers essais,
» où l'esprit n'a pour tout.aliment que les notions sèches et
» abstraites de nombre et d'étendue? Les sciences physiques et
» les arts du dessin embrassent, presque dès leur origine.
» toutes les propriétés sensibles des corps, la main y exécute en
» même temps que l'esprit y conçoit ; et quoiqu'elles renferment
» peut-être autant de difficultés réelles que les sciences mathéma-
r> tiques, leur accès est moins pénible et leur culture promet des
» jouissances plus promptes. » PRONY, Discours d'ouverture des
cours de l'an vu ( 1er cahier du Journal de l'École Polytechnique ).

MON CHER CONFRÈRE,

Le dessin des projections, moyen à la fois expressif et
conventionnel de représenter les combinaisons sans nom-
bre de l'étendue figurée , est d'une utilité générale -, nul
ne le conteste, et pourtant son enseignement n'a pas en-
core de règles. Cette écriture, universelle par sa nature
même., n'a pas encore d'alphabet, ou plutôt elle n'a qu'un
alphabet incomplet et mal défini.

Dans le dessin d'imitation, qu'on nomme aussi dessin
académique, l'artiste ne s'attache à rendre que ce qu'il
voit, que ce qui est en deçà du contour apparent de l'objet
en ronde bosse qui pose devant lui. Le dessinateur
géomètre, qui se propose un autre but que Y effet, qui ne
s'arrête pas à l'apparence des corps, figure dans ses pro-
jections non-seulement ce qu'il verrait de l'objet en relief
que sa pensée a conçu, mais encore ce qu'il ne verrait pas,
si cet objet était réellement sous ses yeux. Et cela, sans
la moindre confusion, à l'aide d'une convention aussi
simple qu'ingénieuse. Pour lui, les plans de projection
et les surfaces qu'il considère sont des étendues infiniment
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minces et transparentes, les corps solides eux-mêmes
sont transparents -, de sorte que les traces, les arêtes, les
contours, les rencontres des surfaces entre elles, en un
mot, tout ce qui concourt à déûnir les grandeurs dans
l'espace et leurs positions relatives, est vu directement ou
par transparence, et écrit en conséquence sur les feuilles
de dessin. Dans les deux projections, images distinctes
d'un même objet, ce qui se trouve au-dessus du plan
horizontal, ou en avant du plan vertical, ou en deçà du
contour des surfaces, est figuré par un trait noir et con-
tinu, ou trait plein, en langage de dessinateur. Tandis
que les parties vues par transparence, et que par conven-
tion on appelle parties cachées, parce qu'elles sont sous
F un des plans de projection ou derrière l'autre, ou parce
qu?elles sont derrière les contours des surfaces, sont figu-
rées par des lignes discontinues, à points ronds, égaux et
également espacés, qui constituent le ponctué dans le
dessin des projections (**).

On parvient ainsi, par le ponctué seul , à donner aux
épures de la géométrie descriptive toute la généralité des
conceptions de l'esprit; car les lignes, les plans, les sur-
faces courbes, indéfiniment prolongés dans tous les sens,
vont se contourner, se couper, se toucher, sur le papier
comme dans l'espace. Une question est-elle susceptible de
plusieurs résultats, son épure les donne tous ; et s'il en est
qui s'échappent de son cadre restreint, certains artifices
graphiques savent les y ramener.

Cette convention, caractère essentiel, spécifique, du
dessin des projections, est généralement négligée. Aussi

(*) Dans le dessin rapide, dans les calques, je remplace le plus sou-
vent le ponctué des parties cachées, qui est assez long à faire, par
un trait continu à l'encre de la Chine très pâle, de manière à figurer une
ligne éteinte par l'effet de la transparence.

Ann, de Mathémal., t. X. (Janvier I85I . ) 3



voit-on les plus grosses fautes commises par les élèves à
ce sujet. En voici une preuve : parmi les trois cent dix-
huit compositions mathématiques qui ont été corrigées et
jugées pour le concours d'admission de i85o à FEcole
Polytechnique, une seule épure était à peu près irrépro-
chable en ce qui regarde la distinction des parties vues et
des parties cachées, du vu et du caché (*); une seuleî
quoique les programmes du concours eussent signalé ce
point à l'attention des candidats, et en eussent fait même
l'objet d'une prescription. Il est donc permis de conclure
de ce fait bien constaté que les élèves lisent mal dans l'es-
pace, ou flans les trois dimensions, selon l'expression
de Monge, et qu'ils s'inquiètent peu de tracer des épures
illisibles. On sait, en outre , qu'à l'Ecole Polytechnique ,
les élèves de première année ont beaucoup de peine à se
conformer à ce qu'on exige d'eux à cet égard.

Si j'insiste autant sur cet article, c'est que j'ai entendu
d'anciens élèves faire cette question : A quoi sert la dis-
tinction des parties vues et des parties cachées dans les
épures? — Et d'autres dire : Mais, de notre temps, cela
ne nous embarrassait guère.—Par une bonne raison, mes-
sieurs, c'est que vous n'avez pas été mis aux prises avec
la difficulté. Rappelez-vous que, depuis l'origine de
l'École, candidats et élèves ont reproduit, lineatim. et
punctatim, les épures des premières promotions, de
nos antiques, d'une collection qui fut belle, originale et
utile en son temps, mais qui, après avoir défrayé pendant
plus de cinquante ans les planches d'un grand nombre de
Traités de Géométrie, est devenue banale et insuffisante.
Ces épures gravées étaient distribuées aux élèves, qui, en
les reproduisant, se trouvaient affranchis de tout travail
de recherche quant au choix et à la bonne disposition des

(*) Comme on dit le nu en peinture et en dessin.
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données (*), et de toute attention quant à la distinction
du vu et du caché.

On ne voit plus aujourd'hui, à l'École Polytechnique,
les promotions se succéder et s'engager dans la même
ornière. On ne voit plus, chaque année, cent vingt élèves
intelligents, la plupart adroits de l'œil et de la main,
résoudre les mêmes questions, aux mêmes jours et aux
mêmes heures, sur les mêmes données, pour arriver aux
mêmes résultats5 produire les mêmes épures, des épures
superposables, ne différant que par la signature de l'au-
teur, ou par un peu plus ou un peu moins de mérite dans
la ligne. On ne voit plus cela à l'Ecole Polytechnique ̂
mais on voit encore les candidats de toutes les institu-
tions se livrer à un travail de cette nature-; fâcheux état
de choses qu'il est désirable de faire cesser !

Qu'on demande aux élèves de la promotion de 1849,
qui ont vu disparaître sans regret cet enseignement,
s'il n'a pas été grand le résultat utile qu'ils ont tiré de
leurs épures rédigées d'après des programmes particu-
liers , où tout était à trouver et à exprimer par leur tra-
vail propre, le seul qui porte fruit et qui soit réellement
appréciable dans les classements. C'est que comprendre

(*) Lacroix dit, dans un excellent petit livre trop oublié : « J'ai tou-
» jours soin de proposer aux élèves des questions où les données, expri-
« mées par des mesures connues ou résultant d'opérations déterminées,
» sont isolées les unes des autres. 11 faut d'abord qu'ils replacent ces
» données dans leurs situations respectives; ce qu'ils ne peuvent faire
* quand ils n'entendent pas les questions; ensuite qu'ils conçoivent le
>» plan de la solution , et qu'ils l'exécutent en expliquant par eux-mêmes
» ce qu'ils ont entendu à la leçon. J'ai toujours vu que, par cette marche,
•> ils se fortifient bien plus que lorsqu'on leur met sous les yeux Y épure,
« c'est-à-dire la construction détaillée du problème. La symétrie ^LCS
» lignes dispense les paresseux, qui partout forment le plus grand nom-
» bre, de la peine de réfléchir sur les préceptes qu'ils ont reçus; et ils
» copient leur épure sans l'entendre. » (Complément des Éléments de
Géométrie.)

3.



et savoir sont deux choses très-différentes. En géométrie
descriptive, par exemple, c'est le travail graphique qui
donne le savoir, c'est-à-dire, le pouvoir de faire usage dans
la pratique de ce que l'on a appris. Les épures moins
nombreuses, mais plus générales et mieux étudiées,
plus laborieusement exécutées par la promotion de 1849,
ont mieux appris aux élèves à lire dans l'espace, faculté
précieuse qui a une grande influence dans les autres
parties de renseignement polytechnique. Ainsi,—en phy-
sique, le dessinateur trouve des instruments de précision
d'un grand intérêt, et de nombreux sujets empruntés aux
lois et aux effets de la réflexion et de la réfraction de la lu-
mière, et d'autres questions où les fluides impondérables
vibrent, ondulent, se meuvent, et vont produire les effets
par lesquels ils manifestent leur mystérieuse existence.—
Dans la mécanique et dans les machines se présentent les
compositions et les décompositions de mouvement et de
force dans l'espace, les transformations de mouvement
qui appartiennent autant à la géométrie qu'à la méca-
nique , des questions de situation où certaines pièces mo-
biles dans des espaces limités ont des formes et des dimen-
sions obligées ; on y rencontre la vis, l'un des principaux
organes des machines, l'une des variétés les plus intéres-
santes des formes hélicoïdales, et les engrenages, dont les
combinaisons si variées sont entièrement du ressort de la
géométrie. —\J architecture a ses grandes "voûtes et leurs
ouvertures, et leur division en caissons,• ses escaliers, si
variés, si élégants, véritables vis en pierre ou en bois, qui
constituent une des applications les plus intéressantes du
dessin des projections, tant pour leur représentation que
pour leur exécution stéréotomique; ses colonnes torses;
ses formes rampantes, dans les frontons, lesbalustres, les
cages d'escalier.—\J astronomie, dans ses difficiles spécu-
lations, pourrait à elle seule défrayer en épures tout un
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cours de géométrie descriptive.—La géodésie, comme
l'astronomie, a ses instruments d'observation, dont l'intel-
ligence par des dessins exige une grande habitude des pro-
jections , dont l'établissement par le constructeur et les
moyens de vérification et de correction par l'observateur
qui s'en sert, reposent sur des considérations très-délicates
de physique et de géométrie-, la gnomonique et le tracé
des coordonnées géographiques des cartes en dépendent.
— En chimie, les lois géométriques qui régissent la for-
mation des cristaux sont singulièrement facilitées à ceux
qui sont familiarisés avec les projections. — 1S analyse,
elle-même, se lie à la géométrie descriptive, qui donne les
moyens de représenter graphiquement la loi mathéma-
tique renfermée dans une fonction à trois variables , ou
bien des lois naturelles, observées et consignées dans des
tables numériques.—Enfin, il y a les questions physico-
mathématiques, où le calcul et le trait peuvent se com-
biner utilement, et avec élégance.

En résumé, l'enseignement graphique est revenu aux
programmes de Monge, si admirables d'ordre, de simpli-
cité et de variété, où rien ne fait pressentir, où rien ne
j ustifie l'enseignement stéréotypé de ses successeurs. Qu'on
en juge par cette citation des développements sur Vensei-
gnement adopté pour VÉcole centrale des Travaux pu-
blics de l'an ni (*) : « On le dit une fois pour toutes,
» les règles générales étant enseignées, il ne faut jamais
» que, dans la même salle, deux élèves en fassent les
» mêmes applications-, car la construction des dessins et
» la correction qu'ils exigent, emploient un certain temps
» qui permet à chaque élève de savoir non-seulement ce

(*) « Précieux document où la main de Monge est fortement em-
« preinte », dit Fourcy à la page .ji de son Histoire de l'École Poly-
technique.
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» qu'il a fait, mais encore ce qu'ont fait tous ses cama-
» rades de la même salle, et en variant les exemples dans
» une même salle publique, on produit le même effet que
» si l'on décuplait le temps dans une école particulière. »
Et plus loin, à propos du dessin des principales machines
employées dans les travaux publics : « On distribuera les
» objets de manière que, dans la même salle, deux élèves
» n'aient pas la même machine à dessiner, afin que, dans
» celte salle, on ait la connaissance d'un plus grand
» nombre de machines. » — Pensée qui se reproduit en
plus d'un autre endroit.

Les élèves entrent aujourd'hui dans les salles d'étude
de TEcole Polytechnique, non plus pour y entasser les
unes sur les autres des épures faciles, insignifiantes
même, pour tirer la ligne, mais pour y apprendre à tra-
vailler comme on travaille dans les services publics, dans
la vie pratique, et pour s'y enrichir réciproquement de
l'expérience acquise des uns et des autres.

Permettez-moi maintenant, mon cher confrère, d'ap-
peler votre attention sur quelques autres points, afin que
je puisse porter dans votre esprit une conviction qui vous
engage à m'ouvrir les pages de vos Annales. Qu'on ne
prétende pas que ce sont là de petites choses. Y a-t-il
d'ailleurs rien de petit en vue d'un but qui a son impor-
tance et son utilité bien reconnues ?

Dans chaque projection, avons-nous dit, les données
et les résultats qui existent réellement sont figurés en
noir, en plein ou en ponctué, selon que ces grandeurs
sont vues ou cachées. Mais il existe dans les épures une
autre espèce de lignes très-nombreuses, qui constituent les
quatre cinquièmes du travail graphique, et qui, sous le
nom de lignes auxiliaires ou de construction 9 servent à
réaliser les opérations par lesquelles on passe des données
d'ujoe question aux résultats.
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Revenez, par la pensée, aux épures d'il y a quelques

années, et voyez-les tellement chargées de lignes de con-
struction, qu'on les comparait à des toiles d'araignée (*).
Rappelez-vous que ces constructions, entassées comme à
plaisir, étaient en pointillé, c'est-à-dire à points longs ,
ogaux et également espacés, ou a points longs, séparés
par un ou plusieurs points ronds, ce qui produisait un
travail dont on ne peut bien apprécier la longueur et la
fatigue qu'après y avoir été condamné. Ce pointillé,
simple ou mixte, emprunt malheureux fait à la gravure,
rendait rebutant un travail tout manuel qu'on ne saurait,
au contraire, rendre trop facile. Il a disparu des dessins
manuscrits de l'École Polytechnique, et la vue des élèves,
qui dessinent dans des salles les plus mal éclairées peut-être
de toutes les écoles du Gouvernement, s'en trouve bien.
Les lignes de construction, véritables lignes idéales, puis-
qu'on pourrait les enlever après avoir obtenu le résultat,
sont d'une autre couleur que les données et les résultats -,
olles sont en trait rouge de carmin, continu et léger.. Il im-
porte maintenant de faire disparaître le pointillé des exer-
cices graphiques dos candidats, de substituer aux planches
en noir du graveur les épures à deux couleurs (noir et
rouge), et même les épures à trois couleurs (noir, rouge
et bleu), qui se prêtent à d'intéressantes combinaisons.
Telles sont les épures, véritables résumés, où les cas
principaux d'une même question générale, par exemple
rintersection de deux cylindres, sont réunis sans con-
iusion et sans grand travail : pénétration avec courbe
d'entrée et courbe de sortie distinctes, pénétration avec

(*) Lacroix , dans la préface du Complément des Éléments de Géométrie,
dit : « Des figures chargées de toutes les lignes de construction sont aux
» planches d'un Traité de Géométrie ce que des minutes de calcul sont
H aux exemples d'un Traité d'Arithmétique. »



point multiple, arrachement. — L'épure des sections
planes du cône en présente un autre exemple.

Résumons : Dans le dessin des projections, toute ligne
noire représente une trace, un contour, une arête, une
grandeur qui existe réellement, nécessairement, parce
qu'elle tient à la forme ou à la situation, aux données ou
aux résultats. Cette ligne est pleine ou ponctuée, selon
qu'elle est vue ou cachée dans telle ou telle projection.
Toute ligne rouge représente une ligne auxiliaire, ap-
partenant au système des constructions, système dont
les détails peuvent et doivent être supprimés en partie.
— Tels sont les signes, bien peu nombreux et pourtant
suffisants du dessin des projections. Je voudrais qu'on y
ajoutât cette convention, qui n'aurait, je crois, que des
avantages : Tout résultat sera d'un trait un peu plus fort
que les données. Enfin, je compléterais notre alphabet
en y introduisant le pointillé, mais seulement dans quel-
ques cas, comme pour garder la trace ou le souvenir de
lignes montrant certain état de continuité ou de liaison ,
certaines extensions nécessaires, certaines particularités
dont le détail ne saurait trouver place ici. Cela étant, le
dessin des projections pourrait aborder et rendre, de la
manière la plus satisfaisante, la solution de toutes les
questions de géométrie, abstraite ou appliquée.

Récemment on a introduit à l'Ecole Polytechnique ,
dans la mise à l'encre des épures au crayon, une amé-
lioration non moins réelle que la précédente. On a réduit
ce travail manuel à sa plus simple expression, en posant
en principe qu'une épure est complète, achevée, lors-
qu'elle renferme tout ce qui est nécessaire pour Tin tell i-
gence et l'explication delà solution de la question propo-
sée*, rien de plus, rien de moins. On ne voit plus de ces
épures où les mêmes constructions étaient répétées jus-
qu'à satiété, de ces redites comparables au verbiage d'un



parleur à vide, qui avaient le grave inconvénient de
nuire à la clarté, sans laquelle une épure est difficile, pé-
nible à lire, quand elle n'est pas illisible.

Par là on a gagné un temps précieux que Ton con-
sacre à la partie géométrique, c'est-à-dire à discuter les
questions, à bien disposer les données, à construire des
épurés claires, originales et instructives. — « La géomé-
» trie nouvelle, dit M. Charles Dupin , par ses considé-
» rations intellectuelles et par ses opérations graphiques,
» est éminemment propre à fortifier la raison et à per-
)> fecdonner les sens (*). »—L'imprévu, dans la solution
graphique des différents cas d'une même question géné-
rale, où le dessinateur géomètre lance à son gré les
formes dans Vespace, conduit souvent les élèves et, par
suite, le professeur à d'intéressantes discussions. Il est
bien constaté qu'on lui doit plus d'une heureuse ren-
contre, que rien ne faisait soupçonner? Monge et, après
lui, Hachette, et bien d'autres encore, ont trouvé dans les
épures d'ombres, de perspective et de stéréotomie plus
d'une difficulté géométrique à résoudre, a C'est aux re-
» cherches que les accidents curieux des ombres ont pro-
» voquées, dit Eisenmann (**), que nous devons une
» grande partie des progrès de la science, et particulière-
» ment des surfaces développables. »

J'arrive aux épures muettes, au sujet desquelles il
existe un préjugé fâcheux. Les élèves disent journelle-
ment : Les écritures gâtent les épures.—Cela est vrai des
écritures mal faites. Le dessin le plus soigné perd, en
effet, tout son mérite d'exécution graphique &ous l'in-
fluence de l'écriture cursive de la très-grande majorité des

( *) Essai historique sur les services et les travaux scientifiques de G. Monge,
page 19.

(**) f\e Cahier du Journal de l'École Polytechnique, page 621.
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élèves à qui les devoirs des humanités ont enlevé tout ta-
lent calligraphique. Mais les écritures bien faites, en
lettres linéaires et dessinées, genre facile à acquérir par
tous, n'ont jamais gâté une épure; elles la relèvent même
quand sa mise à l'encre laisse quelque chose à désirer ; bien
plus, elles la complètent par des indications nécessaires,
indispensables, sans lesquelles elle pourrait être comparée
à un rébus difficile à deviner par tous les lecteurs, même
par l'auteur appelé à la lire après un certain laps de temps.

D'où vient cette opinion erronée, qu'une épure n'a pas
besoin d'indications écrites, pas même d'un titre, qu'elle
se lit d'elle-même, seulement avec plus ou moins de faci-
lité, selon que le lecteur est plus ou moins exercé ? Cette
erreur vient du long règne de l'ancienne collection de
l'Ecole, de ces épures types, sacramentelles en quelque
sorte, qu'on exécutait religieusement de Bayonne à Metz,
de Rennes à Strasbourg, qu'on savait par cœur, qu'on
lisait à première vue, couramment, et qui, par consé-
quent, n'avaient besoin d'aucun secours, pas même d'un
titre. Mais que l'on sorte de ce recueil, que l'on prenne
seulement l'épure de l'intersection de deux surfaces co-
niques, considérée dans toute sa généralité, pouvant don-
ner lieu à quatre branches hyperboliques, ou à deux
branches hyperboliques et à une branche parabolique...,
et qu'on dise si une telle épure peut se passer d'indica-
tions écrites, si elle peut être muette.

J'aurais déjà dû vous parler de la solution au crayon ;
j'ai dit plus haut de Y épure au crayon. C'est qu'en effet,
faute de temps ou par d'autres motifs, on peut être obli-
gé d'arrêter là son travail, qui souvent suffit à cet état.
Mais cela suppose qu'on a eu le soin de ne pas tracer une
foule de lignes inutiles, qui ôtent au dessin la clarté,
qualité encore plus difficile à obtenir au crayon qu'à
l'encre. Ce soin, je le recommande expressément, afin
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que tout élève, même le moins habile , puisse terminer
complètement ses épures au crayon. Je vais plus loin, je
pose comme règle absolue qu'on ne doit jamais mettre une
épure à l'encre que lorsque la solution au crayon est en-
tièrement terminée, le résultat bien épuré, le vu et le
caché arrêtés dans chaque projection, de manière qu'elle
puisse, au besoin, être mise à l'encre par un autre des-
sinateur, ou rester au crayon. C'est alors que la mise à
Fencre devient ce qu'elle doit être, un simple travail ma-
nuel , une reproduction, servile si Ton veut, d'un pre-
mier travail, mais assurée contre les grattages et contre
des mécomptes qui conduisent, sans profit et avec dégoût,
à recommencer une œuvre que tout semblait annoncer
terminée.

Puis-je ne pas vous soumettre quelques observations
sur le mode même de Venseignement oral y auquel je
trouve plus d'un défaut ? Le premier, c'est qu'on y ex-
plique des épures, rien que des épures, et non une doc-
trine , celle de Monge. Il résulte de là que les élèves n'ont
appris à résoudre qu'un certain nombre de questions, et non
l'art de résoudre les questions, et que, pour eux, toute
la géométrie descriptive est dans leur cahier d'épurés. Le
second, c'est qu'on leçonne trop, qu'on me pardonne ce
barbarisme , et que l'explication de ces épures est telle-
ment détaillée, minutieuse, que tout y est prévu, noté \
c'est que ces épures, déjà disséquées aux leçons, sont re-
prises au tableau dans les salles d'étude, puis reportées
sur le papier en présence des modèles gravés, et enfin
dessinées de nouveau aux interrogations. De sorte que,
chose presque incroyable, renseignement par la mémoire
à pénétré jusque dans la science de l'étendue, dans une
partie où l'invasion paraissait impossible. Que peut
produire un tel état de choses? Des dessinateurs routi-
niers, craintifs, qu'un rien arrête, parce qu'ils sont sans
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initiative et sans expérience des difficultés; trop souvent
aussi des élèves prévenus contre un art discrédité par son
enseignement, contre une partie dont Futilité, je le ré-
pète avec tous mes anciens camarades, est de tous les
instants. De là un défaut originel que les candidats appor-
tent avec eux en entrant à l'École Polytechnique, où il
n'était pas combattu et qu'ils conservaient dans les écoles
d'application, et jusque dans les services publics.

Les épreuves d'autrefois , qu'on appelait des concours,
dans lesquelles les élèves, jusqu'alors tenus en lisière,
étaient abandonnés à leurs propres forces, ont toujours
produit des résultats qui prouvaient d'une manière irré-
cusable la faiblesse des élèves et la mauvaise direction de
l'enseignement de la géométrie descriptive.

Il me reste à dire, à propos de Y enseignement oral,
que Monge s'appliquait avec soin à faire des rapproche-
ments entre l'analyse des trois dimensions et la méthode
des projections, et que cela n'a plus lieu. « Monge, pro-
» fesseur au Louvre, montrait quelles relations admira-
» blés unissent les opérations de l'analyse et de la géonié-
» trie (*). »

On néglige aussi l'emploi des projections auxi-
liaires (**), qui sont à la fois un moyen de simplifier la
solution de beaucoup de questions dans lesquelles les
données sont quelconques, et un exercice graphique très-
utile. Les programmes de la composition mathématique
pour le concours d'admission de cette année, en ont pré-
senté plusieurs exemples. 11 serait regrettable que cet
avertissement passât inaperçu. Dans la détermination des

(*) Essai historique sur les services et les travaux scientifiques de G. Monge
(page n ) ; par M. Charles Dupin.

(**) Ce sont les changements de plan de projection de la géométrie de
M. Théodore Olivier.
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ombres linéaires sur la surface des corps, dans les épures
de charpenterie surtout, on a le plus souvent recours
à une troisième projection, quelquefois même à une
quatrième.

Enfin, on néglige l'étude des formes poljèdrales pour
s'attacher presque exclusivement aux formes continues :
ce dont on s'aperçoit à l'École Polytechnique, où l'ensei-
gnement de la charpenterie, qui traiîe de formes disconti-
nues , a toujours présenté plus de difficulté que celui de la
coupe des pierres. Il serait bon, après les généralités sur
la ligne droite et le plan, d'étudier un peu les polyèdres,
au Heu de s'arrêter à la perpendiculaire au plan et à la
plus courte distance entre deux droites, comme on le fait
généralement.

Je dirai seulement, quant à la rédaction des textes
de la géométrie descriptive, que c'est un travail qui me
paraît laisser beaucoup à désirer. Les compositions de
cette année en ont fourni une preuve convaincante. Je
crois qu'il pourrait y avoir là quelques règles à donner.

Enfin, je voudrais, si je n'étais déjà trop long, vous
parler de certaines parties de l'enseignement, parties
très-secondaires, dont on est surpris de trouver le pre-
mier apprentissage à l'Ecole Polytechnique. —Je vous le
demande ; est-il convenable de n'apprendre qu'à dix-neuf
ans (âge moyen des candidats à leur entrée à l'École), l'art
si facile de dessiner des lettres linéaires (*), genre d'écri-
ture qui convient aux épures, au dessin architectural,
au dessin des machines, en un mot, à tous les genres,
à la seule exception du dessin topo graphique, qui ne
comporte que les lettres moulées, bien autrement diffi-
ciles à faire que les lettres simplement dessinées par

( * ) Lettres sans pleins ni déliés 7 qu'on nomme, en typographie, lettres
maigres.
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un trait présentant leur forme générale ? — Pourquoi le
dessin en croquis, le dessin cursif, est-il complètement
oublié dansVenseignement préparatoire, malgré son utilité
non moins grande que celle du dessin à la règle et au com-
pas, pour préparer aux croquis de l'architecture et des ma-
chines, pour suivre facilement les professeurs aux leçons ,
et, surtout) pour discuter rapidement le choix et les dispo-
sitions des données des épures, étude préliminaire sans la-
quelle les élèves perdent beaucoup de temps dans leurs
essais à la règle et au compas, qui ne sont pas des instru-
ments de tâtonnement? Je ne parle pas du découragement
que ces essais infructueux leur causent trop souvent.—
Pourquoi ne trouve-t-on pas, avant l'école, des exercices
sur le maniement de la plume? Je ne pense pas qu'on
regarde comme une préparation suffisante les quelques
courbes que les candidats ont à tracer sur leurs épures.
D'ailleurs elles sont presque toutes mises à l'encre avec
le guide-courbe, vulgairement appelé pistolet. Aussi avec
quel soin les élèves comptent les courbes et les évitent! Je
ne proscris pas d'une manière absolue le pistolet, qui a
son utilité et ses applications propres ; mais je ne l'admets
qu'à côté d'exercices spéciaux sur le maniement de la
plume, etc.

Qui ne sait qu'il y a de ces choses qu'on ne doit pas
commencer trop tard , sous peine de les croire au-dessous
de soi, ou tout au moins de ne les faire qu'avec une
certaine répugnance? Il est aussi de ces détails qui ne
peuvent être abordés dans un amphithéâtre , tant ils
sont simples et minutieux , qui appartiennent à ce que
l'on pourrait appeler l'enseignement familier.

Je ne vous parlerai pas du dessin d'imitation, bien
-qu'il se rattache de près au dessin des projections ; c'est
un sujet important qui ne saurait être traité incidemment.

* 11 faudrait considérer cette imitation libre des corps non
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susceptibles fie définition exacte (*), comme art d'agré-
ment , avant l'École Polytechnique, et à l'École, comme
art mixte, si je puis m'exprimer ainsi. De chacun de ces
points de vue, son enseignement me paraît incomplet et
mal dirigé. A l'École Polytechnique, par exemple, où le
mérite des maîtres offre certainement toutes les garanties
de succès, on s'étonne de voir un résultat utile si peu en
rapport avec le temps qui consacré au dessin d'imitation,
et avec la dépense qu'entraînent ses leçons de nuit. Et puis,
n'est-il pas regrettable de n'y trouver aucune liaison
entre les ombres linéaires et la perspective linéaire des
exercices graphiques, et les études de perspective, d'ombre
et de couleur de la salle de dessin P de n'y pas trouver non
plus le dessin d'ornement que Monge, savant et artiste,
avait mis avec tant de raison dans ses programmes? etc.
— Ce que je prendais surtout à partie, si je pouvais m'oc-
cuper de ce sujet, ce serait son enseignement par copie
qui règne partout, et dont le fâcheux effet s'étend plus
loin qu'on ne pense.

Que si ces observations, ces critiques, vous paraissent
fondées, mon cher confrère, prenez-en votre part de
responsabilité en leur donnant place dans vos Annales.
En même temps, vous m'autoriserez à vous offrir quel-
ques conseils sur la partie graphique de l'enseignement
de la géométrie descriptive.

Note. Naguère, croyant à la pudeur, je ne croyais pas que l'on oserait,
dans le haut enseignement, remplacer la mécanique des Lagrange par
le verbiage industriel de nos machinistes; je commettais une double
erreur. Aujourd'hui, il est question de remplacer en Sorbonne le calcuï
des probabilités par un cours à l'usage des charpentiers. Maintenant, je
crois tout. Les publicains régnent dans le temple. O. TERQUEM.

(*) Journal de l École Polytechnique, i c r Cahier,
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Sur les résultats de la substitution d'une suite de nombres équidistants
dans une fonction entière d'une seule variable.—Application à la
séparation des racines d'une équation du troisième degré. — Formules
d'interpolation ( * ) ;

PAR M. JULES VIEILLE.

1. Soit y=zf[x) une fonction quelconque de la va-
riable x\ si l'on y remplace x par x -\-h^ la différence

f(x + h)-f(x)

se nomme différence première de la fonction y, et on la
représente par Ajp Cette différence est elle-même une
fonction de x (en général) ; et si l'on donne à la variable
un nouvel accroissement égal à /z, la différence première
de Ay, ou

/ ( , r + 2 A) - / ( . * + h) - [/(X + h) - / ( * ) ] ,

se nomme différence deuxième de la fonction y , on la
représente par A2y.

De même la différence première de A*2y est dite diffé-
rence troisième de y ou A3y ; et ainsi de suite.

Il résulte de cette définition que la différence mieme de
la différencenième d'une fonction est la différence (m-\-n)ième

de cette fonction

2. THÉORÈME. Z<2 différence mième d'une fonction en-

(*) En rédigeant cette Note, nous n'avons eu d'autre but que de rem-
plir une lacune des Traités élémentaires d'Algèbre, et de fournir la
solution de plusieurs questions renfermées dans le nouveau Programme
-d'admission à l'École Polytechnique.
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îièt'c du degré ni,

y = Axm -+~ B^rm- 4- . . . H- K* + L*

est constante, et égale à i . i. 3 . . . m A hm.
On a

A j = A[(x -h h)m — «rm]

Sans développer toutes ces puissances, il suffit de remar-
quer que Aj sera un polynôme du degré m — i ayant
pour premier terme mAxm~~ih, lequel se déduit du pre-
mier terme de y, en multipliant A par Vexposant de x
dans ce terme> diminuant Vexposant de x dfune unité,
et augmentant celui de h d'une unité. Il en résulte que
A*y est un polynôme du degré m — i , ayant pour pre-
mier terme

m [m — i ) Aaf1'2h1 ;

A3 y est du degré m — 3 et a pour premier terme
m [m — i ) ( m — â ) A xm~s h3 ;

A"1"1/ sera du premier degré en jr, et son premier terme
sera

m (m — i ) . . . 3 . i A x. hm~{ ;

enfin A"1 y sera égal à une constante

Amx = i . 2. . . m A h». C. Q. F. D, ^

Corollaire i. S i A = i , h = i. La différence de

l'ordre m se réduit à

I . 2 . 3 . . ./fc.

Par exemple, si dans les fonctions du troisième degré

on substitue des nombres entiers consécutifs, on aura
constamment

A 3 r = 1 . 2 . 3 = 6 .

Xnn. de Mathrmat., t. X. (Février I 8 5 I . ) 4
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Corollaire 2. Soient / 0 5 Ji <> ft, J 3 > • • • l^s différentes
valeurs que reçoit une fonction entière de x, du degré m,
quand on y remplace x par les nombres équidistants

si Ton retranche chaque terme du suivant, on aura une
suite de différences premières, généralement inégales,

À/o —fi — / • , Aj, = y2 —y{, Aj,, = / 3 — j 2

Si Ton retranche ensuite chacune de ces différences de la
suivante, on aura la suite des différences deuxièmes

A2^o = Ajr, — A j o , A2 j , = Ajr, — A/ 2

En continuant ainsi jusqu'à Tordre m, on aura des diffé-
rences mthnes toutes égales entre elles et à la constante

Applications.

4. Formation des puissances ries nombres entiers
consécutifs.

Supposons qu'il s'agisse de calculer la suite des cubes
des nombres entiers. Ici la fonction y = x3 -, on calcu-
lera directement trois valeurs de y, c'est-à-dire trois cubes
consécutifs seulement, et l'on choisira de préférence ceux

<des nombres o, 1, i\ on conclut de ces trois cubes
(o , 1, 8 ) , les deux différences premières

A ( o > ) = i , A ( l » ) = 7 ,

puis de ces deux différences, la différence deuxième

*(<>») = 6;

quant à la différence troisième, elle est constante et égale
à 1.2.3 = 6. Cela posé, on formera, par additions succes-
sives de ce dernier nombre, la suite des différences
deuxièmes, puis de celles-ci on passera, toujours par voie
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d'addition, à la suite des différences premières ; enfin de
ces dernières à la suite des cubes demandés.

Voici la disposition des calculs.

NOMBRES.

0

I

o

3

4
5
r>
7
8

9

CUBES.

0

I

8
27

64
1 3 *

2 î 6

343
5 l 2

729

DIFFÉRENCES

premières.

1

7
! 9
3/
61

91
127

169

217

271

DIFFÉRENCES

deuxièmes.

6
1 2

18

24
3o
36
42
48
54
60

»

DIFFÉRENCES

troisièmes.

6

»

„

*

Cette méthode est applicable ayec avantage au calcul
des puissances de tous les degrés des nombres entiers
consécutifs *, pour les puissances cinquièmes par exemple,
on devrait d'abord former directement cinq puissances
consécutives. On pourra choisir celles des nombres — 2,
— 1, o, 1, 2.

5. Étant donnée une fonction entière du mihne degré, iL
suffira de calculer directement les résultats de la substi-
tution de m nombres entiers consécutifs, pour en dé-
duire, au moyen des différences, ceux de tous les autres
nombres entiers, positifs ou négatifs.

Soit, par exemple, la fonction du troisième degré

y = j?3 -h 11 x2 — 102 x -h 181 ;

on partira des nombres — 1, o, -f- 1.
x = — 1 donne x~\= 4- 293,
x=o donne jo = 4-181,
x= -f- 1 donne ys = -f- 91 ;
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on en conclut

puis

on a d'ailleurs

A ( j~») = — 112,

= — 9°>
) •= -h 22 :

Cela posé, pour avoir les résultats de la substitution des
nombres entiers et positifs 2, 3 , 4 > 5 , . • . , on procédera,
comme ci-dessus, par additions successives, en remon-
tant des différences troisièmes aux différences deuxièmes,
de celles-ci aux différences premières, enfin de ces der-
nières aux valeurs cherchées de la fonction.

Tableau des calculs.

1

0

-h F

-H i

-4- 3

-+- 4
4- 5
-4- 6

y —

-4- 293
-4- 181
-f- 91
-4- 29
-+- 1
-4- i3

•+- ï 1

-h iS*

A

— 112

- 90
— 62
- 28
H- 12
-f- 58

-h 110
-i- 168

A*

-4- 22
-h 28
H- 34

-t- 4°
- h 4G
-h 52
-h 58
-+- 6/,

A1

6

A partir de x = 3 , il est évident, par ce tableau, que
les résultats des substitutions seront constamment posi-
tifs et croissants; on aura les résultats de la substitution
des nombres négatifs — 2, — 3 , — 4? — 5 , . . . , en pro-
cédant par soustractions successives au lieu d'additions.
En effet, on voit que, pour remonter d'une ligne horizon-
tale du tableau ci-dessus à la ligne supérieure, par
exemple de la ligne qui répond à x = 4 à celle qui ré-
pond à .r = 3 , il faut retrancher 6 de 52 , ce qui donne



( 5 3 )

46, puis 46 de 5&} ce qui donne 12, puis ta de i3 , ce
qui donne 1. En suivant cette loi, on passera des nombres
relatifs à — 1 à ceux relatifs à — 2, puis de ces derniers
à ceux relatifs à — 3, et ainsi de suite. On trouve ainsi
pour la fonction des valeurs positives, tant que x est su-
périeur à — 18. x = — 17 donne j ' = 18r, et x = — 18
donne y = — 251 \ à partir de — 18, si a: continue à dé-
croître , les résultats de la substitution seront constam-
ment négatifs.

Application à la séparation des racines d'une équation
du troisième degré,

6. Les calculs précédents n'ont manifesté qu'un seul
changement de signe pour la fonction y, et ce changement
a lieu lorsque la variable x passe de — 17 à — 18. Il en
résulte que l'équation
(1) x 3 + 11 .r2—102.2? -f- 181 ~ o (* )

a une racine négative comprise entre — 17 ei — 18} elle
ne peut d'ailleurs avoir qu'une seule racine négative, puis-
que la transformée en ( — x) n'offre qu'une variation.

[On aurait pu, sans passer par toutes les substitutions
précédentes, déterminer plus simplement les deux nom-
bres entiers entre lesquels est comprise la racine néga-
tive , en remarquant que le premier membre de l'équation
peut s écrire

x(x— 6)(x-t- 17) -+- 181,

et cette forme manifeste le changement de signe unique
qui a lieu d e ^ = — 17a x = — 18].

Outre la racine réelle négative que nous venons de sér

(*) Cette équation est celle à laquelle M. Sturm a appliqué son
théorème: nous la choisissons, afin que l'on puisse plus commodément
.comparer les deux modes d« calculs.
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parer, l'équation (i) peut admettre deux racines réelles
positives. Mais nos calculs ne nous fournissent aucune
conclusion sur l'existence de ces racines. Nous pouvons
seulement dire que, si elles existent, elles sont com-
prises toutes deux entre deux nombres entiers consécutifs;
et comme la substitution de x = 3 a donné pour résul-
tat i, nombre beaucoup plus petit que ceux fournis par
les substitutions qui précèdent et qui suivent, on serait
conduit à chercher les deux racines entre 2 et 3 ou entre
3 et 4.

/ / ne faudrait pas dire que 3 est une limite supérieure
des racines positives, en se fondant sur ce que, à partir
de x = 3, le tableau des différences fait voir que les ré-
sultats des substitutions seront toujours positifs et crois-
sants.

En effet, de ce que les nombres entiers 3 , 4 5 5 ,. . .,
font prendre à la fonction (x*-h 1 ur2— 102a: -h 181)
des valeurs croissantes, il n'en résulte pas que la fonction
ne puisse décroître et passer par zéro pour des valeurs
de x comprises entre deux d'entre eux. La représentation
graphique des valeurs de la fonction ne laisse aucun doute
sur la fausseté de cette conclusion. La courbe dont ces
valeurs sont les ordonnées, peut couper l'axe des x en
deux points dont les abscisses sont comprises entre deux
nombres entiers consécutifs, et l'on remarquera qu'entre
ces abscisses tombe celle d'un point de la courbe dont
l'ordonnée, abstraction faite du signe, est un maximum.
L'abscisse de ce point satisfait à l'équation

f1 (x) désignant la dérivée de la fonction proposée,
c'est-à-dire que les deux racines positives de l'équa-
tion (1), si elles existent, sont séparées par une racine de
Véquation qu'on obtient en égalant à zéro la dérivée
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de son premier membre [cas particulier du théorème de
Rolle(*)].

7. Le plus souvent, dans les applications où l'on est
conduit à résoudre une équation numérique du troisième
degré, on sait d'avance si l'équation comporte une ou
trois racines réelles. La considération de Y équation dé-
rivée suffit alors pour séparer rigoureusement les racines
de l'équation. Elle supplée avec avantage (pour le troi-
sième degré) à la méthode de M. Sturm; sans elle, et en
se bornant à la substitution de nombres équidistants, on
s'expose à faire des tâtonnements inutiles.

Dans le cas qui nous occupe, l'équation dérivée est

3 X7 H- 11 X — l O2 =r O ,

et sa racine positive est

— 11 —f— \lâil o

— l ± - i = 3 , 2 2 1 . . .
«5

Donc, si Ton admet que l'équation (i) ait deux racines
positives, Vune sera plus grande que 3,2, et Vautre plus
petite que 3,3; et comme on sait déjà qu'elles sont com-
prises entre deux nombres entiers consécutifs, c'est entre
3 et 4 qu'il faut les chercher.

8. Pour les séparer, nous allons substituer dans la

fonction y des nombres équidistants de — entre 3 et 4-

En procédant ainsi, nous aurons l'avantage d'obtenir la

valeur approchée de chaque racine h moins de —

II convient de continuer la méthode de calcul par diffé-
rences, qui est plus expéditive et plus sûre que toute

(") Ce théorème s'énonce ainsi: Deux racines réelles et inégales dune
cqua.ion comprennent un nombre impair de racines réelles de l'équation
dérivée.
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autre. A cet effet, uous emprunterons au tableau du n° 6
les nombres et différences relatives à x = 3,

= i , A =

et il s'agit de déduire de ces trois différences relatives à

l'accroissement constant i , les trois différences du même

nombre yz, relatives au nouvel accroissement con-

stant — • Or , si Ton désigne en général par ô, <J2, cJ3 les

différences première, deuxième, troisième d'une valeur
quelconque de la fonction j ' relatives à un accroissement
constant h, et par A, A2, A* les trois différences delà
même ^valeur de y relatives à l'accroissement i , on a les
formules

( 2
— i) A3],

6

elles seront démontrées plus loin, afin de ne pas inter-
rompre le calcul. Nous nous bornerons à remarquer que
la première est une conséquence évidente de la formule
générale

S m y z=z l . 2 . 3 * . . />/. hm.

En faisant h — — dans les formules précédentes, on a

(3)

et remplaçant A par 11} A2 par 4^, A3 par 6 , on

$* nr o?oo6, § - = + o?4o6, $ = ~ 0,699.

IOOO

IOO

A
ÏO

Q A°

IOOO

9 A' ,
2OO

17 I . A3

6000 '
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Actuellement, la disposition des calculs s'explique d'elle-
même ; ils sont consignés dans le tableau suivant.

Substitution de nombres équidistants de — entre 3 et &.
10 ^

jr =

3 , i

3 , 2

3,3
3,4
3,5
3,6

3'i7
3,8
3,9

-h 1
-4- o,3oi
H- 0,008
-f- 0,127
-*- 0,664
-+- i ,6-i5

-H 3 , o i 6

-h /b843
-+- 7 ? i i ?

H- 9 ,829

-+•13. ooo

— 0,699
- 0,293
-h 0,119
-f- 0,537
H- 0,961
-h 1,391
-+- 1,827
-+- 2,269
-f- 2,717
-+- 3,171
-h 3,63i

-h 0,406
-f- 0 ,412

H- O,4l8
-f- 0,424
-+• o,43o
-h o,436
H- 0,44-2

H- 0,448
-+- 0,454
-+- 0,460
-+- 0,466

0,006

»

*

Comme vérification, on retrouve pour x = 3 10

10

ou 4, le résultat i3 déjà connu. Si nous nfavions pas tenu
à donner un exemple complet de ce genre de calculs, et à
user du moyen de contrôle qui vient d'être indiqué , nous
aurions pu nous dispenser, dans la question présente, de
pousser les substitutions aussi loin : la séparation des ra->
cines n'exige pas qu'on aille au delà de 3,2; en effet,
jusqu'à cette valeur de x, on n'a trouvé pour r que des
valeurs positives ; et comme la difïërence à est devenue
positive, on voit que la substitution de 3,3 devra donner
également un résultat positif. Or on sait, par la considé-
ration de la dérivée, que l'une des racines cherchées est
plus petite que 3,3, et l'autre plus grande que 3,2-, donc
il est certain qu'elles sont toutes deux comprises entre 3,2
et3,3.
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II faut, pour poursuivre leur séparation, substituer

des nombres équidistants de entre 3,20 et 3 , 3o. À cet

effet, remarquons que les formules ( 2 ) établissent des re-
lations générales entre deux systèmes de différences
($, <î% dz), (A, A2, A3) correspondantes à des accrois-
sements dont le rapport est h 5 et comme le rapport

de — à — est égal à celui de — à 1, on comprend que
100 10 D 10 ' r ^

les mêmes formules (3) fourniront les valeurs des nou-
velles différences c?, cî2, $3 relatives à l'accroissement

constant * en y remplaçant A, A2, A8 par leurs valeurs

correspondantes à l'accroissement —

Comme on doit partir de 3 ,20 , on fera, dans les for-
mules (3) ,

A = 0,119, A2 = O,418, A3 = 0 ,006,

et Ton aura

§z= — 0,006739, 82 = 0,004126, S3 = 0,000006.

Substitution de nombres équidistants de entre 3,20 et 3,3o,
100

3
3
3
3

X

,20

,21

,22

,23

y

H- 0,008

-4- 0,001261

— o,ooi352

H- 0,000167

— 0

— 0

H- 0

9

,006739

,002613

,001519
n

0,004126

o,oo4i32

)»

o;000006

»

»
n

On trouve deux changements de signes, l'un de 3,21
à 3,22, l'autre de 3,22 à 3,23. Les deux racines posi-
tives de l'équation (1) sont donc séparées, et leurs valeurs
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approchées à moins de sont
r r ioo

3,2i et 3,22.

On pourra maintenant en approcher davantage par la
méthode de Newton.

Quant à la racine négative comprise entre — 17 et —18,

on la calculera à moins de —5 en substituant des nombres
10

équidistants de — ; puis on poursuivra l'approximation

par la méthode de Newton.
9. Au reste, si Ton continue l'approximation par le

calcul des différences en substituant successivement des

nombres équidistants de -̂ —> de •> de ; on
-1 100 1000 10000

voit par les formules (3) que la valeur numérique de la

différence première $ tendra à se réduire à —-> les autres

termes 2— et - ^ — n'ayant bientôt qu'une influence né-
'J.QO DOOO J *

gligeable sur cette valeur. Quand le calcul aura été con-

duit jusqu'à ce degré où d est sensiblement égale à — , on
pourra achever l'approximation de la racine par une
simple proportion, comme on le fait dans le calcul du
nombre correspondant à un logarithme. En effet, soient

f(x) le premier membre de l'équation, a et a H ;

deux nombres entre lesquels tombe la racine cherchée \

j (a) et / ( a H V sont de signes contraires. Soit, pour

fixer les idées, f {CL) < O , A la différence
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la différence

on a 0 = — a peu près.

Puisque, l'accroissement de la variable étant réduit au
dixième, l'accroissement correspondant de la fonction est
pareillement réduit au dixième, on peut poser cette règle
de trois :

Pour un accroissement A de f(a), il a fallu ajouter à

a, 10 unités (de l'ordre —<-^r, combien, pour obtenir

un accroissement —/ ' ( a ) ( ^ réduira la fonction à zéro),
faudra-l-il ajouter d'unités, du même ordre?

A : - / ( « ) : : I O ; * , d'où z =

a _j _ s e r a u n e valeur très-approchée de la racine

cherchée. Si les nombres A et —f{a) qu'il faut suppo-
ser réduits en unités du dernier ordre, sont exacts cha-"
cun à moins d'une demi-unité, l'erreur du quotient qui

fournit z aura pour limite supérieure

. 0 /

10. Démonstration des formules (2) du n° 8.
Ces formules sont comprises dans le problème général

de l'interpolation, qui sera résolu plus loin. Mais on peut
en donner une démonstration directe et assez simple dans
le cas d'une fonction du troisième degré.

Soit jo la valeur que prend une fonction du troisième
degré pour une valeur x0 de x\ la fonction sera de la
forme

y = /„ -h a {x — J70) -f- b {x — x0)
2 + c f « - xo)%



ou mieux, si Ton pose x = xo.-f- X ,

( i ) y = jo -h * X -f- * X2 4- * X3.

Cette substitution de la variable X à x revient, en
géométrie analytique, où l'on regarde y comme l'ordon-
née d'une courbe, à transporter l'origine au point de Taxe
des x qui a pour abscisse xQ.

D'après cela, au lieu d'attribuer à x les valeurs

il sera équivalent et plus simple d'attribuer à X les
valeurs

o, h, ?.hy 3h.

Soient â, cî2, o3 les différences première, deuxième et
troisième de jv , on aura, en opérant les substitutions et
soustractions indiquées,

d = ah -h bh*-hch*9

Soient A, A% A8 les valeurs que prennent les trois
différences d e j ^ pour un accroissement constant i donné
à la variable 5 on fera h = i dans les expressions précé-
dentes , et Ton aura

A2 = 2 b -f- 6 c,

& = 6c

Pour avoir les relations cherchées entre les à et A, il
ne reste plus qu'à éliminer a, è, c entre ces six équations;
on tire des trois dernières

A3 ,- A» — A3 / I A3

* ( A ^ H6 i \ 2 3

et, en substituant dans les trois premières, on a les for-
mules (ri).

La même marche est applicable à une fonction d'un
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degré supérieur au troisième, mais les calculs d'élimi-
nation se compliqueraient de plus en plus.

11. Si Ton substitue les valeurs trouvées pour les coef-
ficients a, J , c , dans l'équation (i), on aura

Ainsi une fonction du troisième degré est complètement
déterminée, quand on connaît une valeur j 0 de la fonc-
tion correspondante à une valeur dronnée de x, ainsi que
les trois différences A, A2, A3 de y0 relatives à l'accroisse-
ment constant i donné à la variable : cette proposition
sera généralisée (n° 16).

Des différences envisagées sous un point de vue plus
général. Expression de la différence nieme (Any0) au
moyen des n-+-i valeurs j 0 5 715,72?* • • ,yn*

12. Si l'on considère une suite de valeurs Ja^ji^ y^
j 8 , y 4 v . . , que prend une fonction quelconque de xy

quand la variable reçoit une suite de valeurs x0, «rl5 .r2,
Xs,... (équidistantes ou non), et qu'on retranche cha-
cune de la suivante, on a

on en tire
A'/o = Aj. — Aj0 = ( j 2 — jrt) — [yx — J o ) •

et réduisant
A2J0=rJ2— 2

de même
A2J. =J 3 — *

et, par suite,

A3
tr0= A2/, — A'̂ /o = {y, — 2 j , + / , ) — (y, — 2 j , -f-j«

et réduisant
A:; r« = j- 5 — 3 / , -f- 3 j , — j 0 .
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L'observation des différences des trois premiers ordres
de y0 conduit à cette loi : les indices décroissent successi-
vement d'une unité depuis Tordre de la différence jusqu'à
zéro ; les coefficients sont ceux de la puissance du même
ordre du binôme (y — i) .

Si Ton suppose cette loi vraie pour la différence nième,
on fera voir aisément qu'elle est encore vraie pour la dif-
férence (n -f- i)ième; on trouvera, en effet, que chaque
coefficient de A"+1 est égal au coefficient du terme de
même rang dans A% ajouté au coefficient du terme pré-
cédent. Or c'est précisément ainsi que Ton passe de
[y — i)" à ( y — i)"+1 . On a donc, quel que soit n,

. . . n(n — i)
(4 ) A"Jo = Jn — njrn-t -t- -±—-JjrM — .

Expression de yn au moyen de y$ et de ses n différences

43. Cette question est la réciproque de la précédente.
On a successivement

y t = jo H- Ajo,

car il est visible que la différence d'une somme de quan-
tités est égale à la somme des différences de ces quantités ;
on a donc en réduisant

X,=X-2 -h A / 2 = ( yQ 4- 2 A/ o

et réduisant
j 3 =y. 4- 3 Aro -h 3 A2J0 -i- A3J0 .

On voit que les indices des différences vont en croissant
d'une unité depuis zéro jusqu'à l'indice de la valeur dey,
et les coefficients sont ceux de la puissance du même degré
du binôme ( 7 4 - 1).
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On fera voir, en supposant la loi vraie pour j ,o et

en passant de yn à yn+x <> comme on est passé de j 2 à ys,
que cette loi est générale.

On a donc, quel que soit n,

(5) yn = y. -f- n A/,, -+- " [~l A2/o + • . . H- A« y9.

Formules d'interpolation.

\ 4. Une grandeur est dite fonction d'une autre lors-
que , en faisant varier la seconde, il en résulte une va-
riation déterminée pour la première. Ainsi, la surface
d'un cercle est une fonction du rayon, l'espace parcouru
par un corps qui tombe est une fonction du temps écoulé
depuis le commencement de la chute, la tangente trigo-
nométrique d'un arc est une fonction de l'arc, la tension
maximum de la vapeur d'eau est une fonction de la tem-
pérature, etc. Il arrive souvent que la relation qui existe
entre une fonction et la variable dont elle dépend n'est
pas de nature à pouvoir être exprimée par une équation
exacte, algébrique ou transcendante, ou bien (et cela
revient au même dans la pratique) cette équation est trop
compliquée pour qu'on puisse en déduire commodément
toutes les valeurs de la fonction.

Alors si Ton connaît (par l'observation ou de toute
autre manière) un certain nombre de valeurs de la fonc-
tion correspondante à des valeurs données de la variable,
on peut se proposer de déterminer, avec une approxi-
mation suffisante, celles qui correspondent à des valeurs
intermédiaires de la variable : tel est le but de Vinterpo-
lation.

Interpoler, c'est déterminer, entre certaines limites de
la variable x, une fonction de x d'après la connaissance
d'un certain nombre de valeurs particulières de cette
fonction comprises entre ces limites.
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Quand on n'a d'avance aucune donnée sur l'expression

analytique de la fonction, le problème est évidemment
indéterminé $ car la fonction peut être considérée comme
l'ordonnée d'une courbe dont x serait l'abscisse, et
l'interpolation revient à déterminer la courbe d'après
un certain nombre de points par lesquels elle doit pas-
ser. Or il existe une infinité de courbes ayant n points
communs.

On conçoit cependant que si une étude préalable de la
fonction dont il s'agit a fait voir qu'elle ne varie pas trop
brusquement dans l'intervalle des valeurs de x que l'on
considère, et si ces valeurs ne sont pas trop distantes les
unes des autres, il sera possible d'estimer, avec une assez
grande approximation, la figure de la courbe dans la
partie correspondante de son cours.

15. L'indétermination du problème cesse complète-
ment si, à la connaissance de n-\- i valeurs particulières
de la fonction, on ajoute cette condition, que la fonction
soit entière et du degré n. En effet, s'il était possible
que deux fonctions du même degré n

non identiques, eussent n-\- i valeurs égales pour les
mêmes valeurs de x ,

l'équation qu'on formerait en égalant à zéro la différence
de ces fonctions, c'est-à-dire

(/_./').*» + (*-- hJ) x'1-' -+-... -f- (i — £') * •+•« — «' = o,

aurait w + i racines

x = r x0 y x{, X'2, . • . 9 xn,

Ann. de Mathétnat , t. X (Février i85i.) ^
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v.e qui est absurde, cette équation étant d'un degré au
plus égal à n.

Ainsi, quelque procédé qu'on emploie pour le calcul
des coefficients a, è , c,... , / d'une fonction entière de
degré n remplissant les conditions données, on devra
toujours parvenir aux mêmes résultats.

46. Nous nous bornerons à exposer la formule de
Newton, qui répond au cas le plus ordinaire, celui où
les n -h i valeurs de x sont supposées équidistantes. On
peut, comme on l'a vu n° 10, partir de zéro comme
première valeur de .r, puisque cela revient à disposer
de l'origine des x qui est arbitraire; soient donc

o, h, ih,. . . , nhy

les n -+- i valeurs de x, et

les valeurs correspondantes de la fonction y.
On sait (n° 13) exprimer yx, y 2 , , . . , yn, en fonction

deĵ o et de ses différences successives. Si on les désigne,
pour abréger, par <J, cîs, $%..., dn *, et si Ton désigne
par t un nombre entier qui peut recevoir toutes les valeurs
de o à n inclusivement, je dis qu'on aura

(6)

.2. . .«

En effet, pour t = n, cette équation coïncide avec la for-
mule (5), et si t est plus petit que n, le second membre

j i • A f ( f — i ) . . . ( f — f - 4 - i ) %#se termine de lui-même au terme ~* — ' o ;

les coefficients des termes suivants étant nuls à cause du
facteur (t — /) qu'ils renferment.
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Cela posé, si l'on change dans ce second membre t en

-> il deviendra un polynôme entier en x du degré n.

x \ $»

h ) i . 2 . . .n

qui se réduira évidemment à yt pour x = th, et, par
conséquent, ce polynôme prendra successivement les va-
leurs

quand on y donnera à x les valeurs

o, h, 2/1 y. . . , nhy

ce qu'il est, du reste, facile de vérifier. Ce polynôme n'est
donc autre que la fonction y qu'il s'agissait d'obtenir*
(n° 15), et l'on a définitivement

(7)

x x(x \ <$'

*U 7
Cette formule a l'inconvénient ( qui lui est commun, du
reste, avec les autres formules d'interpolation), de n'être
pas ordonnée par rapport aux puissances de x, en sorte
que pour avoir les coefficients a, è, c,... ^ l de ces diverses
puissances, il faudra développer les produits indiqués.

Application au troisième degré. — L'équation (j)^
ordonnée par rapport à x, se réduit à

Si l'on suppose h== 1, et qu'on désigne par A, A*,
5,



( 68 ).
les différences de y0, relatives à l'accroissement con-
stant i, Véquation précédente devient

A 2 — A 3 A3

c'est le développement dej', déjà donné au n° H.
Puisque les seconds membres de ces deux équations

sont les développements d'une même fonction entière
de x , ils doivent être identiques. En égalant les coeffi-
cients des mêmes puissances de a:, on retrouve les for-
mules (2) du n° 8.Cette marche conduira immédiatement
aux formules analogues pour une fonction d'un degré
supérieur au troisième.

17. L'équation (7) permettra de remplacer par une
équation algébrique une équation transcendante X = o,
lorsqu'on connaîtra [n -f-i) valeurs de la fonction X, cor-
respondantes à des valeurs de x, équidistantes et assez
voisines pour que les différences nihmes des résultats de
leur substitution puissent être considérées comme con-
stantes. Au point de vue de la géométrie analytique, cette
interpolation a pour effet de remplacer la courbe trans-
cendante y = X, par la courbe parabolique

qui se confondra sensiblement avec la première, dans
toute la partie de son cours, comprise entre les abscisses
extrêmes o etnh.

L'emploi des parties proportionnelles dans les Tables
de logarithmes est une véritable interpolation.

Comme les différences premières entre les termes con-
sécutifs des Tables, varient très-lentement, on peut les
regarder comme constantes dans un certain intervalle,
c'est-à-dire regarder comme nulles les différences secon-
des, troisièmes, etc, Par exemple, si Ton ouvre les Tables
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tri gonomé triques au logarithme de tang (34° n ' i o " ) ,
on trouve que la différence entre ce logarithme et celui
de tang (34° 11; 20*) est 453 dix-millionièmes, et l'on voit
que cette différence se maintient la même pour les accrois-
sements successifs de 10" en 10", jusqu'au dixième terme
34° 12' 5o", où elle devient 45 a ; puis elle reprend sa pre-
mière valeur 453 pour les trois termes suivants, et elle
oscille ainsi longtemps entre 453 et 45a dix-millionièmes.

La même constance s'observe lorsqu'on remonte dans
la Table jusqu'au trentième terme au-dessus de l'arc
34° 1 I ' IO". On peut donc regarder la fonction logtang.r,
comme se confondant sensiblement pour les valeurs
de jrr, comprises entre ces limites avec une fonction en-
tière dont la différence première â serait égale au nombre
constant 453 dix-millionièmes, c'est-à-dire avec la fonc-
tion

(8) y=y. + U,
n

qu'on déduit de l'équation (7) en faisant

S2= o, d'6 = o . . . ;
on en tire

y — Jo __ •*

c'est-à-dire les accroissements des logarithmes-tangentes
proportionnels aux accroissements de l'arc, comme le sup-
pose la règle usuelle.

Soient donc

y9 = log tang(34° 11' 10") = 9,8320264,
h=zio",
<î = 453 dix-millionièmes,

et soit proposé de trouver le logarithme de

tang(34°n'i7",8);



on fera, dans l'équation (8),
* = 7",8,

et Ton aura pour la différence du logarithme cherché au
logarithme de tang (34° I .I ' IO"), différence évaluée en
dix-millionièmes,

y_y>= 4 5 3 ^ 8 = 3 5 3 > 3

Réciproquement, quand on se propose de trouver l'arc
correspondant à un logarithme-tangente,y est donné, et
l'inconnue est x. On tire de l'équation (8)

On fera h= io, et le second membre indiquera le nom-
bre x de secondes, qu'il faut ajoutera Tare correspon-
dant ày0 ; c'est le résultat que donne la règle des parties
proportionnelles.

Comme les deux termes de la division [y —yQ ) et â

ne sont connus qu'à - unité près, et qu'on doit multi-

plier par io, le quotient sera approché à moins de • -

près. Par exemple, avec les nombres employés plus haut,

on a à = 453 ; l'erreur sera moindre que j^y abstraction

faite de l'erreur (beaucoup plus faible) apportée par la
formule d'interpolation.

Comme les différences ô des tangentes sont les sommes
des différences correspondantes des sinus et cosinus, il
résulte de la limite d'erreur indiquée ci-dessus, que les
formules qui donnent les angles par le moyen de la tan-
gente , fournissent une approximation plus grande que
les formules où l'angle est défini par son sinus ou son co.-
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sinus. C'est pourquoi les premières doivent toujours être
préférées.

Note. L'excellent article qui précède est très-utile à l'enseignement.
C'est un point détaché du calcul aux différences. Il serait avantageux,
facile, d'apprendre aux élèves les principes de ce calcul; conséquences
immédiates du binôme de Newton, et à l'aide desquelles on passe si na-
turellement au calcul différentiel, comme TLuler le fait voir. Car lei
chaires doivent toujours retentir de ces méthodes générales tant recom-
mandées dans les leçons à la première École Normale et professées
par les grands maîtres, et que l'École Normale actuelle conserve et con-
servera {utînam!) religieusement. Ces méthodes sont diamétralement op-
posées à l'esprit de petitesse qu'on veut inoculer à certain enseignement
en haut lieu.

O. ÎERQUEM.

SUR LE CALCUL DES LOGARITHMES;
PAR M. ABEL TRANSON.

Les nouveaux programmes pour l'admission à l'Ecole
Polytechnique demandent le « calcul des logarithmes au
» moyen de la série qui donne le logarithme de n -f- i,
)> quand on connaît celui de w. »

II s'agit de la formule

(i) L ( n + i ) - L « = 2 h ^7— N 3 - + " F ; — * r-4-—
v ' v ' \jin-\-\ 3(2«-f-i)3 5(2/i4-i)* J

dans laquelle L n est le logarithme népérien de n.
Euler, dans Ylntroduc. in Anal. Injinit., donne les

résultats de l'application de cette formule aux logarithmes
hyperboliques des premiers nombres jusqu'à to*, mais,
pour le calcul de L 7, il indique une modification remar-
quable qui consiste à calculer

L 5o — L 4Q =
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La série qui forme le second membre étant égale à

L2 + 2L5 — 2L7,

il s'ensuit la détermination du logarithme de 7 en fonc-
tion des logarithmes de 2 et 5, et d'une série beaucoup
plus convergente que celle qui résulterait de la simple ap-
plication de la formule (1).

Thomas Lavernède, dans les Annales de M. Ger-
gonne, tome I, a recherché les moyens les plus avanta-
geux de construire une Table de logarithmes. Parmi les
formules très-curieuses que renferme son Mémoire, on
peut distinguer la suivante, qui se démontre séparément
et avec beaucoup de facilité.

Soit p un nombre premier. Au lieu d'appliquer immé-
diatement au calcul de Lp la formule (1), on l'applique
au calcul du logarithme de p* 7 et il en résulte cette nou-
velle formule :

(2) — L(/?2-—1) = 2 ^ h =-7 \ .- -h . . : •
\* 1 | 2 / ; 2 — 1 3 ( 2 / ^ — i)3 J

Or il faut observer que, p étant un nombre premier,
tous les facteurs premiers de p2— 1 sont inférieurs à p ;
de sorte que le logarithme de p se trouve exprimé à Faide
de logarithmes antérieurement calculés et d'une série
bien plus convergente que celle de la formule (1).

La formule employée par Euler pour calculer L 7 re-
vient à

qui, à la vérité, est plus avantageuse que la formule (2),
mais qui n'est pas toujours applicable, parce que les fac-
teurs premiers de /?2-h 1 peuvent être supérieurs à p.

Note, Les nouveaux programmes ordonnent de vérifier l'exactitude des
Xables logarithmiques, à l'aide des parties proportionnelles. Plusieurs
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personnes m'ont demandé ce que cela voulait dire. Je n'en tais rien.
Voici mes conjectures. 11 s'agit probablement de calculer les logarithmes
au moyen de la Table des différences. On trouve un exemple de ce genre
de calculs dans le texte qui précède les Tables de Callet, tome 1, p. 35.

On m'a encore demandé pourquoi ( * ) on laisse subsister la discussion
de cas douteux dans la trigonométrie rectiligne, et pourquoi on la sup-
prime dans la trigonométrie sphérique. Je n'en sais rien. Voici mes con-r
jectures. La trigonométrie rectiligne est employée par les arpenteurs, et
il n'y avait pas d'arpenteurs de profession dans la Commission d'organi-
sation ; la trigonométrie sphérique est employée surtout par les astrono-
mes , et il y avait un astronome de cabinet dans la Commission d'organisa-
tion,. En général, ceux qui dominent aujourd'hui l'enseignement par ordon-
nance militaire, les Leibnitz de par le droit du plus fort, droit toujours le
meilleur, auraient dû signifier leurs volontés d'une manière plus claire.
Par exemple, j'ai mis plus de dix minutes à deviner le sens du conseil
qu'ils veulent bien donner aux professeurs de l'Université de France, pour
bien faire la division en arithmétique. Le conseil étant compris, salva rêve-
rcntia, je le trouve assez mauvais. 11 consiste, pour vérifier un chiffre du
quotient, à multiplier tout le diviseur par ce chiffre, et à comparer le
produit avec le dividende partiel; c'est l'ancienne méthode. Aujourd'hui,
les élèves des lycées de Paris, pour opérer cette vérification, divisent le
dividende partiel par le chiffre du quotient, et comparent le résultat
avec le diviseur, ce qui est beaucoup plus expéditif. Étant sur le chapitre
des conseils, on voudra bien me permettre d'en donner un seul qui me
paraît très-opportun. Dans la composition des futures Commissions à pro-
grammes, on devrait admettre quelques élèves. Je m'assure que les derniers
programmes auraient beaucoup gagné à cette admission.

O. TERQUEM.

THÉORIE DES SYSTÈMES DE QUATRE POINTS HARMONIQUES
(voir t. IX, p. 118) ;

PAR M. G.-J. DOSTOR,
Docteur es sciences mathématiques.

I. Définitions. Désignons par A, B, A', B', quatre
points en ligne droite, qui forment un système harmo-
nique* et par a, )3 les milieux des intervalles des points
conjugués A et A', B et B'.

Nous donnerons aux segments AA', BB' le nom de

( + ) Nous publierons incessamment une série de pourquoi?
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segments conjugués, à AB, A'B' celui de segments ex-
trêmes, et enfin à AB' et A'B les noms de grand et de
moyen segment. '

Nous représenterons, en outre, par -j = a, -=- = b

les rapports dans lesquels les distances entre les points
conjugués A , A', B' et Bse trouvent divisées parles deux

, AB B'A' ,
autres points, de sorte que —,— = a, —7- = b.

A a o A.

II. Propriétés des segments conjugués. Si Ton exprime
les quatre segments AB, A'B', AB', A'B en valeur des
distances de leurs extrémités au point ce, et qu'on substi-
tue les valeurs obtenues

AB = Aa+Ba, A'B'rziB'a — A'a,
A'B = A'a—Ba, AB'= Aa +B 'a

dans l'égalité

(1) AB.A'B' = AB'.A'B

que donne la proportion harmonique AB : A'B : : AB' : A'B',
on obtient la relation
(2) TarrBa.B'a.

De même
(3) BfWp.A'p.

La multiplication des identités A A' = AB -f- A'B,
BB' = A'B' -h A'B donne ensuite

(4) AA'.BB'

puis on obtient, en faisant le produit des égalités
ÀA' = AB-hA'B, A A ' = AB' — A'B',

(5) AA' = AB.AB' — A'B. A'B'.

De même

(6) T B ' 2 ~ B'A. B'A'- BA.BA'-



AA'
BB'
BB'
AA'

AB'
A'B'
B'A
BA

A'B'
AB'
BA
B'A

AB
A'B
B'A'
BA'

A'B
AB*
BA'
B'A'

Si l'on ajoute les formules (5) et (6), on trouve, après
réductions,

(7) Â A ' V W ' * ~ (AB 4- A'8')8= (AB' - A'B)»,

d'où Ton tire

(8) IÂ?*+ BÏÏ"'2= (AB -+- A'B') (AB' - A'B).

Divisant successivement les équations (5) et (6) par
les valeurs (4), on a ensuite

(9)

(10)

Si nous combinons, par addition et par soustraction,
l'identité ÂB. AB' = AB. AB' avec la formule ( i ) , nous
obtiendrons

AB(AB'-f-A'B')== AB'.(AB-hA'B),
AB (AB; — A' B') = AB' (AB — A'B),

ou

AB(AB'-f- A'B') = AB'.AA', AB.AA' = AB' (AB — A'B);

d'où nous tirons , en divisant convenablement par les va^
leurs (4),

{ïï) A ' B ' ^ A B ' ~ B B ' ' BB '~A'B AB*

On trouverait, d'une manière analogue,

l l 2 j
 BÂ"1"!7!""!!7' Â^^BP^B7!"'*

La comparaison des formules ( n ) et (12) donne

. 2 2 1 1
( } Â Â ^ ^ B B ' ^ Â ^ ^ Â B 7 '
/ f\ 2 2 1 1
\ * ' à. A I " T»T»/ ' k T> *"A A' BB' ~~ AB ' Af
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On trouve ensuite facilement

, -* _J i _ 2 / 2 a\
1 j A'B AB' ~" A'B' ""*• \AA' BB'/ '

AB' ~ ÂF \AÀ' BB'/'
I I 2 / 2 2

AB ^ Â 7 ! 7 - " ! 7 ? " 1

(.8) AB ^ A'B' " AB' \ AA' BB'

2
!AÂEn égalant les valeurs (12), de YF' o n a e n ^ n ^a r e~

lation
1 1 1 1

AT* "" ÂB "*" A7!7 + ÂB7 '

qui est l'une des formules les plus remarquables des sys-
tèmes harmoniques. On peut eucore appeler l'attention
sur la formule

(20) Aa + B p = a(3 ,

qui se déduit de B|32 = A j3. A'|3, en y remplaçant A(3 et
A' (3 par a (3 H- a A et a(3 — «A'.

III. Propriétés des segments non conjugués. En
élevant au carré les deux membres de l'identité

AB = A(3 — B/3, et en observant que (3) B( f = A(3. A'j3,
nous aurons

Or

A(3 — 2BpH-A'p:=(Ap — Bp) — (BJ3 — Ar

= AB— A'B = Aa + B« - A ' a + Ba = 2Ba;

donc

(21) AB2=2Ap.Ba.
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Nous obtiendrions de même

(22) A'R' = 2A'p.B'a,

(23) AB'2= 2Ap.B'a,

(24) A'B2=2A'p.Ba.

Combinant ces formules entre elles, nous trouvons

(26) AB.A'B = 2Ba.Bp, BA'.B'A' = 2A'p.A'a;

(28) AB.A'B:AB'.A'B'::Ba:B'a,
(29) AB.AB': A'B.A'B:: Ap: A'p.

IV. Propriétés des rapports de division des segments
conjugués. Les deux proportions

AB : A'B :: a : «', AB' : A'B' :: a\a!

donnent

AB + A'B ou AA' : A'B :: a-\-a'\af,
AB'—A'B' ou AA': A'B':: a — a'\a,

d'où l'on tire
A'B'

donc
a <-\- a' bf

(3°) 7^' = l °U a -

On trouve ensuite facilement

a

(32)

A'B =

• AA' = •

a -J- a'

a . AA' =

a-h 1

a
a— 1

1

a — 1

b - M

• AA',

. AA',

• AA',

• A A'.



La combinaison de ces valeurs donne encore

(33) AB: À'B':: (%'-j) : » : : « ( « — « ' ) :* ' (« + «'),

(34)AB':A'B :: (J-J) :» ::«(«-+-«'):«'(*-«'),

( 3 5 ) A A ' : B B ' : : ^ + I : J 4 - I : : « 2 — « ^ ' . a i w ' i i a W : ^ — 6 * .

V. Relations entre les distances d'un point P de /a
droite ABA'B' aiz.r points harmoniques. En exprimant
les segments AB, A'B', AB', A'B en fonction des dis-
tances du point P aux points A, B, A', B', et en substi-
tuant les valeurs dans la relation (i), on obtient la formule

(36) (PA -f- PA') (PB + PB') == 2 (PA — PA' 4- PB. PB').

A Taide de ce qui précède, on trouve aussi facilement
que
(37) PB.PB'.AAr = PÂ7!Ap-PÂ!A /p(*).

NOTE SUR LES SOMMES DE PUISSANCES SEMBLABLES;
PAR M. MOURGUES,

Professeur à Marseille.

Soit Pn la somme des combinaisons n k n de m quan*
tités a, &9 c... A ; soit An la partie de ces combinaisons qui
ne contient pas a, Bn celle qui ne contient pas b....

On sait d'abord que

(1) P» = An4-^AB_!.

Je dis en second lieu que

(2) A. + B. + C . . . 4-HR = (/w— n)Vni

(*) On abrège beaucoup en faisant AB = m, BA' = n, A'B' = ;>, et

écrivant n(m -f- n-+-p) = mp, A« = -
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car une combinaison quelconque a&c... e n'entre pas
dans les n parties An, B,t,..., En, et entre une seule fois
dans chacune des m — n autres.

Cela posé, de la formule (i) on déduit

Pn = An -+- a An_(,
Pn_, = A^-f-tfA,,-,,

Multipliant les membres de la première équation par
(—<z), de la deuxième par (- | -a2) , de la troisième par
(—a8), etc., et sommant, il vient

(4) Pn — «?„_,-+-a2 Pn_2.. . ±an~' Ptqzan = AB.

De même

Pn — bPn^ + b* Pn_2.. . ± b«~> P, qi ̂  = BH;

d'où, par addition,

mVn — S, VH^ -+- S2 Pn^2... ±Sn^, P, qr Sn = An 4- BB... + Hfl,

et, par suite, en vertu de l'équation (2),
(5) «Pn — S, Pn_2 + S2 Pn_,.. . qp Sn_, P, ± Sn = o.

C'est la formule qui donne, en fonction des combinai-
sons , les sommes de puissances semblables d'indices in-
férieurs km.

En second lieu, pour n = m, la première des relations
(3) se réduit à Pm = aAm_ t , et, par suite, l'égalité (4)
devient

«—• P, qz a- = o ;

d'où, en multipliant les deux membres par ar,

flrP« — Û ^ 1 Pw_t -f- * r + J P w - 2 . . . ± « r+—1 P, qz û r+w == o.

Remplaçant a successivement par 6, c,..., et sommant-
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on a

(6) Sr Pm — Sr+I Pm_,.. . ± S,^», P, qp $m+r = o.

C'est la formule relative aux sommes d'indices non in-
férieurs à m.

SOLUTION GÉNÉRALE DE LA QUESTION 2 0 6
(voir t. VIII, p. 107);

PAR M. ANGELO GINOCCHI,

Avocat à Turin.

Il s'agit de satisfaire , par des nombres rationnels, aux
deux équations

On a donné une solution de ce problème , tome IX,
page n 6 ; mais, comme l'a remarqué M. Terquem, elle
n'est que particulière. En effet, dans cette solution, on
fait y = pq, ce qui donne

(z-j- u)(z — il) = 2p*q2,

et Ton conclut de là
Z -f- M = • 2 £% Z — U=p\

conclusion qui n'est pas nécessaire, tant qu'on ne sup-
pose pas qu'il s'agit seulement de nombres entiers; on
peut remarquer aussi que la supposition p = q* n'est
point la seule manière de rendre 4-f-4<74-H/?*un carré,
comme on l'admet dans le même article. Je pense donc
qu'il est à propos de montrer comment on parvient à la
solution complète, car la question n'est pas exempte de
quelques difficultés qui pourraient arrêter les com-
mençants.

En retranchant, de la première des équations pro-



posées , la seconde, on obtient

2 J 2 = 3 2 — II7,

e t j , z , u doivent être trois nombres rationnels qu'on
pourra toujours réduire à trois fractions ayant même

dénominateur. Soient -? -? - ces fractions, et g le plus

grand diviseur commun aux trois numérateurs /z, /r, z :
faisons h = ghf, k = gkf, i = gi ' . Il viendra

et A', A', z#/, n'ayant pas de facteur commun à tous les
trois, seront ainsi, deux à deux, premiers entre eux;
car si deux de ces nombres avaient un facteur commun,
ce facteur, en vertu de la même équation, diviserait
aussi le troisième. De plus, À/2 — if* ou le produit
(/r'-f-z') (kf—if) sera un nombre pair; les nombres
kf -f- z', k-— V sont donc en même temps pairs ou im-
pairs, et comme leur somme est 2 k1 et leur différence 1 i\
ils ne peuvent avoir de diviseur commun que 2, puisque k1

etif sont premiers entre eux; on fera donc
£ ' - + - / ' = 2 m, k' — i'' = in,

m et 7z étant premiers entre eux, et l'on aura

?i'*z= 2. rnn,

de sorte que imn, étant pair et carré, sera divisible par 4,
et, par suite , l'un des facteurs ni, n sera divisible par 2.
Soit n = 1 /?/; donc

et le produit mnf sera un carré : par conséquent, ses fac-
teurs m , « ; , étant premiers entre eux, seront aussi des
carrés, et l'on fera

m—p\ n'~q\
Ann. de Mathémai., t. X. (Mars I 8 5 I . ) 6
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d'où
h' ~ 2 pq, k'= m -f- n = p* -f- ?. <?*.

Si l'on posait m = 2 m', on aurait

m' et /i seraient deux carrés, et, en faisant
mf z= q*, il viendrait également

/ * ' = 2 / 7 7 , A'z=p9 -f- 2<7a .

Il en résulte

y ~~ 1 ~

valeurs qui, étant substituées dans l'équation

donnent

Donc le nombre entier §2 (/^4-h 4 74) -4- /2 sera un carré.
Soit / -4- r sa racine; on aura

d'où

et il faudra que r soit un diviseur de g^ (/>>4-f- 4</4) e t

pair si g5 (/?4 -I- ' l94) e s t pair. Par cette valeur de /. nous
avons enfin les formules

7 ?

qui fourniront toutes les solutions possibles de la ques-
tion proposée, pourvu qu'on assigne des valeurs entières
à g* p . r/, /'. qu'on prenne p et r/ premiers entre eux
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(comme m et n), q impair (car des deux nombres m et n
l'un est pair, l'autre impair, et q2 est égal au dernier),
et que r soit un diviseur de g2 (f>4-b 4? 4 ) , pair ou impair
comme g.

Mais j'ajoute qu'on aura toujours des solutions du pro-
blème, en donnant aux mêmes lettres des valeurs ra-
tionnelles quelconques, et qu'ainsi on pourra, sans dimi-
nuer la généralité des formules précédentes , mettre gr à
la place de r , ce qui donnera

,_/>*-+-4<74

Car

et, par suite, de ces dernières formules , il résultera

qui est toujours un carré, comme le veut l'énoncé du
problème.

Il est clair, eu même temps, qu'on aura

Le problème est ainsi complètement résolu. Si Ton sup-

pose r = 2 9% il vient

Sq3 8q*
P* P*

d'où l'on tire la solution duLilavati pour les nombres en-
tiers, en prenantp = i . Les résultats sont, en substance,
les mêmes, si l'on suppose r=p*.

Mais en faisant r = ipq, on obtient cette solution en
6.



( H
nombres fractionnaires

puisque, alors,

Enfin, si Ton fait r = p*— i q*, on trouve

et, en conséquence >

d'où, en prenant p = ? on tire

2 <7 8 <72

solution du Lilavati pour les nombres fractionnaires [c'est
par erreur que, dans les Nouvelles Annales, tome IX,

page 117, on a imprime ( ' 2 ) au lieu de • ?
 a • •

On peut abréger cette solution comme il suit. Ayant
l'équation

faisons z = M -+- f •, nous aurons
2y2= 2.tu-\- t\

d'où

1t

et, par cette valeur, l'équation

deviendra

r,_(a^-O' , ^
4/3 •"
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On ne voit pas d'abord comment on peut, en général,

rendre 4Jk'H- ** 4- 4** UI1 carré} mais si Ton fait t = ->

il viendra

- , _

en posant / = i np, <y = / y , de sorte qu'on devra rendre
pk-\- 4?* -H ^2 u n carré, et en appelant l -\- r sa racine .
on aura

pi 4-494

d'où

z —

NOTE SIR LE PLUS GfU^DjBOHilIH
PAR M. E.

Professeur au lycée Louis-le-GranS*

Stmfitaii
THÉORÈME. Le nombre de divisions à faire pour trou-

ver le plus grand commun diviseur de deux nombres
entiers A et B ne peut excéder trois fois le nombre des
chiffres du plus petit B des deux nombres proposés.

Pour démontrer ce théorème, nous avons fait voir (*)
qu'on pouvait supposer A et B premiers entre eux, et,
en désignant par

B . . . D6, D5, D4, D3, Da, i

les nombres qui ont servi successivement de diviseur,

(* ) Nouvelles Annales de Mathématiques, t o m e IV, page 617.
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nous avons prouvé qu'entre trois diviseurs consécutifs
quelconques, D5 , D4, D3 par exemple,, on avait la re-
lation

D — ou > a D 4 -f-Da,

que nous allons démo ri lier d'une manière plus simple.
Le diviseur D4, étant le reste de la division de D6 par D5,
est moindre que la moitié de D3 , et, par suite, contenu
au moins deux fois dans D5 -, donc, si D3 est le reste de la
division ordinaire de D5 par D4 , on aura
(0 D5 = ou > 2D/( -f-D,.

Dans le cas où D3 est le reste correspondant au quotient,
pris par excès, de la division de D5 par D4 , si l'on
nomme R le reste de la division ordinaire de Ds par D ; ,
on aura, comme précédemment,

(2) Db = ou >2D< + R ;

mais Ds étant moindre que la moitié de D4 , R est plus
grand que cette moitié, donc D3 <]R , et, si l'on rem-

(2), on aura à plus forte
raison la relabon (TJ, qui est ainsi démontrée, quel que
jsort.Je inûde:ae division flui^A conduit au reste D3.

SUR LA RACINE ClIIIOit -
PAR M. G.-H. NIEVENGLOSKI.

Lorsqu ou a trouvé la partie a de la racine cubique,
on est quelquefois obligé de faire des essais pour déter-
miner le chiffre suivant 5 cela arrive notamment quand
on cherche le second chiffre, car alors l'excès du quo-
tient de la division par 3a2, sur ce chiffre, peut aller
jusqu'à i/{.
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Pour abréger les essais infructueux, l'auteur d unTrailé
d'Arithmétique, qui a paru l'an passé (*), démontre que si
le chifîre trouvé a n'est pas inférieur à 3, en divisant par
3 a2 4- ia au lieu de diviser par 3 a2, on obtient le chitlre
cherché ou un chiffre trop faible. Et, plus loin, il ajoute
expressément, si la partie trouvée a contient plus d'un
chiffre, la division par 3 a2 4- 3 a a donnera certainement
un chiffre égal ou inférieur au chiffre cherché. »

Cette double assertion me paraît inexacte. En effet, la
différence de deux cubes consécutifs est 3 a2 ~f- 3 a -4- i}
donc, en retranchant le cube, de la partie trouvée a , le
reste peut bien être 3a2 4- 3a , et, par conséquent, quels
que soient les chiffres de la tranche abaissée, la division
par 3a2 4- 3a peut donner le quotient io , qui n'est
certainement ni le chiffre cherché, ni inférieur au chiffre
cherché.

L'exemple y i 24999999 peut servir de vérification.
Daprès ce qui précède, il est aisé de voir que si l'on

divise, non pas par 3 a2 -f- 3 a , mais par 3a2 -f- 3 a -f- 1,
on obtiendra incontestablement le chiffre cherché ou un
chiffre inférieur ; car

/;> 10,

donc

3a2bXioo 4- 3ab\ 10 -h b2<(3a24- 3« 4 - I ) X I O O X br ele
Le lecteur voudra observer que la règle que je pro-

pose ne dépend point de la valeur de la partie trouvée a \
par conséquent, elle servira très-utilement pour détermi-
ner le second chiffre de la racine, lequel chiffre expose
souvent à plusieurs essais infructueux.

Qu'il me soit permis, en terminant, d'exprimer mon

(*) M. Brioi.
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regret de ne pas voir, dans les Traités d'Arithmétique qui
ont paru récemment, la méthode abrégée de l'extraction
de la racine cubique. N'est-il pas rebutant de faire le cube
de toute la partie trouvée de la racine, chaque fois que
l'on veut déterminer un chiffre? etc....

LIMITE
De Terreur dans la substitution de la moyenne différentielle de deux nombres

à leur moyenne proportionnelle ;

PAR M. G.-J. DOSTOR,
Docteur es sciences mathématiques.

sjab =r s/a (a -+- d) = \J la -4- i <*)*— i d\

Soient a et b deux nombres inégaux, d leur différence;
on a identiquement

d'où

donc la moyenne proportionnelle entre deux nombres
inégaux a et b est moindre que leur moyenne différen-
tielle.

Pour trouver une limite de leur différence, posons

c = a H— d — \ja{a + d)7

d'où

c-+- sja{a-\- d) = a -\-- d,

t;t, en élevant au carré, puis en réduisant.

c- -h 2 e s/a ( a -+- d) = - d - ;



on déduit de là

d

donc / 'erreur e est moindre que le carré de la différence
entre les nombres divisé par Voctuple du plus petit de
ces nombres.

SOLUTION DE L'EXERCICE NUMÉRIQUE PROPOSÉ
( v o i r t. I X , p . 368) (*) ;

PAR M. E. PROUHET.

Il s'agit de démontrer que les équations suivantes :

i° 5797a:4 H- 49,51#3 4- 5892 a?2-!- 2876a: -h 6942 = o;
20 3447x* -H i456ox5+ 2243oa?4 -f- 25857 a:3 -h 29193a:2

-h 11596 a: -+- 5602 = o,

n'ont aucune racine réelle.
1. On a , pour toute valeur réelle de x,

x* — x* -4- a:2 — x -h 1 > o.

11 en résulte, à fortiori,

4q5i , 58Û2 , 2876 6042.
5797 5797 5 7 9 7 5 7 9 7

Donc la transformée en — x de la première équation, et,
par suite, cette équation n'a que des racines imaginaires.

2. f(x) étant le premier membre de la seconde équa-
tion, f{—x) peut être mise sous Tune de ces deux

(*) Dans la Connaissance des Temps pour 1849, P a S e 174> cette solution
est donnée à l'aide du théorème de M. Sturm ; ce qui exige de pénibles et
loiiffs calculs.



formes :
/ ^(3447^— i456o.z -+ 15376)

(0 ? +^(7054^—25857^+23696)
( -T-(5497A'2— 11596^ H- 56o2) = o,

(56o2 — 11596.2; 4- 6001 x1)

+ (23i92—25857^4- 7208x2)x'

+ ( l5222 l456oa: + 3447 X2} x* —

Dans l'équation (1), les racines des deux premiers tri-
nômes sont imaginaires ; celles du troisième sont réelles
et moindres que i,5 : on en conclut que/(—x) est po-
sitive pour toute valeur de x supérieure à 1,0.

Dans l'équation (2), les racines des deux premiers tri-
nômes sont imaginaires; celles du troisième sont réelles
et plus grandes que i,5 : il en résulte que f(—x) est
positive pour toute valeur de x inférieure à i ,5.

Ainsi / (—x) conserve le même signe pour toute va-
leur réelle de x\ donc ce polynôme n'a que des racines
imaginaires , et il en est de même def(x). C. Q. F. D.

JUSTIFICATION DES CALCULS INDIQUÉS.

Première forme de^(—x) .

Premier trinôme : 3447 #~—
1 4 5 6 0 ^ = (7280)» = 52998400

\ 2
3447•l5376 — 53OOIO72

Deuxième trinôme: 7054oc1 — 2585^+ 23696.
25857

2 = 668584449
4.7054.23696 =6686o6336

Troisième trinôme : 5497 x* — l l^9^x •+• 56*02.
Ce trinôme a une seule racine entre 1 et + 00 $ 1,5

substitué donne un résultat ^> o.
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Seconde forme d e / (—x) :

Premier trinôme : 6001 x* — 11596 x -f- 56o2.
2 = 336i68o4

5602.6001 = 33617602

Deuxième trinôme : 23192 — 25 857 x -+• 7 208 x ! .
25857

2 = 66858444g
4.23192.7208 = 668671744

Troisième trinôme : 3447^ 2— i456ox-h 15222.
La somme des deux racines est plus grande que 4 j c

racines sont donc plus grandes que 1.
3447.1,5 = 5170,5

5170,5 — i456o = — 9389,5
H- 9389,5 X 1 , 5 = l4o84,55 < 15222 (*)

SUR LE NOMBRE DES POINTS MULTIPLES DANS «NE COURBE
ALGÉBRIQUE,

PAR M. ABEL TRANSON.

1. Si toute droite, menée par le point A d'une courbe,
a en ce point deux ou plusieurs rencontres avec la courbe,
c'est un point multiple.

Le nombre de ces rencontres marque le degré de multi-
plicité du point.

Cette singularité est généralement due à la circonstance
de deux ou plusieurs branches de courbe passant par le
point dont il s'agit. Si l'angle sous lequel deux de ces

(*) Le célèbre calculateur astronome a fait un emploi utile du théorème
de Sturm; un académicien de même nom a retranché de l'enseignement
ce théorème comme appartenante la haute théorie, chose inutile; un re-
présentant de même nom, dans la discussion sur les conducteurs-voyers,
a déclaré la haute théorie chose indispensable. Ces trois noms désignent-
ils la même personne? O. TERQUEH.
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branches se coupent vient à s'annuler, alors il peut y
avoir rebroussement, mais cela n'a pas lieu nécessaire-
ment. Ainsi la circonstance que deux des tangentes en un
point multiple viennent à se confondre, est un des caractè-
res du rebroussement, mais non pas un caractère exclusif.

Le point multiple peut aussi être isolé, on l'appelle
alors point conjugué ; et, ici, il faut remarquer que, ré-
ciproquement, dans une courbe algébrique, tout point
isolé est nécessairement multiple.

2. Le caractère commun de tous les points multiples,
quel que soit leur degré de multiplicité , qu'ils présentent
ou non un rebroussement, qu'ils soient ou non isolés ;
c'est d'être à la fois sur les trois courbes représentées par

(I) F=rO,

tlx

où F ~ o , équation du degré w, représente la courbe
donnée. De là ce premier résultat, que leur nombre , ne
pouvant dépasser celui des intersections de deux courbes
du degré n — i, a pour limite supérieure (n — i)2 (*).

L'objet de cette Note est de trouver une limite beau-
coup moins élevée que ( n — i)2 pour le nombre total des
points multiples en général ; et ensuite de donner des li-
mites spéciales pour les points multiples des différents
degrés de multiplicité.

D'abord on peut s'assurer que les solutions communes
, , d¥ d¥

aux deux courbes — = o, et — = o, ne sont pas toutes

(*) (Vest p a r i n a d v e r t a n c e q u e j ' a i m i s n(n—i )*, voir t . I X , p . •>8i)<

O . T .
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sur la courbe F = o, à moins que celle-ci ne présente un
faisceau de n droites. Cela est évident pour le second
degré, puisque l'ensemble des deux équations (2) et (3)
y représente le centre de la courbe , et je le démontre en
général comme il suit.

La courbe donnée par l'équation

dF dF

contient manifestement tous les points communs à (2)
et (3); or, mettons l'équation (1) de la courbe donnée
sous la forme

F«H-FB_, -h Fn_2-h.. . = 0 ,

où les différents termes sont des fonctions homogènes ;
alors l'équation (4) deviendra

dFR dFn dFn_, dFn_{
x — h y ~T- -h x — 1- y — h . . . = o,

dx dy dx dy
c'est-à-dire

nFn-\-(n — i)Fn_, •+- [n — 2)Fn_2-f-. . . = o :

donc tous les points communs aux équations (1), (2)
et (3) satisfont à l'équation suivante, qui est du degré
(n-i),

(5) FB_1-*-2FK»2-f.3Fn.3 — . . . = 0 ;

et réciproquement tous les points communs aux équations
(2), (3) et (5) sont sur la courbe proposée.

La question est réduite à savoir si toutes les solutions
communes aux équations (2) et (3) peuvent appartenir
à l'équation (5). Or, toute équation de degré (rc — 1),
et qui est satisfaite par toutes les solutions communes aux
équations (2) et (3), est de la forme

dF dF
ha — = o,

dx dy

sauf à déterminer convenablement la constante cf.. De
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sorte qu'on devrait pouvoir disposer de a de telle sortr
que l'éqtiation suivante fut une identité,

—_ -4- a — = = p _i_ 2 F,, o - h 3 Ftl , - + - . . .
dx dy " ^

Mais en développant cette condition on arrive à connaître
que l'équation primitive devrait se réduire à la suivante,
F n ( o : H - i , j + a) = o) et par conséquent représenter
n droites passant par un point unique, desquelles droites
plusieurs peuvent être imaginaires. Je suis donc déjà en
droit de dire que le nombre des points multiples est tou-
jours inférieur à [n— i)2.

Je vais faire voir maintenant qu'il est inférieur tou-
jours au nombre de points qui déterminent une courbe du

(n—2)ihneordre, lequel est, comme on sait, — - •

Supposons en effet qu'il soit supérieur ou simplement
égal à ce nombre.

On pourrait donc par — —— points multiples

de la courbe F = o , faire passer au moins (*) une courbe
du degré n—2. Or, chacun de ces points vaudrait au
moins deux rencontres de la courbe auxiliaire avec la
proposée. Ainsi le nombre total des rencontres serait
au moins [11— 2) (n -h 1), au lieu qu'il est seulement
^ n — 2 ) n \ donc, etc. : mais on peut avoir une limite en-
core moindre en raisonnant comme il suit.

Soit x le nombre des points multiples, et soit pris
sur la courbe le nombre de points nécessaires pour y
faire passer une courbe du degré n — fi\ c'est- à-dire

( *} Je dis au moins, parce que la disposition de ces points en nombre

( n 2 ) {n -\- 1 ; pOurrnft cire telle qu'il y passât non pas une seule courbe

du dep;ré n — •.», mais une infinité.



( 9 5 )

l^-H—Li^ points, en y comprenant notamment tous

les points multiples. Si ces points étaient simples, il en ré-

sulterait — rencontres connues, sans préjudice

des autres rencontres en nombre n (/z — 2)— — -•

Mais puisque parmi les points choisis il y en a x mul-
tiples , c'est-à-dire qui sont au moins doubles, le
nombre total des rencontres connues est à1 au moins
[n — 2 ) ( « - + - 1 ) /-. . ,

LJ L-+-X. Un voit que dans ce raisonnement
2 *

chaque point multiple est compté pour un seulement
parmi les points déterminants de la courbe auxiliaire \ et
il est compté au moins pour deux parmi les rencontres.

Après cela, le nombre total des rencontres est tout au
plus égal à (TI — 2) n ; ce qui donne la condition

d'où l'on tire
( ) ( )

Si les inégalités que nous avons supposées avaient lieu
en sens contraire, c'est que l'équation F = o représente-
rait la réunion de deux courbes au moins de degré infé-
rieur. Pour ce cas-là et pour tous ceux où F = o se dé-
composerait en facteurs rationnels, il est clair que les
raisonnements ne vaudraient plus; mais aussi on n'aurait
pas véritablement une courbe du degré n. Par cette ré-
flexion, j'échappe à la difficulté qu'aurait présentée le
nombre des points doubles d'un système de n droites,

lequel est — -•> et ainsi surpasse la limite ci-dessus.

La limite qu'on vient de trouver est celle du nombre
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total des points multiples; c'est, en particulier, celle des
points doubles qui, manifestement, comprennent tous
les autres. On pourrait chercher aussi la limite des points
triples parmi lesquels figureraient tous ceux dont le degré
de multiplicité est supérieur à trois. Mais, pour abréger,
je me borne à dire que le nombre des points dont la mul-
tiplicité est p. ou supérieure à p., ne peut pas surpasser le
nombre donné par la formule

En effet, le nombre des points du degré de multipli-

cité fjt. ne saurait atteindre celui des points qui déter-

minent une courbe du degré — — 2 (si cette formule
f* V

2 donne un nombre fractionnaire, entendez alors
f*

que le nombre des points en question ne peut pas at-
teindre celui des points déterminant la courbe dont le

degré surpasse immédiatement 2 ) : cela résulte de

la relation

'in \ ('in \

in \

7 " 7 '
où le premier membre représente le nombre des ren-
contres nécessaires que la proposée aurait avec une

courbe de degré 2 passant par des points de multi-

plicité jut, en nombre
in \ Iin

Y- / V f *
2

On est donc assuré de pouvoir placer tous les points en
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question sur une courbe de degré - i. Chacun de ces

points entrera pour une simple unité dans le nombre des
points déterminants de la courbe auxiliaire, mais il dé-
terminera p rencontres; de sorte qu'en appelant y le
nombre des points multiples de degré a, on a la rela-
tion

in \ lin

7

d'où Ton tirera pourj^ la formule ci-dessus indiquée,

< (P- - l)p~
3. On peut se proposer une autre recherche : celle du

nombre des points multiples de degré p. 7 pour lesquels les
a branches de courbe se touchent, c'est-à-dire ont une
tangente unique sans qu'il y ait d'ailleurs rebroussement.
Cela exige un nouvel artifice. Je prends en chacun de ces
points la tangente commune pour tangente de la courbe
auxiliaire; de sorte que chaque tel point en vaudra deux
par rapport à la détermination de la courbe auxiliaire, et
en vaudra ly. pour les rencontres.

Avec cette construction, on prouvera aisément que lé
nombre des points en question ne peut pas atteindre
celui des points nécessaires à la détermination d'une

courbe du degré 2, c'est-à-dire n'atteint pas à

\ IL

n

F-

autrement, il serait possible de construire une courbe de

ce degré 2, ayant, avec la proposée, un nombre de

Ann. de Mnthémat., t. X. (Mars 1351 ) 7



remontres égal à

c'est-à-dire égal à ( 1 \ (n -f- p.), ce qui est absurde.

Parlant de là et appelant z le nombre des points dont
il s'agit, on aura aisément l'inégalité

n
2

j*

d'où

4. En dernier lieu, on peut demander le nombre maxi-
mum des points dont le degré de multiplicité est p., et
où \J! branches ont une même tangente. Je supprime le
calcul, mais il sera aisé au lecleur de trouver que si v est
le nombre de ces points , on a

Si l'on suppose p.' = [i, on retombe sur la formule (B),
comme cela doit être. Mais cette formule (C) ne donne
pas la formule (A) parla substitution de (*.'= o- elle est
alors en défaut, et cela s'explique parce qu'elle est con-
struite comme la formule ( B) en imaginant que la courbe
auxiliaire touche dans ses points déterminants les branches
qui ont la même tangente} ce qui n'a plus de sens si Ton
suppose ensuite qu'aucunes branches ne se touchent.

5. Cramer, dans son Introduction à lanalyse, des
lignes courbes algébriques ( i ^ 5 o ) , a traité la question
du nombre des points multiples qu'une courbe d'un ordre
quelconque peut avoir. L'auteur, après avoir observé
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qu'une courbe de Tordre m ne peut avoir un point mul-
tiple de ce même ordre sans se réduire à ce point unique,
ou à un faisceau de m droites, établit, par la simple pro-
priété du nombre des rencontres de la proposée avec une
ligne droite, puis avec une courbe du deuxième ordre ou
du troisième ordre, etc., qu'une courbe de Tordre m ne
peut pas avoir :

Deux points dont les degrés de multiplicité comptés
ensemble fassent plus de m.

Cinq points dont les degrés de multiplicité comptés en-
semble fassent plus de i m)

Neuf points dont les degrés de multiplicité comptés en-
semble fassent plus de 3 m ;

Etc....
D'après cela, l'auteur forme pour les huit premiers

ordres \& tableau complet des diverses sortes de points
multiples qui peuvent coexister sur une même courbe,
toutefois sans avoir égard à la circonstance que deux ou
plusieurs branches peuvent se toucher au point mul-
tiple. On pourrait réduire sa théorie en un algorithme
très-simple où les nombres de points multiples de chaque
sorte coexistant dans une même courbe, entreraient
comme des indéterminées dans une équation du premier
degré, dont il suffirait de chercher les solutions en
nombres entiers et positifs -, et alors les formules que nous
avons données se présenteraient comme répondant aux
cas très-particuliers où il n'y aurait à la fois qu'une sorte
unique de points multiples.

Nous donnerons bientôt la démonstration que vient de publier J'illustre
M. Jacobi, que toute ligne plane de degré n a \n(n — 2) (n* — 9) tan-
gentes doubles. (CRELLE, tome XL, page 2^7; i85o.)

O. TERQUEM.
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GÉOMÉTRIE SEGMENTAIRE. SUR LES POLYGONES.

1. Soit une courbe F jouissant de ces deux propriétés :
i° deux de ces courbes, en se coupant, forment quatre
angles; les angles opposés au sommet sont égaux, et les
angles adjacents sont supplémentaires; a étant l'un de
ces angles, supposons que Ton ait

a),

«flp désignant une fonction qui a la propriété énoncée par
l'équation ; il existe une infinité de ces fonctions ; la plus
connue est

y ( a ) rr: sin a ;

i>" dans un triangle ANC formé par trois de ces courbes F ,
supposons que l'on ait toujours

A, B, C désignent les angles ; a, b, c les longueurs des
côtés opposés, et <p une fonction douée de la propriété
écrite dans l'équation. Pour de telles courbes, on a le
théorème suivant.

THÉORÈME. Un polygone formé par des courbes F étant
couvé par une transversale F , le produit des fonctions ^
des segments d'indices pairs est égal au produit des
fonctions ^ des segments d'indices impaiis.

Les cas les plus simples sont ceux où Ton a

<p(a)=sina et ^(a) = a9

ou bien
^ ( « ) = sin<7,
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et dont nous avons donné la démonstration la plus simple
possible (tome VII, page 4^9), et ce même moyen de
démonstration s'applique mot à mot au cas général, qui
existe peut-être pour des lignes géodésiques autres que la
droite et le cercle.

2. Le théorème segmentaire de la transversale sub-
siste aussi pour des polygones plans non convexes et pour
les polygones étoiles-, de même pour les polygones sphé-
riques: observation essentielle qu'il ne faut pas omettre.

3. THÉORÈME. Un polygone gauche étant coupé par
un plan, le produit des segmenis d'indices pairs est égal
au produit des segments d'indices impairs.

Démonstration. Menons un plan perpendiculaire au
plan transversal, et projetons le polygone gauche sur ce
plan. L'intersection des deux plans est une transversale
dans le polygone en projection $ les segments en projection
étant proportionnels aux segments projetés, on peut sub-
stituer les uns aux autres, et Ton obtient la propriété
énoncée (*).

4. THÉORÈME DE M. POIVCELET. Si, par un point pris
à ^volonté dans le plan d'un polygone quelconque d'un
nombre impair de côtés, on mène à chaque sommet une
droite prolongée jusqu'au côté opposé, le produit de tous
les segments d'indices pairs est égal au produit des seg-
ments d1 indices impairs.

Solution. Soient 2 n -f- i le nombre de côtés $ les droites
menées aux angles forment un faisceau plan de i n -f~ i
rayons*, et en prolongeant chacun de ces rayons jusqu'aux
côtés respectivement opposés, on partage le polygone eu
4 « + 2 triangles*, aux segments, on peut substituer les
aires des triangles*, et à celles-ci les sinus des angles formés

( * ) Voyez Théorèmes et Problèmes de Géométrie élémentaire, par LAFRL-
MOIRE; seconde édition, page. 22/j.



par deux rayons adjacents, et les mêmes sinus se trou-
vant dans deux produits segmentaires, ces produits sont
égaux.

Observation. Le théorème subsiste pour les polygones
non convexes ou étoiles, et aussi pour les polygones sphé-
riques, en substituant aux segments les sinus des seg-
ments.

Lorsque le nombre des côtés est pair, on mène par un
sommet quelconque une droite qu'on suppose être la di-
rection d'un côté devenu nul en ce point, et le théorème
s'applique aussi pour ce cas.

Observation. Ce théorème a été énoncé la première
fois, en 1822, pour les polygones, dans le Traité des
figures projectilesj page 85. C'est Jean Bernoulli qui, le
premier, adonné cette proposition pour le triangle; voici
son énoncé :

Siper quodvis pitnctumin triangulo quovis rectilineo
ex singulis angulis ducantur reclœ ad latera opposita;
erunt solida ex tribus laterum segmentis, non contiguis,
facta inter se œqualia. {Op. omnia, tome IV, n° 145,
page 33; 174a.)

Le théorème de M. Poncelet est une belle généralisation
du théorème de Bernoulli.

5. THÉORÈME. Étant donné un polygone gauche d'un
nombre impair de côtés, si, par une droite fixe et par
chaque sommet du polygone, on mène un plan qui coupe
le côté respectivement opposé en deux segments•, le pro-
duit des segments d'indice pair est égal au produit des
segments d'indice impair.

Démonstration. En projetant le polygone sur un plan
perpendiculaire à la droite fixe, on est ramené au théo-
rème de M. Poncelet, car les projections des segments
d'un même côté sont proportionnelles à ces segments.

Observation, On compte Je s segments en partant d'un



sommet quelconque, et parcourant le périmètre dans le
même sens , les segments ayant des indices de même parité
n'ont jamais de points en commun.

6. Un faisceau plan étant coupé par une transversale,
si Ton forme un rapport projectif avec ces segments, ou
peut substituer aux segments les sinus des angles formés
par les rayons du faisceau ; considérant le sommet du fais-
ceau comme le centre d'une sphère, la transversale se
projette sur la sphère suivant un arc de grand cercle, et
les rayons du faisceau divisent cet arc en segments circu-
laires dont les sinus fournissent le même rapport projec-
tif que celui qui existe entre les segments rectilignes. C'est
un moyen général de transporter aux polygones sphé-
riques les propriétés projectives segmentaires des poly-
gones rectilignes.

7. Le théorème de M. Rouart [voir tome IX, page 4<>o)
subsiste aussi pour les polygones sphériques circonscrits à
un même petit cercle. Imaginons un cône concentrique à
la sphère ayant pour base les deux polygones. Coupant ce
cône par un plan, on obtient deux polygones rectilignes
circonscrits à un cercle; appliquant à ces polygones le
théorème de M. Rouart, on peut remplacer chaque seg-
ment par le sinus de l'angle que forment les deux rayons
qui vont aux extrémités du segment. Ce même théorème
subsiste-t-il pour des polygones sphériques quelconques :*

MÉTHODE CHEZY.

Tous nos ouvrages classiques, tous les professeurs, en-
seignent aujourd'hui à discuter les courbes du second de-
gré, en résolvant l'équation par rapport à une des coor-*



données; la quantité qui est hors du radical détermine
un diamètre, et le coefficient du carré de la seconde coor-
donnée qui se trouve sous le radical caractérise l'espèce de
la courbe ; mais aucun ouvrage, à ce que je sache, ne
nous apprend que cette méthode ne remonte qu'à 1791,
et qu'on la doit à un homme de grand mérite, moral
et intellectuel, nommé Chezy, sur lequel on trouvera
plus loin quelques détails. La méthode a été développée
et publiée par le célèbre Prony (*), élève de Chezy,
dans un Mémoire épuisé depuis longtemps, et dont voici
le titre : Exposition d'une méthode pour construire les
équations indéterminées qui se rapportent aux sections
coniques, à l'usage de l'Ecole des Ponts et Chaussées;
par M. de Prony, ingénieur des Ponts et Chaussées. A
Paris, de l'imprimerie de Pierre Didotl'aîné; MDCCXCI.
In-4° de 26 pages, 2 planches.

L'auteur commence par montrer comment on peut
ranger, sous une forme de triangle, tous les termes d'une
équation complète à deux inconnues de degré n : c'est le
parallélogramme de Newton, réduit en triangle par de
Gua; comme, dans le reste du Mémoire, on ne fait aucun
usage de ce triangle, on ne voit pas bien le but de cette
disposition. On donne à l'équation hexanôme la forme

y2 H- ax1 -h bxy -f- cy -\-fx -f- g = o.

La discussion est extrêmement détaillée, très-claire, et
roule sur l'expression j b'2 — a qu'on appelle ici la diffé-
rence caractéristique $ c'est le B2 — 4 AC — m des temps
actuels. On peut reprocher à cette discussion, 1 ° de n'avoir
pas donné de coefficient à j 2 ; i° de s'attacher uniquement
à la différence caractéristique qui n'est que le détermi-

(*) Mort le 29 juillet «839; son élo^c , comme Membre de l'Académie .
fst encore à faire en I£<H.
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nant des trois premiers termes et d'avoir négligé le déter-
minant L des six termes, et dont l'importance est plus
grande que celle de m ; 3° de n'avoir pas cherché les lignes
limites des coniques, lorsque cinq coefficients restant
constants, le sixième varie de — oo à -j-oo : c'est le seul
moyen, dans la discussion générale, de trouver le cas où
l'ellipse se réduit à une droite finie et l'hyperbole à une
droite infinie, mais ayant une solution de continuité dans
son cours. Du reste, soixante années se sont écoulées, et
les deux derniers reproches peuvent encore s'adresser à
nos meilleurs Traités de Géométrie analytique. En toute
chose, le bien vientpede claudo.

Note biographique.

CHEZY (Antoine) est né à Châlons-sui-Marne en 1718 ;
il fit ses études au séminaire, et entra dans la savante
congrégation de l'Oratoire. Ses goûts ayant pris une autre
direction, il quitta cette compagnie et fut admis, en 1748,
à l'Ecole des Ponts et Chaussées, alors sous la direction du
célèbre Perronet. Il fut nommé ingénieur en 1761, et ingé-
nieur en chef en 1763. En cette qualité, il a dirigé les tra-
vaux du pont de Neuilly et du pont de Mantes. Il a composé
un Mémoire sur les instruments propres à niveler nommés
niveaux, qui est inséré dans le tome V des Savants étran-
gers, page 254, 1768, et a inventé le clisimètre, niveau de
pente qui porte encore son nom; 011 en trouve une bonne
description au livre Ve de l'ouvrage de M. Breton (de
Champ) (voir tome IX, page 392). Mis à la retraite et payé
en papier-monnaie, déprécié, il fut réduit à un tel état de
détresse, qu'en 1795, il fut obligé, pour subsister, de
vendre le crin de ses matelas. Son élève, Prony, le fit
entrer dans ses bureaux, et obtint pour lui la place de
directeur de l'École des Ponts et Chaussées qu'il ne remplit
qu'une année. Il est mort le 4 octobre 1798, sans laisser



aucune fortune. Son fils, le célèbre orientaliste et sans-
critiste Chezy (Antoine), le traducteur de Sacontala, du
Ramayana, etc., eut à lutter pour faire subsister sa
mère • et une injustice criante du ministre de l'Instruction
publique Corbières a hâté la lin de l'illustre collègue des
de Sacy, Rémusat, etc. Funeste résultat des passions po-
litiques. Que n'essaye-t-on, en toute chose, d'être sincère
et juste? c'est peut-être la meilleure politique. Celle qui
est en usage réussit si peu, même aux plus habiles, qu'on
ne risque pas beaucoup en en choisissant une autre.

SOLUTION D UN PROBLEUE APPARTENANT A LA GÉOMÉTRIE
DE SITUATION, PAR EULER,

TRADUIT nu LATIN, PAR M. E. COUPY,

Professeur au collège militaire de la Flèche.

Le problème dont je hasarde ici la traduction est
inséré dans les Commentaires de l'Académie des Sciences
de Saint-Pétersbourg, tome VIII, page 128, année ij'56.
M. Poinsot (*), dans son célèbre Mémoire de 1810 sur
les Polygones et les Polyèdres étoiles, et Lhuillier, de
Qenève, dans son Algèbre, Vont mentionné tous deux.
Ce problème intéressant, d'une solution fort ingénieuse,
n'a été traduit, que je sache, dans aucun recueil fran-
çais, et se trouve enfoui maintenant dans une volumi-
neuse collection à la portée seulement des personnes qui
habitent la capitale. J'ai pensé qu'on lirait, au moins

*avec curiosité^ ce problème; c'est ce qui m'a décidé à
publier cette traduction que j'ai faite, il y a quelques
années, à Paris.

(*) Voir lomo VII I , pafïe \'M>.
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1. Outre cette partie de la géométrie qui traite des

grandeurs et qui a été de tout temps cultivée avec beau-
coup de zèle, il en est une'autre , jusqu'à nos jours com-
plètement inconnue, dont Leibnitz a fait le premier
mention et qu'il appela géométrie de position. D'après
lui, cette partie de la géométrie s'occupe de déterminer
seulement la position et de chercher les propriétés qui
résultent de cette position ; dans ce travail, il n'est be-
soin, ni d'avoir égard aux grandeurs elles-mêmes, ni de
les calculer; mais il n'est pas encore assez bien établi
quels sont les problèmes de ce genre appartenant à la
géométrie de position, et quelle méthode il faut employer
pour les résoudre*, c'est pourquoi lorsque récemment il
fut question d'un problème qui semblait, à la vérité, se
rattacher à la géométrie ordinaire, mais dont cependant
la solution ne dépendait, ni de la détermination de gran- .
deurs, ni du calcul de quantités, je n'ai point balancé à le
rapporter à la géométrie de position, d'autant plus que les
considérations de position entrent seules dans la solution,
tandis que le calcul n'y est pour rien. J'ai donc cru
utile d'exposer ici, comme un exemple de géométrie de
position, la méthode que j'ai trouvée pour résoudre les
problèmes de ce genre.

2. Or ce problème, qu'on me disait être assez connu,
était le suivant :

A Kœnigsberg, en Prusse, il y a une île A appelée
le Kneiphoft entourée d'un fleuve qui se partage en
2 bras, comme on peut le voir sur la figure i , mais les
bras de ce fleuve sont garnis de 7 ponts #, b, c, /7, e,f\ g,
et l'on proposait cette question sur ces ponts : Une per-
sonne peut-elle s'arranger de manière à passer une fois
sur chaque pont, mais une fois seulement? Les uns affir-
maient que cela était possible; d'autres niaient; d'autres
en doutaient; mais personne ne pouvait prouver. Quant



à moi, j'ai fait de co problème le suivant beaucoup plus
général :

Quelle que soit la figure du fleuve et sa distribution
en bras, et quel que soit aussi le nombre des ponts ,
trouver si une personne peut traverser le fleuve en pas-
sant une seule fois sur chaque pont.

3. Pour ce qui regarde les 7 ponts de Kœnigsberg, on
pourrait résoudre le problème en faisant rénumération
complète de toutes les manières de passer qui peuvent
avoir lieu, car on verrait par là quelle est celle qui satis-
fait, ou bien on reconnaîtrait qu'il n'y en a aucune. Mais
ce mode de solution, à cause du si grand nombre de com-
binaisons, serait trop difficile et trop laborieux, et ne
pourrait môme plus s'appliquer dans les autres questions
où il y aurait beaucoup plus de ponts. Au reste, si par
>ee moyen l'opération était conduite jusqu'au bout, on
trouverait beaucoup de manières de passer qui ne satis-
font pas à la question, et c'est en cela sans doute que
consiste la cause d'une si grande difficulté. Ayant donc
laissé de côté cette méthode, j'en ai cherché une autre
qui me donne non pas toutes les manières de passer,
mais me montre seulement celle qui satisfait à la ques-
tion*, et je regarde une pareille méthode comme de beau-
coup plus simple que la précédente.

4. Toute ma méthode se fonde sur une manière parti-
culière de représenter chaque passage de pont, dans la-
quelle j'emploie les lettres majuscules A, B, C, D, qui
sont écrites à chaque région que sépare le fleuve. Ainsi, si
quelqu'un va de la région A à la région B , en passant sur
le pont a ou sur le pont è, je désigne ce passage par les
lettres AB. La première marque la région d'où sort le
voyageur -, la seconde, la région dans laquelle il estparvenu
après avoir passé le pont. Si ensuite le voyageur s'en va
dans la région D par le pont /l ce passage sera représenté
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par les lettres BD, et je représente ces i passages succes-
sifs AB et BD seulement par 3 lettres ABD, celle du
milieu B représentant, tant la région où il est parvenu
par un premier passage que celle d'où il est sorti pour un
second passage.

5. Par un moyen semblable, si le voyageur s'avance de
la région D dans la région C par le pont g, je représen-
terai ces 3 passages faits successivement par 4 lel~
très ABDC, car on comprendra par ces 4 lettres ABDC,
que le voyageur étant d'abord dans la région A, a passé
dans la région B, de là s'est avancé dans la région D, et
enfin, de là a passé dans la région C ; et puisque ces ré-
gions sont séparées mutuellement par l'eau les unes des
autres, il est nécessaire que le voyageur ait passé sur
3 ponts. De môme, les passages faits successivement sur
4 ponts seront représentés par 5 lettres, et si le voyageur
continue sa marche autant qu'il y a de ponts , son voyage
sera représenté par un nombre de lettres supérieur d'une
unité au nombre de ponts. C'est pourquoi il faut 8 lettres
pour représenter les passages sur y ponts.

6. Dans ce mode de notation , je ne considère point par
quels ponts le passage se fait; mais si le même passage
d'une région à une autre peut se faire par plusieurs
ponts, peu importe par quel pont on passe d'abord pour
arriver dans la région désignée. On comprend, d'après
cela, que si le voyageur peut continuer sa course sur les
7 ponts de la figure i, de manière à passer une fois sur
chacun d'eux> et jamais deux fois sur aucun, cette course
pourra se représenter par 8 lettres, et ces lettres devront
être disposées de telle sorte que la succession immédiate des
lettres A et B se présente deux fois puisqu'il y a 2 ponts a
et b qui joignent ces régions A, B : de même, la succes-
sion des lettres A et C devra aussi se trouver deux fois
dans cette série de 8 lettres et pour la même raison, en-



suite la succession des lettres A et D devra s'y trouver une
seule fois, et, enfin, il faudra semblablement que la suc-
cession des lettres B et D, et celle des lettres C et D s'y
trouvent chacune une fois.

7. La question est donc ramenée à former avec 4 let-
tres A , B, C, D, une série de 8 lettres dans laquelle
toutes ces successions se présentent autant de fois qu'il
vient d'être trouvé. Mais avant de chercher une telle dis-
position, il convient de faire voir si ces lettres peuvent ou
non être disposées d'une telle manière. Car si Ton pou-
vait démontrer qu'une telle disposition des 4 lettres A,
B, C, D est tout à fait impossible, tout travail qui aurait
pour but de la chercher, serait évidemment inutile. C'est
pourquoi j'ai inventé une règle par le secours de la-
quelle , tant pour cette question que pour toutes celles du
même genre, il est facile de discerner si un tel arrangement
des lettres peut ou non avoir lieu.

8. Pour trouver cette règle, je considère une région
unique A (Jîg- ^) à laquelle conduisent autant de ponts
qu'on veut, a, b, c, d,... ; je prends d'abord un seul de
ces ponts qui conduisent à la région A, par exemple a.
Si maintenant le voyageur passe sur ce pont, ou bien il
devra être avant le passage dans la région A, ou bien il
parviendra après le passage dans cette région A -, c'est pour-



quoi, dans la manière établit; ci-dessus de représenter les
passages, ilfaut que la lettre A se trouve une fois. Si vous
supposez 3 ponts a, h, c conduisant dans la région A, et
que le voyageur ait traversé ces 3 ponts, alors dans la re-
présentation de ce voyage la lettre A se trouvera deux
fois, soit que ce voyage ait commencé en partant de A,
soit qu'il ait commencé en y allant. De même, si 5 ponts
conduisent en A, dans la représentation du passage sur
tous ces ponts, la lettre A devra se trouver trois fois; et,
en général, si le nombre des ponts est un nombre impair
quelconque, en augmentant ce nombre de i , et prenant
la moitié, on aura le nombre de fois que la lettre A doit
se trouver dans la représentation du passage.

9. Dans ce cas donc des ponts de Kœnigsberg (fig. i),
puisque 5 ponts «, b, c, d, e conduisent dans l'île A , il
est nécessaire que dans la représentation du passage sur
ces ponts la lettre A se trouve trois fois. Ensuite la let-
tre B, puisque 3 ponts conduisent dans la région B,
devra se trouver deux fois ; de même la lettre D ainsi que
la lettre C, devra se trouver deux fois et pour la même
raison. Donc, dans la série des 8 lettres représentant le
passage sur les 7 ponts, la lettre A devrait se trouver trois
fois, et les lettres B, C, D, chacune deux fois, ce qui,
dans une série de 8 lettres, est complètement impossible.
Il suit clairement de là que sur les 7 ponts de Kœnigsberg,
le passage demandé est impossible.

10. Par un procédé semblable, on peut dans tout autre
cas, pourvu toutefois que le nombre de ponts qui condui-
sent dans chaque région soit impair, on peut reconnaître
si le passage une seule fois sur chaque pont est possible.
Car s'il arrive que la somme de toutes les fois que chaque
lettre doit se trouver, soit égale au nombre de tous les
ponts augmenté de 1, alors le passage demandé sera pos-
sible. Mais si, au contraire, il arrive, comme dans notre



exemple, que cette somme soit plus grande que le nombre
total des ponts augmenté de i, alors le passage demandé
ne pourra s'effectuer d'aucune manière. Mais la règle que
j'ai donnée pour déduire du nombre de ponts conduisant
dans la région A le nombre de fois que la lettre A doit
s'écrire, s'applique également, soit que tous les ponts
conduisent d'une seule région B comme le représente la
figure 2, en A, soit qu'ils conduisent de plusieurs, car je
considère seulement la région A et je recherche combien
de fois la lettre A doit se trouver.

Fig. 2.

\ i . Mais si le nombre des ponts qui conduisent dans la
région À est pair, alors il faudra distinguer, pour le passage
sur chaque pont, si le voyageur a commencé ou non sa
course en partant de la région A. En effet, si 2 ponts con-
duisent en A et que le voyageur ait commencé sa course en
partant de A, alors la lettre A devra se trouver deux fois}
une fois elle représentera la sortie de A par l'un des ponts
et encore une fois, pour représenter le retour en A par
l'autre point. Mais si, au contraire, le voyageur avait
commencé sa course en partant de l'autre région, alors la
lettre A ne se présentera plus qu'une fois ; car écrite une
fois, elle représentera, d'après ma manière de représenter
ces courses, tant l'arrivée en A que la sortie de cette même
région.

12. Que 4 ponts conduisent dans la région A et que le
voyageur commence sa course en partant de A; alors,
dans la représentation de sa marche complète, la lettre A
devra se trouver trois fois, pourvu toutefois qu'il n'ait
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passé qu'une seule fois sur chaque pont. Mais s'il a côiii-
mencé à marcher en partant de l'autre région, la lettre À
se trouvera seulement deux fois. S'il y a 6 ponts qui con-
duisent dans la région A, alors la lettre A se trouvera
quatre fois, si le voyageur a commencé par partir de A,
sinon elle ne se trouvera que trois fois, et généralement
si le nombre des ponts est pair, la moitié donne le nom^
bre de fois que la lettre A doit se trouver si Ton n'a pas
commencé à partir de A; et cette moitié, augmentée de
i, sera le nombre de fois que A devra s'écrire, en com-
mençant la course de la région A elle-même.

13. Voici de quelle manière je déduis du nombre de
ponts qui conduisent à une région, le nombre de fois que
cette région, présentée par une lettre, devra s'écrire dans
la course désirée. Je prends la moitié du nombre des
ponts augmenté de i, si ce nombre de ponts est impair,
et la moitié de ce même nombre s'il est pair. Ensuite, si
le nombre de fois que toutes les lettres doivent s'écrire est
égal au nombif des ponts augmenté de i, alors le passage
désiré a lieu, mais on doit commencer à marcher d'une
région à laquelle conduisent un nombre impair de ponts ;
mais si ce nombre de fois est inférieur de i au nombre
des ponts augmenté de i, alors le passage a lieu en com-
mençant par une région à laquelle conduise un nombre
pair de ponts, parce que par ce moyen le nombre des fois
qu'on doit écrire les lettres est augmenté de i.

14. Étant donc proposée une rivière quelconque, gar-
nie de ponts comme on voudra, pour trouver si une
personne peut passer sur chaque pont une fois seule-
ment, j'établis l'opération de la manière suivante : i° je
représente chacune des régions séparées mutuellement
les unes des autres par l'eau, respectivement par A, B,
C, D,...; 2° je prends le nombre total des ponts que
j'augmente de i, et je note ce nombre pour l'opération
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suivante; 3° à coté de chacune des lettres A, B, 0,...,
écrites l'une au-dessous de l'autre, j'écris le nombre de
ponts conduisant à la région marquée par la lettre que je
considère; 4° j e marque d'un astérisque les lettres qui
ont un nombre pair écrit à côté d'elles; 5° j'écris * les
moitiés de tous ces nombres pairs et les moitiés des nom-
bres impairs, augmentés de i, dans une même colonne,
chacune de ces moitiés dans la même ligne horizontale
que la lettre d'où elle dépend ; 6° je fais la somme des nom-
bres écrits en dernier lieu. Si cette somme est inférieure
de i, ou égale au nombre trouvé dans le 2°, qui est le
nombre total des ponts augmenté de i, j'en conclurai que
le passage cherché est possible. Mais pour que cela soit
possible, quand la somme trouvée est inférieure de i au
nombre écrit en haut de sa feuille, on doit partir d'une
région marquée d'un astérisque; mais, au contraire, on
devra partir d'une région non astérisquée, quand la somme
sera égale au nombre précité. Ainsi, par exemple, pour
le cas des ponts de Kœnigsberg, j'étalais l'opération
comme il suit :

Nombre des ponts n • j'ai donc 8.

Pont
A
B
C
D

s.

5 :
3 ;
3
3

3

2

•À

VA, comme la somme 9 de la seconde colonne est ^> 8, le
passage demandé est impossible.

15. Soient 2 îles A et B entourées d'eau, avec lesquelles
communiquent 4 fleuves, comme le représente la fi-
gure 3 ; 15 ponts sont jetés sur ces fleuves, et l'on demande
si une personne peut s'arranger de manière à passer une
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fois et une seule fois sur chacun de ces ponts. Je désigne
d'abord i° toutes les régions séparées mutuellement par
l'eau, par les lettres A , B , C , D , E , F : j'ai donc de la
sorte 6 régions 5 ensuite 20 j'augmente de 1 le nombre
total des ponts, et j'écris le nombre 16.

D
E
F.

8
4
4
3
5
6

3° j'écris les lettres A, B, C,... , les unes au-dessous des
autres, et à côté de chaque lettre le nombre de ponts con-
duisant à la région que marque la lettre. Ainsi 8 ponts
conduisant à A , 4 à B, etc. ; 4° j e niarque d'un astérisque
les lettres à côté desquelles se trouve un nombre pair;
5° j'écris dans une troisième colonne verticale les moitiés
des nombres pairs, j'augmente de 1 le© nombres impairs,
et j'écris de même les moitiés de ces nombres impairs
ainsi augmentés de 1 ; 6° j'additionne les nombres de
cette troisième colonne, et j'ai une somme 16 égale au
nombre 16 écrit en haut : il en résulte que le passage peu*
être fait de la manière voulue, en partant soit de la région
0 , soit de la région E, car ces lettres ne sont pas marquées
d'une étoile; la course pourra se faire de la manière sui-
vante :

notation dans laquelle j'ai placé entre les lettres majus-
cules les points sur lesquels le passage a lieu.
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1.6.fil sera donc très-facile par ce procédé de reccn-
naîtredans chaque cas proposé, si le passage unique sur
tous les ponts peut ou non s'effectuer. Cependant je don-
nerai encore un moyen beaucoup plus facile de recon-
naître cela, lequel se déduira sans difficulté de ce qui
précède, après que j'aurai exposé quelques observations
que voici. Je remarque d'abord que la somme des nom-
bres de ponts écrits à côté de chaque lettre A, B, C, D,...,
est double du nombre total des ponls ; la raison en est que
dans le calcul qui donne tous les ponts conduisant à une
région donnée, un pont quelconque est compté deux fois,
c'e*t-a-dire[que chaque pont est rapporté à Tune et l'autre
des deux régions qu'il joint.

17. Il suit de cette observation que le nombre total
des ponts qui conduisent dans chaque région est toujours
un nombre pair, puisque la moitié de cette somme est
égale au nombre des ponts. Il ne peut donc pas se faire
que parmi les nombres de ponts conduisant à une région
quelconque, il n'y en ait qu'un seul d'impair, ou trois, ou
cinq, etc. C'est pourquoi, si des nombres de ponts adjoints
aux lettres A, B, C,..., sont impairs, il est nécessaire que
le nombre de ces nombres impairs soit pair. Ainsi, dans
l'exemple de Kœnigsberg, les nombres impairs adjoints
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aux lettres des régions A, B, C, Dv . . , étaient au nombre
de quatre [voyez n° 14), et dans l'exemple précédent du
n° 15, il y a seulement deux nombres impairs, adjoints
aux lettres D et E.

18. Puisque la somme de tous les nombres adjoints aux
lettres A, B, C,..., égale le double du nombre des ponts-,
il est manifeste qu'en augmentant cette somme de i et en
en prenant la moitié , on aura le nombre établi au com-
mencement de l'opération. Si donc tous les nombres ad-
joints aux lettres A, B, C,..., sont pairs, et qu'on prenne
la moitié de chacun d'eux pour former les nombres de la
troisième colonne, la somme de ces nombres sera infé-
rieure de i au nombre que nous savons. C'est pourquoi,
dans ces cas, le passage sur tous lés ponts pourra toujours
s'effectuer \ car, en quelque région que la course com-
mence, on sera conduit en cette région par un nombre
pair de ponts, ainsi qu'il est requis. Par exemple, dans
le problème de Kœnigsberg, on peut s'arranger de ma-
nière à passer deux fois sur tous les ponts, car ce serait
comme si chaque pont eût été divisé en deux, et alors le
nombre des ponts conduisant dans une région quelconque
sera pair.

19. Maintenant, si Ton suppose qu'il y a seulement
deux nombres impairs adjoints aux lettres A, B, C,...
(on sait qu'il ne peut pas y en avoir un seul), et que tout
le reste soit pair, alors la course demandée est possible,
pourvu que l'on parte d'une des régions à laquelle con-
duit un nombre impair de ponts. Car, si, selon la règle,
on prend la moitié des nombres pairs, et la moitié des
nombres impairs augmentés de i, la somme de toutes ces
moitiés sera supérieure de i au nombre de ponts, et par
conséquent égale au nombre précité lui-même, et Ton voit
parla que s'il y a ou quatre, ou six, ou huit,..., nombres
impairs dans la deuxième colonne, alors la somme des
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nombres de la troisième sera plus grande que le nombre
précité, et le surpassera ou de i, ou de 2, ou de 3, . . . ,
unités, et que, par conséquent, le passage demandé
sera impossible*

20. Quel que soit donc le cas proposé, on pourra très-
facilement reconnaître sur-le-champ, au moyen de la
règle suivante, si le passage une seule fois sur tous les
pdhts est ou non possible.

S'il y a plus de deux régions auxquelles conduisent un
nombre impair de ponts, vous pouvez affirmer avec cer-
titude qu'un tel passage est impossible. Mais si Ton est
seulement conduit à deux régions par un nombre impair
de ponts, le passage est possible, mais en commençant sa
course par l'une ou l'autre de ces deux régions. Enfin,
s'il n'y a aucune région à laquelle on soit conduit par un
nombre impair de ponts , alors le passage pourra avoir
lieu, comme on le désire, et en commençant sa marche
par telle région qu'on voudra. Cette règle satisfait donc
pleinement au problème proposé.

21. Mais, quand on aura reconnu que la question est
possible, il restera encore à trouver comment la marche
doit être dirigée. Je me sers pour cela de la règle suivante :
qu'on néglige parla pensée, autant de fois qu'on peut le
faire, 2 ponts conduisant d'une région à une autre : par
cette abstraction, le nombre des ponts se trouvera géné-
ralement de beaucoup réduit; qu'on cherche alors, ce
qui sera facile, la course demandée pour les ponts qui
restent, et cela trouvé, les ponts enlevés par la pensée ne
troubleront pas beaucoup le résultat obtenu, comme il
est aisé de le voir avec un peu de réflexion*, et je crois
inutile d'insister davantage pour trouver la marche qu'on
devra suivre pour répondre à la question proposée.



Note du traducteur. Une application intéressante du
problème d'Euler peut être faite à Paris, sur les ponts
nombreux qui garnissent la Seine, depuis le pont dléna
jusqu'au pontd'Austerlitz, et joignent les îles de la Cité et
Saint-Louis En jetant les regards sur un plan de Paris, en
appelant D la rive droite, G la rive gauche, A et B les îles
de la Cité et Saint-Louis, on reconnaît que n ponts
conduisent en A, 8 en B, 14 en G, 15 en D ; donc le pro-
blème est possible, d'après la règle du n° 20, pourvu
qu'on parte de la Cité ou de la rive droite, et il est très-
facile de trouver effectivement la marche à suivre. 11 est
clair que dans ce problème, le pont Neuf et celui de la
Réforme doivent compter chacun pour deux ^ car l'un
mène de D en A et de A en G, et l'autre mène de D en !>
et de B en A.

Un autre problème célèbre de situation est celui du
cavalier aux échecs, donné aussi par Euler, pour la
première fois (Mémoires de Berlin, ij5g) et dont Van-
dermonde donna depuis une solution plus simple, dans
les Mémoires de F Académie des Sciences, pour 1771,
page 566. M. Volpicelli s'est occupé récemment de
ce problème. {Comptes rendus, i85o, tome XXXI ,
page 3 i4-)

THEOREME DE M. STE1NER, SUR LES AXES RECTAWitLAlftlS,
DANS LES SURFACES DU SECOND DEGRÉ

(voir t. IX, p. 407; ;

PAR M. F. ÉLÉMENT,
Professeur au lycée de Strasbourg.

i. Le théorème do M. Steiner sur les axes rectangu-
laires dans les coniques peut être démontre ainsi :
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Prenant pour axes les deux droites rectangulaires, l'é-
quation de la conique est

Ay7 4- B.rr 4- C.r2 ~f~ Dj 4- Ex 4- F = o.

En faisant successivement x = o , y = o, on obtient

Cr2-f- EJT 4- F == o,

équations qui donnent
a donc

les segments des droites a et fc-, on

F , „ F

F̂  F2

Les racines étant de signes contraires, on a

t*t enfin

x'

a — x'

c

I

V/D ? —4AF
J A '

CF ; D2—4AF
A2 '

E- —4CF4-D2—4AF
F2

quantité constante -, car, comme les deux axes rectangu-
laires sont quelconques, on peut généraliser en changeant
leur direction. On a alors

D'2=(Dsina-f- E
E/2 = (Dcosa — E sin a)3,

A' = A sin2 a -f- B sin a cos a 4- C cos' a,
C/ = A cos* a — B sin a cos a 4- C sin- a,



F est le même ; donc

D24-Ea — 4F(A-t-C) _
F'2

2. Quant au théorème général, en prenant pour axes
les trois droites rectangulaires, on a pour équation de la
surface

Az2 -h By2-h Cx* -+-Dxy -t-Eyz -+- Fxz-+-Gz + Ayx 4-Kx-f L = o.

En faisant successivement

( * = = 0 , ^ = 0 ) , ( r = o , z = o ) , ( * = o , * = o ) ,

on obtient

équations qui donnent les segments des droites a, b , c ;
on a donc

K2—4CL L

d'où
a2 b1 c2

~y'*/'2

G2 -f- K2 4- H2 — 4 AL — 4 CL — 4 BL
== Z 2 J z= const.

L
Si Ton prend, en effet, d'autres axes rectangulaires, on
obtient

".+. K / 2 + H'2 = G2 -h H2 4- K2,
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en faisant attention aux relations connues qui existent
entre les cosinus des angles que les nouveaux axes font
avec les anciens : d'ailleurs L ne change pas 5 donc

D"4-E" + F'2 —4L(A /4-B /4-C)

__ D2 4- E2 + Fs — 4 L (A 4- B 4- C )

C. Q F. D.
1 1 1

- 4 - —r~ 4 - -j—r, = con&t.x
H ; 7 H ;

x y y z 1
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JACOBI.

Le flambeau le plus brillant du siècle est éteint. JACOBI
n'est plus. Il commence sa carrière d'invisible immorta-
lité} perte douloureuse, lacune immense, irréparable.
Toutefois, nous conservons un précieux héritage : ses
œuvres , où apparaissent inattendues tant de découvertes,
où disparaissent soudaines tant de difficultés, au souffle de
son génie. Sans orgueil, et en toute vérité, il aurait pu
inscrire au frontispice de ses Fundamenta la devise d'Ho-
race : Exegi monumentum œre perennius. En méditant
ces pages, brillantes d'incessantes créations, on reste con-
vaincu que les mathématiques ne sont pas une science,
mais une révélation permanente, un reflet de cette intel-
ligence divine que Jacobi contemple maintenant dans son
ineffable pureté. Il nous a aussi légué une pléiade d'illus-
tres disciples qui continuent la gloire du maître -, étendent,
perfectionnent ses travaux \ resserrent d'un lien toujours
plus étroit le nombre, l'espace, le temps 5 le continu et le
discontinu \ le réel et l'imaginaire, le fini etrinfini ; subli me
synthèse, tendance unitaire de notre époque: là est notre
espoir. Puisse le ciel accorder de longs jours au géomètre
hors rang, à l'auteur des Disquisitiones; à notre illustre
compatriote, l'auteur des Exercices : là est notre conso-
lation. Ce siècle a vu disparaître successivement Lagrange,
Laplace, Monge, Legendre, Poisson , Abel, Jacobi. Ces
noms vivro t dans la mémoire des hommes , tant que sub-
sistera chez eux le culte de l'idée $ le seul qui donne de
la grandeur à la pensée, de la noblesse aux sentiments,
de l'élévation au caractère; ils vivront encore entourés
d'une auréole toujours renouvelée, lorsque les noms de
leurs envieux contempteurs seront, depuis longtemps,
ensevelis dans les ténèbres de l'oubli.

O.



NOTE SUR LES DÉTERMINANTS.

1. Notation, u étant une fonction de n variables #, ,
x\,.. . . ,rn, nous désignons par z/p la dérivée de cette fonc-
tion prise par rapport à la variable xp, par upq la dérivée
up par rapport à la variable xq, par uptfr la dérivée de up<}

par rapport à la variable ^p, et ainsi de suite, p , <y, r , . . . ,
sont des nombres quelconques de la suite naturelle i , 2,
3 , . . . , n. Ces dérivées portent aussi le nom de coeffi-
cients différentiels partiels, du premier, deuxième, troi-
sième, etc., ordre. Nous empruntons cette notation com-
mode à M Hesse, célèbre professeur à Koenigsberg.

Observation. On sait que up<jr _ reste le même, dans
quelque ordre qu'on exécute les dérivations.

2. Lemme. u étant une fonction de n variables, le
nombre des coefficients différentiels partiels d'ordre p est

. 3 . . n —

Démonstration. Développons [ux -f- u2 -h ... H- ^n)^, où
?/A, w2, etc., désignent les dérivées premières de M, prise
par rapport à ^ , ^ , . . . , conformément à la notation. Le
premier terme est u^\ remplaçons-le par uiu , le
nombre des indices 1 étant p, nous obtenons un coefficient
différentiel d'ordre p \ le second terme est nuft

t~~l il*, rem-
plaçons-le par u2111 i 1. . le nombre des indices 1 étant p—1,
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nous aurons un second coefficient différentiel d'ordre />;
opérant de même sur tous les termes, on obtient tous les
coefficients d'ordre p ; on aura autant de ces coefficients
qu'il y a de termes dans le développement. Le nombre
de ces termes est celui qui est énoncé dans le lemme
[voir tome I , page 89).

3. Soit u une fonction de deux variables .r,, xf ; cette
fonction a trois coefficients différentiels du second ordre,
savoir :

« I I , «12, #22-

Représentons la fonction y,, xt -f- ui9 x9 par P,, et la
fonction u9A ,r, -4- z/22 x2 par P2 5 de sorte que nous pou-
vons écrire

^ UuXt -+- Ul2Xt = P,
; ! u2l xK H- u22 x2 = P 2

Considérons xt, x% comme deux inconnues de deux équa-
tions du premier degré; le déterminant de ces inconnues
est wltw2a — Mj25 car uii = uii : c'est cette expression
uu w2a — u\2 que nous appelons le premier déterminant
de la fonction u.

4. Théorème. Soient u une fonction à deux variables
Xi, .r,, et D le premier déterminant de cette fonction.
Remplaçons xx parle binôme linéaire 0Lxyx -f- a8 y8, etXi
par le binôme linéaire /3± yi-h jS2 j 9 ; la fonction u se chan-
gera en une fonction des deux variablesyi9 yt. Soit A le
premier déterminant de cette fonction y, on aura

Démonstrationr On a

)



d'où
dx, _ dx, dx, dx,

dxK du dxt

— = (>,, a t «,, + 2aia2

— = <v: = Pï « n + a p, p2 t t l 2H- p2
2 a22,

- — - — =r v,j r= a, p, a n 4 - (a, p7-h p, aa) tt12 -+- a2 B, rt22,

d'où
«'u <'22 — <'?-, : = (^i P2 — ?i a2)'(//,, //ï2 — «,,),

ou bien
A= (a, p2— p, a,)*D.

C. Q. F. D.

Observation. En considérant, dans les équations (2) ,
y t e t y t comme des inconnues, il est évident que le dé-
terminant est a! (3, — ai 0i.

5, Exemple. Soit

M = aa:' -h foc, x,-h cx\-h dx{ •+ ĵra -+-/;

il vient

u{ = 2 tf.z, -+- âr2 -h ^, «a = ^ 1 + 2 cx7 4 - r ,

D = 4 «c — 62.

Ainsi, ce qu'on désigne par m dans la théorie des co-
niques, est le premier déterminant de la fonction liexa-
nôme, laquelle, étant égalée à zéro, donne l'équation de
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la conique. En remplaçant, dans l'équation, xx et xt f res-
pectivement par at j t H- a, j , et PJ yx -f- (3, j , , on obtient
une seconde conique qui est la transformée homologique
de la première conique, et Ton a>

par conséquent, la seconde conique est toujours de même
espèce que la première -, mais on peut transformer une
ellipse en cercle et une hyperbole en hyperde (*).

Les changements de coordonnées sont des cas parti-
culiers des transformations homologiques ; en passant des
coordonnées rectangulaires à d'autres coordonnées rec-
tangulaires, on a

ainsi le déterminant ne change pas de valeur.
6. Soit u une fonction de trois variables xt, at, or,;

cette fonction a six coefficients différentiels du second
ordre, savoir : uu , w12, w13; */22, w23, wss. Posons

(3; ! u7Xxx -\-Unx7-ï-u2zx3=zP.J,
f wal .r, -+- w32 a:2 - h K 3 3 JC2 = P 3 ;

considérant .r,, x2, x8 comme trois inconnues de trois
équations du premier degré, et résolvant ces équations,
le dénominateur des inconnues est ce qu'on nomme le dé-
terminant de la fonction u*, désignant ce dénominateur
par D, l'on a, comme on sait,

D = tttlH32«33-f- 2 « t î « l i « î 3 - « 1 1 « 2 3 — « M « î 3 — « 3 3 « J 2 -

7. THÉORÈME. *SO# M une fonction de trois variables

( *) Hyperbole équilatère (vo/r t. V, p. 535 ).



?- posons

(4)
2 -+- 73 r3

la fonction u se change en une fonction u à trois variables
Y* > J*> y*% 8oà A le déterminant de cette fonction v$ on
aura

(5) i ^^ (a« P2 V3 «I P3 72 «2 P» 73

Démonstration.

Jtf du dxt du dx2 du dx3

^ j , d^, ^i/, rfx2 dyt dxs dy3
 r

<*i!= et] KnH-p? «aa-4- 7Ï tf33 + 2a,p2 a,,
4- 2 a, 7, ul3 -f- 2p,71ttj3,

cl2 = a, a3 «,, -+- ^ p2 MJ2 -h 71 72 K33 + [a, p 2 + p, a2] «12 + [a, 72

-+• 7< «3 ] K<3 + [ Pi 72 ~h 7t Pî] «23 ,

Pi3 = a,a3MnH- p, p 3 Waî+7i7 3 «33+Wi2[aiP 3 + Pi «a]

-h «i3 [«i 73-H 7i a3] -H «23[Pi 73 H- 7> Pa]»

On trouve de même P'J , 2̂2 9 ^23, 3̂3 ; substituant dans
le déterminant A les valeurs de v en fonction de M, on
trouve F équation (5) qu'on peut écrire de cette manière

[p, Paf»8] = [«, P3 73]5 [a, a,K3],

les crochets désignant des déterminants.
8. Exemple, Soient

u z=. ax\-\- bxx xt + ex] •+• dx{ x3 -f- exx xè

w, = 2 ff.r, -f- ^j72 -f- / i r , ,

a M r = 2/y,
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et, de même, .

D'= 8acf-\-4 bde — laé1— icd*— 2/£2 = 2L.

Ainsi, dans nos relations d' identité 9 ce que nous avons
appelé m est le premier déterminant de la fonction hexa-
nôme du second degré à deux variables, et ce que nous
avons nommé L est la moitié du second déterminant de
la même fonction rendue homogène et ternaire.

En transformant une conique homologiquement, -

ne change donc pas.
Soient encore

u = A'tfJ-f- A"x\ -\-kmx\ •+• nB'"xlxi'+- 2
-f- 2 C'J?I -+- 2 C'7

«, = 2 A'x, + 2 B/;/^2 + 2 B'^s •+• 2 C,
M,, = 2 A', « l 2 ~2B" / , tf,3=2B",
u2i = 2 A/7, «23 = 2 B', «33 = 2 A";

d'où

D == 8 [A' M'M"-h 2 B'B"B"'— A' B/2 — A" B"2— A'"B"2].

C'est le premier déterminant relatif aux équations des
surfaces du second degré, et le second déterminant des
équations des lignes du second. D, pris négativement,
jouit des propriétés analogues à m : ainsi, lorsque D est
nul, le centre est à l'infini ; lorsque D est positif, la sur-
face est toujours infinie.

9. THÉORÈME GÉNÉRAL. Soit u une Jonction de n va-
riables Xi , x2,.. . , xn ; posons

=r p,

xn = T ,

Ann. de Mathêmat., t. X. (Avril l85r.)



la Jonction se change en une fonction v an variables y\,
ft,..., yn. Désignant par [wlt i/22... unn\ , \yxl *>22... vnn~\,
[«! «2 . . . «„] /e$ déterminants de M, *>, et des coefficients
«il, Piv^n on a

[«\*a... f«n] = [a , « 2 . . . a n] 2 [a, u2... «„„].

Démonstration. La même que ci-dessus pour trois va-
riables.

10. Exemple.

Calcul fait, on trouve pour le déterminant de quatre
variables,

D = a,, u22 uM uu — P + Q — R -h S,

P = - ' « 3 3 «44 « î t + «23 «44 « î 3 + « 2 2 « 3 3 « Ï 4 + «11 «44 « ' 3

+ «ll «33 « 2 4 + «. . «22 « 3 4 ,

Q = « Ï , « 3 4 + « Î 3 «24+« 2 , 4 «2
23>

R = 2 [W,3 a23 tt34 ^,4 -f- «12 «24 «43 «13 ~h « t 3 «32 «24 «4i] ,

S = 2 [« , , Un «24 « 3 4 + «22 ".3 «14 «34 + «33 «12 «14 «24 4~ «44 «13 «.2 «2:j J

«j = 2A'x3+ 2 B^3H-2B//^1 -h 2C'.r4,

«3 = 2 Â " ^ + 2 Bar, + 2B'ar,-f- 2C"J:4 ,

«4 = 2 Ex44- 2 Cr ,4- 2C/.r, -h 2C"x3,

« n = 2 A , K12=2B", tt,3=2B', « t < =2C, «23=̂  2 A',

«» = 2B, «,4=2C /, tt33 = 2 A", «33=2 0", W44= 2 K,

«,, «,2«3 3 « 4 4 =

P = i6[AA'C"2--hAA"C'2 + Aï-

Q = 16 [B2 C2 -»- B'2 C /24- B"2 C"2],

R = 32 [BB" CC/; 4- BB' CC; 4- B' B"C C"],

S = 32 [ ABC C 4- A' B' CC" 4- A" B" CC 4- EBB' B" ] ;



c'est le déterminant de la fonction décanome à trois va-
riables rendue homogène et quaternaire. Ce second dé-
terminant!) jouit des mêmes propriétés pour les surfaces
du second degré que ce que nous avons nommé L pour les
lignes du second degré. C'est ce que nous verrons dans
nos relations d'identité, appliquées aux surfaces du se-
cond degré. La plupart de ces relations ont été énoncées
pour les formes quadratiques à deux variables par Fil-
lustre M. Gauss (DisquisitioneSj § 267) 5 si je n'en ai pas
averti plus tôt, c'est que, par inadvertance, je ne m'en
suis aperçu que récemment, à cause de la différence de
notation. Lorsque la fonction u dépasse le second degré,
nous verrons que le déterminant est toujours le résultat
d'une élimination entre des équations de degrés de plus
en plus élevés.

Dans les lignes du second degré, il suffit de connaître
les deux déterminants pour avoir le produit des axes
principaux et par conséquent l'aire de l'ellipse ; de même
dans les surfaces du second degré, les deux déterminants
donnent le produit des trois axes principaux et le volume
de l'ellipsoïde. Les déterminants (fonctions cramériennes)
dominent aujourd'hui toute la science mathématique.
C'est donc avec raisou qu'on les a ôtés du nouvel ensei-
gnement. On les a fructueusement remplacés par le plan
auxiliaire, le logarithme, le travail élémentaire; triade
adorable, sans oublier la réglette de saint Gunther que tout
géomètre est tenu d'avoir incessamment dans ses poches
ou dans ses mains. Nous verrons renaître l'ère des Archi-
mèdes et des Apollonius :

Magnus ab intcgro seclorum nascitur ordo.



GÉOMÉTRIE DESCRIPTIVE. CONCOURS D'ADMISSION, EN 1 8 5 0 .

Nous croyons être agréables à nos lecteurs en réunis-
sant ici les énoncés des questions qui ont été traitées dans
la composition mathématique du concours d'admission
pour l'Ecole Polytechnique, en i85o, à Paris et dans les
autres villes d'examen.

Il était prescrit, dans chaque programme, de tenir
compte des parties vues et des parties cachées (arêtes,
traces, contours, etc.) clans les projections des corps
représentés.

Deux mois environ avant le concours, la direction des
études de TEcole avait envoyé dans les départements, par
l'intermédiaire des préfets, une Note qui avait pour titre :
Composition mathématique, indications à suivre dans la
partie graphique.

1. Données, Le plan dont l'inclinaison sur le plan
horizontal est de 60 degrés, et dont la trace horizontale ab
fait un angle de 45 degrés avec la ligne de terre $ le pen-
tagone P donné par ses côtés et ses diagonales exprimés
en millimètres*, la droite (D, D') quelconque.

On demande : i° de construire les projections du po-
lygone P posé sur le plan donné, et de prendre ce poly-
gone pour base d'un prisme parallèle à la droite (D, D'),
et dont la hauteur serait de 80 millimètres au moins -, i° de
développer la surface de ce prisme, et de construire l'angle
qui mesure l'inclinaison d'une face sur l'une des bases.

2. Données. Une ellipse E tracée sur le plan hori-
zontal, avec des axes de 5o millimètres et de 35 milli-
mètres-, le plan dont l'inclinaison sur le plan horizontal
est de 60 degrés, et dont la trace verticale ab fait un
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angle de 45 degrés avec la ligne de terre*, la droite (D, D').

On demande : i° de construire les projections du cy-
lindre qui aurait pour base l'ellipse E-, qui serait paral-
lèle à la droite (D, D'), et qui aurait 80 millimètres de
hauteur *, i° de couper ce cylindre par 1-e plan donné, le
cylindre étant supposé convenablement tourné pour cela ;
3° de construire le développement de la surface cylin-
drique sur le plan tangent suivant une des génératrices du
contour horizontal, et d'y tracer la transformée de la
section plane.

Le développement sera fait à l'aide d'un prisme inscrit
dans le cylindre.

3. Données. La verticale (a,a'af), et l'inclinée
(prit, pf m1), distante de 10 à i5 millimètres de cette ver-
ticale; le plan horizontal HH, plus rapproché de la per-
pendiculaire commune à ces deux droites que ne lVst le
plan horizontal de projection.

On demande : i° de construire les projections de la sur-
face lieu de toutes les positions de la droite (/////, p1 m1) :
on construira au moins douze positions de la génératrice;
mobile, dont (pm, p1'm[) sera la position initiale; on li-
mitera la surface, d'une part, au plan horizontal de pro-
jection, de l'autre, au plan HH*, 20 de couper cette sur-
face par un plan parallèle à la génératrice (pin, p1 m1) et
à la cinquième à partir de celle-ci *, 3° de mener des tan-
gentes aux points à l'infini de la section plane.

4. Données. Le plan P, dont la ligne de plus grande
inclinaison sur le plan horizontal est la droite (pin, p'tn').

On demande : i° de construire les projections d'une
pyramide pentagonale dont la base serait placée sur le-
plan P, et dont le sommet serait pris à volonté; i° de
mesurer la hauteur de cette pyramide, de construire sa
base en vraie grandeur, et de calculer son volume en mil-
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limètres cubes} 3° de faire une troisième projection de
cette pyramide sur un plan perpendiculaire à l'un des
plans de projection.

5. Données. Un prisme pentagonal et un prisme qua-
drangulaire, ni parallèles, ni perpendiculaires aux plans
de projection, dont les projections croisées puissent
donner lieu à une rencontre.

On demande : i° de construire la partie commune à
ces deux prismes ; 2° de développer la surface de l'un d'eux,
et de tracer sur le résultat la transformée de la figure de
rencontre des deux surfaces.

On fera attention que différents cas peuvent se pré-
senter, selon que les deux prismes ont ou n'ont pas de
plan rasant commun*, un plan rasant étant celui qui
passe par une arête, et non par une face. On ne traitera
graphiquement cju'un de ces cas, mais on discutera les
autres dans le texte.

Des questions analogues à la précédente ont été propo-
sées pour une pyramide pentagonale et un prisme qua-
drangulaire, ni perpendiculaire, ni parallèle à l'un des
plans de projection ; pour une pyramide pentagonale et
une pyramide quadrangulaire , etc.

6. Données. Deux surfaces de révolution dont les axes
se rencontrent sous un angle de 4$ degrés, dans un plan
vertical non parallèle au plan vertical de projection ; une
sphère à axe vertical [a, af af), et d'un rayon de 5 cen-
timètres au moins; un cylindre incliné, de 3 à 4 centi-
mètres de rayon, et dont l'axe ne passe pas par le centre
de la sphère.

On demande : i° de construire la courbe d'intersection
des deux surfaces -, 20 de mener une tangente en un point
de cette courbe.

7. Données. Le plan P, dont la ligné de plus grande
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inclinaison sur le plan vertical est la droite [pm^p1 mf)>

On demande: i° de construire les projections d'un
cône oblique dont la base, posée sur le pkn P, serait un
cercle de 35 millimètres au moins de rayon, et dont le
sommet serait pris à volonté; i° de mesurer la hauleur
de ce cône, et d'en calculer le volume en millimètres
cubes; 3° de faire une troisième projection de ce cône
sur un plan perpendiculaire aux horizontales du plan
donné P.

8. Données. Le plan P dont la trace horizontale et la
trace verticale font respectivement avec la ligne de terre
des angles de 45 et de 6o degrés ; l'ellipse E dont les axes
sont de 45 et de 35 millimètres; la droite (D, DY); le
point (w, mf).

On demande : i° de construire les projections de l'el-
lipse E posée sur le plan P, de manière que le grand axe
fasse un angle de 3o degrés avec le plan horizontal ; 2° de
prendre cette ellipse pour base d'un cylindre parallèle à
ki droite (D, D'), et ayant 90 millimètres de longueur;
3° de mener à ce cylindre deux plans tangents passant par
le point (m, mf).

On supposera, lors de la mise à l'encre de l'épure, que
les deux plans tangents existent réellement, et l'on tiendra
compte de cette supposition dans la distinction des parties
vues et des parties cachées.

9. Données. L'ellipse E' tracée sur le plan vertical,
avec des axes de 5o et de 35 millimètres ; un point (S, &')
quelconque.

On demande : i° de construire les projections du cône
qui aurait pour base l'ellipse E', et pour sommet le
point (S, S') ; 20 de couper ce cône par un plan qui ren-
contre toutes les génératrices entre la base et le sommet;
3° de construire sur la surface la courbe lieu de tous les
points distants du sommet de 20 millimètres: 4° de dé-
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velopper la surface à l'aide de cette courbe, et de tracer
sur le développement la transformée de la base ou celle
de la section plane.

10. Données, ]Le cylindre droit et vertical (A , A'), de
5 centimètres de rayon 5 le cylindre (B, B'), incliné, à
base circulaire de [\ centimètres de rayon, et dirigé de
manière à avoir un plan tangent commun avec le précé-
dent \ un troisième cylindre (C, (7), parallèle à (B, B7),
à base circulaire de 3 centimètres de rayon et concen-
trique à la base du cylindre (B, B'). Les cylindres (B, B')
et (C, C) , parallèles entre eux, ne devront pas être pa-
rallèles au plan vertical.

On demande: i° la courbe d'intersection des cylin-
dres (A, A') et (B, B'); 20 la courbe d'intersection du
cylindre (A, A') avec le cylindre (C, C) qui est enve-
loppé et caché par le cylindre (B, B') \ 3° le développe-
ment du cylindre vertical, et, sur ce développement, la
transformée de l'une des courbes d'intersection.

On pourra, si l'on veut, tracer à. l'encre rouge le cy-
lindre (C, C) et ses courbes d'intersection, et arrêter
les parties vues et les parties cachées comme s'il n'était
pas enveloppé par le cylindre (B, B').

Des questions analogues ont été proposées sur un cy-
lindre droit et sur deux cônes de même sommet, à bases
circulaires et concentriques (le sommet commun n'étant
pas sur l'axe du cylindre), ou sur deux cônes à bases cir-
culaires et concentriques, mais de sommets différents,
l'un situé dans le cylindre, l'autre sur le cylindre, etc.

11 • Données, Deux surfaces de révolution dont les axes
se rencontrent dans un plan vertical non parallèle au plan
vertical de projection : i ° un hyperboloïde à une nappe,
«dont Taxe est vertical, et dont le cercle de gorge est de
3o millimètres ; limité, d'une part, au plan horizontal de
projection, de l'autre, à un plan horizontal HH qui donne



un cercle plus petit que celui de la base-, 20 une sphère
de 4° a 5o millimètres de rayon, et dont le centre ne
se trouve pas sur Taxe de Fhyperboloïde.

On demande : i° de construire la courbe d'intersection
de ces deux surfaces; 2° de mener une tangente en un
point de cette courbe.

On est libre de considérer Fhyperboloïde comme une
surface infiniment mince ou comme un solide, F un et
l'autre étant limités par deux plans horizontaux 5 mais
on devra tenir compte de la différence qui résulte de telle
ou telle supposition dans la distinction des parties vues
et des parties cachées de la projection horizontale.

12. Données. La verticale (a, a1 af), et l'inclinée
(/?/rc, prm') parallèle au plan vertical} la droite (r, r1 r')
perpendiculaire au plan vertical *, le plan horizontal HH
plus rapproché de la perpendiculaire commune aux deux
droites (a, a'a1) et (/?m, pfmf)9 que ne l'est le plan
horizontal.

On demande : i° de construire les projections de douze
positions au moins de la droite [pm, p1m') tournant
autour de la verticale (a, a1 a1), à partir de (pm, p1 m!)
comme position initiale : ces droites seront limitées, d'une
part, au plan horizontal de projection, et, de l'autre, au
plan HH; 20 de couper la surface, lieu de toutes les po-
sitions de la droite mobile (pm, p'm1), par trois plans
passant par la droite (/-, r1 /•'), et rencontrant, l'un, toutes
les génératrices, Fautre, toutes les génératrices moins
une, le troisième, toutes moins deux; 3° de mener une
tangente en un point situé à l'infini sur celle des trois
sections planes qui présente de tels points.

13. Données, Un plan P, dont on connaît un point
(p, pr) et les deux droites principales qui passent par
ce point ; la parallèle (ph, pfhf) au plan horizontal, et
la parallèle (/7 ,̂ p' v') au plan vertical; le cercle C d'un



rayon de 25 millimètres; une droite (D, D') inclinée
à 45 degrés sur la ligne de terre.

On demande: i° de construire les projections du cy-
lindre parallèle à la droite (D, D'), dont le cercle C se-
rait la base posée sur le plan P, et dont la longueur serait
triple du rayon de cette base-, 20 de mesurer la hauteur
de ce cylindre, pour en déduire le volume en millimè-
tres cubes-, 3° de construire la projection de ce cylindre
sur un plan perpendiculaire à la trace verticale du plan P.

il. Données. Deux surfaces de révolution dont les axes
se rencontrent sous un angle de 3o degrés, dans un plan
vertical non parallèle au plan vertical de projection :
Tune, à axe vertical (a, a'a'), est engendrée par une
ellipse méridienne de 80 millimètres de diamètre hori-
zontalet de 5o millimètres de diamètre vertical; l'autre
est un cône dont l'angle au sommet est de 60 degrés, et
dont le sommet pourra être placé à volonté dans l'el-
lipsoïde , mais non au centre, sur l'ellipsoïde, ou en
dehors.

On demande : i° de construire la courbe d'intersection
de l'ellipsoïde et du cône ; 20 de mener une tangente en
un point de cette courbe.

On fera remarquer dans le texte qu'il peut y avoir
pénétration ou arrachement.

Note, Nous croyons devoir rappeler un projet d'Instruction sur les tra-
vaux graphiques, dans lequel on trouvera d'utilea renseignements. (Voir
Nouvelles Annales, tome V, page a3. )



PROGRAMME D'ADMISSION A L'ÉCOLE SPÉCIALE MILITAIRE,
EN 1 8 5 1 ( • ) .

Nous avons en diverses occasions exprimé l'opinion
que le mode d'examen pour l'École de Saint-Cyr était
très-rationnel, et de beaucoup préférable à celui qui
était en usage pour l'École Polytechnique -, toutefois,
on a encore trouvé moyen d'empirer ce dernier mode
d'examen, ce qui paraissait très-difficile. Par compen-
sation, on a joint maintenant à ce mode d'entrée, un
mode de sortie tout à fait inqualifiable-, les dispositions
en sont tellement draconiennes, que les esprits les plus
illibéraux n'auraient pas osé les proposer dans les jours
les plus mauvais de la monarchie, tant impériale que
royale. Mais parlons des programmes : celui de l'École
de Saint-Cyr, que nous avons sous les yeux, est une
excellente esquisse faite d'après un très-mauvais modèle.
Les énoncés sont clairs, précis, allant droit au but,
nommant les choses par leur nom, sans ambages, sans
emphase. On dit tout simplement ce qu'il faut apprendre
dans l'arithmétique, la géométrie, l'algèbre, sans ajouter
des phrases oiseuses et prétentieuses, telles que celles-ci :
Y arithmétique sera exposée avec simplicité, la géomé-
trie sera pratiquée avec dextérité, les équations seront
résolues avec fidélité, on passera légèrement sur tel
théorème, on démontrera rapidement telle théorie, on
insistera sur les mouvements naturels, etc. 5 et autres amé-
nités de ce genre qui semblent échappées d'une plume en
veine de gaieté. Au contraire, le style du programme de

(*) Extrait de l'Instruction pour l'admission à l'École spéciale militaire
du 11 février 1851 ; 7 pages in-folio. Imprimerie nationale.



Saint-Cyr est partout convenable et adapté au sujet ; les
matières y sont arrangées avec méthode, mises a la portée
des candidats et appropriées aux besoins de renseigne-
ment. Toutefois, il est à regretter que, forcé d'imiter un
mauvais modèle, on n'ait pas admis les fractions continues
dans l'arithmétique 5 d'autant plus que ces fractions ren-
trent dans la théorie du plus grand commun diviseur
qu'on a laissé subsister en arithmétique ; leur usage,
d'ailleurs, est d'une utilité constante, puisqu'à chaque
instant on a besoin de remplacer de grandes fractions
irréductibles par des fractions plus simples et approchées.
Comment, sans les fractions continues, ramener 7r

355au rapport d'Archimède, ou à —-? Comment, sans ces

fractions, expliquer rintercalation grégorienne, etc.
Il est fâcheux aussi, toujours en suivant un détestable

guide, d'avoir retranché de la géométrie, la théorie des
polyèdres symétriques5 formes que l'on trouve dans tout
le système des êtres organisés, et qui, d'après des décou-
vertes récentes, jouent un si grand rôle dans les phéno-
mènes de la cristallisation. Lorsque nous voyons le
Créateur accorder une si large part aux corps symétri-
ques dans sa géométrie, est-ce le moment de les exclure
de la nôtre? Il faut convenir qu'un célèbre rapporteur,
homme du ciel, a montré en cette occasion peu de défé-
rence pour le maître de son domaine.

Il est à regretter aussi qu'on n'ait pas ajouté à la géomé-
trie, à la suite des plans, les principaux théorèmes des
projections coniques et cylindriques 5 c'est là leur véri-
table place, et non dans la géométrie descriptive, dont
les procédés ne sont que des applications de ces théorèmes,
qui ont d'ailleurs des applications d'une extrême fécondité,
indépendamment de leur utilité graphique.

Les articles de la géométrie descriptive ne se succèdent



peut-être pas dans un ordre bien naturel. Les rabatte-
ments et les plans auxiliaires sont aujourd'hui à Tordre
du jour et figurent partout. Un moyen certain de rendre
ridicules les meilleurs procédés, est d'en prôner sans
cesse et d'en prodiguer l'emploi outre mesure. Disons
un mot du programme relatif à l'allemand : il y est dit
qu'on expliquera à livre ouvert un auteur dyun texte
facile j tout programme de ce genre devrait se réduire à
ce peu de mots : celui qu'on a adopté pour l'École Poly-
technique semble avoir été rédigé à Dresde pour des
officiers saxons, dont les trois quarts peut-être n'y
répondraient pas. Mais à Saint-Cyr comme à l'Ecole Po-
lytechnique, on a grand tort d'attacher à cette langue
une importance ridiculement exagérée. Aujourd'hui, Na-
poléon , qui n'avait aucune aptitude pour les langues, ne
serait admis ni à l'une ui à l'autre École. On rapporte
même à ce sujet une anecdote d'une incontestable authen-
ticité. Junker, professeur d'allemand à l'ancienne École
militaire, a donné au jeune Bonaparte celte note remar-
quable : sujet incapable et sans moyens. Pourquoi? pro-
bablement qu'il ne savait pas conjuguer le verbe sejn.
Quel Junker a donc rédigé le factuni ultra-teutonique
à l'usage de la seconde École militaire qu'on vient de fon-
der à Paris (*)? Revenons à celle de Saint-Cyr.

Pourquoi exiger la connaissance des origines de l'his-
toire de France et l'histoire de la géographie? Qu'un can-
didat à l'Académie des Inscriptions fasse preuve de ces
connaissances, soit-, mais on peut être un excellent officier

(*) Toute institution où le sabre prédomine est uniquement mili-
taire, quelque nom qu'elle se donne, dût-elle s'appeler séminaire. Si
l'on y tolère les services civils, tant pis pour ceux-ci; à moins qu'ils ne
trouvent avantageux de s'exercer à l'humilité chrétienne. Ces services de-
vraient désormais se recruter à l'École Normale, section des sciences ; là
sera l'École Polytechnique ; ailleurs de nom. On pourrait alors réunir
peut-être les deux Écoles militaires. Nous reviendrons là-dessus.
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français et très-instruit, sans jamais avoir entendu parler
des recherches de Montfaucon, du père Daniel, de Bou-
lainvillers, de Gosselin, de Ritter, de Mannert, etc. On
ne saurait aussi blâmer trop sévèrement la prétention de
vouloir rendre tout également obligatoire, et de n'admettre
aucune compensation : une telle prétention ne s'accorde
ni avec la justice, ni avec le bon sens. Certes, un candidat
qui écrira très-bien la langue nationale, qui montrera une
haute intelligence scientifique et des connaissances pas-
sables en histoire et en géographie, dût-il même ignorer
complètement l'allemand, sera certainement préférable
à un concurrent médiocre sur tous ces points (*).

Ces critiques ne portent que sur des détails, sur des
défauts empruntés, et, pour ainsi dire, imposés#, l'ensemble
du programme mérite des éloges, et procure une véritable
consolation dans un temps où l'on en a tant besoin.

GÉOMÉTRIE SIMIKRIOIF :
PAR M. GUSTAVE MARQFOY,

Élève de l'École Polytechnique.

Déduire des deux relations

(i) sin3Ô = sin(a — 0)sin (p —~0) sin(7— 0),

la suivante,
cot 0 = cot a -h cot p -f- cot 7 (voir tome IX, page 363 ).
Si Ton développe le produit indiqué dans le second

membre de (i), on trouve, en ordonnant par rapport aux
puissances décroissantes de sin 0,

(*) Nous n'observons de mesure en rien ; passant immédiatement d'un
extrême à Vextrème opposé. Autrefois, nous permettions une igorance
profonde en histoire et sur les langues; aujourd'hui, nous sommes tra-
vaillés d'une fièvre historique et linguistique.



(i -+• cos « cos /3 cos y )

sin3 0 — cos a cos /3 sin y

— cos a cos y sin /3

— cos j8 cos y sin a

cos 0 sin2 0 -f- cos « sin /3 sin y

-+• cos/3 sin « sin y

~h cos y sin « sin /3

cos* 6 sin 0 — sin a sin /3 sin y coss 0 =

ou, en remplaçant sin1 0 par i — cos2 9 et cos2 9 par i — sin2 9,

I -h COS a COS /3 COS y

— cos a sin/3 sin y

— cos /3 sin a sin y

— cosy sin a sin /3

Mais

donc

sins 6 -4- cos a sin /3 sin y

-h cos /3 sin « sin y

•+- cosy sin a sin/3

sin 6 — sin a sin j3 sin y

-H cos a cos /3 sin y

-h cos a cos y sin /3

-H cos /3 cos y sin a

a -H /3 -+- y = * ;

cos (a-h/S-H y)=— i,

9in(a-H/3-f-y) = 0.

cos3 $ — cos a cos /3 sin y

— cos a cos y sin /3

— cos /2 cos y sin a

COS0



En développant ces deux expressions, on reconnaît que
les coefficients de sin30 et cos30 s'annulent. L'équation
précédente devient, en remplaçant le coefficient de cos 0
par sa valeur sina sin/3 siny déduite de (3), et en suppri-
mant les facteurs communs

cot 0 = cot a -f- cot p + cot 7,

formule à laquelle on devait arriver.

SOLUTION DE LA QUESTION 89 (PROMET)
(voir t. III, p. 376);

PAR M. J/ABBÉ JULLIEN,
Professeur au séminaire de Vais.

Soient F (x) une fonction entière e i u ; a , è deux nom-
. . r , . . F ( « ) ^ F(&)—F(«) .

bres positifs, et b > a -, si ^rA > o et Yf(a) ^ °7

il y aura au moins deux racines de F7 (x) = o comprises
entre a et b.

Lorsque, dans une fonction entière F (x), on fait
croître la variable d'une manière continue, l'accroisse-
ment de la fonction F {x -h h) — Fx correspondant à la
valeur r = a est toujours de même signe que la dérivée
F'(x). Donc, si F' {x) ne change pas de signe, lorsqu'on
y fait varier x d'une manière continue depuis a jusqu'à
é, la valeur de F (x) ne cesse d'augmenter ou de dimi-
nuer, selon que Ff (a) est positif ou négatif, et la relation
F(6) — F(Û) . '
—- - ' —~—- <^ o ne peut subsister.

Cette dernière inégalité ayant lieu, Ffx change de
signe entre a et />, il existe donc au moins une racine de



F' (x) =o comprise entre a et Z>, et puisque nous avons

en même temps 1V; . *> o, il en existe un nombre pair* (a) r
dont deux au moins sont inégales.

L'interprétation géométrique de l'énoncé du théorème
montre qu'il existe entre les ordonnées F [a) et F [b) ou
un maximum et un minimum de F (x), ou un point d'in-
flexion de la courbe représentée p a r ^ = F [x). Ce der-
nier cas ne peut avoir lieu quand la fonction proposée
est entière, car la tangente trigonométrique de l'angle que
fait la tangente à la courbe avec l'axe des x, doit néces-
sairement passer par l'infini.

SOLUTION DE LA QUESTION 1 8 3
(voir t. VII, p. 158);

PAR M. L'ABBÉ JULLIEN,
Professeur au séminaire de Vais.

PROBLÈME. tn travailleurs, dont la force individuelle
est représentée par fn, exécutent mn mètres d'ouvrage
en in jours, dans un terrain dont la dureté est représen-
tée par dn\ V indice n prend les n valeurs i, 2, 3,...., n:
combien de jours mettront tous ces travailleurs, au
nombre de tt -f- '2 -H t$ -+-.. • 4- tn, travaillant ensemble*
à exécuter M mètres d'ouvrage, dans un terrain de du-
reté D?

Solution. Si tn travailleurs exécutent mn mètres d'ou-
vrage en 4 jours dans un terrain de dureté dn, ils exécu-
teront en un jour, employant la même force, dans un
terrain de dureté D,

JL Wndn

D in

mètres d'ouvrage.
Ânn. de Mathémat., t. X. (Avril I 8 5 I . ) IO



Par conséquent, /1 + ^ î + t ï + . . . + t travailleurs
exécuteront ensemble en un jour, dans le même terrain,
un nombre de mètres d'ouvrage marqué par

le symbole sommatoire V s'étendant à toutes les valeurs

que prend la fraction • " % lorsqu'on y fait suecessive-

ment n = i, i, 3 ,..., //.
Le nombre de jours qu'emploieront tous ces travail-

leurs pour exécuter M mètres d'ouvrage est donc

M

AVIS AUX PROFESSEURS, SUR DES EXERCICES DE CALCUL.

Dans la Connaissance des Temps pour l'année 1849,
on trouve, dans le Mémoire de M. Le Verrier sur la pla-
nète Herschel (dite Uranus), un grand nombre de sys-
tèmes d'équations numériques linéaires à quatre incon-
nues; exercices à l'ordre du jour, pris à bonne source. A
la page 169, on fait usage des formules cramériennes.
C'est ce qu'on devrait se garder d'imiter. Car, l'on a ôté
ces formules de l'enseignement; mais comment l'illustre
calculateur les aurait-il employées si on ne les lui avait
pas enseignées?

(*) C'est à l'examinateur Reynaud qu'on doit l'emploi de l'unité dans
e genre de questions.
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SOLUTION SE LA QUESTION 87 (PBOIMT)
(YOirt. III, p. 376 J-

PAR M. J. DENIS,
Régent au collège de Cherbourg.

Soient p un nombre premier avec 10, k le nombre des
entiers inférieurs et premiers à p ; on sait que la division
de io* par/? ne peut jamais se faire exactement, et qu'elle
donne pour reste l'unité. Cela posé :

THÉORÈME. Soient i\, r2 , r8 , . . . , rk= i les valeurs
absolues des restes obtenus en divisant par p les puis-
sances successives de 10, depuis la première jusqu'à celle

de l'ordre A*; si Ton multiplie le quotient Q = —~ "~~ .

successivement par chacun des restes rÀ, r*_i
en commençant par celui dont le rang est k
tant jusqu'au premier, les produits obtenus seront tous
composés des mêmes chiffres, et dans un ordre tel9 que
chaque produit-pourra se déduire du précédent en trans-
portant à sa gauche le premier chiffre qui est à sa
droite.

Démonstration. Je suppose pour plus de simplicité que
les restes rx, r2, r3 , . . . , rA, qui sont nécessairement pé-
riodiques, ne forment qu'une période-, s'il en était autre-
ment, on se bornerait à considérer les restes contenus
dans une seule période, et les quotients correspondants,
comme on va le voir dans ce qui suit.

J'appelle q^ <72, 9 3 v . . , qu les chiffres obtenus au
quotient, et correspondant respectivement aux restes
1̂5 ' 's, r 8 v . . , rk\ quelques-uns de ces chiffres peuvent

être des zéros, même les premiers\ mais les restes sont
10.



des nombres d'un ou de plusieurs chiffres chacun, et ne
sont jamais nuls.

D'après la définition de la division, on a en même
temps les deux identités suivantes :

i o * = Q / ? - h r A ,

i o * = (Q-— qk)p-\- r*-iX 10,

d'où l'on déduit

rk—i X ' O = rk -f- qk .p ,

ce qu'il est d'ailleurs facile de voir à priori. Mais, en
vertu de la première identité,

IO* — -
p = Q '

donc

Q/'A-I X 10 = Q a + 7*( io*— n),

ou bien
Qr^_, X 10 = Q -h 7*(io* — i ) ,

puisque
rk=s i.

Or, on peut admettre que Q a toujours h chiffres, les
premiers chiffres à gauche pouvant être des zéros; alors
le produit Q rk^t X 10 ou Q — qk-{- qk. io

k pourra s'ob-
tenir en remplaçant par un zéro le chiffre qk qui est à la
droite du nombre Q, et écrivant k rangs plus loin le
même chiffre qk qui représentera alors q X 10* ; puis, si
Ton supprime le zéro mis à la place de qk, on obtiendra
le produit

lequel se déduit du premier produit Q x i , d'après la loi
énoncée plus haut.

Généralement, soit le produit Qrn déduit des précé-



dents comme il vient d'être dit, et soit qn son dernier chiffre à droite; je vais prouver que Qrn_t

pourra se déduire de Qrn en transportant à la gauche de ce nombre le chiffre qn qui est à sa droite.
D'après la définition de la division, on a en même temps

io* = (Q — qk— qit—i X i o — qk~2 X i o 2 . . . — qn-hi X IO*—""1 — qnX i o * ~ " ) p -+- /*n_t x io*—/l"hl,

IO*r r (Q—* qk — qk—i X IO — qk—2 X io2 — qn+i X io*—"—' )p -+- rn X IO*—".

De ces deux égalités résulte la suivante :

rB_,X io*-n+l = rnX io*-" + qnX io*-nXp, ^
10* I M

et c o m m e p = —~r—> ^

Qrn^ X i o = QrB_, -+- ^n (io*— i ) .

Or r;i est plus petit que p, puisque /? est le diviseur, et rn la valeur absolue de l'un des restes, et, Qp

est plus petit que io*, puisque p = —^r—; donc, à plus forte raison, Qrn<^iôl; Qrn peut donc

toujours être considéré comme composé de k chiffres, significatifs ou non : par conséquent, le pro-
duit Qrnr.! X io ou Qrn — qn-\-qnX iok pourra se déduire de Qrn en transportant à la gauche de
ce nombre le chiffre qn qui est à sa droite, et remplaçant celui-ci par un zéro; puis, si l'on supprime



ce zéro, on obtiendra le produit

IO

déduit du précédent, d'après la loi énoncée.
Si donc un des produits est ainsi formé avec celui qui

le précède, il en sera de môme de celui qui le suit ; mais
nous avons prouvé cette loi déformation, pour le second :
donc, etc.

Corollaires. i°. Si le diviseur p est inférieur à 10, le
quotient partiel qx sera au moins égal à i, en sorte que Q
contiendra k chiffres dont le premier ne sera pas zéro ;
d'autre part, les restes r l5 7'2, r3,..., rk seront tous des
nombres d'un chiffre chacun, et comme ils représentent
respectivement des unités de Tordre /e, A — 1 ,fc— 2,..., 1,
il suffira de les écrire de gauche à droite, les uns à la
suite des autres, dans l'ordre où ils ont été obtenus, pour
former un nombre de k chiffres, tel que si l'on multiplie
le quotient total Q par ce nombre, tous les chiffres
d'une même colonne verticale soient égaux, suivant la
remarque faite par M. Prouhet [Nouvelles Annales,
tome III, page 3^6) sur les produits

Soit p •= 7, on trouve pour quotients partiels
1, 4? 2? 8» 5, 7,

et pour restes correspondants

3, 2, 6, 4> 5> 1;

le multiplicande est 142857, le multiplicateur est 326451,
et les produits partiels suivent la loi indiquée dans l'énoncé
du théorème précédent.

2°. Si le diviseur p est supérieur à iO) le premier
ou tes premiers quotients partiels qx, <jr2, • • • -, seront
nuls, et les restes pourront être des nombres de plusieurs



chiffres chacun} mais la proposition démontrée n'en est
pas moins vraie, puisqu'il n'a été fait aucune supposition
sur la grandeur des restes, et que les quotients partiels
<jft, qt,..., qk n'ont pas été supposés non plus avoir des
valeurs particulières. Toutefois, pour que les produits
Qr*T Q r*-ir*-5 Q r i présentent la même régularité, il
faudra remplacer par un zéro chacun des quotients
<7i, «/s,.--? qui sera nul , et effectuer les multiplications
par les restes rk, rk^ , . . . , rl5 comme si c'étaient des nom-
bres d'un seul chiffre chacun.

Par exemple, soit p = 21 : on trouve pour quotients
partiels

o, 4» 1> 6 , Ï , 9 ,

qui forment une période complète, et pour restes corres-
pondants les nombres

10, 16, i3 , 4» !9> !>

ce qui donne les produits rassemblés dans le petit tableau
suivant :

047619 X 1 = 047619
047619X19= 904761
047619 X 4 = 19°476
047619 X i3 = 619047
047619 X 16 = 761CJ04
047619 x 10 = 476190

Si deux ou plusieurs restes consécutifs sont des nom-
bres d'un seul chiffre chacun, on peut former, comme
nous l'avons fait plus haut, un multiplicateur de plusieurs
chiffres jouissant de la propriété demandée (question 87).
Il suffit de faire la somme des valeurs relatives de ces
restes, mais en excluant ceux qui précèdent et ceux qui
suivent.

Exemple. Soit / ; = i 3 ; on trouve, pour quotients
partiels,

•>> 7» 6> 9^ 2> 3,



qui forment une période complète, et pour restes corres-
pondants

io, 9$ 12, 3, 4» M
et en multipliant 076923 par le nombre 341 que forment
les trois derniers restes, on trouve les trois produits par-
tiels

076923
307692

230769
qui jouissent de la propriété demandée.

3°. Il est évident que tout ce qui vient d'être exposé
serait encore vrai, si au lieu de 10* on prenait pour divi-
dende la puissance ak d'un nombre quelconque a, pourvu
que le diviseur p fût premier avec a, que k fût le nombre
des entiers inférieurs et premiers à p, et qu'on écrivît les
nombres en prenant a pour base du système de numé-
ration.

Exemple. Soient p = 5, a = 8 ; si Ton effectue la di-
vision en écrivant les nombres avec les huit caractères
1, 2, 3, 4 > 5, 6, 7, o, on trouve pour quotients par-
tiels

'• 4, 6, 3,
qui forment une période complète, et pour restes cor-
respondants

3, 4, 2, 1.
La multiplication du nombre i463 par 34^1, effectuée
dans le système de numération dont la base est huit,
donne les quatre produits partiels

4
463i

où Ton retrouve la même régularité que dans les exemples
précédents.
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Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques
se trouvent chez M. BACHELIER, libraire, quai des Augustins, n° 55.

NOTIONS DE MÉCANIQUE exigées pour l'admission à l'École
Polytechnique ; ouvrage rédigé d'après le programme
officiel, par M. H. Sonnet, docteur es sciences, inspec-
teur de l'Académie départementale de la Seine, pro-
fesseur adjoint de Mécanique à l'Ecole centrale des
Arts et Manufactures. Paris, I 8 5 I \ in-8°de 199 pages,
4 planches gravées par M. E. Wormser,

C'est le développement complet, ponctuel et fidèle des
matières énoncées dans le programme officiel ; travail qui
répond à un besoin urgent et qui sera promptement
recherché par professeurs et élèves 5 ouvrage exécuté
d'après un plan utile à la technologie, nuisible à l'ensei-
gnement classique. Car, ce plan est fondé sur deux idées
qui sont complètement fausses. La première, c%st de
croire que la Mécanique est comprise dans la science des
machines; c'est le contraire qui est vrai. La théorie des
machines n'est qu'une application particulière de la Méca-
nique. Les lois de la Dynamique régissent la nature en-
tière, tandis que les machines n'effectuent que le travail
très-restreint de l'homme. On s'imagine, et c'est la se-
conde erreur, qu'on a simplifié l'enseignement et qu'on
l'a rendu plus facile. Il est facile de s'apercevoir que les
auteurs de programmes n'ont jamais enseigné dans les col-
lèges, et ne connaissent pas la jeunesse. Les fils de famille,
ayant reçu une éducation littéraire, base de toute éduca-
tion libérale, ne sont pas familiarisés avec les outils, les



instruments, et leurs divers agencements, qu'on rencontre
dans les usines et dans les ateliers : détails fort obscurs
pour des jeunes gens étrangers aux métiers. L'intelligence
juvénile, bien cultivée, est de préférence accessible aux
idées grandes, abstraites, philosophiques. C'est mécon-
naître cette intelligence, l'amoindrir, que de vouloir la
rendre de prime abord pratique, ouvrière. L'École Poly-
technique et les Écoles industrielles n'ont pas le même au-
ditoire, et par conséquent ne peuvent, ne doivent pas avoir
le même enseignement, ni pour le fond, ni pour la forme.
L'oubli de cette distinction est l'origine des malheureux
programmes, fléau pédagogique de notre époque, qui, s'il
durait, abaisserait les études et les ouvrages classiques.
Dans cet ouvrage de Mécanique, Lagrange, Laplace,
Poisson ne sont pasjine seule fois nommés \ ni les couples,
ni leur illustre auteur ne sont mentionnés ; on ne ren-
contre que deux noms de professeurs machinistes. Une
méthode d'enseignement qui amène un tel résultat est
jugée. La responsabilité porte sur les ordonnateurs de la
méthode et non sur l'auteur d'un ouvrage utile (*).

APPENDICE, I851 ; in-8°, pages 4o5-532.
M. Joseph Bertrand, maître de conférences à l'École nor-

male supérieure, a^publié, en i85o, un Traité élémentaire
d'Algèbre (torae IX, page 4^9) 5 s o u s 1« tJtre d'Appen-
dice, le savant auteur joint un complément, faisant suite
au Traité tant pour les chapitres que p&ur la pagination :
on y parle des séries, des suites, du théorème de Descartes,
de la résolution des équations numériques, de la méthode
des substitutions équidistantes, de la théorie des dérivées

(*) M. Gallon, ingcnicur^des mines, vient de publier une Mécanique du
même genre; il en sera rendu compte.



appliquée aux fonctions transcendantes-, en d'autres ter-
mes, on donne les principes du calcul aux différences et
du calcul aux différentielles, sans nommer ces calculs.
Pourquoi ne pas mettre ces deux admirables instruments
ouvertement entre les mains des élèves ? La réponse est
facile. Cette marche étant indiquée par le bon sens, il y a
là une bonne raison pour qu'on ne la suive que le plus
tard possible. Comme nous prenons un grand intérêt aux
succès du jeune professeur, nous croyons devoir l'avertir
que l'esprit de l'ancienne École Polytechnique perce trop
dans ses ouvrages ; ainsi il démontre le beau théorème de

x_l A = e. Soit 5 mais à quoi cela est-il

utile? Comment déduire d'un tel théorème l'épaisseur
d'un tuyau de conduite (*), ne fût-ce que pour des eaux
ménagères ? L'auteur veut encore que les élèves s'exercent
sur cette belle proposition de Gauss : Si dans J(x) = o,
onf{x) est une fonction entière algébrique, on remplace
x par x H- iy, on obtient

?.(*> rJ + 'M*» X) = °>
si l'on pose ensuite

<p(-*>r)~o; -M*».?1) = °>

les deux courbes représentées par ces équations se coupent
orthogonalement. Soitv mais a quoi cela sert-il? Quelle
machine ce théorème met-il en mouvement? De tels pro-
blèmes occasionnent évidemment des pertes de forces vives
intellectuelles.

Au résumé, cet excellent opuscule contient les beaux
travaux des grands maîtres, que l'on a soin, comme de juste,
de ne jamais nommer ; par inadvertance, xm a laissé sub-
sister deux noms : celui de l'auteur çt celui de Descartes ;

(*) Raison donnée par les programmes.



ils disparaîtront sans doute dans une nouvelle édition, qui
ne se fera pas attendre. Puisse le maître des conférences
n'avoir pas irrité le Dieu régnant du jour! le poëte au
vers solitaire a dit :

Le trident de Neptune est le sceptre du monde.

L'Ecole Polytechnique fait partie du monde.

MÉMOIRES SUR LA MÉCANIQUE; par M. le chevalier Du
Buaty capitaine au corps royal du génie; tome I.
Paris, 1821 ; in-4° de 2o3 pages, 1 planche.

La belle expérience de M. Foucault sur le pendule
donne une certaine importance à cet ouvrage, peu ré-
pandu. Le tome I seul a paru et ne renferme que trois
Mémoires, mais il y est fait mention d'un dixième
Mémoire; l'auteur, fils du célèbre hydraulicien, étant
mort, il n'y a pas d'apparence que le reste de l'ouvrage
soit publié. Dans le troisième Mémoire, page 84, on
trouve cette question :

« Un point matériel ou un corps m, attaché par une
» verge d'une longueur donnée à un centre C, et sollicité
» par une force accélératrice constamment dirigée vers
» un centre C , forme ce qu'on appelle un pendule sim-
» pie ; nous supposons ici non-seulement que le centre C
» se meut autour de C, mais encore que le centre C! se
» meut autour d'un troisième centre C'7, et que le centre
» C" se meut autour d'un quatrième centre fixe Cw ; au
» lieu de trois centres mobiles, on pourrait en admettre
» un'nombre quelconque. Nous supposons, de plus, que
» les mouvements uniformes et circulaires de tous ces
» centres s'exécutent dans le même plan et dans le même
» sens. »



Notations :

m Cl zzz r y \J\A ^^ R y G C ^^ R > G •

o> = angle G C C'7

*/ == angle C'C'C'"
w/7 = angle de C'7C'" avec une droite ûxe CWW
i = vitesse angulaire de C autour de C',
V = vitesse angulaire de C'autour de C/7,
i'7 = vitesse angulaire de C'7 autour de C;//,
t = le temps,
«p = angle m CC7,
g = force attractive constante.

L'auteur parvient à cette équation différentielle

d*m Rsin<p

à Torigine du
mouvement,

-4- R'7/'7
sin [
» sin[

(i — i')t]
(page 87),

où

Equation qui n'est intégrable qu'en supposant très-petits
9, 9 H- (« — «') ^, 9 4- (̂ — i") t, de sorte que ces arcs se
confondent avec leurs sinus, et leurs cosinus avec l'unité;
dans ces suppositions, on obtient

== kC sin ( t\/- "4- 0 )

*(i — /') cos w (
4- R'//J sin w 4- R"*'"2 sin(w' 4- w) ;

R — r
— R'7 V"1 C0S(w7 4 - 0)).

C et 0 sont deux constantes à déterminer par les va-

leurs initiales de 9o ? ( " r ) ; la durée d'une oscillation est
\at/o



7r l / ~ } de là Fauteur déduit : i° que la vitesse angulaire

~ du pendule autour de C est périodique -, 2° que l'angle y

n'est pas périodique ; ainsi le rayon CC ne partage en deux
parties égales ni l'amplitude, ni la durée d'une oscillation;
3° que la durée d'une oscillation dépend non-seulement
des vitesses angulaires z, i\ i#//, mais encore des angles
o), a)' à l'origine du mouvement; 4° que Ie pendule ne
peut rester en repos dans la verticale, à moins que Ton
n'ait i" =i' = i = o ou seulement i" = i1 = o, c'est >à-dire
que le pendule ne soit à centres fixes ou à un « seul centre
)) mobile ; donc un pendule à deux centres ou à plusieurs
» centres mobiles, abandonné à lui-même, commence à
» se mouvoir, et Ton peut demander quelle est la direc-
» tion de son mouvement et quelle est l'amplitude de sa
» première oscillation. »

Pour résoudre cette question, l'auteur suppose i" = o ;
ce qui est le cas de la nature ; et nommant <pi l'amplitude
de la première oscillation, on trouve

et i étant plus grand que i', la direction est déterminée par
le signe de cos w : ce résultat s'applique aux pendules qui
oscillent à la surface de la terre dans le plan de l'équa-
teur; on a alors

1 ~ 864oo ' — 365, a5.864oo '

la seconde étant prise pour unité de temps : i étant le
mouvement diurne et i' la projection de la vitesse an-
nuelle sur l'équateur qu'on peut supposer constante pen-
dant un petit nombre de secondes : on suppose aussi
constant le rayon vecteur de l'orbite terrestre projeté sur



q ç ^ et égal à 23578R et R = 6366*95 mètres;
l'angle Wfe&t évidemment l'angle horaire du lieu où est
situé le pendule, le temps étant compté depuis minuit.

La durée d'une oscillation est

— O,o34 — 0,006 cosw

quantité variable, dont le maximum correspond à minuit
et le minimum à midi pour un pendule de t mètre de
longueur; et supposant # = 9 , 7 7 9 8 , le maximum est
1", oo645 et le minimum 1", oo523.

« Les mêmes données étant substituées dans l'expres-
sion de r<fi du déplacement spontané du pendule ̂  on
trouve cet arc égal à om,ooo4353 cosw ou à om,5436 cos a),
on donnant au pendule une longueur de 225 mètres. Or,
quoique le signe de l'angle (pf soit négatif, quand l'angle
horaire est plus grand qu'un angle droit, il est facile de
voir que le déplacement du pendule a toujours lieu vers
l'est, etc. M (page 95).

L'auteur finit ainsi : « Dans le Mémoire sur la limite
)> des durées des oscillations d'un système, après avoir
» donné les formules du mouvement des pendules à une
» latitude quelconque, nous en conclurons que la durée
» des oscillations est indépendante de la position du plan
)> vertical, dans lequel le pendule oscille -, que la gravité
» des corps terrestres est modifiée par le mouvement an-
» nuel, ainsi que par le mouvement diurne, et qu'un
» pendule abandonné à lui-même dans la verticale, et
» dans un lieu quelconque de la terre, se meut spôntané-
» ment. Si ce dernier résultat était vérifié et rendu sen-
» sible par l'expérience, on aurait une nouvelle preuve du
» mouvement de la terre autour du soleil. Cette preuve
» pourrait résulter aussi de l'observation de la marche
» d'une horloge astronomique pendant les différentes



» heures du jour et de la nuit. 11 est facile .̂ ffieffet de
» conclure de ce qu'on a vu plus haut, que le inmivemen t
» d'une horloge, réglée par un pendule de i mètre de lon-
» gueur, est plus rapide à midi qu'à minuit, dans le rap-
» port de i,oo645 à i,oo583 ou dans le rapport de
» 7204,44 a 7200; en sorte que si l'horloge a marqué
» 7200" pendant un certain temps, pris au milieu de la
» nuit, elle marquera 7204" pendant le même temps.
» pris au milieu du jour. En comparant donc l'horloge à
» un garde-temps très-exact, pendant les intervalles de
» onze heures du matin à une heure du soir, et de Onze
» heures du soir à une heure du matin, elle avancera de
» quatre secondes environ, dans le premier de ces inter-
)> valles *, nous supposons l'expérience faite à l'équateur,
» car à une latitude un peu élevée /, les variations dans
» la marche d'une horloge, calculées d'après la formule

_
\g — om,o34 cos'<p — om,oo6 cos / cos w

» qui est celle de la durée d'une oscillation du pendule,
» dont la longueur est r, sont tout à fait insensibles, à
» moins que la longueur r ne soit très-grande. »

Nous voyons, d'après ce qui précède, que Du Buat a
traité la question générale et qu'il a trouvé nécessaire-
ment que l'axe du pendule décrit une surface apparente
gauche dirigée vers Test; résultat confirmé par l'ingé-
nieuse observation de M. Foucault; mais pour démontrer
le mouvement de la terre, Du Buat emploie la durée des
oscillations, ce qui exige à nos latitudes un pendule très-
long, parce que r entre au numérateur. Au résumé, le
pendule offre trois moyens de prouver le mouvement de
la terre : i° la durée des oscillations 5 2° l'amplitude des
oscillations; 3° le déplacement du plan d'oscillation.
Du Buat a indiqué le premier moyen, il a du nécessaire-



ment .^ft^itre le troisième moyen que M. Foucault a
réalisPpFheureusement. Ces expériences réussiraient
beaucoup mieux dans les hautes latitudes, telles que
Stockholm, Tornea, etc. La durée des oscillations variant
avec l'heure du jour, cela ne nécessite-t-il pas, à une
époque d'extrême précision, quelques nouvelles correc-
tions à faire dans les observations du pendule?

Depuis que ceci est écrit, M. Binet a donné une théorie
analytique rentrant dans celle de Du Buat; M. Foucault a
fourni une ingénieuse explication géométrique, de même
que M. Poinsot* Ces considérations, purement géométri-
ques, ne sont pas encore d'une parfaite clarté. (Voir les
Comptes rendus hebdomadaires des séances de VAcadé-
mie des Sciences, tome XXXII, pages 157, 197 et 206.)

Nous venons de recevoir les deux ouvrages suivants,
auxquels nous ferons de nombreux emprunts.
1. MATHEMATISCHE ABHANDLUNGEN. Mémoires de Mathé-

matiques 5 par le docteur Oskar Schlômilch, professeur
de hautes mathématiques à l'École royale technique de
Dresde en Saxe. In-8° de i5o pages.

Voici le contenu :
i°. Mémoire sur la série de Mac-Laurin, On donne

une discussion très-claire, très-détaillée sur le caractère
de convergence, la variable ayant pour valeur un nombre
complexe; ce critérium diffère de celui que M. Cauchy a
donné, qui est quelquefois erroné. Nous parlerons bien-
tôt de ce sujet important qui présente un intérêt de cir-
constance. Tout se déduit de considérations sur la discon-
tinuité des fonctions. L'auteur trouve que la série

Ann, deUathémat., t. X. (Mai I85I . ) I I



n'est convergente que pour une valeur comp^^^fent le
module est moindre que l'unité; lorsque la'^ltySar est
réelle, il faut qu'elle soit comprise entre -4- i et — i.

a°. Sur la série de Bùrmahn. L'auteur déduit de cette
série remarquable, presque inconnue en France, la série
de Lâgrange et encore d'autres, ainsi que plusieurs appli-
cations au retour des suites, au calcul intégral.

3°. Sur les approximations des quadratures. Il s'agit

de la méthode de Laplace pour les évaluations numériques

f[z)dz ( Théorie

analytique des Probabilités, livre I, 2e partie, cha-
pitre III ) : cette méthode est complétée et généralisée.

4°. Sur une intégrale double avec deux fonctions ar-
^X I f{xf j) *fyi avec

J tp x

des applications géométriques.
5°. Sur Vévaluation de la masse pour des densités va-

riables. Applications aux surfaces cylindriques et sphé-
riques.

2 . MlTTHEILDNGEN DER NÀTURFORSCHENDEN GESELLSCHAFT

IN BERN. Communications de la Société des investiga-
teurs de la nature, de Berne (1848, 1849, i85o).

Cette collection renferme des documents précieux pour
l'histoire des sciences, en Suisse, patrie de tant d'illustres
géomètres, naturalistes et physiciens» On y trouve des
Lettres inédites de Haller, de Bonnet (Ch.), de de Saus-
sure, de Bernoulli, de Lambert, etc., etc. Une lettre de de
Saussure, datée de Paris, le 24 avril 1768, fait un grand
éloge de la bonhomie de Jussieu et de Bufibn. Il aime
mieux les savants de Paris que les beaux-esprits qui sont
d'un orgueil insupportable. « Les uns et les antres donnent
» très-peu de temps au cabinet, et sont par conséquent
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; les plaisirs, les femmes, et surtout la

voir les grands et de leur faire la cour,
» absorbent la meilleure partie de leur temps» (nos t n
et n 3 de 1848, page 33). Les choses sont bien changées.
Aujourd'hui nos savants ne quittent pas leurs cabinets et
deviennent très-profonds. Nous avons un spécimen de
cette profondeur dans les célèbres programmes qui ter-
minent si glorieusement la moitié du xixe siècle (*). Nous
insérerons en entier dans nos Annales une Notice auto-
biographique de Bernoulli (Jean I). Tout ce qui se rap-
porte à cette famille prodigieuse, unique dans les fastes du
monde, mérite une haute attention. On lit aussi dans ce
recueil des descriptions de livres rares, entre autres des
Tables logarithmiques de Burgi, retrouvées récemment
à la bibliothèque de Munich, et qui ont été composées
peut-être avant celles de Néper, quoique publiées posté-
rieurement. Nous devons ces richesses littéraires à M. R.
Wolf, secrétaire de la Société depuis 1841, qui enrichit le
recueil d'intéressants travaux scientifiques, parmi lesquels
nous avons déjà fait connaître d'élégantes propriétés balis-
tiques. Directeur de l'observatoire de Berne, M. Wolf
publie les résultats journaliers de ses observations. Nous
répéterons ici ce qui est toujours pour nous un sujet
d'étonnement. Lorsque notre Observatoire national pos-
sède tant d'astronomes pleins de jeunesse, de talent,
d'intelligence, guidés par un chef si diversement célèbre,
pourquoi la France est-elle aujourd'hui le seul grand

( * ) Certes, ce ne sont pas des esprits frivoles qui ont découvert que
l'analyse indéterminée, réliminatiori , lés lieux géométriques, etc., sont
inutiles auj élèves. Grâce à ces découvertes, les questions du grand con-
cours seront désormais puisées dans l'arithmétique de Barème; c'est la
bonne, on y parle de capitaux, d'intérêts, de salaires, etc. ; applications
utiles, comme s'expriment nos intéressants programmes. Quelle magni-
fique gçnérfftkm d'Épftmlnondas, de LéofïiââS, nous promet un si noble
système d'édticstktti !

I J.
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pays civilisé où l'astronomie n'ait pas un j ^ ^ p
Es>ee le temps qui manque? Personne n'osera aire cela.
Que manque-t-il donc? Serait-ce le zèle, que rien ne
remplace et qui remplace tout?

INSTRUCTION POUR LE PEUPLE. Cent Traités sur les connais-
sances les plus indispensables, etc. i vol. in-8°-, 1847.

Le peuple, c'est vous, c'est moi, c'est tout le monde ;
je ne connais pas d'autre peuple. Cette dénomination
comprend des hommes instruits et d'autres qui, n'étant
pas instruits, ont le désir de s'instruire. C'est cette por-
tion du peuple que les cent traités ont en vue; ces genres
d'ouvrages sont aussi de bonnes actions, et dès lors on
n'est pas surpris de voir figurer parmi les collaborateurs
le nom d'un ingénieur distingué. L'arithmétique et l'al-
gèbre, la mécanique, la théorie et l'histoire des machines
à vapeur forment trois traités, qu'on doit à la plume
exercée de M. Léon Lalanne, l'auteur si connu de
Y Abaque ( tome V, page 511) 5 genre de lectures toujours
attrayantes lorsque l'intelligence s'enrichit sans fatigue,
indispensables aux professeurs d'instruction primaire, et
qui ne seront pas infructueusement consultées par les pro-
fesseurs d'enseignement spécial (*).

COURS ÉLÉMENTAIRE DE DESSIN appliqué à l'architecture,
à la sculpture, à la peinture, ainsi qu'à tous les arts
industriels, etc. 5 par Antoine Étex* statuaire, archi-
tecte et peintre. 1 vol. grand in?4° oblong \ prix, 3o fr.
et 5o fr. sur papier de Chine.
Le prospectus se termine ainsi :
« II (Vouvrage) s'adresse à tous ceux qui veulent con-

» naître l'art sous ses trois faces : peinture, sculpture et

(*) L'auteur vient de publier une seconde édition refondue de son
excellent Abaque universel que nous expliquerons prochainement.
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» arch f̂jçcture j aux élèves qui étudient les mathérna-
» tiqueipÉbmme à ceux qui se destinent à n'importe
» quelle carrière! En même temps, c'est un charmant
» album, très-intéressant pour les gens du monde et les
» amateurs. »

RÉSOLUTION NUMÉRIQUE DES ÉQUATIONS TRINOMES,
D'APRÈS M. GAUSS.

\. Le Mémoire de l'illustre analyste porte pour titre :
Bcitrage zur théorie der. algebraischen gleichutigen $
von Cari Friedric Gauss \ Supplément à la Théorie des
équations algébriques. Gottingue, 1849, l v°k ûa-4° de
34 pages. Extrait du tome IV des Mémoires de VAca-
démie royale des Sciences de Gottingue.

Ce travail est divisé en deux parties : la première con-
tient la démonstration du principe fondamental de la
théorie des équations, que l'auteur a donnée en 1799, et
qu'il reproduit sous une nouvelle forme, avec des addi-
tions considérables. Cette démonstration est connue en
France sous le nom de Théorème de M. Cauchy, qui a
donné en effet une grande extension à la théorie de
M. Gauss. C'est le sujet d'une belle thèse de M. Prouhet
(voir Nouvelles Annales, tome I , page 438).

2. La seconde partie, la seule qui va nous occuper, est
consacrée à la résolution des équations numériques de
cette forme

± CX"1 ± fz=z O .

m, n, e, / sont des nombres positifs donnés j m et n
peuvent être quelconques : mais, sans nuire à la généra-
lité, on admet que m et n sont des entiers, premiers
entre eux^Cette forme renferme quatre cas ; mais, comme
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on peut se borner à la recherche des racines positives,
on peut supprimer le cas où tous les signes sont positifs.

Faisons de plus, pour abréger, - — = 1.
. . •••• •• a

Première forme :

Introduisons un angle 6y à prendre dans le premier qua-
drant. A cet effet posons

— = COSa0,—r-=rsin0,

d'où
/cos'0

xm+n=zfsin29, a!»z=zJ , * " = * tang'Ô

Eliminant x, on obtient
sin2w0

__

équation qui sert à déterminer la valeur de 0. En faisant
croître 9 depuis o jusqu'à 90 degrés, on voit que le second
membre de la dernière équation croît depuis o jusqu'à co 5
il existe donc une valeur et une valeur seulement, qui
satisfait à l'équation: après qu'on aura trouvé 0, une quel-
conque des équations (1) donnera les valeurs de x.

Lorsque 6 = 45 degrés, on a X = 2" ; donc, lorsque 1 est
moindre que 2% il faut chercher 6 dans le premier octant,
et pour 1 > a", il faut chercher 9 dans le second octant;
on trouve la valeur de 0 par la méthode indirecte connue.

Deuxième forme :

#"*+* .*_ exm — y __ o #

Posons
/ = sin*d, ex~nz=: cosJ0;

d'où
, , f e /cot*0
x f sin'Ô cos'ô e



l, éliminant x ,

cos2

0 a une valeur réelle et n'en a qu'une seule.
Pour X <^ 2m, il faut chercher 0 dans le premier octant,

et pour X >̂ am, dans le second octant.

Troisième forme :

=: o.
Posons

xn fx~
, == cos20,

e e
d'où

et de là

Le second membre s'annule en faisant 0 = o et en faisant
Q = o,o° ̂  il existe donc un maximum entre o et 90 degrés.
Le logarithme de cette fonction est

2 n log cos 0 -h 2 m log sin 0 ;

la différentielle est
(2/72 cotô — 2/2 tango)dù;

donc le maximum correspond à une valeur ôt telle, que
Ton ait

Ainsi, pendant que 0 croît de o à 0t (moindre que 90 de-
grés ) , la fonction croît et atteint pour 6 = 0j, la plus

grande valeur r—, et décroît de 0t à 90 degrés ou

elle devient nulle,- lorsque 8.= 45°, la fonction est égale à
1 1 . mmnn ^ 1

2 " ^ ; d o n c on a toujours ( w _̂  ff)w4n > . ^ ,



que Ton ait m-=zn\ dans ce cas, la valeur; maximum

devient égale à —— = — .

On conclut de là, lorsque

^ (m -+- «)-+» '

qu'aucune valeur de 0 ne peut satisfaire à l'équation

et, par conséquent, l'équation

n'a aucune racine (positive); et si

cette équation a deux racines. Dans le cas spécial où
mmnn

~~ (/77 -f./2)«+«'

les deux racines de l'équation deviennent égales, et, pour
les trouver, on peut employer à volonté l'une quelconque
des trois équations

n en m -f- n

Cas de deux racines. Si

\ "> . et m <T n, les deux valeurs de ô sont dans le pre-

mier octant ;

\ ^> - j ^ et / w > / i , les deux valeurs de 0 sont dans le

deuxième octant ;

\ <C ~-^~n ' u n e va^eur ^ e ® e s t ^ a n s ' e premier octant et une

dans le deuxième octant ;

\ z=. ^ j - ^ 5 une valeur de 0 est 45 degrés, et Fautre est dans le

même octant que 0,.



On conclut facilement de l'analyse précédente des trois
formes, que l'équation trinôme ne peut avoir plus de
trois racines réelles, lorsque m et n n'ont pas de commun
diviseur ; ce qu'on sait aussi d'après d'autres principes.

3. Pour résoudre l'équation qui donne la valeur de 9U

on jpeut se servir des Tables de logarithmes trigonomé-
triques; mais M. Gauss emploie des Tables auxiliaires
extrêmement commodes, qu'il a inventées en 1810, et
qui, très-répandues aujourd'hui en Allemagne et en An-
gleterre , sont encore inconnues en France, même de nos
calculateurs de profession. Nous en parlerons très-inces-
samment 5 nous ne serions pas compris si nous rappor-
tions aujourd'hui les calculs de M. Gauss, qu'il applique
à la résolution de l'équation de la première forme

x1 -+- 28 x4 — 480 = 0»
où

k ^= ' .08638 ,5 .
On a

A < 8 ; donc Ô<45°.
On trouve

x= 1,922884»;

c'est la seule valeur positive.

Racines négatives.

Faisant x = — y, il vient

équatiqn de la troisième forme ; on a

1 __ 823543 77 _ 823543

- > 27 et

Ainsi Ton a le troisième cas, et il existe deux racine»; on



trouve
r = 3,4580892, j=r

Racines imaginaires.

4. Pour plus de généralité, on suppose que les coeffi-
cients sont des nombres complexes, et l'équation trinôme
prend cette forme

(X) V4"" 4- e(cose 4- i sine)xm -j-y^coscp -f- i sin<p) = 0.

On admet encore que m et n sont premiers entre eux 5
e et y sont des nombres positifs. Si le coefficient de xm est
réel, alors on a

e = o , ou e r= 18o° ;

de même, si la quantité toute connue est réelle, on a

(p = o, ou <p = 1800 :

nous donnons aux racines la forme connue

r(cosp -f- i sinp).

Ordinairement on suppose que r est positif; mais pour
notre but, il est plus avantageux de ne pas admettre cette
supposition, mais d'admettre que p est compris entre o et
180 degrés. Lorsque les coefficients de l'équation (X) sont
réels j le nombre de valeurs de p se réduit à moitié, car
une des valeurs étant comprise entre o et 90 degrés, il
faut prendre une autre racine 1800 — p, et remplacer
/* par — r ; à chaque racine t-+-îu correspond une autre
racine t— iu.

5. Divisant l'équation (X) par jrrn"*"n, on obtient

1 + e( cos s + i sin e) jr~n 4- y(cos <p 4- * sin )̂ar~m~n = o ;

remplaçant x par sa valeur r(cosp -f- i sinp), on a

1 -h er~n[co$(np — E) — / sin(np — e)]

{cos[(jw-h/ï)p — <p] — i sin [(m-h n)p — <p]j = 0 .



Égalant à zéro, la partie imaginaire, on déduit une va-
leur de rm en fonction de p.

Si Ton divise l'équation (X) successivement par son
deuxième et son troisième terme en opérant comme ci-
dessus, en égalant à zéro la partie imaginaire et réunissant
les résultats, on obtient

(0

e sin( np — (p)

sin (np — e)

n _ esin(mp-+-e —
" ~ " i [ ( wi-4-«)p — cp]

chacune de ces équations est d'ailleurs une conséquence
des deux autres.

Éliminant r entre deux quelconques d'entre elles,
on a

, v sinOT ( m o -4- s — o ) sin" (// p — e )
( 2 ) x = (— i)mJhn—. " / f r \ — ^ ^ - T — ^ - i - j — -

ou

ainsi X est essentiellement positif.
Cette équation détermine les diverses valeurs de p; la

valeur de r, qui correspond à chaque valeur de p, se trouve
au moyen d'une des équations ( i) , de préférence de la
deuxième équation, eu égard à Ja valeur absolue5 toute-
fois, au cas oùm + /i est pair, il faudra encore avoir re-
cours à l'une des deux autres équations pour décider si r
est positif ou négatif.

6. La solution de F équation (2) s'obtient facilement
par voie indirecte ; à quoi peuvent contribuer les considé-
rations suivantes :

i°. Les valeurs de p sont entre o et 180 degrés, et, au



cas où les coefficients sont réels, il suffit de chercher la
moitié des valeurs, celles qui sont comprises entre o et
90 degrés.

20. Dans l'un et dans l'autre cas, il faut sous-diviser
l'intervalle de o à 90 ou à 180 degrés, au moyen des chan-
gements de signe qu'on observe dans les valeurs du second
membre de l'équation (2), lorsque p parcourt toutes ses
valeurs de o à 180 degrés; changements qui s'opèrent évi-
demment lorsque l'un des angles mp-+-z — ç , np — e,
(m -f- n.) p — <p devient divisible par 180 degrés, et alors
cette fonction devient nulle ou infinie. On n'a pas besoin
d'avoir égard aux valeurs négatives, puisque X est essen-
tiellement positif.

7. Cherchons les racines imaginaires de l'équation de
ci-dessus,

x1 -f- 2 8 ^ — 48o = o;
on a

/« = 4, n = 3, £ = 2 8 , f=. 480
et

e = o, ? = 1800.

Les équations (1) deviennent

s 48o sin 7 p
28 sin3p

. 48° s i n 4 P
sin3p

__ 2

l'équation (2) donne

i _ 823543 _ sin77p
* 6750 sin3 3p sin44p

L'équation a trois racines réelles et, par conséquent,
quatre raciues imaginaires. Il faut donc chercher deux
valeurs de p comprises entre o et 90 degrés.

On forme facilement le tableau suivant des diverses



valeurs de la fonction en p, qui établissent des change-
ments de signe,

. 823543 _ 7
7

25°} . 4-O,
45° — 00,
5 i ° | — o,
6o°. . . -h 00,

77°T - °,
900 -4-00;

ainsi les deux valeurs de p sont comprises entre 5i | et
60, et entre 777 et 98. L'auteur trouve pour première
valeur,

et, d'après la seconde équation (r7), on trouve

log sin4p = 9,8891425n (La lettre n désigne que le
compl. log sin 3p =: 0,9193523 nombre est négatif.)

log (—480) = 2,6812412/2

7 logr= 3,4897360
logr= o,4985337,

et
.r =-4- 1,6843i59-+- 2,6637914 *',

et aussi
x = 4- 1,6843i59 — 2,66379141,

et la seconde valeur de p = 86° 19' i3; /, 342

compl. iog sin 3p — o ,0081108 n
log(— 4^o) = 2,6812412 n

7 logr = 2,0943060 n
logr=r 0,2991866/1

Si Ton veut que r soit positif, il suffit d'augmenter p de
180 degrés, et de prendre p •?= 266019' 13 ,̂ 342.



8. Ainsi les sept racines de l'équation

X' -f- 28x 4 — 480 = O

-h 1,9228841
— 2,4580892
-— 2,5778036
-h I , 6 8 4 3 I 5 9 ± 2,66379141
— 0,1278113± 1,9874^34 i

La somme des racines est -f- o, oooooo5 ; ce qui s'accorde
avec la vraie valeur (zéro) autant qu'on peut Fespérer, en
faisant usage des Tables avec sept décimales; cherchant
le logarithme du produit de ces racines, on trouve

2,6812411,

qui s'approche suffisamment du logarithme de 480.

MÉTHODES POUR TROUVER LES VALEURS APPROCHÉES DES
RACINES RÉELLES DES ÉQUATIONS ALGÉBRIQUES.

Nota. L'une de ces méthodes se rapporte aux équations trinômes et
l'autre aux équations générales; elles nous ont été indiquées par.M. Pio-
bert, avec une application à l'équation de M. Gauss traitée dans l'article
précédent; il a bien voulu en permettre la publication.

Première méthode.

X. Soit l'équation

Supposons m > n \ faisant m — n = p, l'équation peut se
mettre sous la forme

or



Et m — p = nyûn SL donc

Résolvant comme une équation du second degré, on ob-
tient

JCn= <

Occupons-nous des racines positives. Si a est une li-
mite supérieure de x> on a évidemment

limite inférieure-, en la substituant dans la valeur de xn,
on obtient une limite supérieure, et ainsi de suite.

2. Équation de Gauss. Soit

x1 -h %8x* — 48o = o.

Il est évident qu'on doit avoir

28**<48o; d'où # < 2,o348;

et même x<^i. L'équation donnée peut prendre la forme

d'où

* = (~i4-+-

Substituant dans f(x) la limite supérieure 2, on a pour
limite inférieure

1,902 O ,
et de là

1,9287 ^>£y I,92l3<^X.

Ces substitutions successives donneraient des valeurs de
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plus en plus approchées*, mais Ton peut accélérer l'opéra-
tion à Faide de cette observation : pour des points situés sur
une droite,, les variations des ordonnées sont constamment
proportionnelles aux variations correspondantes des abs-
cisses ; il en est de même pour de très-petits arcs de
courbe. En d'autres termes, les variations de x et de f (#) ,
pour des limites très-resserrées, sont sensiblement pro-
portionnelles. Or, nous voyons que .r croissant de 1,902 à
1,9287, augmentant ainsi de 0,0267, fx décroît de 1,9287
à 1,9213, ou de 0,0074. Si donc x devient 1,9287 *—£,

alors^(ir) devient 1,92i3-+--7r-<î = 1,9213-h 0,2^7 à\

or Ton doit avoir x = = / ( x ) , ou
1,9287 — £ = 1,9213-4-0,277^;

d'où l'on tire
. 0.0074 ô
$ = ilz= O,Oo58,

1,277
et

x = 1,9287 — o,oo58 = 1,9229.
Cette valeur donne, pour une plus grande approximation,

/ ( * ) = 1,9228798.
Or

1,9229 — 1,9228798 = 0,0000202.

Divisant par i , 277 , on trouve

£ = 0,00001582,
et

x = 1 ^9229 — o, 00001582 = 1,92288418.

Et, continuant à procéder de la même manière, on arrive
à Ta valeur

x ==1,922884i3o35o2,

beaucoup plus approchée que celle de M. Gauss.
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3. Racines négatives. Faisant x ——y, îl •vient

d'où

on doit avoir

^ v d'où j>2,44897-

Le cube de cette quantité étant 14*68775, le radical doit
être plus grand que

0,68775, ou 1 9 6 - ~ ^ > 0,473, j r > 2,4549.

D'un autre côté, 6n doit avoir

y < 2 8 j 4 , ou y3<v/â8, r<3,o368;

substituant/ = 3, f(y) se réduit à y/̂ o*, d'où

On trouve de même avec cette limite supérieure que

^ ne peut descendre au-dessous de 177, et que y est
X •

< 2 , 6 4 , et ensuite on parvient à J < 2 , 6 I . Ainsi les
racines sont comprises entre 2,4549 et 2,61-, ces deux
limites se rapprochant peuPune de l'autre, et toutes deux
rendant /{ j )< / , il convient d'essayer une valeur inter-
médiaire, telle que 2,5 qui donne / ( j ) > J : donc 2,5 est
compris entre deux racines. En'effet,.ces racines sont

2,4580891142 et 2,5778034287.
Ainsi les dernières décimales données par M. Gauss 4Ppnt
trop fortes.

4, Par cette- méthode, les premières approximations
peuvent s'obtenir d'une manière très^expéditive, enem-

Ann. de Maihèmat., t. X. (Mai I 8 5 I . ) 12



ployant la Règle à calcul; les dernières seules exigent
remploi des Tables de logarithmes.

5. Ce procédé s'applique avec succès à beaucoup de
cas; par exemple à l'équation suivante, qu'on rencontre
dans les Éléments d'Algèbre,

gxz — 2^.v7-i-i6x — 0,001=0:

les trois valeurs sont réelles, et deux diffèrent très-peu.
La plus petite racine est donnée rapidement par les ap-
proximations suivantes :

0,001

16
= 0,0000626;

, O,OOI-+- 24 rt2
 a ZKQK -j

a' = — ^ — - — = 0,00000255050,37 ;

0,001
= 0,0000625580936227.

Appliquant ensuite la méthode, on met la proposée sous
la forme,

Sx 16 0,001

3 9 9 ^
d où

On obtient ainsi sans difficulté les deux racines voisines

1,34^4 et i,3242.

Seconde méthode,

6. Dans cette seconde méthode, on fait usage delà propo-
sée non résolue, et l'on emploie les logarithmes et leurs dif-
férences, de manière à pousser très-loin les approxima-
tions par une seule substitution; mais pour cela il faut opé-
rer avec plus de précision qu'on ne le fait ordinairement.
En effet, dans les logarithmes donnés par les Tables, le
septième chiffre n'étant exact qu'à une demi-unité près de
cet ordre, le logarithme de la puissance niime d'un nombre
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peut n'être exact qu'à - unités du septième ordre décimal,

ce qui est insuffisant.
De même la différence de deux logarithmes tabulaires,

consécutifs, peut être en erreur de près d'une unité. Pour
obvier à cet inconvénient, il faut, s'il est trop long de la
calculer par les méthodes connues^ prendre la différence
de deux logarithmes comprenant entre eux celui qu'on
considère, puis la diviser par le nombre de rangs qui les
sépare, et qui, pour plus d'exactitude, doit être égal au
nombre de termes de la série, après lesquels les différences
tabulaires irrégulières reparaissent.

7. Cela posé, prenons l'exemple traité ci-dessus ; on a
trouvé pour valeur approchée de l'inconnue, i ,9229 = a,
substituant cette valeur dans la proposée, elle se réduit
à 4-0,01822. Les différences des logarithmes, prises
comme il a été indiqué, sont, pour les unités du qua-
trième ordre décimal,

225,84 pour a,
1,i345 pour 28 Û%
4,4^5 pour a7.

Si a -H à est substitué dans la proposée à la place de x,
à exprimant aussi des unités du quatrième ordre déci-
mal , cela revient à écrire :

225,84<T , 225,
7 ?L + 4 V7. -, ,?L +4- Vïïr" +
' 4*465 ^ I , I345

d'où
s _ _ 182,2 _

II 50,048.
x = 1,9229 — o, 00001585 = 1,92288415.

Po^r pousser l'approximation plus loin, on substitue
dans la proposée le nombre 1,922884 * • Mais il faut avoir
son logarithme, avec au moins 8 décimales; on le déduit
de celui de 19229= j.it&y*> que Ton peut e»bfe»ir à 20

12.



et même a 61 décimales au moyen des Tables auxiliaires
placées à la suite des Tables de Callet; la proposée devient
égale à

•̂ - o, OOOO34Q I et 3 = —l , o = o, ooo3ô35 ;
^ n5o,o48

d'où
x -=. i ,92288413o35 racine positive.

8. Première racine négative. Le résultat de la substitu-
tion de 2,46, dans l'équation en y* donne — 0,2248,
et l'on en déduit j ^ = 2,458089. Pour approcher da-
vantage, il est nécessaire d'avoir le logarithme de cette
valeur avec une grande exactitude; on le déduit de
244808 = 16. 27.569, et la substitution donne

•+- 0,0000136;
par suite,

176,7 S . 176,7$
0,001

d'où

= 0 , o o n 4 , et y =§=z—-——-
119,02

9. Deuxième racine négative. D'après M. Gauss, cette
racine est 2,57780365 pour pousser plus loin l'approxi-
mation, le logarithme de ce nombre se déduit de celui de
25775 = 25 . IO3I r, la substitution donne

-f- 0,0000234,
et Ton a

168,5<? i68,5 9 _

d'où
5 = —- 0,001713, et y = 2,5778034287.

SUR LES RACINES RÉELLES DES ÉQUATIONS.

1 • THÉORÈME, Soit l'équation (algébrique à coefficients
réels) ordonnée suivant les puissances décroissantes de



• ( i
Vmeonnue

kxP-\- A, xf -+- f

le dernier terme n'est pas nul.
On suppose de plus que p— r et q — r sont premiers

entre eux; cette équation ne peut avoir plus de r -f~ 3 ra-
cines réelles.

Démonstration. Prenons les dérivées successives du pre-
mier membre jusqu'à la dérivée de l'ordre r, et égalons
ces dérivées à zéro $ l'équation dérivée de l'ordre r est de
la forme

- bx9~r -f- c = o.

Cette équation n'a pas plus de trois racines réelles ; donc,
d'après le théorème deBolle, la dérivée qui la précède n'a
pas plus de quatre racines réelles, et, remontant jusqu'à
l'équation donnée, on trouve qu'elle n'admet pas plus de
r -i- 3 racines réelles.

Observation. Si /• et p sont de même parité, il est évi-
dent que l'équation ne peut avoir plus de r -f- 2 racines
réelles.

2. Soient

les trois derniers termes de l'équation ; les trois premiers
termes de l'équation aux racines inverses seront

B3yP -hB2y?-*'—h B,^"^ •+-.. . = o.

Si donc p1 et cf sont premiers entre eux, cette équation ne
peut avoir plus de p — p' -h 3 racines réelles \ cette limite
appartient évidemment aussi à l'équation donnée.

QUESTIONS.

230. Deux polygones quelconques de in côtés sont
équivalents quand leurs côtés ont les mêmes milieux.

(PROUHET.)
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231. La surface d'un polygone de a/z côtés ne change
pas lorsque tftus les sommets de rang pair ou tous les
sommets de rang impair décrivent des droites égales et
parallèles* (PROUHET.)

332. P t étant Faire d'un polygone convexe de n côtés;
P t l'aire d'un polygone ayant pour sommets les milieux
des côtés du premier polygone; P8 Taire d'un polygone
ayant pour sommets les milieux des côtés du second po-
lygone, et ainsi de suite ; on a

P * 2
P , ( ? * ) ( « -

p < — O ^ ' " 4 " 2.3.4.5

2.3.4.5.6.7 -

r. 1.2 ^ 1 2 . 3 4

(PROUHET.)

233. T étant l'aire d'un triangle rectiligne; r et R les
rayons des cercles inscrit et circonscrit $ a, è, c, les trois
côtés : ceux-ci sont racines de l'équation

oT /T2 \

Les quantités a-f-4 — c, a-f-c — fc, i •+- c — « , sont
racines de l'équation

«3 - — «'-f- 4r(4R + r) « — Sr Tt= o.

Si l'on applique à ces équations le théorème deSturm, il

faut, pour la réalité des racines, que l'on ait : i° R ^ ir\



que T ne tombe pas hors des limites

Lorsque R > 2 r et que T est égal à une de ces limites, le
triangle est isocèle; si R = 2r, les deux limites se con-
fondent, T devient égal à ceUe limite, et le triangle
est équilatéral. (C. RÀMTJS, de VUniv* de Copenhague* )

234. Soit l'équation

-+- bm{œ — a2) {x — aA)... (x — a2n) == o ;

& est un nombre positif; m un nombre entier positif ; les
2n—1 différence at-r-a^j a*—a9, « a — ^ . . . ^ ^ . i — a t n

sont positives; les n racines de l'équation sont réelles et
comprises entre at et a s , a3 et a 4 , . . . , a5 et a«....

(RICHELOT.)

235. Résoudre en nombres rationnels l'équation
X*=Jx. (GOLDBACH.)

236. Si x2 -h 2 ay* est un carré^ x* -f- ay* est la somme
de deux carrés.

237. Soit

où n ! désigne le produit 1 .2 .3 . . . n. On a

S« — nt S f t_, -f- « 2 Sn-2 — . . . • + - ( ~ i ) n ~ l «1.-1 S, =

(ARHD-T.)

CORRESPONDANCE.

1. M. Neorouzian, élève ducollége Sainte-Barbe, annonce
et démontre ce théorème : ABC étant un triangle eircon-



scrit à un cercle. A', B', C étant les points de contact, on
a l'inégalité

4 aire. A' B' C < aire ABC.

2. M. le professeur Nievengloski nous a adressé une
solution de la démonstration du théorème de M. Steiner ;
elle ne diffère pas essentiellement de celle de M. Hément
(page 119).

3. M. Achille Deshons, sorti d'une école primaire ru-
rale, maintenant élève de M. Haillecourt au lycée de
Nîmes, et n'ayant que quinze mois d'étude, nous a
adressé deux bonnes solutions d'une question du grand
concours d'élémentaires de i845 et d'une des questions du
grand concours d'élémentaires de i85o.

4. M. Haillecourt rappelle ce moyen mnémonique
donné par Mauduit, pour la résolution des triangles
sphériques rectangles : Tracez un pentagone et écrivez
successivement sur les côtés, en allant dans le même sens,
les cinq quantités a, B, 900—c, 900—&,C; on appli-
que ensuite à chaque côté (considéré comme arc) ce double
principe :

i° cos (un côté) = produit des sinus des côtés opposés.
20 cos (un côté) = produit descotang. des côtés adjacents.

Du reste, Mauduit distribue les cinq éléments autour d'un
triangle, en faisant abstraction de l'angle droit A, dans
cet ordre C, #, B, 900 — c, 900 — b ; C et B sont placés
aux angles (voir Astronomie de Delambre, t. I , p. 204).
C'est à l'obligeance de M. Cailiet, examinateur d'hydro-
graphie, que je dois ce renseignement. [Voir FRÀNCOEUK,

Mathématiques pures ; 4e édition, tome II, page 273.)
5. La Biographie universelle (Michaud) mentionne

l'ouvrage suivant de Ceva (Jean ) : De re nummaria quoad
fieri potuit, geometricè tractata, Mantua, 1711, in-4°.
On désire connaître le contenu de cet ouvrage qui ne
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se trouve pas dans les bibliothèques publiques de Paris.

6. M. J. Murent, de Clermont-Ferrand, nous fait ob-
server que trois des théorèmes énoncés t. IX, p, 281, ont
déjà été démontrés par -M. Page (t. I , p. 65 ) ; et M. Mu-
rent en donne de nouvelles démonstrations directes.

7. M. Edouard Dewulf, élève du lycée de Douai,
classe de M. David, donne le développement de ̂  s*n a«

en écrivant

sina = <&>* = €***.€%..€**;

remplaçant ensuite e1*1, e1"*. . . par les séries connues,
on trouve les formules connues (voir t. I, p. 345)#, c'est
la marche suivie par Bernoulli ( J. ), auteur de ces formules.

Le même élève nous a adressé une solution de la ques-
tion proposée au concours d'admission à l'Ecole Normale,
en 1849; il £"* observer que le théorème de M. Steiner
( t. IX, p. 12) donne une solution simple de ce problème de
trigonométrie, proposé par MM. Briot et Bouquet : On a
une circonférence dont le centre est I ; on mène le dia-
mètre AIB 5 sur ce diamètre, on prend un point C par le-
quel on mène la corde quelconque OCO^ on a

tang \ CIO
0 ' / = constante.

Le même élève trouve que le lieu d'un point sur la
sphère, duquel menant des arcs tangents à deux petits
cercles donnés, le rapport des cosinus de ces arcs étant
donné, est un petit cercle (tome IX, page 364). Dans ce
genre de problème, il est avantageux d'employer les coor-
données sphériques de M. Borgnet (voir t. "VU, p. i4'7')«

Obseruation. On écrit l.ernoulli et non Bernouilli, orthographe vi
qu'on rencontre fréquemment chez les auteurs français.



SUR UNE FORMULE RELATIVE AU CALCUL ( P E R S E SES
DIFFÉRENCES;

PAR M. E. PROUHET.

1. Soit f (x) une fonction algébrique et entière 5
supposons que Ton substitue à la variable n valeurs
en progression arithmétique, depuis x = a jusqu'à
x = a-\-{n— i)h : la somme des résultats sera une
fonction de n que je désignerai par <jp(rc). Nous aurons
donc

Posons de même

( 2 ) *(«)=/'(

11 en résultera

(3) cp

Mais <f(n) est, comme Ton sait, une fonction algébrique
et entière de n : de sorte que l'égalité ( 3 ), qui a lieu pour
une infinité de valeurs de n, puisqu'elle est vraie toutes
les fois que n est entier, doit être identique. Nous pour-
rons donc la différentier par rapport à n, ce qui nous
donnera
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et, en comparant avec (4) »

(6) ?'(n-+- i ) - ? ' ( « ) = A 4 (« + !)

Si maintenant nous changeons successivement, dans
cette égalité, n en » 4 - i , n + a, • • • ? »-+-#, et que
nous ajoutions les résultats, nous aurons

ou bien

( 7 ) v'(n)

Le premier membre de cette égalité est indépendant de A :
il doit donc en être de même du second, mais ce der-
nier est une fonction symétrique de n et de h, et ne peut
être indépendant de k sans l'être de n. 11 se réduit donc
à une constante, et Ton a simplement

ou, suivant les notations usitées,

(F) ±îf(x)=Lxi/'(x) + c.

C'est la formule que nous voulions établir.
2. On tire de (F) , en intégrant,

(I) 2/(*)=A*/2/'(*).d«.+-c/!f

et il n'y a pas d'autre constante à ajouter, puisque le pre-
mier membre doit s'annuler pour n = o.

On voit, par là, que S/*(x) se ramène à S / 7 (x) ; de
même 2 / ' (x) se ramène k%fn (x), et ainsi de suite.

3. Supposons que f(x) soit du degré m \ ajors/"* (x)
sera une constante A, et Ton aura tout d'abord



d'où ion lire successivement, en appliquant la formule (1 ),

,/-(,) = _ 2 X

Bi, B t , . . . , Bm, désignent des constantes dont on dé-
terminera successivement la valeur, à chaque intégration,
en faisant n = i .

4. Proposons-nous maintenant de trouver la somme Sm

des mlèmes puissances de n nombres en progression arith-
métique. On sait que le procédé ordinaire consiste à ex-
primer Sm en fonctions de Sm_i, S,n_2 ? etc. ; mais on n'ar-
rive ainsi au but qu'à l'aide de substitutions pénibles, et
la complication du calcul croit rapidement avec m. Les
formules (F) et (I) vont, au contraire, nous fournir un
procédé d'une extrême simplicité.

Dans le cas particulier dont il s'agit, on a / ( x ) = x"\
f (x) = mxm-~l, et les formules (F) et (I) deviennent

(F) s;n=mASol^-4-Bm,

( I') S» ='mh/Sm_, dn-\-n Bm.

Comme on connaît So = n, on aura, d'après (V),

Stz=hfndn-+- «B, = - 1 «.,
2 2

en déterminant la constante Bt par la condition que le
.̂ econd membre se réduise à a pour n = i. On passera

: la même facilité à S s , S3, etc.
Par exemple, si l'on veut avoir les sommes des puis-



sances semblables des termes de la suite naturelle, on
fera a = 13 A = i , et l'on obtiendra sans peine les résul-
tats suivants :

Se =

S, = '

s,=

s,=

s, •=

Q ——-

3e =

S, =

s,=

s,,=

c
on —

2

î +

ï +
n'

8" +

/29

IO

: — -f-
I I

1 2

n
—j
2

2

W3

2 ~

72*

2

«5

2

n6

h
2

2

n*

2

/21 0

h
2

_ i

2

n
6'

3" ""

1 2

/2&

2

1 2

2/27

T ~

T ""
"F ~
I I « 1 0

1 2

n

1 2 '

« 3

6" H

7/25

75

I O

II«8

B

n

1 2

2/23

H IF
2

t

^ 6

- 35'

20 '

— — _L
2

—— —i

8 H

5«
"SB'

5«2

1 2

etc.

5. La formule démontrée au commencement de cet
article n'est pas nouvelle : elle coïncide avec la suivante,
citée par Lacroix (*),

dlu ^1 du
IÛ"-

(*) Traité des différences et des séries, page 93.



lorsqu'on y feit £kx = i r n^sx et que l'on comprend la

constante dans le symbole \ * ; mais la conséquence immé-

diate à laquelle elle conduit, lorsqu'il s'agit d'une fonc-

tion algébrique et entière, ne paraît pas avoir été re-

marquée.
Au reste, l'utilité de cette formule n'est pas bornée aux

seules fonctions algébriques -, elle permet encore de rame-
ner à un problème de calcul intégral ordinaire la somma-
tion d'une classe très-étendue de fonctions transcendantes.
C'est ce que nous allons montrer en commençant par
quelques cas particuliers.

i°. Soient

la formule donne immédiatement

dy

équation différentielle du premier ordre qui ramène
2ue a r h Hu'eax. Si donc u est une fonction algébrique et
entière de x, alors y dépendra, en dernière analyse, d'une
équation de la forme

— —

qui s'intègre immédiatement.
2°. Soient

jr = Z« sin&r, z = lucosbxy

y{ = 2 u'sin bx, z, = 2 a'Costa:;

on aura, en différentiant deux fois de suite,

dy



( 9 )
et, en posant V = bzx -4-y\ -h ct, *

équation du second ordre qui ramène Hu&ïnbx à
Sa' sin bxet Sa' cos bx. On pourra donc trouver 2 M sin bx,
par une suite de réductions, quand u sera une fonction
algébrique et entière de x.

3°. Soient

y = 2 u e°x sin bx, .&• =;. 2 « £?•• cos ^J?,
j , = 2 « ' ^ x sin^jr, z ,=:

on aura

L'élimination de z entre ces deux équations donnera
une équation du second ordre et fera dépendre y de yt

et de zx.. Il sera donc possible d'obtenir les intégrales de-
mandées , si u est une fonction algébrique et entière de x.

En résumé, le rapprochement des trois résultats qui
précèdent montre qu'on pourra trouver

1 f ( x, sin b&\ cos bx, tax),

lorsque la fonction /sera algébrique et entière.

Toutes ces applications de la formule --7— = V T--7— = V T

ont peut-être été déjà faites; mais comme elles ne se
trouvent pas même indiquées dans le grand Traité de
Lacroix, et à plus forte raison dans les Traités élémen-
taires, j'ai pensé qu'il n'était pas inutile d'en dire ici
quelques mots.
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BIBLIOGRAPHIE.

Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques
fte trouvent chez M. BACHELIER, libraire, quai des Augustins, n° 55.

ÉLÉMENTS DE MÉCANIQUE à l'usage des candidats à l'École
Polytechnique, rédigés d'après le dernier programme
d'admission à cette École; par M. Callon, ingénieur
ordinaire des Mines, professeur suppléant du cours
d'exploitation et de mécanique à l'École nationale des
Mines de Paris; avec deux planches. Paris, i85i;
in-8° de 199 pages.

A aucune époque de notre histoire, la lenteur n'a été
une vertu éminemment française; mais depuis l'établis-
sement des chemins de fer, cette passion de la vitesse
semble avoir augmenté et se manifeste en des occasions
où Ton ne s'y attendait guère. Ainsi, dans les fameux
programmes, on lit en toutes lettres, qu'il faut démon-
trer certains théorèmes, exposer certaines théories rapi-
dement. Cet adverbe est un peu vague. On peut atteindre
à plus de précision, à plus d'exactitude. Voici comment.
On sait qu'aujourd'hui les successeurs de Lagrange, de
Monge, de Fourier, etc , sont placés sous la surveillance
de certains capitaines. C'est la position que des enfants
de l'École Polytechnique ont faite à leur mère. Inspiré
par un si bon exemple, désirant aussi me montrer bon fils,
élève reconnaissant envers mes anciens maîtres, je veux
contribuer pour ma part à discipliner leurs remplaçants. A
cet effet, je propose de placer dans toutes les classes de

le des espèces de chronomètres. Chaque théorème,
ue théorie, chaque question, aura son coefficient chro-

nométrique, comme on en voit aux morceaux de musique,
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réglés sur l'instrument de Mekel ; le capitaine surveillant,
le regard fixé sur le coefficient du jour, pourra commander
au professeur de ralentir ou de hâter sa démonstration,
pour que la leçon s'exécute avec la ponctualité militaire.
Nous recommandons cette idée, encore imparfaite, à nos
professeurs machinistes \ nous pensons, comme eux, qu'il
faut réduire science, professeurs, examinateurs, élèves, à
l'état de machines ; alors nous toucherons à la perfection
vers laquelle d'ailleurs nous marchons rapidement.

Il paraît que ces dispositions chrononiétriques com-
mencent à se répandre. Ainsi M. Cal Ion a soin de nous
apprendre qu'il a mis trente-cinq jours à composer cette
Mécanique, et cela malgré de nombreuses occupations
professionnelles. L'auteur s'excuse d'avoir mis un temps si
court *, n'est-il pas trop long? Désormais, rien ne se fera
plus vite, plus facilement qu'un traité élémentaire. On
prend le programme article par article ; on amplifie, on
développe, on souffle dedans, et Ton obtient un volume.

Tout ouvrage classique ne sera qu'un programme souf-
flé et analogue à certaine composition culinaire de même
nom. Nous posséderons bientôt une algèbre soufflée, des
arithmétiques soufflées, des géométries soufflées5 enfin
toute une mathématique soufflée ; il suffira d'en faire sortir
l'air, pour qu'elle s'aplatisse en programme. Quel im-
mense avantage! comme cela facilite la besogne de la
critique ! L * auteur a satisfait aux conditions du pro-
gramme, phrase stéréotypée, d'une application omnibus.
Ces conditions sont-elles bonnes? Hélas, non. Vouloir
confisquer toute la mécanique au bénéfice des machines
est une entreprise funeste, sous le point de vue philoso-
phique et pédagogique. La mécanique rationnelle n'admet
que la vitesse* notion que la nature donne à tout le monde,:
tandis que la mécanique-machine admet la. force, la &$%?*
tesse, le travail élémentaire, trois êtres sut'generis, dont

Ann. de Mathémat., t. X. (Mai i85i.) *3
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chacun a son théot^me de composition à part. lue.travail
élémentaire n'est pas une idée simple, comme le pré-
tendent nos machinistes; c'est au contraire une idée com-
plexe , dérivée, une conception scientifique que la nature
n'inspire pas d'instinct. Nous possédons maintenant deux
ouvrages de mécanique, composés d'après le nouveau
plan, par MM. Sonnet et Callon, deux hommes de mé-
rite , .accoutumés au professorat. Ces ouvrages sont plus
difficiles, moins compréhensibles pour les élèves, que les
Éléments de M. Poinsot. Cela tient non au mode d'exé-
cution , mais aux vices du plan, qu'on ne peut reprocher
aux auteurs, puisque ce plan est militairement com-
mandé. L'Université mathématique est entrée dans les
attributions du ministère de la Guerre.

L'ouvrage de M. Callon, exécuté d'urgence, très à la
hâte, n'est qu'un travail provisoire qui a besoin d'une
sévère révision pour la rédaction, l'exposition et la dispo-
sition des matières, révision que le savant auteur est,
mieux que personne, en état de réaliser.

Si Ton faisait entrer dans le texte de la Statique citée
quelques notions de physique moléculaire et les théo-
rèmes de rotation que l'illustre auteur a consignés dans
des Mémoires isolés, en y joignant les procédés dynamo-
métriques qui donnent la quantité de travail de Coriolis,
on aurait le meilleur traité élémentaire de mécanique
qu'on puisse offrir à la jeunesse libéralement studieuse de
nos lycées. Une étude est libérale lorsqu'elle a pour but
la recherche du vraij l'utilité intellectuelle; tandis qu'une
étude qui ne s'applique qu'à la recherche de l'utilité direc-
tement matérielle est une étude servïle. Il est fort singulier
qu'on ait attendu que nous fussions en république, pour
nous soumettre à un enseignement servile! H y a tant

singularités de ce genre î



ANNONCE.

APPLICATION DE L'ANALYSE A LA GÉOMÉTRIE; par

G. Monge. Cinquième édition^ revue , corrigée et
annotée par M. J. Liouville, Membre de l'Institut
(Académie dès Sciences) et du Bureau des Longitudes.
Volume in-4° (638 pages), imprime M^ carré superfin
des Vosges, avec le portrait de MÉpfes et 5 plan-
ches; 1849. Pa ris, Bachelier, imprimeur-libraire.
(36 francs.)

Les livres se multiplient avec une stérile abondance -, les
ouvrages deviennent d'une excessive rareté. Heureux lors-
qu'on fait revivre d'anciens ouvrages-, c'est une nouvelle
obligation que le public géomètre devra au célèbre acadé-
micien. Le volume qu'il édite renferme deux chefs-d'œuvre
sur les surfaces, l'un de Monge, chef-d'œuvre depuis long-
temps épuisé etqu'on ne pouvait consulter que très-diffici-
lement; l'autre est un Mémoire latin de M. Gauss, très-
récent , peu connu en France, et qu'on ne saurait trop
répandre (* ) : le tout est enrichi de sept Notes (en^o pages)
très-précieuses. La première renferme un beau travail
inédit de M. Serret, sur les courbes à double courbure, et
divers théorèmes que nous devons à MM. Bertrand, Bon-
net, Puiseux. Les lignes géodésiques, les tracés dits géo-
graphiques et la construction des cordes vibrantes sont
traités avec cette lucidité qui caractérise le beau talent
du savant éditeur. Nous donnerons un extrait étendu de
cette importante production, véritable exposition de la

(*) On prépare une traduction qui paraîtra dans les Nouvelles Annales.

3
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haute induMrie géométrique, où chaque mathématicien,
digne delâ^iiçni, voudra faire des acquisitions.

Nous § apprendrons rien de nouveau à nos lecteurs en
faisant ressortir les soins, la correction, l'élégance typo-
graphique et graphique (*) ; mais on regrette qu'on n'ait
pas confié aux mêmes presses le monument national élevé
à la gloire de Laplace. Puisse-t-on y avoir recours pour
Fermât, dont la réimpression, ordonnée législativement
en i843, n'est pas encore commencée en. I 8 5 I .

On dit qu'on publiera les Notes sw* Diophante sans le
texte ; c'est une jnesquinerie. La grande nation doit tout
faire grandemém; <ainsi l'entendait Louis le Grand, que
je suis toujours tenté de saluer en passant sur la place des
Victoires, ne fût-ce que pour avoir doté mon pays d'un
observatoire et, mieux encore, d'un Cassini.

(O. TERQUEM.)

RECTIFICATION AU SUJET DU THÉORÈME TRIANGULAIRE »E
FONTAINE;

PAE M. L'ABBÉ LECOINTE,
Professeur au séminaire de Vais.

Le théorème triangulaire de Fontaine, tel qu'il se
trouve énoncé dans ces Nouvelles. Annales (tome V,
page i54 , et tome VI, page 71), m'a semblé inexact 5
aussi j'ai cru devoir en rectifier l'énoncé de la manière
suivante :

Un point O, situé dans le plan d'un quadrilatère

(*) M. Bailleul, prote de l'imprimerie de M. Bachelier, a obtenu la
Médaille d'Argent a l'Exposition de 1849; tous les géomètres applaudiront
à cette honorable distinction, si bien méritée.



ABCD, étant considéré comme le sommet
triangles ayant pour bases les côtés et lies | |
quadrilatère, le produit des aires des triangles qui ont
pour bases les diagonales est égal au produit des triangles
qui ont pour bases deux côtés opposés, plus le produit
des triangles qui ont pour bases les deux autres côtés, si
le point O est situé hors du quadrilatère, et si, en même
temps, aucun des sommets du quadrilatère n'est situé
dans l'intérieur du triangle formé par ce point O et les
deux extrémités de F-une quelconque des tliagonales, ou
bien moins ce même produit dans tous rapKutres cas.

"Du reste, l'inexactitude de l'énoncé de ce théorème,
tel qu'il se trouve donné aux endroits déjà cités de ces
Nouvelles Annales, peut facilement être mise en évi-
dence eh supposant le point O situé hors du quadrilatère
et sur le prolongement de l'une des diagonales ; car, dans
ce cas, on devrait avoir

OAB X OCD -f- OBC X OAD = OAC X OBD,

et comme l'un des triangles OAC, OBD est nul, on aurait

OAB X OCD -f- OBC X OAD = o;

ce qui ne peut être. Donc, etc.

THÉORÈME SUR LA SURFACE D'ÉLASTICITÉ,
PAR M. STREBOR.

Étant donné un ellipsoïde (A) ayant pour équation

et une surface d'élasticité (B) ayant pour équation

zxy = bac7 -\--acy* -f- abz\



(A) qui est déterminée par unhyper-
^ ^ c a l quelconque (H) (ou Faire d'une ligne

de couliraMf, sera équivalente à la partie de la surface (B)
déterminéepar le cône asymptotique de l'hyperboloïde (H)

CALCUL DE 7i AVEC 208 DÉCIMALES.

Dans les Transactions philosophiques sfe 1841> M. Ru-
therford a donné la valeur de 7r avec 208 décimales \ les
i52 premières1 décimales sont les mêmes que celles qui
ont été calculées par M. Dahse [voir tome IX, page 12),
mais les 56 dernières décimales diffèrent. Voici ces 56 dé-
cimales , d'après M. Rutherford :

48473 78139 2o386 3383o 21574 73996 00825 g3i25
91294 oi832 8o65i 744.

Le premier groupe 48473 correspond au groupe 4 8 m
de M. Dahse; ainsi l'exactitude des i52 premières déci-
males est contrôlée.

Observation. — Nous devons ce renseignement à l'o-
bligeance de M. Prouhet.

SOLUTION DE LA QUESTION 1 9 6
(Toir t. VII, p. 448);

PAR M. E. PROUHET.

L'énoncé doit être rectifié et complété comme il suit :
S,n désignant la somme des puissances miemes des ter-

mes de la suite des nombres naturels de o à n, on aura,
si m est impair et plus grand que 1,



en posant n (n •+- i) = u , et 9 désignant u
entière.

A quoi j'ajouterai que si m «est impair, ont

Démonstration. Le théorème de M. Jacobi se vérifie
directement pour m = 3 , 5, 7 : il suffira donc de faire
voiT que, s'il est vrai jusqu'à un certain nombre impair,
il le sera encore pour le nombre impair suivant.

Mais il nous faut auparavant établir une relation entre
les sommes dont l'indice est de même parité;

On sait que pour une progression-quelconque, dont
a et l sont les termes extrêmes et h la raison, on a la
formule

(P) C~ ASW-., 4- C" A*S»., . + . . . . + . ( £ _ , A—» S, •+- nh"=z [t + h)" - am.

Si Ton change a, / , h respectivement en / , a , — h, ce
qui revient à prendre les termes de la progression dans un
autre ordre, St, S2, etc., conserveront la même valeur, et
l'on aura

— (f àS,n_, -4- C^JSm_2 -4-. . . i C ^ ^ - ' S , Zp nh» = (a — h)m - /«;

d'où, en ajoutant cette formule à (P) et divisant par 2,

(R) C>S m

ce qui est la relation cherchée.
Si maintenant on suppose m impair, a = 1, A = 1,

/ = n, cette relation devient

C2 Sm_2 4- C4 Sm_4 H- • • -H Cm_, S, = ?

ou

(N) C2 Sw_2 -H C4Sw ,̂ •+. . . 4- C^3S3 = ~ ,
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tu secondmembre le termeC^S,=-

mx abréger,

K = ( / ? - f - i ) " — i — n m — m n (n-+- i ) .

On voit que K s'annule pour n = o et pour n = — i,
et qu'il en est de même de sa dérivée

m(n -J- i)m-' — mrf1^ — w ( 2 « + i ) ;

donc K est divisible par n% et par (n -+- i)*.
Maintenant de M = n (n -+- i) on tire

ce qui réduit K à

et, comme m a été supposé impair, on voit que les radi-
caux disparaîtront et que K se réduira à une fonction ra-
tionnelle et entière de M.

L'égalité (N) pourra donc se mettre sous la forme

d'où Ton tirera évidemment, pour S,n_2, une valeur de la
forme u* <p (a), si S8, S5. . . , Sm_4 sont de cette forme.

Le théorème relatif au cas de m pair peut se démontrer
d'une manière analogue, ou mieux encore au moyen de la
relation

conséquence de la formule (F'), donnée plus haut,
page 188, et du théorème précédent, d'après lequel S'ap+,
ne peut évidemment renfermer de terme indépendant
de n.
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CONCOURS D AGRÉGATION AUX LYCÉES, ANNÉB fg51 ;
PAR M. DIEU,

Agrégé, docteur es sciences.

COMPOSITION D ANALYSE.

Déterminer la courbe dont un arc de longueur layant
ses extrémités sur deux droites données, parallèles à
Vaxe des x, soit tel, que le trapèze limité par cet arc,
les ordonnées de ses extrémités et Vaxe des x, engendre
un volume maximum en tournant autour de cet axe.

Démontrer que cette courbe peut être décrite par le
centre d'une hyperbole équilatère qui roulerait sans
glisser sur l'axe des x.

Nous désignerons par M, M' les droites données, et
par A, B les extrémités de l'arc cherché.

Soient, en outre,
Xi, x2 les abscisses inconnues de À, B 5
yx, yi les ordonnées connues de ces points ;

s la longueur de l'arc de la courbe pris à partir
d'un point situé au delà de A par rapport à
B, et s'étendant dans le sens de A vers B
jusqu'au point (#, y).

xx peut être prise arbitrairement, et nous supposerons

Le volume dont il s'agit est représenté, d'après celay

par

et Ton doit avoir
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ainsi (règle d'Euler) la question revient à la détermi-
nation de la courbe qui satisfait aux conditions relatives
aux point» A, B, et pour laquelle l'intégrale

(I)

est un maximum, X étant une constante qui dépend de
l'équation (i).

On a

^.dtx-hQ.
ds ds
dx

et

car âXi, âjt et ôys sont nuls $ donc la variation de l'in-
tégrale (I) est représentée par

Pour que cette variation soit nulle, ce qui est la condi-
tion commune aux maxima et minima de l'intégrale ( I ) ,
il faut que

(*) Le mode de calcul employé ici a l'avantage délaisser le choix entre
deux équations, dont l'une est immédiatement intégrable.



et cela suffit, car l'équation (3) , qui est immédiatement
intégrable, ne diffère pas essentiellement de celle qu'on
formerait en égalant aussi à zéro le coefficient de <?y.

L'intégrale de l'équation (3) est

mais il faut faire C = o , afin que cette intégrale soit,

d'après l'équation (a) , vérifiée par les valeurs dey et de

—, relatives au point 6; ona donc seulement
Cl S

(4) rJ
En remplaçant dans cette équation — par

ds

" t î n n *

puis résolvant par rapport à— i on trouve

[0) dx-— y2

Les courbes qui satisfont à l'équation (5) sont de l'es-
pèce de celles qu'on nomme courbes élastiques ou lin-
tèaires (*) .

Il. est facile d'en reconnaître la forme générale qui ne
dépend pas de la valeur de 1, car on aurait évidemment
des courbes semblables entre elles si l'on donnait diffé-
rentes valeurs à cette constante, que l'on peut d'ailleurs
regarder comme positive.

On voit d'abord que, pour ne pas créer de solution de
continuité, on doit alternativement prendre H- et — au
second membre de l'équation ( 5 ) , en changeant de signe

lorsque y passe par une valeur qui rend -~ nulle.

(*) Théorie des fonctions, etc., par M. Cournot, livre V, page 144 »
Cours d'analyse, par M. Duhamel, 2e partie, page 258.



x allant en croissant, si Ton prend premièrement le

signe -f-> y doit croître depuis zéro jusqu'à fâ.9 car ~ est

positive ; la courbe a donc un arc tel que CD, louché en
C par une perpendiculaire, en D par une parallèle à l'axe
J dy

des x, et concave vers cet axe, car — est oo pour y = o,
nulle pour y = fa, et diminue constamment de Fun à
Pautre. Le point D est un point maximum, car on doit

prendre le signe — au delà, et ~- change ainsi de signe.

Avec le signe —, y doit décroître de fa à zéro, et l'on a
Tare DCi, qui est symétrique de DC par rapport à l'or-
donnée DP, puisque -~ a des valeurs égales et de signes

contraires, sur ces deux arcs, pour la même valeur dey.
En continuant de prendre — jusqu'à ce que y = — fa,
puis en prenant -h jusqu'à y = o, on a au-dessous de
l'axe des x, l'arc Ct D, C2 = CDCt.

Enfin, la courbe se compose d'une infinité de parties
telles que CDCt Dj C2, se raccordant avec celle-là et entre
elles, comme DCj se raccorde au point Cj avec CJDJ.

Si Ton changeait de signe dans l'équation (5) , non-



seulement quand y passe par une des valeurs -f- ^1 ou
— \/ï, mais encore quand y passe par zéro, la courbe
qu'on aurait différerait de celle que nous venons de dé-
crire , en ce que les parties placées comme Ct D t C2 se
trouveraient du côté des y positives ; elle présenterait donc
des rebroussements, au lieu d'inflexions, en C, Ci, etc.,
et offrirait de l'analogie avec la cycloïde au lieu d'en
offrir avec la sinusoïde (*).

Les points d'inflexion C, Cn* etc., de la courbe
CDCjDt,... sont des centres de cette courbe.

On peut remarquer encore que le rayon de courbure
est inversement proportionnel à l'ordonnée. En effet,
l'équation (5) donne

et, par conséquent,

dx7 dx

, ds \
donc, comme -7- = — -> on a

dx r

Kdx) ' dx* ~ ~ 2 / v ;*

II faut chercher maintenant à déterminer X. Cette con-

( * ) Toutes les fois que l'on connaît la tangente trigonométrique de
l'angle que la tangente à une courbe fait avec un des axes, en fonction de
la coordonnée qui se compte sur cet axe ou même d'une autre variable,, la
discussion de la courbe ne présente pas de difficulté réelle. La discussion
des courbes du second degré suggère aux commençants l'idée qu'il faut
avoir y en fonction de x pour pouvoir reconnaître la plupart des pro-
priétés d'une courbe, et cette idée se maintient longtemps ; si l'on disait,
dans les cours, quelque chose des courbes du troisième degré, il n'en
serait pas ainsi.

(**) Fo/VlaNotel.



stante pouvant être regardée comme positive, nous ferons

l = a2.

En élevant au carré les deux membres de l'équation (4) >

remplaçant X par a% ( — J par i — [j] ' e t résolvant

par rapport à ds, on obtient

que l'on ramène à
!_ du

en posant
j = a ff.

D'après cela, l 'équation (i) devient

le signe supérieur devant la seconde intégrale se rappor-
tant aux cas dans lesquels l'arc AB coupe M7 entre A et B,
et le signe inférieur aux autres.

On voit immédiatement, quand on prend le signe +
devant la seconde intégrale, que l'on ne peut avoir plus
d'une valeur de a ;• car les deux intégrales croissent avec a.
Il n'est pas aussi facile de constater le même fait, quand
on prend le signe — 5 cependant si l'équation fournissait,
avec ce signe, plusieurs valeurs de a plus grandes
on devrait avoir pour toutes ces valeurs



par le développement des intégrales en .séries conver-
gentes. Or cela est impossible $ car on tombe sur une

- J , à une seule racine positive,

quel que soit le rang du terme auquel on s'arrête. Donc
l'équation (6) ne donnera pas, en prenant —devant la
seconde intégrale, plus d'une valeur de çr. supérieure

On peut supposer que le point B varie sur M' entre
deux positions extrêmes, telles que, pour chaque position
intermédiaire, il y ait une courbe de longueur / , dont
Téquation se déduirait de l'équation (5) par le change-
ment de y9 en y* — C, et pour laquelle le volume engen-
dré par le trapèze serait un maximum. Or, on demande
le maximum de ces maxima, qu'il est permis de con-
sidérer comme les valeurs successives d'une fonction
de x2.

Le calcul ne doit pas conduire plutôt à un maximum
qu'à un minimum. Mais la fonction de x2 dont il s'agit
est évidemment très-petite lorsque x^ diffère très-peu
de Xi, ce qui est possible; et, par conséquent, elle doit
commencer par croître. Donc, si l'équation (6) ne fournit
qu'une valeur de a plus grande quey8, celle du volume qui
y répondra sera un maximum. Et si cette équation fournit
deux valeurs de a qui satisfassent à la condition a^> y\,
l'une donnera un maximum, et l'autre un minimum.

Soit v le volume-, on a, d'après l'équation (5),

le même signe devant être pris devant la seconde inté-
grale que dans l'équation (6).



On trouve facilement que

Ç fdy _ y -j-

fa-y
et en posant

dy

y = a. cos if,

on a
Ç dy _ _ • _ ! _ Ç df .

donc, il vient

7« v/a* — r t ± ra ^a4 — J Î[[ "1

j

<p± et 92 désignant les plus petits arcs positifs qui aient ~

et — pour cosinus.
a r

Enfin cette équation prend la forme

*— y\ 3=-y* y/a4~y\

par la notation des fonctions elliptiques (*).
Lorsque a aura deux valeurs, la plus grande valeur de v

sera le maximum, et Fautre sera le minimum (**).
Afin de démontrer le théorème qui forme la seconde

partie de la question, nous chercherons l'équation de la

( *) On trouvera dans le Traité de M. Cournot, au chapitre déjà cité, les
expressions de x et de s en fonction de <p.

{**) Un maximum d'une fonction peut être inférieur à un minimum j
mais cela ri*arrive que s'il y a entre eux un minimum et un maximum.



courbe décrite par le centre d'une hyperbole équilatère
roulant sur Taxe des x.

Soient :
2 a la longueur de ses axes ;
F, F'etU ses foyers et son centre, lorsqu'elle touche

Ox en M;
y^j'ijn l e s ordonnées de F, F', U; et
MF = r et

On a
(0

• pufeque U est le milieu de FF' 5

(2) r / = ~«2,

par une propriété connue de l'hyperbole -,
£ _ r

S* '
(3)

2.<z — r

par les triangles semblables PFM et F F'M;

Y

Ann. de Mathémut., U X. (Juin I 8 5 I . )



et lç triangle FMF' fournit, d'après le théorème sur
les médianes,

d'où Ton tire

(4)

en observant que UF = av /2, et que le triangle MUP
donne

MU = ± - £ 5 .

En multipliant membre à membre les équations (2)
et (3), on obtient

r— la

et l'élimination de y1 entre les équations (1) et (3) con-
duit à

En remplaçant y par cette valeur dans l'équation pré-
cédente , on trouve

(5) r ( r _ a a ) = f l . ,

et les équations (4) et (5) donnent

de laquelle on tire

suppression faite de l'indice de y.
Lorsqu'une courbe est décrite de la manière indiquée,

la droite qui joint une position quelconque du point gêné-



rateur à celui où la courbe roulante touche la ligne file
est toujours normale à la première courbe (*) ^ donc f si
l'on représente par x l'abscisse du point U, dont l'ordon-
née est maintenant désignée parj^, et par s l'arc du lieu
géométrique du centre de l'hyperbole compris entre un
point quelconque de ce lieu géométrique et le point
(x, y), on a

— = ± sin 8
ds r

Cette équation et la précédente donnent enfin pour la
courbe décrite par le centre de l'hyperbole, l'équation

qui ne diffère de l'équation (4) de la première partie que
par le changement de 1 en ±a%\ et cela démontre suffi-
samment le théorème en question.

L'hyperbole équilatère pour laquelle a= DP {fig. i) ,
ayant son centre en C sur Ox, et étant placée de manière
que l'asymptote de la branche SH coïncide avec cet axe ; à
mesure que, par le mouvement de cette courbe, le point
de contact se rapprochera de P, le centre U s'élèvera au-
dessus de Ox, et il en sera à la distance maxima DP,
lorsque l'hyperbole touchera Ox en P par son sommet S
(ainsi CP est .]$ différence entre l'asymptote CX et SH) \
le mouvemenfllbntmuant dans le même sens, l'hyperbole
touchera suecessivendent Ox on son j>rolongemeïrÊ par
tous les points de la branche SK, et le centre U aura
décrit l'arc DC, lorsque l'asymptote de SK sera venue se
placer sur Ox. Le sens du mouvement changeant alors,
la partie K/S'H'de l'hyperbole touchera successivement

(*•} Voir la Note IL



Ox par tous ses points de K' vers H', et le centre U dé-
crira au-dessous de Taxe des x l'arc QD^Cs, etc., etc.

Note I. On trouve l'équation différentielle des courbes
élastiques, en cherchant la courbe dont le rayon de cour-
bure est inversement proportionnel à l'ordonnée 5 ainsi,
cette propriété est caractéristique.

En effet, on peut prendre

pour l'équation de ce problème, — étant une ligne don-
V2

née au carré de laquelle le rectangle du rayon et de For-
donnée doit être constamment équivalent.

Si Ton pose — = a/, cette équation devient

dx'

et l'on a, en intégrant de part et d'autre,

|3 étant une arbitraire. . ^
Enfin y en résolvant cette dernière équation par rap-

, , dx
port a x — —y on ar dy

dy ^TZ^P^ff'

Note II. Soient A A' une courbe tracée dans un plan,
BB' une courbe donnée qui roule sans glisser dans ce plan
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sur À A', et M un point qui suive le mouvement de BBrde
manière que ses distances sf deux points déterminés de
cette courbe ne varient pas.

Supposons qu'on ait marqué sur A A' des points
at, a%,..., an, et sur BB' les points hx, J 2 , . . M bn qui
viendront successivement coïncider avec ceux-là5 puis,
que des points (a) comme centres, avec des rayons égaux
à è4M, &2M,. . . , &reM, on ait décrit des circonférences.
Ces circonférences formeront un polygone curviligne,
dont le contour sera nécessairement coupé en des points
mx, m s , . • . , /ran par le lieu géométrique de M. Si Ton
prend sur A A' de nouveaux points entre <24 et «8 , at et
a3, etc. y en conservant ceux-ci, on aura de même un
second polygone avec dès points intermédiaires entre les
points [m), et ainsi de suite.

Or la limite de ces polygones est évidemment un arc
mxmn de la courbe décrite par le point M, et les lignes
telles que «t/w,, a*m%, etc., sont toutes normales aux
côtés correspondants de ces polygones} donc ces lignes
sont aussi normales à l yarc mt m%.

QUESTION ANALOGUE A CELLE DU CONCOURS.

« Déterminer la courbe passant par deux points
» donnés, dont Varc compris entre ces points engendre
» une surface minimum en tournant autour de Vaxe
» des x, tandis que le trapèze curviligne limité par cet
» arcy les ordonnées de ses extrémités, et l'axe des x,
» engendre un volume donné.

» Démontrer que cette courbe peut être engendrée par
» le foyer d'une ellipse ou d'une hyperbole qui roule-*
» rait sans glisser sur l'axe des x. » v



DISCOURS

Proioieé lors 4e la reprise do Cours de Calcul des Probabilités,
à la Faculté des Sciences, le 26 avril 1 8 5 1 ;

PAR M. LAMÉ,
Membre de l'Institut.

Messieurs, à l'ouverture de chacune des parties de ce
cours, j'ai pris l'habitude de traiter quelque question
relative aux sciences exactes, à leur enseignement, ou à
leurs applications. D'abord, comme les savants qui ont
créé le calcul des probabilités, comme les auteurs qui en
ont traité, j'ai dû, dans un discours préliminaire, dire
ce qu'était cette science, ce qu'elle pouvait, jusqu'où s'é-
tendait son domaine*, afin de justifier son droit de cité,
et pour combattre une sorte de défaveur, tenant princi-
palement aux difficultés de son analyse, mais aussi à ses
hardiesses, et à ses solutions prématurées.

Depuis, je crois être parvenu à simplifier l'étude des
probabilités, de manière à la rendre facilement abordable,
sur tous les points, dans toutes les questions relatives à
d'importantes applications. En outre, j'ai le bonheur de
compter parmi mes amis, un savant^M. Bienaymé) qui
aujourd'hui représente presque seul, en France, parmi
les géomètres, la théorie des probabilités, qu'il a cultivée
avec une sorte de passion, dont il a successivement attaqué
et détruit les erreurs; je dois à ses conseils d'avoir bien
compris la véritable portée de la science que j'enseigne,
et quelles limites elle ne peut franchir sans s'égarer.

Maintenant que la défaveur n'a plus aucune raison



d'exister, sa disparition complète n'est plus que l'affaire
du temps. Mon discours préliminaire n'y aiderait que
fort peu; je pourrais donc m'en dispenser, et, comme on
dû, entrer de suite en matière. Mais, à cette défaveur
particulière, paraît s*en joindre une- autre, plus mena-
çante, beaucoup plus étendue, et qui embrasserait toutes
les mathématiques. Aujourd'hui, sous le prétexte de quel-
ques réformes, peut-être nécessaires, dans l'enseigne-
ment des sciences exactes, on s'attaque aux théories et
aux savants; on les déprécie, on les repousse, on restreint
de plus en plus l'espace qu'ils occupent, pour faire une
plus large place aux applications et aux praticiens. Si cet
envahissement systématique continue, la véritable science,
et ceux qui s'en occupent exclusivement, ne tarderont pas
à disparaître. Une telle révolution dans l'enseignement
sera-t-elle un progrès, ou une décadence? Je n'ai pu ré-
sister au désir d'aborder encore une fois cette question,
de l'envisager aujourd'hui sur toutes ses faces, de jeter
enfin une sorte de cri, dans l'espoir de conjurer un dan-
gereux orage. Tel est le sujet que je me propose de traiter
dans ce discours préliminaire. Que ne puis-je lui donner
une force capable d'a#rêter la destruction !

D'abord, il me sera facile, sans entrer dans trop de
détails historiques, de faire ressortir cette vérité, que les
mathématiques doivent les immenses progrès qu'elles ont
faits, depuis lieux siècles, à l'idée de les appliquer; c'est-
à-dire que leur utilité, plus ou moins immédiate, a tou-
jours dicté ces progrès. Remontez à leurs découvertes
principales, elles n'apparaissent d'abord que comme des
spéculations philosophiques; mais elles sont suivies, de
très-près, par des applications importantes qui viennent
doubler leur valeur. Et l'on ne saurait trop admirer
cette logique cachée, et en quelque sorte instinctive, de
l'esprit humain, qui, d'abord découvre et perfectionne
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l'instrument, puis entreprend hardiment, et k coup sur,
le travail utile pour lequel cet instrument était indis-
pensable.

À peine Descartes et Pascal, Fermât et Leibnitzr ont-
ils jeté les fondements de l'analyse appliquée, et du calcul
infinitésimal, que Newton découvre le principe dé la
pesanteur universelle, et explique les lois qui régissent
les mouvements des astres. Pour déduire toutes les con-
séquences de cette découverte, il a fallu un siècle de pré-
paration : l'infatigable Euler, les Bernoulli, d'Alembert,
dévoilent successivement toutes les ressources de l'analyse
mathématique, et créent la mécanique rationnelle. La-
grange vient compléter, coordonner, simplifier toutes ces
acquisitions de la science, et les réduire à un petit nombre
de principes. Enfin ses travaux, ceux de Laplace surtout,
de Legendre, Poisson, Ivory, de MM. Gauss, Poinsot,
Binet, etc., achèvent cette première application des
sciences exactes-, et ne laissent plus qu'à glaner dans le
champ de la mécanique céleste.

Mais une autre application, plus importante peut-
être , plus difficile certainement, se prépare depuis long-
temps; c'est celle qui concerne l'explication de tous les
phénomènes physiques, spontanés sur la terre, ou que
nous pouvons y faire naître. De ce côté, la science marche
vers de nouveaux principes, analogues à celui découvert
par Newton ; et tandis que de nombreux expérimentateurs
recueillent, sur tous les phénomènes physiques, des lois
semblables aux lois de Kepler, mais infiniment plus nom-
breuses et plus compliquées, les géomètres modifient et
perfectionnent l'analyse mathématique, afin qu'elle puisse
aborder ces lois, pour les calculer, les mesurer, les pré-
voir, les réduire à un moindre nombre} et, s'il est pos-
sible, à une loi unique, qui servira de base à une vaste
théorie, à une sorte de Mécanique terrestre, dont la Mé-



canique céleste elle-même ne sera qu'un chapitre parti-
culier. Cette oeuvre immense est à peine commencée;
mais la réalité incontestable de ses premiers progrès' ne
permet pas de douter qu'elle ne s'accomplisse un jour, si
des réformes exagérées, et intempestives, ne viennent pas
éteindre le zèle des travailleurs, et anéantir jusqu'au
souvenir de leurs découvertes.

H me suffira de résumer succinctement ce que les géo-
mètres ont fait depuis cinquante ans, pour justifier plei-
nement cette assertion. Mais d'abord, rappelons les éton-
nants progrès des sciences physiques, pendant la même
période de temps. La chimie, dégagée de ses langes par
la découverte de Lavoisier, est rapidement élevée au rang
des sciences les plus fécondes, par les travaux de Ber-
tholet, Chaptal, Gay-Lussac surtout, Dawy, Berzelius,
Dulong, Ampère, de MM. Thenard, Chevreul, Dumas,
Pelouze, Regnault, Balard, et tant d'autres. La physique
proprement dite, dont l'origine, comme science, remonte
à peine au delà de Newton, n'avait fait que des pas lents
et clair-semés; à l'époque de la découverte de Volta, qui
date de 1800, elle prend son essor, et ses découvertes se
multiplient rapidement. Malus, Wollaston, Fresnel,
MM. Arago, Biot, Brewsler, Babinet, découvrent sur la
lumière de nouveaux faits, et des lois nouvelles. Gay-
Lussac, Saussure, Dalton, Dulong et Petit, plus tard
MM. Melloni, Pouillet, Despretz, M. Regnault et son
école, font le même travail sur la théorie physique de la
chaleur. La découverte d'OErstedt, sa liaison avec celle
du magnétisme en mouvement, les travaux antérieurs de
Dawy, ceux plus récents d'Ampère, de MM. Becquerel,
de la Rive, Faraday, Pouillet, etc., font marcher à pas
de géant la théorie physique de l'électricité. A cette
science si nouvelle, et d'une fécondité sans exemple, se
rattachent, par mille liens, les autres parties de la phy-\



sique1 la chimie, et même les phénomènes de la vie or-
ganique, qu'elle semble convier à venir lui demander leur
cause, leur raison d'être.

La minéralogie, qui ne consistait d'abord que dans une
simple classification factice, devient, après la découverte
d'Haûy, une sorte de science rationnelle, fondée sur les
propriétés géométriques, physiques et chimiques des
substances minérales , cristallisées ou amorphes. Par ses
lois naturelles, elle exerce une puissante réaction sur la
chimie, et sur toutes les parties de la physique, comme

# le témoignent les travaux de Beudant, de MM. Mitscher-
lich, Dufrénpy, Senarmont, Ébelmen, Delafosse, Pas-
teur, etc. La géologie, qui se bornait à classer les roches,
et à recueillir les indices que les différents terrains peuvent
offrir, pour signaler la présence des minéraux utiles, de-
vient une science de premier ordre, par les travaux de
M. Elie de Beaumont sur l'âge relatif des révolutions du
globe, par ceux de Brochant, Brongniart, de MM. de
Buch, Cordier, Dufrénoy, Constant Prévost, etc. Enfin
tous ces divers chapitres de l'histoire physique de notre
globe, joints à la météorologie, et aux faits du magnétisme
terrestre, sont coordonnés par les travaux de MM. de
Humboldt, Arago, Duperrey, Raëmtz, etc.

En présence de cette abondante moisson de faits nou-
veaux, les géomètres ne pouvaient rester inactifs. Habi-
tués à déduire rapidement les conséquences d'un principe
ou d'une loi posée, ils aident d'abord puissamment aux
travaux des expérimentateurs, les excitent, et les pré-
voient : plus d'une découverte physique n'a été que la vé-
rification d'une de leurs prévisions. Puis ils cherchent à
poser les fondements d'une théorie mathématique des
nouveaux phénomènes. Ainsi font Malus, Ampère, ou
les inventeurs eux-mêmes $ et surtout Fresnel, qui, par
sa théorie de la double réfraction et tous ses autres tra-



vaux, doit être regardé comme le véritable fondateur de
la physique mathématique.

Laplace étudie et explique les phénomènes capillaires.
À son exemple, d'autres géomètres, se bornant à l'étude
d'une classe très-particulièrede phénomènes, parviennent
à en donner la théorie mathématique, et élèvent ainsi quel-
ques jalons d'une analyse rigoureuse sur le vaste domaine
de la physique. Ainsi fout Savary, M. Liouville, pour
Félectrodynamique; Poisson, BÏM. Cauchy, Duhamel,
pour l'acoustique $ M. Bravais, pour les phénomènes op-
tiques de l'atmosphère; et encore M. Cauchy, qui parait
être sur la voie d'une théorie mathématique complète de
la lumière-, si bien préparée par les travaux de Fresnel,
Hamilton, Mac-Culagh, Newmann, et d'autres savants.
Mais arrivons aux travaux qui constituent plus particu-
lièrement la science générale, et toute moderne, appelée
physique mathématique.

Fourier, et encore Laplace, puis Poisson, et d'autres
géomètres, créent la théorie analytique de la chaleur, qui
peut être regardée comme formant le premier livre de la
Mécanique terrestre-, la simplicité des phénomènes dont
cette théorie assigne les lois, permettant d'essayer sur
elle, et d'y façonner en quelque sorte les procédés de-
l'analyse, avant de les étendre à des théories plus com-
plexes , et plus immédiatement applicables. Les travaux.

. des mêmes géomètres, sur les lois qui régissent les tem-
pératures du globe terrestre, prouvent d'ailleurs Futilité
directe de cette première théorie générale.

Enfin, Nayier> puis Poisson, M. Cauchy et d'autres
savants, créent la théorie mathématique de F élasticité
des solides. Us font voir que l'explication complète des
phénomènes qui en dépendent n'est maintenant arrêtée
que par des difficultés d'intégration. Comme exemples,
il§ vérifient la plupart des découvertes de Savart sur les.
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vibrations des corps sonores, et donnent plusieurs for-
mules de correction indispensables. Je dirai plus tard
tout ce que cette seconde théorie générale recèle dans son
sein. •

De ces deux premières théories, et-d'autres encore,
résulte, pour toutes, une marche uniforme, que Ton
peut résumer ainsi : la théorie mathématique d'une classe
de phénomènes a pour base, un ou deux principes, un ou
deux faits empruntés à l'expérience, et que l'on considère
comme des axiomes; *par eux, et à l'aide du calcul infi-
nitésimal , on parvient à représenter l'ensemble de ces
phénomènes par des équations différentielles, ou plutôt
aux différences partielles; l'étude de ces équations donne
déjà une grande partie des lois que Ton cherche; enfin
leur intégration, plus ou moins avancée, faite d'après
des circonstances données, peut seule embrasser toutes
ces lois. Cette marche était indiquée par le chapitre de
l'attraction des sphéroïdes, lequel n'est au fond que la
théorie mathématique d'une certaine classe de phéno-
mènes, la première qui ait atteint une perfection relative.

Ce premier résultat important sur l'ordre des travaux
à entreprendre, pour atteindre le but désiré, prouve que
les progrès de la physique mathématique sont subor-
donnés # ceux du calcul intégral, et particulièrement à
ceux de l'intégration des équations aux différentielles
partielles. L'état dans lequel la Mécanique céleste a laissé
ces instruments d'analyse, exigeait de nouveaux perfec^
tionnements. Il fallait surtout étudier de plus près les pro-
priétés des surfaces en général, considérées comme li-
mites des intégrations, ou comme celles des corps sur
lesquels on se propose d'étudier les phénomènes physi-
ques. A cet appel de la science répondent une multitude
de travaux sur l'analyse appliquée à la géométrie, depuis
ceux de Monge et Hachette, jusqu'à ceux de MM. Gauss,



Cb. Dupin, Poncelet, Brianchon, Chasles, Jacâibi,
Liouville, et autres-

En outre, les fonctions exponentielles et circulaires
étaient insuffisantes; il fallait étendre la méthode des
quadratures, l'enrichir de nouvelles fonctions, en étu-
diant avec soin leurs propriétés. Tel a été le But des tra-
vaux de Legendre, et des admirables découvertes d'Abel et
de Jacobi, sur les transcendantes , elliptiques ou autres;
découvertes dont rextrême importance est successivement
dévoilée par de nombreux commentateurs, et qui font
plus que doubler la puissance de l'analyse mathématique.

Ce n'est pas tout. La mécanique rationnelle n'avait été
inventée et façonnée que pour résoudre les questions de
la mécanique céleste; il fallait appliquer ses principes
généraux, surtout celui des vitesses virtuelles et celui des
forces vives, aux mouvements qui ont lieu à la surface
de la terre \ en déduire la théorie des machines, celle des
moteurs, les perfectionnements qu'exige l'emploi de ces
instruments, et de ces agents industriels. Les travaux des
deuxCarnot, de Prony, Poisson, Ampère, Navier, Cô-
riolis, de MM. Poinsot, Ch. Dupin, Poncelet, Reech,
ont successivement levé les principales difficultés de cette
application nouvelle.

Ce résumé, si rapide et si plein, de tout ce que les
géomètres modernes ont entrepris, pour hâter les progrès
des sciences d'application, est encore fort incomplet. Je
n'ai pas cité d'importants travaux., sur la théorie des
nombres, parLagrange, MM.Gauss, Poinsot, Dirichlet,
Lebesgue$ sur l'analyse pure, par MM. Cauchy, Jacobi,
Sturm, Liouville, Binet, Blanchet ; sur le calcul des pro-
babilités, par Laplace, Poisson, M. Bienaymé; travaux
dont l'utilité serait facilement constatée, soit par les ap-
plications directes qu'elles ont fait naître, soit par leur
influence, parleur réaction sur les autres branches des.



( 222 )

mathématiques* En outre, je n'ai pas nommé tous les sa-
vants, ni les plus jeunes et les plus actifs ^lesquels ont
pris Une large part à cette œuvre si étendue, et dont les
recherches s'enchevêtrent, se croisent, naissent les unes
des autres. J'ai cru pouvoir les passer sous silence, et
m'eflacer moi-même, dans cette description sommaire.

N'est>il pas de la dernière évidence que, durant le demi-
siècle qui vient de s'écouler, les sciences exactes ont réel-
lement fait, en vue même des applications, beaucoup plus
de progrès que dans tous les siècles précédents ? Si l'on ob-
jectait que les savants de nos jours, à qui la gloire en re-
vient , ne paraissent pas cependant, étant vus de près,
pouvoir être comparés aux illustres géomètres qui les ont
précédés, nous répondrions que la plus grande importance
des résultats obtenus s'explique tout naturellement, et par
le plus grand nombre des travailleurs modernes, et par
les ressources qu'ils ont puisées dans l'héritage même du
siècle dernier.

Tout indique que cette ardeur scientifique, loin de se
ralentir, va au contraire en s'accélérant; les annales de
la science inscrivent fréquemment les noms de nouveaux
géomètres que signalent la France, l'Allemagne, et même
l'Angleterre, où les mathématiques étaient peu cultivées
depuis l'époque newtonienne, et qui se réveille enfin d'un
long assoupissement. Et c'est lorsque le travail est si bien
préparé, lorsque tant d'efforts s'y concentrent, c'est ce mo-
ment que l'on semble choisir pour arrêter le mouvement
scientifique en France, par des réformes, au moins inop-
portunes.

Mais à côté, et parallèlement à la phalange des géo-
mètres théoriciens, qui parait destinée à poursuivre le
grand œuvre de la Mécaniqtfe terrestre, s'en meut UBÊ
autre, plus nombreuse, plus impatiente, moins disci-
plinée , celle des géomètres praticiens. Entête, se trouvent



les savants qui appliquent les formules trouvées à l'astro-
nomie, construisent les Tables des mouvements plané»
taires, déduisent, de longs calculs numériques, le retour
des comètes, l'instant de leur passage au périhélie, l'exis-
tence et les éléments de nouvelles planètes perturbatrices,
et qui, comme Clairaut, Delambre, Bessel, Savary et
M. Le Verrier, vérifient les dernières conséquences du
principe de la pesanteur universelle. Puis viennent les sa-
vants qui utilisent les Tables de statistique, pour en déduire,
à l'aide des formules fournies par le calcul des probabi-
lités, le mouvement de la population, le taux des rentes
viagères, celui des assurances de toute espèce. Enfin se
présentent les ingénieurs, qui appliquent la mécanique
rationnelle à l'étude de leur art; qui s'efforcent de dé-
duire, du principe des forces vives, le calcul complet de
l'effet des machines, du travail des moteurs, de la résis-
tance des matériaux, et qui, ne trouvant pas les sciences
théoriques assez avancées pour résoudre complètement
toutes ces questions, comblent les lacunes par des pro-
cédés approximatifs, pouvant suffire actuellement: tel est,
en effet, le but d'une multitude de travaux de MM.Pon-
celet, Piobert, Morin, Combes, et de presque tous nos
ingénieurs.

Ce partage des géomètres, en théoriciens et praticiens,
n'établit aucun parallèle défavorable à Tune ou à l'autre
des deux classes. Les fonctions sont seules essentiellement
différentes» Ces fonctions sont éminemment utiles, cha-
cune de son côté, pas plus Tune que l'autre ; et dsuas celte
division du travail général, il importe que la concorde
règne dans les deux camps, afin que leur puissance d'ac-
tion ait tout son effet. Il arrive souvent d'ailleurs qu'un
même savant cumule les deux fonctions, au grand avan-
tage de la théorie et de l'application. Je citerai comme
exemples : JVL Delaunay, théoricien par ses recherches d'à-



nalyse, de géométrie et de mécanique, praticien par ses
travaux sur les Tables lunaires et sur les marées ; M/Bien-
aymé, théoricien par ses recherches sur le calcul des pro-
babilités, et praticien par ses travaux sur les Tables de
mortalité et sur d'autres applications 5 enfin M. Poncelet,
théoricien par ses belles recherches sur la géométrie et la
mécanique rationnelle, praticien par ses calculs sur les
machines et les moteurs.

Mais, en dépit de tant de liens et malgré toutes les ap-
parences d'une entente parfaite, c'est dans le camp des
géomètres praticiens purs que s'est propagée une fausse
appréciation de Futilité des sciences exactes. Erreur,
illusion dangereuse ; car si elle parvient à diriger l'ensei-
gnement, la décadence est imminente. Les ingénieurs,
habitués à de pénibles travaux d'application, voyant clai-
rement les imperfections de la théorie, ne pouvant y re-
médier à l'aide d'une analyse rigoureuse, ont essayé d'y
suppléer par d'autres recherches -, ils ont créé une sorte de
physique mathématique factice, s'appuyant sur des for-
mules empiriques, c'est-à-dire déduites de l'expérience ,
et qui peuvent être employées, sans de graves erreurs,
entre certaines limites.

Reconnaissons-le, ce travail préliminaire était utile,
indispensable. L'industrie humaine ne peut régler son
pas sur la marche mesurée et prudente de la science. Son
impatience l'en éloigne $ elle se contente d'à peu près. Si
elle a besoin de certains nombres, il faut les lui calculer,
exacts ou approchés, rigoureux ou erronés, peu lui im-
porte. Elle court à de nouvelles conquêtes, sans s'embar-
rasser de ce qu'elle laisse d'imparfait derrière elle. La vé-
ritable science arrivera là, plus tard, pour corriger,
consolider, perfectionner. Mais, ne l'oublions pas, il faut
que la science suive, et d'assez près pour être entendue,
pour avertir quand on fait fausse route. Si vous étouffez
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sa voix, si vous méprisez ses travaux, wous marchez à
l'aventure^ vous vous perdrez infailliblement.

Souvent, l'homme absorbé par un travail long et fati-
gant , auquel il a consacré sa vie active ou intellectuelle,
finit par mal juger tout ce qui ne rentre pas dans le cercle
restreint de. ses idées ordinaires*, il est insensiblement
conduit à refuser une valeur réelle à tout autre mode
d'activité de l'esprit, à mépriser même ceux qui s'en oc-
cupent. Ainsi font beaucoup de praticiens : la science
empirique qu'ils ont édifiée, leur a suffi, a présidé à tous
leurs travaux, leur a permis de les exécuter tant ljien que
mal; alors ils ne voient plus qu'elle ; ils la regardent
comme la seule utile, comme la seule qui doive être en-
seignée à leurs successeurs. Ils oublient que s'ils ont pu
créer cette science d'attente, c'est parce qu'ils avaient été
préalablement nourris des saines doctrines, parce qu'ils
avaient pu prendre leur point de départ sur un terrain
solide, dans la véritable science. Mais ils la méprisent au-
jourd'hui, ils la méconnaissent au point de nier les nom-
breux emprunts qu'ils lui ont faits. Et leur œuvre, en-
core si imparfaite, ils veulent la livrer A de nouveaux
praticiens qu ils auront formés dans l'ignorance de la
vraie théorie ! Mais si cette nouvelle génération d'ingé-
nieurs veut aussi réformer, que sera cette seconde puis-
sance de l'à-peu-près ! !

On voit ainsi se produire daus la science, et parmi les
savants, les mêmes égarements que dans un tout autre
monde.* Une question difficile se présente, mais elle n'est
pas assez bien définie dans toutes ses parties pour qu'on
puisse la résoudre d'une manière complète et rigoureuse ;
si cependant une solution telle quelle est indispensable,
alors on a recours à quelque procédé transitoire qui donne
le temps d'attendre, et qui n'engage pas l'avenir. Mais
les impatients, ceux qui se*sentent ou qui &e croient ca-
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pables d'aborder des questions de cette nature, qui même
ont fait leurs preuves sur des sujets moins épineuÉ, ne
peuvent se résignera l'inaction. De là les fausses théories,
les utopies de toute espèce que leurs inventeurs essayent
de propager par tous les moyens, dussent-ils rendre im-
possible l'avènement de la véritable solution.

C'est ainsi que d'habiles géomètres, tant théoriciens
que praticiens, ont quelquefois sacrifié leur talent à de
fausses idoles. Et la preuve n'est pas loin : feuilletez l'im-
mense recueil des travaux mathématiques de notre époque,
vous y distinguerez facilement deux genres d'analyse ap-
pliquée. L'une prudente, rigoureuse, ne s'appuyant que
sur des principes incontestables, riche de déductions, fé-
conde par ses conséquences, à laquelle les amateurs don-
nent à bon droit l'épithète d'élégante. L'autre, plus har-
die d'abord, mais s'appuyant sur des hypothèses hasardées,
qui la conduisent péniblement à des résultats numériques
incertains, noyés dans des calculs lourds, inextricables,
résultats isolés et sans avenir.

Il existe un caractère infaillible auquel tout géomètre
pourra reconnaître, lui-même, si son travail appartient
au premier ou .au second genre. S'il est dans le vrai> s'il
a abordé une question bien posée et que l'analyse mathé-
matique puisse résoudre, à chaque difficulté qu'il ren-
contre, qu'il parvient à surmonter à force de persévérance,
et quelquefois par une véritable découverte analytique,
il voit ensuite la question marcher en quelque sorte toute
seule, les conséquences se multiplier d'elles-mêmes, jus-
qu'à ce qu'un nouvel obstacle exige une nouvelle concen-
tration d'efforts, dont le succès ramené la même fécon-
dité-, alors il travaille dans le premier genre. Mais s'il a
entrepris de résoudre un problème mal défini âr l'aide de
principes douteux, il est obligé de tourner les obstacles
plutôt que de les franchir -, la question est, en quelque



sorte, récalcitrante, elle ne marche que quand on la
pousse; le géomètre travaille alors dans le second genre;
et si son œuvre pénible n'est pas indispensable, il ferait
bien de ne pas la publier. Malheureusement, nous n'ai-
mons pas à perdre complètement nos peines, et, par ce mo-
tif $ bien des œuvres indigestes ont vu le jour. D'illustres
géomètres ont péché par là : comparez le beau Mémoire de
Poisson, sur l'équilibre de l'électricité statique à la surface
des corps conducteurs, avec son pénible travail sur le
magnétisme, même en mouvement, qu'il veut expliquer
par l'existence de deux fluides magnétiques, et vous com-
prendrez la distinction que j'établis.

Mais quittons cette pierre de touche des bons travaux,
et revenons aux praticiens. Les circonstances ont surtout
favorisé la propagation de l'erreur ou de l'illusion que je
déplore, et dont je crains les résultats ; un excès dans la
division du travail a trop éloigné les ingénieurs des sujets
de leurs premières études, et du commerce des théoriciens.
Deux exemples anecdotiques feront mieux comprendre
toute ma pensée. J'emprunte l'un d'eux à ma propre bio-
graphie; mais le rôle que j'y ai joué, du en grande partie
aux circonstances, tout autre eût pu le remplir à ma place.

Il y a plus de trente ans, en 1820, M. Clapeyron et
moi nous quittions le corps des mines, en France, pour
aller à Saint-Pétersbourg relever une école d'ingénieurs,
qui menaçait ruine faute de professeurs. Là, nous avons
dû enseigner, successivement et simultanément, toutes
les mathématiques, depuis les éléments jusqu'au calcul
infinitésimal, la mécanique rationnelle, la théorie des
machines, et le cours de construction dans toutes ses par-
tie*^ Dans cette école, le temps consacré aux études scien-
tifiques était plus limité qu'il ne l'est en France; par
exemple, il fallait parcourir toute la mécanique ration-
nelle en trente leçons; c'était bien peu. Pour utiliser le
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mieux possible le temps assigné, nous avons à peu près
réduit le cours à la connaissance approfondie du principe
des vitesses virtuelles, et de celui des forces vives, en ïnul-
tipliant leurs applications sur des sujets nombreux* Le
cours de machines et celui de construction, que nous pro-
fessions aussi, nous venaient en aide par les exemples
qu'ils fournissent. Et ces trois cours, réunis dans les
mêmes mains, formaient un tout homogène, où dominait
la rigueur mathématique, et d'où l'empirisme était scru-
puleusement banni.

Toutefois, pour rester dans ces conditions dont nous
ne voulions nous départir à aucun prix, nous avons dû
nous condamner à de rudes travaux de préparation. C'est
ainsi que nous avons introdui t, peut-être les premiers,
dans les cours d'application, le chapitre relatif aux en-
grenages, à leur génération, au calcul de leurs frottements,
celui de la poussée des voûtes et du tracé de leurs joints de
rupture ; chapitres qui forment, dans les cours dont ils
font partie, comme deux oasis de théorie rigoureuse. Ce-
pendant nous n'étions pas satisfaits, nous cherchions à
jeter les bases de la théorie mathématique de l'élasticité, et
notre travail sur l'équilibre intérieur des corps solides
indique tous les efforts que nous avons faits, pour éviter
l'empirisme et ses funestes conséquences.

En France, à la même époque, Navier se trouvait à la
fois professeur d'analyse et de mécanique rationnelle à
l'École Polytechnique, et chargé d'un cours de machines
et de construction aux Ponts et Chaussées. Sans doute do-
miné comme nous par cette passion pour la rigueur ma-
thématique, que les sciences exactes inspirent à tous ceux
qui les professent, il chercha longtemps aussi à restreindre
l'espace occupé par l'empirisme dans les cours d'applica-
tion. Les mêmes circonstances le conduisirent au même
but; et il venait de présenter son travail sur les corps



élastiques, quand le nôtre, presque identique au sien r et
enfanté à 800 lieues de Paris, arrivait à son examen. Les
recherches de Poisson et de M, Cauchy sur le même sujet
sont postérieures aux siennes.

Ainsi, placez des ingénieurs dans des circonstances
telles, qu'ils doivent s'occuper à la fois de cours de théo-
rie et de cours d'application, ils travailleront pour ne
jamais abandonner la rigueur mathématique *, et leur con-
cours accélérera les progrès de la véritable science. Isolez-
les, au contraire, chargez-les uniquement de cours d'ap-
plication , ils resteront géomètres praticiens ; et de plus en
plus identifiés avec leur science d'attente, ils essayeront
de la faire régner seule et sans partage.

Et voilà ce qui explique ce fait singulier, que les plus
grands détracteurs d'une célèbre institution, que ceux qui
veulent la détruire, s'ils ne la réforment d'après leurs
idées anti-scientifiques, ont cependant passé par cette in-
stitution même. Résultat déplorable, qui conduit à penser
qu'au lieu de restreindre, dans les écoles générales, l'en-
seignement théorique, pour tailler une plus large place
aux cours dits pratiques, ce serait précisément le con-
traire qu'il faudrait faire ; c'est-à-dire introduire, dans
les écoles d'application , des cours de haute théorie, semer
le bon grain à côté de l'ivraie, afin que les élèves ne per-
dent pas de vue les saines doctrines, que, constamment
placés entre la rigueur mathématique et l'empirisme, leur
choi* ne soit pas douteux, et, qu'une noble passion ai-
dant, ils fassent aussi tous leurs efforts pour hâter l'époque
où l'on pourra se passer de l'à-peu-près. Si cette sage me-
sure avait été prise lors de l'organisation des corps savants,
nous compterions aujourd'hui plus d'unProny, plus d'un
Brisson, plus d'un Navier, plus d'un Coriolis, qui auraient
cultivé la science, au lieu de la proscrire.

Ne croyez pas qu'en proposant de développer, dans le
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amp même des géomètres praticiens, le drapeau qu'ils
repoussent, je ne fasse qu'opposer une exagération à une
autre. Non : cette mesure se présente d'elle-même 4 f$s -
prit, lorsqu'on se rend bien compte de l'état actuel de la
science, et qu'on cherche ce qu'il serait convenable de
faire pour accélérer ses progrès. Il me sera facile de mettre
cette vérité hors de doute, en utilisant le tableau que je
viens d'exquisser.

On est généralement convenu d'attribuer à Bacon, toute
une théorie surja marche que l'esprit humain doit suivre
pour arriver à la connaissance et à l'explication positive
des. phénomènes naturels. J'avoue humblement que j'ai
en vain cherché, dans son Novum organum, des traces bien
certaines de tout ce qu'on lui a prêté; et j'aime mieux at-
tribuer l'honneur de cette découverte, s'il y a découverte,
à l'esprit humain lui-même, dont la logique instinctive
s'est si souvent manifestée. Quoi qu'il en soit, la marche
dont il s'agit a été admirablement tracée par la série des
travaux, qui ont élevé l'astronomie au degré de perfection
que nous lui connaissons : premièrement, observations
multipliées et recueillies avec soin-, secondement, travail
de Kepler pour résumer les résultats de ces observations
par un petit nombre de lois\ troisièmement, application
de l'analyse, faite par Newton, pour ramener ces lois à
une seule, c'est-à-dire au principe de la pesanteur uni-
verselle; quatrièmement, enfin, travail inverse des com-
mentateurs, pour expliquer par ce principe tous les phé-
nomènes célestes, et embrasser à la fois les états passés,
présents et futurs.

Dans Pœuvre semblable, mais beaucoup plus com-
plexe, que la science poursuit aujourd'hui, la même marche
se reproduit, etl'ony reconnaît facilement les quatre genres
de travaux. Les découvertes, les faits ont été accumulés
outre mesure; c'est le premier travail, le recueil des ob-
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servations. Des milliers d'expériences ont été entreprises
pour étudier successivement toutes les classes de phéno-
mèatfôfpour les coordonner, les résumer par un certain
nombre de lois ; c'est le travail képlérien. Les géomètres
ont réussi à ramener à une seule toutes les lois de cer-
taines classes particulières de phénomènes} voilà l'époque
newtônienne ébauchée. Enfin quelques savants ont été
assez heureux pour déduire, de théories mathématiques
partielles, F existence de phénomènes non soupçonnés par
les physiciens, et que l'expérience a vérifiés : tels *jue les
cristaux à deux axes, la double réfraction conique, la
double réfraction cylindrique, les franges lumineuses
dans l'ombre d'un disque, etc., conséquences nécessaires
des théories de Fresnel, et encore certains faits déduits de
F électrodynamique. On reconnaît là des indices certains
de oet immense travail en retour, qui consistera à expli-
quer et à prévoir les phénomènes, quand leurs principes
seront découverts.

On voit que l'activité n'a pas fait défaut dans les quatre
ateliers. Les deux premiers, surtout, ont à peu près achevé
leur tâche. Mais le troisième, celui des géomètres théo-
riciens , est évidemment en retard ; les difficultés qui s'y
rencontrent suspendent les progrès du travail général ;
c'est là qu'il conviendrait d'accumuler, de concentrer de
nouvelles forces, de multiplier les travailleurs. Sinon, si
cet état se prolonge, les autres ateliers abandonneront la
partie, et on ne les retrouvera plus, quand il s'agira d'ap-
pliquer la théorie, et de vérifier ses résultats par l'expé-
rience. Déjà, dans leur impatience, ils emploient leurs
forcesà des travaux étrangers, utiles sans doute sous d'autres
rapports, mais qui ne concourent plus au but commun,
qui même peuvent en retarder F avènement.

C'est ce que fait le quatrième, celui des géomètres pra-
ticiens , des ingénieurs , lequel devait couronner l'œuvre f



qui était constitué, de longue main, pour commenter les
principes trouvés, pour traduire en nombres toutes leurs
conséquences. Lepremier, celui despionniers delà science,
des chercheurs de faits nouveaux, a, depuis plusieurs
années, abandonné la voie commune; il s'est jeté dans
des applications étrangères : la photographie, la galvano-
plastie, la télégraphie électrique et d'autres inventions,
prouvent toute sa fécondité; mais, tout en admirant ces
découvertes, on doit reconnaître qu'elles n'avancent pas
celle des principes.

Enfin le second atelier, celui des expérimentateurs,
s'est attaqué aux lois trouvées : il a perfectionné ses pro-
cédés au point de rendre sensibles les plus petites inexac-
titudes, de ces lois. Et rien ne fait mieux sentir le retard
des géomètres dans l'œuvre commune: car, supposez que,
immédiatement après les travaux de Kepler, les procédés
employés par les astronomes observateurs, se fussent assez
perfectionnés pour permettre d'apercevoir les inexac-
titudes des lois trouvées, la connaissance de ces inexacti-
tudes pouvait ajourner le travail de Newton. Heureuse-
ment, elles n'ont été bien constatées qu'après la décou-
verte du principe, et s'expliquant merveilleusement par
les perturbations dues aux actions mutuelles des planètes,
elles sont venues confirmer le principe plutôt que de l'in-
firmer.

N'est41 pas clair, maintenant, que si l'on veut aider
aux progrès de la science, si Ton veut hâter l'œuvre de
notre siècle, ce qu'il faudrait faire aujourd'hui, ce serait
d'encourager, d'exciter les géomètres théoriciens, d'aug-
menter leur nombre par tous les moyens possibles, de di-
riger l'enseignement des sciences exactes, de telle sorte
que les élèves connaissent bien tous les instruments de
l'analyse, ceux-là même qu'il faut perfectionner pour
atteindre le but désiré. Et Ton voit que cette conclusion



toute naturelle est diamétralement opposée à celle de nos
réformateurs.

filais, nous dira-t-on y la nouvelle époque newtonienne
dont vous annoncez la venue, est un rêve de votre imagina-
tion $ l'humanité courra éternellement après les principes,
sans jamais les atteindre 5 et ce serait folie d'organiser quoi
que ce soit en vue de ce but chimérique. Notre réponse est
prête : quelle que puisse être notre croyance à cet égard,
nous ne demandons rien d'aussi sublime-, notre bot est
infiniment plus accessible, nous le touchons presque, et
(pardon de la chute) il s'agit, tout bonnement, d'intégrer,
d'une manière convenable, les équations aux différences
partielles qui représentent l'équilibre intérieur des corps
solides élastiques} et voilà tout.

Lorsque cette intégration sera faite, étudiée, commen-
tée , il n'y aura plus rien d'indéterminé dans vos construc-
tions ] vous pourrez calculer exactement la forme précise
des solides d'égale résistance dans toutes les circonstances,
diminuer considérablement les poids de vos machines,
réaliser des applications importantes, que l'exagération
de ces poids rend actuellement impossibles. Et il vous se-
rait difficile de dire où s'arrêteront, pour les arts indus-
triels , les conséquences de cette intégration, que nous
poursuivons.

Voilà pourquoi nous voudrions que le plus de mem-
bres possible des corps savants, qui peuvent si bien com-
prendre toute l'importance de la découverte dont il s'agit,
connussent à fond l'analyse mathématique, afin d'aider à
l'achèvement d'un travail commencé par des ingénieurs-
géomètres. Or, pour obtenir ce résultat, il faut se garder
de restreindre l'enseignement des sciences exactes dans les
écoles générales, et, en outre, introduire des cours de
théorie pure dans les écoles d'application. Voilà ce que je
voulais établir.



Mais, nous dira-t-on encore, vous parlez d'augmenter
le nombre des géomètres-théoriciens, comme si cela était»
possible, comme si les vocations s'imposaient, et, pour un
ou deux sujets éminents, capables de remplir vos vues, et
qui, de loin en loin, pourraient passer par nos écoles,
vous voulez encombrer l'enseignement de cours inutiles à
la totalité des élèves. L'objection est spécieuse; la réponse
ne sera pas moins catégorique.

D'abord, entendons-nous sur le mot inutile. Comme je
l'ai dit et répété dans mes premiers discours : « L'utilité
» principale et première de l'étude des sciences exactes
» est de faire naître, d'exercer, de perfectionner la fa-
» culte du raisonnement, de la rendre en quelque sorte
» infaillible, en l'appliquant constamment, et pendant
» de longues années, à des sujets qui soient à l'abri de
» toute controverse ;... Futilité immédiate, ou pratique,
» de cette étude ne vient qu'en seconde ligne » Or,
l'utilité principale profitera à tous les élèves, et dans
l'école générale, et dans les écoles spéciales, où il est très-
important que la saine théorie ne les abandonne pas en
présence de l'empirisme et de l'à-peu-près, si propres à
faire dévier l'esprit, même le plus solide.

Ensuite n'oublions pas que tous doivent entrer dans les
corps savants, pour y remplir la fonction de géomètres-
praticiens , pour y commenter les résultats théoriques à
mesure que la science les découvre, pour exprimer nu-
mériquement leurs dernières conséquences; et si vous
leur laissez ignorer les procédés analytiques qui ont pré-
sidé à la découverte de ces résultats, comment voulez-vous
qu'ils les appliquent, qu'ils remplissent leur mission?
C'est comme si vous exigiez qu'ils obéissent à un ordre
écrit dans une langue qui leur serait inconnue. Vous le
voyez, les cours de théorie auront cette utilité pratique
que vous admettez seule, et ces cours profiteront à tous



les élèves indistinctement; ils ne seront inutiles pour
aucun.*

Parlons maintenant de la. vocation. On dit, «et l'on
croit assez généralement, que chaque génération apporte
un contingent très-limité, et à peu près constant, d'hom-
mes supérieurs, dans telle ou telle faculté, pour tel ou tel
mode d'activité de l'esprit. Je ne.sais : niais à moins d'éta-
blir des analogies singulières entre les différents genres
de célébrité, ou à moins d'-attribuer une élasticité fort
grande à cette limitation naturelle, il me paraît difficile
d'expliquer, dans ce. système, pourquoi tel siècle abonde
en littérateurs distingués, celui-là en artistes du premier
ordre, celui-ci en savants illustres. Il me semble plus ra-
tionnel d'admettre qu'à toute époque, la société renferme
les éléments nécessaires pour répondre à tous les besoins ;
forces nombreuses et variées, qui restent latentes si elles
ne sont pas actuellement utiles, et qui se manifestent avec
abondance quand les circonstances sont favorables.

Quoi qu'il en soit, une longue pratique dans l'enseigne-
ment des sciences, des observations suivies sur la marche
et les variétés de l'intelligence, m'ont conduit à une
formule qui paraît exprimer assez bien la force produc-
tive qu'il nous importe de connaître. Parmi les élèves qui
suivent les cours de mathématiques de nos collèges, un
tiers apporte toute l'attention nécessaire pour profiter de
ce genre d'études ? et pour comprendre tout ce qu'on leur
enseigne. Ce premier contingent, qui peuple seul les di-
verses écoles générales, s'y fractionne encore une fois,
sous le point de vue de l'aptitude mathématique ; là, le
quart des élèves étudient les sciences exactes avec goût, et .
peuvent, si l'enseignement est complet et bien dirigé, de-
venir des géomètres-théoriciens. Enfin, le plus ouïe moins
de succès des études concomittantes, et leur influence
sur le classement définitif, répartit uniformément ce



( 2 3 6 )

noyau d'analystes dans tous les services publics ; en sorte
que, dans chaque école d'application, le quart de toute
promotion pourrait tirer, du cours de théorie pure, -Futi-
lité particulière que nous avons en vue. N'est-ce pas
assez pour justifier la mise à exécution de la mesure que
nous proposons? Surtout si Fon considère qu'il ne s'agit
pas ici de ces êtres privilégiés et exceptionnels, qui, de
loin en loin, viennent étonner le monde savant par la
précocité et la puissance de leur intelligence ; ils sont
trop rares pour qu'on doive compter sur eux.

En résumé, si Ton veut absolument modifier rensei-
gnement des mathématiques, deux systèmes opposés se
présentent pour diriger les réformes. L'un d'eux propose
de restreindre de plus en plus les cours de théorie, et de
faire prédominer les cours d'application, les idées de pra-
tique immédiate, en s'étayant sur des lois empiriques.
L'autre demande, au contraire, que les cours de théorie
soient complétés, qu'ils s'étendent jusqu'aux dernières
découvertes des géomètres, dans le but de restreindre, de
plus en plus, l'espace occupé par l'empirisme dans les
cours d'application. Le premier, ne croyant pas aux pro-
grès futurs de la théorie, et satisfait de son état actuel,
veut la fixer à tout jamais dans cet état. Le second, con-
sidérant que la science s'éteint et se perd quand on l'em-
pèche d'avancer, et croyant fermement à ses progrès,
veut les préparer et les exciter.

On comprend toute la gravité du choix que Ton va
faire. Ou le mouvement scientifique continuera à s'accé-
lérer en France, jusqu'à l'achèvement de Fœuvre que j'ai
définie 5 ou bien l'honneur d'y mettre la dernière main
appartiendra à une autre nation, et probablement à une
autre époque. D'un côté la gloire, de l'autre la décadence.
Tout à espérer ou tout à craindre. Cruelle incertitude
que je voudrais en vain dissiper, et que de nouvelles ex-



plorations sur cette question brûlante ne serviraient qu'à
augmenter.

On pourra trouver que j'attrihue trop d'influence à cer-
tains actes, m'accuser même de douter de la science, qui
marche et atteint son but, malgré les efforts contraires
de ceux qui la dédaignent. On pensera que si, par suite
des réformes dont j'ai signalé le danger, telle institution
ne produit plus de bons géomètres, alors ceux-ci se for-
meront ailleurs; dans une école voisine, par exemple*,
école d'où sont déjà sortis tant d'excellents professeurs, et
des jeunes savants dont les noms retentissent dans nos
académies.

Tout cela ne me rassure pas : il est un élément essentiel
que ces réformes suppriment, et qui, seul, pouvait accé-
lérer l'œuvre séculaire. Dans les sciences exactes, plusieurs
routes différentes s'offrent aux géomètres. La théorie des
nombres, l'analyse pure, la géométrie, la mécanique ra-
tionnelle , la physique mathématique, la théorie des pro-
babilités, réclament toutes des travailleurs. Mais, pour
réussir dans telle de ces carrières, il faut un apprentissage
spécial, sans lequel l'analyste le pluséminent ne produira
le plus souvent que des œuvres éphémères.

Aujourd'hui, le géomètre qui voudra sérieusement
faire avancer la mécanique rationnelle ou la physique
mathématique, devra réunir des connaissances étendues,
sur les machines, sur les moteurs, sur les matériaux de
toute espèce employés dans les arts, ou connaître à fond
la physique, la chimie, tous les modes d'action des forces
naturelles. Sans ces études préliminaires, il ne pourra
travailler fructueusement que sur les nombres, sur l'ana-
lyse pure, sur la géométrie, sur les probabilités. Ces
quatre branches des mathématiques pourront encore faire
des progrès en France, quand nos géomètres sortiront
tous d'une école où l'on ne s'occupe pas d'applications;



mais les deux autres branches, la mécanique rationnelle
et la physique mathématique, resteront probablement
stationnaires, ou passeront à l'état de sciences empiriques.

Voilà ce qu'on éviterait en modifiant, dans le sens que
j'ai indiqué, le programme dés études dans l'école géné-
rale et dans les écoles spéciales de nos corps savants. Un
géomètre sorti de cette institution, ainsi perfectionnée,
mais après l'avoir parcourue dans toutes ses phases, serait
plus utile aux progrès de l'analyse appliquée que tous
ceux qui auraient suivi l'autre route....

SBR L'APPROXIMATION DES CALCULS NUMÉRIQUES PAR LES
DÉCIMALES,

PAR M. AMIOT.
Professeur au lycée Saint-Louis.

1. Dans l'évaluation des quantités en décimales , il de-
vient souvent inutile de considérer beaucoup de chiffres
décimaux. Ainsi, dans les valeurs monétaires, on retient
ordinairement compte que des centièmes ; dans les me-
sures linéaires, que des millièmes, etc., parce qu'il n'existe
pas de monnaie au-dessous du centime, ni de division du
mètre inférieure au millimètre. Mais, quand il s'agit de
déterminer, soit par le calcul, soit par l'expérience, des
nombres qui doivent être soumis à des opérations, comme
multiplication, division , etc., il importe de conserver un
assez grand nombre de chiffres décimaux, pour peu que l'on
tienne a quelque exactitudedansles résultats. Par exemple,
quand on emploie le poids spéciûque des corps pour dé-
terminer leur volume connaissant leur poids > ou bien
leur poids connaissant leur volume, on peut commettre,



sur le résultat, une erreur assez considérable, si Ton ne
prend qu'un petit nombre de chiffres décimaux, et quel-
quefois même si l'on en prend le plus possible.

Un des principaux objets que nous nous proposons
dans cette Note, c'est de montrer, à l'aide de simples con-
sidérations arithmétiques, l'utilité de conserver le plus
possible de chiffres décimaux dans les résultats, toutes les
fois que ceux-ci, soit qu'on les obtienne par le calcul ou
l'observation, sont destinés à être soumis à des opéra-
tions d'arithmétique] et de tracer en même temps, sans
qu'on soit obligé de recourir aux procédés algébriques,
une marche certaine pour déterminer, dans chaque cir-
constance , ce qu'il y a de réellement exact dans les résul-
tats des calculs auxquels on soumet ces nombres.

2. Nous commencerons par rappeler en peu de mots
leè procédés d'abréviation que l'on suit ordinairement
dans chacune des opérations d'arithmétique, lorsque, les
nombres proposés renfermant beaucoup de chiffres déci-
maux, on veut se contenter d'un résultat approché à moins
d'une unité d'erreur d'un certain ordre décimal. Ensuite
nous verrons comment les mêmes procédés peuvent con-
duire à déterminer quelle est la partie du résultat sur
l'exactitude de laquelle on peut compter lorsque les nom-
bres proposés ne sont eux-mêmes approximatifs qu'à une
unité ou une demi-unité d'un certain ordre décimal.

3. On sait, et il est aisé de se convaincre, que pour ob-
tenir la somme de plusieurs nombres décimaux à moins
dune demi-unité d'erreur d'un-certain ordre décimal, on
prend d'abord des valeurs approchées de ces nombres à
moins d'une demi-unité de l'ordre immédiatement infé-
rieur 5 puis on additionne tous ces nombres , et l'on efface
le dernier chiffre à droite de la somme, en ayant soin,
toutefois, d'augmenter d'une unité le dernier chiffre res-
tant, lorsque celui cfu'on efface égale ou surpasse 5.
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4. D'après cela, si un ou plusieurs des nombres donnés

étaient approximatifs à moins d'une demi-unité d'un cer-
tain ordre décimal, il n'y aurait qu'à prendre de tous les
nombres, des valeurs approchées au même degré que
celui qui l'est le moins, et Ton serait ramené à opérer
comme dans le cas précédent. Donc, règle générale :

Pour additionner plusieurs nombres approximatifs
après avoir écrit le premier, je suppose, celui qui contient
le moins de chiffres décimaux^ conservez-en le même
nombre dans tous les autres, et effectuez Vopération
d'après la règle connue, puis effacez le dernier chiffre
du résultat. De sorte que vous aurez autant de chiffres
décimaux exacts moins un, qu'il y en a dans celui des
nombres proposés qui en contient le moins.

Il est à remarquer, toutefois, que cette règle n'est
applicable qu'au cas où l'on additionne moins d'une
vingtaine de nombres. Autrement il faudrait effacer sur
la droite du résultat un chiffre de plus pour chaque
vingtaiue de nombres additionnés.

5. Nous ne citerons la soustraction que pour mémoire,
parce qu'il est évident que, si l'on soustrait deux nombres
approchés à moins d'une demi-uni té d'erreur d'un certain
ordre quelconque, le résultat sera lui-même approché à
moins d'une demi-unité du même ordre.

6. Quanta la multiplication, on trouve, dans la plu-
plart des Traités d'arithmétique (voyez Arithmétique de
M. Bourdon, i5e édition : Note sur les approximations
numériques), une démonstration de la règle suivante :

Pour multiplier deux nombres l'un par l'autre à moins
d'une demi-unité d'erreur d'un certain ordre décimal
donné, écrivez le multiplicateur au-dessous du multipli-
cande, en renversant Tordre des chiffres du multiplicateur,
et plaçant celui des unités sous le chiffre du multiplica-
teur de l'ordre immédiatement inférieur au degré d'ap-
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proxiinatiôn donné; multipliez ensuite successivement
par chaque ordre d'unités du multiplicateur toute la par-
tie du multiplicande placée à sa gauche, en commençant
par le chiffre qui lui correspond $ et ajoutez, au produit du
premier chiffre, la retenue qui aurait été fournie par la
multiplication du chiffre précédent : enfin, écrivez tous
les produits partiels de telle façon que, le premier chiffre
de chacun étant dans une même colonne verticale, tous
les autres chiffres se correspondent} puis additionnez et
effacez le premier chiffre à la droite du produit, en ayant
soin d'augmenter d'une unité le premier chiffre restant,
si celui qu'on efface égale ou surpasse 5. Il ne restera
plus qu'à placer la virgule, ce qui est aisé d'après le degré
d'approximation donné ou bien d'après l'ordre du dernier
chiffre décimal qui est toujours facile à déterminer dans
chaque cas.

Si les nombres proposés renfermaient un grand nombre
de chiffres décimaux, ou même étaient illimités, comme
une fraction périodique par exemple, on négligerait évi-
demment, dans l'opération, tous les chiffres de chaque
facteur auxquels il n'y en a point de correspondant dans
l'autre*

7. Supposons actuellement les deux facteurs approchés
chacun à moins d'une demi-unité d'un certain ocdre dé-
cimal. Il est évident qu'en multipliant tout le multipli-
cande par Tordre d'unités le plus élevé du multiplicateur,
le produit partiel que l'on obtiendra ne sera approché
qu'à moins de quelques unités décimales d'un ordre qu'il
sera aisé de déterminer dans chaque cas. On prendra
donc, suivant la règle qu'on vient de tracer, des valeurs
de tous les autres produits partiels approchées à moins
d'une demi-unité €u même ordre (4), puis on effectuera
l'addition et on placera convenablement la virgule.

Ann. de Mathèmat , t. X. (Juillet I 8 5 I . ) 1$



aient pour exemples les deux nombres '54*865 et
75,346 supposés approximatifs chacun à moins d'un
demi-millième. J'écris d'abord ces nombres conformément

54865 à ce qu'on vient de direr etj^effeetuieropéra-
64357 tion comme on le voit ci-contre. Pour placer
384o5 5 la virgule j'observe que les millièmes du mul-

27432 tiplicande 5 , multipliés par les dizaines du
1646 multiplicateur n, donnent des centièmes ; de
a 19 sorte que le chiffre effacé 4 étant des cen-
. 32 tièmes, le chiffre suivant 8 est des dixièmes,

et partant le produit 4133,8 est approché àp p
moins d'un dixième d'erreur.

Lorsque les nombres proposés ne renferment pas le
même nombre de chiffres, tant décimaux que non déci-
maux, c'est toujours celui qui en contient le moins que
l'on prend pour multiplicande, afin de faire porter les
erreurs d'approximation sur le premier chiffre de chaque
produit partiel, que l'on supprime ensuite, et non sur le
nombre de ces produits. Donc, règle générale :

JPour multiplier l'un par l9autre deux nombres ap-
proximatifs, prenez pour multiplicande celui qui con-
tient le moins de chiffres; puir, écrivez le multiplicateur
au-dessous3 en renversant Vordre de ses chiffres, et pla-
çant celui de Vordre le plus élevé sous le premierj à
droite du multiplicande; effectuez ensuite Vopération
d'après la règle du n° 6 , et placez enfin la virgule
4 [après l'ordre que doit représenter le premier chiffre, à
droite du produit,

8. Appliquons cette règle à quelques exemples :
i° . Quel est le poids d'une certaine quantité d'acide

sulfurique, dont le volume a été trouvé égal à 251U,54 >
à moins d'un demi-centilitre d'erreur?1



Multiplions ce nombre par 1,8409, poids
spécifique de Facide sulfurique*, j'ai 490, et,
comme le (b) exprime des dixièmes, j'ai
47,0 kilogrammes*, a moins de 100 grammes

102 d'erreur. Mais cm pettt se tromper de plusieurs
dizaines de grammes. Pour obtenir un plus

470 • haut degré d'exactitude ^ il aurait fallu mesu-
rer le volume avec plus de précision. Toutefois, cette pré-
cision deviendrait elle-même illusoire, dès que le volume
contiendrait plus de chiffres que le poida spécifique, ce
qu'on peut voir dans l'exemple suivant :

20. Quel est le poids d'un lingot d'argent pur, dont le
volume a été trouvé égal à 1567™, 843 5 à moins d'un
demi-millième d'erreur?

Le poids spécifique de l'argent étant 10,4743} je mul-
io,4743 tiplie ce nombre par le volume donné, et
3.487651 j'observe que le chiffre 3 des millièmes du

io4743 multiplicateur, ne correspondant à aucun
52371 chiffre du multiplicande, devient, ainsi que

6284 tous ceux qu'on aurait pu mettre à la droite,
733 complètement inutile dan* la multiplica-

83 tion (6). Pour placer la virgule, je re-
4 marque que le premier chiffre 8 du produit

164^18 résultant de dix-millièmes multipliés par
des mille, exprime des dixièmes, et, comme on Tenace,
on a 16423 grammes ou r6ki l ,4a3 pour le poids de-
mandé approximatif seulement à moins d'un gramme
d'erreur. Et, chose remarquable, c'est qu'une fois le vo-
lume mesuré avec autant de chiffres qu'il y en a dans le
poids Spécifique, toute approximation plus grande dans
la détermination du volume ne peut rien ajouter à celle
du poids. *.

3°. Quelle est la quantité d'argent pur contenue dans
16.



une ancienne pièce de 6 livres, dite aux trins couronnes?
Je trouve, dans XAnnuaire du Sureau des Longi-

tudes, que cette pièce, au titre de 0,917, pèse 3ogr,&94-
Je multiplie l'un par l'autre ces deux nombres, qui ne

917 peuvent être qu'approximatifs, à moins d'une
demi-unité de leur dernier ordre décimal. Je
trouve pour produit 281, et, plaçant la vir-
gule, j'ai enfin 28&r,i, à moins d'un dixième
de gramme d'erreur. Toutefois, on peut se
tromper de plusieurs centièmes de grammes,

ce qui peut avoir une certaine importance, surtout lors-
que cette erreur peut se répéter un certain nombre de
fois pour plusieurs pièces.

9. Passons à la division, et, comme ce sera encore du
procédé par lequel on abrège ordinairement l'opération
que nous déduirons nos règles d'approximation, et que
d'ailleurs les Traités, de nous connus au moins, donnent
plutôt de ce procédé une simple explication qu'une dé-
monstration rigoureuse, nous commencerons par en ex-
poser complètement une théorie nouvelle, basée sur le
principe suivant : '

Étant donnée une fraction proprement dite quel-
conque, si Von augmente ou si Von diminue le dénomi-
nateur d'un certain nombre, Sans altérer le numéra-
teur, la fraction subit elle-même une diminution ou une
augmentation, laquelle est plus petite que le quotient du
nombre dont on a augmenté ou diminué le dénomina-
teur divisé par le dénominateur de la nouvelle fraction.

En effet, soit la fraction — > dont j'augmente le déno-

minateur de 2, par exemple; j'aurai — -—» fraction
, . 1 2 —f- 2

plus petite que la proposée. Pour obtenir la différence



( )
entre ces deux fractions, je les réduis au même dénomina-
teur, et, en indiquant simplement les calculs, je trouve

( ) r . . TXI2 ,

pour la première, et —£ r pour la( ? J ) ft ( 4 )
seconde. Le numérateur de la première contient évidem-
ment .7 X 2 de, plus que celui de l'autre, et par consé-
quent la première surpasse la seconde de

7X2 _ 7 _ 2
13(12 -f- 2) 12 12-f-a

Or, le premier facteur de ce produit — est la fraction

proposée, qui est par hypothèse <* 1 \ si donc on divise la

différence par ce facteur, le quotient ———- sera plus

grand que cette différence. Donc, enfin, l'augmentation de

la fraction proposée sera plus petite que — — Ce qu?il

fallait démontrer.

En général, soit -r une fraction proprement dite 7 et d

la quantité dont on augmente ou dont on diminue le dé-

nominateur, suivant que d est positif ou négatif, 7 -j

sera la nouvelle fraction, et si Ton appelle x la différence
entre ces deux fractions, on a

a a(b -\- d) — ab ad
x = J ~ T T ^ d ^ b(b + d) = b{b-hd) ^ I

Et comme T <T 1 «• évidemment en valeur absolue x <" y-—*

que d soit positif ou négatif. Donc, etc.
10. .Pour appliquer ce principe, soient d'abord pro-

|>osés les deux nombres 758275 et5634, dont on demande



75S3oo
*9*9

6 le quotient, à moins d'une unité
5#&4 d'erreur. Le dividende peut être dé-

1346 composé en 7583oo-25, et nous pou-
vons ne considérer que la première

260 partie, en négligeant la fraction
M 25

o
quotient se trouve augmenté.

La question étant ainsi ramenée h diviser 7583oo par
5634Î j'effectue, suivant la règle ordinaire, la division
de 7583 centaines par 5634 5 je trouve pour quotient 1 et

la fraction -J~~ de centaine. En diminuant le dénomina-

teur de cette fraction de 4? j'aurai ££—> avec une aug-

mentation <C-PT^T7 5 et à fortiori <^ —:— de centaine, ou
^5634 1000 '

< . . . -H — d'unité.
^ 10

En consentant à cette erreur, je n'aurai qu'à diviser
19490 par 563o, ou, ce qui revient au même, 1949 Par

563, pour avoir les dizaines du quotient. J'aurai ainsi 3

et la fraction p^r de dizaine, En diminuant le dénomina-

teur de 3, j'aurai ££- , avec une augmentation < ^ ~ » ou

à fortiori <" de dizaine, ou bien < . . . -\ d'unité.
^ 100 ^ 1 01 0 0

Pour avoir les unités, je divise 2600 par 56o, ou 260
36

par 56, et je trouve 4 et la fraction ^ d'unité. Cette fois

36
j'augmente le dénominateur de 4 5 c e qui me donnerr-

avec une diminution < §-> et, à fortiori ,<*••• — d'unité.
^60 ' ' ^ 10



Alors enfin je divise 3€o par 60 , ou 36 par 6 , et j'ob-
tiens un chiffre de dixièmes. On aura donc i34)6 9 ou
plutôt i35 unités pour le quotient cherché à moins d'une
unité d'erreur, puisque la somme de toutes les erreurs com-
mises (plus petites respectivement que H—:—> 4-—?

-f- 1 constitue à peine un ou deux dixièmes. On
10 10/ r

déduira aisément de ce raisonnement la règle générale
suivante ;

Pour obtenir le quotient de deux nombres entiers, à
moins d'une unité simple d'erreur, effacez d'abord, sur
la droite du dividende, autant de chiffres moins deux
qu'il y en a dans le diviseur; divisez ensuite, d'après la
règle ordinaire, la partie conservée du dividende, puis
continuez l'opération en effaçant, à chaque division
partielle, un chiffre sur la droite du diviseur. Vous au-
rez ainsi un chiffre de trop au quotient, que vous efface-
rez en ayant soin d'augmenter d'une unité le chiffre
précédent, si celui qu'on efface égale ou surpasse 5. On
aura toujours le même soin d'augmenter d'une unité le
dernier chiffre restant à la droite, soit du dividende, soit
du diviseur, lorsque le chiffre suivant, qu'on snppose
effacé, égalera ou surpassera 5.

11. En appliquant cette règle à un exemple quel-
conque, on verra, par le raisonnement qui précède, que,
même dans les cas les plus défavorables, ceux oïï les pre-
miers chiffres du diviseur sont très-pelits, jamais aucune
des fractions dont on altère successivement le quotient ne

-peut surpasser une assez petite fraction de l'unité du pre-
mier ordre. D'ailleurs, en général, une partie de ces
erreurs augmente le quotient, tandis que les autres le di-
minuent, de sorte qu'en définitive, l'altération totale
restera au-dessous d'une unité simple. Cependant, si les



nombres proposés renfermaient un grand nombre de
chiffres, il pourrait arriver que la méthode abrégée donnât
réellement une ou même plusieurs unités d'erreur au
quotient. Ainsi, dans la division de 568587658964785637
par 12432424369 on trouve, en appliquant directement Ja
méthode abrégée, 4576642858, ou plutôt 457664286,
tandis que le quotient n'est réellement que 457664283 et
une fraction. Mais de pareils cas sont fort rares, et, d'ail-
leurs, il suffirait alors de chercher le quotient avec deux
chiffres de trop, en en conservant un de plus au premier
dividende partiel, pour être bien sur de ne pas commettre
une unité 4'erreur sur le premier ordre.

12. Passons maintenant au cas où Ton demande le quo-
tient de deux nombres entiers ou décimaux, à moins d'une
unité d'erreur, d'un ordre décimal donné. On commence
alors par effacer la virgule du diviseur, et par reculer celle
du dividende d'autant de rangs sur la droite qu'il y a de
chiffres décimaux au diviseur, ce qui n'altère en rien le
quotient; puis on réduit le dividende en unités décimales
de l'ordre correspondant au degré d'approximation donné,
et la question se trouve ramenée à déterminer le quo-
tient de deux nombres entiers à moins d'une unité du
premier ordre d'erreur. Soit proposé pour exemple de
diviser 856,784 par 6,2785, à moins d'un millième d'er-
reur. Effaçant la virgule du diviseur et reculant celle du

£8# dividende de 4 rangs, j'ai
6*g35 85^7840 à diviserpar62785;

1364631 je réduis le dividende en mil-
lièmes, en mettant 3 (o) à la

228934
405790

29080 droite, et j'effectue enfin la •
896*4 division de 8567840000 par

196 62785, ce qui me donne
7 1364631 pour quotient; effa-
1 çant le dernier chiffre, et



séparant trois chiffres décimaux pour avoir des millièmes,
j'ai enfin 136,463 pour le quotient demandé»

13. Appliquons la même règle à trouver le quotient de
38,56̂ 4<> par 48,565 à moins de o,oi d'erreur. On ramè-
nera d'abord la question à diviser 385674° par 48565
à moins d'une unité d'erreur. Ce diviseur ayant 5 chiffres,
j'en efface 3 sur la droite du dividende ; mais alors la par-
tie restante 3856 ne contenant plus le diviseur, j'eflace,
sur la droite de celui-ci, assez de chiffres pour qu'une
première division partielle soit possible, ûe sorte qu'en
définitive je divise 3857 par 4$6, et j'ai pour quotient
792, ou plutôt 0,79, en supprimant le dernier chiffre,
et plaçant la virgule. On doit remarquer que chaque di-
vision partielle donnant un chiffre,' tout se réduit en dé-
finitive à conserver au diviseur autant de chiffrés-plus
un, que l'on veut en avoir au quotient et au dividende
assez pour contenir ce diviseur par plus de neuf fois. Or
il est aisé, dans chaque cas, de déterminer combien le
quotient doit contenir de chiffres: d'abord, le degré
d'approximation donné indique le nombre de chiffres
décimaux, et il n'y a qu'à multiplier le diviseur par
0,01 — 0,1 — 1 — 10 — 100... pour trouver celui d'uni-
tés entières. Donc, règle générale :

Pour trouver le quotient à moins d'une unité d'erreur
d'un ordre décimal donné* de deux nombres décimaux,
composés de beaucoup de chiffres ou même illimités,
commencez par déterminer le nombre des chiffres du
quotient, puis conservez-en un de plus sur la gauche du
diviseur, et effacez sur la droite du dividende tous ceux
qui ne font pas partie du premier dividende partiel ; il
ne reste plus alors qu'à effectuer l'opération d'après la
méthode connue (12). Soit, par exemple, proposé de di-
viser 756,85463485463... par 27,5648756487... à moins
de 0,001 d'erreur. Le diviseur, multiplié par io, donne



un résultat plus petit que le dividende, tandis que, mul-
tiplié par 100, il en donne un plus grand. Le quotient
aura donc 2 chiffres d'unités entières. On en veut 3 de
décimales, c'est en tout 5. Je prends donc pour diviser
les 6 premiers sur la gauche du diviseur proposé, et je
divise 756855 par 275649. J'obtiens le quotient 274570,
je supprime le dernier chiffre et j'en sépare 3 décimaux ,
ce qui me donne 27,457 pour le quotient cherché.

14. Passons, enfin, au cas où les nombres proposés
sont eux-mêmes approximatifs chacun, à moins d'une
demi-uni lé de son dernier ordre. Alors, on pourra les
considérer comme étant chacun la partie qu'on aurait
conservée de nombres décimaux illimités.IMais, pour plus
de clarté, nous distinguerons deux cas :

i° . Si le dividende, abstraction faite des virgules, est
plus grand que le diviseur, comme il résulte de la théorie
de la division abrégée, qu'une erreur de quelques unités
sur le dernier chiffre du diviseur ne peut avoir d'influence
que sur le chiffre du quotient qu'on efface, on commen-
cera par mettre un (o) à la droite du diviseur, puis on effa-
cera , sur la droite du dividende, tous les chiffres qui ne
feront pas partie du premier dividende partiel. On effec-
tuera ensuite la division d'après la règle du n° H , et l'on
placera la virgule, en déterminant, comme on l'a dit au
numéro précédent, combien le quotient doit avoir de
chiffres d'unités entières.

Toutefois, on observera que, si le diviseur commen-
çait par un chiffre au-dessous de 5, et que le quotient
contînt un assez grand nombre de chiffres, on devrait,
pour être tout à fait sûr de Fexactitude des chiffres con-
servés, en effacer 2 sur la droite du quotient (11) ;

2Q. Si, au contraire, le dividende est plus petit que le
diviseur, toujours abstraction faite des virgules, on com-
mencera par mettre un (o) à la droite du dividende, puis



( aS* )

on effacera sur la droite du diviseur, assez de chiffres
pour rendre possible la première division partielle, et
Ton sera ainsi ramené au cas précédent.

Soit, par exemple, à diviser 356,37694 par 2,47936,
ces nombres étant supposés approximatifs chacun à une
unité de son dernier ordre. Je mets (o) à .la droite du di-
viseur, puis je néglige le dernier chiffre du dividende, et
je divise 3663769 par 2479360. J'obtiens 14373> et
comme le diviseur', multiplié par 100, donne un résultat
plus petit que le dividende, tandis qu'il en donne un plus
grand si on le multiplie par 1000, le quotient cherché
sera i33,73 à moins d'un centième d'erreur.

Pareillement, pour diviser les deux nombre1 s approxi-
matifs 3,5678 par 4?i256842) je commence par mettre
un (o) à la droite du dividende, puis je supprime les deux
derniers chiffres à la droite du diviseur, et je divise
35678^0 par 412568. Le quotient 86479^ étant évidem-
ment compris entre 1 et 0,1, sera o,86479* à moins d'un
cent-millième d'erreur.

15. Dans le cas où un seul des deux nombres serait
approximatif et l'autre exact, on opérerait exactement
de la même manière en mettant toutefois à la droite du
nombre exact assez de (o) pour rendre possible une pre-
mière division partielle.

Soit, par exemple, le nombre exact 547 * diviser par
lenombreapproximatif 8769. Je mets d'abord un (o) à la
droite du diviseur, puis trois (o) à la droite du dividende,
et je divise 547000 par 87690, ce qui me donne 6%$yBr

ou plutôt 623? ; et, comme le quotient ne doit contenir ni
unités ni dixièmes, on a 0,0623.

16. Nous terminerbns par observer que, si Vun des
nombres étant approximatif, l'autre était illimité, ou
bien devait être déterminé soit par un calcul, soit par
une expérience, il serait inutile de chercher un nombre



de chiffres plus considérable que ceux qui sont néces-
saires pour satisfaire à la règle du numéro précédent,
tous les autres ne pouvant avoir d'influence sur l'exacti-
tude du résultat.

17. Faisons-en l'application à-quelques questions nu-
mériques :

i°. Quel est le volume d'un tonneau rempli d'eau de
mer, dont le poids a été obtenu égal à i524kiS37?

Le poids spécifique de Feau de mér étant i ,O2Ô3, à
moins d'un demi-dix-millième, je divise le nombre donné
par celui-ci, ou plutôt, suivant la règle du n° 14, je di-
vise 152437 par io263o, ce qui me donne i4852i. Je
dois effacdr le dernier, ou même ici les deux derniers
chiffres ' ( 11), et comme d'ailleurs le quotient est compris
entre 1000 et 10000, j'ai enfin i485 litres. On ne peut
compter sur l'exactitude que des unités de litres, sans y
pouvoir rien ajouter par une plus grande précision dans le
poids donné,

20. Quel est le volume de 846S%34 d'alcool pur?
La densité de ce liquide étant supposée 0,792, à

moins d'un demi-millième d'erreur, je divise le premier
de ces nombres par le deuxième, ou plutôt 8563 par
7920, et j'ai 108. Comme il faudrait séparer 4 chiffres
non décimaux, et que, pour réduire en litres, il faut di-
viser par 1000, j'ai enfin i l u ,o8. Le dernier chiffre du
poids a été inutile.

3°. Quel est le volume d'un ballon rempli d'un poids
d'hydrogène égal à 525 grammes, dont le poids spé-
cifique est 0,0688, ces deux nombres étant supposés
approximatifs, à moins d'une demi-unité de leur dernier
ordre?

Je divise £>25o par 688, et j'ai 762 pour quotient; sup-
primant le dernier chiffre, et plaçant la virgule, j'ai 7,6.
Pour trouver le volume en litres, je multiplie ce nombre



par 770, et j'ai un produit compris entre 58oo et g ;
ainsi, Terreur peut bien être de ' près d'une centaine de
litres.

Il est inutile de multiplier davantage les exemples pour
montrer de quelle importance il peut être, dans certains
cas, de trouver dans les Tables de poids spécifique, ou
autres, les résultats écrits avec un grand nombre de
chiffres décimaux.

18. On peut appliquer les mêmes principes à la déter-
mination des racines carrées et cubiques des nombres
approximatifs. Commençons par les racines carrées, et
rappelons d'abord ce principe démontré dans tous les
Traités d'Algèbre -.Quand on a obtenu la moitié plus un
des chiffres d'une racine carrée, par la méthode géné-
rale, on obtiendra tous les autres en divisant le reste par
le double de la partie trouvée de la racine. En combi-
nant ce principe avec celui de la division abrégée, on dé-
terminera aisément, dans tous les cas, la partie exacte de
la racine d'un nombre approximatif. Mais, pour plus de
facilité, distinguons deux cas :

i°. Si le nombre approximatif proposé contient un
nombre pair de chiffres décimaux, extrayez la racine9

comme si le nombre était exact; puis mettez un (o) à la
droite du dernier reste> et effectuez la division abrégée
de ce nombre par le double de la racine. Vous placerez
la partie exacte de ce quotient à la droite de la racine
déjà obtenue, et vous aurez la racine, à moins d'une
unité d'erreur de son dernier ordre décimal. Soit pour
exemple le nombre approximatif 3,456783. Je trouve
d'abord, par la méthode ordinaire, 1859 avec le reste
902. Je mets un (o) à la droite de ce nombre, et je divise
9020 par 3718, double de la racine, ce qui me donne
2435 ou 243, et, partant, j'ai, pour la racine cherchée,
1,859243.



( 254 )

a°. &' le nombre proposé contient un nombre impair
Je chiffres décimaux, commencez par mettre un (o) à la
droite, et vous serez ramené aucas précédent. Seulement,
il ne sefapluspetmisÀe mettre un nouveau (ô) à ta droite
du dernier reste, et, pour rendre la première division
partielle possible, vous devrez commencer par effacer le
premier chiffre à la droite du diviseur. Soit pour exem-
ple le nombre approximatif 54^6,356; j'extrais la racine
de 5426356o, et j'ai ^366 avec le reste 56o4. Je le divise
par 14732, ou plutôt par i473, et j'ai 38i, de sorte que
la racine cherchée égale 73,6381, à moins d'un cent-
millième d'erreur.

19. Quantaux racines cubiques, on démontré pareille-
ment que, si Von a obtenu par la méthode générale plus
de la moitié plus deux, des chiffres d'une racine cubique
quelconque y on peut obtenir tous les autres en divisant
le reste par trois fois le carré de la partie connue de la
racine. De ce principe, combiné avec celui de la division
abrégée, on a déduit la règle suivante, pour extraire la
racine cubique d'un nombre approximatif:

i°. Si le nombre proposé contient un nombre de chiffres
décimaux multiple de 3, on en extraira la racine cu-
bique comme s il était exact, puis on divisera le dernier
reste par trois fois le carré de la racine trouvée, en ne
cherchant de ce quotient qu'autant de chiffres moins trois
qu'on en a déjà obtenu à la racine.

20. Si le nombre proposé ne contient pas un nombre de
chiffres décimaux multiple de 3, on commencera par ra-
mener ce cas au précédent, en plaçant un ou bien deux (o)
à la droite du nombre. Parce qu'en effet les deux derniers
chiffres du nombre n'influent en rien ni sur la partie de
là racine qu'on cherche par la méthode générale, ni sur
celle qu'on obtient par la division abrégée, le quotient
contenant toujours beaucoup plus de chiffresque l'on ne



doit en conserver. Appliquons cette règle-à un exemple;
mais auparavant exposons, sur le procédé général de l'ex-
traction des racines cubiques, une remarque qui n'a point
encore été faite, du moins nous le pensons, et qui abrège
considérablement les calculs de cette opération, surtout
quand le nombre proposé contient beaucoup de chiffres.

20. On sait qu'à l'exception du premier, tous les chiffres
d'une racine cubique s'obtiennent en divisant par trois fois
le carré de la racine déjà obtenue, le reste correspondant
suivi du premier chiffre de la traïiche suivante. Pour véri-
fier ce chiffre, que l'on peut toujours considérer comme
des unités, les autres étant des dizaines, et obtenir le nou-
veau reste, on peut former le cube de toute la racine, et le
soustraire de toute la partie du nombre sur laquelle on a
opéré; mais on peut aussi former directement les trois
parties^a* b -+- 3 a i 2 -f- b* (a désignant les dizaines, et b
les unités) contenues dans le reste, et les en retrancher.
Pour cela , on écrit, l'un au-dessous de l'autre, les trois
nombres 3 a2, 3 a i , Z>2 (en les réduisant, au moyen de
deux (o) pour le premier, et de un (o) pour le deuxième,
en unités du premier ordre), puis on additionne ces trois
nombres, et l'on multiplie la somme par b.

Le premier procédé est beaucoup plus long, et , cepen-
dant, on le préfère ordinairement parce que, dit-on, en
formant le cube de la racine on a le carré, et, partant, on
obtient aisément trois fois ce même carré qui sert à trou-
ver le chiffre suivant.. Mais, dans la deuxième manière, on
peut aussi obtenir très-aisément trois fois ce carré (et c'est
en cela que consiste notre remarque), en observant que

3«24- 3.

Or, les trois* nombres qu'on a additionnés dans l'opé-
ration précédente, étant 3a2 , Zob et £% il'suffit de mul-
tiplier respectivement ces trois nombres par i , par a



( a 5 6 )

et par'à % et dfajouter les trois résultats pour avoir troisfois
le carré de la racine* II en résulte une méthode d'opérer
qui nous a paru remarquable, tant pour la symétrie des
calculs et pour la facilité avec laquelle elle se démontre,
que pour la simplification qu'elle introduit dans l'extrac-
tion des racines cubiques*

Pour en donner un exemple, ainsi que de la règle d'ap-
proximation , soit proposé d'extraire la racine cubique du
nombre approximatif 57524,8567236. Je mets d'abord deux
(o), et j'extrais la racine cubique de 57524856723600.

3 o X 3 X 8 = 9 0 X 8
38o X 3 X 6 = n4o X 6 .

386oo X -3 X a = n58oo X 2

57524856723600 * 38602

2652856
12400723600
3460500392

4332oo
i368o
108

4469880000 1

23i6oo 2

4 3
44'

3460

331

16

Racine =

70111604

447
774

38,60277.

2700

720

64
3484

I 2700

2 144°
3 192

433200 1
6840 2

36 3

4469880000
463200

4470343212

Pour effectuer cette opération, j'ai d'abord pris la ra-
cine cubique du plus grand cube contenu dans 57, ce



qui m'a donné 3 avec le reste 3o ; à côté de ce reste, j'ai
abaissé les trois chiffres suivants $ j'ai séparé les deux der-
niers et j'ai divisé la partie de gauche 3o5 par 27, égal
à trois fois le carré de la racine trouvée 3.

Le quotient étant supposé 8, pour le vérifier, je mets
deux (o) à la droite de 27} j'écris au-dessous le produit
3o X 3 X 8 et encore le carré de 8 ; j'additionne ces trois
nombres-, je multiplie la somme 3484 par 8, et je sous-
trais le produit de 3o524; à la suite du reste 2652, j 'a-
baisse les trois chiffres suivants du nombre, je sépare les
deux derniers, et je divise la partie de gauche 26528 par
trois fois le carré de 38. Pour obtenir ce diviseur, je place
1, 2 et 3 respectivement à droite des nombres 2700, 720
et 64, que je multiplie les uns par les autres; j'addi-
tionne les produits, et la somme 4332 est le diviseur
cherché*, la division de 26028 par £$11 me donne le
quotient 6 avec le reste 12400, à la droite duquel j ' a -
baisse les trois chiffres suivants.... En continuant d'opérer
toujours exactement de la même manière, j'obtiens les
cinq chiffres 386o2 avec le reste 346o5oo3p,2.

Après avoir obtenu cinq chiffres, on en peut avoir deux
en divisant le reste par trois fois le carré de la racine
= 447°3432i2. Comme on n'a besoin, au quotient, que
de deux chiffres, je divise simplement 3460 par 467 et
j'ai 77. Mettant le quotient 77 à la droite de la racine déjà
obtenue, j'ai, enfin, 38,60277 pour la racine cherchée, à
moins d'un cent-millième d'erreur.
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SUR UN CERTAIN SYSTÈME D'ÉQUATIONS DU PREMIER DEGRÉ;
D'APRÈS M. JACOBI (*}.

(Journal de M. Crelle, t. XXX, p. 5i-94; 1846.)

1. Soit le système suivant de n équations linéaires
entre les n inconnues a, (3 , y , . . . , 7r :

', a + û'2 f + fl'3 7 4- • • . -h dn * = *a,

(0

On suppose qu'on a la relation

p et q étant des nombres de la suite i , 2 , 3 , . M , w.

On a n équations entre les n —1 rapports - 5 ->•••? -*,
a a a

éliminant ces rapports, on obtient, comme on sait, une
équation en t, de degré n.

Soient £t, r2,..., *«, ' e s n racines de cette équation.
Substituant successivement ces racines dans n — 1 quel-
conques des équations du système (1), on aura n sys-
tèmes de valeurs, pour les n — 1 rapports. Si Ton pose,
de plus,
(3) a' + p'-j- ..

— sera une quantité connue-, donc a sera connu, de

même (3, etc. Ainsi, àTa ide de l'équation ( 3 ) , les n

(*) On lit l'extrait d'un beau Mémoire de M. Sturm, sur le même sujet,
dans le Bulletin de Férussac (Mathématiques, t. XII, p. 3i6; 1829).



systèmes de valeurs des inconnues seront complètement
déterminés.

2 . Désignons par «0», /3W,.\., WW, l e s valeurs des
inconnues qui correspondent à la racine tp; (p) désigne
un nombre d'accents.

Les équations (i) donnent donc

a\ a' 4- a\ pf 4- . . . 4 - < TT' = *,<*',

a\ a' 4- «VP' 4- ... . 4- < ir' = tt p',

Si Ton additionne ces équations après avoir multiplié
la première par aJ\ la seconde par jS",..., la dernière par
TT", le coefficient de a', dans le membre à gauche, sera
a ' l a ' / 4 - « ' r

l ^
/ / + . . . a ^ ) w / / ; e t , d'après la relation ( a ) ,

cette expression est la même que

mais c]est ce que devient le membre à gauche de la pre-
mière des équations ( i ) , pour la racine £2 : donc le coef-
ficient de a', est tta

n. On prouve de même que le coeffi-
cient de /3' devient U fi", et ainsi des autres ; donc on a

f, (aV'4-PT + 7 V + • • • 4-TT'TT")
= *,(«'<« 4 - ^ - h . . . * ' * " ) .

Et lorsque t± n'est pas égal à t2 ? on a

(4) «V /4-PT4-...4-irV':=o.

Cette relation montre, selon l'observation de M. Cau-
c î iy (¥)i qu e toutes les racines de l'équation en t sont
réelles.

En effet, soient tt, t2, deux racines imaginaires conjur

{*) Ce mode de démonstration a déjà été employé par Lapranpe
( Mêc. anal., t. II, p. 248 ; 2 e édit. ) '



j les rapports — et — * ~ 5 — ? etc., qui sont des

fonctions rationnelles de £, auront aussi des valeurs ima-

ginaires conjuguées. Ainsi les produits • , ,, ? ^7^? seront
a a a a

chacun la somme de deux carrés, ce qui rendrait im-
possible la relation (4)5 donc, etc.

3. Considérons les n équations linéaires suivantes :

(5)

a', a", etc., ayant la même signification que ci-dessus.
Si Ton additionne les carrés de ces expressions, et

que Ton ait égard aux relations (3) et (4) 5 on obtient

Additionnant ces équations, après avoir multiplié la
première par a', la deuxième par j3'v . . , et la dernière par
*', on trouve

-h/?„

et, de même,

Substituant ces valeurs dans la première des équa-
tions ( 5 ) , on trouve

Pl = [(«')' +(«")2 + . . .+(«(">)'] /» . ,

[aV 4- a"ir" -(- . . .



et, à cause de l'indépendance de pt, p2 , . . . , pn, on a

(8) («T + ( O ï + ' - . . + ( « ^ ) ï = i ,

(9)
a'7' -f- a"7'' -f- . . • -h

a V 4- «'V' H- . . . -f- a(*M") = o.

On trouve des équations analogues pour |3', y', etc.
4. La première des équations (i) donne

txoLr = a\ a' -F* ' , £' -f- . . . -f- *'n7r',

Si l'on additionne ces w équations, après avoir multi-
plié la première par a', la deuxième par a", etc., en ayant
égard aux équations (8) et (9), on obtient

/ ia'2+*aa"'.-t- . . . +/;a(•>*=«;,

et, de même,

t\ OL' p' + f2 a
v ̂  -h . . . + /,«(«) p» = a'2 ;

et encore n — 2 relations semblables pour y, cJ, . - ., 7r.
Faisant usage de ces n relations, on déduit des équa-
tions (7),

(10)

= a\ P) H- 2 < /?,/?, •+• 1cl'[p, p,

La loi est évidente. On forme le carré de

à chaque terme pr ps on donne pour coefficient ia^\
et au terme (p,)2 le coefficient a^'J.



Formules générales de correction pour les valeurs
des inconnues.

S. Supposons que les coefficients a, , a\ , etc., des in-
connues varient de quantités finies, mais assez petites pour
qu'on puisse négliger les puissances des variations supé-
rieures à la première puissance. Il s'agit de déterminer
les variations correspondantes des inconnues.

Soient Aa(? la variation du coefficient a{s), et A tx , A a'
les variations correspondantes de tt et a'. Les équations (i )
donnent :

( i l )

'Au",

•]

etc.
Ajoutant ces équations, multipliées la première par a',

la deuxième par j3', la troisième par y', etc., on obtient,
d'après les relations données ci-dessus,

=a'*Aa', -h 2 a'p' A«'2 -t-201'7' A

(,2)

etc.

La loi est évidente. On a donc Ar4 en fonction des
augmentations des coefficients. Ajoutant aux deux mem-
bres des équations (11) [tx — /2) Aa' à la première,
[ti — f2) A/3' à la seconde, (tt — tt) A y' à la troisième ,
et ainsi de suite, et puis additionnant ces équations, après
avoir multiplié la première par a", la deuxième par jS'7,
et la troisième par y", etc., on obtient



et, de même,

(tt - tz) (a'"A«'-h p-A
= « V A a \ -f- ( a" p'-4- a' p'") A < -4- pw p' A *', + . . .

On a ainsi ra— i équations entre les n variations Aa' ,
AjS',etc; à quoi il faut ajouter la nieme équation déduite
de l'équation (3 ) ,

a'Aa'-f- f'A P'+ 7'A7 ' + . . *. = O.

Multipliant les n—• 1 équations respectivement, la pre-
// a.'"

mière par , la deuxième par —, etc., et la nièms

équation par a', et les ajoutant, les grandeurs A/3',
A^, etc., seront, en vertu des relations (9) , simultané-
ment éliminées, et l'on obtient

/ a.'1 a!"2 \
A a ' = a! 1 h - . . 1 Aa x

( a"Ô'

M— - 1 An!

Les équations (12) et (i3) donnent donc les coeffi-
cients différentiels exacts,

(-4)
<xf _ P' ^a' a'

a' _ 7' Ja; .p'

etc.
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Par des mutations convenables, ces élégantes formules
donnent les premiers coefficients différentiels de toutes
les inconnues des n systèmes pris par rapport aux coeffi-
cients du système donné (i). On voit que les premiers
coefficients différentiels des n racines ttJ £8,...,£ft sont
donnés immédiatement par les valeurs des inconnues, et
que les coefficients -différentiels des inconnues a(l), |3 ^ ,
pris d'après les coefficients du système (i) , peuvent se
calculer aisément, seulement à l'aide des coefficients diffé-
rentiels pris d'après al9 a\, a"[, et] entre lesquels existe

même la relation ccf-y^ = | 3 / - 7 V ; les premiers coeffi-
da 2 a a, x

cients différentiels de a', j3', etc., donnent les seconds

coefficients différentiels des racines tx, f2, etc. Si les in-

créments Aa'a et Aa", ne sont pas égaux, alors il faut rem-

placer dans l'équation (12) Aa\ par - (A«'2 4-A a", ) , et,

dans l'équation (i3), il faut dans ce qui multiplie Aa'2 ,
multiplier la première partie par Aa'2 et la seconde par

Application astronomique.

6. Le but du présent Mémoire n'est pas purement
analytique*, mais l'illustre auteur s'est proposé de fournir
un procédé simple de résoudre numériquement les équa-
tions qui se présentent dans la théorie des perturbations
séculaires (LAPLACE, Mécanique céleste, liv. II, § 55). On
lit en cet endroit du Mémoire de Jacobi sept équations dif-
férentielles du premier degré, relatives aux sept orbites de
Mercure, Vénus, la Terre, Mars, Jupiter, Saturne et
Uranus. L'intégration fournit sept équations du premier
degré, à huit inconnues, ayant la forme des équations du
système (i). A l'aide d'ingénieuses transformations, on ob-
tient des équations dont les coefficients satisfont à la re-
lation (2)5 les données numériques sont empruntées au



beau travail de M. Le Verrier sur le même sujet {Addi-
tions à la Connaissance des Temps pour Tannée i843).
Les calculs, très-nombreux, ont été exécutés par M. Louis
Seidel, de Munich, élève de Jacobi. Les résultats com-
parés montrent que le procédé de Jacobi est beaucoup
plus exact que celui dont M. Le Verrier a fait usage
[voyez pages 90, 91 et 92 du Mémoire allemand).
Dans l'absence si regrettable d'un journal d'Astronomie,
M. Liouville, Membre du Bureau des Longitudes, sup-
pléerait , autant que faire se peut, à une lacune si hon-
teuse pour le pays, en insérant in extenso le Mémoire
de l'illustre Prussien, et d'autres travaux analogues,
dans son précieux Recueil destiné aussi aux mathéma-
tiques appliquées (*.).

SI H LES SURFACES ORTHOGONALES;

PAR M. LEBESGUE.

Définition. Si deux surfaces, ayant pour équations
11 = o, v = o , se coupent suivant certaines lignes c ,
c', etc. 5 et lorsque, pour tous les points d'une de ces
courbes, c par exemple, les plans tangents aux surfaces

(*) Pourquoi la nation ne fait-elle pas construire dans les environs
de Paris un ohservatoire-modèle, à l'instar de celui de Pulkpva? L'argent
ne nous fait pas défaut pour atteindre le niveau astronomique de la Russie.
Car nous consacrons bien des centaines de mille francs à publier des
vignettes, des dessins de catacombes, etc. Les sites ne manquent pas
non plus. On pourrait approprier à cette destination le château de Meu-
don, ou bien la tour dite des Anglais près Clamart. L'exactitude moderne
exige que les murs du bâtiment soient abrités contre les commotions de
la ville; et même ses habitants, les observateurs. Uranie est une déesse
jalouse, imposant à ses fidèles un culte assidu, exclusif, une adoration
perpétuelle.
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sont perpendiculaires entre eux, les surfaces elles-mêmes
sont dites orthogonales.

Remarque. Il peut se faire que l'orthogonalité ait lieu
pour une courbe et non pour l'autre. Ainsi, il est aisé de
former des équations de courbes qui se coupent perpendi-
culairement en un point, obliquement en un autre; telles
seraient, par exemple, les courbes d'équations j 2 = ipx,
x f = a<2y, toujours perpendiculaires à l'origine, et jamais
au second point de rencontre. Si maintenant on les fait tour-
ner autour d'une droite de leur plan, on aura deux surfaces
de révolution, qui se couperont perpendiculairement sur le
parallèle décrit par l'origine, et obliquement sur le paral-
lèle décrit par le deuxième point d'intersection.

THÉORÈME I. Pour que les surfaces u = o , f = o soient
orthogonales, il faut que les valeurs réelles x=yz,
y = tyz, tirées de ces deux équations*, rendent iden-
tiques l'équation

. . du dp du dp du dp
dx dx dy dy dz dz

Démonstration. Si l'équation («y) = o se réduisait à
6(z) = o, la perpendicularité aurait lieu aux points seuls
de l'intersection déterminés par l'équation 9 (z) = o-, il
faut donc que z disparaisse pour que la perpendicularité
ait lieu sans discontinuité.

Exemples. Pour les surfaces

.x2 y 5 z7 x2 y2 z2

" = ;T + F - 4 V - I : = 0 ' "=â> + v + ?-l=°>
l'équation (m>) = tone deviendra identique que moyen-
nant les conditions a — af = b — bf= c — c\ qui expri-
ment que les sections principales ont les mêmes foyers.

Pour les surfaces
x- y* x2 Y1

a b a b



Péquation (uv) = o ne devient identique que par les con-
ditions a — a!=zb — V = c', qui expriment encore que
les sections principales ont les mêmes foyers.

THÉORÈME II. Si les surfaces u = o , v = o sont ortho-
gonales, réquation{uv)z=zo entraîne cette autre d(uv)=o,
qui doit aussi devenir identique par l'élimination de x<>y,
au moyen des équations u = o, v = o.

Démonstration. Cela résulte de ce que l'équation
(uv) = o doit être aussi satisfaite par X-+-dx,y -\-dy,
z -\-dz, en supposant les rapports de dx, dy, dz déter-
minés par les équations

du du , du , dp _ dv dv
— dx-+--rdy-h—dz=zo, —dx-\- — df-+-—dzz=zo;
dx dy dz dx dy dz

mais, comme cela doit avoir lieu, quel que soit z , z doit
disparaître du résultat.

Remarque. Si les équations H = O , * > = O , ( M ^ ) = O ,

<i(i/p») = o s'accordaient sans que les deux dernières de-
vinssent identiques par l'élimination de z, il faudrait en
conclure seulement que la perpendicularité des plans
tangents aurait lieu pour deux points consécutifs de l'in-
tersection.

THÉORÈME III. Si les deux surfaces u = o, u = o sont
orthogonales ; et que la condition d(uv) = o se partage
en ces deux autres ,

dv [du\ dv , /du\ dv , /du

dx \dx) dy \dy) dz

qui, ainsi que (uv) = o, deviennent identiques par l'éli-
mination de Xjy, les deux surfaces se couperont suivant
une ligne qui sera, pour chaque surface, une ligne de
courbure.

Démonstration. J'ignore si ce théorème remarquable



a déjà été donné, mais il se démontre en quelques mots ; on
a les équations

dv dv , dv ,
— .dx+--rdy-\---dz=zoy**~ dy ' dzdx
dv du
dx dx

dv du
dy dy

dv du
dz dz

dv ,(du\ dv , du\ dv t/du\
dx \dx) dy \dy) dz \dz )

L'élimination de —9 -7-, ~ donne immédiatementdx dy dz

(A)

du

(du\ du du _ \
{ — ) -7- rfr — -j- dz)
\dy) \dz dx )

fdu\ (du du \
+ d \T ) [-rdx —rdx) = °>

qui n'est autre que Téquation des lignes de courbure sous
la forme que lui a donnée M. Joachimsthal.

Remarque. Pour les surfaces orthogonales du second
degré données plus haut, on reconnaît de suite que l'équa-
tion de condition d(uv) = o se partage comme il est in-
diqué plus haut; ainsi ces surfaces se coupent suivant des
lignes de courbure. Je reviendrai plus loin sur cette re-
marque.

THÉORÈME IV. Si deux surfaces orthogonales 11 = 0,
v = o, se coupent suivant une ligne de courbure de la
surface u = o, l'intersection sera aussi une ligne de
courbure de la surface v=o.

Démonstration. On a ici l'équation (A) du théorème
précédent \ puis les équations

dv dv dv
--— dx -\ dy H- --flzro,
dx dy dz
du dv du dv du dv
~r ' ~3—•—T~ ' ~ï—'—r~ ' ~r — o»dx dx dy dy dz dz



donnent
dp

dx
dp

dy
dv

dz
du du . du , du , du . du , '
— dz—-j-dy — dx — —dz -y-dy—— dx
dy dz dz dx dx dy

ce qui réduit l'équation (A) à
dv

par suite, on aura
du l dv\ du Idv\ du

De sorte que le théorème III mentionne que l'intersec-
tion est une ligne de courbure pour chaque surface.

THÉORÈME V. Si trois surfaces, M = O, y = o, iv = o ,
sont orthogonales deux à deux, les équations d ( uv) = o,
d{vw) = o , d[wu) ==o se partagent, comme il est dit
plus haut, et les trois courbes d'intersection passant par
le point m sont tangentes aux lignes de courbure re-
latives à ce point.

Démonstration. La comparaison des équations

du , du , du _ dp dp , dp
— dx -h -7- dy H- -r- dz = o , — dx •+• —dy-\---dz=:O,
dx dy J dz dx dy dz

à celles-ci :
du dw du dw du dw __

' dx dx dy dy dz dz ~~~ 9

dp dw dv dw dv dw
— . j . 1 • — = 0,

dx dx dy dy dz dz
montre que les dx, dy, dz relatifs à l'intersection des

surfaces u = o., v=o sont proportionnels à -T->-T->

dw
dz'

De même, pour l'intersection des surfaces v=o, w=o,



i t 7 7 . i » du du siu

les dx, dy^ dz seront proportionnels a — * -y-j V-; et,

pour l'intersection des surfaces w = o , M=O, les *£r, 4 ^ ^

seront proportionnels à — > —> —• Cela posé T dans le

développement des équations

d{uv)~ o, c/(c(v) = o, c?(wtf)=o,

ou bien dans les équations

trfr ,/dw\ dv
Tx-

d\Tx)
 + dy

dw Jds>\ dw Jdv dw

\ dw

du Jdw\ du Jdw\ du

on reconnaît de suite que l'on a

P = P', Q = Q', R == R' ;
par suite

d'où
R = O, P = O, Q r o

On trouve, en effet, pour P,
dvd*udw d^udvdw d^udvdw
li'd^'dx^ip'df'dy + I^lzli

d2u (dp dw do dw\ d7u /dp dw dp dw
"*" dxdy [dslty m*"djrHz) + dxdz \lx1z ^ ~dz~di

dp dw dp dw \
dydz \dj'~dz + Jz~~dy)



quant à P', il ne diffère de P que par le changement de
v en iv, et réciproquement, d'où il résulte que P = P'.

Puisque le partage des équations

= o

a lieu au point m, on en conclura, par le théorème III,
qu'en ce point les intersections sont tangentes aux lignes
de courbure. Il n'est pas même nécessaire que les trois
surfaces soient complètement orthogonales, il suffit que
les équations (uu) = o , d{uv) = o, etc., aient lieu pour
deux points consécutifs.

THÉORÈME VI. Si l'on a trois séries continues de sur-
faces Si, S2, S3, qui soient orthogonales deux à deux,
les intersections d'une surface déterminée st, du premier
groupe, par deux surf aces déterminées $21 -*» > des deux
autres groupes, seront précisément les lignes de cour-
bure de Sj.

Démonstration. C'est une conséquence immédiate du
théorème précédent; car, si Ton nomme m, m', m",...,
les points de rencontre des surfaces S8 avec l'intersection
de st, J2 , on reconnaîtra que les points m, ira', m'',...,
appartiennent à une ligne de courbure des surfaces st, «?2 (*).

Ce théorème est de M. Dupin [Dèv. de Géom., t. I,
p. i'ig). Pour l'appliquer à la détermination des lignes
de courbure, il faudrait, en prenant une série continue S t,
contenant une surface donnée 5j, déterminer les deux sé-
ries continues S2, S3, orthogonales à S4, et, de plus,
orthogonales entre elles. C'est une question difficile sur
laquelle l'auteur se proposait de revenir [Dév. de Gèom.,
t. I , p. 33o). Il me semble que le théorème III doit être

( *) Dans une Note du tome VIII, p. 382 de ces Annales, j'ai mal énoncé
et mal démontré cette proposition ; les théorèmes V et VI serviront de recti-
fication.



d'une application plus facile. M. Dupin a donné, pour
les surfaces du second degré, les trois séries continues
Si, S2, S8; on lui doit aussi un théorème particulier
pour déterminer les lignes de courbure des surfaces du
second degré : L'intersection de deux surfaces du second
degré, trajectoires réciproques orthogonales, est précisé-
ment, pour l'une et pour Vautre, une des lignes de leur
courbure. (Dév. de Géom., t. I , p. 3o3.)

Or ce théorème est un cas particulier du théorème III.
Si l'on prend les deux systèmes

x1 r2 z7 x* y2 z1

"=^ + T + 7 - I = o ' v=;?H-F + 7- 1 : = 0 '

ah a! bf

on reconnaît de suite que les équations

,(du dv du dv du dv\
\di'dv^^'dy'i~dz*dzj = = ° '

du J dv\ du

dv

sont les mêmes en supprimant un facteur numérique
constant. La même chose aurait encore lieu si, dans les
équations, l'exposant 2 était remplacé par l'exposant ni -,
mais il est probable qu'alors les conditions qui servent à
rendre (uv) = o identique, par l'élimination de J?, y,
seraient généralement trop nombreuses pour s'accorder.

Voici les équations au moyen desquelles il sera facile
de discuter les lignes de courbure des surfaces du second
degré, en supposant que ces lignes doivent passer par un
point (a , (3, y).

X1 Y2 Z2

Pour la surface h j -H — = 1, et, par conséquent,



—• + y + — = i » on prendra la surface orthogonale

4- ^ m

a — u b — u c — u
x2 y2

J

r= i , il en résultera

a (a — u) b'(b — u) c[c—u) \

qui revient à (m>) = 05 de là,

= o ,

et, par suite, en posant

2p = a -h b H- c — a2— p2 — 7%

on aura
, a2

u2 — 20w -h 0£
r «

d'où

mais, comme on a

/ a2

R = «2— ( ^ -1 \ a
£- -|- ab ?-
b c

on reconnaîtra que R n'est jamais négatif; et si Ton
représente par Ri = R8 = R3, les trois dernières formes
de R, on aura

a -urzza —

Ann. de Malhèmat., t. X. (Juillet i85i.)



J'omets le reste de la discussion; il sera bon de consi-
dérer à ipart chaque espèce de surface. Comme les deux
surfaces orthogonales à la surface donnée sont ortho-
gonales entre elles, on voit que les lignes de courbure se
coupent à angle droit.

Pour la surface 2 <z = h ~ et 27 = h r i e n pre-
a b ' a b r

nant la surface orthogonale

a — u b — u
d'où

a2 S2

— J L j
a (a — u) b .(b — u)

et posant

on aura

iû —

de là
m

puis

9.pu -h oh

u =

+ £-4-2y,

-h b htf^r = o;
a b

p 4- y/R,

/ a2 S2

R = p* — [ab 4- ^ - -4- a V
' \ a b

OU
R = R,ir:R2,

i it, par suite ,

/ ^ 6 — u z= b —

Dans la discussion, qui ne présente pas de difficulté, il
sera bon de considérer à part chaque espèce de parabo-
loïdo.



NOTE SUR «NE CERTAINE ÉQUATION MIÉRIQIE DO SIXIÈME
DEGRÉ;

PAR M. A.-J.-H. V.

A la page 89 du tome X (mars I 85 I ) des Nouvelles
Annales, M. Prouhet démontre la non-réalité des racines
de deux équations empruntées au Mémoire d'un illustre
astronome.

Je vais appliquer au second des deux exemples (celui
du sixième degré) la méthode Budan-Fourier, telle qu'elle
a été modifiée dans le Journal de M. Liouville et dans les
Mémoires de la Société des Sciences, etc., de Lille. (L'exem-
ple du quatrième degré est trop facile pour nous arrêter. )

Toute la démonstration résulte de l'inspection du ta-
bleau suivant, dont je vais expliquer la formation et les
conséquences.

A

4-56o2
4-8659
4-

H-3447
4-

H-3447
4-

B

—115g6
4- G821
4-

— i456o

4-

4- 6122

4-

c

4-29193

- 7693
-h

-H2243O

4-

4- i335
4-

D

— 2585 7

- 1 2 7 9 7

H-

—25857

H-

- 1 2 7 9 7

-+-

E

4-2243o
4- i335
4-

4-29193
4-

- 7693
4-

F

—i456o
4- 6122
4-

—n 596
4-

4- 6821
4-

G

+3447
-+-3447
4-

4-5602

-+-

4-8659

4-

La ligne première contient les coefficients de l'équation
proposée pris à rebours, et changés de signe de deux en

18.



(
deux, parce qu'il n'y a lieu de chercher que des racines
négatives.

La ligne deuxième est formée par l'algorithme suivant.
Si Ton nomme A, B, C, D, etc., les nombres de la pre-

mière ligne, et A', B', C7, etc., ceux de la seconde, on a

À' = ÀH-B-f- C-h D-4- E-+- F-H G
B' = B+2C-+-3D + 4E-4- 5F-+- 6G
C' = C + 3DH-6E-+-ioF-hi5G
D' = D -+. 4 E-h 10F + 20 G
E' = E + 5 F + i 5 G
F' = F-h 6G
G'~ G

tous calculs de la plus grande simplicité, de la dernière
facilité, d'une absolue généralité.

Les nombres de la troisième ligne, sous-entendus parce
que l'on n'a besoin que de leurs signes, et que ces signes
sont tous des -h, seraient formés des nombres de la
deuxième ligne, par le même algorithme qui a servi à
tirer ceu#-ci des nombres de la première ligne.

Cette première partie du calcul achevée, j'en conclus
que les racines cherchées, supposées réelles, sont néces-
sairement comprises, quatre au plus entre o et — 1, et
deux au plus entre — 1 et — 1, autant que de variations
perdues en passant de chaque ligne à la suivante.

Je passe à la seconde partie du calcul. La quatrième
ligne se compose des nombres de la première ligne prisa
rebours. (Ce sont donc les coefficients de l'équation.)

La cinquième ligne se tirerait de la quatrième au mo
de l'algorithme •, mais un coup d'œil suffit pour reconnaître
qu'il n'y aurait que des signes -+-.

Donc, i° les quatre racines supposées entre o et — 1,
sont toutes les quatre imaginaires.

La sixième ligne se compose des nombres delà deuxième



ligne pris à rebours ; la septième se tirerait de la sixième
par l'algorithme ; mais on aperçoit sur-le-champ que l'on
n'aurait que des -+-.

Donc, 2° les deux racines supposées entre — i et — 2,
sont imaginaires.

DoncT enfin, les six racines sont imaginaires.
N'est-il pas surprenant qu'une méthode de séparation

des racines aussi simple, aussi facile, aussi générale, n'ait
pas obtenu la moindre mention des savants auteurs qui
se sont occupés, dans ces derniers temps, de la théorie
des équations (*).

EXERCICES NUMÉRIQUES SUR LA VIS A FILET CARRÉ,
AVEC FROTTEMENT.

1. Notation :

P = puissance,

Q = travail résistant = 6oook,

f = coefficient du frottement,

R =r bras du levier à l'extrémité duquel agit la force P = i m ,5 ,

r = rayon du filet moyen de la vis = om ,o4,

h = pas de la vis = 0,016,

travail moteur développé par la force P ,

T / = travail consommé par le frottements: TOT— Q = Tm— 6000.

(*) On profite de l'occasion pour prier le lecteur de biffer une Note
qui se trouve dans le Journal de M. Liouville, tome III, page 239, et
Mémoires de la Société de Lille, année *838, 3e partie» page 9*



2. Formules :

Fbir SONNET, Notions de mécanique, page 191. Dans

la formule F = - P T tang (i -f- 9), il faut remplacer F,

P, b, tang /, tang <p par P, 2 Q, R, ——>/*, et Ton trouve

la formule donnée ci-dessus.
3. Tableau des valeurs de P et Tm correspondant à

des valeurs données def :

p...

/ . . . .

P. . .

T»..

. . 0,04

.. i6k,628a3584

.. 9794,86232

. . 0 ,10

. . 26,3536648

. . I 5523 ,626I5

0,06
18,2439648

10746,60746

0 , 1 2

29,61211184

.,443,o,<48

21,48162176

12653,741297

0,14

32,8789312

19367,33442

0,08
23,10355776

I 3 6 I 3 , 2 6

o , i 5

34,5154904

2o33i,34961

REPRÉSENTATION DES ANGLES POLYÈDRES ( * ) .

Représenter :
i°. Un angle dièdre convexe par rapport au plan hori-

zontal et compris entre deux faces triangulaires } i||r

(*) Ces questions sont tirées de l'excellent ouvrage intitulé: Notes et
Croquis de Géométrie descriptive, par M. Bardin, ancien élève de l'École
Polytechnique, professeur à l'École d'artillerie de Metz ; 2e édition, 1837.
Nous parlerons plus amplement de cette production, vadc-mecum des
professeurs de géométrie graphique.



2°. Un angle dièdre concave par rapport au plau hori-
zontal et compris entre une face triangulaire et une face
quadrângulaire \

3°. Un angle trièdre droit \
4°. Un angle trièdre, ayant un angle dièdre droit.
5°. Un angle trièdre, ayant un angle dièdre birectangle ,
6°. Un angle trièdre, ayant un angle dièdre trirectangle \
7°. Développer un angle trièdre et mesurer l'inclinai-

son des faces ;
8°. Un tétraèdre \ construire les intersections des arêtes

avec les plans de projection -,
90. Construire une pyramide, connaissant : i° sa hau-

teur} 20 sa base (a, b, c, d)} 3° le plan de cette base;
4° la projection du sommet sur ce plan-,

io°. Un prisme hexagonal, la base étant située sur le
plan vertical.

SOLUTIONS DES QUESTIONS 2 3 6 ET 2 3 4
(voir t. X,p. 183);

PAR M. A. THIOLLIER,
Élève du lycée Charlemagne ; classe de M. Orcel.

Question 236.

Si xf -4- 2 ay* est un carré, x2 -I- ay1 est la somme de
ileux carrés.

En effet, soit x* -h 2ay 2 = z%

y , =
2 a 2 a

Or on peut toujours supposer z -h x = 2 «m, m étantqucl-



conque; alors on a
y2 r= i am2—2/wx,

par suite,

xi-+-axi= x*-+-2.dlnik— 2 amx = (x2 — 2 amx -\- a2 m2) 4- a2m\

ou
xa -4- a/2 = (x — am)2 -\-(am)2.

Donc x* -f-ay2 est la somme de deux carrés. C. Q. F. D.

Question 234.

Soit l'équation

( x — ai){x — flf3)(.z: — ârj,)... ( x —a 2 n _ , )

-4- *"•(* — a3)(x — H 4 ) ( J : — a e ) . . . ( x — « 2 / J ) = o ,

6 est un nombre positif*, /n est un nombre entier positif;
les in — 1 différences

ax — a2, # 2 — a%, tf3 — <z4, a4 — « 5 , . . . , « 2 n _ 1 — a2n

sont positives \ les ^ racines de l'équation seront réelles
et comprises entre a^ et « 2 5 ^3 et « 4 , «5 et a 6 , . . . , a în_j
etatn. (RICIIELOT.)

D'après la condition

si Ton donne à x les valeurs

la première partie de l'équation sera nulle, et si nous
supposons que n soit pair, la fonction prendra d'abord le
signe -h pour x = ax, puis le signe — pour x = a3 , et
ainsi de suite alternativement. La fonction prendra les
signes

-f- — .+. — +-.:. —

correspondant à



( rit )
il n'y a donc qu'une seule racine comprise entre chacun
de ces n nombres.

Si, maintenant, on donne à x les valeurs a8, ak, a6,
as,..., ain, ce sera, au contraire, la seconde partie de
l'équation qui deviendra nulle, et le premier terme sera
négatif pour-.r = <zs, positif pour x = akJ et ainsi de
suite alternativement. La fonction prendra les signes

1 j , 4 « # # . 4 .

correspondant à
x = a2, tfo a6t a», a l 0 , . . . , ain;

on peut donc écrire ainsi le tableau des variations de la
fonction

# = t f i , aly « 3 , « 4 , ab, a6, a*,, as, . . . , « 2 n _, , a2ni

f{x) 4-, —, —, -h, -h, —, —, -+-,..., —, -H.
La fonction change n — 1 fois de signe 5 par suite, puisqu'il
doit y avoir au moins une racine entre deux nombres
donnant des résultats de signes contraires lorsqu'on les
substitue dans la fonction, il y aura une racine et une
seule entre at et a29 «3 et «4, a6 et tf6,..., <z2n-t et atn.
C'est ce qu'il fallait démontrer.

Si l'on supposait n impair, on tomberait identique-
ment sur le même résultat ; le raisonnement est absolu-
ment le même : il suffit d'observer que si, pour x = ap

(p étant compris entre 1 et 2rc), la fonction prend le
signe -f- dans le premier cas, elle prendra le signe — dans
le deuxième, et réciproquement.

Le même élève énonce et démontre ces deux théorèmes
de géométrie, dont le second est un corollaire du premier :

Soient une première sphère donnée et une seconde sphère
passant par le centre de la première sphère; la zone de
cette seconde sphère, interceptée par la première, a une
aire constante y quel que soit le rayon de la seconde sphère.



Soient deux sphères données de même centre, et une
troisième sphère passant par ce centre; la zone à deux
bases9 interceptée sur cette troisième sphère par les deux
premières, a une aire indépendante du rayon de la troi-
sième sphère.

Note* M. Ed. Terré, élève de la même classe, adresse le lieu géomé-
trique d'une tangente commune à deux cercles dont les centres sont fixes,
et dont les rayons sont liés par une équation linéaire. Le lieu est un sys-
tème de quatre cercles. Nous donnerons prochainement ce beau travail,
que son étendue nous oblige d'ajourner.

BIBLIOGRAPHIE.

COMPLÉMENT D'ALGÈBRE, contenant les matières exigées,
suivant le programme officiel, pour l'admission à
FÉcole Polytechnique, et qui ne se trouvent pas dans
la cinquième édition du Traité élémentaire d'Algèbre,
de MM. Choquet et Mayer;j>dir M. Choquet, docteur
es sciences, professeur de mathématiques. In-8°, de
5o pages. Paris, I 8 5 I . Bachelier, libraire, i fr. 5o c.

Nous avons un budget ordinaire, extraordinaire, sup-
plémentaire, complémentaire $ et le Ministre des Finan-
ces nous a dit récemment que les quatre adjectifs se
réduisent à un seul impératif : Payez. Cette règle de
grammaire est d'un usage assez fréquent, même hors fi-
nance. Ainsi, nous jouissons d'une certaine géométrie des-
criptive, ordinaire, extraordinaire (*), supplémentaire,
complémentaire, et les quatre adjectifs équivalent à un
seul impératif : Achetez. Nous pouvons même espérer,

( * ) Et très-extraordinaire. On y voir surgir des points-points, des
points-surfaces, des points-volumes ; des coniques planes du quatrième
degré; des théorèmes quasi vrais, même nullement vrais et pourtant
rigoureusement démontrés; enfin, une géométrie tératologique.



( 283 )

si le règne du programme dure (et quel règne peut se.
flatter de durer), de voir toutes les sciences sujettes à
examen revêtir les quatre formes réductibles à une seule.
Dans cette prévision, noua croyons utile (mot sacramen-
tel) d'établir d'avance la distinction entre le supplément
et le complément. Lorsqu'à un ouvrage achevé on ajoute
de nouvelles théories, non contenues dans l'ouvrage, et
pourtant nécessaires, on fait un supplément. Si l'on se
borne à développer, à mieux expliquer des théories déjà
exposées dans l'ouvrage, on fait un complément.

Cette distinction admise, nous cipyons que le Complé-
ment actuel est un supplément, car on y trouve les princi-
pes du calcul aux différences, une méthode de résolution
des équations transcendantes, une méthode d'interpola-
tion, etc.; théories qui ne se trouvent pas dans le Traité
élémentaire. Peu importe le titre, l'essentiel est que l'au-
teur, vétéran dans l'enseignement examinatoire, montre
ici les qualités que vous savez : clarté, méthode, rédaction,
objections prévues et résolues, exercices numériques bien
choisis, nettement calculés et bien discutés. Pour résoudre
les équations, on a recours à la méthode Budan, qu'un
travail remarquable de M. Vincent a rendue rigoureuse.
Sans ce travail, la méthode est incomplète. Il est vrai
qu'aujourd'hui la rigueur est décriée-, on soumet les ma-
thématiques à l'empire des à peu pfès. Excellente lo-
gique ! Voici d'ailleurs une de ces équations :

xb — 0,00009594 - ^ ^ 2 — 0,0826 ~~ JO — 0,00222 - ~ - = o,
ri • JLL H

L == longueur d'une conduite rectiligne de diamètre uniforme
= 757-1»

Q = volume d'eau qui s'écoule en une seconde = om m ,o89,
H = hauteur de colonne d'eau équivalente à la pression à l'o-

rifice = im , . *
je = le diamètre inconnu.



Substituant ces valeurs, l'équation devient

x4 — o ,006464 x1 — o,ooo654 x'— o,o133i = o.

L'auteur emploie une méthode d'approximation qui
serait très-abrégée en faisant emploi des logarithmes de
Gauss; on trouve finalement o,43o6> x>o ,43o5 .

Comment, avec tous ces expédients, calculer les ra-
cines imaginaires, qui occupent de plus en plus une place
réelle dans la science? Ils n'en savent rien et ne s'en
inquiètent pas. Les équations du cinquième degré sont
spécialement signalées par le programme, parce qu'elles
servent à supputer le diamètre d'une conduite. Applica-
tion utile! ce mot décide tout, ferme la bouche à tout :
c'est le sans dot de M. Harpagon.

Le programme donne l'excellent conseil de s'occuper
de la résolution numérique des équations transcendantes 5
ce sont, en effet, les équations qu'on rencontre le plus
fréquemment. Ces racines ne peuvent généralement s'ob-
tenir que par le théorème de Fourier-, aussi ce théorème
sert de base au Mémoire couronné de M. Stern, sur la
résolution numérique de ce genre d'équations : Mémoire
dont nous présenterons l'analyse à nos lecteurs. Ce théo-
rème n'étant pas mentionné dans le programme, M. Cho-
quet a recours à des procédés, à des expédients : il choi-
sit, pour exemple ,»le problème dit de Kepler, renfermé
dans l'équation

u — e sin u = Ç,
a = anomalie vraie, inconnue,
e = excentricité = o,5 ; ce qui se rapporte a une comète.
Ç = anomalie moyenne = 38°27' 18%7.

Encore une application utile* recommandée.
Dans un Avertissement, l'auteur préconise les procédés

rapides, et considère les règles générales comme une
gêne pour le calculateur 5 considération très-désinté-



ressée, car elle rend superflu et très-gènant le Traité élé-
mentaire d'Algèbre, de l'auteur, presque entièrement
consacré aux règles générales ; que, cour cette raison,
j'ai toujours considère et considère encore comme un de
nos meilleurs ouvrages en ce genre. Il est le premier qui
nous ait fait connaître le théorème de Sturm et la véri-
table règle de Descartes, avec toutes ses importantes con-
séquences , qui n'ont pas échappé à l'ostracisme de i85o.

On sait avec quel enthousiasme, tenant de l'époque,
le moyen âge a accueilli l'apparition de l'algèbre, de la
science cossique, du divin a/gorisme. Les écrivains n'en
parlent qu'avec les transports de la plus vive admiration.
Pourtant, dans un mémorandum officiel, qui occupe cent
quinze colonnes du Moniteur, on exprime le regret de ne
pouvoir faire disparaître l'algèbre de renseignement (*).
En plein dix-neuvième siècle! où allons-nous?

A Table of anti~logariihms $ containingto seven places
of décimais, natural nombers, auswering to ail loga-
riihms front .00001 to .99999, and an improved Table
ofGauss's logarithmSy bj wich may befoundthe loga-
rithms to the sûm or différence oftwo quantities whose

(*) « L'algèbre n'est pas, comme l'arithmétique et la géométrie, indis-
» pensable à tous les hommes. Ce n'est qu'avec une grande réserve qu'on
» doit l'introduire dans l'enseignement général de la jeunesse, et nous
» l'en verrions même disparaître sans regret, les logarithmes exceptés, si
» cette simplification devait profiter à l'étude de l'arithmétique et de la
» géométrie. » (Moniteur, 12 janvier I 8 5 I ; supplément C, page 11, pre-
mière colonne, § IV.)

C'est au contraire l'algèbre qui simplifie tout, tellement qu'il y aurait
avantage d'en introduire Y écriture dans les institutions des demoiselles :
rien n'est facile comme l'algèbre, disait Lagrange. On n'excepte que les
logarithmes. Décidément, parmi les maladies en ite, telles que la gastrite,
la cardite, la bronchite, etc., il faut aussi classer la logarithmite. Elle
est endémique dans la contrée des programmes.



logarithms are given ; preceded by an Introduction,
containing also the Iristory of logarithms , their con-
struction, andthe varions improvements makethereon
since their invention. Table d'anti-logarithmes} conte-
nant les nombres naturels avec sept chiffres, correspon-
dantà tousleslogarithmes,cLepiiis .ooooi jusqu'à -99999,
et une Table perfectionnée des logarithmes de Gaûss, au
moyen desquelles on peut trouver les logarithmes de la
somme ou de la différence de deux quantités dont les lo-
garithmes sont donnés -, précédée d'une Introduction con-
tenant l'histoire des logarithmes, leur construction et les
divers perfectionnements, depuis leur invention*, par
M. Herschell E. Filipowski. Londres, 1849} in-8°,
de xvi-220 pages.

Le but final de tout calcul par logarithmes n'est pas de
trouver des logarithmes de nombres, mais des nombres
mêmes. S'il est donc important d'avoir les logarithmes
des nombres , il est non moins important et même davan-
tage d'avoir avec exactitude les nombres correspondant
aux logarithmes. Les Tables ordinaires ne satisfont qu'im-
parfaitement et laborieusement à ce besoin à l'aide des
parties proportionnelles. Le célèbre Wallis (J.) écrivait
déjà en i685 : Cui ut obvietur incommodo, desiderandus
videtur Canon anti-logarithmicus $ in quoy posais lo-
garithmis continuo ordine sequentibus, ab o ad 10000.,
adscribantiir numeri natiirales his respondentes. Eofine
ut quafacilitate ex canone quem habemus pro dato nu-
méro habetur logarithmus $ eadem ex canone sic conden-
dO) pro dato logarithmo habeatur numerus {Algebra,
page 63). Il ajoute qu'il ignore si Thomas Harriot a com-
mencé une telle Table, mais que les papiers de Harriot
ont été remis à Walter» Warner qui a commencé ou
achevé le travail, aidé parle célèbre J. Pell, de 1621



à i63o \ celui-ci annonça à Wallis que le travail était
entre les mains de Richard Busbey, docteur en théologie
etdirecteurde l'École de Westminster, et ce dernier promît
à Wallis de publier, à condition que Wallis s'engageât à
remplacer Pell en cas de mort. Wallis accepta, etPell étant
mort en i685, l'édition n'étant pas même commencée,
tout en resta là. Un spécimen de Table anti-logarithmique
a été inséré par Long dans les Transactions philoso-
phiques, année iyi4* Cette petite Table ne contient que
soixante-douze logarithmes. C'est James Dodson(*) qui, le
premier, a publié, en 1742, en un volume in-folio, une
Table de logarithmes se succédant suivant l'ordre naturel,
avec cinq figures décimales, depuis .00001 jusqu'à .99999
et en regard les nombres correspondants avec onze chiures.
Ces Tables très-rares sont incommodes à manier et rem-
plies de beaucoup de fautes dont une partie a été indiquée
par l'auteur même. M. Filipowski, jeune Polonais rési-
dant à Londres, a eu l'heureuse idée de donner une nou-
velle édition de ces Tables, corrigée et sous un format
portatif in-8° -, les logarithmes sont avec cinq chiffres et
les nombres correspondants avec sept chiffres, et les loga-
rithmes vont de .00001 à .99999. Une Table de différences
qui procède par centièmes permet de trouver les nombres
correspondant à des logarithmes ayant sept chiffres, ce qui
est suffisant pour la pratique. Chaque page contient cinq
cents résultats distribués en dix colonnes, chacune de cin-
quante lignes. De sorte que les cinquante premiers nom-
bres de chaque centaine sont sur la page A, et les cinquante
derniers sur la page en regard a^ l'argument contient

(*) Le même a publié ihe Calculator, in-4°> 1747 > pour abréger les
Calculs d'arithmétique; et le Mathematical Repository; en 1756 il a donné,
dans des leçons publiques, la première idée d'une Société d'assurances
pour la vie et la survie; cette Société a été établie vers 1765.



quatre chiffres, et le cinquième est en tête de la colonne}
quelquefois, le septième et dernier chiffre à droite d'un
nombre est remplacé parla lettre italique 5̂ cela indique
que ce chiffre est 5, mais douteux, parce qu'il n'est de-
venu 5 qu'à raison de ce que le huitième chiffre est 5 ou
supérieur à 5. On évite ainsi le point que M. Babbage
place sur les chiffres forcés.

On comprend que les Tables peuvent aussi servir, mais
moins commodément que les Tables ordinaires, à trouver
le logarithme d'un nombre donné. Les calculateurs font
donc bien de se munir des deux Tables.

Logarithmes de Gauss. L'Algèbre de M. Finck (*)
est, à ma connaissance, le seul ouvrage français où l'on
explique ces logarithmes, qui commencent à se répandre
en Allemagne et en Angleterre. On peut s'en servir non-
seulement pour abréger les calculs trigonométriques,
mais même pour chercher les racines numériques des
équations par de rapides approximations. Au moyen de
cette Table, connaissant les logarithmes de deux nombres,
on peut trouver immédiatement, soit le logarithme de la
somme des deux nombres, soit le logarithme de leur dif-
férence, sans avoir besoin de connaître ces nombres eux-
mêmes. C'est en 1812, dans la Correspondance de Zach
( part. XXVI) que l'illustre astronome a publié cette Table
pour la première fois avec cinq décimales \ il dit : « L'ob-
» jet de cette Table est de faciliter les procédés de calcul
» qu'on rencontre fréquemment en astronomie. Car au
» lieu d'une triple, ou , au moins , d'une double entrée
» dans les Tables ordinaires de logarithmes, le même ré-
» sultat peut être obtenu au moyen de notre Table ou par

#
(*) Éléments d'Algèbre, 2e édition, I8/J6, page 5i8; c'est le Traité le

plus complet sur cette matière.



)> une seule inspection. Autant que je sache, cette idée
» appartient à Leonelli ; son dessein était de calculer une
» telle Table avec quatorze décimales, ce qui me parait
» inapplicable. Il est à désirer qu'on construise une telle
» Table d'une étendue dix fois ou cent fois plus grande,
» et avec sept décimales ; ce serait un supplément im-
portant à joindre aux Tables ordinaires. » Cette Table
consiste en trois colonnes désignées respectivement par
A, B, C. La Table A va de 0,0 à 2,0 avec trois décimales,
de 2,0 à 3,4 avec deux décimales, et de 3,4 à 5 avec
une décimale. Soit a un nombre de cette colonne A,
logarithme de qr. Alors le nombre correspondant dans la

colonne B est log ( 1 -{—7 j ? et le nombre de la colonne C

est log (1 -f-a'), de sorte qu'on a toujours C = A -f- B;
supposons maintenant qu'on ait les deux logarithmes
log TO, log w, sans connaître ni m ni rc, et qu'on veuille
trouver log (m 4- n) au moyen de la Table. On cherche,
dans la colonne A, le nombre a égal à log m — log n, donc

f n\

a1 = — ; la seconde colonne B donne log ( H ) ; ajou-
n \ m J J

tant ce nombre à log m, on obtient log (m 4- n), ou bien
encore, prenant le nombre correspondant dans la colonne
C, on a log [ H — 1 ; ajoutant ce nombre à log w, on
obtient encore log (m -f- n). On voit comment il fau-
drait procéder pour obtenir log [m — n), ce qui fournit

quatre solutions. Si log — surpasse o,3oio3o, il faut le

chercher dans la colonne C 5 si log - est moindre que o, 3 oio3,

il faut chercher dans la colonne B. On a joint aux Tables
ce qui est nécessaire pour les interpolations.

En 1817, M. F.-A. Matthiesen a publie, à Altona, une
Ann. 4e Maihémat., t. X. (Août i85ï.) *9



semblable Table avec sept décimales ; une autre a été pu-
bliée à Londres, en 1849, Pa r T^e^r Gray avec six déei*-
maies. Dans une nouvelle édition des Tables de Véga. cm a
inséré les Tables de Matthiesen, mais encore perfection-
nées. Enfin M. Filipowski a donné à ces Tables une nou-
velle forme qui donne aux deux opérations log (a -f- b) et
log(a — b) plus d'uniformité et plus de facilité. Il nous
serait diflacile de faire comprendre la disposition imaginée
par Tingénieux auteur sans qu'on eût ses Tables sous les
yeux.

L'ouvrage est terminé par un Appendice publié en 185o,
vt contenant une Table d'annuités à 3 pour 100 pour
trois têtesj avec toutes les combinaisons d'âge de cinq à
cent années, d'après les Tables de mortalité de Carlisle.
M. de Morgan, célèbre professeur à l'Université de Lon-
dres , a donné son approbation à l'ouvrage de M. Fili-
powski. Une telle autorité dispense de tout autre éloge.
Le mérite essentiel de Tables consiste dans l'exactitude 5
qualité que le long usage, par beaucoup de calculateurs,
peut seul constater. L'habileté de M. Filipowski permet
d'espérer que son œuvre si utile soutiendra cette épreuve.

TRAITÉ DE TRIGONOMÉTRIE; par M. J.-A. Serret,

examinateur pour l'admission à l'Ecole Polytechnique.
Paris, I85I- , in-8° de 215 pages et deux planches.
Bachelier, libraire. Prix : 3 fr. 5o c.

Celte Trigonométrie est destinée à trois classes de lec-
teurs : i° aux candidats pour l'École Navale et l'École
de Saint-Cyr ; 20 aux candidats pour. l'École Poly-
technique; 3° à ceux qui veulent apprendre les Mathé-
matiques. C'est surtout à cette dernière catégorie que
nous recommandons l'ouvrage, comme le meilleur qu'ils
puissent étudier sur cette matière. Le célèbre géomètre a



mis dans l'examen des fonctions circulaires, le même
esprit de sagacité qu'il a porté naguère dans ses travaux
sur les fonctions elliptiques. Ainsi le livre Ier (1-28)
traite des fonctions de lignes qui se rattachent au mouve-
ment d'un point sur une circonférence, dans un sens et
dans le sens opposé. L'auteur fait ressortir avec soin
Vamplitude et la périodicité de ces fonctions, propriétés
qui occupent aujourd'hui une place si importante dans
les transcendantes d'un ordre intégral plus élevé; car
on sait que toutes les transcendantes ont pour origine
des intégrales possibles, mais non algébriquement pos-
sibles. Rattacher les sinus, cosinus, etc., à un mouvement
de va-et-vient est une idée newtonienne. Le grand homme
est le premier qui ait indiqué la vraie naissance de la
quantité, en la considérant comme le résultat <$un Jlux
continuel avec des vitesses variées, variation de concep-
tion innée et qui contient la véritable métaphysique du
calcul infinitésimal auquel Leibnitz a assigné son vrai
algorithme. Le point initial des espaces est d'un choix
arbitraire; mais le choix étant fixé, les signes donnent
aux quantités une valeur de position forcée et non pas
conventionnelle, comme on le dit quelquefois. Dans
l'échelle génétique de la quantité, la place du zéro est
arbitraire-, mais les quantités en deçà et au delà sont
nécessairement de signes opposés. D'ailleurs, la méthode
cartésienne consiste essentiellement dans l'application
des théories équationnelles aux affections géométriques 5
dans une équation, les grandeurs relatives des racines ne
changent pas en remplaçant l'inconnue par une autre
inconnue quelconque augmentée d'un nombre quelcon-
que ; de même la position respective des points ne change
pas par un déplacement d'origine, et c'est ce qui fait de
l'interprétation des signes une proposition apodictique,

'9-



indépendante de notre volonté, nullement convention-
nçlle.

Le livre II (29-68) renferme l'addition, la multiplica-
tion et la division des fonctions circulaires. La discussion
des racines, leur raison à! être est faite avec beaucoup de
soin et avec une extrême clarté; bonne préparation pour
des études semblables sur les fonctions elliptiques. On dis-
tingue le rapport de Tare à la circonférence et le rapport
de l'arc au rayon, distinction utile pour établir l'homo-
généité des formules. Il est à regretter que Ton ait omis
le calcul et l'algorithme des différences et des différen-
tielles des fonctions circulaires 5 ce calcul appartient aux
éléments, il est même tacitement employé dans le livre
suivant, où les coefficients différentiels (quotients différen-
tiels des Allemands) portent pour masque le mot limite.

Le livre III (69-96) est consacré à la construction des
Tables des lignes trigonométriques et de leurs logarithmes.
Les applications numériques et bien choisies familia-
risent promptement avec l'usage des Tables dites de
Callet. La Trigonométrie rectiligne est enseignée, théorie
et pratique , dans le livre IV (97-138). Nous signalerons
la question suivante (page I 3 I ) assez intéressante: Quel
doit être le rayon d'un cercle pour que la différence
entre un arc de 10 mètres et sa corde soit plus petite que
1 millimètre? Le rayon doit être égal ou supérieur à
25o mètres ou ~ de lieue. La propriété segmentaire
anharmonique est le sujet d'un problème.

Le livre V (139-176) contient la Trigonométrie sphé-
rique : on démontre la généralité des trois formules fon-
damentales. Nous préférons la démonstration si simple
qu'on doit à M. Foucaut, aujourd'hui élève à l'École
Polytechnique (tome VIII, page 58). Le théorème de
Legendre, relatif à la réduction du triangle sphérique au



triangle reetiligne, est clairement développé, mais pas
avec la rigueur que lui a donnée Gauss. Une application
numérique de ce beau théorème est ici à désirer.

Le livre VI et dernier (177-215) est intitulé : Complé-
ment de la Théorie des fonctions circulaires» On y lit
une belle exposition des théorèmes de Cotes et de Moivre,
fondée sur les propriétés des expressions complexes
a + bi, que MM. Gauss et Cauehy ont rendu d'un em-
ploi si universel. Peut-être qu'on aurait dû donner la
résolution trigonométrique de l'équation x17 — 1 = o, et
indiquer quelques propriétés qui lient les fonctions cir-
culaires à l'arithmologie} liaison qu'on rencontre aussi
dans les fonctions elliptiques, et qui existe probablement
aussi pour les fonctions abéliennes.

Les séries principales relatives aux fonctions circu-
laires terminent cet ouvrage, digne de l'auteur de Y Al-
gèbre supérieure (*), qui occupe un rang si haut dans l'en-
seignement. Le plus bel éloge que nous puissions en faire
est de dire que la marche suivie par M. Serret est au
niveau de l'état actuel et aux antipodes de la marche
prescrite par certain document officiel que nous ne vou-
lons pas nommer.

La science est un édifice à plusieurs étages. Chacun
doit présenter des degrés pour monter à l'étage supérieur ;
conditions que doit remplir tout ouvrage légitimement
classique. C'est une qualité qui distingue éminemment
cette Trigonométrie ou plus exactement cette Théorie
élémentaire des fonctions circulaires.

(*) Prix: 7 fr. 5o c. Bachelier, libraire.



M É T H O D E NOUVELLE POUR CALCULER RAPIDEMENT LES LOGA-

RITHMES DES NOMBRES ET POUR TROUVER LES NOMBRES

CORRESPONDANT AUX LOGARITHMES $ précédée d'un Rap-
port fait à F Académie des Sciences, au nom d'une
Commission composée de MM. Liouville, Binet,
Cauchy rapporteur. Par M. Philippe Koralék, ancien
élève de l'École Polytechnique de Vienne en Autriche.
Paris, I 8 5 I ; in-8° de 59 pages. Bachelier, imprimeur-
libraire. Prix : a francs.

Dans cet opuscule, on apprend à calculer avec sept
chiffres décimaux exacts le logarithme d'un nombre entier
compris entre un et dix millions, et à faire l'opération in-
verse, en moins de minutes qu'on ne met ordinairement
de quarts d'heure. C'est une sorte de locomotive attachée
à la construction des Tables. Est-ce au moyen d'une nou-
velle théorie? Non. L'auteur a-t-il découvert quelque
nouvelle formule? Non. Fait-il emploi de quelque for-
mule connue, mais peu répandue? Non. Il se sert de la
formule la plus vulgaire, savoir :

Il fait sur cette formule une observation tellement simple,
que chacun peut se croire légitimement capable de faire
cette observation. Et cette observation si simple vous
permet pourtant, à l'aide de ces cinq valeurs : log 2, log 3,
log 7, log 11, log 13, de calculer en moins de six minutes
le logarithme d'un nombre quelconque pris dans l'inter-
valle ci-dessus indiqué. Quelle est cette observation? Je
vous engage à la lire dans l'ouvrage même. Les profes-
seurs y trouveront une méthode qu'ils voudront enseigner
à leurs élèves; et ceux-ci y trouveront des exemples de
calcul logarithmique.

Le programme exige le calcul de vingt logarithmes.



D'après la méthode usitée, il faut cinq heures de travail;
deux heures suffisent d'après la nouvelle méthode. Mais
Futilité de la seeonde partie de l'ouvrage nous semble en-
core plus grande : une Table, placée à la fin, permet de
trouver les logarithmes avec vmgt-sèpt chiffres décimaux 5
ce qui est d'un immense avantage en beaucoup d'occa-
sions. Car on sait que nos Tabfes à sept figures décimales
sont loin de satisfaire à tous les besoins du calculateur.

Il est à espérer que la méthode de M. Koralek se répan-
dra promptement. La modicité du prix et la simplicité des
raisonnements mettent l'ouvrage à la portée intellectuelle
et financière de tout le monde.

Puisse l'auteur nous gratifier bientôt de sa méthode
expéditive pour calculer les logarithmes des lignes trigo-
nométriques.

Les Tables de Callet sont toujours stéréotypées ; mais
la science ne. se prête pas à un trop long stéréotypage.
Voici des améliorations très-désirables.

i°. Indiquer, par un signe de convention, si les loga-
rithmes sont par excès ou par défaut, -à l'instar des Tables
de Babbage.

2°. Mettre les lignes trigonométriques naturelles sur
le verso et les logarithmes correspondants sur le recto
de la page suivante, comme dans les Tables de Hutton.

3°. Ajouter les sinus-verses, lignes qu'on rencontre si
souvent dans les machines dynamométriques.

4°. Ajouter les logarithmes de Gauss, d'une application
si commode dans la résolution des équations numériques.
On les trouve dans les Tables stéréotypées de Vega,
éditées en 1849? Pa r ^ - *e ^ r Hu'se> * Leipzig (*).

5°. Ajouter les renseignements nombreux qu'on trouve

( * ) Ces Tables ne coûtent que 15 francs. Une règle à calcul coûte 7 franc*.



dans ces dernières Tables, sur les nombres premiers, sur
les puissances des nombres, etc.

6°. Ajouter au texte le procédé Koralek et l'instruc-
tion sur la règle à calculer, d'après M. Lalanne, dont
nous parlerons prochainement. Nous aurions ainsi le
Manuel du calculateur.

A cette occasion, nous recommandons des Tables d'un
autre genre qui viennent de paraître *à Berlin. M. le
Dr Minding a publié une collection de toutes les intégrales
indéfinies et définies connues, y compris les fonctions
elliptiques (*). L'ouvrage a été publié sous les auspices
du Ministre du Commerce et des Travaux publics à
l'usage des Écoles industiielles (gewerbschule) ! Qu'en
disent ceux qui regrettent de ne pouvoir faucher sur notre
sol la simple algèbre?

CORRESPONDANCE

1. M. Dupuy (Léon) adresse une seconde et bonne
solution détaillée et discutée de la question 66. [Voyez
tome IX, page i88^Marqfoy.)

2. M. Mannheim, sous-lieutenant élève d'artillerie
[voyez tome IX, page 4*9) ? a publié à Metz, en janvier
I 8 5 I , une Note lithographiée sur la théorie des polaires
réciproques (Mémoire in-4° de i3 pages). L'auteur fait
usage de cette méthode pour transformer une propriété
géométrique donnée exi d'autres propriétés. A cet effet, il
transforme une propriété, par le principe de dualité et à
l'aide d'un cercle directeur, dans la propriété polaire cor-

(*) Le prix est de !\ francs. Une règle à calcul coûte 7 francs.



respondante, et ensuite il transforme cette seconde pro-
priété en une troisième à l'aide d'un second cercle direc-
teur, etc. 5 c'est un moyen euristique assez fécond. L'auteur,
s'adressant aux géomètres, s'exprime avec une extrême
concision, peut-être aux dépens de la clarté.

3. M. E. de Sécillon, élève au lycée de Nantes, adresse
ce théorème : Un octogone étant inscrit dans une co-
nique, on peut considérer les côtés pairs comme côtés
d'un quadrilatère et de même les côtés impairs; or, 4eux

quadrilatères se coupent en seize points; huit de ces
points sont évidemment sur la conique donnée et les huit
autres points sont sur une seconde conique. Le moyen de
démonstration est celui que M. Gergonne a donné le pre-
mier pour démontrer Phexagramme de Pascal, moyen qui
peut se généraliser ainsi : Etant données deux courbes
planes de degré n chacune, elles se coupent en n* points ;
si np de ces points sont sur une ligne de degré p <^n,
les n (// —p) points restants sont sur une ligne de degré
n —p. Dans le théorème énoncé ci-dessus, ra = 4? p = 2.
Lorsque le polygone inscrit est d'un nombre impair de
côtés, on remplace le côté manquant par une tangente (*).

4. M. Joseph-Edmond Wagner, aujourd'hui élève à
TÉcôle Polytechnique, dans un Mémoire accompagné
d'épurés très-bien exécutées, s'occupe de la division des
angles au moyen de ce lieu géométrique : sur une corde
donnée de position et de longueur, on fait passer-des arcs
de cercles que Ton divise chacun dans le même rapport
donné de 1 : n. Les points de division forment une ligne
dont il est facile de trouver l'équation ; cette ligne étant
construite, elle peut servir à diviser un arc et aussi un
angle donné. On sait que pour la trisection on obtient
une hyperbole; Fauteur trace cette hyperbole ainsi que

(*) Nous donnerons une Note instructive de M. Abel Transon sur ce
théorème.



la courbe relative à la quintisection. Le Mémoire est ter-
miné par la construction et la discussion du folium sui-
vant qui peut servir à diviser un angle dans tua rapport
donné min. Soient AFC un triangle donné rectangle
en F, et AFM un triangle dont le sommet est mobile.
Soit H le point d'intersection de la droite mobile AM
avec la droite fixe FC -, supposons qu'on ait la relation,

i t f —— M F C F H i y \ - t / i * - M / • t »

angle -q—- = — , de la on déduit 1 équation polaire
du lieu du point M. Ce travail remonte au temps où l'au-
teur était encore élève au collège de Saverne et annonce
de l'application et de l'intelligence.

5. M. Bugnat, élève de Mathématiques supérieures
au lycée de Versailles (classe de M. Vannson), énonce
et démontre ce théorème :

Dans une conique, si Von mène la normale en un
point quelconque P et par le foyer f une droite fK.
parallèle à cette normale^ rencontrant la directrice
"voisine en K \ la droite PK est un diamètre de la co-
nique.

A l'aide de ce théorème, M. Bugnat résout le problème
suivant :

Connaissant les sommets et les foyers d'une conique,
trouver le point de contact d'une tangente donnée de
directiony sans que la conique soit tracée.

La démonstration synthétique est facile.
6. M. Bories (Alphonse), élève au lycée de Montpel-

lier, énonce et démontre les théorèmes suivants :
i°. Soient le triangle rectiligne ABC; abc une trans-

versale coupant respectivement BC, AC, AB en a, fe, c;
menons les droites A a, B&, Ce. Soient ai, hly ct, les
intersections respectives des droites BbetCc^ A a ctCc,
Aa eiB&j les droites Ce\, Bit , A ax convergent vers le
même point.

Démonstration par les propriétés scgmenlaires. Le



théorème est évident lorsqu'on suppose la transversale
parallèle à un des côtés du triangle, et de cette position
particulière > on passe par la perspective à la position
générale et aussi au triangle sphérique.

2°. Mêmes données et mêmes constructions; en outre,
circonscrivons une circonférence au triangle ABC \ sup-
posons que cette circonférence coupe A a en otrBb en (3,
Ce en y ; les trois droites aat^ jSèj, ycx se coupent en un
même point.

Les propriétés des sécantes donnent
«

/ c, p.c, B •== c.y.c.C,
( i ) < « , 7 . « , C = axoL.a{ A ,

( b l < * . b t A = b t Ç . b t B ;

d'où
c,p.a,7.^ia c,B,«, C.ô, A = c,7 #, a.£, p.c,C.a, A. ^,B.

D'après le théorème précédent, les droites c, C , è t B ,
«! A passent par le même point. Donc, par une propriété
segmentaire, on a

c,C.a,A.6,B=: c.B.tf.C.^A,
puis,

cx p . a , 7 . ô , a = Ci 7 . 0 , a . 6 , (3;

donc les trois droites Ciy, a 4a, fe4 (3 convergent vers le
même point. C. Q. F. D.

Cette solution ne diffère que très-peu de celle qui a été
donnée tome VI, pages 376 et 377.

3°. Étant donnés un cercle et un triangle circonscrit
ABC 5 prenant respectivement les points a, b^c, sur les
côtés BC, AC, AB, tels que les droites Aa, Bé, Ce,
convergent vers le même point.

Soient a le point d'intersection de la seconde tangente
menée par a avec te côté bc, |3 le point d'intersection de
la tangente menée par b avec le côté ac, et de même y



surletôtéab; les trois points a, (3, y sont en ligne droite.
Eu effet, désignons par al, /3±, yx, les points de contact

des côtés BC, AC, AB avec le cercle, et par M2 le point
de contact de la seconde tangente menée par b \ il suffit de
démontrer que les trois polaires de a , |3, y sont conver-
gentes, et rappelons que la polaire d'un point s'obtient en
joignant par une droite les pôles de deux droites passant par
ce point} que le pôle d'une droite s'obtient par l'intersec-
tion des polaires de deux points pris sur cette droile. Le
pôle de B b est un point (32 de la droite at /3t polaire de b ;
le*pôle de Aa est un point a2 de la droite (3j yl9 et le pôle de
Ce est un point y2 de la droite ay fit -, mais les trois droites
A a , B&, Ce étant convergentes, leurs pôles a2 , |32 , y,
sont en ligne droite transversale par rapport au triangle
a i & yi. Cherchons le pôle de ac ; ax a% est évidemment la
polaire de a, yt y2 la polaire de c \ donc le pôle de ac est
I8 intersection des droites ai a2, yi y2 5 M212 est donc la
polaire de y, et les trois points j3,, Mj , j32 sont en ligne
droite, car (âj M /32 est la polaire du point b^ donc la
circonférence coupe la droite j3j f32 menée du point /3t à la
transversale a2f32y2 au point Mj. Si nous désignons par
M2, M8 les points où les droites a t a2, yi y2 sont coupées
par la circonférence, et par I2 , I3 les points analogues à I l 5

on voit, d'après le théorème I I , que les droites IA M! ,
I2 M s , I3 Ma sont convergentes et sont les trois polaires
de a , (3, y.

Corollaire. Par les points a , è , e on peut faire passer
une conique touchant le triangle en ces points. Projetant
coniquement la figure sur un plan, on obtient une pro-
priété de collinéation entre deux coniques inscrites au
même triangle, et projetant la figure sur une surface
quelconque, on parvient à une propriété entre certaines
courbes^tracées sur ces surfaces.

Observation. C'est une généralisation d'un théorème
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de M. Chasles, question du grand concours de ...|847
(tome VII, pages 294 et 3oi).

Nous félicitons M. Bories de manier si bien les pro~
priétés segmentaires et polaires ; qu'il persévère et se rap-
pelle ce vers du fabuliste :

Laissez dire les sots, le savoir a son prix.

ÉLÉMENTS D'ARITHMÉTIQUE, EXPOSÉS SANS LE SECOURS
DE L'ALGEBRE,

PAR M. E.-A, TARNIER, docteur es sciences

(YOir t. IX, p. 439);

PAR M. H. HARANT,
Professeur, licencié es sciences.

L'Arithmétique de M. Tarnier a sa place marquée dans
les bons livres élémentaires qui ont paru depuis quelques
années. L'auteur a su, même après la publication dés
excellents traités de MM. Reynaud, Cirodde, Guilmin,
Bertrand, Briot, faire un ouvrage utile, et utile surtout
à un grand nombre de lecteurs.

La plupart des Traités qui ont paru dans ces derniers
temps s'adressent principalement à des élèves qui ont
déjà certaines notions élémentaires sur l'arithmétique,
ou qui se sont familiarisés avec les méthodes de calcul 5
M. Tarnier a voulu que son livre pût être mis entre les
mains du commençant, et qu'il put lui suffire pour con-
tinuer ses études jusqu'aux parties les plus élevées de
l'arithmétique.

Ce livre se divise en deux parties : dans la première,
que l'auteur appelle Y arithmétique proprement dite, il
expose, en adoptant la méthode appelée synthétique, les
premiers éléments, comprenant l'exigé du baccalauréat



ès lettres et es sciences physiques, les quatre premières
opérations sur les nombres entiers, les fractions ordi-
naires et décimales, les caractères de divisibilité les plus
simples, le système de numération décimale, le plus
grand commun diviseur à deux nombres, l'extraction de
la racine carrée, les proportions , et l'exposé du système
métrique ] enfin un très-grand nombre de questions sur
les intérêts, les partages proportionnels, les fonds pu-
blics, les alliages, etc.; complément indispensable pour
faire connaître à l'élève toutes les ressources que les mé-
thodes purement arithmétiques peuvent apporter à la ré-
solution des problèmes. Nous approuvons fort l'impor-
tance que M. Tarnier a donnée à cette partie de son livre,
et sa préoccupation d'y éviter l'emploi de la résolution
d'équations et de notations algébriques} bien convaincu
que, malgré la simplicité qu'introduisent dans la résolu-
tion de ces mêmes questions les notations et le calcul
algébrique, on ne peut pas offrir aux jeunes intelligences
d'exercice plus utile et plus propre à leur développement ;
mais c'est surtout, nous le répétons, en évitant tout
moyen de solution qui ne serait qu'une traduction de la
mise en équation du problème , que ces exercices acquiè-
rent toute leur importance.

Dans la seconde partie se trouvent les propriétés géné-
rales des nombres, l'extraction de la racine cubique, la
théorie des progressions et des logarithmes, le complé-
ment de la théorie des fractions décimales périodiques, et
quelques notes sur les approximations décimales. Cette
partie est traitée d'une manière assez complète pour que
ce livre puisse, comme nous le disions en commençant,
conduire l'élève jusqu'à la fin de ses études arithmé-
tiques.

Les détails abondent assez dans ce Traité et y sont choi-
sis avec assez de variété pour que le lecteur ne soit pas
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obligé d'aller chercher ailleurs des applications et des
exercices \ les démonstrations y sont exposées avec nettetéet
rigueur; nous ajouterons cependant que la méthode syn-
thétique ou plutôt dogmatique que M. Tarnier a employée
dans son livre, ne doit pas, à notre avis, être exclusive-

#ment adoptée : si cette méthode est utile pour éviter aux
commençants des tâtonnements trop nombreux, nous
croyons, d'autre part, que l'état intellectuel de l'individu
passe par les mêmes phases que celui de l'espèce, et il n'est
peut-être pas sans utilité, pour bien faire connaître une
science, de l'exposer dans son ordre naturel, qui est le
plus souvent Tordre historique; il faut que Télève abor-
dant une nouvelle opération, le procédé spontané lui
soit d'abord indiqué, puis successivement toutes les sim-
plifications introduites pour arriver à l'état final.

Quant au plan de tout Touvrage, en tant qu'exposition
d'un système complet d'arithmétique, nous ne saurîbns y
donner notre approbation, et nous sommes certain que
Tauteur lui-même est de cet avis; car, d'après le but
qu'il se proposait, il a été obligé, pour tracer le plan de
son arithmétique et pour en délimiter Jes parties, de
s'assujettir à Tordre arbitraire et irrationnel du programme
du baccalauréat, où la racine carrée se trouve dans une
partie et la racine cubique dayis l'autre, etc.

Enfin, Touvrage de M. Tarnier a pour caractère prin-
cipal de se mettre, comme nous le disions, à la portée des
élèves les moins avancés, et de pouvoir servir aux intel-
ligences les plus rebelles, tout en restant suffisant pour
les élèves qui ont à faire des études complètes ; Tauteur a
voulu consciencieusement faire un livre utile, et il a
réussi.



NOTE SUR LES SECTIONS CIRCULAIRES DANS LES SURFACES
DU SECOND DEGRÉ;

PAR M. TILLOL, professeur à Castres.

Cette Note a pour but de rendre la recherche des sec-
tions circulaires indépendante delà transformation d'axes
dans le plan de la section.

Soient F = o l'équation* de la surface 5 / = o, ff = o
les équations de deux plans qui la coupent. L'équation

F H- \ffx = o

représente une surface passant par les points d'intersec-
tion 4e la surface F = o avec chacun des plans f-=. o ,
ft = o 5 dès lors, si l'équation

peut devenir celle d'une sphère, il sera établi que la sur-
face admet des sections circulaires, et les équations

f= o, f = o en détermineront la direction.
Soient

F = P*2 4- P'jr2 4- P" z2 4 - \ j * + Q'r + Q" * -H E = o,

l'équation de la surface dans laquelle P, P', P/;, Q, . . .
peuvent admettre des valeurs numériques et des signes
quelconques, et ,

fz= ax -4- by 4- cz -+- d = o , fx = a'x •+- b'y -+- c'z H- df = o,

les équations des deux plans ; l'équation de la surface
auxiliaire sera

P*5 -f- P'j2 4- P'V + Q^ + Q'j + Q"* H- E
4- >{ax 4- ^ / 4- C2 4- d) (af x• 4-
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ou, en développant,

)
'-h ba')xy -+- (ad-\- ca')xz + (bcf 4- cb')fz]

Pour que cette équation représente une sphère, en suppo-
sant les axes rectangulaires, il suffit de poser

P 4- \aa! = P' + \bb'' = P" ,
abr -f- ba' zzzo, acf •+- ca' = o, fo' -f- c£' = o.

Ce dernier système peut être vérifié de plusieurs ma-
nières. Posons d'abord

a = af = o ;

les équations de condition deviendront, dans cette hypo-
thèse ,

f9 bd + cb'=2 o;

d'où
ce' P — P"

j C C'

e t , a cause de -y = — y? >

; _ P " — P
ï"'"" p — p / 5

d'où enfin

r yp -F ' b'~"

Les équations

/-o, / = .
Ann.de Math cm a t., t. X. (Août I 8 5 I . )
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deviendront, dans ce cas,

y •+-

(0

de même, les conditions b = bf= o, c = cf= o, donnent

-M/-S—^V+T^0;

—P" rf

/p'—p" rf'
•̂ y P"-P + «' - ° '

(3)

p — p1

^Tp^ d'

II résulte de ces six équations que les surfaces du second
degré admettent, dans six directions différentes, des sec-
tions circulaires (réelles ou imaginaires) et parallèles à
l'un des axes principaux de la surface ; de là aussi un
théorème remarquable de Hachette, savoir que deux
cercles quelconques appartenant à des séries différentes
sont toujours situés sur une même sphère.

Si l'on part de l'équation plus simple

P x* +. p'72 + p" 2> — + H ,

dans laquelle on a les relations

H > o , et P > P ' > P " ,

on voit que dans le cas dej'ellipsoïde, le système (3) est
seul réel, ce qui indique que les sections circulaires sont
parallèles à Taxe moyen.



Dans l'hyperboloïde à une nappe, P " < ; o , le sys-
tème (3) est seul réel1 et les sections sont parallèles au
plus grand des axes réels.

Dans le cas de l'hyperboloïde à deux nappes, P' et P"
sont négatifs, le système (3) est seul réel, et les sections
sont parallèles au plus grand des axes imaginaires.

Les équations de condition étant indépendantes des
coefficients Q, Q', Q V . . , E, les plans qui déterminent
les sections circulaires dans les hyperboloïdes les déter-
minent aussi dans le cône asymptote. Une section d'une
série peut être regardée comme la base du cône, l'autre
comme une section anti-parallèle.

Dans le cas des paraboloïdes, l'équation en coordon-
nées rectangles peut toujours prendre la forme

P' et P" étant de mêmes signes dans le paraboloïde ellip-
tique, et de signe contraire dans le paraboloïde hyper-
bolique. Dans le premier cas, on peut avoir

d'où

et

P'

dans ce cas il y aura deux séries de plans perpendiculaires
à celui des xjet des xz. Si V = P", il n'y aura plus qu'une
série de plans perpendiculaires à Taxe du paraboloïde.

Dans le paraboloïde hyperbolique, on a

P'>o et P"<o;
2O.
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les équations des plans deviennent alors

¥' d /¥'

elles paraissent indiquer deux séries de sections circu-
laires. Mais l'élimination successive de y et de z entre ces
équations et l'équation

P ' r ' _ p'V — Q*— o,

conduisant à deux équations du premier degré, il s'en-
suit que les projections de l'intersection sur les plans des
xz et desyz sont du premier degré, et que par suite les
intersections sont des lignes droites.

(Extrait d'un oavrageinédit.)

DE LA SUITE MÉDIANE ET DES SUITES CONSTANTES QUI
TENDENT A SE FORMER DANS LES SUITES DIATOMIQUES

(voir t. VIII, p. 423);

PAR M. DE POLIGNAC,
Élève de l'École Polytechnique.

A cause de la symétrie des suites diatomiques, si, au
lieu de partir de zéro pour former une période d'une

suite diatomique, on part de ^—-i on formera la moitié

d'une période en allant jusqu'à ^tPw. Désignons par a le

nombre Ê—-, et considérons la suite des nombres na-
i

turels

...a—6, a —5, a—4> a—3, a — 2, a—i, a
a -h# i , rt-}-2, « 4 - 3 , fl-i~4> tf-h5, « -f- 6, . . . .

11 est clair d'abord que tous les termes de la forme
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a dt 2n -f- i seront effacés comme nombres pairs, puis-
que a est impair; maintenant si j'efface (en partant de a),
de 3 en 3, de 5 en 5, de 7 en 7,..., de Pn en P,o il est
clair qu'en prenant n assez grand, on effacera tous les
termes de la suite précédente (jusqu'à un terme choisi
arbitrairement), excepté les puissances de 2 diminuées
d'une unité. On voit donc qu'il tend à se former, au milieu
des suites diatomiques, une suite constante que j'appellerai
suite médiane et qui n'est autre que les puissances succes-
sives de 2 diminuées d'une unité. On voit de plus que la
suite médiane s'étend au delà de toute limite. Les termes
milieux des suites diatomiques tendent donc 'vers un état
définitif ) les puissances successives de 2. Ils présentent le
tableau suivant :

. . . 2 5 5 , 127, C3, 3 i , i5, 7, 3, 1, 3 , 1, 3, 7, i5 , 3 i , 63, 127, 255,

En particulier, on remarquera que le terme milieu est 3.
résultat déjà énoncé précédemment.

On peut se proposer, étant donnée une suite diatomique,
de déterminer le nombre des termes de la suite médiane
qui appartiennent à cette suite diatomique. Je n'ai pu
jusqu'à présent résoudre cette question 5 toutefois il est
facile d'avoir une limite inférieure du nombre cherché.
En effet, ce nombre sera au moins égal à deux fois le
nombre des puissances de 2 inférieures à Pn augmenté
d'une unité.

Si maintenant, au lieu de —- on prend le nombre —£ 9

on trouve qu'à partir de ce terme il se forme à droite et
à gauche une suite qui n'est pas symétrique et dont le

terme milieu est 5 ; désignons —| par h, et prenons la

suite des nombres naturels ;

.. b — 3, 6 — 2, b~~ i, ù, fl-f-i, b-\~i7 6-f-3,. . . ,



tous les nombres de la forme J + 2 « + i seront effacés
comme nombres pairs. Maintenant il y a deux hypothèses
à faire :
i°. b— i===o(mod. 3).

Dans ce cas, en effaçant de 3 en 3 à partir de b — i, puis
de 5 en 5, de y en 7,..., de Vn en Pn à partir de &, on
voit que dans la portion de droite tous les nombres seront
effacés, excepté ceux de la forme b -f- i2n ou de la forme
b -f- aa.3^, et dans la portion de gauche il n'y aura de
conservés que les nombres de la forme b — 2a n ~*~I ou
b — 2a. 3^. En sorte que les termes de la suite considérée
sont, pour la partie droite,

2*.3/3—2«'.3'3'-I, 0 U 2 K . 3 ^ 2 2 B - 1 , OU 22n~-2a .3/5-I,

et, pour la partie gauche,

ou

On peut réunir ces différentes formes dans une seule for-
mule, sauf à la discuter dans les deux cas où l'on pren-
drait la portion de droite ou la portion de gauche de la
série 5 cette formule est

Si Ton se donne a et (3, oi et (3' sont déterminés. Suppo-
sons d'abord que (3 ne soit pas nul; alors, si la valeur de
(3' n'est pas nulle non plus, le terme trouvé pour la por-
tion de droite se trouvera aussi dans la portion de gauche
de la série. Admettons encore que /3 ]> o 5 alors, si j3'= o,
la formule pour représenter un terme de droite devra
être telle que a' = 2 k, et pour un terme de gauche
a! = 2 A' H- 1. Enfin, si (3 == o, pour un terme de droite
on aura a = 2/r, et pour un terme de gauche a= 2 k 4-1 -



j3 et (3' ne peuvent être nuls à la fois; quant aux expo-
sants a et a', aucun d'eux ne peut être nul.

2°. (b -f- i)s=3o (mod. 3).

U est aisé de voir dans ce cas que là partie gauche devient
la partie droite, et vice versa, c'est là le seul change-
ment qui ait lieu.

La suite qui se forme autour de £ - | ne change pas in-

définiment avec Pn; comme la suite médiane, elle tend
vers un état constant, seulement elle peut changer de
sens, c'est-à-dire que les termes qui se trouvaient à gau-
che de —£ peuvent se trouver à droite de ^— > et vice

2 . O 2 . O

versa. Ainsi la suite est constante, par rapport à la va-
leur des termes, et elle n'admet que deux états en consi-
dérant leur disposition. Dans tous les cas, l'inspection

seule de la forme —-|» par rapport à 3 , suffira pour mar-
2 • ô

quer si l'on a un de ces états ou l'autre.
On peut ob&erver que si Ton écrit les deux états de

la suite l'un au-dessous de l'autre, de manière que
les deux termes milieux 5 se trouvent sur une même co-
lonne verticale, et si l'on additionne terme à terme, on
obtiendra évidemment une suite symétrique.

Généralisons ces considérations. Dans toute^uite dia-
tomique il se forme, autour de —-1 ~> une suite

I . 2 » < 3 . . . . « ufc

de termes dont les valeurs ne dépendent pas de la gran-
deur de Pn (on suppose que P* reste constant, et qu'on
fasse croître P,t), mais de la forme de fxPrt, par rapport
à Pj , P ^ j , . . . , 5, 3. On voit donc que le nombre des

séries fixes qui se forment autour de —, —~ est li-
2 . 0.9 • . . , P«

mité-, de plus on voit qu'à chaque série il en correspond
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une autre telle, qu'en les ajoutant terme à terme, on a
une série symétrique. Par conséquent, la somme de toutes
les séries sera aussi symétrique.

Je me propose, dans un autre article, de parler des
propriétés de ces suites constantes qui, on le voit, ten-
dent à se former dans les suites diatomiques, et nous per-
mettent de découvrir de loin en loin, dans ces suites 3 des
groupes de termes connus, sans qu'il soit besoin de for-
mer les suites diatomiques elles-mêmes.

THÉORÈME DE GÉOMÉTRIE ;
PAR M. A. NÉVROUZIAN (Arménien),

Élève, en spéciales, du lycée Louis-le-Grand, institution Sainte-Barbe.

Un triangle ABC étant inscrit dans un cercle, si, par
deux points H, K de la circonférence, on fait passer
trois cercles tangents, respectivement> aux trois côtés
du triangle, de manière que les points de contact des
deux premiers soient sur les cotés AB, AC, et le point
de contact du troisième, sur le prolongement du troi-
sième côté BC ; les trois points de contact D, E, F seront
en ligne droite.
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Démonstration, Appelons m., n, p les points où la
corde HR rencontre les trois côtés du triangle ABC»

On a, à l'égard du point D,

—2
 A nk *D

n D = n A. n B, ou -~rr =s —— \
d'où je tire

nk — nD _^nl>— «B
/2À ~ nV '

c'est-à-dire

DA_BD D A _ ^ « A
nk nJy DB «D

On a de même, sur le côté AC,

et, sur le côté CB,
FB__/wF
FC ni C

Multipliant ces trois équations membre à membre, on a

DA.EC.FB_ nk ^E m¥
DB.EA.FC ~" ^D pH mC'

II faut prouver que le second membre est égal à - f i .
Or

2 2 2

nD = nk.nb; pE=pk.pC', mF =z mB.mC;

d'où

donc
-̂ A pE m F ^ /nk pC
n~ô '/TA ' wc -"• "~ y w¥'^Â



Or, le produit sous le radical est égal à -h i, parce que
les trois points m, n, p sont en ligne droite; il vient
donc

nk pE m¥ ,
« D pk mC —- •

L'inspection de la figure montre que le signe du
second membre doit être — , parce que les deux rap-

nk pTL . .r , . ., m¥ , .«
ports — ? r— sont positifs, et le troisième —— négatif.
Il en résulte l'équation

DA EC F B _
DB ' EA # FC -~ "^ l '

ce qui prouve que les points E, D, F sont eu ligne
droite. C. Q. F . D.

SOLUTION DE LA QUESTION 1 9 8
( v o i r t. VII , p. 4 4 8 ) ;

|PAR M. A. VACHETTE,
Licencié es sciences physiques et licencié es sciences mathématiques.

PROBLÈME. Des hyperboles équilatères concentriques
sont coupées orthogonalement par une même droite :
quelle est leur courbe enveloppe ? (STREBOR. )

Solution* Prenons pour origine le centre commun des
hyperboles équilatères, et pour axe des y une parallèle
à la droite qui les coupe orthogonalement. L'équation
générale des hyperboles équilatères sera de la forme
(i) jV-4- kxy — ,r--4-B = o.

La droite orthogonale aura pour équation
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et si b est l'ordonnée qui répond sur la courbe à l'ab-
scisse a, la tangente à l'une des courbes au point dont les
coordonnées sont a et b aura pour équation

y = b,

qu'il faut identifier avec l'équation de la tangente à la
courbe (i),

A . A
by H— bx ~\ ar — ax -f- B = o.

J 2 2

Cette identification donne les relations

2B
Ab — la = o , b = —

d'où l'on déduit

2a

et, en substituant dans l'équation (i), elle devient

où è est le seul paramètre variable. Il faut donc élimi-
ner b etitre l'équation (2) et la dérivée prise par rapport
à b, c'est-à-dire entre les deux équations

b [y2 — x7 — a7) — bz -+- 2 axy = o ,

ce qui donne enfin, pour la courbe enveloppe,

(3) ^ _ * . _ « . .
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SOLUTION DES QUESTIONS 230 ET 231
(voir t. X, p. 181 et 182) ;

PAR M. I/ABBÏS JULLIEN,
Du séminaire de Vais.

Question 230. Deux polygones quelconques de 2 n côtés
sont équivalents quand leurs côtés ont les mêmes milieux.

(PROUIIET.)

Solution. Soient P et P' deux polygones de 2 n côtés dont
les côtés ont les mêmes milieux. Joignons par des droites
les sommets de P aux sommets correspondants de P ' ; ces
droites sont égales et parallèles, car elles forment avec
les demi-côtés des polygones 4 n triangles, ayant deux à
deux un angle opposé au sommet compris entre côtés
égaux. Prolongeons ces lignes de jonction jusqu'à la ren-
contre d'une droite A menée arbitrairement dans le plan ;
la droite A, les lignes de jonction et les côtés des poly-
gones forment des trapèzes, et chaque trapèze terminé
au polygone P est équivalent au trapèze terminé au côté
correspondant du polygone P'.

Les surfaces de P et de P' s'exprimant par celles des
trapèzes correspondants, il en résulte que les polygones
sont équivalents.

Question 231. La surface d'un polygone de 2 n côtés
ne change pas lorsque tous les sommets de rang pair ou
tous les sommets de rang impair décrivent (dans la même
direction) des droites égales et parallèles.

(PROUHET.)

Solution. Soit ri la longueur des droites parcourues
parles sommets de rang pair, ou par ceux de rang impair.



V";Dans le mouvement des sommëtiff les milieux des côtes

ont avancé de - dans la même direction. Conservant au

polygone sa seconde forme, nous pouvons, par un mou-
vement de direction contraire, ramener les milieux des
côtés en leurs premières positions ; dès lors l'équivalence
des polygones est établie [question 230).

Remarque. On reconnaît très-facilement les deux
propriétés précédentes en considérant la formule qui
donne l'aire du polygone en fonction des coordonnées des
sommets ( voir tome IX, page 65 ).

SOLUTION DE LA QUESTION 2 0 9
(voir t. Vlir, p. 236);

PAR M. JUBÉ,
Professeur à Saint-Omer.

On peut réduire un système de forces à trois forces
dont deux forment un couple agissant dans un plan per-
pendiculaire à la troisième force \ on peut aussi réduire
le système à deux forces. La plus courte distance de ces
deux forces rencontre à angle droit la troisième force de,
la première réduction. (CHÀSLES.)

La question peut être présentée de cette manière en la
renversant :

Étant données deux forces non situées dans un même
plan, on peut les réduire à un système de trois forces
dont deux forment un couple agissant dans un plan per-
pendiculaire à la troisième% Cette troisième force est per-
pendiculaire à la plus courte distance des deux forces
données.

Soient Q et R les deux forces données, AB leur plus
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courte distance» En tï^feportant au point B la force Q
parallèlement à elle-même, on obtient un couple
(Q, —Q) et une force S résultante de Q et R, et per-
pendiculaire à BA.

L'axe du couple (Q, — Q) est aussi dans le plan de R
et S, perpendiculaire à BÂ. De sorte qu'en transportant
la force S parallèlement à elle-même en un point quel-
conque C de BA, on formera un nouveau couple dont
l'axe sera aussi dans ce même plan perpendiculaire à BA,
et le point C pourra être choisi de telle sorte que le couple
résultant de (Q, — Q) et de (S, — S) ait son axe dirigé
suivant BS ou son prolongement. Il suffit pour cela que

BC = ~ cos QBS X BA.

Le plan de ce couple résultant sera bien alors perpendi-
culaire à la troisième force S appliquée en C, et celle-ci
d'ailleurs sera perpendiculaire à BA.

GRAND CONCOURS DE 1 8 5 1
{•oir t. IX, p. 282).

QUESTIONS PROPOSÉES.

Mathématiques supérieures.

Etant donnée une droite L, on mène de chacun de ses
points M deux droites à deux points fixes P, P'. Deux
autres points fixes O, O' sont les sommets de deux an-
gles AOB, A'O'B', de grandeurs données et constants,
que l'on fait tourner autour de leurs sommets respectifs,
de manière que leurs côtés OA, O' A' soient respective-
ment perpendiculaires aux deux droites MP, M'P'.



On demande quelle est la cofffJP décrite par le point
d'intersection N des deux droites OA, O'À', et la courbe
qui est décrite par le point d'intersection N' des deux
autres côtés OB, O'B', quand le point M glisse sur la
droite fixe L.

Mathématiques élémentaires.

Etant donnés deux cercles O et O', qui ne se touchent
pas, mais qui peuvent se couper ou ne pas se couper in-
différemment, de chaque point M, de l'un O on mène
deux droites aux centres de similitude S et S'des deux
cercles; ces droites rencontrent l'autre cercle O' en quatre
points m, n} m', nf.

On demancle de prouver que deux de ces points sont
sur un diamètre du cercle O' et les deux autres sur une
droite qui passe par un point fixe, quel que soit le
point M pris sur le cercle O.

Note. Très-bonnes questions. Par le temps qui court, elles font honneur
h l'Université. Puisse-t-elle persévérer !

SOLUTION GÉNÉRALE DE LA QUESTION 78
(YOirt. Il, p. 484) ;

PAR M. P..TARDY,
Professeur de Mathématiques à Gênes.

Soit
An

et désignons par

la somme des quantités qu'on déduit de An en changeant



les signes à un nomblim des lettres a^,a2,..., an, et en
faisant toutes les combinaisons possibles : le nombre de ces

quantités sera évidemment égal à —: ~ - ^ -^?

que nous représenterons, pour abréger, par le sym-

, a ] - .

Posons

il est clair qu'en développant, suivant les puissances de

an, \ * A" [ i , i,..., m], nous aurons pour terme général

excepté le cas de m = n, dans lequel nous obtiendrons
seulement

Cela posé, le ternie général, dans le développement de
Sn, sera

(;)•:-"[-<->-*]
lequel deviendra évidemment égal à zéro toutes les fois
que n — p t est un nombre pair, et si n — pt est impair,



il se réduira à

A"' -
i

(Considérant la série entre parenthèses, nous aurons de
même, pour terme général de son développement,

* — Y A * M + . . .

W

ou zéro, selon que px —p9 est impair ou pair.
Si nous continuons ainsi, et dans l'hypothèse que

n — px, pl — p 2 , . . . ,p — p soient tous des nombres

impairs, il est clair que nous parviendrons à un terme
général

dans lequel on aura p , = i.

Maintenant la quantité

•&• ri n """"""

sera nulle, excepté dans le seul cas où An _ = ay, c'est-
à-dire [À = n — i . En effet, prenons une quelconque des
lettres qui entrent dans An __ -, elle se trouvera dans

Ann. de Mnthcmat., t. X. (Septembre I 8 5 I . )



avec le signe positif un nombre de fois égal à celui des
combinaisons qu'on peut faire avec n — p — i objets
pris m à m, et avec le signe négatif un nombre de fois
égal au nombre des combinaisons qu'on p>eut faire avec
n — p — i objets pris m — i km — i , c'est-à-dire qu'elle

i . i - , . (n — u.— i \ ! n — a—A
sera multipliée par r . — r , et, par
conséquent, dans l'expression (2), elle aura pour coeffi-
cient la série

n-fx-i

= a ( i - « ) "

—(••:•')-•-("•:"•)-<-'" • '

Mais si fx = 7i — 1 } la valeur de l'expression (2) de-
vient aa, . Or, pour arriver jusqu'à la quantité (2) avec
u=:n — 1, sans qu'aucun des termes généraux des déve-
loppements précédents se soit évanoui, il faut que toutes
les différences

Pp-x—Pp* Pfi-.*—Pfi-i>'--> P*—Pn n~Pi

soient égales à l 'unité, c'est-à-dire qu'on ait px = n — 1.
De là nous pouvons conclure que dans le développement
du second membre de l'équation (1), tous les termes qui
contiennent des puissances de an supérieures à la pre-
mière se détruisent, et il restera

Sn = a n. an. Sn_,.

Par la même raison

Sn_, — 2(/î — l ).#„_, , Sn__,,

SM_2 = 2 (w — 2) . tfrt_a .S«_3 ,

S2 = 2 . 2 a , . S, ,

S, = 2 « , .

En multipliant ces équations membre à membre, et



ôtant le facteur commun Sn_i .S,,_2.., S2 .S, , il viendra

Sn = 2". i . 2 . 3 . . . n. « , . « 2 . «3 • • . «n ;

puisqu'en général on a

JA;! . ,» , . . . ,"^!-^^' .» («-«)].
l'équation (i) pourra s'écrire ainsi :

pour 7z impair, et

Sn=2

pour n pair.

La quantité ^ AM I , 2 , . . , - contient un nombre

pair de termes, lesquels sont deux à deux égaux, et si

nous indiquons par \ ^ A" i , 2 , . . . , - I la somme de ces

termes où parmi les - lettres a prises négativement se

trouve cit, nous aurons

et, par conséquent, on obtiendra les formules (

(*) M. Caucby a indiqué une démonstration de cette formule, Comptes
rendus, 1840, i«r semestre, page 56g, et d'une manière plus développée
dans le tome II des Exercices, page 14 ' -

21.



si n est impair, et

n — 2
l— 2

si « est pair.
Ainsi pour n = 3, on a

rt, pour n = 4 9

«3 -h «4)4 — (<ÎI - H « 2 +- «3 — «4)*

— (a-2 -f- # 3 - 4 - aA — aty -f- (a2 - i - a2 — aA— « , ) 4

- t - ( a a - f - « « — « 3 — tfi)1 — («:»-+- «< — «2 — « i ) 4 -

SOLUTION D'UN PROBLÈME SUR LA SOMMATION DUNE SOMME
DE PUISSANCES ( * ) ;

D'APRÈS M. A. THACKER.

(Journal de M. Crelle, tome XL, page 89; i85o.)

1. PROBLÈME. Soient m et n deux nombres entiers po-
sitifs, trouver la somme des puissances d'exposant w, de
tous les nombres premiers à m et plus petits que m.

Solution. Soit m = a a fc^c7...; a, b, c,... étant des

(*) M. Binet vient de traiter le même sujet. (Compte rendu, t. XXXI1,
p. 918.)



nombres premiers} posons

y (p) = i n - f2 n + 3n + . 5 . -+-/>" K p étant un nombre entier.

Les nombres compris entre i et m et divisibles par à
sont

m
. . . , —• a ;

a

par conséquent, d'après l'énoncé du problème, il faut
rejeter la somme

Posons

Dans R rejetons les puissances » des nombres divisibles
par b ; raisonnant comme ci-dessus, il faudra rejeter de
(fin la somme

m\ . l m
' et dans aIlbn® - 7

il faut rejeter

il faut donc rejeter

Représentant le reste par R', on obtient

eflaçant dans chacun des quatre termes ceux qui se rap-
portent au diviseur c, et désignant ce qui reste par R/;,



on a

et ainsi de suite.
Pour fixer les idées, supposons qu'il n'y ait que trois

facteurs a, b, c, alors R" sera la somme cherchée. Dési-
gnons cette somme par Sn. On sait que l'on a

/Tî I I I
<ù(m) = 1—mn H—/2,B, m"-1 — T

/ï -+- I 2 2 Zj.

ou «t, /ïs, w 8 v s o n t ^ e s coefficients binomiaux, et
Bj, B2, B3 sont les nombres Bernoulliens.

Si nous remplaçons dans l'équation ( î ) y ( m ), y ( ~ j v •

par leurs développements, si nous ordonnons par rapport
à m, nous obtiendrons

l—
I \ / I \ / I \

) ( 1""x) ! — )

T'1

Si n est pair, le dernier terme est
î

/ - \ * _ J\ v » / , ,~7j | W . AN 1

( 1 } — fin i Dn i fft [ 1 "m" (i I l I O



et le nombre des termes est

si n est impair, le dernier terme est

( — 0 ^ - — - « H _ 2 B ^ 2 / / Ï 2 ( I — a " - 2 ) ( i — bn~>) ( Ï — c"--') ,

et le nombre des termes est

( + )

2. Applications. i°. «=o;ona

*"(-:) (-Î) H)'
formule connue, trouvée par Euler, et qui indique com-
bien il y a de nombres inférieurs et premiers à m (tomeIV,
page 75).

2 0 . n = 1 5

ou

*=i-(-i)(-i)H)(—H
attendu que ••

»=«•



4°. » = 3;

Soit m = 60 = a2.3.5 ; on a

S0=i6, S, = 48o, S 2= 19120, S3 = 8568oo.

NOTE SUR LA SOLUTION PRÉCÉDENTE;

PAR M. E. PROUHET.

Ainsi, en résumé, si Ton suppose <jp (m) développé
suivant les puissances descendantes de m, il suffira, pour
obtenir Sn, de multiplier respectivement tous les termes
de <${m) par P_j, Po , Pi, P s , etc., en posant, pour
abréger,

P, = ( I - * ' ) ( I - - * 0 - . • ( « - ' ' ) ;

mais on peut parvenir à ce résultat d'une autre manière,
qui nous fera connaître en même temps une relation
entre Srt et Sn_t.

Posons

$ (p) = 1 - h 2 " - 1 4 - 3 " - ' 4 - . . . - h / ? " - ' ,

on aura

s n _ , =

où les signes sommatoiresse rapportent aux nombres pre-
miers qui entrent dans m.



Si l'on prend la dérivée de Sw par rapport à m , e n trai-
tant a, £ , etc., comme des constantes, on aura

dm T v J

Mais on a (page i

donc

ou, ce qui revient au même,

d'où

—— = nSn—i - j - B n _ , Pn__, ;
dm

où

( 2 ) Sn = n I
«/o

et il n'y a pas de constante à ajouter, puisque la for-
mule (1) montre que Sn ne doit pas avoir de terme indé-
pendant de m.

Mais, d'un autre côté, en posant sn=(f(m)1 on a

Jo
(3) sn=z n I sn_{dm-+- Bn-_, m ;

par où l'on voit que si'Ton se sert de l'équation (2) pour
calculer So, Si, S2, etc., ou de l'équation (3) pour cal-
culer $0, «*i5 etc., le premier résultat ne différera du
second que par le changement de Bo en B0P0 > de Bj en
B tP!, etc.; ce qui s'accorde avec la règle énoncée plus
haut.

Nous avons donné, dans un autre article, les valeurs de
*o, Si,..., sn (p. 189) $ on pourra donc en déduire, sans
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nouveau calcul, les valeurs de So, S,,-..., S,, : on aura ainsi

_ m
S6=P_,_4-

etc.

m3

CONCOURS U V(.RÉ4.VT1O\ AUX LYCÉES, ANNÉE 1 8 4 1 ;

PAR M. DIEU,
Agrégé, docteur es sciences.

COMPOSITION DE MÉCANIQUE.

Déterminer le mouvement d'un point matériel repoussé
par un centre fixe > en raison inverse du carré de la dis-
tance.

F étant le point d'où émane la force répulsive, M la



position du mobile, et MV la direction de sa vitesse à
l'époque à partir de laquelle on compte le temps, il est
évident qu'il ne sortira pas du plan FMV.

Nous prendrons F pour pôle, FM pour axe polaire, et
nous désignerons par w, p et v les coordonnées et la vi-
tesse du mobile à la fin du temps t, par pQ et f 0 les valeurs
initiales de p et *>, par a l'angle FMV, compris entre
o et 7T, enfin par p. la force répulsive rapportée aux uni-
tés de masse et de distance.

Le principe des forces vives donne

(i) d?+?d»* = a a ̂
K ' dp p

en posant v\ H = a pour abréger, et celui des aires,

c étant déterminée en fonction des données po> v0 et ce par
l'équation

c = p0 v, sin a.

L'élimination de dt, entre les équations (1) et (2),
conduit à

p2 p

en résolvant cette équation par rapport à /̂co, puis en
intégrant, on trouve

t.
> — P = riz arc. cos |

— (3 étant la constante amenée par cette dernière opéra-
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tion} et l'on tire de là
c*

£_(3)

Afin que 0 = 0 donne p = p0, il faut qu'on ait

• P 2

et nous prendrons pour |3 le plus petit arc positif qui
satisfasse à cette équation.

L'équation (3) représente une hyperbole dont le point F
est un des foyers *, le mouvement s'effectue sur la branche
opposée à ce foyer, puisque p a initialement la valeur
positive p0 qui répond à un point de cette branche*, et
l'on voit facilement que la droite qui va du (oyer F à
l'autre fait avec FM, dans le sens de w, un angle égal

à 27T — (3 ou à (3, suivant que a ^> - ou < —

A et B désignant les demi-axes de cette hyperbole,
on a

d'où
II C

et Ton pourrait la construire d'après ces formules:, mais
il est préférable d'employer le théorème de Newton, par
lequel on a N = R cos*<p, N étant la normale, R le rayon
de courbure, et <f l'angle compris entre la normale et le
rayon vecteur. Pour cela, on décompose la force répul-
sive ~i qui répond à la position initiale M du mobile, et
qui est dirigée suivant le prolongement de FM, en deux
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autres forces dirigées Tune suivant MV ou son prolon-
gement MV, et l'autre suivant la perpendiculaire KK' à
W } cette dernière composante, qui est représentée par

^-. shia, est égale à la force centripète correspondant à

la position initiale, de sorte qu'on a

- = 4
d'où . P°

p Sllla

R désignant maintenant le rayon de courbure relatif au
point M; on prend, d'après cette équation, MC = R

sur la partie de KK' où tombe la composante •—. sin oc,

on mène CD perpendiculaire à FG, DN perpendiculaire
à KK', ce qui donne, en vertu du théorème précité, le
pied N de la normale au point M ; enfin FN est consé-
quemment la direction de l'axe focal, et la construction
de l'hyperbole s'achève par des procédés qu'il est inutile
de rappeler.

On tire des équations (i) et (2)

y « p2 — 2pp —

et, en intégrant cette éguation, on a

(4)
± t = - sjaf—ipç —

a s/a

C étant une constante.
Si a ^> -? p augmente continuellement avec t\ on doit
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donc prendre •+- devant dtel t, et faire

asfâ \ sfâ a ^a a

afin que p = po donne t = o.

Si a. <^ -> p diminue d'abord, puis ensuite augmente

avec f, et son minimum, qui répond à w = j3, est

B 2 = ;

on doit donc prendre premièrement le signe — devant dt
et t , ainsi que la valeur précédente de C; puis, lorsque p
atteint p, et dépasse ce minimum, ce qui arrive quand

prendre -f- devant dt et £, et faire

afin que p = pi donne t = tf.
Les équations (3) et (4) fournissent directement l'é-

poque du passage du mobile en un point de l'hyperbole
donné seulement par la valeur correspondante de &>. Si
Ton voulait sa position à un instant donné, il faudrait
résoudre l'équation (4) par rapport à p , mettre la valeur
obtenue dans l'équation (3), puis la résoudre par rap-
port à a).

La vitesse est toujours dirigée tangentîellement à l'hy-
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perbole, et sa grandeur est donnée par l'équation (i) de
laquelle on déduit • .

Si a ^> ? elle augmente continuellement, tandis que si

a <^~i elle diminue d'abord jusqu'à i/ a -? et aug-
mente ensuite 5 dans les deux cas elle tend à devenir uni-
forme et égale à sja- On peut remarquer que v ne dépend
pas de a, de sorte que la vitesse aura la même grandeur
à des distances égales de F, quel que soit cet angle. Il
n'en est pas ainsi de t dont l'expression contient c qui
dépend de a ; c a bien la même valeur pour des angles (a)
supplémentaires l'un de l'autre, mais la constante C doit
recevoir la valeur (y) pour un de ces angles, et la valeur
(yr) pour l'autre quand on considère des rayons vecteurs
égaux.

Si l'on suppose que le mouvement a commencé avant
l'instant à partir duquel on compte le temps, on peut
demander de le déterminer à une époque quelconque
antérieure à celle-là. II suffit pour cela de considérer des

valeurs négatives de t et de c*> ; si a ^> -•> on prendra -f-

devant dt et t, avec la valeur [y) de C, jusqu'à p = p , ,
qui répond à c*> = — jS, et t == — t\ puis antérieurement
on prendra — devant dt et f, avec la valeur ( / ) de C ; et

si a <^ -> on prendra toujours— avec la valeur (y'). On

peut remarquer que des arcs de même longueur et symé-
triques par rapport à l'axe focal de l'hyperbole seront
décrits par le mobile dans des temps égaux.

Enfin, si Ton avait a = 7r ou a = o, la trajectoire se-
rait évidemment la droite FM. Dans ces deux cas parti-
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culiers, on a

d'où

donc la formule (4) s'y applique en faisant c = o, et la
discussion en serait semblable à celle qui précède.

QUESTIONS.

I. Déterminer le mouvement d'un point matériel re-
poussé par un centre fixe, en raison inverse du cube de
la distance.

II. Déterminer le mouvement de deux points maté-
riels qui se repoussent ou qui s*attirent, en raison directe
de leurs masses et en raison inverse des carrés des dis-
tances $ ces deux points ayant des vitesses initiales in-
versement proportionnelles à leurs masses, et dirigées
en sens contraires, suivant deux droites parallèles entre
elles.

D E LA C O U R B E B A L I S T I Q U E , P A R J A C O B l < * ) ;
TRADUIT DU LATIN , PAR M. A . ,

Ancien élève de l'École Polytechnique.

Le grand géomètre Jean Bernoùllî, dans les Actes de
Leipsick pour Tannée 1719, ramena aux quadratures le
mouvement d'un point pesant dans un milieu résistant
uniformément, chaque fois que la résistance est propor-
tionnelle à une puissance quelconque de la vitesse. Pro-
voqué à déterminer le mouvement pour une résistance

(*) Extrait d'un Mémoire sur le mouvement d'un point. (Crelle,
t. XXIV, p. 25; 184-2.)
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proportionnelle au carré de la vitesse, il résolut aussitôt
la question plus générale. L'illustre Legendre apprit à
ramener le problème balistique aux quadratures, quand
la résistance est proportionnelle au carré de la vitesse
plus une constante. Comme aucune de ces deux questions
ne se trouve dans les Traités de Mécanique, j'examinerai
en peu de mots le cas où la résistance du milieu est pro-
portionnelle à une puissance quelconque de la vitesse plus
une constante. Cette supposition embrasse l'une et l'autre
question.

Soit a -h hvn la résistance, a et b désignant des con-
stantes, les équations dynamiques deviennent

d'x dx' . , .*'
_ = _=_( ,+ * , , _ ,

dt* dt x ' v h

II suit de là

(a 4- bvn) (V d/ —y dx') =

d'où, en posant

.r'rzreCOSrj, y ' = P sin 17,

on tire

^(a -+• bt^)dn = gdx' = g(cosv)dt>

ou
g.cosyj v-(u+-{)dv — [a -\» g sinY))t>-ndY> =

Supposons que la partie à gauche de l'équation qui pré-
cède, multipliée par un facteur convenable, devienne
égale à la différentielle d. M*>~n,. on aura

dM n(a

M #cos>j '
d'où

na

(1) M

Ann. de Mathémat., t. X. (Septembre I85I.) 22
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et le multiplicateur devient

nM
g COS yj

De là, l'intégrale

gj cosn

Cette formule continue à avoir lieu si h est une fonc-
tion quelconque de ri \ elle aura encore lieu en supposant
a fonction de y?, pourvu que dans l'expression (i) on
change le second facteur M.

Posons
/' l \

/• = tang ( 45° H— n ?
\ 2 /

d'où
11 . ^ — 1 d-€\ dr

cos yj = 1 Slïl yj = • = — •
l + r- 1 -+- r- cos ri r

Dr là , en posant
a

on tire

d'où
«TVi - « _ nb Ç , , ( c _ l } , a v n '//•

Cette formule devient finie toutes les fois que n est un
nombre entier positif. L'expression de v en r devient sur-
tout très-simple si Ton suppose

a n-\- 2

car alors on a, par la formule qui précède,

_,, _ nb

« désignant une constante arbitraire.



Ayant déterminé v en fonction de r, les formules gé~
nérales donneront les expressions de .r, y, t en fonction
de la même quantité, au moyen des seules quadratures^
car, iv désignant la résistance, on a les équations

dx' ^

d'où
w (x' dy' — y1 dx' ) == g v dx',

ou

(5) vwdn = gdx''.

Il suit de ces formules,

(6)

x'w g-cosyj gr

. , v2 dn 2 v2 dr
dx =r x' dt = = ;

g gi*-*-**
n: y dt — •

g gr[i + r*)

En substituant dans ces formules générales l'expression
de la vitesse ^ en ri ou en r, et intégrant, on obtient lep
valeurs de £, x,y. Si dans les formules (3) et (4) on
pose a = c = o, n = 2 , on a les formules qu'on donne
ordinairement.

La réduction aux quadratures réussit aussi lorsque la
résistance est exprimée par la formule a-\-b logt\ Je ne
poursuis pas plus loin cette hypothèse, parce qu'elle n'a
pas lieu dans la nature et qu'elle est comprise dans les for-
mules précédentes, en écrivant a et - au lieu de <i et

1 n n
bn et posant ensuite n = o.

Pour obtenir des approximations, Newton et les au-
22.



teurs venus après lui mettaient, au lieu de la constante &,
des fonctions de n ne variant pas beaucoup et donnant
pour y, #, j * , t des quadratures faciles. On en voit divers
exemples dans le Mémoire de l'illustre Legendre; mais
les méthodes d'approximation de ce genre paraissent trop
vagues.

ENVELOPPE DUNE TANGENTE 4 DEUX CERCLES VARIABLES;

PAR M. E D . TERRÉ,
Élève de M. Orcel, lycée Charlemagne.

PROBLÈME. On donne deux cercles dont les centimes soîit
fixes 9 et dont les rayons U et\ doivent satisfaire à la
relation

/ifU-h//V=/>% •

ni, n, p représentant des lignes.
On demande Venveloppe des tangentes communes à

ces deux cercles.
Solution. Soient ces deux cercles U et V dans une posi-

tion particulière (*). Soient TT', u' les tangentes com-
munes à ces deux cercles. Soit i d la distance des centres.
Je prends pour axe des x la ligne des centres, et pour axe
des y une perpendiculaire à cette droite élevée par le point
O, milieu de la distance des centres.

L'équation de la droite TT', dans une position parti-
culière , est

y = ax -f- /; ;
on aura

.± s!a* -h i ± v/V/2 -f- i

(*) On est prié de l'aire la figure.



La relation

va me servir à déterminer b en fonction de a.
L'équation de la tangente TT' peut se mettre sous la

forme

Si, alors, on fait croître a d'une manière insensible, on
aura les équations successives des différentes tangentes
qui, par leurs intersections, donneront le lieu cherché.
La méthode générale consisterait à prendre la dérivée par
rapport à a de l'équation

et ensuite à éliminer a entre ces deux équations. Mais si
l'on essaye le calcul, on verra facilement que l'équation
finale serait du huitième degré. Il faut donc, pour arriver
à un résultat simple, avoir recours à quelques artifices.

Je vais, à cet effet, déterminer d'abord l'enveloppe
des tangentes extérieures TT7. Je reprends l'équation

y =z ax -h b,

en y supposant a positif.
Les valeurs de U et de V seront, dans ce cas,

ou

La

T l •

bien

U —-

relation

ad -

y/a2'

ad -

- b

-h T

-b

-f- I

y —

V -

— ad —

— ad

-b
i

—

-f-

b

• I

donne pour b, si l'on prend les premières valeurs de U
et de V,

. /// — n
b — H • ad —

m -f- n
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ïes secondes valeurs de II et de V donnent

m —n . lpK [a?-\- 0
m — <̂ y (/« -h «;

l 'équation de la tangente devient

Si l'on cherche l'équation de la tangente intérieure tt\ en
supposant toujours a positif, on trouve

m-\~n

si l'on suppose a négatif, les équations de ces tangentes
sont

m

Les équations générales des tangentes communes aux deux
cercles sont donc

~ m-+• n ^ \ (m-\-n)2

Je dis maintenant que si l'on cherche l'enveloppe de Tune
de ces droites, on aura une courbe du second degré.

La manière dont s'engendre le lieu fait voir évidem-
ment que Taxe des x est un axe de symétrie.

Par conséquent, si cette enveloppe est une courbé du
second degré, elle sera de la forme

2 E.r -f- F = o;
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or on sait que l'équation de la tangente à cette courbé est

' c"
On voit, à l'inspection de cette équation, qu'on peut l'i-
dentifier avec une quelconque des droites précédemment
trouvées. Donc le lieu se compose d'un système de courbes
du second ordre.

L'équation (i) conduit au radical affecté du double
signe zh ; ce qui indique que le lieu se composera de
quatre courbes du second ordre.

Je vais démontrer maintenant que ces courbes du se-
cond degré sont des cercles. Je compare à cet effet l'équa-
tion (i) avec une des équations précédentes, avec l'équa-
tion suivante par exemple,

m — n
y = ax-\ —

on aura les équations de condition,

E2 — FC p* E 2 C — <
~CT ~~ ~~ (rrT

d'où
E2— FC__Ea — FC

C2"""" C '
ou enfin C = i.

On obtient donc un cercle.
On a immédiatement

(m

L'équation du cercle est donc

Par un calcul analogue, on trouvera pour équatiali de»



( 344 )
autres cercles :

) = T - r 2

/w — n] (m — ny
m — « \* p*

( m — n)2

Ces quatre cercles sont donc renfermés dans les deux équa-
tions suivantes :

d) =7—^-—-•,
— « / (m — ny

on trouve donc en général quatre cercles placés symétri-
quement par rapport à l'origine, et égaux deux à deux.

Ce problème est susceptible de discussions.
Note. L'auteur donne ces discussions intéressantes, mais sans difficultés.

NOTE SUR LE PROBLÈME PRÉCÉDENT;
PAR E. C.

Si l'on partage la distance des centres en deux parties
inversement*proportionnelles à m,n\ puis que, du point
ainsi obtenu, on abaisse une perpendiculaire à sur la tan-
gente commune, on aura, par un théorème connu,

(m 4 - » ) * = #wU-+-wV;
donc

9=-EL-.
m -h n

La distance ô étant constante, il s'ensuit que le lieu
cherché est une circonférence.
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GÉNÉRATION MODULAIRE ET OMBILICALE DES SURFACES DU
SECOND DEGRÉ.

1. Étant donnés: i° un point fixe (foyer)-, 2° une
droite fixe (directrice) $ 3° un plan fixe ou seulement
donné de direction ; 4° u n point de l'espace déterminé de
telle sorte que la distance de ce point au foyer, divisée par
la distance du même point à la directrice, distance mesu-
rée parallèlement au plan, soit égale à un nombre donné.
Le lieu de ce point peut devenir une surface quelconque
du second degré, excepté les surfaces engendrées par la
révolution d'une conique autour d'un axe focal.

C'est ce que les Anglais nomment la génération modu-
laire; le nombre donné s'appelle module.

2. Il est évident que le plan passant par le foyer, per-
pendiculairement à la directrice, est un plan principal.

3. Si Ton prend, par rapport à ce plan principal, un
plan symétrique au plan fixe, en prenant le plan symé-
trique pour plan directeur, on obtient la même surface.

4. Un plan parallèle au plan directeur coupe la sur-
face suivant un cercle ou suivant une droite.

En effet, soient F le foyer, I le point où le plan paral-
lèle rencontre la directrice ; M étant un point delà surface,

MF
le rapport —- est donné : le lieu du point M est donc
ou sur une sphère, si ce rapport n'est pas égal à l'unité,
ou sur un plan, si ce rapport est égal à l'unité;
donc, etc.

5. Conservant le même module et le même plan di-
recteur, la même surface peut être engendrée par une
infinité de foyers et de directrices ; tous ces foyers sont
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sur une conique (la conique focale de M. Chasles) située
dans le plan principal perpendiculaire à la directrice, et
toutes les directrices sont sur un cylindre droit. Chaque
directrice a pour polaire réciproque, par rapport à la
surface, une tangente à la focale conique, et le point de
contact est le foyer correspondant. La base du cylindre a
été nommée conique directrice modulaire.

6. Dans l'hyperboloïde à une nappe et dans le parabo-
loïde hyperbolique, les deux coniques focales réelles (3)
sont modulaires, pouvant servir à engendrer la surface $
mais dans l'ellipsoïde, dans le paraboloïde elliptique et dans
l'hyperbole à deux nappes, il n'y a qu'une des deux focales
coniques qui soit modulaire : c'est celle qui ne rencontre
pas. L'autre n'est pas modulaire, elle rencontre la surface
aux ombilics; on la nomme conique focale ombilicaire.

7. Lorsque la même surface peut être engendrée par
deux coniques focales, les modules ne sont pas les mêmes,
ni les plans directeurs.

Soient m et n les deux modules, <jp et y' les angles cor-
respondants que font les plans directeurs avec les plans
principaux respectifs-, on a la relation

cos2 cp cos2 »'

m1

8. Soit m le module, et faisons varier m2 de oo à o :
i°. m = oo à m = i$ la surface est un hyperboloïde à

une nappe, et le foyer est sur une ellipse focale ;
2°. m = i$ la surface est un paraboloïde hyperbolique

et Ton a une parabole focale ;
3°. De m = 1 à m = cosy$ jusqu'à une certaine va-

leur intermédiaire entre m= 1 et m = cos y, la sur-
face est un hyperboloïde à une nappe, mais ayant une
position dillérentede celle qu'il a pour de m = 00 à m = 1 ;
les axes dirertifs réels et imaginaires échangent leurs
positions respectives, et la parabole focale devient une
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hyperbole. Lorsque m atteint cette valeur intermédiaire,
la surface devient tin cône, et l'hyperbdle focale Ée change
en deux droites} depuis cette valeur intermédiaire jusqu'à
m = cos <f, on a un hyperboloïde à deux nappes et la
focale devient une hyperbole, mais dans une {position
conjuguée k la première 5 pour m = cos <p, la surface de-
vient un paraboloîde elliptique et la focale une parabole,
et de m = cos y à m = o, la surface devient et reste un
ellipsoïde et la focale une ellipse.

Génération ombilicale.

9. On donne i° un point fixe (foyer )$ 20 deux plans
fixes; 3° un nombre fixe. On cherche un point dans l'es-
pace tel, que le carré de sa distance au foyer, divisé par le
produit de ses deux distances aux plans fixes, soit égal
au nombre fixe ; le lieu de ce point est une surface du
second ordre.

BIBLIOGRAPHIE.

Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques
se trouvent chez M. BACHELIER, libraire, quai des Augustins, n° 55.

LEÇONS SUR LES APPLICATIONS PRATIQUES DE LA GÉOMÉTRIE

ET DE LA TRIGONOMÉTRIE} par MM. J.-A. Serret et

Ch. Bourgeois; ouvrage servant de complément au
Traité de Trigonométrie de M. J.-A. Serret, examina-
teur pour l'admission à l'Ecole Polytechnique, et ren-
fermant les matières exigées pour l'admission à cette
École, d'après le Programme arrêté par la Commission
nommée en~exécution de la loi du 5 juin i85o, et ap-
prouvé par M. le Ministre de la Guerre. Paris, i85i;
in-8° de 82 pages, avec planches. Prix, 1 francs; chefc
Bachelier, libraire.

Toute pratique renferme trois parties : i° la descrip-
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tion des instruments; i° l'emploi de ces instruments; 3° la
théorie de& procédés. Lors même que la construction des
instruments est détaillée avec beaucoup de clarté, texte
et dessin, et c'est le cas du présent ouvrage, il y aura
toujours des difficultés de compréhension pour ceux qui
manquent d'habitude. Prenons pour exemple Vèquerre
d'arpenteur, instrument très-simple et bien décrit (p. i4).
Les élèves en auront-ils une idée bien nette ? C'est dou-
teux. Il n'y a pas même lieu au doute pour des descrip-
tions plus compliquées, celles du cercle répétiteur, de la
stadia, etc. Il semble qu'on aurait même pu se dispenser,
dans un ouvrage si élémentaire, d'insister tant sur les
règles de Clerc (page 27). Nous engageons donc les élèves
d'abord à voir et à manier les instruments ; ensuite ils
liront ces six Leçons non-seulement avec une extrême fa-
cilité, mais encore avec plaisir. Du reste, comme c'est le
premier ouvrage de ce genre publié à l'approche des exa-
mens, il y a nécessairement quelques légères traces de
hâte dans l'exécution. Les développements ne sont peut-
être pas convenablement gradués sous le point de vue pé-
dagogique. Il y aurait même à examiner s'il ne serait pas
avantageux de mêler la pratique avec la théorie à l'instar
de Bezout, qui reste toujours un modèle, non encore égalé,
de bon sens, de clarté et de rédaction. N'oublions pas
que nos élèves doivent sortir des collèges munis d'un grand
fonds de théorie avec quelques notions de pratique, et
ensuite sortir des écoles d'application avec beaucoup de
pratique et quelques notions de théorie \ distinction que
le Programme a constamment oubliée. Il est à regretter
aussi que ce Programme n'ait pas admis la théorie des
transversales, si utile dans la géométrie pratique, comme
Font fait voir deux géomètres éminents, Servois que nous
avons perdu, et M. Brianchon que nous avons le bonheur
de posséder encore.
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Nous avons en France un savant qui s'est illustré par

les progrès qu'il a fait faire à la nouvelle géométrie,• un
autre savant est parvenu subitement à une haute réputation
presque populaire, en réduisant en nombre, en temps
opportun, avec un bonheur inouï, des formules de la
Mécanique rationnelle. Ces deux savants ayant à régle-
menter l'enseignement mathématique en ont retranché,
quoi? la nouvelle géométrie et la mécanique rationnelle.
Ces étranges anomalies me rappellent un puvrage de mo-
rale intitulé Bechinot Olam (*), et cet ouvrage débute
ainsi : « On ne peut sonder ni les abîmes de la mer, ni
» la profondeur des deux ; plus impénétrables sont en-
» core les replis du cœur humain. »

OBSERVATIONS SUR LA RÉSOLUTION DES ÉQUATIONS DU TROI-

SIÈME DEGRÉ PAR LES FORMULES DE TARTALEA , SUr le Cas

irréductible, sur le problème de la trisection de l'angle
et de la duplication du cube; par un mathématicien.
Quimper, i85o-, in-8°de 16 pages.

L'auteur montre, par des exemples, que si l'équation
du troisième degré a une racine de la forme a -f- sfb, a
et b étant des nombres commensurables, les quantités
contenues sous le radical, dans les formules ordinaires,
deviennent des carrés parfaits ; il montre, mais ne dfé-
montre pas que cela doit être ainsi. Courtois, professeur
au collège Stanislas, dont la perte récente est si regret-
table , s'est occupé de cette question qu'il a probablement
résolue (**). Parlant de la trisection de l'angle, le mathé-
maticien croit qu'on peut faire cette opération par la géo-

(*) Appréciation du monde, traduite de Phébreu en français, par
Michel Berr.

(**) Voir Nouvelles Annales, t. II, p. 5o ; Courtois est mort en i8/jg.
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met rie élémentaire. Wanteel en a démontré l'impossibi-
lité. M. Sturm a rendu cette démonstration plus rigoureuse
et plus simple, à ce qu'on dit.

ÉTUDES SUR LA TRIGONOMÉTRIE SPHÉRIQUE, suivies de nou-
velles Tables trigonométrjques, donnant la valeur des
angles horaires du cadran solaire dans toutes les posi-
tions, la série des heures du lever et du coucher du
soleil pour toutes les latitudes, et la solution abrégée
de beaucoup d'autres problèmes d'astronomie, de géo-
graphie et de navigation -, par M. Alphonse Heegemann,
membre de la Société nationale des sciences, de l'agri-
culture et des arts de Lille. Lille, I 8 5 I ; in-8° de
192 pages, une planche. (Extrait des Mémoires de cette
Société, année i849«)

Ces Études sont terminées par deuxTables A et B, et
c'est par là que nous commençons, car tout l'ouvrage est
dans cette fin. La Table A est à double entrée et repré-
sente l'équation indéterminée à trois variables

sin x sin y =r sin z ;

l'arc x qu'on suppose plus grand que j ' est à rentrée su-
périeure ou horizontale, les arcs se succèdent de 3o' en 3o',
depuis o° 3o' jusqu'à 900*, et l'arc le moins élevé occupe
l'échelle latérale ou verticale, et ces arcs se succèdent
aussi de 3o' en 3o'. Supposons, par exemple, x = 69°,
y=25°3o^ prenant dans la colonne horizontale 690,
et dans la colonne verticale i4° 3o', on lit dans l'intérieur
de la Table 22°466 à l'endroit où les deux lignes, partant
de ces deux points trouvés, se croisent *, ainsi l'on a

* = 220 46' 36".

Ledegréétantsupposédiviséen six cents parties ou dixièmes
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de minute, il faut multiplier Je troisième chiffre décimal 6
par 6 pour avoir les secondes. Cette même Table, qui
donne les produits des deux sinus, donne aussi évidem-
ment les quotients, et, par conséquent aussi, les produits
d'un nombre quelconque de sinus divisés par un produit
semblable, le tout à vue et sans recourir aux Tables de
logarithmes 5 mais dans ce cas la méthode perd son avan-
tage.

La Table B représente l'équation indéterminée

sin x tangy =r tang z.

Sa construction est analogue à celle de la Table A ; il
est presque inutile de dire que les Tables s'appliquent
aussi à des cosinus et à des cotangentes. Les nombres in-
termédiaires s'obtiennent à l'aide d'une méthode d'inter-
polation fondée sur le théorème de Taylor appliqué à une
fonction à deux variables ; ce qui nécessite deux ordres de
différences, inconvénient assez majeur, les unes prises
dans les lignes horizontales et les autres dans les colonnes
verticales. Ces différences se rapportent à i5'de diffé-
rence-, une Table spéciale donne les parties proportion-
nelles. Ces Tables occupent soixante-quatre pages. Les
deux équations fondamentales résolvent directement les
dix-huit problèmes qu'on peut proposer sur le triangle
sphérique rectangle, avec un suffisant degré 4'exactitude
qui dépend aussi de l'exactitude des Tables qui, à ce que
je sache, n'est pas encore constatée. Les triangles oJ>U-
quangles se décomposant en deux triangles rectangles,
on peut encore avoir recours aux Tables. L'auteur les a
calculées en grande partie jusqu'aux secondes de degré.
Des vues d'économft et des difficultés typographiques ont
fait renoncer à la publication de ces grandes Tables;
projet dont l'exécution serait assez utile. Un grand nom-
bre de problèmes de trigonométrie, d'astronomie, de na-
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vigation , de gnomonique, se résoudraient pour ainsi dire
à vue, sans calculs, sans logarithmes. Telles qu'elles sont,
les Tables sont suffisantes pour les marins dans les calculs
des levers, des amplitudes, etc., et, en général, dans tous
les calculs approchés à moins d'une minute de temps
près. L'ouvrage contient un grand nombre d'applica-
tions à l'astronomie nautique, etc.; l'auteur approprie à ses
Tables les formules pour calculer les parallaxes, la réfrac-
tion , etc. C'est ce qui recommande principalement cet
ouvrage aux professeurs d'hydrographie. On aurait peut-
être pu se dispenser d'établir de nouveau les formules des
deux trigonométries; elles nous semblaient suffisam-
ment connues et bien établies.

GRAJNDZUGE DER ALGEBRAISCHEN .AKALYSIS, etc. PRIN-

CIPES DE L'ANALYSE ALGÉBRIQUE; par le Dr J. Dienger,

professeur de mathématiques à l'Ecole Polytechnique de
Carlsrushe. — Carlsrushe, i85i; 1-8, xiv-216.

Le savant auteur, connu par des travaux de haute ana-
lyse, a rédigé cet ouvrage élémentaire pour la seconde
classe de l'Ecole Polytechnique badoise. L'ouvrage con-
tient deux divisions. La première est consacrée aux fonc-
tions, aux séries et au calcul aux différences. La huitième
section, consacrée à la série bmomiale, donne la somme
j i / . . f> . m (m — i )* 9

de la sene infinie 1 -+- mx -\ - r H- ... pour x

réel ou imaginaire5 dans la quatorzième section, on dé-

montre, d'après M. Cauchy, que ^x-f-i)— f ie et —

atteignent la même limite pour x croissant indéfiniment;

de même les deux expressions ———r—- et f(x)2 • La
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deuxième division traite des équations; résolution des
équations du troisième et quatrième degré, d'après Euler$
existence des racines, d'après M. Caùchy; communs divi-
seurs de deux polynômes ; théorème complet de Sturm $
méthode de Lagrange (fractions continues) 5 recherches
des racines réelles, d'après Horner (*); méthode de
Newton. Un appendice contient les formules sin (a-h bi),
cos (a-\- bi), etc. 5 sommation de la série

_i x3 1 .3 xh

2 3 2T4 5""̂ " " ' '

x étant imaginaire; démonstration des formules de Cra-
mer 5 méthode d'approximation de Fourier.

Les élèves sortant de la classe élémentaire de M. Dienger
auront une instruction mathématique plus complète, plus
solide que les élèves sortant de notre École Polytechnique,
telle qu'on l'a faite, ou mieux, telle qu'on l'a défaite.

SOLUTION DE LA QUESTION 233
(voir t. IX, p. 182);

PAR M. ROUCHÉ,
Élève en spéciales du lycée de Montpellier.

T étant l'aire d'un triangle recti ligne, r et R les rayons
des cercles inscrit et circonscrit, a, i , c les trois côtés,
on a les équations

—."){P — *){P —*) = ?*, abc =

En combinant les deux premières, et développant la troi-

(*) La méthode dite de Horner est dans les Transactions philosophiques,
1819. Nous ne voyons pas en quoi elle diffère de la méthode Fourier-
Budan.

Ann.de Maihémat., t. X. (Septembre 1851.) 2*3
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sième, on obtient le système

b ^ + ^Kr+r*, abc^

qui , par le changement de a , è , c , en i{p
2 (p — b), 2 (/? — c ) , donne à son tour

2 ( / > — - a ) 2 ( / ? ~ b).n(p — c) = 8 r T .

Les cotés # , Z>, c sont donc racines de l'équation

et les quantités « + J — c , r/ H- c — b, fc -f- r — «,
sont racines de celle-ci :

T
(2) a3-— 2-«2-f- 4^(4R + r)« — 8rT=r o

En appliquant le théorème de M. Sturm à l'équation
générale

on trouve, pour la réalité des racines, la relation unique

— 4A3C-h A5B2-f- 18ABC —4B3 —27C 2 >o (*).

Cette condition, relativement aux équations particu-
lières (1) et (2), fournit le même résultat

Le premier membre est un trinôme du second degré
en T* \ pour qu'il soit négatif, il faut que l'équation obte-
nue en l'égalant à zéro ait ses racines réelles, et que T*
soit compris entre les deux racines.

(*) Nouvelles Annales, t. III, p . 161 ; Note de M. Tarnier.
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Ces deux racines ont pour expression

— r5 ±: ay/k (R — 2rf ] ,

et comme elles sont positives en même temps que réelles,
les conditions précédentes deviennent

et

-f- i o R r - r2 -f- 2v/R(R—- 2r)3>T,

4* ioRr~r2--2^R(R--2/')3.

Lorsque R > 2r et que T est égal à une de ces limites,
l'équation ( i ) a deux racines égales, et le triangle est
isocèle.

Si R = 2 r, les deux limites se confondent, T devient
égal à cette limite 3 r* ^3; l'équation (i) prend la forme

;2 -+- 36 i*z —• 24 y/3 r8 = o ;

elle a ses trois racines égales, et le triangle est éqtiila-
téral.

On parviendrait aux mêmes condition^ de réalité en
faisant évanouir les seconds termes des équations (1) et
(a)j et appliquant ensuite le caractère 4/>8-h

Note. Cet élève fait la judicieuse frémârcfue que la question 23o est un
corollaire de la question i^2.

THÉORÈMES SUR LES ÉQGAH0NS ALGÉBRIQUES.

1. Soit une équation algébrique entière dé degré n,

P = kx° + A, *"-> +... -+- A. = o = / (* ) ,
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et étant une quantité quelconque ,• on aura les identités

P =P, (*-«) +/(a),
P, =V2 {x- a) +/'(«),

P, =P3 (*_«)+:£llîL>,

P. =P.H.1 ( * _ &,

Pi > PJ ? P3 v • • sont les parties entières des quotients
P Pi Pi /*v

x—a' x — a x — a '^ '
Corollaire.

résultat évident d'après le théorème de Taylor.
2. Soient (f(x, y) = o, ^ (x* j ) = °5 rfewx équa-

tions algébriques entières ; si le déterminant

dy d^> dy d^
dx dy dy dx

est identiquement nul, les deux équations sont ou in-
compatibles ou rentrent Vune dans Vautre.

(*) On n'insérera pas de démonstration de ce théorème.



QUESTIONS.

238. Quand une suite d'ellipsoïdes est inscrite dans un
cône de révolution suivant la même courbe de contact,
on a, entre leurs demi-axes, a, è, c, la relation suivante :

= constance.

(MlCHAEL ROBERTS.)

239. Démontrer la formule suivante :

/
„ „ — — . - . &

4

— / e~ dx . / g~^ y*dy
t/a * —-a Jo y a y

(STREBOR. )

240. La position d'équilibre d'un corps surnageant
n'a lieu que lorsque la distance du centre de gravité du
liquide déplacé au centre de gravité du corps est un
maximum ou un minimum, ou bien encore lorsque le
centre commun de gravité du corps et du fluide déplacé
est à sa plus haute ou plus basse position. [CLÀUSEN (Th.),
astronome de l'observatoire d'Altona.]

241. Soit
— 6
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équation caractéristique d'une série récurrente ] on a

TÎ+» - a Tn T«+1 + b Tl t f

— - —— z= constante.
(EuLER.)

242. Soit
— o T -4- T

équation d'une série récurrente. Les deux premiers termes
étant i et $, aucun terme n'est un carré, à l'exception de i .

243. Soit l'équation
(x — ax ) ( x — a4) (x — a,) (x — n , ) ( * — « , ) . . . ( « — ain)

-f- ^ ( J C — fl2)(jr — az){x — «0}(JF-T- «r). • . (^ — û4n-i) = o;

les incJicfcS augmentent successivement d'une unité et de
trois unités 5 les différences a,—a^ a*—xzz,..., dwn-\—«4«
sont positives; b est un nombre positif} m un nombre
entier positif\ les 2» racines sont réelles et comprises
entre a, et a*, «s et <z4,.. . , a4nr;rl et a4„. ( RICHELOT. )

244. Dans un produit de n facteurs monômes, on ne
peut changer que a""1 —1 fois les signes des facteurs, soit
en totalité, soit en partie, sawa changer le signe du produit.

245. Soit
z == a, xx -f- a2 x7 -h a6 x3 4 - . . . -f- an xn ;

supposons que X\, x%,. . . , xu puissent prendre respecti-
vement ml9 ms, . . . , mn valeurs différentes ; alors z aura
auplu§ Wj m$ rns . . . mn valeurs différentes 5 mais il peut
en avoir moins. Dans quel ça,s?

S46. Résoudre Téquation

a6 — 6 (i* -h au3 -4- 9 «2 — 3 au -f- f = o.

247. Résoudre l'équation

4 ( )
3S48. 4w^ -^ m. -^ 1 ne peut jamais être un carré, soit

entier, soit fractionnaire. (GOLÏ>IACH.)

(*) Î os équations de cette forme ont toujours deux racines réelles.
(D. BERNOILLI.)
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EXERCICE NUMÉRIQUE SUR LES EQUATIONS DO PREMIER
DEGRÉ; LOGARITHMES DE GAUSS.

Soient les quatre équations :

4 9 ^ == o,o382O25a — o,oo655533p — 0,07183347 4- o,o5657o3 S,
152292,21 =0,0465752 a — 0,00407850 p — 0,09158667 4-0,0362259 £,
168846,94 = 0,0517211 a H-O,OOo5472O p — O,io323467 —- O,oo49o63 £,
105498,00 = o,o323338 a -+- o,oo3o5495 p — o,o634685 7 — 0,02713o° *»

d'où
3270589 = a — o, 171594p — 1,88o334v 4- 1,48o8oo£,
3269812 = a — 0,087568p— 1 ,9664677 4- 0,777743 £,
3264566 = a 4- o,oio58o p — 1,9959877 — 0,094861 S,
3262771 ~ « 4- 0,094481 P— 1 ,9629107 — 0,839084£;

777 z=-— o,o84o26p 4-0,0861337 4- 0,703007 £,
6023 — — o, 182174P 4- o, 1156537 4- 1,575661 *,

78018 = — 0,266075p 4- 0,0825767 4- 2,319884^;

9247,1 = — p 4- 1,0227177 4- 8,36654^,
33o6i ,8 = — p + 0,6348497 4- 8,64924 a,
29382,7 ==— p4-o,3io3497 4- 8,71905^;

23814,7 = — 0,3878687 4- 0,28270*,
3679,1 = 4-0,3245017 — 0,06984^;

61399 = — 7 -h o ,728856 <î,
n338 = 4-7 — o,2i5ï3i 9;

72737 = 4- o,5i3725<?;

^ = 4 1 5 8 7 , 4 , 7 = 4i798> P = 1218098, «=r3348538.
(Extrait de l'ouvrage ; Base du système métrique

décimal, etc; touie III, page 93. 1810.)
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C'est surtout ce genre de calcul que les logarithmes de
Gauss abrègent considérablement.

Prenons pour exemple les deux équations

ax -h by = c,
a'x H- b'y = c' ;

on en tire successivement
b_ __c
a a
V_ ___ c'

b'\ _ c c!

c'
\a a!) a ar

Employant les logarithmes, il faut chercher les six loga-
rithmes log a, log b , log c, log a1', log b', log c ; de là on
déduit

r b i c i h> i c'îog-, log-, log- , log^,

ensuite revenir de ces quatre logarithmes aux nombres \
substituer ces nombres dans la valeur de r9 et prendre de
nouveau le logarithme du numérateur et celui du déno-
minateur : c'est la marche ordinaire •, tandis que par les
Tables de Gauss, il n'est pas nécessaire de revenir des
logarithmes aux nombres, et de connaître les valeurs effec-
tives de - et de —,, car, comme on connaîtleurs logarithmes,

c c1

ces Tables donnent le logarithme de la différence 7,

et de même le logarithme de - * Voici le procédé gé-
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néral : prenons trois équations à trois inconnues ; on rem-
place chaque coefficient par son logarithme, et Ton écrit
ces équations de cette manière :

.rlogtf -h y log b -f-zlogc =logrf,
x log a1 -h y log b' -h z logci = log «?',
x log a" -H j log b" H- 2 loge" = log d".

Il est presque inutile d'avertir que ces équations et les
suivantes n'existent pas entre les logarithmes, mais entre
les nombres correspondants.

De là, on tire

•r-+-/logB -f-zlogC = l o g b ,
x -f-y logB' 4- z logC = log D',

% + / îog B" -f- z log C" = log D%
où

log B = log b — log a, log C = log c — log # , . .

et ensuite, par soustraction,

j l ô g f

où
Iog p = log(B - B'), log 7 = log (C - C),. . . ,

et Ton trouve log/3, log y, etc., par les Tables de Gauss 5
n'ayant plus que deux équations à deux inconnues, on
continue à opérer comme ci-dessus. Toute l'opération se
réduit donc à prendre les logarithmes des coefficients et à
faire ensuite un certain nombre de soustractions.

Cette méthode serait particulièrement utile aux
élèves (*) assujettis à chercher quarante logarithmes et
autant de nombres correspondants ; et à calculer vingt
logarithmes.

( * ) Matière taillable et corvéable à merci.
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INTÉGRATION DUNE ÉQUATION DIFFÉRENTIELLE

PAR M TH. CLAUSEN.

(Nouvelles astronomiques de Schumacher, n° l\l\i; t. XIX, p. 178; 184'-«• )

Posons
, , ,_(r~»)a

dz"=:-
2

aj 3 — 3 ^ — 4 ^

2 — 2 j — 2

I — 3z2 2 J2 — 2 / - h 4 y/̂ 3 _ ,

cfe' 3 r2 dy

d'où

1
z"7 H- 9 *~ 2 jr 4 - 2 ^ 3 —

Donc

—1 12 /3
log

-+- ^arc tang^z'+ -gz' arc tang ^i

1 2 \/3
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Observation. Legendre trouve cette intégrale par un
moyen très-compliqué et la vérifie par une méthode plus
courte. (Traité des Fonctions elliptiques, chapitre XXVI,
noi38.)

QUESTIONS DE TRIGONOMÉTRIE;

D'APRÈS M. GAUSS (*.).

Soient

A —

faisant

a2

a sin

a cosP

i -f--
cos4 P

Q = sinP,

a cos Q sj i — é* sin' P

tang(45» +

s i n <f =

tang^ ^

tang>> zzi

; t a n g <j>

\i-f-<?sinP/

COS2P,

( * ) Untersuchungen uber gegenstande der hohern géodésie : Recherches sur
def̂ fejefc* 4e la géodwie fwp4ri#*?e. Gottingi^, 9844 ; ûi~4* de 45 pages.
( Extrait du second tepie des Mémoires de VAcadémie de Goltingue., ) l/il-*
lustre auteur promet une suite de Mémoires sur le même sujet; un second
Mémoire a paru en 1847.
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on aura

a=fi—-,

cosÇ
sinQ = cosÇ sinP,

cos>j cosQ = cosP,
sin* = tangÇ tangQ,

tang - (P — Q) = tang - Ç tang - n,

sin(2Ç — f) = i?cos2Q,
cos y =r cos Ç cos n cos ô,

A =3
COS Cp

— <?2sin7P

tanga (45°
K = -

tang ^45°+ ~ Q) tang

Calcul numérique.

log e =8,9122052097 logarithmes hyperboliques;

=52°42' 2//,5325l,

données

d'où

H = 2° 15'42^,34083,
log a = 0,0001966553,

0 = 3° 43'34^,24669,
logA = 6,5152074703,

log -=- = O ,0016708804 •

Observation. 52° 4o' est environ la latitude du paral-
lèle moyen qui traverse le royaume de Hanovre, dont la
carte a été levée par l'illustre directeur de l'observatoire
de Gottingue.
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EXERCICES SUR LES ÉQUATIONS NUMERIQUES.

1. x2—i8a?a-h ix — 7 = o, #=17,91015
2. x* -f- 9#3 •+• 3i #2 -+- 4$<r — 32 = o, a: = 2,48906685.
3. .r4 —4*3-f-.r-t-4 = 0> ^=1,23772905.
4. #4 _̂ 3^3 _j. î^xi — 8 J : + I = O, r̂ = o,236 ( il y a deux racines

différant peu de o, 23 ).
5. jr4 +9^c2 —6^7-f-5 = o, ^ = 0,357401208±o,65633i4^49^—i.
6. xk — 9X3 — 9^4-1000 = 0, x = 7,029548815± 1,555451499V/""1 •
7. ar< —4,ij73-f-i4,2^2 —20,1^ + 2 6 = o, # = o,7i83±i,9288y/— 1.
8# x< -_ 4,r3-h i4^7 — 20.r+ 12 = o, ĉ = 1 ±2,7578^—1.
9§ .^-I-J;-!- 1 = o , x est compris entre —0,7 ± o,o3\/—1 et

— 0,8 -+- o,3 ^—1.

i°. Équations à deux inconnues.

• J a + » —y» =r o, J =

-— 2 j 2 — io = o, J: = 2, J : =

- 9 8 = 0, r = 3, r = -o,853o88 76.
—r3 = ° 5 ^ = 0,773571776,

= 3oo, ^ = 2,4223817,

( = 80, r = 4,o368598.

2°. Équations transcendantes.

15. ^ = 1 0 , x=a,5o6i84.
14. 4 x 4-5 x =io, ^=1,0697432.

3°. A deux inconnues.

r=5 , ^=2,5416,
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4°. Racines exprimées en produits infinis.^

17. x3 — I 8 # * - H ix— 7 = o, «r = 17.1 ,o5.1 ,oo3.1 , o o o 3 . . . ,

18. X* + 9472 — 6 x 4 - 5 = O, X= (o, 35 + O, 65^—1). I,OI

X (1, 002 — o, 004 V ^ O

X (1,0002 — 0,000*} V-*0-

Ces exemples sont tirés de l'ouvrage : Allgemeine auf
losang der zahlen-gleichungen mit einer oder mehre-
ren unbehannten : Solution générale des équations numé-
riques à une inconnue et à plusieurs inconnues; par
Simon Spitzev, professeur suppléant à l'Institut poly-
technkpie de Vienne. Vienne, I 8 5 I ; in-folio de 73 pages.

L'auteur donne à chaque racine la forme générale

at a2 az . b{ bx o3 \ ,
a -\ 1 1 1— —|— ( ^»0 —i 1 j 1 ) i f — 1 ;

10 ïo2 ïo3 \ 10 10- ïo3 / v

a0 et b$ sont de« nombres entiers quelconques, zéro com-
pris ) rtt, lïav*^ i n * ^ v 6Ont de* «onabrés entiers qui
ne peuvent dépasser 9 5 les quantités b sont nulles pour

les racines réelles. Après avoir trouvé a0 H -> on dimi-
*• 10

nue toutes les racines de cette quantité, par le procédé
Hudan ; la nouvelle équation a une racine moindre que
— ? et, par approximation, on trouve —^— On diminue

alors toutes les racines de la dernière équation de ——1 on
* 100

obtient une équation qui a une racine moindre qu'un
centième, et, par approximation, on trouve a%\ et ainsi
de suite. La même marche, mais plus compliquée, pour
les racines imaginaires et pour les équations à plusieurs



inconnues. On ne peut connaître le degré d'exactitude,
point essentiel dans les méthodes approximatives; du
reste, dans la pratique, la substitution directe fournit
toujours un moyen de vérification. Nous reviendrons sur
cet ouvrage.

EXAMEN D'ADMISSION A L'ÉGOLE FORESTIÈRE. PARIS, 1 8 5 1 .

COMPOSITION D E M A T H É M A T I Q U E S .

Trigonométrie.—Usage des Tables. Ancienne division.

Deuxième question (plus difficile). Les lignes a, b, c
sont des cotés du périmètre d'une coupe de bois que Von
vient d''asseoir. En calculant la surface de cette coupe,
on la trouve trop grande de ihect*,75. On veut opérer
le retranchement de cet excédant au moyen d'une pa-
rallèle au côté a.

Déterminer sur le côté b la distance AC à laquelle
doit étfe menée cette parallèle.

Dans la figure jointe au texte, le côté b (ligne CA) fait
avec le côté a ( AB) un angle de 63° 27', et le côté a (AB)
fait avec le côté suivant c un angle de 79°i7 /. On ne
donne pas la valeur numérique de a. Comment alors faire
usage des Tables ? Si Ton ne voulait qu'une solution géo-
métrique, d'ailleurs nullement difficile, à quoi bon les
données numériques ?

On ne saurait donner trop d'attention aux questions
qui décident de la carrière et sotivent du sort des jeunes
gens. En toute justice, cette composition doit être consi-
dérée comme non avenue, et le résultât être annulé.
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LOGARITHMES AVEC 2 7 DÉCIMALES DU MODULE;
PAR M. P H . KORALEK,

Professeur.

On a souvent besoin de connaître, avec une grande exac-
titude, le logarithme du module.

Désignant ce nombre par M, on a, comme on sait,

M = 0,434294481903251 82765 11289 189166;

appliquant à ce nombre ma méthode de calcul, je trouve

log tabulaire de M = 0,63778 43i 130053678912 2955917 — 1,
log népérien de M = o, 16596 75547 52o44 2O° 1967602 85 — 1.

( fo i rp . 394.)

On ne sache pas qu'on ait calculé ces logarithmes avec
plus de 10 décimales.

BIBLIOGRAPHIE.

INSTRUCTION SUR LES RÈGLES A CALCUL, ET PARTICULIÈRE-

MENT SUR LA NOUVELLE RÈGLE A ENVELOPPE DE VERRE ]

par M. Léon Lalanne, ancien élève de l'École Poly-
technique, ingénieur en chef des Ponts et Chaussées.
Paris, I 8 5 I ; in-125 VIII-I36 pages.

La méthode des cotes, la seule presque qui soit en usage
dans les services publics, a été introduite depuis quelques
années dans renseignement graphique de l'École Poly-
technique. Il serait à désirer que ce procédé fût admis
aussi dans les lycées, et qu'il précédât même la méthode
des épures à deux plans de projections. On sait qu'avec



es, on n'a besoin que d'un seul plan, au moyen du-
i peut représenter des points dans l'espace et exé-

cuter diverses opérations sur ces points. Ce plan uniqufe,
plus facile à comprendre, peut servir de transition aux
deux plans. Les cotes peuvent aussi être employées pour
représenter une courbe plane au moyen d'une seule droite.
A cet effet, prenons un point O pour origine, et menons
les droites OX, OY, axes. Soit At le point où Taxe OX
rencontre la courbe, de sorte qu'en At on a y 5= o 5 fai-
sons OAi = 15 portons sur Taxe des x, et toujours dans
le même sens, OA2 = 2, OA3 = 3 , OA4 = 4 ? etc-5 e t

menons les coordonnées correspondantes A2M8, A8M3,
A4M4, etc. 5 inscrivons à Textrémité d'une droite le
nombre 15 à partir de 1 portons sur la droite l'ordonnée
A2M2, et inscrivons au bout le nombre 2>, et, toujours à
partir de 1, portons A3M3 et inscrivons 3\ et ainsi de
suite. Il est évident qu'au moyen de cette droite, si Ton
a pris l'unité OA suffisamment petite, on pourra recon-
struire la courbe, et, sans recourir à cette construction,
OTÎ peut trouver approximativement Taire de la courbe, les
coefficients angulaires des tangentes, faire des interpola-
tions, etc. Choisissons la logarithmique j = l o g x ; alors sur
la droite représentative le nombre 1 indique le logarithme
de i ou zéro, le nombre 2 indique que l'intervalle 12 est
le logarithme de 2 5 le nombre 3 marque que l'inter-
valle i3 est le logarithme de 3 , et ainsi de suite. Sup-
posons maintenant deux de ces droites ainsi préparées et
juxtaposées, 1 étant vis-à-vis de 1, 2 vis-à-vis de 2, etc. ;
rendons fixe une de ces droites, et appelons-la règle, et
rendons mobile la seconde droite, le long d'une rainure
pratiquée dans la règle. Appelons cette seconde droite
réglette. Faisant glisser la réglette jusqu'à ce que son
nombre 1 soit vis-à-vis le nombre quelconque m de la
règle, alors le nombre quelconque n de la réglette sera

Ann. de Mathémat., t. X. (Octobre I85I .) 24
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vis-à-vis un nombre x de la règle, et la distance
la règle sera égaie à la somme des distances i m
Or ces distances représentent les logarithmes ; donc ,
d'après la propriété connue x = mn, on connaît le
produit des deux nombres m et n\ l'addition des loga-
rithmes qu'on exécute avec les Tables et avec la plume
s'opère par la règle glissante (slide rule), sans Tables et
sans plumes, à l'aide d'un simple déplacement. On voit
comment, par un mouvement inverse, on peut opérer la
soustraction des distances, et par conséquent la division,
et aussi l'extraction des racines. Il est évident que s'il
fallait inscrire tous les logarithmes, l'instrument serait
inexécutable; mais on peut se contenter, pour les usages
ordinaires, d'un petit nombre de logarithmes. En effet,
admettons qu'on ait inscrit seulement les nombres de i
à 9*, i est le commencement de la règle et représente zéro
ou le logarithme de i. Supposons que la règle soit pro-
longée seulement dans le sens de 21, alors le zéro de l'é-
chelle tombe en dehors ; le 1 représentera le logarithme
de 105 le 12 le logarithme de 205 le i3 le logarithme de
3o. et ainsi de suite \ de même 12 peut présenter le loga-
rithme de 200 et 13 le logarithme de 3oo, etc. \ les nom-
bres intermédiaires s'obtiennent par interpolation. Du
reste, Y instruction est tellement détaillée, les manières
d'opérer sont si nettement indiquées, les figures sont si
parlantes, que tout le mécanisme devient d'une facilité
extrême. M. Lalanne s'est rendu accessible aux moindres
intelligences, et nous ajouterons aux plus modestes
fortunes. Sa règle à enveloppe de verre ne coûte que
3 francs \ celle qui est en bois coûte 7 francs (*). L'in-

(*) Les divisions doivent être parfaitement égales, les traits minces et
pourtant visibles, et bien se correspondre sur la règle et la réglette;
conditions dont l'exécution exige beaucoup de soin et rendent Pinstru-



slrument de M. Lalanne suffit parfaitement aux élèves
qui doivent seulement connaître la règle et la manière die
s'en servir, sans avoir besoin d'acquérir une habileté
qu'ils acquerront promptement lorsqu'ils seront devenus
praticiens $ habileté d'ailleurs qu'on ne conserve qu'en pra-
tiquant constamment. Nous recommandons donc la règle
économiquey surtout pour le nouvel enseignement, bien
plus dispendieux que l'ancien. Il est vrai que le nou-
veau offre plusieurs compensations ; il est plus pénible,
plus long, de qualité très-inférieure, et les chances des
élèves sont plus embrouillées. Ainsi dans le nouveau mode
d'examen (*) , les élèves seront classés d'après douze
moyennes prises sur des objets différents, ayant chacun
un coefficient particulier, même fractionnaire (Moniteur*
5 juillet I 8 5 I ; page 1899, ire colonne, article 42). Les
élèves sont assimilés à des orbites planétaires, dont on
détermine les dimensions d'après douze observations,
ayant chacune son poids spécial. L'enseignement est évi-
demment sous une influence astronomique. Je crois
même qu'il est sous la domination du Cancer.

ment assez cher. L'action de la température et l'usage font même dispa-
raître ces conditions assez vite. Les élèves n'ayant besoin que de connaître
l'instrument, le moins dispendieux est le meilleur pour les classes.

(*) On a adopté l'excellent système suivi pour l'École de Saint-Cyr,
mais en le gâtant. Le Président doit être un protecteur donné aux can-
didats , et vous en faites un troisième examinateur. Q y a hypertrophie
d'examens. D'ailleurs, on ne devient pas mathématicien, physicien, chi-
miste, etc., par ordonnance ministérielle. En multipliant outre mesure
les moyennes diverses, vous avez accumulé les chances d'erreurs. A travers
les larges trous de vos cribles, les médiocrités passent aussi et même plus
facilement que les supériorités. Au milieu de cette macédoine d'épreuves,
le contrôle de vos jugements devient impossible, et, par conséquent, les
injustices sont possibles. En ce genre, le possible finit toujours par
.exister.



DES SYSTÈMES DE CHIFFRES
En osage chez différents peuples, et de l'origine de la valeur de position

des chiffres indiens.
(Journal de M. Crelie, tome IV, page 206; 1829. )

Mémoire lu à l'Académie des Sciences de Berlin, le 2 mars 1829, par
M. le baron ALEXANDRE DE HUMBOLDT.

TRADUIT DE L'ALLEMAND , PAR M. F. WOEPCKE.

Jusqu'à présent, dans les recherches sur les signes de
la numération (les seuls hiéroglyphes qui, chez les peu-
ples de l'ancien continent, se soient conservés à côté de
l'écriture littérale, anatomie phonétique de la parole), on
s'est occupé plutôt de la forme individuelle des signes, que
de l'esprit des méthodes à l'aide desquelles le génie humain
a réussi à exprimer des quantités avec plus ou moins de
simplicité. Le point de vue sous lequel on a envisagé cet
objet, a été presque aussi borné que celui qui, pendant
longtemps, a fait comparer les langues plutôt relativement
a la fréquence de certains sons et de certaines terminaisons,
ou relativement à la forme des racines, que par rapport
à la structure organique de leurs grammaires. Depuis plu-
sieurs années, je me suis efforcé, continuellement et avec
une prédilection particulière, de mettre sous un point de
vue général les systèmes de chiffres en usage chez diffé-
rents peuples anciens et modernes. La connaissance de
certains chiffres chez les Aztékes (Mexicains) et chez
les Muyscas (*) (habitants du plateau de Cundinamarca)

(•) Quant à l'opinion que les chiffres des Muyscas (employés en même
temps comme hiéroglyphes des jours de l'âge de la lune), dérivent de la



.( 373 )
que j'ai remportés de mon voyage ; la découverte, faite
par Thomas Foung* du chiffre égyptien, dont les signes
(comme nous le savons à présent) n'expriment pas tous
par juxtaposition le multiple des groupes; i e chiffre
gobar (de poussière) des Arabes, trop peu remarqué
encore, découvert par Silvestre de Sacy, dans un ma-
nuscrit de la Bibliothèque royale de Paris; les comparai-
sons que j'ai établies entre ces derniers signes de numé-
ration et les chiffres mexicains et chinois; la certitude
acquise par un grand nombre de grammaires publiées
dans VInde, que les chiffres et les lettres employées
comme signes de numération, en deçà et au delà du
Gange, sont non-seulement d'une forme tout à fait diffé-
rente, mais que les systèmes de chiffres eux-mêmes sont
essentiellement différents, ayant ou n'ayant pas une va-
leur de position; enfin une méthode indienne entière-
ment inconnue, qui se trouve dans une scolie du moine
grec Néophytos : voilà une suite de matériaux qui peu-
vent jeter quelque lumière sur notre système de numéra-
tion soi-disant arabe. En 1819, dans un Mémoire lu à
Paris, dans une séance de l'Académie des Inscriptions
et Belles-Lettres, j'ai essayé de démontrer comment, chez
des peuples qui abrègent la méthode de la simple juxtapo-
sition , en écrivant ( à la manière des Mexicains dans
leurs ligatures de 4 fois i3 ou 52 années, des Chinois, des
Japonais et des Tamouls) des. exposants ou des indica-
teurs au-dessus des signes de numération, comment, dis-je,
ces indicateurs, par la suppression des signes dégroupes
arrangés en série horizontale ou verticale, ont pu donner
naissance à l'admirable système indien de la valeur de posi-

fîgure lunaire, qui se développe successivement avec tes phases succes-
sives, voyez Humboldt, Vues des Cord. et Monuments des peuples indi-
gènes de l'Amérique, t. II, p. 237-243; PI. XLIV.
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tion. La propagation de ce système à du être favorisée par
l'usage antique dés cordons dont on se servait potir aider
la mémoire et pour compter. Détachés, comme Jes quip-
pos des Tatares, dés Chinois, des Égyptiens, des Péru-
viens {*) et des Mexicains, ces cordons se changeaient
en chapelets chrétiens, pieuses machines à calculer (**) ;
tendus sur des cadres, ils forment le suanpan de toute
l'Asiecen traie, Vabacus des Romains etdes Tusciens (***),
et les instruments de l'arithmétique palpable des races
slaves (****). Ces systèmes de cordons ou de fils de fer
du simple suanpan asiatique, représentent les groupes
plus ou moins élevés d'un système de numération, soit
dizaines, centaines et mille; soit, suivant la division
sexagésimale, degrés, minutes et secondes. L'esprit de la
méthode est le même. Les perles de chaque cordon sont
les indicateurs des groupes ; un cordon vide indique zéro ;
ainsi il indique le vide sunja (sanscr.) sifr, ou plutôt
proprement sifron sihron (arabe, suivant Meninshi:
prorsus vacuum). Je ne puis pas prouver historique-
ment que l'origine de la valeur de position donnée par les
Indiens aux neuf chiffres a été réellement celle que je
viens d'indiquer; mais je crois avoir montré le chemin
qui peut successivement conduire à cette découverte. En-
trevoir de semblables probabilités, voilà tout ce qu'on
peut attendre de la ténébreuse histoire du développement
des forces de l'esprit humain, histoire que son obscurité
ne rend que plus attrayante.

(*) Voir sur l'emploi des tjuippos pour compter les péchés au confes-
sionnal, Acosta, Hist. natural de las Indias, lib. 6» cap. 8; el [ncaGar-
cilaso, lib. 6, cap. 9 ; Fréret, Mém. de l'Acad., t. VI, p. 609.

(**) Klaproih, Asiat. Mag., th. Il, s. 78.
( ***) Otjried Mùller, Etrusker, t. H, p. 318.
(****) En russe, le chapelet s'appelle tschatki; la table à calculer aux

cordons (le suanpan des Tartares), tschatiL



Un court extrait du Mémoire lu devant l'Académie des
Inscriptions a été imprimé, et cela dans un endroit où
l'on ne le cherche guère (*). Le manuscrit même se
trouve entre les mains de M. Champollion, qui se propose
de le publier avec d'autres découvertes beaucoup plus im-
portantes encore, faites par lui à Turin j et relatives aux
différentes méthodes des chiures égyptiens. Depuis lors,
j'ai continué de compléter de temps en temps mon pre-
mier travail; mais comme je ne puis espérer de trouver
assez de loisir pour le publier dans toute son étendue,
j'essayerai d'en réunir ici les résultats principaux. En
présence du nouvel et heureux essor qu'a pris l'étude des
langues et des monuments, en présence du commerce
croissant avec les peuples de l'Asie méridionale et occi-
dentale, il n'est peut-être pas tout à fait inutile de discuter
des problèmes qui touchent de si près à la marche que suit
l'esprit humain et même aux plus brillants progrès des
mathématiques. Un des plus grands géomètres de notre
temps et de tous les temps, l'illustre auteur de la Méca-
nique céleste, dit (**) : <( C'est de l'Inde que nous vient
l'ingénieuse méthode d'exprimer tous les nombres avec
dix caractères en leur donnant à la fois une valeur absolue
et une valeur de position; idée fine et importante qui
nous paraît maintenant si simple, que nous en sentons à
peine le mérite. Mais cette simplicité même, et l'extrême

(*) Gay-Lussac et Arago, Annales*de Chimie et de Physique, t. XII,
p. g3j dans les Comptes rendus mensuels de l'Institut; Humboldt, Essais
pol. sur la Nouv.-Espagne (2e édit.), t. III, p. 122-124.

(**) Laplace, Expos, du système du monde, livre V, chapitre 1. Avec ce
jugement, contraste singulièrement l'opinion émise par Delarabre dans
sa polémique sur le mérite de l'ancienne arithmétique indienne, telle
qu'elle se trouve dans la Lilawati de Bhascara Achat y a ( Hist. de l'Astro-
nomie ancienne, t. I, p. 543 ). Il n'est guère probable que la langue seule
conduise à la suppression des signes des groupes.



facilité qui en résulte pour tous les calculs, placent notre
système d'arithmétique au premier rang des inventions
utiles; et Ton appréciera la difficulté d'y parvenir, si Ton
considère qu'il a échappé au génie d'Archimède et d'Apol-
lonius, deux des plus grands hommes dont l'antiquité
s'honore. » Les observations suivantes démontreront, je
l'espère, que la méthode indienne pouvait dériver succes-
sivement de méthodes antérieures, en usage encore aujour-
d'hui dans l'Asie orientale.

La langue* généralement parlant, détermine Y écriture,
et l'écriture, sous certaines conditions examinées par
Silvestre de Sacy et par mon frère, réagit sur la langue ;
de même les manières de compter si différentes chez les
différents peuples, et les hiéroglyphes numératifs exercent
les uns sur les autres une influence intime. Cette in-
fluence réciproque cependant n'est pas toujours d'une
rigoureuse conséquence. Les signes de numération ne
suivent pas toujours les mêmes groupes d'unités que la
langue-, la langue n'offre pas toujours les mêmes points
d'arrêt (les mêmes intervalles quinaires) que les signes de
numération. Mais en réunissant sous un seul coup d'œil
tout ce que la langue (noms de nombre) et la graphique
numérique présentent dans les zones les plus éloignées,
tout ce qu'a produit l'intelligence humaine, dirigée sur
les relations quantitatives : alors on retrouve dans Y écri-
ture numérique d'une race les singularités isolées, en
apparence, de la langue d'une autre race. Il faut ajouter
même qu'une certaine maladresse dans les parties de la
langue et de l'écriture, relatives à la numération, n'offre
qu'une mesure trompeuse de ce qu'on se plaît à nommer
Y état de culture de Vhiimanité. On rencontre à cet égard,
chez les différents peuples, les mêmes complications, les
mêmes contrastes que ces peuples présentent sous d'au-
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très rapports. A côté des degrés les plus variés de cul-
ture intellectuelle et de constitutions politiques, tantôt
ils ont l'écriture littérale, tantôt seulement des signes
idéographiques; tantôt une richesse abondante de formes
grammaticales, de flexions dérivées organiquement du
son radical, tantôt des langues presque destituées de
ilexions et de formes, engourdies, pour ainsi dire, dès
leur naissance. Ainsi Faction réciproque du monde in-
térieur et du monde extérieur (action dont les pre-
mières causes déterminantes restent plongées dans les
ténèbres d'un temps mythique) pousse le genre humain
unique de nature dans les directions les plus divergentes,
le plus souvent irrésistiblement; et cette divergence
se conserve, quand même de grandes révolutions cosmi-
ques rapprochent de nouveau géographiquement les fa-
milles de langues les plus hétérogènes. Mais certaines res-
semblances, certains accords qui, à d'immenses distances,
se retrouvent dans les formes grammaticales, dans les essais
graphiques, pour exprimer de grands nombres, témoignent
de l'unité du genre humain, de la prépondérance de ce
qui prend sa source dans l'intelligence intérieure et dans
l'organisation commune de l'humanité.

Des voyageurs qui virent qu'en comptant on réunissait
des cailloux ou des grains en tas de 5 ou de 20, préten-
dent que beaucoup de nations ne comptent pas au delà
de 5 ou de 20 (*). De cette manière on pourrait prétendre
aussi que les Européens ne comptent pas au delà de 10,
parce que dix-sept est composé de 10 et de 7 unités.
Chez les nations les plus civilisées de l'Occident, par exem-
ple chez les Grecs et les Romains, les langues, comme
on sait, rappellent encore cette habitude de former des

(*) Pauw, Recherches philos, sur les Américains, t. H, p. 162. (Hum-
boldt, Monuments américains, t. II,'p. 232-237.)



tas ou des groupes j de là les expressions psephizein,
ponere calculum, calculum detrahere. Des groupes d'uni-
tés offrent, en comptant, des points d'arrêt, et les peu-
ples les plus différents, en vertu d'une commune organi-
sation corporelle (quatre extrémités, dont chacune divisée
en cinq parties), s'arrêtent : ou bien à une main r ou aux
deux mains, ou aux mains et aux pieds. Selon cette difféT

rence des points d'arrêt, il se forme des groupes de 5 , de
10 et de 20 Toujours est-il remarquable que sur le nou-
veau continent, comme chez les Mandingas d'Afrique,
chez les Basques et chez les races kymriques (galiques )
de l'ancien continent, on trouve, pour la plupart, des
groupes de 20 (*). Dans la langue chibcha des Muyscas
[nation qui, semblablementaux Japonais et aux Tibé-
tains, était gouvernée par un chef ecclésiastique et par
un chef séculier, et dont j'ai fait connaître la méthode
d'intercaler un trente-septième mois, pareille à celle de
Y Inde septentrionale (**)], n , 12, i 3 , s'appellent:
pied un (quihieha ata), pied deux [quihieha bosà), pied
trois (quihiêha mica), composés de quihieha ou qhieha
(pied), et des trois premières unités ata, bozha ou bosa
et mica. Le numératif pied indique 10, parce qu'on
vient au pied après avoir parcouru en comptant les
deux mains. Vingt, conséquemment, dans le système de
langues auquel appartient celle des Muyscas, s'appelle :
pied-dix ou maisonnette (gueta) , peut-être parce qu'en
comptant on employait des grains de niais au lieu de cail-
loux , et qu'une petite pile de maïs rappelait le magasin,

(*) Des exemples de pareils groupes de 20 unités sont fournis en Amé-
rique par les Muyscas, les Otomites, les Aztekcs, les Indiens-Cora , etc.

(•*) Monum. amer., t. H, p. aSo-253. Les Muyscas avaient des pierres
couvertes de chiffres, dont la suite facilitait aux prêtres (xeques) l'inter-
calation de l'année rituelle ; voyez la représentation d'une telle pierre
d'intercalation, ïoc. cit., tab. XLiV.
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la grange à maïs. Du mot maison, gueta ou vingt (les deux
pieds et les deux mains), se forment ensuite 3o, 4o, 80 de
la manière suivante : vingtplus 10, deux fois vingt* quatre
fois vingt, tout à fait semblables aux expressions celtiques
qui ont passé dans les langues romanes : quatre-vingt et
quinze-vingt, et ces autres plus rares : six-vingt, sept-
vingt, huit-vingt. Deux-vingt et trois-vingt ne sont pas en
usage en français', bien que dans le dialecte galique ou cel-
tique de la Bretagne occidentale, que j'ai parcourue il y a
quelques années, deugent, vingt; on forme : daou-ugent,
deux-vingt ou 4° } tri-ugent, trois-vingt ou 60, et même
deh ha nao ugent, 190 ou dix sur neuf-vingtaines (*).

Je pourrais donner encore d'autres exemples remar-
quables de l'analogie qu'offre la langue avec l'hiérogly-
phique numérative 5 j'en pourrais trouver dans la juxta-
position , dans la soustraction des unités qu'on place gra-
phiquement avant le signe de groupe, dans des degrés in-
termédiaires de 5 à i5, chez des peuples qui comptent
par groupes de 10 ou de 20. Chez des tribus américaines
très-grossières encore, par exemple chez les Gueranis
et chez les Lulos, 6, 7, 8 s'appellent quatre avec deux,
quatre avec trois, cinq avec trois. Chez les Muyscas, plus
civilisés que ceux-là, on trouve vingt (ou maison) avec
dix pour 3o, de même que les Kymres du pays de Galles

(*) Davics, Celtic Researches, 1804, p. 3ai ; Legodinec, Grammaire
celto-bretonne, p. 55. Dans le dialecte celtique ou kyrarique du pays de
Galles, 5 s'appelle pump, 10 deg, 20 ugain, 3o âegar ugain (10 et 20),
/jo deugain, 60 trigain. {William Ovt>en, Dict. of the Welsh language,
vol. I, p. i34.) Suivant ce même système de vingtaines, on trouve en
basque: Êi 2, lau 4> amar 10, oguai 20, birroguai ^o, lauroguai 80,
berroguetamar 5o, c'est-à-dire, 4° et (ata) dix. Larramendi, Arte de la
lengua bascongada, 1729, p. 38. ( Les mimera tifs basques et ky mriques
ne sont pas confusément mêlés dans mes Monum., t. II, p. 237, mais
placés ensemble afin d'en faciliter la comparaison; seulement, par suite
d'une faute, d'impression, on y lit : les premiers au lieu de les deux ou de
les uns et les autres. )



disent dig (dix ) or urgain (avec vingt), et que les Fran-
çais désignent 70 par soixante et dix. Partout, chez les
Etrusquesy les Romains, les Mexicains et les Égyptiens,
on trouve des additions par juxtaposition-, d'un autre
côté, les langues oiFrent des formes soustractives ou mino-
ratives (*) 5 c'est ainsi que l'on trouve dans le sanscrit,
chez les Indiens : unavinsâti, 19*, unusata, 99 \ chez les
Romains : undeviginti (unus de viginti), 195 undeoc-
togintcij 79 5 duo de fluadraginta, 38 ; chez les Grecs :
cikosi deonta henos, 19, et pentekonta dùoin deontoin,
48, c'est-à-dire deux manquant de cinquante. Cette même
forme minorative de la langue a passé dans la graphique
numérique lorsqu'on place des caractères à gauche des
signes de groupes 5 , 10, et même de leurs multiples 5 par
exemple 5o ou 100 (IV et IÀ, XL et XT pour désigner
4 et 4o chez les Romains et chez les Tusciens (**), quoi-
que chez ces derniers, suivant les nouvelles recherches
à'Otfried Mùller, les chiffres probablement doivent leur
origine entièrement à l'alphabet). Dans certaines rares
inscriptions romaines, recueillies par Marini (***), on
trouve même quatre unités avant 10, par exemple HIIX
pour désigner 6. Nous verrons bientôt que chez des
races indiennes il existe des méthodes graphiques dans les-
quelles la valeur de position, selon la position ou la direc-
tion des signes, indique addition et multiplication; tandis
que chez les Tusciens et les Romains, la position est ad-
ditive ou soustractïve. Dans ces systèmes indiens (pour me
servir de chiffres romains), IIX indique vingt, et XII douze.

Dans un grand nombre de langues, les groupes normaux

( * ) M. Bopp[cite même g5 ou cent diminué de cinq pantschonam satan
( contraction de pantscha 5 et ana moins).

(*•) Oljrîed Mûller, Etrusker, t. H, p. 317-320.
(***) Iserizioni délia villa di Albano, p. 193. ttcrvas, Aritmetica délie

nazioni, 1786; p. 11-16.
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5,10, 20 sont appelés respectivement une main, deux mains,
main et pied (chez lesGuaranis mbombiabe). Lorsqu'on
a parcouru en comptant les doigts des deux extrémités,
Y homme entier est pris pour symbole 4e 205 ainsi, dans la
langue des Yarkcnos (nation dont j*ai trouvé des villages
de mission très-peuplés sur lés rives du fleuve Apace,
tributaire de YOrinoco) y 4° s'appelle deux hommes,
noenijemne, de noemi deux et jemne homme. En persan,
comme on sait ? pentscha signifie le poing, et pend j cinq,
dérivant du mot sanscrit pantscha. C'est ce dernier, sui-
vant l'observation ingénieuse de M. Bopp, qui a produit
le mot latin quinque j de même que de tschatur (sanscrit)
vient quatuor. Lepluriel de tschatur (4) est tschatvaras,
qui s'approche beaucoup de la forme dorico-éolienne
tettares. Car le ch indien, prononcé comme en anglais,
tsch, dans les formes grecques se change en f, doiic
tschatvaras se change en tatvaras, et pantscha enpenta
( en grec pente, dialecte éolien : pempe, d'où penpezein,
compter sur les cinq, c'est-à-dire sur les doigts). En latin,
c'est q qui correspond au tsch indien, conséquemment
tschatur et pantscha se changent en quatuor et quinque.
Le mot pantscha, même dans le sanscrit, ne signifie
jamais main, mais désigne uniquement le nombre 5.
Cependant pantschasatcha est une expression descrip-
tive pour désigner la main comme organe à cinq
branches (*).

De même que la parole (et avec une naïveté toute par-
ticulière les langues de l'Amérique méridionale) désigne
comme points d'arrêt les groupes de 5, 10, 20, de même
nous reconnaissons ces mêmes groupes dans l'hiéro-

(*) M. Bopp, à Paris, en 1820, m'a communiqué un intéressant Mé-
moire manuscrit sur les numératifs de la langue sanscrite comparés à
ceux des langues grecque, latine et gothique, qui était destiné originaire-
ment à être publié dans mon ouvrage : Sur les chiffres des divers peuples.
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glyphique numérative. Les Romains et les Tusciens ont
des chiffres simples (*) pour désigner 5 , . 5ô ? 5oo. Le
système quinaire s est conservé à côté du système dénaire.
Dans la langue {mexicaine) des Aztèkes, on trouve non-
seulement des signes de groupes, par exemple, pour dési-
gner 20, un. drapeauj pour désigner le carré de 20 ou 4OCS
une plume remplie de grains d'or, qui, en quelques pro- '
vinces mexicaines, servait de monnaie 5 pour désigner le
cube de 20 ou 8000, un sachet (xiquipilli) contenant
8000 fèves de cacao, servant également au commerce
d'échange*, mais aussi (parce que le drapeau est divisé en
quatre champs et colorié à demi ou aux trois quarts) des
chiffres pour désigner demi-vingt, ou 10, et | de vingt ou
quinze, pour ainsi dire : deux mains et un pied (**).
Mais c'est VInde qui offre la plus remarquable de toutes
les preuves de l'influence réciproque qui existe entre
l'écriture et la langue. En sanscrit, la valeur de posi-
tion des unités est entrée même dans le langage. C'est-
à-dire que les Indiens ont une certaine méthode figu-
rative d'exprimer des nombres par des objets dont on
connaît un nombre déterminé. Surga (soleil), par
exemple, signifie 12 parce que, dans les mythes indiens,
on suppose douze soleils suivant l'ordre des mois. Les
deux Aswinas (Castor et PoUux) qui se trouvent aussi
parmi les naktschatras et mansions lunaires expriment 2 ;
manu signifie 15, conformément aux menus delà mytho-
logie. Ces indications feront comprendre comment surg-
manuj composé des symboles de 12 et 14, peut exprimer
le millésime 1214. Je dois la connaissance de ce fait à la
communication bienveillante du savant Colebrooke. Pro-

(*) Relativement au signe tuscien pour 5oo, voyez Otfried Mùller,
Abth., IV, fig. 2.

(**) Humboldt, Monum, amer., t. I, p. 309.
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bablement suivant le même principe, manusurga signifie
i 4 i 2 , et aswinimanu ai^. En sanscrit, d'ailleurs, la
numération est tellement parfaite, qu'on trouve même un
simple mot, koti, pour dix millions, de même que la
langue qquischna ( péruvienne ), qui ne compte pas sui-
vant des groupes de 20, possède un simple mot (hunu)
pour exprimer un million.

Si, comme le dit Ovide, nous ne comptons suivant
des dizaines « quia tôt digiti, per qttos numerare so-
lemus, » l'homme avec des extrémités divisées six fois,
serait arrivé à une échelle duodénaire, à des groupes de
12 (*), qui offre le grand avantage de divisions sans
fractions par 2 , 3 , 4 e* 6, et dont les Chinois, depuis les
temps les plus reculés, se servent pour leurs mesures et
leurs poids.

De ces réflexions sur la relation qui existe entre la langue
et Y écriture, entre les numèratifs et les signes numériques,
nous passons à ces derniers mêmes. Je répète que, dans
cet extrait de mon grand ouvrage non achevé, il ne sera
pas tant question de la formation hétérogène de tel ou
tel élément (chiffre), que de Vesprit des méthodes em-
ployées par les différentes nations pour exprimer des
quantités numériques. Je ne parle ici de la figuré et de la
forme des chiffres que lorsqu'elles peuvent influer sur des
raisonnements relatifs à l'identité ou l'hétérogénéité des
méthodes. Car les manières de procéder pour exprimer
les multiples purs où mixtes des groupes dénaires fon-
damentaux (par exemple 4 n, £n% ou^n 4-7,4rc*-f- 6n,
4 n 2 -h 6 n 4- 5 ) sont très-variées et se font tantôt par ordi-
nation (valeur de position) chez différents peuples in-
diens; tantôt par simple juxtaposition, comme chez les Tus-
ciens, les Romains, les Mexicains, les Égyptiens ; tan-

(*) Dçbrosses, t. H,p. i58.
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tôt par des coefficients placés à côté, chez les habitants
du midi de la péninsule indienne qui parlent la langue
Tamoul; tantôt par certains exposants ou indicateurs
placés au-dessus des signes de groupes, chez les Chinois,
les Japonais et dans les myriades des Grecs $ tantôt, sui-
vant la méthode inverse, par un certain nombre de zéros
ou de points superposés à neuf chiffres pour indiquer la
valeur relative ou de position de chaque chiffre,} ce sont,
pour ainsi dire, des signes de groupes placés au-dessus
des unités, comme dans le chiffre gobar des Arabes et
dans un système de chiffres indiens, expliqué par le moine
Néophytos. Les cinq méthodes qu'on vient d'énumérer
sont tout à fait indépendantes de laijîgure des chiffres, et,
pour faire ressortir plus encore cette indépendance, je me
suis fait une loi de n'employer dans ce Mémoire d'autres
signes que ceux qui sont communément employés dans
l'arithmétique et l'algèbre. De cette manière, l'attention
est plus fixée sur ce qui est essentiel, sur l'esprit de la
méthode. Déjà, à l'occasion d'un autre sujet très-hétéro-
gène à celui-ci, relativement à la suite régulière et souvent
périodique des courbes géognostiques [dans les additions à
Y Essai géognos tique sur le gisement des roches ( * ) ] ,
j'ai essayé de montrer comment des notations pasigra-
phiques peuvent contribuer à la généralisation des idées.
On supprime les considérations secondaires, quoique très-
importantes en elles-mêmes, sur les formes et les fusions
individuelles pour mettre sous un jour d'autant plus clair
un phénomène qu'on désire examiner particulièrement,
avantage qui peut justifier à un certain degré la sécheresse
et la froideur de pareilles observations.

On est accoutumé à distinguer dans les méthodes gra-
phiques des peuples: i° des signes indépendants des

(* ) Édit. de 1823, p. 364-375.
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lettres de l'alphabet; a0 des lettres qui, par un certain
arrangement, par certains traits ou points ajoutés, ou
(se rapportant à la langue) comme initiales des numé-
ratifs (*)' indiquent la valeur numérique. Il est, comme
on sait, hors de doute que les races helléniques, ainsi
que les races sémitiques ou aramaïques (parmi celles-ci
les Arabes eux-mêmes, jusqu'au ve siècle (**) après
l'hégire, avant de recevoir les chiffres des Persans), à
Tépoquedeleur culture développée, se servaientdes mêmes
signes comme lettres et comme chiffres. D'un autre côté,
nous rencontrons dans le nouveaucontinent deux nations au
moins, les^ztfe/re$etles Muyscas, qui avaient des chiffres
sans posséder une écriture littérale. Chez les Égyptiens,
les hiéroglyphes les plus usités, pour les unités, les
dizaines, les centaines et les mille, ne semblent pas non
plus dépendre des hiéroglyphes phonétiques. De même le
chiffre pehlwi de la Perse ancienne, dans les neuf pre-
mières unités, est tout à fait indépendant de l'alphabet,
comme c'est le cas également chez les Tusciens, chez les
Grecs dans les temps les plus anciens, et chez les Ro-
mains. Anquetil (***) observe déjà que l'alphabet zend,
dont les 48 éléments auraient pu faciliter l'expression des

(*) Le chiffre diwani des Arabes, composé uniquement de monogrammes
ou abréviations de numératifs, offre l'exemple le plus compliqué d'une
telle écriture d'initiales. Il est plus douteux qu'on ne le croit ordinairement
que les C et les M des Tusciens et des Romains soient des initiales emprun-
tées aux langues tuscienne et romaine. (Leslie, Philos, of arith., p. 7-9.
311; Debrosses, t. I, p. 436; Hetvas, p. 32-35; Otfried Millier, Etrusker,
p. 3o4~3i8.) La croix grecque rectangulaire, tout à fait semblable au
signe chinois pour 10, dans les.inscriptions les plus anciennes, désigne
mille (Boerkh, Corp. inscript, grœc., vol. I, p. 23) et n'est autre chose
que la forme la plus ancienne du chi ( Nouveau traité de diplom., par deux
Religieux de Saint-Maur, vol. I, p. 678).

(**) Sihestre de Sacy, Gramm. arabe, 1810; 1.1, p. 74; note 6.
(***) Mém. de l'Acad. des Belles-Lettres, t. XXXI, p. 357.

Ann. de Hathémat., t. X. (Octobre I 8 5 I . ) 2*5



* - ( 386 )

nombres, n'est pas employé comme chiffre, et que, dans les
livres zends, les nombres sont toujours exprimés à la fois
par le chiffre pehlwi et par les mots zends. Si des recher-
ches ultérieures corroboraient cette absence d'un chiffre
zend, cela favoriserait l'opinion que, vu l'affinité intime
des langues zend et sanscrite, le peuple zend devait s'être
séparé des Indiens dans un temps où. la valeur de position
des chiffres était encore inconnue à ceux-ci. Dans le pehlwi,
à partir de 9 , les signes de groupes 10, 100 et 1000 sont
composés de lettres. Dal est 10, re joint au za 100, re
joint au ghaïn 1000. En considérant le peu que nous con-
naissons de la masse de chiffres dont le genre humain fait
usage, on trouve que la division des chiffres en chiffres lit-
téraux et chiffres proprement dits, est aussi incertaine et
aussi stérile que la division des langues en langues mono-
syllabiques et polysyllabiques, abandonnée depuis long-
temps par les véritables philologues. Qui peut décider avec
certitude si le chiffre tatnoul des Indes méridionales , qui
n'admet pas la valeur de position , et qui, le signe de 2
excepté, est tout à fait différent de celui employé dans les
manuscrits sa nscrits ; si, dis-je , ils ne font pas dériver ce
chiffre de l'alphabet tamoul même, puisque, dans celui-
ci, on croit reconnaître, sinon le signe de groupe de 100,
pourtant celui de 10 (la lettre y a) et le chiffre 2 (la
lettre M)? Le chiffre telougon (*), admettant la valeur
de position également en usage dans la partie méridionale
de la péninsule, diffère singulièrement, pour les signes
de 1, 8 et 9, de tous les chiffres indiens qui nous sont

(*) Campbell, Grammar of the teloogoo language (Madras, 1816),
p. 4-208. Le telougon est la langue que par erreur on nommait genioo, et
est appelée par les indigènes trilinga ou telenga. Comparez la Table de
chiffres donnée par Campbell à d'autres variétés de chiffres indiens qui
se trouvent dans Wahl, Hist. universelle des langues orientales, 1784, tab. I.
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connus jusqu'à présent, tandis qu'il leur est conforme
pour les signes de 2, 3 , 4 et 6. Le besoin d'exprimer
graphiquement des nombres a sans doute été éprouvé le
premier, et les signes numériques font partie des plus
anciens de tous les signes graphiques. Les instruments de
Y arithmétique palpable* que M. Leslie dans son ouvrage
ingénieux : the Philosophj ofArithmetic (1817) met en
regard de rarithmétiqueyîg^ra&Ve ou graphique, sont : les
deux mains de l'homme, de petites piles de cailloux (cal-
culi, psephoi), des grains de semence, des cordons séparés
et à nœuds (cordons à calculer, quippos des Tartares et du
Pérou), des suanpan encadrés et des Tables d'abacus,
la machine à calculer des peuples slaves à boules ou grains
enfilés. Tous ces instruments offraient à'l'œil les pre-
mières manières de désigner graphiquement des groupes
de différents ordres. Une main, ou un cordon à noeuds ou
à boules glissarîtes, désigne les unités jusqu'à 5, ou jus-
qu'à 10 5 ou jusqu'à 20. L'autre main indique combien de
fois, en comptant, on a passé sur les cinq doigts de la pre-
mière (pampezesthei); chaque doigt de la seconde main,
c'est-à-dire chaque unité, exprimera donc alors un groupe
de 5. C'est la même chose pour deux cordons à nœuds que
pour deux mains ; et si Ton passe aux groupes de 2% 3e et
4e ordre, la même relation de groupes supérieurs et infé-
rieurs a lieu dans les cordons à calculer tendus sur des
cadres et garnis de boules, le suanpan de l'Asie ancienne
qui, de bonne heure, a passé sous forme à'abax ou de
tabula logistica aux peuples occidentaux (peut-être par
des Égyptiens aux temps de la confédération pythagori-
cienne). Les koua's, qui sont plus anciens que l'écriture
chinoise actuelle, et même les lignes parallèles noueuses,
semblables à des notes de musique et souvent interrom-
pues des livres magiques ( raml) de Y Asie intérieure et du
Mexique, ne semblent être que des projections gra-

25.
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plaques de ces cordons à calculer et mnémoniques (*).
Dans le suanpan asiatique ou dans Yabacus [dont les
Romains, par suite de leurs chiffres incommodes, se ser-
vaient beaucoup plus souventque les Grecs (•**) chez qui la
graphique numérique avait fait des progrès plus heureux],
à côté des séries dénaires qui se suivaient en progression
géométrique, il se conservait aussi des séries quinaires.
A côté de chaque cordon des groupes ou ordres tt,n% ra%
il se trouvait un cordon plus petit, qui désignait cinq des
boules du grand cordon par une seule boule. Au moyen
de cet arrangement, le nombre des unités fut déterminé
en sorte que le cordon principal n'avait plus besoin que
dequatre boules, et le cordon secondaire d'une seule (***).
Les Chinois semblent, depuis les temps les plus reculés,
avoir considéré arbitrairement un quelconque de la suite
des cordons parallèles, comme le cordon des unités, de
manière qu'en descendant et en remontant, ils obtenaient
des fractions décimales , des nombres entiers et des puis-

(*) En Orient, on appelle l'art négromantique raml,^1'art du sable. Des
lignes entières ou brisées et des points servent d'éléments pour guider le
divinateur. (Richardson and Wilkins, Diction. Persian and Arabie, 1806,
t. I, p. 482.) Le manuscrit remarquable, bien véritablement mexi-
cain , couvert comme de notes de musique, conservé à Dresde et dont j'ai
donné un dessin dans mes Monum. amer., PI. 44 > ̂ ut reconnu par un
persan savant, qui vint me voir à Paris, à première vue comme un tel
vaml oriental. Depuis ce temps, j'ai découvert des koua véritablement
américains et des dessins linéaires en forme de notes de musique, bien
semblables à ceux dont je viens de parler, dans plusieurs manuscrits hié-
roglyphiques d'origine aztèke et dans les sculptures de Palenque dans l'État
de Guatimala. Dans le chiffre chinois d'ancien style, le signe de groupe
pour 10, une perle sur un cordon, est évidemment pris du quippu ( comme
projection).

(**) Nicomaque dans Ast, Theologumena arithm., 1817, p. 96. Dans les
affaires financières du moyen âge, la table à calculer [le comptoir ] (ahax)
se changeait en exchequer.

(***) Ainsi c'est le cas dansl'atacus romain. Dans Y al a eus chinois on
employait 5 et 1 boules, puis on plaçait de côté les boules qui ne comp-
taient pas.



( 389 )
sances de 10. Combien •(*). la connaissance des frac-
tions décimales a été introduite tard dans l'Occident (au
commencement du xvr* siècle), tandis que l'arithmé-
tique palpable de l'Orient y était parvenue depuis long-
temps! Chez les Grecs, l'échelle ascendante n'était comme
au delà de l'unité que dans le système sexagésimal des
degrés, minutes et secondes $ mais comme on n'avait pas
n — i , c'est-à-dire 59 signes, la valeur de position n'était
observée que par rangées de deux nombres.

En examinant l'origine des nombres, nous trouvons
que, au moyen de piles de cailloux ou sur les cordons
des Tables à compter, chargées de boules, on écrivait et
lisait transitoirement des nombres avec une grande régu-
larité. Les impressions que laissaient ces opérations ont
partout influencé les commencements de la graphique
numérative. Dans les hiéroglyphes historiques, rituels et
négromantiques des Mexicains, que j'ai fait connaître,
les unités jusqu'à 19 (le premier simple signe de groupe
est 20) sont placées l'une près de l'autre en forme de
gros grains colorés, et, ce qui est particulièrement re-
marquable, le calcul.va de droite à gauche, comme l'é-
criture sémitique. On remarque parfaitement cet ordre
dans 12, i 5 , 17 où la première série contient 10, et la
seconde n'est pas tout à fait remplie. Dans les monu-
ments helléniques les plus anciens, dans les inscriptions
sépulcrales tusciennes, chez les Romains et chez les
Égyptiens ( ainsi que Thomas Young, Jomard et Cham-
pollion l'ont prouvé), les unités sont désignées par des
lignes perpendiculaires. Chez les Chinois et sur quelques
monnaies véritablement phéniciennes décrites par Eckhel
(tome III, page 4*°) > ces traits sont horizontaux jus-

(*) Relativement aux premiers essais de notation décimale faits par
Michel Stifelius A'Eslingen, Stevin de Bruges et Bombelli de Bologna,
voyez Leslie, Phil. of arithm., p. \V\.
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qu'à 4* Les Romains (en négligeant le signe de groupe
quinaire) joignaient ensemble, dans les inscriptions,
quelquefois jusqu'à 8 traits comme unités. Beaucoup
d'exemples en sont donnés par Marini dans l'écrit re-
marquable : Monumenti dei fratelli Arvali (*). Les
têtes de clous servant à régler l'ancienne année romaine
{Annales antea in clavis fuemnt, quos ex lege vetusta

figebat prœtor maximus, PLIH., VU, 4°) auraient pu
conduire aux points des unités qui se trouvent chez les
Mexicains, et ces points se rencontrent en effet (à côté
des lignes horizontales, chinoises et phéniciennes) dans
les subdivisions des onces et des pieds (**). Les points et
traits, au nombre de neuf ou de dix-neuf, dans l'échelle
dénaire ou vicésimale (échelle des mains ou des mains et
pieds) de l'ancien et du nouveau continent, sont la plus
grossière de toutes les notations du système de la juxtapo-
sition. On y compte plutôt les unités qu'on ne les lit.
L'existence indépendante, l'individualité, pour ainsi
dire, de certains groupes d'unités, comme notations, ne
commence que dans les numératifs alphabétiques des races
sémitiques et helléniques, ou chez les Tibétains et les
peuples indiens, qui expriment i, a, 3 , 4 Pa r des signes
particuliers et idéographiques. Dans le pehlwi de la
Perse ancienne, il se présente une transition remarquable
de la juxtaposition grossière de signes d'unités à l'exis-
tence isolée d'hiéroglyphes composés et idéographiques*
Ici l'origine des premiers neuf chiffres par le nombre des
incisions ou dents est évidente; cinq jusqu'à dix ne sont
même que des enlacements des signes 2 , 3 , 4 s a n s (îu e fe
signe i revienne. Dans les systèmes véritablement indiens
des chiffres devanagari, persan et arabo-européen, on

(*) T. I , p. 3i ; t. I l , p. 675, par exemple dans Ociumvir.
(**) Marini, t. I, p. 228.



ne saurait reconnaître que dans a et 3 , des contrac-
tions (*) de % et 3 unités j certainement pas dans le>
chiffres plus élevés qui, dans la péninsule indienne, dif-
fèrent entre eux de la manière la plus régulière*

En parlant ici, et dans la suite de ce Mémoire, des
nombres indiens, il faut que je m'explique d'abord sur
cette dénomination et sur les anciens préjugés qui consis-
tent à croire que l'Indepossède des chiffres d'une forme
unique avec exclusion des numératifs alphabétiques \ que
dans toute l'Inde on trouve la connaissance de la valeur
de position et non pas l'usage de signes de groupes parti-
culiers pour rc, n% »%.... De même que, comme l'a dit
souvent mon frère, Guillaume de Humboldt, le sanscrit
n'est désigné que très-inconvenablement par les noms de
langue indienne, ancienne langue indienne, vu qu'il
existe dans la péninsule indienne plusieurs langues très-
anciennes et ne dérivant pas du tout du sanscrit 5 de même
l'expression chiffre indien, ancien chiffre indien est, en
général, très-vague, tant pour la forme des chiffres que
pour le génie des méthodes, employant tantôt la juxtapo-
sition , tantôt des coefficients, tantôt la simple valeur de
position des groupes principaux n, 7i% TÎ8 et de leurs
multiples 2 » , 3TZ.... Même l'existence d'un signe pour
zéro n'est pas encore, dans les chiffres indiens, une con-
dition nécessaire de la valeur de position, ainsi que le
prouve la scolie de Néophytos. Dans la partie méridio-
nale de la péninsule, les langues famoul et telougon sont
les plus répandues. Les Indiens qui parlent tamoul ont
des chiffres différents de leur alphabet, parmi lesquels 2
et 8 ont une ressemblance éloignée avec les chiffres (deva-

(#) Abel Rémusat, Langues tartares, p. 3o. Pour le singulier chiffre
indien de Java, voyez Grawfard, t. II, a63. •



nagarî) indiens a et 5 (*), Les chiffres cingalais (**)
diffèrent plus encore des chiffres indiens. Ni ceux-ci, ni
les chiffres tamouls n'ont de valeur déposition ni de signe
pour zéro; les groupes n, n% /**,... y sont représentés par
des hiéroglyphes particuliers. Les Cingalais opèrent par
juxtaposition, les Tamouls à l'aide de coefficients. Au
delà du Gange, dans l'empire Burman, on trouve la va-
leur de position et un signe pour zéro, mais des figures
des chiffres entièrement différentes des chiffres arabes,
persans et devanagari-indiens (***). Tous les neuf chiffres
persans employés par les Arabes diffèrent entièrement
des chiffres devanagari (****) • 7 est formé comme une S
romaine, 8 comme une S tuscienne. Parmi ceux qu'aujour-
d'hui nous nommons .chiffres arabes, uniquement i , 2, 3
ressemblent aux chiffres devanagari correspondants, le de-
vanagari 4 est notre 8 $ notre 9 est un 7 devanagari 5 notre
7 est un 6 persan. En Bengali, 5 a la figure d'un crois-
sant, et 3 , 5, 6, 8, 9 diffèrent entièrement des chiffres
devanagari (*****). Les chiffres de Guzerath ne sont que
des chiffres devanagari-indiens mal formés (**•**•).

Des réflexions sur l'influence des chiffres primitifs sur
l'alphabet, sur des déformations des lettres faites à dessein,
afin de distinguer les lettres des chiffres, sur les différents

(*) Robert Anderson, Rudiments of tamul grammar, 1821, p. i35.
(**) James Chafer, Grammar of the cingalese language ; Colombo, 1815,

p. i35.
(***) Carcy, Grammar of the rurman language, 1814, p. 196. Unique-

ment les chiffres rurmans 3, 4 et 7 ressemblent quelque peu à 2, 5 et 7.
(****) Voyez John Shakespeare Grammar of the hindustani language»

1813, p. 95 et PI. I. William Jones, Grammar of the persian language, 1809,
p. 93. Silvestre de Sacy, Grammaire arabe, PI. VIII.

(*****) Graves Chamney Hanghton, Rud. of bengali grammar, 1821,
p. i33.

(******) Robert Drummond, Illustrations of the grammat. parts of the
Guzefbih and Mahratt language, 1808, p. 25.



arrangements des lettres numératives, qui, chez le même
peuple, ne correspondent pas toujours à Tordre usuel de
l'alphabet (ainsi que c'est le cas pour l'aboudjed des peu-
ples sémitiquesdel'^zeetder^f/r^ue (*), sont étrangères
à ce Mémoire et ont donné naissance à bien de vagues hy-
pothèses dans le domaine des alphabets et des hiéro-
glyphes comparés. Moi-même j'ai émis autrefois la con-
jecture que les chiffres indiens, nonobstant les formes
de 2 et de 3, sont des lettres d'un ancien alphabet dont
on retrouve des ^reflets dans les caractères phéniciens,
samaritains, palmyriens et égyptiens (sur les momies) et
même sur les anciens monuments persans de Nàkschi-
Rustan (**). Combien de lettres de ces alphabets ne ressem-
blent-elles pas aux chiffres nommés exclusivement indiens ?
D'autres savants (***) ont avancé déjà que ces chiffres soi-
disant indiens sont d'origine phénicienne, et l'ingénieux
Echkel a déjà fait observer que les lettres phéniciennes
ressemblent à des chiffres d'une manière tellement frap-
pante, qu'on désigne le mot abdera par 19990 et par
i555o (****). Mais cette origine des chiffres et des lettres
est enveloppée de ténèbres qui, vu l'état actuel des maté-
riaux dont on peut disposer, rendent impossibles des re-
cherches philosophiques sérieuses, si l'on ne veut pas se
borner à des résultats négatifs.

Les mêmes peuples comptent souvent en même temps
av̂ ec des lettres numératives et avec des signes de nom-
bres idéographiques ou choisis arbitrairement 5 de même

(*) Silvestre de Sacy, Grammaire arabe, 1.1, p. 10.
(**) Silvestre de Sacy, Antiquités de la Perse, PI. I, n. i. Comparez les

inscriptions numériques du Sifiaï, et Descript. de l'Egypte, t. V, PI. LVII.
(***) Gv&ot de la Marne, Mém. de Trévoux, 1736, p. 36o; 1740, mars,

p. 260. Jahn, Bibl. archaeolog.,B. I, p.479* Ruiner, Tables comparât., 1742»
St. 2, p. i3. Eichhorn, Introd. au vieux Testament, B. I, p. 197. Wahl, Hist.
littér. de l'Orient, p. 6oi-63o. Mines de l'Orient, B. III, p. 87.

(****) Doctrina nummorum velerum, 1794 ; t. III, p. 396-404, 42Ï> 4o1'



on trouve dans un même système numérique les mé-
thodes les plus différentes pour ex||rimer les multiples
du groupe fondamental. Quelquefois ce qui n'est qu'in-
diqué dans un système se trouve complètement développé
dans un autre. C'est ainsi que dans le domaine de la pa-
role, certaines formes grammaticales qui ne fout pour
ainsi dire que préluder chez une nation, se trouvent dé-
veloppées chez une autre avec prédilection et avec toute l'é-
nergie de ses forces intellectuelles. En décrivant un à un
les systèmes numériques employés par chaque peuple, on
obscurcit les ressemblances des méthodes, on perd la trace
du chemin qui a conduit l'esprit humain au chef-d'œuvre
de l'arithmétique indienne, dans laquelle chaque signe a
une valeur absolue et une valeur relative, suivant laquelle
ils croissent de droite à gauche en progression géométri-
que. Je quitte donc , dans ce qui suit, Tordre ethnogra-
phique, et ne ferai qu'examiner les différents moyens
employés pour exprimer graphiquement les mêmes grou-
pes d'unités (groupes mixtes ou simples).

PREMIÈRE MÉTHODE. — Juxtaposition. Simplement ad-
ditive des lettres numératives et les véritables chiffres.
Ainsi .chez les Tusciens* les Romains, les Grecs, jusqu'à
la myriade; les races sémitiques9 les Mexicains et dans la
plupart des chiffres pehhvi. Cette méthode rend le calcul
particulièrement incommode lorsque les multiples des
groupes (an , 3rc, 2rc%...) n'ont pas de signes particu-
liers. Les Tusciens et les Romains répètent les signes 10
jusqu'à 5o. Les Mexicains, chez lesquels le premier signe
de groupe est 20 (un drapeau), répètent le même hiéro-
glyphe jusqu'à 4°°' Les Grecs9 au contraire, ont, dans les
deux séries des dizaines et des centaines, commençant
respectivement avec iota et rhoy des signes pour 20, 3o,
4oo et 600. Trois èpisèmes (lettres d'un alphabet antique)

Uy hoppa et sampi, expriment 6, 90 et 900j ces deux



derniers terminent les séries des dizaines et des centaine»,
circonstance qui re&dçlus semblable la valeur numérique
des lettres grecques à celle de Paboudjed sémitique (*).
M. Bockh, dans ses recherches savantes sur le digamma,
a montré que bau est le wau des Sémites (des Latins) 5
koppa était le koph sémitique (9), et sampi lé schin sémi-
tique (** ). Le série des unités depuis alpha jusqu'à Yhéta
forme, chez les Grecs, les nombres fondamentaux (puth-
rnenes) avec lesquels, à l'aide d'artifices découverts par
Apollonius ( ***), on opérait en calculantde manière qu'en
dernier résultat on les réduisait aux nombres correspon-
dants des séries deuxième et troisième (des analogues).

SECONDE MÉTHODE. — Multiplication ou diminution de
la valeur pur des signes placés au-dessus et au-dessous*
Dans la quatrième série de la notation grecque, les puth-
mènes, comme on sait, reviennent par analogie, multi-
pliés par mille au moyen de l'apposition d'un petit trait
mis au bas de la lettre. Ainsi l'on arrivait jusqu'à la my-
riade 5 on écrivait jusqu'à 9999. Si l'on avait appliqué
cette notation par accents à tous les groupes en supprimant
tous les signes après le thêta (9), on aurait, en donnant à
un jS deux ou trois accents, des expressions pour 20, 200
et 2000 5 de cette manière on se serait rapproché du chiffre
arabe gobar, et, par cela, de la valeur de position ; mais
malheureusement on passait les groupes des dizaines et
des centaines pour ne commencer la notation par accent»
qu'avec les mille, et sans même l'essayer pour les grou-
pes supérieurs.

Tandis qu'un trait mis en bas multipliait le nombre

(*) Hetvas, Arithm. délie nazioni, p. 78. Relativement à l'ancien ordre
des alphabets sémitiques, voyez Descnpt. de VEgypte moderne, t. II,
PL II, p. 208.

(**) Économie nationale des Athéniens, B. II, p. 385.
(***) Dtlambre, Histoire de l'Astr. ancienne, t. Il, p. 10.
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par mille, un trait vertical placé en haut désigne, chez
les Grecs, une fraction ayant pourlâÉtaéràteur l'unité et
pour dénominateur le nombre placé *sous l'accent* Ainsi,

chez Diophante, y1 est^> âf = -j\ mais lorsque le nu-
mérateur est plus grand que l'unité, il est désigné par le
nombre inférieur, et alors le dénominateur de la fraction
lui est ajouté en guise d'exposant, de sorte que, par

exemple, y* = j (*). Dans des inscriptions romaines,

un trait horizontal ajouté en haut multiplie le nombre
par mille, ce qui peut être considéré comme un moyen
d'abréviation pour économiser l'espace.

La méthode ftEutocius, pour exprimer les myriades, est
plus importante. Ici nous rencontrons, chez les Grecs,
la première trace du système exponentiel ou plutôt d'indi-
cation, si important pour l'Orient. Ma, M'3, My désignent
ioooo, 20000, 3oooo. Ce qui ici est appliqué exclusive-
ment aux myriades s'étend, chez les Chinois et chez les
Japonais, qui recevaient leur culture des Chinois 200 ans
avant notre ère, à tous les multiples des groupes. Trois
traits horizontaux sous le signe 10 indiquent i 3 ; trois
traits horizontaux au-dessus signifient 3o. Suivant cette
méthode on écrivait le nombre 3456 ainsi (en employant
les chiffres romains comme signes de groupes, les chiffres
indiens comme exposants ) :

M3

C<

p .

( *) Delambre, t. H, p. 11. L'accent ajouté au haut des lettres, unique-
ment pour indiquer qu'elles ont élé employées comme nombres, ne doit
pas être confondu avec le signe de fraction. Aussi dans plusieurs anciens
manuscrits mathématiques, n'est-il jamais proprement perpendiculaire,
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Chez les Égyptiens on trouve les mêmes indices. Au-des-
sus d'un trait reco^pl'(*) qui signifie iooo, on place
2 ou 4 unités pottr exprimer 2000 et 4<>oo. Chez les
Aztekes ou Mexicains j'ai trouvé le signe de la ligature
avec six unités comme exposant, pour exprimer 3ia an-
nées ( 6 x 52 = 3i2t) ; j'en ai donné la représentation
dans mon ouvrage sur les Monuments américains. Chez
les Chinoisy les Aztekes et les Égyptiens le signe de groupe
est toujours le signe inférieur, comme si l'on écrivait X8

pour 5o; dans le chiffre arabe gobar, le signe de groupe
est placé au-dessus de l'indicateur. Il faut savoir que dans
le go bar les signes de groupes sont des points, consé-
quemment des zéros 5 car dans Y Inde j en Tibet et en
Verse, des zéros et des points sont identiques. Les signes
gobar, qui depuis Tannée 1818 ont-fixé toute mon atten-
tion, ont été découverts par mon ami et maître M. Silvestre
de Sacy, dans un manuscrit de l'ancienne abbaye Saint-
Germain-des-Prés. Ce grand orientaliste dit : «.hegobar
a un grand rapport avec le chiffre indien, mais il n'a pas
de zéro » (**). Je crois toutefois que le signe pour zéro
y existe, mais, comme dans la scolie de Néophytos, il
est placé au-dessus des unités, non pas à côté ; ce sont
même exactement ĉes zéros ou points qui ont fait donner
à ces caractères le nom singulier de gobar ou écriture de
poussière. Au premier coup d'œil on doute si l'on doit

mais horizontal, en sorte qu'il ne peut jamais être confondu avec le signe
de fraction. (Bast, De usu litterarum ad numéros indicandos, etGregorii,
Corinthii liber de dialectis linguae graecœ, 1811, p. 85o. )

(*) Kosegarten, de Hierogl. aegypt., p. 54- L'opinion émise par Gatterer
d'après Rianchini (Décad. I, cap. 3, p. 3) , Goguet (t. I, p. 226) et De-
brosses ( 1.1, p. 432 ), que des Égyptiens donnaient la valeur de position
aux 9 unités en direction verticale, n'a été aucunement corroborée par
des recherches modernes. Gatterer, Histoire universelle jusqu'à Cyrus,
p. 555-586.

(**) Grammaire arabe, p. 76, et la note ajoutée à la PI. VIII.
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y reconnaître un passage des lettres aux chiffres. On ne
distingue qu'avec peine les 3, 4? 5 $ $ 0 indiens, Daletha
sont peut-être les chiffres indiens fiW^a mal po^k L'in-
dication au moyen des points est la suivante :

3' pour 3ot

4" pour 4°o?
6* • pour 6ooo.

Ces points rappellent une notation grecque ancienne, mais
rare, qui ne commence qu'avec les myriades : a' pour

ioooo, (3 • pour 200 millions. Dans ce système de progres-
sions géométriques il y a originairement un point, que
cependant on n'emploie pas, pour indiquer ioo. Chez
Diophante et Pappus, un point est placé entre les lettres
numératives, pour remplacer l'initiale Mu (myriade).
Alors un point multiplie par ioooo ce qui est à gauche.
On serait porté à croire que des idées obscures sur des no-
tations au moyen de points et de zéros, venues de l'Orient,
s'étaient répandues par des Alexandrins en Europe. Le
véritable signe de zéro pour indiquer quelque chose gui
manque, est employé par Ptolémèe dans l'échelle sexagé-
simale descendante, pour exprimer des degrés, minutes ou
secondes qui manquent. Delambre veut aussi avoir trouvé
le signe de zéro dans des manuscrits du commentaire de
Théon sur la Syntaxe de Ptolémèe (**). L'usage de ce

(*) Ducange, Pal#ogr., p. 12.
(**) Hist. de VAstron. ancienne, t. I, p. 547; t. H> P- I0- ^ n ne trouve

pas le passage de Théon dans ses ouvrages imprimés. Delambre penche
tantôt vers une explication du signe grec pour zéro comme abréviation
de ouden, tantôt il voudrait le dériver d'une relation particulière du nu-
mératif omicron avec les fractions sexagésimales , loc. cit., t. H, p. 14, et
Journal des Savants, 1817, p. 53g. Il est singulier que dans l'ancienne
arithmétique indienne de la Lilaxvati, zéro placé près d'un nombre indi-
que qu'il faut retrancher le nombre, Delambre, 1.1, p. 54o. Qu'est-ce que
désigne le ling (un véritable zéro), écrit dans les chiffres chinois sous 12,
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signe en Occident es||lonc antérieur de beaucoup à l'in-
vasion des Arabeŝ  J^wi'écrit de Planude sur les Arith-

TROJIEME MÉTHODE. — Multiplication de la valeur

par des coefficients. Ce que chez les Chinois nous avons
trouvé comme indicateurs dans l'écriture perpendicu-
laire, la différence entre X = 11 et X = 20, se trouve

répété en direction horizontale chefc les Grecs, les Armé-
niens et les habitants parlant tamoul de la partie méridio-
nale de la péninsule indienne. Diophanteet Pappus écri-
vent |3 Mu pour deux fois dix mille ou 20000, tandis que
a Mu j3 (lorsque |3 se trouve à droite de l'initiale de la my-
riade) signifie une fois dix mille plus deux ou 10002. La
même chose a lieu dans les chiffres tamoul, comme qui di-
rait 4 X = 40 et X4 = i4« Dans le pehlwi de l'ancienne
Perse, suivant Anquetilj et dans Y arménien, suivant
Cerbied (*), on reconnaît des multiplicateurs placés à
gauche pour exprimer les multiples de 100. Il faut aussi
rapporter à cette méthode le point de Diophante, men-
tionné ci-dessus, qui remplace Mu et multiplie en 1000
ce qui précède (**).

QUATRIÈME MÉTHODE. —Multiplication et diminution
ascendantes et descendantes, par division en rangées
de nombres dont la valeur diminue en progression
géométrique. Archimhde dans les octades, Apollonius
dans les tétrades, n'ont employé cette notation que pour

i3 , 22, 132? Dans les inscriptions romaines, des zéros sont des oboles
répétées plusieurs fois (Rockh, Économie nationale des Athéniens, B. 2 ,
p. 379).

(*) Grammaire arménienne, 1823, p. 25.
(**) De telles divisions au moyen de points, qui, d'une manière d'ail-

leurs très-inconséquente, indiquent une valeur de position, on trouve
aussi en trois endroits de Pline, souvent discutés (t. VI, p. 24-33;
t. XXX, p. 3). #
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des nombres au delà de (10000)% p&lÉ||s 100 millions ou
myriades de myriades (* ). Ici iL^^lwfctmen^^bfâir de
position des mêmes signes, se suti&ËÉfèn rao^^HËfEé-
rentes ; il y a donc valeur absolue et relative, comme dans
l'échelle sexagésimale descendante des astronomes alexan-
drins , pour indiquer les degrés, les minutes et les se-
condes. Mais puisque, en Ce dernier cas, faute de » — 1
ou 59 signes, chaque rangée est composée de 2 chiffres,
la valeur de position .ne peut pas offrir l'avantage des
nombres indiens. Lorsque les trois cent soixantièmes de
la circonférence sont considérés comme entiers, les
minutes sont des soixantièmes de cet entier, les secondes
des soixantièmes des minutes, etc. 5 comme fractions, ils
reçurent de Ptolémèe le signe de fraction, l'accent ajouté
en haut, et pour indiquer la progression descendante, dans
laquelle chaque rangée de 2 chiifres est 60 fois plus petite
que la précédente, les accents furent multipliés de rangée
en rangée. De cette manière, les minutes reçurent le simple
accent des fractions grecques ordinaires (ayant l'unité
pour numérateur), les secondes reçurent deux accents,
les tierces trois, les degrés mêmes, comme entiers, pas
d'accent, peut-être comme rien (ouden) un zéro (**).
Je dis peut-être, car dans Plolémée et Théon, les zéros,
comme signes de degrés, manquent encore.

(*) Delambre, Hist. de Tastr. ancienne, 1.1, p. io5; t. II, p. 9.
(**) Relativement à l'emploi du signe zéro, V. Leslie, p. 12-135; Hui-

then, Germanen und Griechen Hist., II, p. 2-33; Ducange, Glossar.
médise graecitatis, t. II, p. 672 ; Maumert, De numerorum quos arabicos
vocant origine ; Pythagor., p. 17. Dans l'arithmétique grecque, M0 désigne
une unité, monas, de même qu'un delta avec un zéro ( proprement omi-
cron) superposé, signifie tétanos; Dast, Gregor,, Cor., p. 851. Ainsi chez
Diophante, M°xa est 21. Le signe grammatical indien auuswara a, en
effet, la forme d'un zéro indien (sunga). Mais il n'indique qu'une modi-
fication de la prononciation de la voyelle placée à côté et est entièrement
étranger au sunga.
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La simple énum^ation des différentes méthodes em-

ployé^ par des|îçlà|^^auxquels l'arithmétique indienne
étaî^jl^onnue, p^ujr^exprimer les multiples des groupes
fondarnentaux, présente, je crois,l'explication du déve-
loppement successif du système indien. En écrivant 3558
perpendiculairement et horizontalement au moyen d'in-
dicateurs M C X I , on reconnaît facilement qu'on peut
se passer des signes des groupes M, C.... Or, nos chiffres
indiens ne sont autre chose que les multiplicateurs des
différents groupes. Cette notation, au moyen de seules
unités (multiplicateurs), est rappelée d'ailleurs par les
cordons successifs dusuanpan représentant les mille, les
centaines, les dizaines et les unités. Ces cordons, dans
l'exemple donné, montraient 3 , 5, 6 et 8 boules. Là on
ne voit point de signes de groupe. Les signes de groupes
sont les positions mêmes, et ces positions (cordons) sont
remplies par les unités (multiplicateurs). Donc, par les
deux voies de l'arithmétique figurative et palpable, on est
conduit à la position indienne. Si le cordon est vide; que
la place en écrivant reste libre, qu'il manque un groupe
(un terme de la progression), le vide est rempli gra-
phiquement par l'hiéroglyphe du vide, un cercle vide :
sunga, sifron, zuphra (*).

Que la notation numérative ne s'est perfectionnée dans
Y Inde que successivement, c'est ce qui est confirmé par
le chiffre tamoul qui, au moyen de 9 signes d'unités et
de signes de groupes pour 10, 100 et 1000, exprime toutes
les valeurs à l'aide de multiplicateurs ajoutés à gauche 5
cela est confirmé aussi par les étranges arithmoi indikoi

(*) En anglais cjrpher s'est conservé pour indiquer zéro, tandis que
dans les langues occidentales qui emploient zéro {sifron, siron) pour zéro,
chijfrj n'indique qu'un numératif en général. En sanscrit, suivant Wibon,
nombre ou quantité s'appelle samhhara,
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de la scolie du moine Néophjtos conservé à la bibliothèque
de Paris (Cod. reg, fol. i5), et doiH||edois la connais-
sance à la communication bien veillante de M. le |§b|bs--
seur Brandis. Les 9 chiffres de Nêophytos, hormis le 4,
sont tout à fait semblables aux chiffres persans. Les
chiures 1, 2, 3 et 9 se trouvent même dans des inscrip-
tions numériques égyptiennes (*). Les 9 unités sont
multipliés par 10, 100 ou 1000 par la superposition de
un, deux ou trois zéros, comme qui écrirait

2 = 20, 24 = ^4, 4 — 4°° » 6 = 6000.

En imaginant des points au lieu de zéros, on a le chiffre
arabe gohar. Voici une traduction latine textuelle de cette
scolie. Le moine nomme par erreur tzûphron un mot
indien. «

<c Tzyphra est et vocatur id, quod cuivis litterae inde
» a décade et insequentibus numeris quasi ofct^ôv inscri-
« bitur. Significat autem hac indica voce tali analogiam
» numerorum. Ubi igitur scriptum est simile primae lit—
» terse «A^«, pro unitate scriptae, atque super impositum
» habet vel punctum vel quasi ojtctxpov, addita altéra figu-
» ra litterae indicae, difïerentiam et augmentum numéro-
)> rum déclarât. E. g. pro primo jgrseco numéro, » scrip-
» to, apud Indos | sive linea recta perpendicularis,
» quandonon habet superimposilum punctum vel ïpixfov 9

» ipsum hoc dénotât unitatem ; ubi vero superimpositum
» sit punclum atque altéra littera adscripta sit, figura
» quidem similis priori, significat XI, propter addita-
» menlum similis litterœ atque superimpositum unum
» punctum. Simili ter etiam in reliquis litteris, quemad-
» modum adspectus docet. Si vero plura habet puncta>

(*) Kosegarten, p. 54.
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» plura dénotât. Quod intelligas, lector, et supputes
» unumquidquf « » v >

On ne connaît ici pas plus de position que dans la mé-
" " ' ' • •

thode gobar. On écrivit donc 3oo6 ainsi : 3 6} mais on
devait remarquer bientôt que les mêmes chififres reve-
naient avec d'autres valeurs, que (si tous les groupes

0

étaient remplis), dans 3 4 6 7, les points ou zéros, di-
minués ainsi régulièrement, devenaient superflus. Ces
zéros ne faisaient en quelque sorte que faciliter la pronon-
ciation des nombres. Si l'usage s'introduisait d'écrire lès
zéros à côté au lieu d'au-dessus des chiffres, on avait la

notation indienne actuelle du groupe simple 3 = 3ooo.
e

00 0

Si l'on voulait ajouter 3 ou 3ooo à 4 = 4o on remplissait
cette place qui est assignée à 4o par son exposant ou indi-
cateur de groupe, Ainsi on obtenait 3o4o, et des 3 zéros,
attribut caractéristique des mille, descendus à la ligne des
unités, il restait deux comme places vides. Suivant la
scolie de Néophytos, les zéros sont donc (comme les
points du gobar) des indicateurs pour la notation des
groupes ascendants, et l'on conçoit, d'après les réflexions
qu'on vient de développer, comment ces zéros, lorsque la
valeur de position des chiffres fut introduite, pouvaient
descendre dans la ligne et s'y maintenir.

En jetant encore un coup d'œil rétrospectif sur le
grand nombre de méthodes de notation des peuples des
deux continents, trop peu connues, nous remarquons :

i°. Peu de signes de groupes et presque exclusivement
pour 7̂% rc3, nk..., non pas pour 2/3, 3 n.et 2/2% 3 «*,...,
comme chez les Romains (*) et les Tusciens X , C, M

( * ) Nous faisons abstraction, dans la vue d'abréger, des signes de groupes
du système secondaire quinaire V, L, D,

26.



(de sorte que tous les degrés intermédiaires, par exemple
2 n ou 2 w% sont exprimés par juxtaposition XX, CCC ) ;

a°. Beaucoup de signes de groupés, non-seulement
pour n, /a2 (iota et rho des lettres numératives grecques),
mais aussi pour 3 n ou 4 n? (X et v), ce qui produit une
grande hétérogénéité des éléments de l'expression pour
2 + 2 » 4- 2 «* (par exemple crx|3 pour 222)5

3°. Expression des multiples du groupe fondamental et
de ses puissances (2 n, 3« , 4 w% 5 «2), soit par l'appo-
sition (en bas ou au-dessus) d'indicateurs aux signes de

groupes (chinois: X, X, C, C-, indicn-tamoul : 2 X;,
3 X, 4 C, 5 C), soit par une ponctuation ou accentuation
graduelle des 9 premiers signes d'unités, de sorte que,

a = 1 0 , (3 = 20, a = 1 0 0 , a = 1 0 0 0 , à ~ 4 O 0 O 0 v

en• gobar, dans la scolie de Néophytos et dans l'échelle
sexagésimale descendante des astronomes alexandrins,

1 1 1 , . ,

^-* £-̂ 5 g-;•» en écrivant, par exemple,

1*37'37" 37'"....

Nous avons vu, enfin, comment les indicateurs (mul-
tiplicateurs) des peuples de l'Asie orientale, des habitants
de la partie méridionale de la péninsule indienne, ou,
s'il existait originairement des signes de groupes différents
pour «, «% n3, comment l'accentuation des pulkmènes
du système gobar ou de la scolie de Néophytos; enfin,
comment les cordons du suanpan, dans lequel une va-
leur élevée à une puissance n'est exprimée que par la
position relative du cordon, pouvaient conduire à la va-
leur déposition.

Si le simple système de position indien a été introduit
en Occident par suite du séjour que le savant astronome
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liihan ftîahommed ebn Ahmet Albiruni'fit dans
l'Inde (*) ou par dçs douaniers moresques de la côte sep-
tentrionale de l'Afrique et le commerce qui s'établissait
entre ceux-ci et les marchands italiens, c'est ce que, ici,
nous laissons indécis. Malgré l'antiquité de la culture in-
dienne , il est tout aussi incertain si le système de posi-
tion qui a si puissamment influencé l'état des mathé-
matiques était connu déjà du temps de l'expédition
macédoine au delà de l'Inde. Combien Archimëde, Apol-
lonius de Perge et Diophante auraient transmis plus
perfectionnées les sciences mathématiques à l'âge savant
des Hachémites, si l'Occident avait reçu douze ou treize
siècles plus tôt, par l'expédition d'Alexandre, l'arithmé-
tique indienne de position ! Mais la partie de l'Inde anté-
rieure, qui fut traversée par les Grecs, le Pendjab jusque
vers Palibothray était, suivant les savantes recherches
de M. Lassen, habitée par des peuples peu cultivés. Us
furent même appelés Barbares par ceux qui habitaient
plus vers l'orient. Ce n'est que Seleucus Nicafor qui pé-
nétra au delà de la limite qui séparait la civilisation de la
barbarie, depuis le fleuve Sarasvalis (**) jusqu'au Gange.
De l'ancien chiffre indien tanioul, qui exprime 2« ,
3 /*%... par des multiplicateurs apposés, et par conséquent
a, outre les signes des neuf premières unités, des signes
particuliers pour n, /*% M3,... , nous concluons que dans
l'Inde, à côté du système à valeur de position nommé
presque exclusivement indien (ou arabe), il existait aussi
d'autres systèmes de chiffres sans valeur de position.
Peut-être ni Alexandre ni ses successeurs bactriens, en
pénétrant temporairement dans l'Inde, ne venaient-ils en

( *) C'est l'opinion émise par le savant orientaliste M. Sédillot, connais-
seur également profond de l'astronomie grecque et de l'astronomie
arabe.

(**) Lasscn, Comment, geogr. de Pentapot, p. 58.



( 4°6)
contact avec des nations chez lesquelles la méthode de
position était exclusivement en usage.

Puissent les traces de tout ce qui reste encore à décou-
vrir être poursuivies bientôt avec plus de zèle, soit par
des philologues ayant l'occasion d'examiner des ma-
nuscrits grecs, persans ou arabes (* ) , soit par des
voyageurs séjournant dans la péninsule indienne même.
Rien que la pagination de vieux volumes manuscrits de
la littérature sanscrite peut conduire à des observations
remarquables. Qui aurait soupçonné, par exemple, que
parmi les Indiens, à côté de l'arithmétique décimale de
position, il existait un système sédécimal sans position;
que certains peuples indiens comptaient de préférence
suivant des groupes de 16, comme les peuples américains,
les Kymres et les Basques suivant des groupes de 20? Or
une telle numération singulière a été découverte, il y a
plus de dix ans, dans un manuscrit de l'ancien poëme in-
dien Mahabharata (Cod. Reg., Paris, page 178), par
M. le professeur Bopp qui, du temps où je présentai mon
premier Mémoire sur les chiffres des peuples à l'Académie
des Inscriptions et Belles-Lettres, a bien voulu me la com-
muniquer pour que je la fasse connaître. Soixante-cinq
pages de ce manuscrit sont paginées de lettres numéra-
tives indiennes, cependant de manière que seulement les
consonnes de l'alphabet sanscrit (k pour 1, k h pour 2... )
soient employées, ce qui est en contradiction avec le pré-
jugé (**) bien généralement répandu jusqu'à présent,

(*) Parmi les manuscrits arabes, je recommande surtout ceux qui trai-
tent des affaires des finances ou de l'arithmétique en général, par exem-
ple, Abn José Alchindus, De arithmetica indica; Abdel Hamid ben vasee
Abalphadl, De numerorum proprietatibus ; Ahmad ben Omar Alkarabisi,
Liber de indica numerandi ratione ; l'Algèbre indienne de Kalka; Moham-
med ben Lara, De numerorum disciplina (Casici, liïbl. arabico-hispana,
t. I, p. 353, 4°5, 410> 426> 433).

(**) Si l'arithmétique de position n'est pas originaire de l'Inde, elle



qu'on trouve employés dans l'Inde exclusivement des
chiffres et non pas des lettres en guise de chiffres, comme
chez les peuples sémitiques et chez les Grecs. A la soixan-
tième page commence la remarquable notation sédécimale.
Dans les premiers 15 puthmènes, c'est à peine si l'on recon-
naît deux signes qui sont des lettres sanscrites, t aspiré et
d7 et semblent correspondre à 3 et à 12 respectivement ; on
y retrouve aussi peu les signes nommés proprement indiens
(arabes). Il est remarquable que le chiffre 1 avec un zéro
apposé signifie 4? e* que le chiffre 1 redoublé (deux traits
perpendiculaires) avec un zéro apposé signifie 8; ce sont
pour ainsi dire des points d'arrêt, des degrés intermé-
diaires du système sédécimal, pour y n et -n 5 mais ^ (12}

est sans zéro et a un propre hiéroglyphe, semblable au
4 arabe. Pour le groupe normal 16 et pour ses mul-
tiples 2 n, 3 / i , . . . , on emploie les chiffres bengali connus,
en sorte que 16 est exprimé par le 1 bengali précédé
d'un trait courbé\ 32 par le 2 bengali; 48 Par Ie 3 ben-
gali. Les multiples de n ne sont donc que comme des
nombres de premier, second, troisième... ordre ; les nom-
bres 2n -h 4 ou 3 rc -f- 6 (c'est-à-dire, dans le système sé-
décimal, 36 et 54) sont désignés par un 2 bengali et un
chiffre mahabharata (*) 4 placé à côté, ainsi que par un
chiffre bengali 3 et un chiffre mahabharata 6; méthode
de numération très-régulière, mais incommode et com-
pliquée, et dont l'origine est d'autant plus énigmatique
qu'elle présuppose la connaissance des chiffres bengali.

doit au moins y avoir existé de temps immémorial j car on ne trouve chez
les Indiens aucune trace d'une notation alphabétique telle que la notation
des Hébreux, des Grecs et des Arabes (Delambre, Hist. de l'Astr. an-
cienne, t. I, p. 543).

( * ) Je me sers ici de cette expression impropre uniquement pour dé-
signer par un terme convenable le système de chifires que présente une
copie de ce poème.



TANGENTES COMMUNES A UNE CONIQUE ET A UN CERCLE.

PROBLÈME. Par deux points D, E, donnes sur une
ellipse HEDK, on fait passer une circonférence quel-
conque DEAB, puis on mène à ces deux courbes des
tangentes communes HAS, KBS : trouver le lieu géomé-
trique du point S de rencontre de ces tangentes.

(CHÀSLES.)

Pour résoudre cette question, j'établirai le lemme
suivant :

Soient HEDK, DEAB, une ellipse et une circonfé-
rence tangentes aux deux droites SX, SY, et se coupant
en deux points D, E : si Von mène dans l ellipse une
corde quelconque D'E' parallèle à DE, il sera toujours
possible de faire passer par les deux points D', E',
une circonférence qui soit tangente aux deux droites
SX,SY.



Je prolonge les cordes parallèles D E , D'E\ jusqu'à ce*
qu'elles coupent les tangentes aux points C , G , C', G';
et je prends C'A' moyenne proportionnelle entre C E ' ,
C D ' , et de même G'B' moyenne proportionnelle entre
G'E', G'D'. La circonférence conduite par les trois
points D', E', À' sera tangente à la droite S Y en A'; de
même, la circonférence qui passe par D', E', B' touche
la droite SX en B'. Pour faire voir que ces deux circon-
férences coïncident, il suffit de démontrer qu'on a

SA' = SB',

ou , ce qui revient au même,

Je nomme a , è, c, les diamètres de l'ellipse respecti-
vement parallèles aux droites D E , S X , SY : d'après le
théorème de Newton, on a, en désignant par K et H les
points où l'ellipse touche SX, SY,

G D X G E a1 G B ' a?
— — 5 — = = - . , ou - _ = - ;

GK b GK b

ce qui donne

G ' B ' = = G ' K X T >
b

de même
a
V

d'où
a.

et, par suite,
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On aura semblablement

d'où
a

GG' BB'/ l+c
v ' CC ~" AA'\ a

De plus
l+bt

SK = SG •-*- GK — SG •+- GB. - = SG -f- (SG — SB) -
a K 'a

de même

S A . l
a-3

Mais, d'après le théorème de Newton,

ou

Ce qui donne, en remplaçant SK et SH par leurs valeurs ,

a ) a

Ou, parce que SB = SA ,

SG

il en résulte

fac 4- bc\ __ /ba +

a
SG ba -h bc c
SC ~~ ne -f- bc ~ â~

b'



c"4"1 SG
Remplaçant par — dans l'égalité (i), il viendra

BB/ SG
AA'X SC'

Or, à cause des parallèles GC, G'C, on a

GĜ  _ BB/ SG
CC ~"AA'X SC'

CC ~ SC '
donc

nn/

— 7 = 1 , ou AA'~BB';
AA

c'est ce que nous voulions démontrer.
De là nous conclurons que le lieu géométrique reste le

même quelle que soit la grandeur ou la position de la
corde DE, pourvu que sa direction ne change pas. Que si,
par exemple, au lieu de faire passer les circonférences par
les extrémités de la corde DE, on les mène par les extré-
mités de D'E', on trouvera absolument les mêmes points
de rencontre pour les tangentes communes. Cette conclu-
sion étant vraie quelque rapprochées que soient les extré-
mités D', E' de la corde, doit encore subsister lorsque
ces deux points se confondent. Dans ce cas, la corde D'E'
devient la tangente RTR' à l'ellipse-, les circonférences
sont elles-mêmes tangentes à l'ellipse au point T. On sait
déjà (Nouvelles Annales, tome III, page 495) qu'alors
le lieu géométrique est une hyperbole qui a les mêmes
foyers que l'ellipse (*).

G.

( * ) La solution purement analytique présente des difficultés de calcul,
à cause des quatre tangentes communes. Cette solution serait très-instruc-
tive ( voir tome III, page /|3i).

Tu.



NOTE SUR LA FORMULE DE SIMPSON ET SUR UNE AUTRE
FORMULE DE QUADRATURES;

PAR E. CATALAN.

(Communiquée à la Société Philomathique. )

Pour évaluer Faire comprise entre un arc de courbe,
Taxe des abscisses et deux ordonnées extrêmes, il faut,
après avoir inséré, entre ces deux dernières droites, un
nombre impair d'ordonnées équidistantes, remplacer la
courbe donnée par des arcs de paraboles tels, que chacun
d'eux passe par les extrémités de trois ordonnées consécu-
tives, et faire la somme des segments paraboliques ainsi
obtenus.

Telle est la Méthode de Robert Simpson.
Il n'est pas difficile de voir que cette méthode doit, en

généra], conduire à des résultats peu approchés. En effet,
les paraboles substituées à la courbe proposée, au lieu de
former une ligne continue, présentent, le plus souvent,
des jarrets à leurs points d'intersections; car chacune
d'elles est déterminée indépendamment de celle qui la
précède et de celle qui la suit. En cherchant à corriger le
défaut inhérent à la formule de Simpson, j'en ai rencontré
une autre qui, si je ne me trompe, pourra presque tou-
jours être préférée à la formule de Simpson et à celle de
M. Poncelet.

Pour arriver à cette formule, proposons-nous d'abord
de remplacer une courbe donnée, par une suite de para-
boles du second degré.



AP étant l'arc donné, menons^les ordonnées extrêmes
Afl, P^; divisons l'intervalle ap en un nombre quel-
conque n de parties égales \ puis^élevons les ordonnées
Z>B, c C , . . . , NTI.

Cela étant, faisons passer, par les trois points consécu-
tifs A, B, C, une parabole dont l'axe soit parallèle à Aa,
et cGnseivons seulement Varc AB de cette ligne. De
môme, par les trois points B, C, D, faisons passer une
nouvelle parabole, et ne conservons que la partïe BC de
cette courbe, etc. En continuant ainsi, nous arriverons
aux trois derniers points M, N, P, que nous joindrons
par un arc parabolique, pris cette fois dans son entier.

Il est visible que les paraboles employées dans cette
construction se raccordent mieux que celles du tracé de
Simpson; car deux arcs consécutifs, au lieu d'avoir seu-
lement un point de commun, en ont deux. Si donc on
fait la somme de tous les segments paraboliques A a Bb ,
Bb Ce,..., M n P/?, on aura une aire A' qui différera assez
peu de l'aire cherchée A.

Il est bon d'observer pourtant que, la construction étant
irrégulière dans la partie MNP de la courbe, la valeur de
A' ne sera pas symétrique. Mais si l'on refait, dans un
ordre inverse, cette même construction, et que Ton prenne



la moyenne des deux aires A', A/f obtenues, ou aura, à
fort peu près, la valeur de A.

Développons les calculs qui viennent d'être indiqués.
Désignons par y 0 , J i , J Î , - , / » - ! , Jn les ordonnées

des points A, B, C v . . , N, P, et'par d l'intervalle de
deux ordonnées consécutives. Menons la corde ARC ; pre-
nons BS = BR, et menons AS $ cette droite sera tangente
à Tare AB de la parabole ABC. Or, le triangle parabo<-
lique ABR est les deux tiers du triangle rectiligne ARS ;
donc

3 a 3 3 \

D'ailleurs,

Donc, en ajoutant,

Un simple changement iïindices donne ensuite

La somme de ces valeurs sera

i(S-rB_,)+|(S.



OU

S étant la somme de toutes les ordonnées.
Changeant j 0 enj^î y± en yn_x, etc., nous aurons

d'où
5

2S — j ( j 0 + yn) -f- ~ (/, 4- / * - ,
A' + A'7 = " J

La formule cherchée est donc

[ s ( + ) + (

Le pins court chemin d'un point à nn autre, snr la surface d'une sphère,
est le pins petit des arcs dn grand cercle qui passe par ces points ;

PAR M. BARBET,

Chef d'institution.

Si Ton suppose entre A et B une ligne ADCEB autre
que l'arc de grand cercle AB qui les joint, cette ligne ne

( * ) Contrairement à ce que j'avais cru d'abord, cette formule n'est
pas nouvelle : elle n'est même qu'un cas particulier de celle que fournit
le calcul des différences. (LACROIX, tome III, page i83.) En publiant cette
Note, je n'ai donc eu qu'un but, celui d'être utile aux élèves.



sera pas le plus court chemin entre A et B, car on pourra
en trouver un plus court.

Pour le démontrer, on prend sur la ligne ADCEB un
point C 5 on le joint aux points A et B par les arcs de grand
cercle AC, BC, et Ton forme un triangle spnérique ABC
dans lequel on a AB <^ AC -f- BC. Donc si Ton fait pivo-
ter autour du point A, sur la surface de la sphère, la por-
tion de ligne ADC et l'arc de cercle AC jusqu'à ce que le
point C vienne en C , et si l'on opère de même sur la por-
tion de ligne BEC et l'arc de cercle BC, par rapport au
point B, le point C tombe sur AB entre A et C au point
C/;. Les deux parties du chemin deviennent AD' C , BE' CI1

et se coupent en F, de telle sorte que le chemin AD'FE' B
est plus court que le chemin ADCEB de la ligne brisée
C'FC".

ire Remarque, Le succès de cette démonstration résulte
de ce que les deux arcs de cercle AC et BC ayant été ra-
battus sur l'arc AB, la portion BE'C" du chemin ADCEB
coupe en F la portion AD'C. Il pourrait se faire que la
deuxième portion du chemin, au lieu d'avoir la position
CEB, eût la position CGB, de telle sorte qu'après le ra-
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battement de Parc BC sur BA cette portion CGB prit la
position CG'B. Il n'y aurait pas alors de point de ren-
contre de cette portion O'G'B avec AD'C. Mais s'il y a
d'un côté d'un arc de grand cercle BC une ligne BGC, on
peut en concevoir une BEC symétriquement placée de
l'autre côté, et égale à la première Substituant celle-ci à
l'autre, on peut prendre au lieu du chemin ADGEB le
chemin égal ADCEB, auquel on applique la démonstra-
tion précédente.

2e Remarque. Si la ligne qui va du point A au point B,
autre que l'arc de cercle AB, au lieu d'être placée entière-
ment d'un même côté de l'arc AB, le coupait en plusieurs
points D, F, H, K, on établirait comme ci-dessus que
chaque segment tel que AD est plus petit que ia partie
correspondante ACD de la ligue, autre que l'arc de grand
cercle AB, qui va du point A au point B. Et en ajoutant
membre à membre toutes ces inégalités on en conclurait
arc AB < ACDEFGHIKB.

Ann. de Maihêmat.j t. X. (Novembre I 8 5 I ^ 2 7



INTÉGRATION DE DEUX ÉQUATIONS DIFFERENTIELLES,

PAR M. J. DUPAIN,
Élève de l'École Normale.

On propose d'intégrer le système d'équations simul-
tanées suivant :

, . d'xz dy dz
(i) y - l~2-r-r
x ' (ix dx dx

— y [ — 1 — a cos z = o.

Nous prendrons de nouvelles variables t, u liées aux
anciennes par les relations

«—jcosz.

Les premiers principes du calcul différentiel nous
feront connaître les dérivées de t et de w,

dt dy . dz du dy . dz
— = — smz H- rcosz—? —- = -— cosz — ysmz — ,
dx dx dx dx dx dx

d*t d7r dy dz . (dz\* d7z
L±z=z—— smz -4- a c o s z — - j s i n z l — } -hjcosz-—,
r/^ ^ 2 <**«** \ ^ / ^ 2

d^u d*Y . dy dz / ^ \ 2 . ^2z
i m z — jrcoszl—- — ysinz —.

Ajoutons au second nombre de l'équation (4) le premier
membre de l'équation (î) multiplié par sinz, et retran-
chons-en le premier membre de l'équation (a) multiplié
par cos z} il vient, réductions faites,

(5) dx1"



Une combinaison analogue des équations (i), (2), (3)
conduit a

les équations (5) , (6) fournissent immédiatement les
intégrales

u=z hA.r-f-B, /=rCr4-D,
2

A, B, C, D étant des constantes arbitraires. On repasse
aisément aux variables y, z,

les intégrales demandées sont donc

2 (Car-h D)
z = arc tang ——

y= - y/4 (CJ? -+- D)2 H- (tf#2 -h 2 kx -
2

SUR LE MOUVEMENT II l \ CORPS SOLIDE AUTOUR « U N
POINT FIXE,

PAR M. STURM.

On doit à M. Poinsot une nouvelle théorie fort ingé-
nieuse de la rotation*des corps, aujourd'hui bien connue
et appréciée des géomètres. Toutefois l'ancienne méthode
analytique est encore en usage, précisément parce qu'elle
exige moins de raisonnement. Il peut donc être utile de
simplifier la parlie essentielle de cette analyse, qui est la
formation des équations d'Euler, d'où Ton déduit ensuite

27.
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toutes les circonstances du mouvement et même les pro-
priétés nouvelles découvertes par M. Poinsot.

Considérons d'abord en lui-même, et indépendamment
des forces qui le produisent, le mouvement d'un corps
solide autour d'un point fixe. En adoptant les notations
de la Mécanique de Poisson, soit O le point fixe, soient
.r, j , z les coordonnées d'un point quelconque m du
corps rapporté à trois axes fixes rectangulaires passant
par le point O, et xn yn zt les coordonnées du même
point m rapporté à un autre système d'axes rectangu-
laires liés au corps et tournant avec lui autour du pointO.
Ces derniers axes seront dans la suite les axes d'inertie
principaux du corps pour le point O. On a les formules

les cosinus «, i , c, etc., étant liés par les relations
connues

, o} 4- a"1 4- aHi =r. i , «6 4- or' 6' 4- a" b" r= o,

(2) |^ î4-^'24- b"-=z 1 , M + tfV 4- «"c" == o,

qui en entraînent d'autres équivalentes

(3) na4- b* 4 -c 2 = 1, «a' 4- bb' -+-cc'=: o, etc.

Les composantes de la vitesse t> du point m parallèles
aux axes fixes Ocr, O j , Oz , ou les projections de cette
vitesse sur les axes sont

dx da db de

(4:
dy da' db' de'

dz da" db" de"

dt ~~ ' ' dt Jl de ^ ' dt



Comme les axes fixes sont arbitraires, il nous est permis
de supposer que leur position soit celle qu'occupe le sys-
tème mobile des axes Oxn Oyf, O zt au bout du temps f,
position dont ce dernier système s'écartera après le temps t.
Ai dx dy dz , . , *
Alors -7-1 -r-> -r deviennent les composantes «,, *\,-iv.

dt dt dt * n n t
de la vitesse u parallèles aux axes Oxn Oyn Ozn au
bout du temps f, pourvu qu'on prenne les valeurs de

-7-5 -p? etc., dans cette hypothèse. Or les relations (2)

donnent, quels que soient les axes fixes,

ada 4- a' da' 4- a" da1' = o,

<v/c 4- c' de' 4- c" de" — o ,

«r/c 4- tfr rfc' 4- rt;/ t/c/; 4- cda 4- c'dn' 4- c"da' = o,

^/c 4- ^' r/c' 4- b" de" 4- 6Y/Ô 4- c' db' 4- <̂ f/ db" = o.

Si Ton suppose que ces axes fixes coïncident avec O xt,
Ojn Ozn au bout du temps t, on a alors

< 7 ~ 1 , b t= O, C =Z O ,

fl= O , & ' = I , c'rrro,

et les équations qui précèdent deviennent

da = o, db -\- da' = o,

/̂é' = o, de 4- /̂rt'7 = o ,

^c^ == o, de' 4- ^//F — o.

On aurait les mêmes résultats en différentiant les équa-
tions (3)«

Posons

db" _ de' _ de __ da" _ rfà' _ ^ _
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nous aurons
(5) u,=zqzf — ryn *>f=zrx,—pzf, W/=prf^qxr

Ces quantités p, q^ r détermineront le déplacement
après le temps dt des axes Oxn Oyn Ozn liés au corps,
car leurs directions nouvelles après le temps dt que nous
désignons par O x \ O j ' , Oz\ font avec celles qu'ils ont
au bout du temps £, et qu'on vient de prendre pour axes
fixes, les angles qui ont pour cosinus a -f- da, b-\-db, etc.}
en faisant

a = c, dû = o ,

c'est-à-dire qu'on a

cos-r, Ox' =

= of db z= — rdty etc. t

(6)

= r,

cos xt O y' =db = rdt,
cos xt0z' =dc=: — qdt,
cos 7, Oi' = É(fl' = — rdt y

cosjr, 0 / = = i,
cos j , Ozr = de' = —pdty
cos zf0xf = da" •=. — qdt,
cos zf

cos z, O z' =

= db" — — /

Si Ton reprend des axes fixes quelconques 0 # , Oy, Oz,
les lignes Oxf et O j ' feront avec eux des angles ayant
pour cosinus a, a', au et b-\-db, V-\-db', V1 r\-dbP;
on aura

ou rdt=

ou
(7) rdt=z adb -h «' rf6; -h a" <#",

et aussi

rdt=2 — cosytOxt=z — b(a->rda)-- b'(a'+da')—b"(a"-hda")r

ou

(7) rdt = — bda— b'da'— b" da".
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On aura de même les expressions générales de pdt
et qdl pour des axes fixes quelconques $ et l'on en déduira

les relations -=- =aq—bp, etc.,pda-t-qdb-\-rdc=zo,etc.,

qui se trouvent dans la Mécanique de Poisson, tome H,
page i35$ seconde édition.

Les points du corps dont la vitesse est nulle à l'épo-
que t, se trouvent sur une droite 01 représentée par les
équations

OU

p q r

Cette droite passe par le point fixe et fait avec les
axes des angles dont les cosinus sont

P 9 r

Slp* -4- q7 -h r* \/p7 + q1 + r2 \fp* -+- q2 -+- r2

Le corps tourne donc autour de cette droite pendant le
temps infiniment petit cit. Mais la position de cet axe
peut changer d'un instant à un autre -, c'est pourquoi on
l'appelle Y axe instantané de rotation. Les lieux des axes
instantanés successifs dans le corps et dans l'espace sont
deux surfaces coniques ayant pour sommet le point fixe O;
elles 5e touchent à l'époque t suivant la droite qui est
l'axe instantané actuel, et après le temps dt suivant une
autre droite infiniment voisine qui a décrit un angle infi-
niment petit du second ordre, pour devenir le nouvel axe
instantané. De sorte que le mouvement du corps n'est
autre que celui du premier cône attaché au corps rou-
lant, sans glisser sur la surface de-l'autre cône fixe dans
l'espace.

La vitesse angulaire de rotation autour de Taxe instan-
tané est égale à sjp* -f- q1 H- rf que je désignerai par «.
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En effet, la vitesse u d'un point quelconque m est

= v V •+• q*
= y/» 2 .0 m1— ( 6>. O m- — cos 10 m )2 = »• Ont. sin 10 m = pw,

p étant la perpendiculaire abaissée du point m sur l'axe
01 *, ainsi &> est la vitesse angulaire.

On peut aussi l'obtenir, en cherchant la vitesse d'un
point particulier, et la divisant par la distance de ce point à
Taxe instantané. Si l'on choisit le point situé sur Taxe O zn

à une distance de l'origine égale à l'unité, on a

et

d?où résulte

la distance de ce point à Taxe est

sin 10 z, ou y1 — cos21®z
f

- / .

En divisant v par cette distance, on a bien la vitesse angu-

laire égale à sjp% -f- <y2 -h r* ou a>.
On vérifie que la direction de la vitesse v est perpendi-

culaire au plan m01 , en observant que les formules (5)
donnent les relations

t

Prenons les moments par rapport aux axes Oxn Oyn

0-2,, de la quantité de mouvement m\> du point m, comme
si c'était une force (qu'on remplacerait, dans la théorie
des couples, par une force égale et parallèle appliquée à
l'origine et un couple).
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Le moment de mvy par rapport O xf, est m {wfy,
ou

La somme des moments de tous les points du corps par
rapport à l'axe O xf est donc

Cette somme se réduit à Ap, en supposant que les axes
O.r7, Oyn Ozf soient les axes d'inertie principaux du
corps pour le point O, et désignant par A la somme

Ainsi, en nommant A, B, C les trois moments d'inertie
principaux du corps par le point O *, A p, B q, C r sont les
sommes des moments des quantités de mouvement des
points du corps par rapport aux axes principaux Ox,, Oyp

Ozf. ( Dans la théorie des couples, ces moments sont ceux

de trois couples agissant dans les trois plans coordonnés
X/5 OY/, Ils donnent un couple résultant dont le mo-
ment G = s/A*p* -t- B2 </2 -f- C2 /'2 5 la perpendiculaire à
son plan fait avec les axes O.r,, Oyn Ozf des angles qui

An B<7 O __ ,. .
ont pour cosinus ~- » -JTI -TT* M. Foinsot a remarque

que ce plan est le plan diamétral conjugué au diamètre de
l'ellipsoïde central AX2 -f- BY2 H- CZ2 = i, qui est dirigé
suivant Taxe instantané, pour lequel les cosinus sont

Si Ton prend des axes fixes quelconques, on aura la
somme des moments des quantités de mouvement par rap-
port à l'axe Ox d'après les lois connues de la composition
des moments ou des couples, en multipliant les moments



Ap, Bq, Qr relatifs aux axes Oxn Oyn Ozn par les
cosinus a, b, c des angles que OX fait avec ces axes,
et ajoutant, c'est-à-dire que

(8)

§ ~ zJr)= z A p a

dt dt

Équations du mouvement. Supposons maintenant que
des forces motrices données agissent sur le corps solide.
Désignons par X, Y, Z les composantes parallèles à des
axes fixes de la force appliquée à la molécule m qui a pour
coordonnées or, y , z. D'après le principe de d'Aleinbert,

les forces perdues f X — m — > etc. J doivent se faire

équilibre autour du point fixe O : il faut et il suffit pour
cela que la somme de leurs moments, par rapport à chacun
des axes fixes, soit égale à zéro, ce qui donne les trois
équations

en désignant par L, M, N les sommes de moments des
forces motrices par rapport aux axes fixes,

La première équation peut s'écrire ainsi :

(9)
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Mais on a trouvé plus haut, équation (8 ),

dz dy\
J~~z) =:

Donc on a

ou

* dP *
dt

d
dt'

h
dJL.

(Apa +

dr
hCcdi'

Bgb

i A r

T" AJJ
da

dt V

L,

db
dt

de
r ~- = L.

dt

Faisons coïncider les axes fixes avec les axes principaux
du corps Oxn Ojn O zn pris dans la position qu'ils occu-
pent au bout du temps t. Nous aurons alors

da db de
«=,, 6 = 0, c=o, £- = 0, ^r=-r, Jf=V

En même temps il faut remplacer L ou ^V ml^Ly — Yz)

par la somme des moments des forces données

par rapport à l'axe O xn que nous désignerons par L r

L'équation précédente devient

(,o) A + {C

Les deux autres équations (9) donnent, de même,

B ~ + (A

Ce sont les formules d'Euler 5 L;, M,, N, désignant les mo-
ments des forces motrices par rapport aux axes principaux,
du corps à l'époque t.



On les obtient encore de la manière suivante :
D'après les lois de la composition des moments ou des

couples, analogue à celle des forces, la somme kp des
moments des quantités de mouvement par rapport à
Taxe O xf est égale à la somme des moments par rapport
aux axes fixes multipliés par les cosinus a, a\ o!\ des an-
gles que Oxf fait avec ces axes fixes. Ainsi, Ton a

^ / dz dy\ / V , / dx dz^
Ap z= a y m r — — z-f- -+- a > m\z- x-

r *mà y dt dt J *wd \ dt i

' dt dt /

et , en di flerèn ti an t,

. dp ^ / d*z d*y\ , Ŵ  / d2x d-z
A -7- = a y m [y —, z —~-r- ) -h a y m [ z —•- x

dt Âd y dt* dt7 did \ dt1 • dt*

dt J dt

ou, d

dt

après les équations (9) ,
da

+ d7
<h\

'Jtl

T > m (y
dt *** \

dz dy\
dt ^ dt J

dy dx
dt dU"' \Xdt~~ydt

Si Ton fait coïncider les axes fixes avec les axes O xn Ojn

O zn au bout du temps t, cette équation deviendra

ou

A — \r (C — B) . (JT ^^ \J. ,
dt

Car, dans cette coïncidence, on a
_ , _ ;/ __ da _ da! _ db" _

dt dt dt
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L devient hn et les sommes des moments

dz dy\
dt dt ) '

deviennent celles qui se rapportent aux axes Ojn Ojn

Ozn c'est-à-dire Ap, B<jr, Cr.
On arrive ainsi aux équations d'Euler sans avoir be-

soin de calculer les forces accélératrices d'un point quel-
conque parallèles à des axes fixes, ou aux axes principaux
du corps, ni les forces centrifuges de M. Poinsot. Au
surplus, on peut encore trouver les expressions de ces
forces d'une manière assez simple.

Les projections de la vÈlesse v sur les axes Oxn Oj^?.
Ozf étant données par les formules (5 ), sa projection snt
l'un des axes fixes O ^ est

dx

dt f ' ' ' '

De là résulte
d'-x f dq dr\ . / dr dp

= a ( z — — y, — ) -h b .r, z, —
dt2 \ ' dt dt) \ ' dt ' dt

dp dq\ . . .da . sdb
r tiii"t ia -y* — « 1 / > - » • » w\z* \ t { y<v% nv i _

Si Ton prend encore pour axes fixes les axes Oxn Ojn
d2x

Ozf dans la position où ils se trouvent à l'époque £, —-

deviendra la composante pf de la force accélératrice du

point m parallèle à l'axe Oxn et Ton aura (en faisant

da db de
- = o, - = r, -

dq dr
r = h -£ — X, JX, Jt -H (PXt — 9*,)i ~ {™, — Pz,)



OU

Pl ~Z'~dt~~y' J t ~ ~ > ( )

On connaît donc les composantes pn qn rf de la
force accélératrice du point m parallèles aux axes Oxn

Ojr,,Ozr

Les forces perdues X,— mp,<) Y,— mÇfi Z, — mrf

doivent se faire équilibre autour du point fixe 0$ en
égalant leurs moments à zéro, on aura

Substituant les valeurs de pf$ qn rf et réduisant, on re-
trouvera les équations d'Euler.

A ces équations, qui expriment comment varient la
vitesse de rotation et la position de l'axe instantané par
rapport aux axes principaux du corps, il faut joindre les
formules (3), ou plutôt trois relations équivalentes entre
p, q, / et les variations des angles désignés par ^ , 0, <p
de la Mécanique de Poisson, angles qui définissent la
position des axes principaux du corps solide par rapport
à un système d'axes fixes O.r, Oj^, Oz.

On obtient immédiatement les formules de la page i34,

pdtzzz sin cp sin 0 d$ H- cos <p dO, etc.,

( * ) Si du point m on abaisse mi perpendiculaire sur l'axe instantané,
on voit que la partie — [p* -+- <j* -h ra)x t -*-p (px, -+-<\yt -h rzt) représente
la projection sur l'axe Oxt d'une force dirigée suivant cette perpendicu-
laire mi et qui a pour valeur «*.wt. Car, en projetant le triangle Omi sur
Oxn on a

wicos(mz, Oar,) = Oicos(Oi,*Ox,) — Omcos(Om, Ox,)

d'où

wâ. mi. cos (mi, Oxt) =zp (pxt-+-qy, -H rzt) —
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à l'aide du théorème sur la composition des rotations in-
finiment petites, en vertu duquel, si l'on prend sur Taxe
de chaque rotation (dans un certain sens) une longueur
qui représente la grandeur de cette rotation, la somme
des projections sur une droite quelconque de plusieurs
rotations est égale à la projection de la rotation résul-
tante. Il en résulte que la rotation o> dt du corps autour
de l'axe instantané équivaut aux trois rotations succes-
sives pdt, qdt, rdt autour des axes Oxn Ojn Ozf et
aussi aux trois rotations successives du corps autour des
lignes Oz, ON et Ozf indiquées par les différentielles dip,
dB et d(f. En outre, pdt, projection sur la ligne Oxf<Le
la rotation effective (ùdt, ëgtëgale à la somme des projec- -,
tions sur Ox f des trois rotations correspondantes à dty,
dB et d(f, c'est-à-dire qu'on a

pdt = dtycoszOxf-+- d9 cos^Oxf-+- dy C0$zf0xn

ou
dB . dû

p = cos cp — -f- sm 9 sin f —f- •
^ i à , . d^ d9

Un trouve de même q et /•, et, réciproquement, — i —

et -— en fonction de p, q, r.

On trouve aussi les mêmes formules en différentiant
simplement les équations

r a"
tang ̂  = p cos 0 ~ <?", tang <p = ~ ;

puis, remplaçant de, dc\ etc., par les valeurs qui se

trouvent à la page i35^ et qu'on obtient aussi en compa-

rant les expressions (4) et (n ) de — 5 etc.

On peut abréger de la même manière les calculs par
lesquels M. Coriolis a établi son théorème sur le mouve-
ment relatif d'un point ou d'un système de points par
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rapport à des axes qui ont uu mouvement donné dans
l'espace [Calcul (le Veffet des Machines9 pages 4<> et
suivantes). Pour le cas d'un système, il faut prendre la
formule générale de dynamique

d*x . cl3 Y . d* z % \
dt* dt7 J dt2 ]

, ou

substituer les valeurs de - j-p — Y , — - , cîj?, dy, ^

qui résultent des formules

a? = Ç 4- «#, H- £r, •+ rz,,

* = Ç H- a" J?,+ 6"jr,+ c"a,,

où Ç , «, i , c, x ; , etc., sont variables avec £, et prendre
ensuite les axes fixes O.r, O j , Oz parallèles aux axes
mobiles O.T,, Oyn Oz, considérés dans la position qu'ils
occupent au bout du temps t, ce qui donne

a = i , ô = o, r z= o-, etc.,

Les liaisons du système étant exprimées par des équations

entre /, xnyn zn etc., on arrive, par la méthode de La-
grange , à des équations telles que

d'ixf / dzt 4Xt\ ,dlj dM

X, étant la composante parallèle a Oxf de la force mo-
trice appliquée au point m, et X, celle de sa force d'en-
traînement.
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NOTICE HISTORIQUE SUR LE CALCUL DES VARIATIONS;

TRADUIT DE L'ALLEMAND DE M. STRAUCH (**).

I. Quelques problèmes de Géométrie et de Mécanique
ont donné naissance au calcul des variations , branche la
plus élevée de l'Analyse. Nous rencontrons encore ici
une marche particulière à l'esprit humain qui va du
difficile au facile, du compliqué au simple, tandis qu'on
devrait s'attendre à une marche opposée. Que de disser-
tations et de Mémoires ont dû être composés avant de
débarrasser Vidée simple de ses accessoires, avant d'éta-
blir avec clarté le point essentiel du sujet !

Le premier problème de, ce genre a été résolu par
Newton lorsqu'il détermina la forme de la surface de ré-
volution [qui éprouve la moindre résistance en se mou-
vant dans un fluide, suivant la-direction de son axe.

C'est en 1687 qu'il a publié le résultat sans faire con-
naître son procédé (Principia Philos, naturalis mathe-
matica, sect. II, prop. 35, scol., édition de 1687 ; c'est
la prop. 34 dans les éditions postérieures).

Le second problème est celui de la brachistochrone.
Déjà Galilée s'est proposé ce dernier problème et trouva

erronément que la courbe était le cercte \Liher de motu
et mech., dial. II, prop. 34, scol., page 209).

( *) Extrait d'un Traité complet sur le calcul des variation*, publié, en
2 volumes in-8°, à Zurich, en 1849; u n troisième volume, consacré aux
intégrales doubles, est sous presse j ouvrage important sur lequel nous
reviendrons, pour montrer qu'on a été doublement injuste envers ce
calcul, en en exagérant la difficulté et atténuant l'utilité.

Ann. de Mathémat., l. X. (Novembre I85I.) 28
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Mais en i6c;3, Jean Bernonlli résolut exactement le pro-

blème de la brachistochrone, et découvrit que c'était une
cycloïde, et, en 1696, il fit paraître, à ce sujet, une pro-
vocation adressée aux géomètres. Cette invitation porte :

Problema noyum ad cnjus solutionem mathematici
invitantur.

« Datis in piano verticali duobuspunctis AeîB, as-
» signari mobili M viam AMB. per quant gravitate sua
» descendens, et moveri incipiens a puncto A, brevis-
» simo tempore perveniat ad altenim punctum B. »
(Acta Eruditorum Lipsiensia* 1696, page 269.)

Leibnitz, Newton, Jacques Bernoulli, le marquis de
l'Hôpital fournirent des solutions. Newton donna encore
ici le résultat sans le procédé (Philosophical Transac-
tions de 1697 , n° 224, page 384). De même, le marquis
de l'Hôpital. Ces divers travaux furent réunis par Leib-
nitz qui les publia en 1697 [Act. Erud, Lips., 1697,
mai). La solution de Jean Bernoulli parut aussi en 1697
(Act. Erud. Lips., 1697, ma*5 P* 2°6)«

Ce problème peut être considéré comme le commence-
ment de cette longue suite de travaux qui ont pour objet
les maximums et minimums des intégrales (*).

Ensuite on joignit à la condition des valeurs extrêmes
encore cette autre condition, savoir, que la courbe cher-
chée ait une longueur donnée.

Jacques Bernoulli est le premier qui proposa publique-
ment de tels problèmes. Jean Bernoulli adressa un pa-
quet cacheté à l'Académie royale des Sciences, avec la
condition de n'ouvrir le paquet que lorsque son frère
Jacques aurait fait connaître sa solution [Journal des
Savants, février 1701).

Jacques publia sa solution la même année sous ce titre :

(.*) Nous donnerons, d'après M. Strauch, une Notice particulière sur ce
problème.
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Analysis magniproblematis isoperimelrici; Basle, i 701 •
Cette solution, fondée sur un principe vrai, est exacte.

Celle de Jean ne fut insérée qu1en 1706 dans les Mé-
moires de VAcadémie des Sciences. La solution est fau-
tive; c'est ce que Fauteur finit par reconnaître lui-même.
11 donna une nouvelle solution dans les Mémoires de 1 7 18
de la même Académie. Le principe est le même que celui
de son frère, mais avec des simplifications. Il en est de
même de la solution que Taylor a donnée dans son ou-
vrage : Methodus incremeittorum directa et inversa;
Lond., 1715.

L'égalité des périmètres fit donner à ce genre de ques-
tions le nom de questions isopèrimètriques, et la recherche
d'une méthode pour les résoudre fut connue sous le nom
de problème isopérimétrique.

Les questions où il s'agit de trouver des courbes satis-
faisant à certaines conditions de maximum ou de mini-
mum s'étant multipliées considérablement, il en résulta
qu'on prit ces deux dénominations dans un sens plus gé-
néral, plus étendu que ne comportent leurs significations
H té raies. On comprit sous le nom de questions isopèri-
métriques toutes celles où il faut déterminer des courbes
jouissant de certaines propriétés de maximis et minimis,
n'importe le nombre et l'espèce des conditions acces-

soires.
Les solutions s'accordaient bien dans les principes-,

mais il n'y avait pas de méthode générale. Euler entre-
prit cette recherche, et la poursuivit sans relâche.

Un premier Mémoire sur ce sujet parut en 1789
(Comm. Petrap., tome VI, 1739 : Problematis isoperi-
metrici in latissimo sensu accepti solutio generalis). Les
divers problèmes sont partagés en classes :

Première classe. Trouver toutes les courbes où une
certaine propriété A acquière une valeur extrême.

28.
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Deuxième classe. Parmi toutes les courbes delà première
classe, trouver celles qui jouissent de la propriété B.

Troisième classe. Parmi toutes les courbes de la
deuxième classe, trouver celles qui jouissent de la pro-
priété C#, et ainsi de suite.

Ce Mémoire avait besoin de perfectionnements et de
développements.

Le second Mémoire parut en 174» (Cornm. Petrap.,
tome VIII, 1741 : Curvarum maximi minimise proprie-
tate gaudentium inventio nova et facilis). Il contenait
des parties défectueuses et peu claires.

En 1744? -il publia un ouvrage étendu sous ce titre :
Methodus inveniendi lineas cmvas maximi minimise

proprietate gaudentes, seu solutio problematis isoperime-
trici in latissiino sensu accepti. Lausanne et Genevœ,
in-4°, 1744.

Tous les problèmes y sont partagés en deux classes. La
première renferme les recherches de maximums et de mi-
nimums absolus. Dans la seconde classe, il s'agit des
maximums et minimums relatifs. Aux problèmes connus,
Euler en ajoute une foule d'autres qui enrichissent son
œuvre d'une manière brillante. Les règles énoncées sont
parfaites, en ce sens qu'elles sont générales et conduisent
toujours au résultat vrai. Une règle de grande valeur est
surtout celle par laquelle les questions de la seconde
classe sont ramenées à celles de la première classe-, mais
toutes ces règles sont fondées sur des considérations géo-
métriques, et l'on ne saurait trop admirer la perspicacité et
l'adresse avec laquelle l'illustre géomètre surmonte toutes
les difficultés. Toutefois la science pouvait prétendre à
une méthode plus parfaite. C'est ce qu'Euler non-seule-
ment sentait, mais ce qu'il a exprimé explicitement ainsi :
Une méthode débarrassée de toute considération géo-
métrique est encore à désirer, qui puisse expliquer pour-



quoi dans ce genre de questions il faut remplacer Pdp
par —pdT? (Methodus inveniendi, etc. Au bas de la
page 56 on lit : Dcsideratur itaque, etc.).

Cette méthode analytique si désirée fut découverte par
Lagrange. Il en fit part dès 1755 à Euler qui avait si bien
mérité du sujet (Miscellanea Taurinensia, tome IV,
années 1766-69, 2e partie, page i63).

Euler apprécia de suite la haute importance de la nou-
velle invention, et le jugement qu'il en porta est consigné
dans une lettre en date du 2 octobre 1759, adressée à
Lagrange et où on lit : La solution analytique du problème
is opériin étriqué ne laisse plus rien à désirer, et je me ré-
jouis que cet objet, dont je me suis occupé si longtemps
presque seul, ait été porté par vous au plus haut degré
de perfection. L'importance du sujet ma engagé, à
l'aide de vos éclaircissements, de rédiger aussi une so-
lution analytique du problème ; mais je ne ferai rien
paraître jusqu'à ce que vous ayez fait imprimer vos re-
cherches, afin de ne pas vous dérober la moindre par-
celle de la gloire qui vous appartient (*) (voir la même
page des Miscellanea Taurinensia citée ci-dessus).

La nouvelle invention ne fut rendue publique qu'en
1761 ( Miscellanea Taurinensia, tome II, 1760 -1761,
2e partie, page 173 : Essai d'une nouvelle méthode
pour déterminer les maxima et les minima des formules
intégrales indéfinies ). Cette invention consiste en ceci :
Lagrange soumet une expression composée de variables
et de différentielles à une nouvelle différent!ation qu'il
désigne non par la lettre usitée d, mais par la lettre cî;
et, quand celte lettre à se trouve avant le signe d
ou / , il le place derrière ces signes. Ensuite, il opère au-

(*) Excellente leçon de morale, de probité scientifique; exemple peu
contagieux. TM.
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tant d'intégrations partielles jusqu'à ce qu'on ne ren-
contre plus sous le signe f aucune variable affectée à la
fois des deux lettres à et d.

Les avantages de ce procédé sont :
i°. D'être simple et général, c'est-à-dire qu'il peut

s'étendre à un nombre quelconque de variables; de sorte
que la recherche des courbes à double courbure et des
surfaces devient aussi facile qu'auparavant, celle des
courbes planes.

\ a°. On obtient non-seulement les équations princi-
pales, mais les équations aux limites $ ce n'est que d'alors
qu'il fut possible de poser des équations de condition et
de les introduire dans le calcul.

Nonobstant ces avantages, on ne peut se dissimuler
que dans ce premier Mémoire de Lagrange le manque
d'un fondement scientifique se fait encore sentir, car il
est loisible de demander :

i°. Quelle différence existe entre la nouvelle différen-
tiation 3 et l'ancienne d?

20. Est-on autorisé ou obligé d'écrire dd, fà au lieu de

3°. La valeur de la différentiation pour 3 n'est pas
changée par les intégrations partielles ultérieures, pour-
quoi faut-il pourtant faire ces intégrations?

Alors Euler se permit de publier aussi ses travaux
analytiques 5 il fit paraître deux Mémoires en 1766. Le
premier porte le titre: Elementa calculi variationum,
et le second : jinalytica explicatio methodi maximorum
et minimorum ; les deux Mémoires se trouvent dans les
Novi Comm. Acad. Petrop., tome X; 1766. Ici, Euler
s'applique à établir des principes à l'aide desquels on
puisse donner des fondements solides à la méthode de
Lagrange, à laquelle il donne le nom de calcul des varia-
tions, qui est resté. À la fin du second Mémoire, il donne



pour la première fois l'équation connue sous le nom d'e-
quation de condition d'intégrabilité.

Quoique Euler reconnût les droits de Lagrange, Fil-
lustre inventeur eut pourtant des désagréables prétentions
à repousser. Dès 1734? Fontaine avait appliqué une mé-
thode nouvelle et qui lui est particulière pour résoudre le
problème de la ligne tautochrone (Mémoires de VAca-
démie royale des Sciences, 1734). En 1767, il prétendit
que cette méthode s'appliquait à toutes les question» «jfe:,
maximis et de minimisa mais qu'on n'en avait pas fiat.-V-
usage. A cet effet, il publia un Mémoire, pour soutenir
cette assertion (Mémoires de l'Académie, 1767). Là, il
accuse Lagrange de s'être égaré dans la nouvelle route
que ce dernier avait choisie, parce qu'il n'avait pas assei
approfondi la théorie, etc. 5 il propose en même temps
deux méthodes qu'il donne pour nouvelles et meilleures
que toutes celles que l'on a publiées sur cet objet. La-
grange répondit ainsi, en 1770 : Pour ma justification, je
crois n'avoir rien de mieux à faire que d'engager les con-
naisseurs à lire le Mémoire de M. Fontaine. On verra
que l'une de ces méthodes est celle qu Euler a publiée
dans son ouvrage de iy44? et Çue ^a seconde n'est autre>
pour le fond, que la mienne et n'en diffère que par une
exposition moins bonne (Miscell. Taurin , t. IV, an-
nées 1766-1769 ; 2e partie, p. 164 ; ce volume, malgré cette
date, renferme pourtant la justification de Lagrange,
écrite le 28 mai 1770, comme on peut voir à la page 187}
on y trouve même un Mémoire de .'771* p. 25o).

A cette occasion, nous devons mentionner une seconde
circonstance où Lagrange croyait qu'on voulait lui dis-
puter l'honneur de l'invention. Les deux géomètres Jac-
quier et Leseur avaient publié, à Parme, un Traité du
Calcul intégral; un chapitre entier du second volume est
consacré à la nouvelle méthode, sans en nommer l'au-
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teur; Lagrange dit à cela : Je ne me serais pas plaint,
s'ils s'étaient contentés d'accepter ma méthode, sans en
nommer l'inventeur; c'est un procédé dont ils se sont
rendus coupables en d'autres endroits; mais comme ils
citent le Mémoire d?Euler, il paraîtrait qu'ils veulent lui
attribuer la méthode, tandis que fen suis le premier
inventeur (Miscell. Taurin., t. IV, p. i65).

Le célèbre Borda écrivit aussi un Mémoire dans lequel
irche à montrer que les équations aux limites, obte-
par la méthode de Lagrange, n'ont pas une entière

certitude (Académie royale des Sciences, 1767 et 1768).
A cet effet, il résout le problème delà brachistochrone dont
Lagrange s'est occupé dans son premier Mémoire. Borda
parvient à un résultat exact et qui ne s'aceorde pas avec
celui de Lagrange. Toutefois, ce fait ne prouve rien contre
les équations aux limites. La raison en est que Lagrange
est parti d'une formule qui n'est pas assez générale; car

y- (Miscell. Tau-
sjœ

rin., t. II, p. 176); x sont les coordonnées parallèles à
la direction de la pesanteur. Cette formule ne s'adapte
qu'au cas où le mouvement commence avec x= o, et ne
convient pas aux cas où le mouvement commence à un
autre endroit. Depuis, Lagrange a amélioré sa formule
(Miscell. Taurin., t. IV, p. i83) et l'a arrangée de ma-
nière que le mouvement peut commencer à un point quel-
conque de la brachistochrone. Dès lors Lagrauge pouvait
montrer que sous certains rapports ses premiers résultats
(MiscelL Taurin., t. H, p. 179 et J8O) étaient exacts,
et sous d'autres rapports Borda avait aussi raison. La
certitude des équations aux limites fut ainsi établie d'une
manière brillante.

En 1770, Euler publia un nouveau Mémoire sur le



calcul des variations, et qu'il a ajouté au troisième vo-
lume de son Traité de Calcul intégral (*); là, tout ce
qui précède est surpassé. Jusqu'ici on n'avait mis le calcul
des variations en relation qu'avec des questions fie maxi-
mis et de minimis. L'auteur se débarrasse de cette idée
étroite et annonce (§ n5) que ce calcul pouvait être
rendu plus général, et qxie les problèmes se divisent
en deux classes. Dans la première classe sont les pro-
blèmes où la relation entre y et x est considérée comn*eij
étant donnée, et Ton cherche la variation de l'intégrale ,j
f\dx, en attribuant à x et à y des variations quelcon-
ques ; dans la seconde classe, on cherche une relation
entre x et y telle qu'elle donne une certaine propriété à
l'intégrale f Vr/x; par exemple que, devenant un maxi-
mum ou un minimum, la première variation ôfVdx
s'annule.

Euler s'appliqua désormais non-seulement à consolider
les principes du calcul des variations, mais aussi à rendre
plus intime la connexion de ce calcul avec les autres bran-
ches de l'Analyse. En 1772, parut un autre Mémoire:
Methodus nova et facilis calculum variationurn trac-
tandi (Novi Comtn. Petrop., t. XVI, 1772); jusqu'ici
on n'avait appliqué la méthode qu'à des expressions inté-
grales. Dans ce Mémoire, Fauteur se débarrasse de cette
restriction, et réunit en trois catégories toutes les expres-
sions qu'on peut soumettre à des variations ; à la première
appartiennent les expressions qui ne renferment que des

(*) Instituliones calculi integralis, 3 T., Petrop.; 1768-70. Le professeur
Salomon en a publié une belle traduction allemande en 4 volumes in-8° ;
Vienne, i8^8-3o; le quatrième volume contient de nouveaux Mémoires
d'Euler qui ne sont pas dans l'original latin. Une traduction française
serait encore aujourd'hui d'une immense utilité. C'est au Ministre de
l'Instruction publique à faire ouvrir cette riche mine d'enseignements.
Cela viendra l'an 2^4° quand on s'occupera des choses et non uniquement
des personnes, quand la science sera séparée de la politique.
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formes fonctionnelles; à la seconde, les expressions où
l'on rencontre aussi des différentielles; et à la troisième,
les expressions où il y a aussi des intégrales;

Au § 4 5 il reproduit le principe sur lequel il avait
établi jusqu'ici le calcul des variations, et qui consiste à
distinguer deux sortes de changements dans y : l'un dé-
signé par dy provient de ce que x devient x -f- dx ;
l'autre désigné par ày est entièrement arbitraire et ne dé-
pend pas de x. Ainsi considéré, le calcul des variations
semblait constituer un genre particulier de calcul ; mais
en scrutant plus exactement l'essence de ce calcul, Euler
découvrit qu'on pouvait le ramener entièrement à la
théorie des différentielles partielles. Au lieu de conserver
le changement appelé variation, il remplace l'équation
y=z(f(x)) d'abord par celle-ci y-hAjr = (p (x)-\rtty(x)
où t est un infiniment petit; puis, passant à une forme

"plus générale, il considère y non plus comme une fonc-
tion de x seulement, mais comme une fonction de deux
variables x et t, t étant une variable nouvellement intro-
duite. C'est ce qu'il explique de cette manière : Soit
y z= <p (j?) l'équation d'une ligne; y = <j> (x, t) repré-
sentera toutes les lignes infiniment voisines si (f {x, t) est
telle , qu'en faisant t = o, (p (x, t) revient à <j> (x), et la

formule —ï~—-—- dt remplace ce qui avait été désigné

par ày.
Certes, l'introduction d'une nouvelle variable adonné

au calcul des variations sa base véritable. Toutefois, je
fais voir (§61) que ce moyen n'est pas à l'abri de quel-
ques objections, et j'indique (§ 53) un autre procédé.

Dans aucun de ses Mémoires, Euler ne s'est occupé des
variations du second ordre, nécessaires pour savoir s'il y
a maximum ou minimum, ou si aucun des deux n'a lieu.
Les premières recherches de ce genre ont été publiées par
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Laplace, en 1772 (^NovaActa eruditorunij 1772, p. 193)*
Ensuite Legendre s'est occupé du même objet, dans un
Mémoire de 1786 et dans un second Mémoire de 1787
[Académie des Sciences, 1786, p. 7, et 1787, p. 348) ;
mais dans ces trois Mémoires il n'est question que des cas
où y est fonction de la seule variable x.

Lagrange s'efforça aussi de consolider et d'étendre sa
méthode. C'est ce qu'il fait dans sa Théorie des fonctions
analytiques dont la première édition est de 1797, et la se-
conde de I 8 I 3 . On y trouve bien des recherches sur les
variations du second ordre, mais aussi pour les cas où l'on
ne cherche qu'une seule fonction y d'une seule variable x
(seconde partie, chap. XII, nos 64-70; 2e édition) 5 et la
méthode ne s'étend ni aux cas où y et z sont des fonctions
de x, ou bien z fonction des deux variables x, y\ une
seule question est pourtant traitée, où paraissent y et z ,
fonctions de x (seconde partie, chap. XII, n° 785 ie édi-
tion); mais cette question est spéciale, et l'on ne donne
pas de règles pour le cas général. Dans cet ouvrage, on
trouve pour la première fois un problème où il s'agit de
rendre maximum et minimum une expression qui ren-
ferme des différentielles, mais pas d'intégrales (seconde
partie, chap. XI, nos 59 et 60; ie édition) ; mais on ne
donne que de faibles indications sur la théorie nécessaire
pour résoudre de tels problèmes.

En 1806, dans la ie édition des Leçons sur le calcul
des fonctions* Lagrange a considérablement perfectionné
sa méthode, et l'a enrichie de beaucoup de problèmes inté-
ressants (*). Imitant Euler, il remplace la fonction xp (x)
par celle-ci, <p (x, t), telle qu'en faisant t = o, <p (x, t)
revienne k-(f (x) ; ensuite il développe (f> (x, t), par le

( * ) La 1re édition forme le 12e cahier du Journal de l'École Polytech-
nique, 1804. L a 2* édition, qui a paru chez Courcier en 1806, est tellement
augmentée, qu'on ne peut plus citer la ipe édition.
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théorème de Maclaurin, en cette série,

Cette marche, la même que celle d'Euler, est sujette aux
mêmes objections. Ainsi tout le calcul des variations
étant fondé sur le théorème de Maclaurin, il possède tous
les avantages attachés à ce théorème.

Jetant un regard sur ce qui précède, nous voyons :
i°. Qu'Euler, par la méthode géométrique, porta si

loin le problème isopérimétrique, que la science devait
nécessairement découvrir une méthode analytique $

2°. Que Lagrange fit cette découverte;
3°. Qu'Euler s'est efforcé de consolider et de développer

la méthode de Lagrange, et qu'il a considérablement per-
fectionné cette méthode, surtout en introduisant une nou-
velle variable ;

4°. Que Lagrange a reconnu que cette idée était la
plus convenable au sujet et Ta adoptée comme base de sa
méthode.

Outre Laplace et Legendre, auxquels, comme nous
avons dit, le calcul des variations doit de précieuses
acquisitions, d'autres géomètres ont cru devoir s'occuper
de ce calcul \ la plupart, sans faire avancer la science, se
sont contentés de réunir, selon leurs propres vues, les
propositions connues. 11 serait superflu de donner une
Notice détaillée de ces écrivains. 11 nous suffit de dire que
quelques-uns se sont tenus strictement à la forme gêné-
raie qu'Euler a donnée pour base, savoir : de représenter
la "variation immédiate par une série infinie.

Parmi ceux-ci, on remarque Lacroix, qui a recueilli
dans son ouvrage, et a exposé clairement et dans un bel
ordre, tout ce qui a été fait ( Traité du calcul différentiel
et intégral, 2e édition, t. II, i8i4? P- 724> 744? 751).

D'aulres ont adopté une forme qu'Euler a déjà déclarée
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trop spéciale, savoir : Informe finie y (.r) -J- t$ (x) (*) ^
croyant ainsi donner au procédé de l'élégance et le rendre
simple, ils Font entaché de grands défauts. En effet, pour
qu'une fonction <p (x) puisse se changer dans la fonction
arbitraire <p (x, £), le développement de <p(x, t) doit
être représenté par une série infinie, réellement ou au
moins idéalement existante. Si Ton prétend que la série
est finie, il faut que la fonction <p (.r, t) jouisse de cer-
taines propriétés qui permettent d'arrêter la série, et alors
la fonction cesse d'être entièrement arbitraire. En outre,
ce procédé conduit à beaucoup de contradictions, comme
nous verrons dans divers endroits de cet ouvrage.

Toutefois, M. le professeur Martin Ohm fit paraître
en i8a5, i83i, i833, 1839, quatre écrits qui méritent
d'être pris en considération. Le calcul s'est enrichi et
a pris de l'extension, ainsi que nous allons le faire voir.

Donnons d'abord les titres de ces ouvrages :
i°. Lehre des grôsten and kleinsten. Théorie du

maximum et du minimum ; Berlin, 1825.
20. System der mathematik. Système des mathémati-

ques, t. V; Berlin, I 8 3 I .
3°. Idem, t. VII; Berlin, i833.
4°. Lehrbuch der lïàhern mathematik', en 2 vol., t. II;

Berlin, i839 (••).
L'ouvrage de 1825 contient une théorie générale du

calcul des variations, très-complète et où plusieurs points

( * ) Nous n'en citerons que trois :
i°. GERGONNE, Annales des Mat., t. XIII; 1822.
2°. DIRKSEN, Analytische darslellung der variations rechnung (Exposition

analytique du calcul des variations); Berlin, 1823.
3°. POISSON, Mémoires de VAcadémie des Sciences, t. XÏI; i833, p. 231

et 243. Traité de Mécanique, 2e édition; i833, t. I , § 199, 202.
(**) On peut aussi citer les travaux de Jacobi (Liouville, toiae III);

de M. Cauchy {Exercices d'Analyse, tome III; 1844); de M. Delaunay
( Liouville, tome VI ), et le Mémoire couronné de M. Sarrus ( Savants étran-
gers, tome X; 1848). TM.



difficiles sont mieux traités (|i^|fôrdînàire. On y trouve
aussi une théorie très-développée du maximum et du mi-
nimum. L'auteur, d'après Euler, ramène toutes les ques-
tions à trois catégories. i° Les expressions purement fonc-
tionnelles. Les recherches sont assez complètes ; toutefois,
il y manque plusieurs cas que j'ai indiqués dans mon ou-
vrage, 1.1, § 162-179, et auxquels les questions 55-60
servent duplications. i° Les expressions où entrent aussi
des différentielles pour lesquelles Lagrange n'a donné que
de légères indications -, ici, ce cas est traité pour la première
fois et avec une étendue suffisante. 3° Les expressions qui
renferment aussi des intégrales. Beaucoup de ces recher-
ches se distinguent par la plénitude, et quelques-unes sont
manquantes; ainsi: i° on trouve ici pour la première
fois une recherche générale des variations du second
ordre, pour le cas d'une intégrale simple, à deux limites
constantes et pour deux fonctions y et z indépendantes
Tune de l'autre, et chacune fonction de x\ is.ai-s lorsque
•y et z sont liées par une relation (par une équation algé-
hrique ou différentielle) , la recherche est à peine indi-
quée, et, toutefois, une règle spéciale est nécessaire. De
même, ce qui concerne la variation du second ordre lors-
que les limites des intégrales sont variables est inexact,
i° Lors d'une intégrale double, on traite ici, pour la
première fois, le cas où la variable, suivant laquelle se
fait la première intégration est une fonction de la va-
riable suivant laquelle on fait la seconde intégration. On
montre comment il faut alors transformer la variation du
premier ordre \ mais cette transformation n'a rien de pra-
tique. Pour des intégrales doubles, les équations aux limites
présentent une infinité de cas à discuter, et nonobstant 011
ne mentionne que quelques cas particuliers -, ainsi sous
ce rapport il n'y a comme rien de fait. La variation du
second ordre manque en entier.

Dans les ouvrages de I 8 3 I et 1839, o n donne une



théorie du calcul de^^^p ibns , et, de plus, des s&-
ries élégantes, utiles,vjj^^lëritent de fixer l'attention.

Dans les deux ouvrages de i833 et 1839, o n trouve
aussi une théorie générale du maximum et du minimum;
c'est un extrait de l'ouvrage de i8a5, une sorte d'expo-
sition plus succincte.

Venons maintenant au point principal. Sur quelle base
l'auteur a-t-il fondé son calcul? Cette base offre quelque
chose de très-particulier. L'auteur pose de suite pour la
variation immédiate,

ou bien

sans dire le moins du monde où il a pris cette série, ni
d'où elle a pu se déduire. En effet :

Dans l'ouvrage de 1825, on lit : « Lorsqu'une expres-
sion y se développe par elle-même, indépendamment
d'une autre expression, en une série ascendante suivant
les puissances entières de 7r, alors on dit que l'expression
y est immédiatement variée selon TZ \ mais si une expres-
sion V ne peut se développer en une telle série que parce
qu'elle dépend d'une autre expression développée suivant
une telle série, on dit alors que V est variée médiate-
ment selon TT» Lorsque TT est infiniment petit, y% —y, ou
V-r — V sont les variations de y ou de V. >>

En représentant les variations immédiates par des sé-
ries infinies, M. Ohm n'a fait que revêtir son calcul de
la vraie forme. Mais on est en droit de demander : d'où
l'auteur déduit-il ces séries? Pourquoi n'a-t-il pas pris
une marche d'où ces séries ressortent nécessairement?
Pourquoi, sans dire le motif, a-t-il renoncé à la base
posée par Euler et adoptée par La grange, etc. ?

On a déjà dit que dans le Traité complet de 1825 , on



trouve très-peu de chose surl^^pil^i'ales doubles. C'est
ce qui a engagé Poisson a puMi|rt en i833, un Mémoire
spécial sur cet objet [Académie des Sciences, t. XII;
le Mémoire a été lu le 10 octobre i831 ). Pour le cas où
les limites de l'intégrale double sont variables, l'illustre
analyste croit devoir introduire un nouveau principe;
à la place des deux variables x , y, il met deux fonctions
de deux nouvelles variables u et t>, etc., et ramène fina-
lement les deux variables x et y. Par ce procédé, la recher-
che, pas déjà très-simple, a été rendue plus compliquée
et surchargée de difficultés superflues.

C'est la raison qui a porté M. Ostrogradsky à traiter le
même sujet dans un Mémoire publié en 1834 (Acad. de
Pêtersb.y 6e série, t. III5 et Journal de M. Crelle, t. XV,
4e cahier; i836). Il montre que l'introduction de deux
nouvelles variables n'est pas nécessaire et que le principe
fondamental du calcul des variations suffit pour réunir
toute généralité désirable et une extrême simplicité.

Toutefois, j'ai montré dans cet ouvrage (t. II, § j'àj
et 738), que les deux Mémoires, sous le rapport de la
théorie et de la pratique* ne répondent pas à ce que le
sujet exige. L'expression pour la variation du premier
ordre n'est pas pratique, et est même inachevée. La va •
riation du second ordre manque complètement dans les
deux dissertations. On n'y trouve pas un seul exemple
spécial propre à éclairer des recherches si difficiles dans
les détails, etc.

Cette courte esquisse présente l'état où est actuellement
la branche la plus élevée de l'Analyse; beaucoup a été fait
et il reste encore bien des choses à faire. Nous avons vu
aussi que, sous le rapport pratique, les ouvrages d'Euler et
de Lagrange sont ornés d'applications belles et intéressan-
tes ; et cependant nous verrons plus loin que c'est précisé-
ment pour les applications qu'il reste le plus à faire.
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QUESTIONS DE GÉOMÉTRIE DESCRIPTIVE PROPOSÉES Ali
CONCOURS D'ADMISSION A L'ÉCOLE POLYTECHNIQlIE,p 1 8 5 1 ,

Comme l'année dernière, nous avons recueilli les pro-
grammes des questions de géométrie descriptive qui ont
été proposées au concours d'admission à l'Ecole Poly-
technique, et nous les mettons sous les yeux de nos
lecteurs. Ainsi rapprochés, ils montrent la tendance de
l'École à faire disparaître graduellement des travaux gra-
phiques des candidats la méthode qui consiste à repro-
duire les épures gravées des auteurs, pour lui voir sub-
stituer celle des programmes écrits dans lesquels chaque
élève trouve des données numériques différentes.

Quinze programmes', relatifs à l'intersection de deux
surfaces de révolution, ont été envoyés dans les villes
d'examen. Afin d'éviter des redites inutiles, nous les
grouperons de la manière suivante :

Sphère pleine et cône de révolution dont Taxe est
incliné. — Dans les cinq programmes , la sphère est
donnée par la position de son centre et par la grandeur
de son rayon ; le cône est défini par la position de son
axe et de son sommet, et par le rayon de la section droite
faite à une distance déterminée du sommet. Par exemple :
axe incliné de 45 degrés sur le plan horizontal, distant de
1 centimètre dû centre de la sphère, et non parallèle au
plan vertical ; sommet situé à 8 centimètres au-dessus du
centre de la sphère; section droite de 7 centimètres de
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rayon et distante de i5 centiiÈlIfrës du sommet du cône.
Ou bien : axe non parallèle au plan vertical, incliné

de 3o degrés sur chacun des plans de projection, et dis-
tant de 2 centimètres du centre de la sphère ; sommet si-
tué à 12 centimètres au-dessus du plan horizontal ou en
avant du plan vertical; section droite, etc.

On demandait: i° de définir graphiquement, d'après
les procédés ordinaires de la géométrie descriptive, les
formes, dimensions et positions des deux surfaces don-
nées, en adoptant pour le cône une position choisie à
volonté entre toutes celles qui satisfont aux conditions
prescrites *, 2° de construire la courbe d'intersection de la
surface conique et de la surface sphérique-, 3° de discu-
ter, dans un texte, les particularités que peuvent pré-

senter la question générale de l'intersection d'une sphère
et d'un cône, et la recherche des points remarquables de
la courbe d'intersection.

Sphère creuse et cône droit. —Deux programmes.
Sphère donnée par la position de son centre et par la

grandeur des rayons des surfaces intérieure et extérieure.
Cône ayant son axe perpendiculaire au plan horizontal
ou au plan vertical, et distant de 5 centimètres du centre
de la sphère-, son sommet à i5 centimètres du plan hori-
zontal ou du plan vertical ; sa trace, horizontale ou ver-
ticale , de 5 centimètres de rayon et tangente à la ligne de
terre.

On demandait : i° de construire les courbes d'intersec-
tion des surfaces sphériques avec la surface conique ;
20 de projeter séparément, sur un plan vertical, le cône
après l'arrachement par la sphère ou la sphère après
l'arrachement par le cône ; 3° de discuter dans un
texte, etc.

Sphère pleine et cylindre de révolution dont Taxe
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est incliné. — Cinq programmes tout à fait analogues
aux cinq premiers.

Par exemple : axe du cylindre non parallèle au plan
vertical, incliné de 3o degrés sur chacun des plans de
projection et distant de 2 centimètres du centre de la
sphère 5 rayon de 3 centimètres} limites : le plan vertical
d'une part, et, de l'autre, un autre plan vertical égale-
ment distant du centre de la sphère et du plan vertical
de projection.

Ou bien : cylindre dont l'axe, incliné de 45 degrés sur
le plan horizontal, est distant de 2 centimètres du dia-
mètre vertical de la sphère et est placé, par rapport au
centre (O, O'), de telle manière que le pied de la droite
qui mesure la plus courte distance entre l'axe et le dia-
mètre vertical tombe sur ce diamètre à 1 centimètre au-
dessus du centre (O, O') ; dont le rayon est de 3 centi-
mètres, dont les limites sont, etc.

On demandait : i° de construire la courbe d'intersec-
tion de la surface cylindrique et de la surface sphérique ;
20 de développer la surface cylindrique sur un plan tan-
gent vertical, et de tracer sur ce développement la géné-
ratrice de contact et la transformée de la courbe cylindro-
sphérique; 3° de discuter dans un texte, etc.

Cylindre droit perpendiculaire à Vun des plans de
projection et cylindre de révolution dont l'axe est in-
cliné. — Trois programmes.

Le cylindre droit est donné par la position de son axe
et par la grandeur de son rayon. Le cylindre incliné est
défini comme dans la question de la sphère et du cône.

On demandait, etc. (voyez le programme précédent).
Enfin, cylindre de révolution creux dont Taxe a pour

projections deux droites inclinées à 45 degrés chacune sur
la ligne de terre 3 dont les rayons des surfaces extérieure et

29.
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intérieure sont respectivement de 4 et de 3 centimètres 5
et cylindre de révolution plein, dont l'axe, situé dans
un plan perpendiculaire à la ligne de terre, rencontre
cette ligne et Taxe du premier cylindre-, dont le rayon est
de 2 centimètres.

On demandait : i° de construire les courbes d'intersec-
tion de la surface du cylindre plein avec les surfaces exté-
rieure et intérieure du cylindre creux \ i° de projeter sur
un plan perpendiculaire à la ligne de terre le cylindre
creux et le trou qui le traverse, le cylindre plein ayant
d'abord été retiré de ce trou; 3° de discuter dans un
texte, etc.

Au premier abord, ces programmes paraissent plus dif-
férents par la difficulté qu'ils ne le sont réellement. Lors-
que la misé en projection du problème est difficile, la
partie purement graphique est diminuée. Toutefois, il
faut reconnaître que le travail était trop considérable
relativement au temps accordé, quatre heures, tandis que
Tannée dernière on avait accordé six heures.

Il faut aussi reconnaître que les programmes de Paris
étaient un peu plus chargés et surtout d'une rédaction
moins explicite que ceux de la province, où l'on a eu l'at-
tention de faire ressortir la mise en projection des surfaces
données comme une question, au lieu de la laisser enve-
loppée dans renoncé. Ces petites inégalités, presque iné-
vitables , n'ont pas empêché les candidats de Paris de se
trouver en très-grande majorité sur la liste d'admission *,
on en compte soixante-huit sur quatre-vingt-quinze, ce qui
fait deux fois et demie ce que la province a donné ; rapport
qui se trouve être le même que celui des compositions
écrites qui ont été corrigées.

Ce n'est pas ici le lieu, ce n'est peut-être pas non plus
le moment de rechercher les causes de cet envahissement
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de Paris. Les nouveaux programmes des épreuves lions
placent dans une de ces époques de transformation peu
propre à un examen de cette nature. Il convient d'at-
tendre.

ENSEIGNEMENT DE LA GÉOMÉTRIE DESCRIPTIVE.

Nos lecteurs, géomètres-dessinateurs, nous sauront gré
sans doute de porter à leur connaissance une collection de
reliefs géométriques qu'ils consulteraient avec profit. Le
prospectus porte, pour préambule, les observations sui-
vantes qui nous paraissent d'une grande justesse.

Collection de coi*ps géométriques en plâtre, destinée à
' l'enseignement de la géométrie descriptive et de ses

applications.

(( Dessiner d'après le relief, c'est prendre sur les corps
solides eux-mêmes (*) les données numériques qui fixent
leurs dimensions et leur situation dans l'espace, et c'est
se servir des mesures ainsi obtenues pour construire les
projections géométriques qui non-seulement représentent
ces corps, mais encore suffisent pour les reproduire, comme

(*) «Sous les noms de hauteur, largeur, épaisseur, profondeur, distance,
rayon, diamètre, abscisse, ordonnée, côlê, etc., on fait de nombreux me-
surâmes pour lesquels suffit le kutsch, ou double décimètre subdivisé en
centimètres, millimètres, et demi-millimètres au besoin. On peut même
arriver à une approximation plus grande en lui adaptant un curseur à
ver nier.

» Pour les perpendiculaires, très-nombreuses aussi, qu'on a besoin de
mener à un plan, on doit employer Yèquerre a trois dimensions, instru-
ment que, pour abréger, on pourrait appeler équerre-relief. C'est un
angle trièdre bi-rectangle très-facile à exécuter en bois ou en papier :
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cela se pratique dans les arts de construction, sur les pro-
jets des ingénieurs.

» Cet exercice, en graduant les difficultés de l'en-
seignement du dessin des projections, prépare les élèves
aux épures d'après des programmes écrits ou d'après leurs
propres conceptions dans la géométrie des trois dimen-
sions. Les reliefs, en montrant d'avance au dessinateur
le résultat de ses recherches, en lui en donnant le senti-
ment , facilitent nécessairement son travail. Cet exercice,
dont l'utilité est évidente, est cependant presque* inconnu.
Est-ce parce que les modèles manquent ?

M Observer sur la surface rigoureusement définie des
corps géométriques les effets de lumière, d'ombre, de
reflet qui s'y manifestent, et les effets de contour appa-
rent de leurs vues perspectives -, s'exercer à rendre rapi-
dement à l'estompe et au crayon ces accidents d'une va-
riété infinie et d'une précision saisissable par l'œil le
moins exercé*, ces deux études constituent un enseigne-
ment gradué, rationnel, et de nature à préparer à tous
les genres de dessin. Ainsi tous les effets de lumière et de
perspective que peuvent présenter les sujets ordinaires du
dessin d'imitation se trouvent nettement accusés sur les
polyèdres, sur les cônes et les cylindres, sur les corps de
révolution, sur les formes torses des colonnes, des limons

qu'on plie une feuille de papier fort ou du carton mince, et Von a une
règle qui peut être d'un bon usage j qu'on fasse un second pli exactement
perpendiculaire au premier, qu'on l'ouvre plus ou moins, et l'on à une
équerre à trois dimensions. Le second pli étant entièrement ouvert, on
arrive à Yéquerre à deux dimensions, c'est-à-dire à Véquerre plane de la
géométrie élémentaire ; c'est aussi Véquerre du relieur. Une feuille de
papier et un kutsch suffisent donc pour exécuter le lever des corps géomé-
triques. Lorsque le plan de position du corps est horizontal, on peut
substituer, maie sans avantage, le fil à plomb à Vêquerre-rclief.
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d'escalier et des serpentins, en un mot, sur toutes les sur-
faces de la géométrie, convenablement éclairées (*).

» Cet enseignement, d'ufie simplicité et d'une utilité
incontestables, n'est pas assez répandu} est-ce parce que
les modèles manquent?

» Si cette lacune existe réellement dans l'ensemble des
moyens propres à l'enseignement du dessin, notre collec-
tion aidera à la combler. -

» La vue attentive des corps solides a l'avantage de
familiariser avec les formes et les appellations de la géo-
métrie -, les combinaisons de ces formes entre elles, par
intersection et par contact, donnent la connaissance d'un
grand nombre de résultats que les élèves n'ont pas le temps
de chercher, qu'il n'est pas nécessaire de leur faire cher-
cher, qu'il suffit de leur montrer, et en grand nombre,
parce qu'il y a de l'instruction dans la variété} enfin, le
groupement de ces corps fournit une suite sans nombre
de modèles faciles et intéressants à reproduire par le
dessin.

» Si cette collection est bien accueillie, elle recevra un
développement qui en accroîtra beaucoup l'utilité (**). »

(*) « La lumière d'une lampe ou la lumière solaire, dans laquelle les corps
sont plongés, produit sur leur surface des ombres noires et tranchées qui
sont d'un effet peu agréable ; aussi ne manque-t-on pas de les adoucir par
quelques artifices, mais sans les dénaturer. Les ombres géométriques, qui
leur sont tout à fait comparables, doivent être traitées comme elles, de
manière à produire des résultats qui se rapprochent de ceux du dessin
d'imitation proprement dit, où l'on suppose les. objets éclairés parla lu-
mière diffuse de l'atmosphère.

» Quant à ce qui regarde la perspective,, il nous suffira de dire, pour être
compris, qu'une glace interposée entre Vèculaire, point où l'on suppose
l'œil du dessinateur, et Yobjet à représenter, est de tous les moyens à em-
ployer le plus simple et le plus clair pour faire sentir et comprendre les
effets de ce que l'on nomme avec raison la. perspective linéaire, pour la
distinguer de la perspective aérienne. «

(**) S'adresser à M. Bardin, rue du Cherche-Midi, 23, à Parts. On est
prié d'affranchir les lettres. *'* /
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On doit désirer que cette collection, que nous avons

visitée avec un véritable intérêt, se répande et soit ap-
préciée. Elle est déjà très-étmdue, très-variée, et l'on y
trouve réalisées en relief toutes les questions d'intersec-
tion de surfaces qui ont été proposées cette année au
concours d'admission de l'École Polytechnique. Il est
bon, quand les programmes des épreuves de concours de-
viennent de plus en plus difficiles, que quelques per-
sonnes se préoccupent de venir en aide aux candidats et
à l'enseignement.

L'auteur ne parle pas, dans son prospectus, de la belle
suite de reliefs topo graphiques qui constitue, à vrai dire,
la partie principale et la plus importante de son musée
stéréotomique. Cette réserve semble indiquer qu'il veut
en faire l'objet d'un programme particulier.

NOTE S1U LA METHODE DES MOINDRES CARRÉS;

PAR M. P. HOSSARD,
Chef d'escadron d'état-major.

Afin de mieux fixer les idées, soit une fonction à deux
variables considérée comme l'ordonnée verticale d'une
surface. Supposons d'abord que les constantes à déter-
miner soient telles, que leur variation ne donne lieu qu'à
un déplacement parallèle de la surface dans le sens des
verticales, et que, par expérience, on ait déterminé un
certain nombre de points devant lui appartenir. Si ces
points ne s'accordent pas parfaitement entre eux, c'est-
à-dire s'ils n'appartiennent pas exactement à une déter-
mination unique de la surface, il est évident que la posi-
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tion à adopter serait celle qui établirait cette relation,
savoir : que la somme des différences positives entre les
verticales des points obtenus par expérience et les or-
données correspondantes de la surface, fussent égales aux
différences négatives \ c'est-à-dire que cette position serait
donnée par une moyenne arithmétique, comme dans' le
cas de la détermination d'un point sur une verticale
unique.

Généralement, la variation des constantes à déterminer
donnera lieu à une déformation et à un déplacement non
parallèle aux ordonnées ; il est clair alors que la surface à
adopter ne correspondra plus à une égalité entre les er-
reurs positives et négatives des observations, car l'ordon-
née de la surface, selon qu'elle correspondra à tel ou tel
point observé, éprouvera des variations différentes pour
une même variation des constantes \ mais il devient évi-
dent que le résultat de chaque observation devra avoir
une influence d'autant plus grande dans la détermination
de la surface à adopter, que cette observation corres-
pondra à un point dont le déplacement sera plus consi-
dérable pour une même variation des constantes. Ainsi,
une observation correspondante à un point invariable de
la surface devrait rester sans influence, et être négligée,
quelle que fût d'ailleurs la différence entre l'ordonnée
donnée par l'observation et l'ordonnée du point fixe. Il est
évident encore qu'un point obtenu par l'observation, là
où la surface éprouve les déplacements les plus considé-
rables pour une même variation des constantes, serait
des plus propres à fixer la valeur de ces constantes ; enfin
que si deux observations correspondent à deux points de
la surface, dont l'un éprouve un déplacement double de
l'autre pour une même variation des constantes à déter-
miner, le premier point sera deux fois plus convenable
que le second pour fixer cette surface, et, par conséquent,
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devra entrer avec une influence double, relativement à
celui-ci, dans le choix à faire.

Pour arriver à la détermination la plus avantageuse de
la fonction cherchée, nous devrons donc prendre une
moyenne arithmétique, comme dans le premier cas con-
sidéré , mais en faisant entrer chaque observation avec
l'influence qui lui est propre.

Les idées de géométrie introduites ici ont eu pour but
de rendre la démonstration plus tangible, pour ainsi dire,
mais ne sont nullement nécessaires à son exactitude.

Il nous reste maintenant à montrer que ce procédé
n'est autre que la méthode des moindres carrés donnée
par Legendre, démontrée par Laplace et Poisson.

Soit une fonction de la forme
mf-\- «9-H. . . ,

f, ç, etc., étant des expressions sans coefficients indéter-
minés et dont les valeurs numériques sont des données de
l'observation*, m, w,etc.,étantdes constantes à déterminer,
indépendantes, d'ailleurs, les unes des autres.

Par d'autres observations, on aurait
mf -4-aT \ . . ,
™/"-f-«<?"...,

Soient £, v\ vf/,.,., les valeurs respectives de ces fonc-
tions, déduites de l'observation, et

p pf p" em

les erreurs ou différences entre les résultats qui seraient
donnés par la fonction adoptée comme la plus probable,
et ceux donnés par l'observation. On aura

e = mf H- ny. . . — t>,
e' r= mf + ny'... — v'',
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Or, si, dans la fonction, nous faisons varier successive-
ment chacun des coefficients m, n, p, etc., en laissant les
autres constants, nous remarquerons :

i°. Que lorsque m variera, la fonction éprouvera une
variation proportionnelle à f pour l'erreur e, proportion-
nelle kf pour Terreur e\ proportionnelle à / " pour Ter-
reur e\ etc. \ ces différentes erreurs devront donc entrer
dans la formation de la moyenne avec des poids respecti-
vement proportionnels à

f, S, /",••-
et Ton aura la relation

2°. Que, pour n variable, on aura

et ainsi de suite.
Ces équations, qui seront en nombre égal aux con-

stantes, serviront à les déterminer 5 on sait d'ailleurs
qu'elles reviennent à la condition du minimum des carrés
des erreurs.

Soit, en effet,
*'-h * " + * ' " - K . . ,

la somme des carrés des erreurs. Différentiant, en faisant
varier successivement m9 n, etc., les conditions du mi-
nimum seront ;

= 0 ,

= 0 ,

de

dm

de

dn +

,de'
e ——-f-

dm

fde'
6 dï^

,,de"
dm

,,de"
6 ln~



Or

dm ~Ji dm~J ' dm~
de de' . de"

On peut donc dire que la méthode des moindres carrés
revient en réalité au calcul élémentaire des moyennes
arithmétiques, en tenant compte, toutefois, du poids
relatif de chacune des observations.

RÉCLAMATION

DE M. HEEGMANN,

Membre delà Société nationale des Sciences et Arts de Lille.

(Extrait d'une Lettre. )

En rendant compte de mon ouvrage de Trigonométrie,
vous dites (p. 351) ne pas savoir si l'exactitude des Tables
a été constatée. Or, j'ai fait, pour obtenir cette exacti-
tude, des dépenses considérables, dont il ne faut pas
juger par le profit que peut me donner le livre, qui n'a
d'ailleurs été tiré qu'à un très-petit nombre d'exem-
plaires. J'ai employé séparément plusieurs calculateurs,
de manière à contrôler une partie notable de leurs cal-
culs, les uns par les autres. Un second contrôle, non
moins efficace, résultait de l'examen des différences,
opération qui a été faite sur le manuscrit et répétée sur
les épreuves de l'imprimerie.
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SOLUTION DE LA QUESTION 247
( voir t. IX, p. 358 ) ;

PAR M. BUGNOT ( J . ) ,

Élève de l'École Polytechnique.

Résoudre l'équation

(x) 3* = 5 4 * - - i35.

Je remarque que 5 4 = 2 . 3 % et que i35 = 5.335
l'équation est donc

3 * = 2 . 3 3 * — 5.33.
Je pose

(2) x=3+y;

et, divisant tout par 33, j'ai

3/ = 2 x — 5 = 2 (3 4 -y) — 5•= 2 y •+• 1,

ou
(I+2)/=2/+I;

je développe le premier membre par la formule du bi-
nôme, et il vient

De la sorte, les deux racines ^ = 0 , ^ = 1 , sont mises
en évidence ; et, se reportant à l'équation (2) , on en
tire

x =r 3 et x = 4 y

racines qui vérifient l'équation (1).
Actuellement, ramenant Féquation (1) à la forme



je prends la dérivée

/ ' ( * ) = 3*!£g'3 - 5 4 .

Pour que cette dérivée soit négative, il faut que Ton ait

3 < I o g ' 3 '

inégalité qui sera vraie, à fortiori, si l'on a

M ou

car
log' 3 = 1,0986122... <^ 2.

Or cette inégalité est évidemment satisfaite par '

On voit de même que, pour x_ 4, on a toujours

Donc la fonction est constamment décroissante depuis
x = — 00 jusqu'à x = 3, et croissante depuis x = 4
jusqu'à x = 4-00 5 et, conséquemment, l'équation n'a
pas de racines en dehors des limites 3 et 4-

En second lieu, il est évident que si une valeur de x
rend positif le binôme 3*log' 3 — 54, toute valeur su-
périeure a:-h A le rendra, à fortiori, positif. Donc,
quand la fonction f (a:), décroissante à partir de x = 3
et devenue négative, aura atteint son maximum, elle
croîtra constamment et d'une manière continue jusqu'à
l'infini. Donc elle ne pourra passer qu'une fois par zéro,
ce qui aura lieu pour x = 4 5 puisque f(4) = o. Ainsi
l'équation proposée admet les racines 3 et 4 et n'en a pas
d'autres.
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M. Sturm, membre de l'Académie 4*9

Calcul aux différences$ sommation.

Sur une formule relative au calcul inverse des différences; par
M. E. Prouhet 186

Solution de la question 196. Théorème sur la somme des puissances
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3o.



( 4 6 8 )

Calcul infinitésimal et fonctionnel; séiies.
Pages.

Déterminer la courbe dont un arc de longueur / ayant ses extré-
mités sur deux droites données, parallèles à l'axe des x , soit tel,
que le trapèze limité par cet arc, les ordonnées de ses extrémités
et l'axe des x , engendre un volume maximum en tournant autour
de cet axe ; par M. Dieu 201
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WAGNER ( J.-E. ) . . . . ' 297
WALLIS 286 et 287
WANTZEL 35o
WARNER ( WALTER) , 286

* WOEPCKE 372
WOLASTON 217
WOLF, secrétaire de la Société des Investigateurs de la Nature.... i63
WORMSER (A.) i53
YOUNG (THOMAS) ....•: 373
ZACH 288

•

{*•) Nom anagrammatique.
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QUESTIONS NON RÉSOLUES
Dans les dix premiers volumes.

4 (&
25

41

47

6i
79

8 i

84
«7

93

1 2 0

i36

141

148
i53
i65

TOME I.

V)

TOME II.

TOME 111.

TOME IV.

TOME V.

TOME .VI.

Pages.
123

247
396
519

48

454

4o
256
376

259

2 0 2

672

•34
216

Ibid.
242

3Q4

N08.
180

182

190

192

iy3
,98

2O5

218

228

238
240
245
•248

TOME VII.

TOME VIII.

TOME IX.

TOME X.

Pages
i 5 7

Ibid.
240
368

Ibid.
448

44
107

11

298

357

Ibid.
258
Ibid.

Observation, Sur 248 questions, il en reste 3i à résoudre. Les autres
sont résolues et imprimées ou bien en manuscrit-et paraîtront'en 1862.
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ERRATA.

TOME V. ( Quatrième supplément. )

Page 7 , ligne 5 en descendant , au lieu de 1,0079361, lises 1,0079368.
Page 7 , ligne 6 en descendant , au lieu de 0,0000004, lisez o7oooooo3;

l 'erreur est en moins. • -'*-•-*«

Page 7 , ligne 11 en descendant, au lieu de ( - J , lisez ?W&\

Page 7, ligne 7 en remontant , après méthode , ajoutes d'extraction des
racines.

TOME VII. ( Troisième supplément.)

Page 277, ligne 10 en remontant, au lieu de - , lisez — - •

Page 278, ligne 1 en descendant, au lieu du — 4 bf, lisez — 2 bf.
Page 278, ligne 3 en descendant, au lieu de — 4 &/> Usez — 2 bf.

TOME IX. {Premier supplément.)

Page 74, ligne 1 en descendant, au lieu de par le produit, etc , lisez
par le quotient du plus simple multiple n de ces dénominateurs par le
dénominateur correspondant, on pbtient, etc.

Page 110, dernière ligne, au lieu de à 2 , lisez a 2.

Page m , ligne 6 en descendant, au lieu de (xm — 1) wH"w—') nsez

( * - • ) " - « - ' .
Pag« m , avant-dernière ligne, au lieu de moyen, lisez majeur.
Page 114, ligne 17 en descendant, au lieu de ce, lisez 2.
Page 114, ligne 19 en descendant, au lieu de S « n + I , lisez Sx""*"-1»

TOME X.

Page 81, ligne i 5 , au lieu de sont donc en même temps pairs ou im-
pairs, lisez qui doivent être en même temps pairs et impairs, sont donc
tous les deux pairs.

Page 82, ligne 7 en remontant, au lieu de ha*, lisez ^a*.
Page 8 3 , lignes 1 et 2 , au lieu de q et q*t lisez p et p*.
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Page 83, lignes 3 et 4 » AU lieu de pair ou impair comme £, lisez si g est

pair, et un diviseur \ g* (p* -+- 4 ?4 ) , si # est impair.
Page 176, ligne 28, au lieu de 3o35o2, Usez 5325ioo54445o33oo4.

•Page 177, ligne 22, au lieu de uti*, Usez 168053879.
Page 177, ligne 22, au lieu de 4287, lisez 89710526.
Page 177, ligne 24, au lieu de trop fortes, lisez l'une trop forte,

Vautre trop faible.
Page 179, ligne 29, au lieu de %!\i, Usez 8415.
Page 180, ligne 4 » au lieu de 3491 , Usez 0337.
Page 180, ligne 4 * au Heu de 3o35, lisez 062b.
Page 180, ligne 6, au lieu de 3o35, lisez 53a5.
Page 180 f ligne 12, au lieu de 244808, lisez 245808.
Page l8$tf lignes i3 , i5 et 17 , au lieu <fe i36, lisez 201.
Page 180, ligne i 5 , au lieu de 4,2483, lisez 0,4*2483.
Page 180, ligne 17, a» lieu de \\l\, lisez 168.
Page 180, ligne 22, au lieu de -f-0,0000234, Usez —o,oooo4o56.
Page 180, ligne 24, au lieu de 3,5i3, lisez o,35i3.
Page 180, ligne 24, au lieu de -+-o,234, Usez —o,4o56.
Page 180, ligne 26, au lieu de —0,00/713, lisez -+- 0,002971.
Page 180, ligne 26, au lieu de 4287 , lisez 8971.
Page 182 , ligne 1^ au lieu de P^ _ j , lisez P j

~ 2

Page 418, ligne 6, au lieu de - 7 - , lises -j-v'

PARIS.—IMPRIMERIE DE BACHELIER,

rue du Jardinet, n° 12.




