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NOUVELLES® ANNALES

DE

MATHEMATIQUES.

DISCOURS

Prononcé dans la séance d’ouverture du Cours de Calcul des Probabilités,
4 la Facalté des Sciences, le 23 novembre 1850 ;

Par M. LAME,
Membre de VInstitut.

Avant de commencer le cours dont je suis chargé, j'ar
besoin d’entrer dans quelques détails préliminaires, pour
expliquer le rdle qui me parait destiné au calcul des pro-
babilités, dans l'enseignement fait a4 la Faculté des
Sciences.

Le faisceau des sciences exactes, des mathématiques
en général, comprend des parties plus voisines des appli-
cations, qui forment, pour ainsi dire, leur laboratoire
d’essais. C’est 1a que les théories naissent, se complétent
et se perfectionnent; que les procédés, les instruments
dont le géométre dispose, sont fagonnés;, et en quelque
sorte aiguisés pour les rendre propres & résoudre -des
questions qui intéressent les sciences dobservatlon la
pratique industrielle, et la société en géneral

Voila ce qu’ont de commun les deux sciences auxquelles
on a donné les noms de physique mathématigue, et de
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calcul des probabilités. La premiére s'occupe spéciale-
ment des applications qui concernent la nature inorga-
nique, et dont le caractére principal est la continuité;
ce qui réduit le plus souvent son travail a rechercher
certaines fonctions continues, qui vérifient des conditions
donsées par des équations différentielles; c’est-a-dire 2
résoudre des problémes de pur calcul intégral.

La seconde science, appelée calcul des probabilités,
ne se borne pas aux faits physiques : elle étudie et com-
pare les nombres donnés par I'expérience, par I'observa-
tion, accumulés par toutes les statistiques. Elle déduit de
cette étude, et de cette comparaison, non 'explication,
ou la succession nécessaire et indéfinie des phénomenes,
mais seulement les limites entre lesquelles se trouveront,
le plus probablement , les phénoménes a venir. Ses don-
nées ¢t ses résultats sont presque toujours discontinus; et
ce n’est que par approximation qu’ils peuvent revétir la
forme des fonctions continues. Ses conditions sont plus
souvent exprimées par des inégalités que par des équa-
tions. Le calcul infinitésimal ne lui est pas précisément
applicable; c’est plutdt le calcul direct et inverse des dif-
férgnces finies. En réalité, son arme naturelle est la
théorie des combinaisons, mais beaucoup plus étendue,
plus générale, que dans I'algébre ordinaire.

Les grandes découvertes les plus récentes des sciences
exactes, les progrés réels qu’elles ont faits dans ce siécle,
se rapportent presque exclusivement a la physique ma-
thématique, et au calcul des probabilités. (Car la théorie
des transcendantes elliptiques, clle-méme, peut étre con-
sidérée comme un appendice au calcul intégral, que ré-
clamaient la mécanique rationnelle, et les autres appli-
cations de I'analyse a la physique.) Sur ces deux sciences
sont venus se concentrer les eflorts de nos plus illustres
géometres. C'est surtout en les étudiant, qu'une personne,
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attirée vers les mathématiques, perfectionnera ses facultés
spéciales, et parviendra a les utiliser.

Sous ce point de vue, les deux sciences dont il s agn
ont des qualités différentes : la phyanue mathématique,
plus difficile peut-étre, donne plus immédiatement des
applications nouvelles, quand on est parvenu a la faire
avancer sur quelque point. Mais le calcul des probabilités
exerce plus efficacement I'esprit de recherches, par la va-
riété des questions qu’il se propose, et celle des solutions
qu'il trouve, par I'absence méme d’une méthode géné-
rale, qui puisse s’adapter a tous les sujets. Cette variété
et cette lacune tiennent constamment en haleine I'atten-
tion, la perspicacité du géométre, le forcent a passer en
revuc toutes ses ressources, 4 essayer tous ses moyens
L’action; lutte incessante, qui le familiarise avec les dif-
ficultés de I'analyse, et le rend plus capable que tout
autre de les surmonter.

Les caractéres que je viens de signaler justifient pleine-
ment U'introduction d’un cours de calcul des probabi-
lités dans Penseignement de nos Faculiés. Rien ne fait
mieux comprendre Desprit, le but, la liaison des diflé-
rentes parties des mathématiques, que d’étudier une
science ou tous leurs procédés sont successivement mis en
jeu, pour obtenir les solutions d'une multitude de pro-
blémes nouveaux, trés-variés, qu’il serait difficile de
ramener a un petit nombre de types.

Les autres cours de mathématiques, par leur régula-
1ité, leur permanence, par les méthodes générales qui les
conslituent, montrent en quoi consistent les anciennes
applications de I'analyse, et comment les géométres sont
parvenus a vaincre les difficultés qu’elles présentaient.
Mais , 2 moins de se transformer, et de se lancer dans la
physique mathématique, ces cours classiques, réunis sous
la singuliére dénomination de mathématiques pures, ne
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donnent tout au plus que des indications vagues, sur la
marche qu’il faudrait suivre pour aborder de nouvelles
applications. Ils constatent, énumérent, perfectionnent
les travaux du passé; ils ne s’occupent pas des travaux a
venir.

Les savants qui les ont exclusivement étudiés, et qui
sont animés du gotit des recherches, ou ne trouvent plus
qu’a glaner sur ce terrain des anciennes découvertes, ou
bien consument leurs efforts 4 s’ouvrir une route dans
une direction stérile, en quéte de quelque théorie, qui
n’a en vue aucune application, et qui ne sera peut-étre
jamais d’aucune utilité. Au contraire, qu'’ils étudient, en
outre, les deux sciences que j’ai définies, encore incom-
plétes, onil y atant a faire, dans lesquelles les explorations
commencées signalent tant d’activité, d’originalité, de vues
nouvelles; ils seront i sur un terrain presque neuf, ou la
place ne leur manquera pas, ou les applications se pré-
sentent d’elles-mémes, d’ou parfois peu de travail fait
surgir une découverte utile. Et s’ils retournent aux an-
ciennes théories, pour les étendre et les perfectionner,
1ls sauront dans quelle direction il convient d’agir, quels
genres de progrés réclament les nouvelles applications.

Malgré tant d’avantages incontestables, 'existence de
ces cours nouveaux, imparfaitement définis, est souvent
remise en question. Mais, supposons que I'on supprime,
dans l'enseignement des Facultés, tout cours de mathé-
matique qui n’est pas classique, qui s’occupe d’une science
inachevée; qu'on le remplace par un cours appelé pra-
tigue, sur un genre d’application dont les limites res-
treintes sont atteintes depuis longtemps, tel que serait,
par exemple, un cours de géométrie descriptive ; qu’on se
borne a enseigner comment I’analyse et la géométrie se
sont tirées d’affaire dans tous les problémes depuis long-
temps résolus. pour toutes les applications usuelles; on
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satisfera sans doute 3 I'un des besoins de la pratique ,
mais d’une maniére permanente, stationnaire, rétrograde
peut-étre.

Car, si une nouvelle application surgit, si quelque
probléme imprévu se présente dans une ancienne appli-
cation, rien dans I’enseignement ne répondra a ce nouvel
appel fait a la science ; nos praticiens classiques, qui sa-
vaient si bien se servir des instruments qu’on leur a mis
en main, les trouveront muets, inutiles, encombrants
méme dans cette occurrence nouvelle; ils seront incapables
de s’'en forger d’autres. Et, si la difficulté est vaincue, ce
sera par quelque voyageur étranger qui, ayant quitté les
routes battues pour séjourner. quelque temps sur le ter-
rain des sciences d’exploration, y aura appris comment
les obstacles se surmontent.

D’ailleurs les cours qui embrassent quelque grande ap-
plication, qui s’y renferment scrupuleusement pour la
compléter ou la simplifier, ont une place naturelle autre
part qu’a la Faculté des Sciences : destinés a perpétuer
certaines découvertes scientifiques, ils sont enseignés, avec
tous les développements qu’ils peuvent comporter, dans
les amphithéatres du Conservatoire des Arts et Métiers.
Mais vouloir les substituer 4 des cours qui, souvent, in-
diquent comment les découvertes se sont faites , se font
et se pourront faire , quelles ressources a la science quand
elle aborde des questions nouvelles, quels instruments il
faut créer ou perfectionner pour parvenir a des solutions;
c’est fermer la porte a tout progrés scientifique; c’est, en
quelque sorte, emprisqnner 'industrie humaine, la con-
traindre & se contenter des récoltes faites, et 'empécher
de semer pour en obtenir de nouvelles.

Si I'on considére les cours de la Faculté comme plus
spécialement destinés a fortifier, a compléter les études
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faites par les personnes qui se vouent a 'enseignement ,
il est aisé de reconnaitre, dans ce but, l'utilité du cours
qui nous occupe.

11 est un principe évident, quoique souvent méconnu,
c’est que, pour enseigner avec fruit une science exacte, il
faut au moins savoir la science voisine. Ainsi, nul ne
sera bon professeur d’arithmétique s’il ne sait au moins
V'algébre , de géométrie s'il ne connait ’analyse appliquée,
de statique s'il ne sait la dynamique, d’algébre s’il n’a
pas étudié le calcul infinitésimal. Et, dans ces sciences
particuliéres, se trouvent des chapitres importants et
étendus qui ne peuvent étre bien compris, el conséquem-
ment bien enseignés, que par des personnes qui connais-
sent certaines sciences, en général peu cultivées.

Ainsi, la divisibilité, les théories des facteurs, des car-
rés, des cubes, en arithmétique; I'analyse indéterminée
ctles fractions continues, en algébre, et méme l'inserip-
tion des polygones, en géométrie, sont bien mieux saisies
par ceux qui savent la théorie des nombres. Ainsi, dans
le calcul infinitésimal, le choix et 1'utilité des transcen-
dantes et des intégrales définies, les méthodes et les pro-
cédés du calcul aux différences partielles, ne peuvent
¢tre complétement enseignés que par une personne qui
connait la physique mathématique. Fnfin, la théorie des
combinaisons, celle des factorielles, le développement
des puissances des polyndmes, les propriétés des produits
d'un nombre indétini de facteurs, les théories des ap-
proximations, des limites d’erreur, et méme des séries, le
calcul aux diflérences finies, tant direct qu’inverse, sont
présentés d'une maniére plus compléte par un professeur
qui connait le calcul des probabilités.

11 est un dernier point de vue sous lequel on doit envi-
sager I'utilité que le professorat peut tirer de I'étude des
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sciences d’exploration. Pour le bien définir, je vais abor-
der, en passant, une question dont on comprendra faci-
lement toute I'actualité.

Depuis longtemps, les: personnes qui s’occupent ex-
clusivement de la pratique, font, a celles qui se vouent i
I’enseignement des sciences, le reproche de développer
trop de théories; celles-ci répondent que I'on méconnai-
trait le but élevé de l'enseignement, en le réduisant aux
régles et aux formules actuellement utilisables. Sujet de
discussion qui menace d’étre éternel, entre gens que leurs
intéréts, leurs connaissances exclusives et restreintes,
mettent en opposition constante.

J’ai des amis des deux parts;j’ai vécu et servi dans les
deux camps ; souvent renié par I'un et par1’autre, lorsque
Jessayais de combattre des reproches immérités, ou au
moins exagérés , et d’opérer une fusion peut-¢tre impos-
sible. Je pense donc étre en mesure d’éclairer cette ques-
tion, et de la réduire a sa juste valeur.

On ne saurait trop le répéter, 'étude des sciences
cxactes a pour utilité principale et premiére, de faire
naitre, d’exercer, de perfectionner le raisonnement ; d’as-
surer en quelque sorte son infaillibilité, en I’appliquant
constamment, ct pendant de longues années, a des sujets
(qui sont a 'abri de toute controverse. Une personne, bien
¢t longtemps nourrie par cette étude, pourra oublier suc-
cessivement les premiers instruments de cette gymnas-
tique prolongée (comme nous avons tous oublié nos pre-
miers sujets de lecture), mais elle conservera toujours la
facilité de raisonner juste, c’est-a-dire de déduire vite et
sirement les conséquences d’'un principe posé. Quant a
Vart de bien choisir les principes qui servent de base au
raisonnement, les sciences exactes ne 'exercent pas; il
faut avoir recours a d’autres études, a celles des sciences
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physiques, par exemple, qui complétent ce qu’on peut
appeler I'éducation de la logique.

C’est cette utilité principale de ’étude des sciences
exactes qui forme le but le plus élevé et le plus général de
leur enseignement. L'utilité spéciale de chacune de ces
sciences, son application directe, sa pratique enfin, ne
peuvent venir qu'en seconde ligne, car elles exigent im-
périeusement que la condition premiére soit pleinement
satisfaite.

Ainsi, d’abord des écoles générales, onr 'enseignement
des sciences évitera de s'étendre sur les applications, afin
de conserver, de diriger tous ses efforts vers le but prin-
cipal que je viens de définir, plus difficile a atteindre
qu’on ne le suppose généralement. Puis des écoles d’ap-
plication spéciales, ou les sciences exactes seront consi-
dérées sous le point de vue de la pratique. Sans cette sé-
paration bien netttment établie, on n’obtiendra jamais
que des résultats incomplets. Les deux systémes existent
actuellement; qu'on les examine, qu'on en compare les
produits, sans prévention aucune, avec une compléte im-
partialité, et je ne doute pas que I'on ne reconnaisse la
supériorité des doubles écoles.

Mais s'il convient que, dans les écoles générales, I'en-
seignement s’occupe principalement des théories scienti-
fiques, il importe aussi, tant pour bien faire saisir toute
la portée de ces théories elles-mémes, que pour prépa-
rer aux cours des écoles spéciales, d’indiquer les appli-
cations, de les esquisser en quelque sorte , d’établir sur-
tout les principes généraux qui leur servent de base;
principes qu’il serait difficile de saisir, de dégager, s’ils
étaient, dés I'abord, accompagnés de détails trop minu-
tieux.

C’est pour se mettre en état de traiter convenablement
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cette™partie de leur travail, que les personnes vouées a
I’enseignement des mathématiques doivent étudier les
deux sciences d’exploration que j’ai citées. La se trouvent
recueillis et coordonnés les travaux des géométres sur tous
les genres d’application que I'analyse a pu aborder. Ces
travaux sont sans doute incomplets; beaucoup méme ne
sont qu'amorcés; mais ils indiquent les points ou la
science s’arréte aujourd’hui, et quels progrés elle doit
faire.

Il ne peut appartenir qu’aux professeurs des écoles spé-
ciales, praticiens distingués dans leur art, de suppléer
aux lacunes actuelles d’une analyse rigoureuse, par des
formules empiriques qu'ils reconnaissent comme suffi-
santes pour la pratique. Si, sous prétexte de rendre plus
compleétes les études préliminaires des écoles générales par
rapport aux applications, on introduit ces formules em-
piriques dans les cours de théorie, on détruira d’un coté
ce que I'on aura fait de I'autre, car la rigueur du raison-
nement en sera relichée. L’éléve verra beaucoup trop t6t
qu’en fait de sciences , on peut se contenter d’a peu prés;
il en conclura que, chercher mieux, serait se donner des
peines inutiles, et les progrés des sciences exactes ne tar-
deront pas a s’arréter.

Pour éviter cette décadence imminente, il importe de
préserver au moins la Faculté des Sciences de I’envahisse-
ment, de la tendance exagérée et exclusive des cours ap-
pelés pratiques. Que les sciences exactes continuent i y
développer leurs théories, complétées par I'indication des
applications actuelles et futures, mais en s’arrétant ou
cesse la rigueur mathématique. Que les travaux des géo-
metres sur les nouvelles applications y composent des
cours, nécessairement imparfaits , mais o l'esprit de re-
cherches trouve aliment et excitation.

Je m’arréte 4 ce veeu, et je conclus, des différents points
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que j ai traités, que le calcul des probabilités doit étre en-
seigné ici, comme un complément indispensable et utile
aux autres cours de mathématiques; comme présentant ,
pa.r la nature et la variété de ses problémes et de leurs
solutions, une sorte de résumé de toutes les ressources
de Vanalyse; comme mettant sur la voie de plusieurs ap-
plications, ‘constatant la nécessité de certaines théories,
indiquant les progrés qu’elles doivent faire. . . . . . .

EXPOSITION DE LA METHODE DE M. CAUCHY

Ponr le caleal, par approximations successives: certaines, des racines
véelles des équations algébriques. — Comment cette méthode se réduit
celle de Newton, quand la méthode de Newton est applicable. — Caractére
analytique simple et sir auquel on reconnait que la méthode de Newlon
est applicable ;

Par M. 1’aBsk MOIGNO,

Auménier du lycée Louis-le~Grand.

La résolution des équations algébriques comprend
quatre grands problémes : 1° démontrer que toute équa-
tion a une racine; 2° déterminer le nombre des racines
comprises entre deux limites données; 3° séparer les ra-
cines ; 4° enfin calculerla valeur numérique de ces racines.
M. Cauchy a eu le bonheur et la gloire d’arriver le pre-
mier a des solutions vraiment élémentaires, simples et
praucables de ces quatre problémes.

Onn’arien ajouté a sa démonstration du théoréme, que
toute équation algébrique a une racine; cette démonstra-
tion seulement n’a pas été présentée encore sous la forme
extrémement simple qu’on peut lui donner. Je le ferai
bientot dans ce Journal. .

M. Sturm a rendu plus facile, théoriquement parlant,
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le calcul du nombre des racines réelles comprises entre
des limites données. De mon c6té, j’ai publié, en partant
des principes établis par M. Cauchy, la démonstratign la
plus naturelle et la plus directe , non-seulement du théo-
réme de M. Sturm , mais des theorémes analogues de Des-
cartes, Rolle, Budan, Fourier, etc., et méme du théoréme
de M. Cauchy relatif au nombre des racines imaginaires.
M. Terquem a bien voulu insérer, dans les NVouvelles
Annales, un abrégé de mon Mémoire (t. III, p 188);
je lui demanderai de revenir moi-méme sur ce sujet, et
de ramener ma démonstration i des termes tellement
simples, qu'on soit désormais forcé de lui donner place
dans I'enseignement.

11y a plus de trente ans que M. Cauchy nous a appris
a calculer immédiatement, sans qu’il soit nécessaire de
recourir a I'équation aux carrés des différences , une quan-
tité plus petite que la différence entre deux racines quel-
conques d’une équation algébrique, et, chose extraordi-
naire, incompréhensible, c’est & peine si le magnifique
théoréme du plus grand mathématicien des temps mo-
dernes commence a pénétrer dans nos traités élémen-
taires; c’est & peine si on I’a bien compris. Je vois avec
la plus vive douleur que I'un de.nos jeunes professeurs
les plus distingués et les plus progressifs, M. Joseph
Bertrand , dans son 7raité élémentaire d’Algébre qui
vient de paraitre, n’a pas méme indiqué I'admirable mé-
thode de calcul des fonctions symétriques des racines
d’une équation , méthode sur laquelle repose la séparation
des racines.

Enfin voila quatorze ans que les Comptes rendus des
séances de I’ Académie des Sciences renferment la so-
lution ,- simple a l'excés et tout a fait élémentaire, du
quatriéme probléme abordé , sans assez de suceés , il faut
bien le dire, par les géomeétres les plus éminents, La-
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grange, Poisson, Fourier, etc. Cette solution me fut
adressée de Prague par M. Cauchy, avec ce préambule :
« Lia méthode que jé vais exposer est tellement simple,
qu'il y a lieu de s’étonner qu’elle ne se soit pas présentée
plus tt a Pesprit des géometres. D’un autre coté, elle est
tellement générale, qu’elle fournit immédiatement des
valeurs aussi approchées qu'on le désire de toutes les
racines réelles des équations algébriques , souvent méme
des équations transcendantes. Enfin les approximations
successives sont non-seulement trés-faciles, mais encore
trés-rapides; aussi rapides, pour le moins, que dans la
méthode newtonienne, et il arrive bientét un moment ou
le nombre des chiffres décimaux est plus que doublé a
chaque opération nouvelle. » M. Cauchy ajoutait : « Les
avantages de la nouvelle méthode sont tellement sensibles,
qu'une fois livrée au public, elle ne peut manquer, ce me
semble, d’étre adoptée et mise en pratique par tous les
amis des sciences. »

Qu’est-il arrivé cependant; )’ai livré au public, en 1835,
ce procédé si élégant, si simple, si sir, et les trop nom-
breux traités d’algébre rédigés depuis cette époque lui
sont restés fermés, et il est a peine deux ou trois profes-
seurs ou amateurs qui le connaissent, tant est forte la
tendance de ’lhomme & ne prendre pour guide que 1'habi-
tude, la routine et ses petites pensées.

Avant d’exposer la nouvelle solution avec tous les dé-
veloppements qu’elle doit et qu’elle peut recevoir, je crois
devoir la réduire a sa plus simple expression.

Voici d’abord ’énoncé analytique et géométrique tour
a tour du probléme proposé. :

Enoncé analytique. On a trouvé une premiére valeur
approchée a de la plus petite « des racines réelles d'une
équation donnée f () =o, comprises entre a et A, et l'on
demande une seconde valeur plus approchée a, de cette
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méme racine «. [.a premiére valeur approchée a peut étre,
si 'on veut, la limite inférieure / des racines de l’é(jua-
tion proposée , limite que I'on calcule immédiatementy et
I'on peut prendre pour A la limite supérieure de ces
mémes racines.

Le probléme pourrait encore s’énoncer analytiquement
comme il suit : Etant donnée une premiére valeur appro-
chée adelaplus petite & des racines de I'équation f(x) = o,
former, en partant de « et de f(x) = o, une équation
du premier degré dont la racine unique «; soit une va-
leur plus approchée de z que a.

Enoncé géométrigue. La courbe représentée par I'équa-
tiony = f (x) passe parlepointM [x=a,y =b=f(a)],
ctl'on demande de mener une droite qui parte de ce méme
point, dont I'ordonnée soit toujours plus petite en valeur
numérique que I'ordonnée de la courbe, et qui, par con-
séquent, rencontre 'axe des x plus tot que la courbe
y =/ (x), ou en un point dount I'abscisse x = a, soit com-
prise entre x — a et x = a.

Disons-le franchement, cc probléme, si simple dans
son énoncé analytique ou géométrique , a épuisé, jusqu’en
1836, les forces des mathématiciens les plus habiles, et
Fourier en a fait implicitement le sujet d’un gros vo-
lume sans le résoudre! 11 est donc vrai que les difficul-
tés les plus abordables en elles-mémes, sont souvent cellcs
dont on triomphe le plus tard, et que le génie seul peut
les surmonter. Les bras tomberont aux lecteurs de cct
article quand nous leur aurons révélé le mot de 'énigme;
ils n’en croiront pas a leurs yeux, ils penseront peut-étre
que nous plaisantons.

Solution. Pour plus de simplicité, nous supposerons,
ce qui est toujours permis, que la racine a est positive,

etque f(a), ou 'ordonnée du point de départ, est elle-
méme positive.

Ann. de Mathémat. , t. X, (Janvier 1851 ) 2

)
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Posons

f(=)—f(a)

X —a

=F(x)

ER

ou

f(z)=/(a) + (z —a)F(z),
F (x) sera, comme on sait, une fonction entiére. Décom-
posons-la en deux parties, 'une ¢ (x) formée de I'en-

semble des termes positifs, autre y (x) formée de l'en-
semble des termes négatifs ; nous aurons

F(z)=¢(z)—x(=)
et chacune des parties ¢ (x), y (), prise séparément, croi-
tra indéfiniment avec x, ou quand x passera de la valeur
a & la valeur A. Dés lors, si 'on donne 4 x dans ¢ (x) ou
dans la somme des termes positifs sa plus petite valeura,
dans y () ou dans la somme des termes négatifs sa plus
grande valeur A, et que I'on prenne la différence
y(a)—y(A)=m,

cette diftérence sera, dans Pintervalle de e a A, toujours
inférieure aux valeurs de I (x) ; on aura donc
T) — o
F(z)>m, ou f—(—)————f(— >m,,

X =

et, par suite, puisque, dans Vintervalle dont il s’agit.
X — a est positif’,

S(@)> S la) -+ m (2 — a).

La founction donnée f'(x) et la fouction du premier de-
gré f (@) + m, (x — a) ont ainsi entre elles les relations
suivantes: 1° pour x= a, elles prennentla méme valeur
positive f'(a); 2° la fonction du premier degré, positive
au départ, a une valeur numérique toujours inférieure a
celle de f'(a); done, quand f (x) sera devenue zéro pour
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x = «, la quantité f (a) + m, (x — a) sera devenue né-
gative, aprés s’ étre évanouie pour une valeur a, de x com-
prise entre a et a , et donnée par I'équation
fla)+m(a,—a)=o0,
d’oulon tire
S(a)
a, = a—"—-=
m,

a, est précisément la seconde valeur plus approchée de la
racine . En désignant par a, , a;, a, ... des valeurs dé-
duites de a,, @,, a; comme a, I'a été de a, on obtiendra
une série de quantités

Fla) Sla) _ Sfla)

a,=a— —) a, = a, — ? a;=a,
m, m, m,

gy

qui approcheront de plus en plus de la plus petite racine a;
on pourra donc calculer cette racine avec tel degré d’ap-
proximationqu’on voudra.

Géométriguement. La droite y = f'(a) + m, (x — a)
part, comme la courbe y = f (x) du point x =a,
v = f'(a), et son ordonnée est constamment plus petite
que celle de la courbe; elle rencontrera donc I'axe: des x
plus tot, et I'abscisse de ce point de rencontre est la valeur
plus approchée de la racine o.

Si I'on se rappelle que la correction donnée par la mé-
thode de Newton est, dans le cas que nous avons consi-

déré, -—%,f’ (x) étant le polynome dérivé def'(x),

on verra que la nouvelle correction ne difiere de I'an-
cienne que par la substitution & f' (), de la différence
v (a) —y (A) aussi facile a calculer. Mais la nouvelle
correction est certaine, tandis que I'ancienne était sou-
vent incertaine, et éloignait quelquefois de la véritable
racine au lieu d’en rapprocher.
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On démontre facilement, et 'on trouve démontrée dans
plusieurs Algébres élémentaires, la formule suivante :

S(z)=f(a)+ z—a)f' [+ 0(x—a)],

6 (x —a) indiquant une fraction de (x—a), ou 6 un
nombre plus petit que I'unité. En comparant cette équa-
tion a celle qui définit I (x),

flz)=fla)+(z—a)¥F (z),

on voit quentre @ et A, la valeur de I" (x) est toujours
une des valeurs que prend la dérivée /' (x) dans ce méme
intervalle.

Si T'on décompose f'(x) comme on I'a fait de F' (x) cn
deux parties , 'une A () formée de I’ensemble des termes
positifs, 'autre — p. (x) formée de I'ensemble des termes
négatifs, on aura

fle)=2z)—ple), f(e)=7¥(x)— ().

De plus, comme la différencel’ (@) — 1’ (A) sera, dans
I'intervalle de a 4 A, plus petite que toutes les valeurs de
la dérivée; cette méme diflérence sera aussi toujours plus
petite que F (), etl'on pourra la prendre a la place de
m,. La correction devient alors

’ AL
V() = TA)

9

tandis que celle de Newton est

—fla)

V(a)—p'(a)’
la diflérence consiste donc dans la substitution de la limite
supérieure A a la limite inférieure a dans la somme des
termes négatifs; et cette substitution suffit pour que 'ap-
proximation, incertaine d’abord ou méme illusoire, de-
vienne certainc ct rigoureuse,
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Et voila le secret qui, pendant trois siecles, a cchapp(' a
toutes les investigations des geometres !

Considérons le cas particulier ou le polynéme dérivé
f'(x) est toujours croissant ou toujours décroissant entre
les limites a, A, c’est-a-dire le cas o le polynﬁme dérivé
de second ordre f” (x) est toujours posmf ou toujours né-
gatif. La valeur de départ }' (@) — p’ (a) dansle premier
cas, ou lorsque le polyndme dérivé est toujours positif; la
valeur d’arrivée )’ (A)—p' (A) dans le second cas, ou
lorsque le polyndome dérivé est toujours décroissant, seront
inférieures a toutes les valeurs de F () ; on pourra donc
faire

m=2x(a)— ¢ (a) ou m =7n"(A)—p (A),
et la correction sera

—fla) _ _ fla) —/f(a) f(a)

: = = ou ; T e— :
1 (a)—p'(a) S (a) M(A)—p'(A) T S(A)
ce sont précisément les corrections indiquées par Newton.
La nouvelle méthode, aussi simple en elle-méme et d’'une
efficacité absolue, comprend donc comme cas particulier
la méthode de Newton.

Mais existe-t-il un caractére analytique facile, auquel
on puisse reconnaitre siirement que la dérivée seconde est
toujours positive ou toujours négative? Oui, et ce carac-
tere, si longtemps poursuivi par Fourier, ressortsans peine
des considérations qui précédent. On a

£7(2) =V () = (2);
ctsil'on fait tour a tour, dans la somme des termes posi-

tifs x =a, x=A, dans la somme des termes négatifs
x = A, x = a,on obtiendra deux différences,

Xll(a) IIIA)’ XI/(A)__xll(a)’

dont la premiére est évidemment inférieure, la seconde
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évidemmentsupérieure a toutes les valeurs de ”(x) — u” (x)
oudef” (x),dans 'intervalle de @ 4 A : donc si ces deux
différences, I'uneinférieure, I'autre supérieure a toutes les
valeurs de la dérivée seconde, sont toutes deux de méme
signe, la dérivée seconde elle-méme conservera constam-
ment le méme signe; et, par conséquent , pour étre sir que
cette dérivée seconde est toujours positive ou toujours né-
gative, il suffit de voir si le rapport
2 (A)— ' a)
Va4 (&)

est positif's le caractére cherché est done

>0

Je ne sache pas qu'il y ait dans histoire des mathéma-
tiques un exemple plus frappant d’abord d’'une somme
¢norme de force vive dépensée presque en vain pour éta-
blir le plus facile des théorémes , pour résoudrele plus ac-
cessible des problémes ; puis, d’une inspiration plus heu-
reuse, d'un bonheur plus inoui. On avait construit un
levier immense pour soulever un atome qu’une paille suf-
tisait & jeter au vent! Je me trompe, la théorie des fonc-
tions symdtriques, que je rappelais au commencement de
cet article, est un fait de ce genre plus étonnant encore;
car, cette fois, le probléme était en lui-méme trés-ardu.
Ces inspirations, ces bonheurs arrivent surtout a M. Cau-
chy, et, qu'on daigne le croire, elles sont le caractére et
P’apanage du génie.

C’est une bonne legon de philosophie des sciences que
de faire remarquer les petits artifices de calcul, de décom-
position ou de raisonnement qui aménent ces grands
triomphes, ces succeés inespérés. La théorie et le calcul
des fonctions symétriques découlent de ceute remarque
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wes-ridicule en apparence : Si I'on divise un polynéme
entier F (a) par un autre polynéme entier f (a) nul en
valeur numérique, ou tel quel'on ait f(a) =o, le reste de'
la division sera égal a F (a).

Ce qui a rendu“possible et excessivement simple le cal -
cul d’une valeur certainement plus approchée de la racine,
ce qui a permis d’établir le caractére auquel on reconnait
que la méthode de Newton est applicable, ¢’est la décom-
position, au premier aspect sans portée, de F (x) en deux
parties, I'une ¢ (x) formée de la somme des termes posi-
tifs, Pautre y (x) formée de la somme des termes néga-
tifs.

Voila tout le secret, ou la clef qui a permis d’ouvrir .
ces trésors silongtemps cachés.

Il nous reste, et cela ne sera pas inutile, 2 donner une
védaction plus détaillée, plus compléte, plus savante
de cette excellente méthode que tous doivent connaitre,
admirer et pratiquer.

NOMBRES PREMIERS RELATIFS

(voir t. 1, p.466; t. IV, p.77);
Par M. A. GUILMIN, .
Professeur.

Prosrime. Trouver combien il y a de nombres pre-
miers avec un nombre N et moindres que N.

Lemme 1. Sil y a K nombres premiers avec un nom-
bre A et moindres que A, il y a mK nombres premiers
avec A et moindres que m.A.

En effet, A’ étant un nombre quelconque moindre
que A, pour que nA + A’ soit premier avec A, il faut
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et il suflit que A’ soit premier avec A. Par suite, entre
deux multiples consécutifs de A, nA et (n +1)A,ilya
K nombres premiers avec A. Or, par hypothése, de
o a Al yaK nombres premiers avec A;deoa 2A ilyen
adonc 2K,deoa3AilyenadK,.sdeoamAily
enamK.

Lemme 11. A étant un nombre quelconque, et p un
nombre premier absolu qui ne divise pas A,s’'il ya K
nombres premiers avec A et moindres que A, il y a
K (p — 1) nombres premiers avec A.p et moindres
que Ap.

En eflet, d’aprés le lemme 1, il y a Kp nombres
premiers avec A ¢t moindres que Ap; parmi ces Kp
nombres, il nous faut supprimer les multiples de p
_ premicrs avec A et moindres que A X< p. Or, pour qu'un
multiple n><p de p, soit premier avec A et moindre
que A, il faut et il suffit que » soit premier avec A et
moindre que A. Il nous suffit donc, pour obtenir les
multiples en question, de multiplier successivement p par
les K nombres qui sont premiers avec A et moindres
que A. Si parmi les Kp nombres, ci-dessus indiqués,
premiers avec A et moindres que A ><p, on supprime
ces K multiples de p, il reste Kp — K=K {p—1)
~nombres premiers avec A >< p et moindres que A ><p.
Nousg allons maintenant résoudre le probléme proposé.
Décomposons N en ses facteurs premiers, et soit

N=ua"brtcy....

Tout nombre premier avec N est premier avec abc, et
réciproquement ; de sorte qu’il nous suftit de chercher
combien il y a de nombres premiers avec abc et moindres
que N =abc>< a™'br='c77'....

Supposons qu’il y ait K nombres premiers avec abc et
moindres que abc; il v aura Ka"~!br~!1¢7=' nombres
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premiers avec abe et moindres que N (lemme I); il nous
faut trouver K.

Il y a a— 1 nombres premiers avec a et moindres
que @, savoir 1, 2,3,..., a—1.1l ya donc (a —1) (b —1)
nombres premiers avec ab et moindres que b (lemmelI);
ily a (a—1) (b —1) (¢c—1) nombres premiers avec
abc et moindres que abc.

K =(a—1) (b —1) (¢ —1), et, par suite, le nombre
demandé relatif & N est donc

(a —1)(b—1)(c—1)ar"br—tci—",

Note. Voir Gauss, Disquisitiones, § 38. Nous donne-
rons prochainement une formule, consignée dans Crelle,
pour trouver la somme d’une fonction symétrique des
nombres premiers a A et moindres que A. O.T.

SOLUTION DE LA QUESTION 52

(voir t. I, p. 520);

Par M. Armano HUE,
Professeur d’hydrographie a Bayonne.

La question doit étre rectifiée de la maniére suivante :
a, b, c éant les trois cotés d'un triangle sphérique, et
¢ Vexces sphérique, on a

a b c . e
1+ cos2a—+ cos2b + cos2c + 32cos‘; cos* ;cos’—sm’—
2 2

=cos(a—+b—+c)+ cos(a + b —c)+cos(a+c—b)
+cos(b +c—a).

Démonstration. On a d’abord, comme on sait,

¢=A+ B+ C—180°
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d’ou
., € A+B+C
sin ~ = — c0s ————

A+B+C a I'aide des formules con-

Développant cos

nues (Delambre),

a—b . a+b
cos — co
. A+B C A+ . C 2
Sin ——— == C0S —* s COS =sin—°+ ————9
2 2 2 C
.€Os — €Os —
2 2
il vient
. G C
sin — cos —
. e 2 2 a—b a+b
sin — = cos — cos H
2 c 2 2
cos — /
2

d’ou 'on tire
. ¢ ¢ .a . b
sin — cos — = sin —sin —sin G,
2 2 2 2

et, par suite,
. e c .a b
(1) sin’ — cos’ — == sin’— sin* —sin*C.
2 2 2 2

Exprimons sin®?C en fonction des cotés du triangle;
nous aurons

. (cosec— cosa cos b)?
sin’a sin?b

sin?C =1 — cos*C =1

(1—cos?a) (1— cos?b) — cos*c — cos*a cos*h -+ 2c08a cos b ¢

sin’a sin*b

I+ 2cosa cosb cosc — cos*a — cos*b — cos?c

sin’a sin*b

4 cosa cosbh cosc — cos 2a — cos2b — cos2¢—1

LLa . b a
32.sin?—sin? - cos®  cos®—
2 2 2
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Portant cette valeur dans l'équation (1), et réduisant,
on obtient

Wi

a b c .
14 cos 2d +c0s 25 + cos 2¢ + 32cos’;cos"; cos’E sin?

= cos(a+b-+c)—+cos(a + b—c)+cos(a+c—b)
+ cos (b +c—a).

= 4 cosa cosb cosc=2cos(a + b) cos ¢ + 2.cos(a — b) cose
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Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques
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RECHERCHES SUR LES DROILTS SUCCESSIFS DES ENFANTS NA-
tureLs; par M. Louis Gros, docteur en droit, avocat

a la Cour d’Appel dc Lyon. Paris, 1850; in-8° de

144 pages.

La question qui fait I'objet de ces Recherches a déja
été traitée dansles Nouvelles Annales, tomelV, page 253.
L’auteur, a la fois jurisconsulte et mathématicien, chose
rare (*), discute avec beaucoup de sagacité les opinions
de ses devanciers, et appuie les siennes propres par d’ex-

(*) Rare en France, mais pas en Europe. Ainsi, en Angleterre, le cé-
lébre lord Brougham, ancien avocat, cultive les hautes mathématiques
et ]a haute physique. Il y a encore d’autres personnages considérables en
ce pays qui se livrent aux sciences. L’Allemagne posséde Pillustre baron
Alexandre de Humboldt, et vient de perdre le célébre sélénographe Guil-
laume Beer, frére de I'illustre compositeur; il était banquier. Dans ’an-
cienne I'rance, le maitre des requétes Viéte, le président au Parlement
Fermat , le gentilhomme Descartes, le marquis de "Hépital, le financier
Pascal pére, le ventier Pascal fils, le rentier Desargues, le minime Mer-
senne, 'oratorien Mallebranche, étudiaient les mathématiques pour elles-
mémes. Aujourd’hui, nous ne les étudions que pour répondre & des examens
¢t nous ouvrir une carriére. Nos hommes de loisirs s’appliquent aux spé-
culations de Pambition'et de Ia fortune, et ne s’intéressent qu’aux sciences
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cellentes raisons. Le systéme qu’il propose nous parait
renfermer 'interprétation la plus raisonnable possible
d’un texte dont le législateur lui-méme ne semble pas
avoir bien calculé toute la portée.

D’aprés Varticle 757 du Code civil , « le droit de 'enfant
naturel sur les biens de ses pére et mére décédés est ré-
glé ainsi qu’il suit: sile pére ou la mére a laissé des
descendants légitimes, ce droit est d’un tiers de la por-
tion héréditaire que Uenfant naturel aurait cue s’il et
été légitime, etc. »

Quand il n’y a qu'un enfant naturel, 'application de
cetarticle ne souléve aucune difficulté. Aprés avoir donné
une régle pratique tréssimple pour opérer, dans ce cas,
le partage de la succession, M. Gros fait remarquer que
le rapport entre la part de I'enfant naturel et celle d'un
enfant légitime varie avec le nombre des enfants 1égi-
times : égal 4 ; quand il n’y en a qu’un de cette derniére
classe, il augmente, quand il y en a plusieurs , jusqu’a 1,
sa valeur limite.

M. Gros voit la, avec raison, une inconséquence du
législateur. « Lorsqu’on a reconnu, dit-il, que le respect
de la famille et les principes de moralité les plus essen-
tiels exigent que l'enfant naturel ait des droits moins

utiles a ces spéculations, L'utilisme dans les classes instruites et le com-
munisme dans les classes ignorantes, sont deux manifestations de la méme
doctrine : le matérialisme, 11 est singulier que cette doctrine dégradante,
qui place ’homme au-dessous de animal, car celui-ci n’est pas susceptible
de corruption, il est singulier que cette doctrine se soit répanduc no-
nobstant que nos philosophes arborent et font parader partout le drapeau
du spiritualisme, Toutefois, notre pays offre une honorable exception
dans la personne d’un éminent fonctionnaire qui a consacré un beau
talent au culte d’Uranie; nous espérons un jour entretenir nos lecteurs
d’une Astronomie ou la dynamique des cieux est poétiquement et fidéle~
ment racontée en vers de Yancienne France, par le célébre traductenr
d’Horace, par le comte Daru, ce grand administrateur auquel s’appliquent
&1 bien ces paroles de Velleius: Vir, ubi res ﬁigiliam exigeret, sane exsomuis,
providens atque agendi sciens (11, Lxxxvui. ). 0. TERQUENM,
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étendus que Venfant légitime, il faut, pour étre logique,
les comparer 'un & I'autre, établir une fois pour toutes,
par un chifire (ou coefficient) , le degré de défaveur qui
s’attache a ’enfant naturel , puis conserver soigneusement
ce rapport, quel que soit le nombre des enfants de I'une
ou l'autre classe. On ne peut, en effet, trouver aucune

raison pour le faire varier d’aprés le nombre des en-
fants (*). »

(*) La société n’a pas pour objet la perpétuité des individus comme chez
les animaux, mais la perpétuité d’esprits indéfiniment perfectionnables
par la culture morale et intellectuelle : double culture qui ne peut géné-
ralement s’obtenir que dans la famille. Avant toute chose, la société a
donc en vue la constitution et la perpétunité des familles qu’elle réunit et
protége par des lois. La plus fondamentale de ces lois est celle qui assure
aux enfants la transmission du travail patrimonial, des biens qu’il a eréés;
n’importe la forme , mobile ou immobile. L’homme ayant seul, sur notre
globe, le sentiment de Vavenir et de sa fin personnelle prochaine , l1a Pro-
vidence I’a doué en méme temps d’un désir irrésistible de travailler pour
un avenir qu’il ne verra pas, et de préparer a ses enfants un bien-étre
auquel il n’aura aucune part. Le bien-étre diminuant avec le nombre des
partageants, 1a lei s’oppose avec justice a Vintroduction des étrangers et ne
se montre indulgente que pour les enfants naturels reconnus. Le pére qui
introduit des enfants naturels fait tort a ses enfants légitimes, et le tort
est d’autant plus grand que le nombre de ces derniers est plus grand, car
rien que ce nombre suffit déja pour affaiblir leur part. Pour diminuer ce tort,
il faut quela part de la succession détournée vers une source étrangeére soit
en raison inverse, et du nombre des enfants légitimes, et du nombre des en-
fants naturels. Il semble que telle a été la pensée du législateur. Il ne
parle que d’un seul enfant naturel , est-ce adire qu’il ne connaissait pas
le cas ou il y aurait plusieurs enfants naturels? Supposition inadmis-
sible. Au fait, le législateur ne concéde qu’un seul enfant naturel, sauf,
q.uand il y en a plusieurs, a se partager entre eux cette part d’un enfant
unique. Soientn, I, les nombres des enfants naturels et légitimes. D’aprés le
I

Cod g enf: ———
ode, la partd’un seul enfant naturel est )

; dans le cas actuel, la

i
part de chaque enfant naturel est ————, et la part de chaque enfant

3n(1+1)
Jl+2

légitime est ——; ’ent: boiti indé-
g t STa Iy de sorte que la part de I’enfant légitime- est indé

pendante du nombre des enfants nés hors mariage. Telle semble étre Vin-

terprétation la plus naturclle de la pensée du législateur. 0. TERQUEM.
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Le Code d’Haiti est, en ce point, beaucoup plus ration-
nel que le notre : il donne, dans tous les cas, a I'enfant
naturel , le tiers de la part d’un enfant légitime; il pousse
méme la complaisance jusqu’a indiquer lui-méme la régle
a suivre pour opérer le partage.

Dans le cas de plusieurs enfants naturels, la législation
francaise donne lieu a4 de graves difficultés. Pour les
résoudre, plusieurs systémes ont été proposés, dont le
plus défectueux, nous devons le dire, est celui qui est
adopté dans la pratique (tome IV, page 255, note).

Voici maintenant ce que propose I’auteur.

Du texte de la loi et des discussions qui ont eu lieu a
ce sujet au Conseil d’Etat, M. Gros conclut que le légis-
lateur n’a pas prévu le cas ou plusieurs enfants natu-
rels viendraient réclamer la succession de leurs pére et
meére (*). Ceci admis, que faut-il faire ? Evidemment con-
server entre les deux sortes de parts le rapport établi par
le l1égislateur dans le cas qu'il a incontestablement prévu.

Pour obtenir ce résultat, M. Gros ne considére d’abord
qu'un enfant naturel et un enfant légitime, et, aprés avoir
fait le partage dans cette hypothése , il attribue aux autres
enfants naturels une part égale a celle prélevée par le pre-
mier. Mais comme, alors, la somme des parts surpasse-
rait la totalité de la succession, il les réduit proportion-
nellement, comme s’il s’agissait de répartir entre des
créanciers un actif inférieur a la somme de leurs créances.
C’est ce que M. Gros nomme le systéme de répartition.

L’auteur examine ensuite les autres systémes. Tous
font varier le rapport entre les deux sortes de parts, non-
seulement d’aprés le nombre des enfants légitimes, ce qui

(") Nous ne sommes pas compétent pour juger cette assertion, qui
nous parait la partic contestable du travail de M. Gros, Nous n’apprécions
que les conséquences. ProvHET,
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est inévitable , mais encore d’aprés le nombre des enfants
naturels , ce qui est arbitraire, puisque la loi ne fournit
aucunement les bases de cette seconde gradunation. Cette
seule remarque suffirait pour les réfuter; mais M. Gros
va plus loin : il s’attaque & leur principe, en démontre
le vice, et fait voir qu'en les rectifiant, on retombe tou-
jours sur le systéme de répartition.

L’ouvrage dont nous venons de donner une rapide ana-
lyse aurait gagné a un plus fréquent emploi des symboles
algébriques; mais il fallait étre entendu des juriscon-
sultes, et ces sortes de lecteurs s’effrayent plus volontiers
de deux pages de calcul que de vingt volumes de commen-
taires. FForce a donc été de recourir le plus souvent a des
exemples numériques, et de traduire en longues péri-
phrases quelques formules simples et élégantes. C’est une
imperfection , mais elle n’est pas imputable 8 M. Gros,
et, comme 'on dit au Palais, la responsabilité en doit
étre renvoyée a qui de droit (*) E. Prouner.

(*) Dans une note qui termine un premier travail sur le méme-sujet
(Revue de droit francais et étranger, tome 1°F), M. Gros faisait des ré-
flexions fort judicieuses sur l'utilité des mathématiques dans Vétude du
droit. Nous regrettons qu’il n’ait pas reproduit ce passage, qui est encore
et qui sera toujours plein d’a propos.
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GEOMETRIE DESCRIPTIVE. EXECUTION DES EPURES;
Par M. BARDIN,

Ancien éléve de PEcole Polytechnique.

« G éviter les dégon hés 4 de premiers essais,
» ou l'esprit n'a pour tout.aliment que les notions séches et
» abstraites de nombre et d'étendue? Les sciences physiques et
» les arts du dessin embrassent, presque dés leur origine.
» toutes les propriétés sensibles des corps; la main y exécute en
» méme temps que I'esprit y congoit ; et quoiqu'elles renferment
» peut-étre autant de difficultés réelles que les sciences mathéma-
» tiques, leur accés est moins pénible et leur culture promet des
» joui plus promp » Prony, Di s d'ouverture des
cours de I’an vi1 (1° cahier du Journal de I'Ecole Polytechnique ).

MON CHER CONFRERE,

Le dessin des projections, moyen a la fois expressif et
conventionnel de représenter les combinaisons sans nom-
bre de I’étendue figurée , est d’une utilité générale; nul
ne le conteste, et pourtant son enseignement n’a pas en-
core de régles. Cette écriture, universelle par sa nature
méme, n’a pas encore d’alphabet, ou plutdt ellen’a qu'un
alphabet incomplet et mal défini.

Dans le dessin d’inuitation, qu’on nomme aussi dessin
académique, Vartiste ne s'attache a rendre que ce qu'il
voit, que ce qui est en deca du contour apparent de I'objet
en ronde bosse qui pose devant lui. Le dessinateur
géomeétre, qui se propose un autre but que l'effet, qui ne
s'arréte pas a I’apparence des corps, figure dans ses pro-
jections non-seulement ce qu'il verrait de 'objet en relief
que sa pensée a concu , mais encore ce qu’il ne verrait pas,
si cet objet était réellement sous ses yeux. Et cela, sans
la moindre confusion, & I'aide d’'une convention aussi
simple qu'ingénieuse. Pour lui, les plans de projection
et les surfaces qu’il considére sont des étendues infiniment
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minces et transparentes, les corps solides eux-mémes
sont transparents; de sortc que les traces, les arétes, les
contours, les rencontres des surfaces entre elles, en un
mot, tout ce qui concourt a définir les grandeurs dans
I’espace et leurs positions relatives, est vu directement ou
par transparence, et écrit en conséquence sur les feuilles
de dessin. Dans les deux projections, images distinctes
d'un méme objet, ce qui se trouve au-dessus du plan
horizontal , ou en avant du plan vertical, ou en deca du
contour des surfaces, est figuré par un trait noir et con-
tinu, ou trait plein, en langage de dessinateur. Tandis
que les parties vues par transparence, et que par conven-
tion on appelle parties cachées, parce qu’elles sont sous
I'un des plans de projection ou derriére I'autre, ou parce
qu’elles sont derriére les contours des surfaces , sont figu-
rées par des lignes discontinues, a points ronds, égaux et
également espacés, qui constituent le ponctué dans le
dessin des projections (*).

On parvient ainsi, par le ponctué seul , 4 donner aux
épures de la géométrie descriptive toute la généralité des
conceptions de P'esprit; car les lignes, les plans, les sur-
faces courbes, indéfiniment prolongés dans tous les sens,
vont se contourner, se couper, sc toncher, sur le papier
comme dans U'espace. Une question est-elle susceptible de
plusieurs résultats, son épure les donne tous; et s’il en est
qui s’échappent de son cadre restreint, certains artifices
graphiques savent les y ramener.

Cette convention, caractére essentiel , spécifique, du
dessin des projections, est généralement négligée. Aussi

(*) Dans le dessin rapide, dans les calques, je remplace le plus sou-
vent le ponctué des parties cachées, qui est assez long a faire, par
un trait continu a I’encre de la Chine trés-pale, de maniére a figurer une
ligne éteinte par Veffet de 1a transparence.

Ann. de Mathémat., t. X. (Janvier 1851.) 3
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voit-on les plus grosses fautes commises par les éléves a
ce sujet. En voici une preuve : parmi les trois cent dix-
huit composmons mathemathues qul ont été corrlgees ct
jugées pour le. concours d’admission de 1850 a PEcole
Polytechnique, une seule épure était a peu prés irrépro-
chable en ce qui regarde la distinction des parties vues et
des parties cachées, du vu et du caché (*); une seule!
quoique les programmes du concours eussent signalé ce
point a I'attention des candidats, et en cussent fait méme
I'objet d’une prescription. Il est donc permis de conclure
de ce fait bien constaté que les éléves lisent mal dans Tes-
pace, ou dans les trois dimensions, selon I'expression
de Monge, et qu'ils s lnqmetent peu de tracer des épures
illisibles. On sait, en outre, qu'a 'Ecole Polytechmque ,
les éléves de premiére année ont beaucoup de peine a se
conformer a ce qu’on exige d’eux a cet égard.

Si J'insiste autant sur cet article, c’est que j’ai entendu
d’anciens éléves faire cetie question : A quoi sert la dis-
tinction des parties vues ct des parties cachées dans les
épures? — Et d’autres dire : Mais, de notre temps, cela
ne nous embarrassait guére.—Par une bonne raison, mes-
sieurs, c¢’est que vous n’avez pas ¢té mis aux prises avec
la_difficulté. Rappelez-vous que, depuis lorigine de
I’Ecole, candidats et éléves ont reproduit, Zneatim et
punctatim, les épures des premiéres promotions, de
nos antigues, d'une collection qui fut belle, originale ct
utile en son temps , mais qui, aprés avoir défrayé pendant
plus de cinquaute ans les planches d’'un grand nombre de
Traités de Géométrie, est devenue banale et insuffisante.
Ces épures gravées étaient distribuées aux éléves, qui, en
les reproduisant, se trouvaient affranchis de tout travail
de recherche quant au choix et 4 la bonne disposition des

(*) Comme on dit le nu en peinture et en dessin.
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données (*), et de toute attention quant  la distinction
du vu et du caché.

On ne voit plus aujourd’hui, a I’ Ecole Polytechmque,
les promotions -se succéder et s’engager dans la méme
orniére. On ne voit plus, chaque année, cent vingt éléves
intelligents, la plupart adroits de I'ceil et de la main,
résondre les mémes questions, aux mémes jours et aux
mémes heures, sur les mémes données, pour arriver aux
mémes résultats; produire les mémes épures , des épures
superposables , ne différant que par la signature de I'au-
teur, ou par un peu plus ou un péu moins de mérite dans
la ligne. On ne voit plus cela a PEcole Polylechmque,
mais on voit encore les candidats de toutes les institu-
tions se livrer 4 un travail de cette nature; facheux état
de choses qu’il est désirable de faire cesser!

Qu’on demande aux éléves de la promotion de 1849,
qui ont vu disparaitre sans regret cet enseignement,
s'il n’a pas été grand le résultat utile qu’ils ont tiré de
leurs épures rédigées d’aprés des programmes particu-
liers , ol Lout était a trouver et i exprimer par leur tra-
vail propre, le seul qui porte fruit et qui soit réellement
appréciable dans les classements. C’est que comprendre

(%) Lacroix dit, dans un excellent petit livre trop oublié : « J’ai tou-
jours soin de proposer aux éléves des questions ou les données, expri--
mées par des mesures connues ou résultant d’opérations déterminées,
sont isolées les uncs des autres. 11 faut d’abord qu’ils replacent ces
dornées dans leurs situations respectives; ce qu’ils ne peuvent faire
quand ils n’entendent pas les questions; ensuite qu’ils congoivent le
plan de la solution, et qu’ils ’exécutent en expliquant par eux-mémes
ce qu’ils ont entendu a la lecon. ¥Yai toujours vu.que, par cette marche,
ils se fortifient bien plus que lorsqu’on leur met sous les yeux I’épure,
c’est-a-dire la construction détaillée du probléme. La symétrie des
lignes dispense les paresseux, qui partout forment le plus grand nom-
bre, de la peine de réfléchir sur les préceptes qu’ils ont regus; et ils
copient leur épure sans Ventendre. » (Complément des Eléments d:
Géométrrie.)
3.

’
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ct savoir sont deux choses trés-différentes. En géométrie
descriptive, par exemple, c’est le travail graphique qui
donne le savoir, c’est-a-dire, le pouvoir de faire usage dans
la pratique de ce que I'on a appris. Les épures moins
nombreuses, mais plus générales et mieux étudiées,
plus laborieusement exécutées par la promotion de 1849,
ont mieux appris aux éléves a lire dans 'espace, faculié
précieuse qui a une grande influence dans les autres
parties de I'enseignement polytechnique. Ainsi ,—en phy-
sique, le dessinateur trouve des instruments de précision
d’un grand intérét, et de nombreux sujets empruntés aux
lois et aux effets de la réflexion et de la réfraction de la lu-
miére, et d’autres questions ou les fluides impondérables
vibrent, ondulent, se meuvent, et vont produire les effets
par lesquels ils manifestent leur mystérieuse existence.—
Dans la mécanique et dans les machines se présentent les
compositions et les décompositions de mouvement et de
force dans Vespace, les transformations de mouvement
qui appartiennent autant a la géométrie qu’a la méca-
nique, des questions de situation ol certaines piéces mo-
biles dans des espaces limités ont des formes et des dimen-
sions obligées ; on y rencontre la vis, I'un des principaux
organes des machines, I'une des variétés les plus intéres-
santes des formes héligoidales, etles engrenages, dontles
combinaisons si variées sont entiérement du ressort de la
géométrie. — L’architecture a ses grandes voites et leurs
ouvertures, ct leur division en caissons; ses escaliers, si
variés, si élégants, véritables vis en pierre ou en bois, qui
constituent une des applications les plus intéressantes du
dessin des projections, tant pour leur représentation que
pour leur exécution stéréotomique; ses colonnes lorses;
ses_formes rampantes,dans les frontons, les balustres, les
cages d’escalier.—L’astronomie, dans ses difficiles spécu-
lations, pourrait i elle seule défrayer en épures tout un
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cours de géométrie descriptive. — La géodésie, comimne
I’astronomie, a ses instruments d’observation, dont I'intel-
ligence par des dessins exige une grande habitude des pro-
jections , dont I'établissement par le constructeur et les
moyens de vérification et de correction par I'observateur
qui s’en sert, reposent sur des considérations trés-délicates
de physique et de géométrie; la gnomonique et le tracé
des coordonnées géographiques des cartes en dépendent.
— En chimie, les lois géométriques qui régissent la for-
mation des cristaux sont singuliérement facilitées a ceux
qui sont familiarisés avec les projections. — L’analyse,
elle-méme, se lie a la géométrie descriptive, qui donne les
moyens de représenter graphiquement la loi mathéma-
tigue renfermée dans une fonction a trois variables , ou
bien des lois naturelles, observées et consignées dans des
tables numériques. —Enfin, il y a les questions physico-
mathématiques, ou le calcul et le trait peuvent se com-
biner utilement, et avec élégance.

En résumé, I'enseignement graphique est revenu aux
programmes de Monge, si admirables d’ordre , de simpli-
cité et de variété, ou rien ne fait pressentir, ol rien ne
justifie 'enseignement stéréotypé de sessuccesseurs. Qu’on
¢n juge par cette citation des développements sur Uensei-
gnement adopté pour UEcole centrale des Travaux pu-
blics de 'an tx (*): « On le dit une fois pour toutes,
» les régles générales étant enseignées, il ne faut jamais
» que, dans la méme salle, deux éléves en fassent les
» mémes applications; car la construction des dessins et
» la correction qu'ils exigent, emploient un certain temps
» qui permet a chaque éléve de savoir non-seulement ce

(") « Précieux document ou Ja main de Monge est fortement em-

» preinte », dit Fourcy & la page 41 de son Histoire de I'Ecole Poly-
technique.
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» qu’il a fait, mais encore ce qu’ont fait tous ses cama-
» rades de la méme salle, et en variant les exemples dans
» une méme salle publique, on produit le méme effet que
» si l'on décuplait le temps dans une école particuliére. »
Et plus loin, a propos du dessin des principales machines
employées dans les travaux publics : « On distribuera les
» objets de maniére que, dans la méme salle, deux éléves
» n’aient pasla méme machine a dessiner, afin que, dans
» cette salle, on ait la connaissance d’un plus grand
» nombre de machines. » — Pensée qui se reproduit en
plus d'un autre endroit.

Les éléves entrent aujourd’hui dans les salles d’étude
de I'Ecole Polytechnique, non plus pour y entasser les
unes sur les autres des épures faciles, insignifiantes
méme, pour tirer la ligrne, mais pour y apprendre a tra-
vailler comme on travaille dans les services publics, dans
la vie pratique, et pour s’y enrichir réciproquement de
I'expérience acquise des uns et des autres.

Permettez-moi maintenant, mon cher confrére, d’ap-
peler votre attention sur quelques autres points, afin que
je puisse porter dans votre esprit une conviction qui vous
engage & m’ouvrir les pages de vos .4nnales. Qu'on nc
prétende pas que ce sont la de petites choses. Y a-t-il
d’ailleurs rien de petit en vue d’un but qui a son impor-
tance ct son utilité bien reconnues ?

Dans chaque projection , avons-nous dit, les données
et les résultats qui existent réellement sont figurés en
noir, en plein ou en ponctué, selon que ces grandeurs
sont vues ou cachées. Mais il existe dans les épures une
autre espéce de lignes trés-nombreuses, qui constituent les
quatre cinquiémes du travail graphique, et qui, sous le
nom de lignes auxiliaires ou de construction, servent a
réaliser les opérations par lesquelles on passe des données
d’upe question aux résultats.
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Revenez, par la pensée, aux épures d'il y a quelques
années , et voyez-les tellement chargées de lignes de con-
struction, qu'on les comparait 4 des toiles d’araignée (*).
Rappelez-vous que ces construclions, entassées comme 2
plaisir, étaient en pointillé, c’est-a-dire a points longs ,
égaux et également espacés, ou a points longs, séparés
par un ou plusieurs points ronds, ce qui produisait un
travail dont on ne peut bien apprécier la longueur ct la
fatigue qu’aprés y avoir été condamné. Ce pointillé,
simple ou mixte, emprunt malheureux fait a la gravure,
rendait rebutant un travail tout manuel qu’on ne saurait,
au contraire, rendre trop facile. Il a disparu des dessins
manuscrits de 'Ecole Polytechnique, et la vue des éléves,
qui dessinent dans des salles les plus mal éclairées peut-étre
de toutes les écoles du Gouvernement, s'en trouve bien.
I.es lignes de construction, véritables lignes idéales, puis-
«(qu’on pourrait les enlever aprés avoir obtenu le résultat ,
sont d’une autre couleur que les données et les résultats ;
clles sont en trait rouge de carmin, continu et léger. Il im-
porte maintenant de faire disparaitre le pointillé des exer-
cices graphiques des candidats,, de substituer aux planches
en noir du graveur les épures & deux couleurs (noir et
rouge), ct méme les épures a trois couleurs (noir, rouge
ct bleu), qui se prétent 4 d’intéressantes combinaisons.
Telles sont les épures, véritables résumés, ou les cas
principaux d’une méme question générale, par exemple
I'intersection de deux cylindres, sont réunis sans con-
fusion et sans grand travail : pénétration avec courbe
d’entrée et courbe de sortie distinctes, pénétration avec

(") Lacroix, dans la préface du Complément des Eléments de Géométrie,
dit: «Des figures chargées de toutes les lignes de construction sont aux
» planches d’un Traité de Géométrie ce que des minutes de calcul sont
» aux exemples d’un Traité d’Arithmétique. »
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point multiple, arrachement. — L’épure des sections
planes du cone en présente un autre exemple.

Résumons : Dans le dessin des projections, toute ligne
noire représente une trace, un contour, une aréte, une
grandeur qui existe réellement, nécessairement, parce
qu’elle tient a la forme ou & la situation, aux données ou
aux résultats. Cette ligne est pleine ou ponctuée, selon
qu’elle est vue ou cachée dans telle ou telle projection.
Toute ligne rouge représente une ligne auxiliaire, ap-
partenant au systéme des constructions, systéme dont
les détails peuvent et doivent &tre supprimés en partie.
— Tels sont les signes, bien peu nombreux et pourtant
suffisants du dessin des projections. Je voudrais qu'on y
ajoutat cette convention, qui n’aurait, je crois, que des
avantages : Tout résultat sera d’un trait un peu plus fort
que les données. Enfin, je compléterais notre alphabet
cn y introduisant le pointillé , mais seulement dans quel-
ques cas, comme pour garder la trace ou le souvenir de
lignes montrant certain état de continuité ou de liaison,
certaines extensions nécessaires, certaines particularités
dont le détail ne saurait trouver place ici. Cela étant, le
dessin des projections pourrait aborder et rendre, de la
maniére la plus satisfaisante, la solution de toutes les
questions de géométrie, abstraite ou appliquée.

Récemment on a introduit 4 U'Ecole Polytechnique ,
dans la mise & l’encre des épures au crayon, une amé-
lioration non moins réelle que la précédente. On a réduit
ce travail manuel & sa plus simple expression, en posant
en principe qu'une épure est compléte, achevée, lors-
qu’elle renferme tout ce qui est nécessaire pour l'intelli-
gence et 'explication dela solution de la question propo-
sée; rien de plus, rien de moins. On ne voit plus de ces
épures ou les mémes constructions étaient répétées jus-
qu’a satiété, de ces redites comparables au verbiage d'un
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parleur a vide, qui avaient le grave inconvénient de
nuire a la clarté, sans laquelle une épure est difficile, pé-
nible 2 lire, quand elle n’est pas illisible.

Par la on a gagné un temps précieux que l'on con-

sacre a la partie géométrique, c’est-a-dire & discuter les
questions , & bien disposer les données, a construire des
épures claires, originales et instructives. — « La géomé-
» trie nouvelle, dit M. Charles Dupin , par ses considé-
» rations intellectuelles et par ses opérations graphiques,
» -est éminemment propre a fortifier la raison et a per-
» fectionnerles sens (*). » —L’imprévu, dans la solution
graphique des différents cas d’une méme question géné-
rale, ou le dessinateur géométre lance a son gré les
JSormes dans Uespace, conduit souvent les éléves et, par
suite, le professeur & d’intéressantes discussions. 1l est
bien constaté qu'on lui doit plus d'une heureuse ren-
contre, que rien ne faisait soupconner? Monge et, aprés
lui, Hachette, et bien d’autres encore, ont trouvé dans les
épures d’'ombres, de perspective et de stéréotomie plus
d’une difficulté géoméirique a résoudre. « Cest aux re-
» cherches que les accidents curicux des ombres ont pro-
» voquées, dit Eisenmann (**), que nous devons une
» grande partie des progrés dela science, et particuliére-
» ment des surfaces développables. »

Jarrive aux épures muettes, au sujet desquelles il
existe un préjugé ficheux. Les éléves disent journelle-
ment : Les écritures gatent les épures.—Cela est vrai des
¢eritures mal faites. Le dessin le plus soigné perd, en
eflfet, tout son meérite d’exécution graphique cous I'in-
fluence de V'écriture cursive de la trés-grande majorité des

(*) Essai historigue sur les services et les travaux scientifigues de G. Monge,
page 19.
(**) 4 Cahier du Journal de Ecole Polytechnigue, page 621.
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éléves a qui les rlevoirs des humanités ont enlevé tout ta-
lent calligraphique. Mais les écritures bien faites, en
lettres linéaires et dessinées, genre facile 4 acquérir par
tous, n’ont jamais gdré une épure; elles larelévent méme
quand sa mise a I'encre laisse quelque chose a désirer ; bien
plus, elles la complétent par des indications nécessaires,
indispensables, sans lesquelles elle pourrait étre comparée
aun rébus difficile & deviner par tous les lecteurs, méme
par I'auteur appelé a la lire aprés un certain laps de temps.

D’ou vient cette opinion erronée, qu'une épure n’a pas
besoin d’indications écrites, pas méme d’un titre, qu'elle
se litd’elle-méme, seulement avec plus on moins de faci-
lité, selon que le lecteur est plus ou moins exercé ? Cette
erreur vient du long régne de I'ancienne collection de
I'Ecole, de ces épures types, sacramentelles en quelque
sorte,, qu’on exécutait religiensement de Bayonne a Metz,
de Rennes a Strasbourg, qu’on savait par cceur, qu’on
lisait &4 premiére vue, couramment, et qui, par consé-
quent, n’avaient besoin d’aucun secours, pas méme d'un
titre. Mais que ’on sorte de ce recueil, que 'on prenne
seulement 1’épure de l'intersection de deux surfaces co-
niques, considérée dans toute sa généralité,, pouvant don-
ner lieu a quatre branches hyperboliques, ou a deux
branches hyperboliques et 4 une branche parabolique...,
et qu'on dise si une telle épure peut se passer d’indica-
tions écrites, si elle peut étre muette.

Jaurais déja di vous parler de la solution au crayon ;
j’ai dit plus haut de I'épure au crayon. Cest qu’en effet,
faute dc temps ou par d’autres motifs, on peut étre obli-
gé d’arréter 1a son travail, qui souvent suffit & cet état.
Mais cela suppose qu’on a eu le soin de ne pas tracer une
foule de lignes inutiles, qui 6tent audessin la clarté,
qualité encore plus difficile 2 obtenir au crayon qu'a
I’encre. Ce soin, je le recommande expressément, afin
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que tout éléve, méme le moins habile, puisse terminer
complétement ses épures au crayon. Je vais plus loin, je
pose comme régle absolue qu’on nedoit jamais mettre une
épure a I'encre que lorsque la solution au crayon est en-
tiérement terminée, le résultat bien épuré, le vu et le
caché arrétés dans chaque projection, de maniére qu’elle
puisse, au besoin, étre mise & I'encre par un autre des-
sinateur, ou rester au crayon. C’est alors que la mise &
I'encre devient ce qu’elle doit étre, un simple travail ma-
nuel, une reproduction, servile si I’on veut, d’'un pre-
mier travail, mais assurée contre les grattages et contre
des mécomptes qui conduisent, sans profit et avec dégoiit,
a rccommencer une ceuvre que tout semblait annoncer
terminée.

Puis-je ne pas vous soumettre quelques observations
sur le mode ‘méme de l'enseignement oral, auquel je
trouve plus d'un défaut? Le premier, c’est quon y ex-
plique des épures, rien que des épures, et non une doc-
trine, celle de Monge. Il résulte de 14 que les éléves n’ont
apprisarésoudre qu'un certain nombre dequestions, et non
I'art de résoudre les questions, et que, pour eux, toute
la géométrie descriptive est dans leur cahier d’épures. Le
second, c’est qu'on Jeconne trop, qu’on me pardonne ce
barbarisme , et que Pexplication de ces épures est telle-
ment détaillée, minutieuse, que tout y est prévu, noté;
c’est que ces épures, déja disséquées aux lecons, sont re-
prises au tableau dans les salles d’étude, puis reportées
sur le papier en présence des modéles gravés, et enfin
dessinées de nouveau aux interrogations. De sorte que,
chose presque incroyable, 'enseignement par la mémoire
4 pénétré jusque dans la science de ’étendue, dans une
partic ou linvasion paraissait impossible. Que peut
produire un tel état de choses? Des dessinateurs routi-
niers, craintifs, qu'un rien arréte, parce qu’ils sont sans
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initiative et sans expérience des difficultés; trop souvent
aussi des éléves prévenus contre un art discrédité par son
enseignement, contre une partie dont I'utilité, je le ré-
péte avec tous mes anciens camarades, est de tous les
instants. De la un défaut originel que les candidats appor-
tent avec eux en entrant 3 I'Ecole Polytechnique, ou il
n'était pas combattu et qu'ils conservaient dans les écoles
d’application, et jusque dans les services publics.

Les épreuves d’autrefois , qu'on appclait des concours,
dans lesquelles les éléves, jusqu’alors tenus en lisiére,
étaient abandounés a leurs propres forces, ont toujours
produit des résultats qui prouvaient d’une maniére irré-
cusable la faiblesse des éléves et la mauvaise direction de
I'enseignement de la géométrie descriptive. .

Il me reste a dire, & propos de I'enseignement oral,
que Monge s’appliquait avec soin a faire des rapproche-
ments entre ’analyse des trois dimensions et la méthode
des projections, et que cela n’a plus lieu. « Monge, pro-
» fesseur au Louvre, montrait quelles relations admira-
» bles unissent les opérations de I'analyse et de la géomé-
» trie (¥). »

On néglige aussi l'emploi des projections auxi-
liaires (**), qui sont a la fois un moyen de simplifier la
solution de beaucoup de questions dans lesquelles les
données sont quelconques, et un exercice graphique trés-
utile. Les programmes de la composition mathématique
pour le concours d’admission de cette année, en ont pré-
senté plusieurs exemples. 1l serait regrettable que cet
avertissement passat inaper¢u. Dans la détermination des

(*) Essai historique sur les services et les travaur scientifiques de G, Monge
(page 11); par M. Charles Dupin.

(**) Ce sont les changements de plan de projection de la géométrie de
M. Théodore Olivier.
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.
ombres linéaires sur la surface des corps, dans les épures
de charpenterie surtout, on a le plus souvent recours
a une troisiéme projection, quelquefois méme i une
quatriéme.

Enfin, on néglige 'étude des formes polyédr ales pour
s’attacher presque exclusivement aux formes continues:
ce dont on s’apercoit & I'Ecole Polylechmque, ou P'ensei-
gnement de la charpenterie, qui traite de formes disconti-
nues, a toujours présenté plus de difficulté que celui de la
coupe des pierres. 11 serait bon, aprés les généralités sur
la ligne droite et le plan, d’étudier un peu les polyédres,
au lieu de s’arréter & la perpendiculaire auplanet a la
plus courte distance entre deux droites, comme on le fait
généralement.

Je dirai seulement, quant a la rédaction des textes
de la géométrie descriptive, que c’est un travail qui me
parait laisser beaucoup a désirer. Les compositions de
cette année en ont fourni une preuve convaincante. Je
crois qu’il pourrait y avoir la quelques régles a donner.

Enfin, je voudrais, si je n’étais déja trop long, vous
parler de certaines parties de l’enseignement, parties
trés-secondaires , dont on est surpris de trouver le pre-
mier apprentissage a I’ Ecole Polytechnique. — Je vous le
demande : est-il convenable de n’apprendre qu’a dix-neuf
aus (4ge moyen des candidats a leur entrée 4 I'Ecole), I'art
si facile de dessiner des lettres linéaires (*), genre d’écri-
ture qui convient aux épures, au dessin architectural,
au dessin des machines, en un mot, a tous les genres,
a la seule exception du dessin topographique, qui ne
comporte que les lettres moulées , bien autrement diffi-
ciles a faire que les lettres simplement dessinées par

(™) Lettres sans pleins ni déliés, qu’on nomme, en typographie, lettres
maigres,
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un trait présentant leur forme générale ! — Pourquoi le
dessin en croquis, le dessin cursif, est-il complétement
oublié dansl’enseignement préparatoire, malgré son utilité
non moins grande que celle du dessin a la régle et au com-
pas, pour préparer aux croquis de I'architecture et des ma-
chines, pour suivre facilement les professeurs aux lecons,
et, surtout, pour discuter rapidement le choix et les dispo-
sitions des données des épures, étude préliminaire sans la-
quelle les éléves perdent beaucoup de temps dans leurs
essais a la régle et au compas, qui ne sont pas des instru-
ments de titonnement? Je ne parle pas du découragement
que ces essais infructucux leur causent trop souvent.—
Pourquoi ne trouve-t-on pas, avant I’école, des exercices
sur le maniement de la plume? Je nc pense pas qu’on
regarde comme une préparation suffisante les quelques
courbes que les candidats ont a tracer sur leurs épures.
D’ailleurs elles sont presque toutes mises a I'encre avec
le guide-courbe, vulgairement appelé pistolct. Aussi avec
quel soin les éléves comptent les courbes et les évitent! Je
ne proscris pas d’'une maniére absolue le pistolet, qui a
son utilité et ses applications propres ; mais je ne 'admets
qu'a coté d'exercices spéciaux sur le manjement de la
plume, etc.

Qui ne sait qu’il y a de ces choses qu'on ne doit pas
commencer trop tard , sous peine de les croire au-dessous
de soi, ou tout au moins de ne les faire qu’avec unc
certaine répugnance? Il est aussi de ces détails qui ne
peuvent {tre abordés dans un amphithéatre , tant ils
sont simples et minutieux , qui appartiennent a ce que
Pon pourrait appeler I'enseignement familier.

Je ne vous parlerai pas du dessin d’imitation, bien
qu'il se rattache de prés au dessin des projections ; c’est
un sujet important qui ne saurait étre traité incidemment.

" 11 faudrait considérer cette imitation libre des corps non
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susceptibles de définition exacte (*), comme art d’agré-
ment, avant 'Ecole Polytechmque et 3 I'Ecole, comme
art mixte, si je puis m’exprimer ainsi. De chacun de ces
points de vue, son enseignement me parait mcomplet et
mal dirigé. A I'Ecole Polytechnique, par exemple, ou le
mérite des maitres offre certainement toutes les garanties
de succés, on s’étonne de voir un résultat utile si peu en
rapport avec le temps qui consacré au dessin d’imitation,
et avec la dépense qu’entrainent ses le¢ons de nuit. Et puis,
n’est-il pas regrettable de n’y trouver aucune liaison
entre les ombres linéaires et la perspective linéaire des
exercices graphiques, et les études de perspective, d’ombre
et de couleur dela salle de dessin ? de n’y pas trouver non
plus le dessin d’ornement que Monge, savant et artiste,
avait mis avec tant de raison dans ses programmes? etc.
— Ce que je prendais surtout a partie, si je pouvais m’oc-
cuper de ce sujet, ce serail son enseignement par copie
qui régne partout, et dont le facheux effet s’étend plus
loin qu’on ne pense.

Que si ces observations, ces critiques, vous paraissent
fondées, mon cher confrére, prenez-en votre part de
responsabilité en leur donnant place dans vos Annales.
En méme temps, vous m’autoriscrez a vous offrir quel-
ques conseils sur la partie graphique de I'enseignement
de la géométrie descriptive.

Note. Naguére, croyant a la pudeur, je ne croyais pas que 1’on oserait,
dans le haut enseignement, remplacer la mécanique des Lagrange par
le verbiage industriel de nos machinistes; je commettais une double
erreur, Aujourdhui, il est question de remplacer en Sorbonne le calcu}
des probabilités par un cours 4 Pusage des charpentiers. Maintenant, je
crois tout. Les publicains régnent dans le temple. O. TERQUEM.

Y Journal de U'Ecole Polytechnique, 1°¢ Cahier,
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Sor les résultats de la substitation d’une suite de nombres équidistants
dans une fonction entitre d’une seule variable. — Application a la
séparation des racines d’une équation du troisitme degré. — Formules
dinterpolation (*);

Par M. JuLes VIEILLE.

1. Soit y = f(x) une fonction quelconque de la va-
riable x ; si I'on y remplace x par x + %, la différence
@+ ) — f(a)
se nomme différence premiére de la fonction y, et on la
représente par A y. Cette différence est elle-méme une
fonction de x (en général) ; et si I'on donne i la variable
un nouvel accroissement égal a &, la différence premiére

de Ay, ou
Fla +2h)—f(z+h) = /(2 + 1) — f(=)],

se nomme différence deuxiéme de la fonction y ; on la
représente par A%y.

Dc méme la différence premiére de A® y est dite diffé-
rence troisieme de y ou Ay et ainsi de suite.

11 résulte de cette définition que la différence m¥™ de
la différencenn®" d’une fonction est la différence (in—-rn)i=
de cette fonction

A7 Aty = ATy

2. Trtorime. La dgﬁ"érence m'm d'une fonction en-

{*) En rédigeant cette Note, nous n’avons eu d’autre but que de rem-
plir une lacune des Traités élémentaires d’Algébre, et de fournir la
solution de plusieurs questions renfermées dans le nouveau Programme
&Ladmission a Ecole Polytechnigue.
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tiere du degré m,
y=Az"+Bx™' 4+ .,  +Kzr+ 1L,

est constante, et égale a 1.2.3.. .mAh™.

On a

8y = A[(%+ hm — )+ B[ (2 h)" — zm= ]

Sans développer toutes ces puissances, il suffit de remar-
quer que Ay sera un polynéme du degré m — 1 ayant
pour premier terme m A x™~'h, lequel se déduit du pre-
mier terme de y, en multipliant A par Pexposant de x
dans ce terme, diminuant Uexposant de x d’une unité,
et augmentant celui de h d’'une unité. 1l en résulte que

A’y est un polynéme du degré m — 2, ayant pour pre-
mier terme ’

m(m—1)Az"2h%;
A*y est du degré m — 3 et a pour premier terme
m(m—1)(m—2)Azmh3;

A"~y scra du premier degré en x, et son preimier terme
sera

m(m—1)...3:2Az. k"
enfin A"y sera égal a une constante
A"y =1.2...mAM". C.Q.F.D.,
g

Corollaire 1. 81 A =1, h=1. La différence de
I'ordre m sc réduit a

1.2.3...m.
Par exemple, si dans les fonctions du troisiéme degré
y=a—3zx+1, y=w*—67—1, y=2+azr*+bz—+c,

on substitue des nombres entiers consécutifs, on aura
constamment
Ay =1.2.3=0.
Ann. de Mathémat., . X. (Février 1851 4
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Corollaire 2. Soient y¢, ¥1,¥s,)s,- .. les différentes
valeurs que recoit une fonction entiére de x , du degré m,
quand on y remplace x par les nombres équidistants

Zyy, ZTo+h, x 42k, 20+ 3hk;

si 'on retranche chaque terme du suivant, on aura une
suite de différences premiéres , généralement inégales,

Ayo=)1—Yey BYi=0):—0), A)2=Y3—02....
Si l’en retranche ensuite chacune de ces différences de la
suivante , on aura la suite des différences deuxiémes
Ay, = Ay, —Ay,, A'yi=Ay,—O0y,....

En continuant ainsi jusqu’a 'ordre m, on aura des diffé-
rences m"* toutes égales entre elles et a la constante

1.2.3.. mAIm.

Applications.

4. Formation des puissances des nombres entiers
consécutifs.

Supposons qu’il s’agisse de calculer la suite des cubes
des nombres entiers. Ici la fonction y = x°; on calcu-
lera directement trois valcurs de y, c’est-a-dire trois cubes
consécutifs seulement, et I'on choisira de préférence ceux

%des nombres o, 1, 2; on conclut de ces trois cubes
(o, 1, 8), les deux différences premiéres

A(o*)=1, &(1*)=n1,
puis de ces deux différences, la différence deuxiéme
A (03) — 6 5
.

(uant a la différence troisiéme, elle est constante et égale
a 1.2.3=6. Cela posé, on formera, par additions succes-
sives de ce dernier nombre, la suite des différences

deuxiémes, puis de celles-ci on passera, toujours par voie
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d’addition, & la suite des différences premiéres ; enfin de
ces derniéres a la suite des cubes demandés.

Voici la disposition des calculs.

DIFFERENCES | DIFFERENCES | DIFFERENCES |
premiéres. | deuxiémes. | troisiémes.

NOMBRES .

(=}

1
2
3
4
>

G

<o WP~

Pl

Cette méthode est applicable avec avantage au calcul
des puissances de tous les degrés des nombres entiers
consécutifs ; pour les puissances cinquiémes par exemple,
on devrait d’abord former directement cing puissances
consécutives. On pourra choisir celles des nombres — 2,
— 1,0, 1, 2.

5. Etant donnée une fonction entiére du m™ degré, i
suffira de calculer directement les résultats de la substn
tution de » nombres entiers consécutifs, pour en dé-
duire, au moyen des différences, ceux de tous les autres
nombres entiers, positifs ou négatifs.

Soit, par exemple, la fonction du troisiéme degré

y=x+r11z’—102z +181;
on partira des nombres — 1, 0, + 1.

z=-—1 donne y_,= + 293,
r=o donne y, = + 181,
x= +1 donne y, =+ g1;
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on en conclut
A(y—)=— 112,

. A(ye)=—go;
puis
A (y_,) = + 22:
on ad’ailleurs
' A (y_.)=6.

Cela posé,, pour avoir les résultats de la substitution des
nombres entiers et positifs 2, 3, 4, 5,..., on procédera,
comme ci-dessus, par additions successives, en remon-
tant des différences troisi¢émes aux différences deuxiémes,
de celles-ci aux différences premiéres, enfin de ces der-
niéres aux valeurs cherchées de la fonction.

Tableau des calculs.

S EEEEE:

+ 2
+
+
+
+
+
+
+

A partir de x = 3, il est évident, par ce tableau, que
les résultats des substitutions seront constamment posi-
tifs et croissants; on aura les résultats de la substitution
des nombres négatifs — 2, — 3, — 4, — 5, ..., en pro-
cédant par soustractions successives au lieu d’additions.
En effet, on voit que, pour remonter d’une ligne horizon-
tale du tableau ci-dessus & la ligne supérieure, parv
cxemple de la ligne qui répond a x = 4 a celle qui ré-
pond a.x = 3, il faut retrancher 6 de 52, ce qui donne
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46, puis 46 de 58, ce qui donne 12, puis 1a de 13, ce
qui donne 1. En suivant cette loi , on passera des nombres
relatifs 4 — 1 & ceux relatifs 3 — 2, puis de ces derniers
a ceux relatifs 8 — 3, et ainsi de suite. On trouve ainsi
pour la fonction des valeurs positives, tant que x est su-
périeur 4 — 18. x = — 17 donne y = 181, et x = —18
donne y = — 251; a partir de — 18, si x continue a dé-
croitre, les résultats de la substitution seront constam-
ment négatifs.

Application & la séparation des racines d’une équation
du troisiéme degré.

6. Les calculs précédents n’ont manifesté qu'un seul
changement de signe pour la fonction y, et ce changement
a lieu lorsque la variable x passe dc — 17 a — 18. Il en
résulte que ’équation
(1) &+ 112t — 1022 + 181 = o (*)

a une racine négalive comprise entre — 17 et — 18 elle
ne peut d’ailleursavoir qu’une seule racine négative, puis-
que la transformée en (— x) n'offre qu’une variation.
[On aurait pu, sans passer par toutes les substitutions
précédentes , déterminer plus simplement les deux nom-
bres entiers entre lesquels est comprise la racine néga-
live, en remarquant que le premier membre de I'équation
peut s'écrire '
z(x—6)(x+ 17)+ 181,

et cette forme manifeste le changement de signe unique
qui alieu de xr=— 174 = —18].

Outre la racine réelle négative que nous venons de sé-

(") Cette équation est celle a laquelle M. Sturm a appliqué son
théoréme : nous la choisissons, afin que Pon puisse plus commodément
comparer les deux modes de calculs.
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parer, l'équation (1) peut admettre deux racines réelles
positives. Mais nos calculs ne nous fournissent aucune
conclusion sur I'existence de ces racines. Nous pouvons
seulement dire que, si elles existent, elles sont com-
prises toutes deux entre deux nombres entiers consécutifs;
et comme la substitution de x = 3 a donné pour résul-
tat 1, nombre beaucoup plus petit que ceux fournis par
les substitutions qui précédent et qui suivent, on serait
conduit a chercher les deux racines entre 2 et 3 ou entre
3 et 4.

1l ne faudrait pas dire que 3 est une limite supérieure
des racines positives, en se fondant sur ce que, a partir
de x =3, le tableau des différences fait voir que les ré-
sultats des substitutions seront toujours positifs et crois-
sants.

En effet, de ce que les nombres entiers 3, 4, 5,...,
font prendre a la fonction (x*+ 11x*— 1022 + 181)
des valeurs croissantes, il n’en résulte pas que la fonction
ne puisse décroitre et passer par zéro pour des valeurs
de x comprises entre deux d’entre eux. La représentation
graphique des valeurs de la fonction ne laisse aucun doute
sur la fausseté de cette conclusion. La courbe dont ces
valeurs sont les ordonnées, peut couper 'axe des x en
deux points dont les abscisses sont comprises entre deux
nombres entiers conséculifs, ¢t 'on remarquera qu’entre
ces abscisses tombe celle d'un point de la courbe dont
I'ordonnée, abstraction faite du signe, est un maximum.
L’abscisse de ce point satisfait a 'équation

F(a)=o,
f'(x) désignant la dérivée de la fonction proposée,
c’est-a-dire que les deux racines positives de l'équa-

tion (1) , si elles existent, sont séparées par une racine de
Péquation qu’on obtient en égalant a zéro la dérivée
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de son premier membre [ cas particulier du théoréme de
Rolle (*) ]

7. Le plus souvent, dans les applications ot I'on est
conduit a résoudre une équation numérique du troisiéme
degré, on sait d’avance si 'équation comporte une ou
trois racines réelles. La considération de V'éguation dé-
rivée suffit alors pour séparer rigoureusecment les racines
de I'équation. Elle supplée avec avantage (pour le troi-
sieme degré) a la méthode de¢ M. Sturm ; sans elle, et en
se bornant a la substitution de nombres équidistants, on
s'exposc a faire des tatonnements inutiles.

Dans le cas qui nous occupe, I'équation dérivée est

3x* 4 222 — 102 = 0,

et sa racine positive est

— i+ VF5

3 =3,221. ..

Donc, si I'on admet que 'équation (1) ait deux racines
positives, 'une sera plus grande que 3,2, et Pautre plus
petite que 3,3; et comme on sait déja qu’elles sont com-
prises entre deux nombres entiers consécutifs, c’est entre
3 et 4 qu'il faut les chercher. _

8. Pour les séparer, nous allons substituer dans la

. .. 1
fonction y des nombres équidistants de TS entre 3 et 4.
En procédant ainsi, nous aurons I'avantage d’obtenir la
, . \ . . I
valeur approchée de chaque racine & moinsde —-
10

Il convient de continuer la méthode de calcul par diffé-
rences, qui est plus expéditive et plus siire que toute

(*) Ce théoréme s’énonce ainsi: Deur racines rcelles et indgales d'unc
équazion comprennent un nombre impair de racines réelles de Uéquation
dérisée.
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autre. A cet effet, nous emprunterons au tableau du n® 6
les nombres et différences relatives 4 x = 3,
=1, A=12, A*=46, A=6,

et il s'agit de déduire de ces trois différences relatives a
I'accroissement constant 1, les trois différences du méme
nombre y;, relatives au nouvel accroissement con-

I . ;e 7oz
stant —. Or, si I'on désigne en général par d, 92, 3° les

différences premiére,, deuxiéme, troisiéme d’une valeur
quelconque de la fonction y relatives & un accroissement
constant &, et par A, A*, A®les trois différences de la
méme wvaleur de y relatives a I'accroissement 1, on a les
formules

3= h3as,

0r=h*[A’+ (h — 1) A%],

— (h — —2)
§ 2 6 1

elles seront démontrées plus loin, afin de ne pas inter-

’

(2)

rompre le calcul. Nous nous bornerons a remarquer que
la premiére est une conséquence évidente de la formule
générale

d"y=1.2.3...m.h".

. v 1 -
En faisant o = = dans les formules précédentes, on a

0d= 8 )
1000
(3) PR L

100 1000

S — A g A? 171 A%
T 10 200 6000

et remplacant A par 12, A% par 46, A’ par 6, on g
84 = 0,006, ¢'= + 0,406, §= — 0,6q9.
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Actuellement, la disposition des calculs s’explique d’elle-
méme ; ils sont consignés dans le tableau suivant.

\ . T 1
Substitution de nombres équidistants de — entre 3 et 4.
10

R LT
R EEEEE
R EEEEE:

—+

. . 10
Comme vérification, on retrouve pour x =73+ To

ou 4, le résultat 13 déja connu. Si nous n’avions pas tenu
a donner un exemple complet de ce genre de calculs, et a
user du moyen de controle qui vient d’étre indiqué , nous
aurions pu nous dispenser, dans la question présente , de
pousser les substitutions aussi loin : la séparation des ra-
cines n’exige pas qu'on aille au dela de 3,2; en effet,
jusqu’a cette valeur de x, on n’a trouvé pour y que des
valeurs positives; et comme la diflérence J est devenue
positive, on voit que la substitution de 3,3 devra donner
également un résultat positif. Or on sait, par la considé-
ration de la dérivée, que 'une des racines cherchées est
plus petite que 3,3, et I'autre plus grande que 3,2; donc
il est certain qu'elles sont toutes deux comprises entre 3,2
et3,3.



(58)
Il faut, pour poursuivre leur séparation, substituer

4, . e I
des nombres équidistants de Tog entre 3,20et3,30. A cet

effet, remarquons que les formules (2) établissent des re-
lations générales entre deux systémes de différences
(d, d*, ¢%), (A, A, A?) correspondantes & des accrois-
sements dont le rapport est 2; et comme le rapport

I, 1 , . . [ S
de — a — est égal & celui de — a 1, on comprend que
100 10 10

les mémes formules (3) fourniront les valeurs des nou-
velles différences d, 9%, &° relatives i l'accroissement

1
constant —; en y remplacant A, A%, A®par leurs valeurs

. . I
correspondantes a I’accroissement e

Comme on doit partir de 3,20, on fera, dans les for-
mules (3),

A=o0,119, A= 0,418, A*=0,006,
ct 'on aura

6 = — 0,00673g, 0'=0,004126, d°= 0,000000.

PN 1
Substitution de nombres équidistants de Too entre 3,20 ¢t 3,30.
1

0,008 — 0,006739 0,004126

0,001261 — 0,002613 0,004132
0,001352 -+ 0,001519
0,000167 »

On trouve deux changements de signes, I'un de 3,21
a 3,22, l'autre de 3,22 4 3,23. Les deux racines posi-
tives de I’équation (1) sont donc séparécs, et leurs valeurs
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, . . 1
approchées a moins de oo sont
I

3,21 et 3,22.

On pourra maintenant en approcher davantage par la
méthode de Newton.
Quant a la racine négative comprise entre —17 et —18,

. . 1 .
on la calculera a moins de o’ o substituant des nombres
1

, . g I . . . .
équidistants de 75} Puis on poursuivra P’approximation

par la méthode de Newton.
9. Au reste, si I’on continue V'approximation par le
calcul des différences en substituant successivement des
I I

. 3o I
nombres équidistants d¢c —, de —— de .
100 1000 10000

-3 on
voit par les formules (3) que la valeur numérique de la

différence premiére ¢ tendra a se réduire a 5’ les autres

a? 171 A¢ . . . ,
termes 22 ef 2715 n’ayant bientét qu'une influence né-
200 6000

gligeable sur cette valeur. Quand le calcul aura été con-

. 3 . . , . A
duit jusqu’a ce degré ou J est sensiblement égale a w5 on

pourra achever 'approximation de la racine par une
simple proportion, comme on le fait dans le calcul du
nombre correspondant & un logarithme. En effet, soient
. , . 1

f(x) le premier membre de I'équation, a et a+ —,
10"

deux nombres entre lesquels tombe la racine cherchée;

: . 1 . . .

Sfla)et fla+ w5 ) somt de signes contraires. Soit, pour

fixer les idées, f(a) <o, A la différence

10"

...f<a+ L)—f(a),
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d la différence

)
f<va -+ I-(')',;:.> —Jf(a),
onaé=-{-é peu prés
o & peu pres.

Puisque, I'accroissement de la variable étant réduit an
dixiéme, 'accroissement correspondant de la fonction est
pareillement réduit au dixiéme, on peut poser cette régle
de trois :

Pour un accroissement A de f'(a), il a fallu ajouter a

. 1 . .
@, 10 unités <de I'ordre TI>', combien, pour obtenir
10

un accroissement — f'(a) (qui réduirala fonction a zéro),
faudra- t-il ajouter d'unités, du méme ordre ?

. —10f(a
A:—f(a):i10;2, don z:—%—)-
2z N , .
a + ——— sera une valeur trés-approchée de la racine
10
cherchée. Si les nombres A et — f(a) qu’il faut suppo-
ser réduits en unités du dernier ordre, sont exacts cha-
cun a moins d’une demi-unité, I'crreur du quotient qui

1
Tay
(%)

10. Démonstration des formules (2) du n® 8.

Ces formules sont comprises dans le probléme général
de Vinterpolation, qui sera résolu plus loin. Mais on peut
en donner une démonstration directe et assez simple dans
le cas d’une fonction du troisiéme degré.

Soit y, la valeur que prend une fonction du troisiéme

degré pour une valeur 2, de x; la fonction sera de la
forme

fournit z aura pour limite supérieure

y=yita(x —x)+ b(x —x)+c(x—x,),



(61)

ou mieux, si 'on pose v = xy + X,
(1) r=y.+aX+5bX4 X

Cette substitution de la variable X a x revient, en
géométrie analytique , o I'on regarde y comme l'ordon-
née d'une courbe, a transporter I'origine au point de 'axe
des x qui a pour abscisse x,.

D’aprés cela, au lieu d’attribuer & x les valeurs

Zyy Xo4hy xy4+2h, x4+ 3h...,

il sera équivalent et plus simple d’autribuer a X les
valeurs
o, hy 2k, 3F.
Soient d, 9%, 9° les différences premiére,, deuxiéme et
troisiéme de 7y,; on aura, en opérant les substitutions et
soustractions indiquées ,

0= ah + bh*+ch3,
?=2bh*+ 6ch?,
F==6ch>
Soient A, A?, A® les valeurs que prennent les trois
différences de y,, pour un accroissement constant 1 donné
a la variable; on fera i = 1 dans les expressions précé-
dentes, et I'on aura
: A—=a+b+c,
A’=2b+6c¢,
A*=6c. 4
Pour avoir les relations cherchées entre les & et 4, il
ne reste plus qu’a éliminer a, b, ¢ entre ces six équations;
on tire des trois derniéres
A3 AT — A®

1 Al
C == -9 1)'.‘:—-———-, a=\(A— -A"<4 =],
6 2 2

et, en substituant dans les trois premiéres, on a les for-
mules (2).
La méme marche est applicable & une fonction d’un
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degré supérieur au troisiéme, mais les calculs d’élimi-
nation se compliqueraient de plus en plus.

11. Sil'on substitue les valeurs trouvées pour les coef-
ficients a, b, ¢, dans I'équation (1), on aura

y=y0+<A—§+-§> X +—A-,_;————A—3X’+%—?X“.

Ainsi une fonction du troisiéme degré est complétement
déterminée, quand on connait une valeur y, de la fonc-
tion correspondante a une valeur donnée de x, ainsi que
les trois différences A, A%, A® de y, relatives & 'accroisse-
ment constant 1 donné a la variable : cette proposition
sera généralisée (n° 16).

Des différences envisagées sous un point de vue plus
général. Expression de la différence n'*m (Ary,) au
moyen des n +1 valeurs yo, y1y ¥aye e oy Yo

12. Si ’'on considére une suite de valeurs y,, y,, ¥,
Y3y Y4s+++» que prend une fonction quelconque de x,
quand la variable regoit une suite de valeurs x,, x,, x,,
Xy, . - . (équidistantes ou non), et qu’on retranche cha-
cune de la suivante, on a

AYo==Y1— Yoy AVi=)2—Y1, Byi==¥i—Y2y...,
on en tire )
By, =8y — B8y =(0:—0)— (51 —»);
et réduisant
A?J'o:.yz"‘zfl‘*‘}’u,
de méme
Ay =y — 2+,
et, par suite,

By, =8y — &y = (rs— 20 +7)— (12— 20 +2);

et réduisant
Ny, =y.— 35+ 3y, — ¥..
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L’observation des différences des trois premiers ordres
de y, conduit a cette loi: les indices décroissent successi-
veriient d'une unité depuis I'ordre de la différence jusqu’'a
zéro 5 les coefficients sont ceux de la puissance du méme
ordre du bindéme (y —1).

Si 'on suppose cette loi vraie pour la différence ni"e,
on fera voir aisément qu’elle est encove vraie pour la dif-
férence (n + 1)*™; on trouvera, en effet, que chaque
coefficient de A"+! est égal au coeflicient du terme-de
méme rang dans A", ajouté au coefficient du terme pré-
cédent. Or c’est précisément ainsi que 'on passe de
(y —1)" a (y — 1)"*'. On a donc, quel que soit 7,

n(n—1
(4) A rv=ru—nyum +—(‘l—‘2‘—')

R £
FLxpression de y, au moyen de y, et de ses n d_tﬁ'érences
Ayl), Ae‘yo,. .oy A".:yo.

13. Cette question est la réciproque de la précédente.
On a successivement

Yi=Yo+ AYo,
Y=y Ay =Y+ Ayo+ Ay + A1)
=0+ Ayo+ Ay, + A%y,
car il est visible que la différence d’'une somme de quan-
tités est égale a la somme des différences de ces quantités;
on a donc en réduisant
. ‘}’22.7‘4;+2A,70+A2_707
ri=xr+ A}'Q:(}’o + 2A}’n+A’)’o) -+ A()'o+ 20y, 4+ AQ}’«);
et réduisant
Y=o+ 38y, + 34%, + A%y,.

On voit que les indices des différences vont en croissant
d’une unité depuis zéro jusqu’a I'indice de la valeur de y,
et les coefficients sont ceux de la puissance du méme degré
du bindme (y +1).
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On fera voir, en supposant la loi vraic pour y,, et
en passant de y, a y,44, comme on est passé de y, a y,,
quc cette loi est générale.
On a donc, quel que soit 7,
n(n—r1)
1.2

(5) yn=2o+nbdy.+ Ay 4 . o4 A"y,

Formules d’interpolation.

14. Une grandeur est dite fonction d’une autre lors-
que, en faisant varier la seconde, il en résulte une va-
riation déterminée pour la premiére. Ainsi, la surface
d’un cercle est une fonction du rayon, l'espace parcouru
par un corps qui tombe est une fonction du temps écoulé
depuis le commencement de la chute, la tangente trigo-
nométrique d’un arc est une fornction del'arc, la tension
maximum de la vapeur d’eau est une fonction de la tem-
pérature, etc. Il arrive souvent que la relation qui existe
entre une fonction et la variable dont elle dépend n’est
pas de nature a pouvoir étre exprimée par une équation
exacte, algébrique ou transcendante, ou bien (et cela
revient au méme dans la pratique) cette équation est trop
compliquée pour qu'on puisse en déduire commodément
toutes les valeurs de la fonction.

Alors si I'on connait (par I'observation ou de toute
autre maniére) un certain nombre de valeurs de la fonc-
tion correspondante a des valeurs données de la variable,
on peut se proposer de déterminer, avec une approxi-
mation suffisante, celles qui correspondent a des valeurs
intermédiaires de la variable : tel est le but de I'interpo-
lation.

Interpoler, c'est déterminer, entre certaines limites de
la variable xr, une fonction de x d’aprés la connaissance
d’'un certain nombre de valeurs particuliéres de cette
fonction comprises entre ces limites.
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Quand on n’a d’avance aucune donnée sur I'expression
analytique de la fonction, le probléme est évidemment
indéterminé; car la fonction peut étre considérée comme
Pordonnée d’une courbe dont x serait l'abscisse, et
interpolation revient a déterminer la courbe d’aprés
un certain nombre de points par lesquels elle doit pas-
ser. Or il existe une infinité de courbes ayant n points
communs.

On congoit cependant que si une étude préalable de la
fonction dont il s’agit a fait voir qu’elle ne varie pas trop
brusquement dans I'intervalle des valeurs de x que I'on
considére, et si ces valeurs ne sont pas trop distantes les
unes des autres, il sera possible d’estimer, avec une assez
grande approximation, la figure de la courbe dans la
partie correspondante de son cours.

15. L’indétermination du probléme cesse compléte-
ment si, a la connaissance de n + 1 valeurs particuliéres
de la fonction, on ajoute cette condition, que la fonction
soit entiére et du degré n. En effet, s'il était possible
que deux fonctions du méme degré »

a + br 4-cx*~4. .. + ka"' + lx",
a4+ brx4cri4... 4+ K"+ 'z,

non identiques, cussent 17+ 1 valeurs égales pour les
mémes valeurs de x,

Zoy  Liy Tayeeey Tny

P’équation qu’on formerait en égalant a zéro la différence
de ces fonctians, c’est-a-dire

(I—V)ar (k—K)x" ' +. .. +(b—b)x+a—a =o,
aurait n -+ 1 racines

TZ=Xyy Xy Layeeey  Lny

Ann. de Mathémat., t, X. (Février 1851.) 5
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ce qui est absurde, cette équation étam d’'un degré au
plus égal & n.

Ainsi, quelque procédé qu’'on emploie pour le calcul
des coefficients e, b, c,..., d’'une fonction entiére de
degré n remplissant les conditions données, on devra
toujours parvenir aux mémes résultats.

16. Nous nous bornerons & exposer la formule de
Newton , qui répond au cas le plus ordinaire, celui ou
les n 4+ 1 valeurs de x sont supposées équidistantes. On
peut, comme on 'a vu n° 10, partir de zéro comme
premiére valeur de x, puisque cela revient & disposer
de l'origine des x qui est arbitraire; soient donc

o, hy 2h,..., nh,
les n + 1 valeurs de x, et
Yoy iy Faseery Jny

les valeurs correspondantes de la fonction y.

On sait (n° 13) exprimer y,, ys,..., ¥, en fonction
de y, et de ses différences successives. Si on les désigne,
pour abréger, par d, 9%, d%,..., d"; et si I'on désigne
par ¢ un nombre entier qui peut recevoir toutes les valeurs
de o0 & ninclusivement, je dis qu'on aura

y,_—J.,+t3+-(— 1)6’

(6) t(t—l)...(t—n+1)

-+ da.

I.2...n

En effet, pour ¢ = n, cette équation coincide avec la for-

mule (5), et si ¢ est plus petit que 7, le second membre

t(t—1)...(t — t+1)a‘ )
1.2,..¢

les coefficients des termes suivants étant nuls a cause du

facteur (¢ — t) qu'ils renferment.

se termine de lui-méme au terme
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Cela posé, si 'on change dans ce second membre ¢ eii -
;, il deviendra un polyndéme entier en x du degré n.

a:a x [x d? x (x . z g2 _
y'+_l; +7i P! :.z‘*‘i h 2 l.2.3+'"

z [z i x ” x on
trayGT?) ety ) e

qui se réduira évidemment & y, pour x =th, et, par

conséquent , ce polynéme prendra successivement les va-
leurs ’

Yoy Yis Yaseeey Yny
quand on y donnera a x les valeurs

o, ky 2h,..., nk,

ce qu’il est, du reste, facile de vérifier. Ce polynéme n’est
donc autre que la fonction y qu’il s’agissait d’obtenir,
(n° 15), et I'on a définitivement

_ .ra z [z J°
yER e Tt

xz [z . x an
traTY) T ) e

Cette formule a I'inconvénient (qui lui est commun, du
reste, avec les autres formules d’interpolation), de n’éire

pas ordonnée par rapport aux puissances de x, en sorte
que pour avoir les coefficients a, b, c,..., I de ces diverses
puissances, il faudra développer les produits indigués.

Application au troisiéme degré. — L’équation (7),
ordonnée par rapport a x, se réduit &

0 0N\ x 82— /x ¢ /x\?
.V—fo+("—z+§>z+“—r<z) +€<z)'
Si 'on suppose A=1, et qu'on désigne par A, A?, A%,

(7)
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les différences de j,, relatives a l'accroissement con-
stant 1, ’équation précédente devient
Az Aa A') —_— A3 AJ
Y=+ (A ———2—+'§'w z —+ ——2>——-Z"+€.l";

/
c’est le développement de y, déja donné au n° 11.

Puisque les seconds membres de ces deux équations
sont les développements d'une méme fonction entiére
de x, ils doivent étre identiques. En égalant les coeffi-
cients des mémes puissances de x, on retrouve les for-
mules (2) du n® 8. Cette marche conduira immédiatement
aux formules analogues pour une fonction dun degré
supérieur au troisiéme.

A7. L’équation (7) permettra de remplacer par une
équation algébrique une équation transcendante X = o,
lorsqu’on connaitra (17 +1) valeurs de la fonction X, cor-
respondantes a des valeurs de x, équidistantes et assez
voisines pour que les différences n**" des résultats de
leur substitution puissent étre considérées comme con-
stantes. Aupoint de vue de la géométrie analytique, cette
interpolation a pour effet de remplacer la courbe trans-
cendante y = X, par la courbe parabolique

x x [x \ 7
y:3‘,+l~'6+z(7—1\7—-—2+.. .
qui se confondra sensiblement avec la premiére, dans
toute la partie de son cours, comprise entre les abscisses
extrémes o et nh.

L’emploi des parties proportionnclles dans les Tables
de logarithmes est une véritable interpolation.

Comme les différences premiéres centre les termes con-
sécutifs des Tables, varient trés-lentement, on peut les
regarder comme constantes dans un certain intervalle,
¢’est-a-dire regarder comme nulles les différences secon-
des, troisi¢mes, ete. Par exemple. sil’on ouvre les Tables
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trigonométriques au logarithme de tang (34°11'10"),
on trouve que la différence entre ce logarithme et celui
de tang (34° 11’ 20") est 453 dix-millioniémes, et1'on voit
que cette différence se maintient la méme pour les accrois-
sements successifs de 10” en 10", jusqu’au dixiéme terme
34°12'50", o elle devient 452 puis elle reprend sa pre-
miére valeur 453 pour les trois termes suivants, et elle
oscille ainsi longtemps entre 453 et 452 dix-millioniémes.

La méme constance s’observe lorsqu’on remonte dans
la Table jusqu’au trentiéme terme au-dessus de I'arc
34°1110”. On peut donc regarder la fonction logtangr,
comme se confondant sensiblement pour les valeurs
de x, comprises entre ces limites avec une fonction en-
tiere dont la différence premiére ¢ serait égale au nombre

constant 453 dix-millioniémes, c’est-a-dire avec la fonc-
tion

(8) 7‘:)’0—*—%3,

qu'on déduit de I'équation (7) en faisant
d’=o0, d*=o...;
on en tire
Y=o _ X
s TR
c’est-a-dire les accroissements des logarithmes-tangentes

proportionnels aux accroissements de I'arc, comme le sup-
pose la régle usuelle.

Soient donc

Yo = log tang (34° 11" 10”) = g,8320264,
h= ;0”,
¢ = 453 dix-millioniémes,
et soit proposé de trouver le logarithme de

tang(34° 11’ 17", 8);
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on fera, dans I'équation (8), !

r=1",8,

et I'on aura pour la différence du logarithme cherché au

logarithme de tang (34° 11’10"), différence évaluée en
dix-millioniémes,

y—y, = 458x1,8
10

= 353,3.
Réciproquement , quand on se propose de trouver I'arc
correspondant 4 un logarithme-tangente, y est donné, et
Pinconnue est x. On tire de I'équation (8)
Y —Je
—h.

d

xTr =

On fera h=10, et le second membre indiquera le nom-
bre x de secondes, qu’il faut ajouter a I'arc correspon-

dant a y,; c’est le résultat que donne la régle des parties
proportionnelles.

Comme les deux termes de la division (y — ) et d

ne sont connus qu a-— umte prés, et qu ’on doit multi-

preés. Par exemple, avec les nombres employés plus haut,

plier par 10, le quotient sera approché a moins de

on a ¢ = 453 ; I'erreur sera moindre que Zg, abstraction
faite de l'erreur (beaucoup plus faible) apportée par la
formule d’interpolation.

Comme les différences J des tangentes sont les sommes
des différences correspondantes des sinus et cosinus, il
résulte de la limite d’erreur indiquée ci-dessus, que les
formules qui donnent les angles par le moyen de la tan-
gente, fournissent une approximation plus grande que
les formules ot I'angle est défini par son sinus ou son co-
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sinus. C'est pourquoi les premiéres doivent toujours étre
préférées.

Note. L’excellent article qui précéde est trés-utile a Venseignement.

-C’est un point détaché du calcul aux différences. Il serait avantageux,

facile, d’apprendre aux éléves les principes de ce calcul; conséquences
immeédiates du bindme de Newton, et a I'aide desquelles on passe si na-
turellement au calcul différentiel, comme Euler le fait voir. Car les
chaires doivent toujours retentir de ces méthodes générales tant recom-
mandées dans les lecons a la premiére Kcole Normale et professées
par les grands maitres, et que I'Ecole Normale actuelle conserve et con-
servera (utinam!) religieusement. Ces méthodes sont diamétralement op-
posées a Vesprit de petitesse qu’on veut inoculer a certain enseignement
en haut lieu.
O. Terouem.

SUR LE CALCUL DES LOGARITHMES ;
Par M. Asrr. TRANSON.

Les nouveaux programmes pour I’admission & 'Ecole
Polytechnique demandent le « calcul des logarithmes au
» moyen de la série qui donne le logarithme de n + 1,
» quand on connait celui de n. »

11 s’agit de la formule

I 1 1
2041 +3(2n+1)3+5(2n+ ﬁ—’+

L(n-+ 1)—Ln=2[

dans laquelle L n est le logarithme népérien de 7.

Euler, dans 'Introduc. in Anal. Infinit., donne les
résultats de Vapplication de cette formule aux logarithmes
hyperboliques des premiers nombres jusqu’a 10; mais,
pour le calcul de L7, il indique une modification remar-
quable qui consiste & calculer

L5o—L :2[-1-4- ——l—--+ . ]
§9=2 557 3(ogy

F
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La série qui forme le second membre étant égale &

L2+2L5—2Ly,

il s’ensuit la détermination du logarithme de 7 en fonc-
tion des logarithmes de 2 et 5, et d’une série beaucoup
plus convergente que celle qui résulterait de la simple ap-
plication de la formule (1).

Thomas Lavernéde, dans les Annales de M. Ger-
gonne, tome I, a recherché les moyens les plus avanta-
geux de construire une Table de logarithmes. Parmi les
formules trés-curieuses que renferme son Mémoire, on
peut distinguer la suivante, qui se démontre séparément
et avec beaucoup de facilité.

Soit p un nombre premier. Au lieu d’appliquer immé-
diatement au calcul de L p la formule (1), on P'applique

au calcul du logarithme de p?, et il en résulte cette nou-
velle formule :

1 I
(2) 2Lp—L(p*—1)=2 [21)?_1 -+ EYEY T -+ .. ]
Or il faut observer que, p étant un nombre premier,
tous les facteurs premiers de p*— 1 sont inférieurs a p;
de sorte que le logarithme de p se trouve exprimé a l'aide
de logarithmes antérieurement calculés et d’une série
bien plus convergente que celle de la formule (1).

La formule employée par Euler pour calculer L 7 re-
vient a

(3)L(,ﬂ+.)_sz:2[ b J,

2pt+1 3(2p’+1)3+"'

qui, a la vérité, est plus avantageuse que la formule (2),
mais qui n’est pas toujours applicable, parce que les fac-
teurs premiers de p®+ 1 peuvent étre supérieurs a p.

Note. Les nouveaux programmes ordonnent de vérifier exactitude des
Tables logarithmiques. a Vaide des partics proportionnelles. Plusicurs
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personnes m’ont demandé ce que cela voulait dire, Je n’en sais rien.
Voici mes conjectures. 1l s’agit probablement de calculer les logarithmes
au moyen de la Table des différences. On trouve un exemple de ce genre
de calculs dans le texte qui précéde les Tables de Callet, tome I, p. 35.

On m’a encore demandé pourquoi (*) on laisse subsister la discussion
de cas douteux dans la trigonométrie rectiligne, et pourquoi on la sup-
prime dans la trigonométrie sphérique. Je n’en sais rien. Voici mes con-
jectures. La trigonométrie rectiligne est employée par les arpenteurs, et
il n’y avait pas d’arpenteurs de profession dans la Commission d’organi-
sation; la trigonométrie sphérique est employée surtout par les astrono-
mes, etil y avait un astronome de cabinet dans la Commission d’organisa-
tion, En général, ceux qui dominent aujourd’hui I’enseignement par ordon-
nance militaire, les Leibnitz de par le droit du plus fort, droit toujours le
meilleur, auraient du signifier leurs volontés d’'une maniére plus claire.
Par exemple, j’ai mis plus de dix minutes 4 deviner le sens du conseil
qu’ils veulent bien donner aux professeurs de ’Université de France, pour
bien faire la division en arithmétique. Le conseil étant compris, salva reve-
rentia, je le trouve assez mauvais. Il consiste, pour vérifier un chiffre du
quotient, a multiplier tout le diviseur par ce chiffre, et a comparer le
produit avec le dividende partiel ; c’est ’ancienne méthode. Aujourd’hui,
les éléves des lycées de Paris, pour opérer cette vérification, divisent le
dividende partiel par le chiffre du quotient, et comparent le résultat
avee le diviseur, ce qui est beaucoup plus expéditif. Etant sur le chapitre
des conseils, on voudra bien me permettre d’en donner un seul qui me
parait trés-opportun. Dans la composition des futures Commissions & pro-
grammes, on devrait admettre quelques éléves. Je m’assure que les derniers
programmes auraient beaucoup gagné a cette admission.

O. TERQUEM.

THEORIE DES SYSTEMES DE QUATRE POINTS HARMONIQUES

(voir t. 1X, p. 118);

Par M. G.-J. DOSTOR,

Docteur és sciences mathématiques.

I. Définitions. Désignons par A, B, A/, B/, quatre
points en ligne droite, qui forment un systéme harmo-
nigue, et par «, (3 les milieux des intervalles des points
conjugués A et A, B et B

Nous donnerons aux segments AA’, BB’ le nom de

(*) Nous publierons incessamment une série de pourquoi?
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segments conjugués, a AB, A'B’ celui de segments ex-
trémes, et enfin 3 AB' et A'B les noms de grand et de

moyen segment. '
’

c a b
Nous représenterons, en outre, par —=a, =Db
les rapports dans lesquels les distances entre les points
conjugués A, A’, B’ et Bse trouvent divisées par les deux
ins. d AB _ BA_
an?res POlnts, e sorte que *A—,i‘ =a, W = D.
IL. Propriétés des segments conjugués. Sil'on exprime
les quatre segments AB, A'B/, AB’, A’B en valeur des
distances de leurs extrémités au point «, et qu’on substi-
tue les valeurs obtenues
AB—= Ax+ Bz, A'B'=B'a— A’x,
A'B=A'a —Bax, AB'= Aa + B'«
dans P'égalité
(1) AB.A’B' = AB'.A’B

que donnela proportion harmonique AB;A'B:: AB’: A’B/,
on obtient la relation

(2) TazzzBa.B’a.
De méme
(3) BB = AB.A'.

La multiplication des identités AA’ = AB + A’B,
BB’ = A’B’ + A’B donne ensuite

(4) AA’.BB' = 2AB.A'B'= 2AB'.A’B;
uis on obtient, en faisant le produit des égalités
AA'=AB+ A’B, AA'= AB'— A’F/,
(5) AA’ = AB.AB' — A’B.A’B'.
De méme

(6) BB = B'A.B'A’ — BA.BA".
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Sil'on ajoute les formules (5) et (6), on trouve, aprés
réductions,

(7) AA" + BB = (AB -+ A’B)'= (AB' — A’B),
d’ou l'on tire '
(8)  AA + BB = (AB+ A’B') (AB' — A’B).

Divisant successivement les équations (5) et (6) par

les valeurs (4), on a ensuite

(o) AN AB A'B'__AB_A'B
9/ BB’ A'B  AB A'B  AB’
BB _BA BA _BA BA

~BA BA

(10) 2 AN " BA  BA

Si nous combinons, par addition et par soustraction,
I'identité AB.AB’ = AB.AB' avec la formule (1), nous
obtiendrons

AB (AB' + A’B') = AB'(AB+ A'B),

AB (AR’ — A’B') = AB'(AB— A’B),
ou
AB(AB' + A’B’) = AB’.AA’, AB.AA’ = AB'(AB— A’B);
d’ou nous tirons, en divisant convenablement par les va~
leurs (4),

1 2 2 1 1

1
(M) TFTAF B’ BF 4B AP
On trouverait, d'une maniére analogue,

(12) —l + I _ 2 2 . 1 I
BA BA~ AA” AA T BA BA
La comparaison des formules (11) et (12) donne

2 2 1 1

(13) FV RIS G ey
PN 2 2 1 1
{14

AN BF T AB TAW
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On trouve ensuite facilement

5 1 r 2 -+ 2 2
(15) ABAB  AB AT BE)’
1 1 2 2 2
6) =5 =75~ (o)’
1 X 2 2 2
) FrtreTrs e Tww)
1 1 2 2 2
8 wmryww=w it my>'
En égalant les valenrs (12) , de IS?’ on a enfin la re-
lation
1 1 I 1
(19) B

AR AR T AB T ap’

qui est 'une des formules les plus remarquables des sys-
témes harmoniques. On peut encore appeler 1'attention
sur la formule
— —_— —

(20) Az +BB =af ,
qui se déduit de B* = Af3. A5, en y remplacant Af5 et
A'G par aff + aA et afl —aA'.

IIl. Propriétés des segments non conjugués. En
élevant au carré les deux membres de lidentité

AB = AP — Bf, et en observant que (3) E—B_2= AB.A'G,

nous aurons

AB=AB(AB—2BB -+ A'B).
Or

Af—2BB+ A'f=(Af—Bp)— (BB —A'B)
=AB— A'B=Ac+Ba—A'a+Ba=2B«;
donc

(21) AB = 2Af.Ba.
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Nous obtiendrions de méme N
(22) -N_B;2= 2A’B.B'x,
(23) AB = 2AB.Be,
(24) ;&—’52: 2A'B.Bax.

Combinant ces formules entre elles , nous trouvons

(25) AB:A'B= AB:A’8, BA':BA =BaiBax;
(26) AB.A’B= 2B«.Bf, BA'.B'A’ =2A'8.A'x;
(27) AB:A’B= AB:Bf, BA':B'A’=Ba:As;
(28) AB.A’B:AB'.A’'B’::Bx: B'a,
(29) AB.AB: A’B.A’B::AB: A’B.
IV. Propriétés des rapports de division des segments
conjugués. Les deux proportions
AB:A'B:ia:a’, AB' :A'B' :ia:ad

donnent

AB+A'B ou AA':A'B:.a-+a':d,

AB'— A’'B’ ou AA':A'B'::a—a’:a,
d’ou l'on tire

AR a+4-a,

A’'B a—a’

donc
a+a b a-1 b+1
—_— =b =
(30) a—a' R p— ’ b—1 a
On trouve ensuite facilement
AB= —2 AN =—2_.A4A,
(31) a+a a1
I
’
AB= 2 AN =—— A4,
a+t+a a-1
AR =2 aa=—"—.Ax,
(32) a—a a—1
AR =—2 A =—1_.aA.

a—a a—1



(78)

" La combinaison de ces valeurs donne encore

a b
(33) AB: A'B' :: <-—;:—-> t1:la(a—a'):a'(a+a'),

a’'b
A .
(34) AB’ : A’B :: (%~%—) t1::a(a+a'):a (a—ad),
(35) AA’ : BB’ ::§7+1:-b—b-+l::a'—'—a”:zaa’;:2bb’:b”—b‘.

V. Relations entre les distances d’un point P de la
droite ABA'B' aux points harmoniques. En exprimant
les segments AB, A'B’, AB’, A'B en fonction des dis-
tances du point P aux points A, B, A’, B’, et en substi-
tuant les valeurs dansla relation (1), on obtient la formule

(36) (PA +PA’) (PB + PB') = 2 (PA — PA’ + PB.PB/).

A 'aide de ce qui précéde, on trouve aussi facilement
que

(37) PB.PB'.AA' =PA’.Af — PA.A'B(*).

—

NOTE SUR LES SOMMES DE PUISSANCES SEMBLABLES;
Par M. MOURGUES,

Professeur a Marseille.

Soit P, la somme des combinaisons .4 n de m quan-
tités a, b, c... h; soit A, la partie de ces combinaisons qui
ne contient pas a, B, celle qui ne contient pas b&....

On sait d’abord que

(l) PnzAu+nAn~|-
Je dis en second lieu que
(2) A+ B+ GCy... + Hy=(m — n)P,;

(*) On abrége beaucoup en faisant AB=m, BA'=n, A'B'=p, et

éerivant n(m + n—+p) = mp, Au:%(m+n), A/S_—_;(n-«{—p).
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car une combinaison quelconque abc... e n'entre pas
dans les n parties A,,, B,,..., E,, et entre une seule fois
dans chacune des m — n autres.

Cela posé, de la formule (1) on déduit

P,=A,+aA,.,,
Pow = A +alA,.,,
(3) :
P,=A, +-a.

Multipliant les membres de la premiére équation par
(—a), de la deuxiéme par (+ a?), de la troisiéme par
(—a®), etc., et sommant, il vient

(4) Po—aP,_ + a*P,,... a™'P,ma"= A,
De méme ,
P,— bP, + b'P,_,... Z= b1 P, 2 b"=B,;
d’on, par addition,
mP,— S, P, +8,P, ;... =8, P oE Sa=A, + B,... +H,,
et, par suite, en vertu de I'équation (2),

(5) nP,—SPp,+S:Pi ... S PiESi=0.

C’est la formule qui donne, en fonction des combinai-
sons , les sommes de puissances semblables d’indices in-
férieurs a m. :

En second lieu, pour » = m, la premiére des relations
(3) se réduit & P,=aA,_,, et, par suite, I'égalité (4)
devient

Pu— aPp_ 4+ a@*Pp_y... ma™ ' P, Fa"=o;
d’ou, en multipliant les deux membres par a”,
aPy,—a+' Py, +a+?Pp,... Ta"'P a+"=o.

Remplagant a successivement par b, c,..., et sommant.
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on a
(6) S, Pp— Sivi Pocye ot =+ Srpm—i Py e Sm+r = o.

C’est la formule relative aux sommes d’indices non in-
férieurs a m.

SOLUTION GENERALE DE LA QUESTION 206

(voir t. VIIL, p. 107);
Par M. Awncero GINOCCHI,

Avocat a Turin.

1l s’agit de satisfaire, par des nombres rationnels, aux
deux équations

Ayt —1=2, 2—y—1=u

On a donné une solution de ce probléme , tome IX,
page 116; mais, comme I'a remarqué M. Terquem, elle
n’est que particuliére. En effet, dans cette solution, on
fait y = pg, ce qui donne

(z4u)(z— n)=2piq
et 'on conclut de 13
:tu=2¢*, z-—u=—p,

conclusion qui n’est pas nécessaire, tant qu'on ne sup-
pose pas qu’il s’agit seulement de nombres entiers; on
peut remarquer aussi que la supposition p = ¢* n’est
point la seule maniére de rendre 4 + 4 ¢* + p* un carré,
comme on I'admet dans le méme article. Je pense donc
qu'il est & propos de montrer comment on parvient a la
solution compléte, car la question n’est pas exempte de
quelques difficultés qui pourraient arréter les com-
mencants.

En retranchant, de la premiére des équations pro-
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posées , la seconde , on obtient

2y'=123*— u?
ety, z, u doivent étre trois nombres rationnels qu'on
pourra toujours réduire a trois fractions ayant méme

, . . h ki .
dénominateur. Soient 7070 [ ces fractions, et g le plus

grand diviseur commun aux trois numérateurs %, k, i :
faisons h = gh', k = gk', i = gi'. Il viendra

12 ! .
2h"P= k" — "3

eth/, k', i’, n’ayant pas de facteur commun a tous les
trois, scront ainsi, deux a deux, premiers entre eux;
car si deux de ces nombres avaient un facteur commun,
ce facteur, en vertu de la méme équation, diviserait
aussi le troisi¢éme. De plus, A’*—i’? ou le produit
(K +1i') (K —1{') sera un nombre pair; les nombres
k' +1i', K —i' sont donc en méme temps pairs ou im-
pairs, et comme leur somme est 2 &’ et leur différence 2 ¢/,
ils ne peuvent avoir de diviseur commun que 2, puisque A’
et i’ sont premiers entre eux; on fera donc

Fa4i'l=mam, K¥—i'=2n,
m et n élant premiers entre eux, et I'on aura
h'*= 2 mn,
de sorte que 2mn, étant pair et carré, sera divisible par 4,

et, par suite, 'un des facteurs m , n sera divisible par ».
Soit n = 2 n'; donc

k"= fmn',
et le produit mn’ sera un carré : par conséquent, ses fac-

teurs m, nr', étant premiers entre eux, seront aussi des
carrés, et 'on fera

m=p’ n’=q,

Ann. de Mathémat., t. X. (Mars 1851.) 6
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d’on )
M=opg, KF=m4n= pi-2 g%
Si Pon posait m = 2 m/, on aurait
hr= {4 m'n;

m' et n seraient deux carrés, et, en faisant n = p?,

m' = q*, il viendrait également
K =opg, kK =p*+2q-
1l en résulte

gh’ _2gpg gk _g(p+247)

{ { T T ¢
valeurs qui, étant substituées dans ’équation

By — 1 = 27,
donnent

Vat=g P+ 2q = 4P ¢+ =g (p'+ hq') + 1%

Donc le nombre entier g* (p*~+ 4 ¢*) 4~ I sera un carré.
Soit / + r sa racine; on aura

g P +hq)=rit+aln,
d’ou

et il faudra que r soit un diviseur de g* (p*+ 4¢°) et
pair si g% (p* + hg*) est pair. Par cette valeur de /. nous
avons enfin les formules

_28p7 _ 4 gpyr

s T
Lt _gp+be)+r

L g (P rbe) =t
qui fourniront toutes les solutions possibles de la ques-
tion proposée,, pourvu qu’on assigne des valeurs entiéres
ag.p, q.r. qu’on prenne p et g pl‘(’.mim‘s entre eux
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(comme m et 1), ¢ impair (car des deux nombres m et »
I'un est pair, 'autre impair, et ¢* est égal au dernier),
et que r soitun diviseur de g* (p*+- 44*), pair ou impair
comme g.

Mais j’ajoute qu’on aura toujours des solutions du pro-
bléme, en donnant aux mémes lettres des valeurs ra-
tionnelles quelconques, et qu’ainsi on pourra, sans dimi-
nuer la généralité des formules précédentes , mettre gr a
la place de r, ce qui donnera

g brer L PHbhe
TP bhgt = T T pi g —r

Car
(P+bq +r)—(p+hq —ry=4r(p'+4q"),
et, par suite, de ces derniéres formules , il résultera

4ri(p+hq'£4pre’) _fri(pE2q)

.l"-_t P 1= e - . F
d (P +h4q'—r (P+dg—ry

qui est toujours un carré, comme le veut I'énoncé du
probléme.
1l est clair, en méme temps, qu'on aura

ar(p*—+2 ¢ 2r(p'—24q?)
2= y U= e/,
P4+4(Iﬁ_’.'z P4+4q\_r1

Le probléme est ainsi complétement résolu. Si I'on sup-

pose r = 2 ¢*, il vient

_8¢°

8q¢
= 9 I:—:I~

r? P

+ 1,

d’on1 I'on tire la solution du Lilavati pour les nombres en-
tiers, en prenant p = 1. Les résultats sont, en substance,

A P —_—n?
les mémes, si I'on suppose r= p*.

Mais en faisant 7 = 2 pg, on obtient cette solution en

6.



(84)
nombres fractionnaires
r= () = GEE)
puisque, alors,
bpgr=8p'¢=(p+2¢)—(p—2¢)"
Enfin, si I'on fait r = p*— 2 ¢*, on trouve
P+hq —r=4pq¢,

et, cn conséquence ,

2 ___ 2 2 2)2
y:’i———z—q-s .r:l—\‘—(P—?z—z):
P9 2pq
d’ou, en prenant p = — é, on tire
8q'— 8¢'—
y=—1=1 ~_1+(~—7—J),
29 8¢

solution du Lilavati pour les nombres fractionnaires [c’est
par erreur que, dans les Nouvelles Annales, tome IX ,
8¢:—1 8gr—1
page 117, on a imprimé /——\ au lieu de(—-q——)
8q¢* 8¢
On peut abréger cette solution comme il suit. Ayanl
I’équation
ul+ 2y*=—z?,
faisons z = u -+ t; nous aurons
2y’ =2tu-+t?
d’ou
2); 2 __

U= -
2t

et, par cette valeur, I'équation

! —yrt—1=u?
deviendra
(2= frt+ v+ 42
Y T T

! =
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On ne voit pas d’abord comment on peut, en général,

rendre 4y*+ t* + 4t* un carré; mais si l'on fait t = 5,

il viendra
4§04 i 22 4 4 2
.1_2:'4”.7‘*‘17 +4mp » ou x’:’i———ﬂq+l )

4 n? p'z 12
en posant /= 2np, g = ny, desorte qu'on devra rendre

p*~+ 4¢* + I* un carré, et en appelant / + r sa racinc.
on aura

PG gt =2lr+4r3

d’ou
1)'-4_ 4qi_ »?
=7
27r
9 __2pq 4pgr l+r _pibg+r
y=- == y X == - .
* n ! p‘+4(l‘_ 2 / P+ 474_,.7

NOTE SUR LE PLUS Gl‘ﬂﬂ (GOMMUN D:VISEUR;
Par M. E.

?
Professeur au lycie Louis-le-Gran”
L4

Tutorkme. Le nombre de divisions & faire pour trou-
ver le plus grand commun diviseur de deux nombres
entiers A et B ne peut excéder trois fois le nombre des
chiffres du plus petit B des deux nombres proposés.

Pour démontrer ce théoréme, nous avons fait voir (*)
qu’on pouvait supposer A et B premiers entre eux, et,
en désignant par

B...Dg, Dy, Diy Dy, Dy, 1

les nombres qui ont servi successivement de diviseur,

(*) Nouvelles Annales de Mathématiques, tome 1V, page 617.
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nous avons prouvé qu'entre trois diviseurs consécutifs
quelconques, Dy, D,, D, par exemple, on avait la re-
lation
D,= ou >2D,+ D,,

que nous allons démontrer d’une maniére plus simple.
Le diviseur D, , étant le reste de la division de Dy par Dy,
est moindre que la moitié de D;, et, par suite, contenu
au moins deux fois dans Dy; donc, si D, est le reste de la
division ordinaire de D; par D, on aura

(1) D, = ou > 2D, + D,.

Dans le cas ot Dy est le reste correspondant au quotient ,
pris par excés, de la division de D, par D,, si l'on
nomme R le reste de la division ordinaire de D, par D,
on aura, comme précédemment,

(2) D, = ou >2D,+R;

mais Dy étant moindre que la moitié de D,, R est plus
grand que cette moitié, donc D; <R, et, si 'on rem-

M (2) on aura & plus forte
raison la re a on (1 ,qul est ainsi démontrée, quel que

sOit. de. ed1v1sno ui.a conduit au resteD
ity ?2’ AR En U v

SUR LA RACINE CUBIQUE;
Par M. G.-H. NIEVENGLOSKI.

Lorsqu'on a trouvé la partie a de la racine cubique,
on est quelquefois obligé de faire des essais pour déter-
miner le chiffre suivant; cela arrive notamment quand
on cherche le second chiffre, car alors 'excés du quo-
tient de la division par 3«?, sur ce chiflre, peut aller
jusqu’a 14. l
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Pour abréger les essais infructueux, I'auteur d’'un'Traité
d’Arithmétique, qui a parul'an passé (*), démontre que si
le chiffre trouvé @ n’est pas inférieur a 3, en divisant par
3a® + 3a au lieude diviser par 3a*, on obtient le chiftre
cherché ou un chiffre trop faible. Et, plus loin, il ajoute
cxpressément, si la partie trouvée a contient plus d’'un
chifire, la division par 3a* + 3a « donnera certainement
un chiffre égal ou inférieur au chiffire cherché. »

Cette double assertion me parait inexacte. En eflet , la
différence de deux cubes consécutifs est 3a* + 3a + 1;
donc, en retranchant le cube. de la partie trouvée a, le
reste peut bien étre 3a* + 3a, et, par conséquent, quels
que soient les chiffres de la tranche abaissée, la division
par 3a*+ 3a peut donner le quotient 10, qui n’est

certainement ni le chiffre cherché, ni inféricur au chiffre
cherché.

3 — :
L’exemple \/A 24999999 peut servir de vérification.
D’apres ce qui précéde, il est aisé de voir que si 'on
divise, non pas par 3a’ + 3@, mais par 3a* + 3a + 1,
on obtiendra incontestablement le chiffre cherché ou un
chiffre inférieur; car

b > 10,

donc
3a*b><100 + 3ab*. 10+ b*< (3 a*+ 3a 1) X100 X b, elc

Le lecteur voudra observer que la régle que je pro-
pose ne dépend point de la valeur de la partie trouvée a;
par conséquent, clle servira trés-utilement pour détermi-
ner le second chiffre de la racine, lequel chiffre exposc
souvent a plusieurs essais infructueux.

Qu’il me soit permis, en terminant, d’exprimer mou

(*) M. Briot.
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regret de ne pas voir, dans les Traités d’Arithmétique qui
ont paru récemment, la méthode abrégée de 'extraction
de la racine cubique. N’est-il pas rebutant de faire le cube
de toute la partie trouvée de la racine, chaque fois que
Yon veut déterminer un chiffre? etc....

LIMITE
De Verreur dans la substitution de la moyenne différentielle de deux nombres
a leur moyenne proportionnelle ;

Par M. G.-J. DOSTOR,

Docteur és sciences mathématiques,

Soient a et b deux nombres inégaux, d leur diflérence;
on a identiquement

it = Valaw @)=/ (a+ Ld) e

d’ou

\/{E< \/(a—-i—éd)z:a—}—;d: i(a——l—-l));

2.

donc la moyenne proportionnelle entre deux nombres
inégaux a et b est moindre que leur moyenne différen-
tielle.

Pour trouver une limite de leur différence, posons

c:n+£d_\/5‘(7’_|__,7),
d'ou

¢+ \/m):a +—éd,
et, en élevant au carré, puis en réduisant,

c'-‘-+-2c\/a(a+d)=%d’-';
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on déduit de 1a
d d* _d* _ (b—ay

‘S 8Valard <8ya Ba Ba
donc U’erreur e est moindre que le carré de la différence

entre les nombres dvisé par l’octuple du plus petit de
ces nombres.

SOLUTION DE L’EXERGICE NUMERIQUE PROPOSE

( voir t. IX, p. 368 ) (*);

Par M. E. PROUHET.

11 s’agit de démontrer que les équations suivantes :
1° 5797 + 49512° + 5892 2* + 2876z + 6942 = 0;
2° 3447 x° + 14560 2*+ 22430x' + 25857 2* + 29193 2*
+ 115g6z + 5602 = o0,
n’ont aucune racine réelle.
1. On a, pour toute valeur réellede x,
2 —x' P — x4+ 1 >o0.

1l en résulte, & fortiori,
__4ob1 e 5892 P 2876 . 6942
5797 5797 5797 5797

Dong la transformée en — x de la premiére équation, et,

zt

>o0

par suite, cette équation n’a que des racines imaginaires.
2. f'(x) étant le premier membre de la seconde équa-
tion, f(—x) peut étre mise sous I'une de ces deux

(*) Dans la Connaissance des Temps pour 1849, page 174, cette solution
est donnée a I'aide du théoréme de M. Sturm ; ce qui exige de pénibles et
longs caleuls.
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formes :

x* (3447 2* — 145602 + 15376)
(1) !+ x*(7054 z* — 25857 x + 236¢6)

+ {54972 — 11596+ + 5602) = o,

(5602 — 115962 + 6oo1 z?)

(2) + (23192 — 25857 2 + 7208 z?) 2
[ + (15222 — 14560x + 3447 »*) x* = 0.

Dans I'équation (1), les racines des deux premiers tri-
ndmes sont imaginaires ; celles du troisiéme sont réelles
et moindres que 1,5 : on en conclut que f(— x) est po-
sitive pour toute valeur de x supérieure a 1,5.

Dans P'équation (2), les racines des deux premiers tri-
nomes sont imaginaires; celles du troisiéme sont réelles
et plus grandes que 1,5: il en résulte que f(—x) est
positive pour toute valeur de x inférieure a 1,5.

Ainsi f(— x) conserve le méme signe pour toute va-
leur réelle de x; donc ce polynome n’a que des racines
imaginaires, etil en est de méme de f(x). C. Q.F.D.

JUSTIFICATION DES CALCULS INDIQUES.
Premiére forme de f(— x).
Premier trinéme : 3447 x> — 14560 x + 15376.
(@y = (7280)* = 52998400
34479.15376 = 53001072

Deuxiéme trinéme : 7054 x* — 25857 + 23696.
25857 = 668584449
4.7054.23696 = 668606336

Troisieme trinéme : 5497 x* — 11596 x + 5602.
Ce trindéme a une seule racine entre 1 et + oo 1,5
substitué donne un résultat > o,
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Seconde forme de f'(—x) :

Premier trinéme : 6oor x* — 11596 x 4 5602.
(@): BngB* = 33616804
5602.6001 = 33617602
Deuxiéme trinéme : 23192 — 25857 x + 7208 a*.
258577 = 668584449
4.23192.7208 = 668671744
Troisiéme trindme : 3447 x* — 14560x + 15222.
La somme des deux racines est plus grande que 4 ; ces
racines sont donc plus grandes que 1.
3447.1,5 = 5170,5
5170,5 — 14560 = — 9389,5
—+ 9389,5 < 1,5 = 14084,55 < 15222 (*)

SUR LE NOMBRE DES POlNT§ MULTIPLES DANS UNE COURBE
ALGEBRIQUE ;
Par M. Aser. TRANSON.

1. Si toute droite, menée par le point A d’une courbe,
a en ce point deux ou plusieurs rencontres avec la courbe,
¢’est un point multiple.

Le nombre de ces rencontres marque le degré de mulu-
plicité du point.

Cette singularité est généralement due a la circonstance
de deux ou plusieurs branches de courbe passant par le
point dont il s’agit. Si 'angle sous lequel deux de ces

(*) Le célébre calculateur astronome a fait un emploi utile du théoréeme
de Sturm; un académicien de méine nom a retranché de Venseignement
ce théoréme comme appartenant a la haute théorie, chose inutile; un re-
présentant de méme nom, dans la discussion sur les conducteurs-voyers,
a déclaré la haute théorie chose indispensable. Ces trois noms désignent-~
ils la méme personne? O. TERQUEM.
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branches se coupent vient a s’annuler, alors i peut ¥
avoir rebroussement, mais cela n’a pas lieu nécessaire-
ment. Ainsi la circonstance que deux des tangentes en un
point multiple viennent 4 se confondre, est un des caracté-
res du rebroussement, mais non pas un caractére exclusif.

Le point multiple peut aussi étre isolé, on l'appelle
alors point conjugué; et, ici, il faut remarquer que, ré-
ciproquement, dans une courbe algébrique, tout point
isolé est nécessairement multiple.

2. Le caractére commun de tous les points multiples,
quel que soit leur degré de multiplicité, qu’ils présentent
ou non un rebroussement, qu’ils soient ou non isolés ;
c’est d’étre a la fois sur les trois courbes représentées par

(1) F=o,
dF
) _——
(2/ (Lr 0’
dF
(3) g;‘—— ’

ou F==o0, équation du degré n, représente la courbe
donnée. De la ce premier résultat , que leur nombre , ne
pouvant dépasser celui des intersections de deux courbes
du degré n — 1, a pour limite supérieure (n —1)* (¥).

L’objet de cette Note est de trouver une limite beau-
coup moins élevée que (7 — 1)? pour le nombre total des
points multiples en général ; et ensuite de donner des li-
mites spéciales pour les points muliiples des différents
degrés de multiplicité.

D’abord on peut s’assurer que les solutions communes

dF
aux deux courbes — = o, et

——=— 0, ne sont pas toutes
dx

dy

(*) Cest par inadvertance que j'ai mis #{n— 1), voir (. IX, p. 28q,
0.T.
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sur la courbe I = o, 4 moins que celle-ci ne présente un
faisceau de n droites. Cela est évident pour le second
degré, puisque I'ensemble des deux équations (2) et (3)
y représente le centre de la courbe , et je le démontre en
général comme il suit.
La courbe donnée par I’équation

dF dF
(4) x . “+y -{g —o0
contient manifestement tous les points communs a (2)
et (3); or, mettons I'équation (1) de la courbe donnée
sous la forme
F"+ Fn—l + Fn——2+-- . :0,

ou les différents termes sont des fonctions homogénes
alors I'équation (4) deviendra

dF, dF,,+ xdF,,_i + d¥F,_,
dx +r dy dx 4 dy + %
¢'est-a-dire

nF,+(n—1)Fy +(n—2)Fs+... =o0:
donc tous les points communs aux équations (1), (2)
et (3) satisfont a I'équation suivante, qui est du degré
(n—1),
(5) Fn_,+2Fn..2+3Fn_v,—'...:0;

et réciproquement tous les points communs aux équations
(2), (3) et (5) sont sur la courbe proposée.

La question est réduite a savoir si toutes les solutions
communes aux équations (2) et (3) peuvent appartenir
a 'équation (5). Or, toute équation de degré (n—1),
et qui est satisfaite par toutes les solutions communes aux
équations (2) et (3), est de la forme

. dF dF
- E -+ a 2—)—; = o,

sauf 4 déterminer convenablement la constante «. De
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sorte qu'on devrait pouvoir disposer de o de telle sorte
que Péquation suivante fiit une identité,

dF dF
—— +a—-—= Fn—-—l+ 2Fu—‘.‘+3Fu—J +' .-
dx dy

Mais en développant cette condition on arrive a connaitre
que P’équation primitive devrait se réduire a la suivante,
F,(x+ 1,y +a)=o0, et par conséquent représenter
n droites passant par un point unique, desquelles droites
plusieurs peuvent étre imaginaires. Je suis donc déja en
droit de dire que le nombre des points multiples est tou-
jours inférieur a (n — 1)*.

Je vais faire voir maintenant qu’il est inférieur tou-
jours au nombre de points qui déterminent une courbe du
(n—2)%“meordre, lequel est, comme on sait, (n=2) (n+1;,

Supposons en effet qu’il soit supérieur ou simplement
égal & ce nombre.

,

On pourrait donc par (’—l—:?—)gl—tﬁ points multiples
de la courbe ' = o, fairc passer au moins (*) une courbe
du degré n» — 2. Or, chacun de ces points vaudrait au
moins deux rencontres de la courbe auxiliaire avec la
proposée. Ainsi le nombre total des rencontres serait
au moins (7 — 2) (n + 1), au lieu qu'il est seulement
(n— 2)n;donc, etc.: mais on peut avoir une limite en-
core moindre en raisonnant comme il suit.

Soit x le nombre des points multiples, et soit pris
sur la courbe le nombre de points nécessaires pour y
faire passer une courbe du degré n— 23 cest-a-dire

(*; Je dis au moins, parce que la disposition de ces points en nombre
—2){n+41) . . .
(n _2;‘_’ pourrait étre telle qu’il v passat non pas une seule courbe

du degré n — 2, mais une infinité.
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(n—2)(n41) . ‘
“———-——— points, en y comprenant notamment tous
les points multiples. Si ces points étaient simples, il en ré-

. (R—2)(rn+1) e 1
sulterait — rencontres connues, sans préjudice

des autres rencontres ennombre n (n — 2)—&:—2)#—1—) .

Mais puisque parmi les points choisis il y en a x mul-
tiples, c'est-a-dire qui sont au moins doubles, le
nombre total des rencontres connues est d’au moins
n—2 n-—t-1 . .
(——-)5(—————)--4— x. On voit que dans ce raisonnement
chaque point multiple est compté pour un seulement
parmi les points déterminants de la courbe auxiliaire; et
il est compté au moins pour deux parmi les rencontres.
Aprés cela, le nombre total des rencontres est tout au
plus égal & (n— 2) n; ce qui donne la condition
n—2)(n+1 —
(—-————> (—--—m-)- +x _n(n—2),
2 <
d’ott Pon tire
=(n—1)(n—2
L) (=2

‘o 2

Si les inégalités que nous avons supposées avaient lieu
en sens contraire, ¢'est que I'équation F = o représente-
rait la réunion de deux courbes au moins de degré infé-
rieur. Pour ce cas-la et pour tous ceux ou F = o se dé-
composerait en facteurs rationnels, il est clair que les
raisonnements ne vaudraient plus; mais aussi on n’aurait
pas véritablement une courbe du degré n. Par cette ré-
flexion, j'échappe a la difficulté qu’aurait présentée le
nombre des points doubles d'un systéme de n droites,
lequel est ”(”; L, et ainsi surpasse la limite ci-dessus.

La limite qu’on vient de trouver est celle du nombre
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total des points multiples; c’est, en particulier , celle des
points doubles qui, manifestement, comprennent tous
les autres. On pourrait cherchér aussi la limite des points
triples parmi lesquels figureraient tous ceux dont le degré
de multiplicité est supérieur a trois. Mais, pour abréger,
je me borne adire que le nombre des points dont la mul-
tiplicité est p. ou supérieure a p., ne peut pas surpasser le
nombre donué par la formule
(n—p)l2r(p—1) —p]
wp—1)

En effet, le nombre des points du degré de multipli-
cité p ne saurait atteindre celui des points qui déter-

. L 2n .
minent une courbe du degré — 2 <51 cette formule

2n . .
—— — 2 donnc un nombre fractionnaire, entendez alors
P.

que le nombre des points en question ne peut pas at-
teindre celui des points déterminant la courbe dont le

) . 1 2n i
degré surpasse immédiatement — — 2 |} : cela résulte de
FL

la relation

. _— 2
@ 2 =

13

2n \fan \
R Ca
- | - \ < ) i
ou le premier membre représente le nombre des ren-
contres nécessaires que la proposée aurait avec une
an . .
courbe de degré — — 2 passant par des points de multi-
P4
plicité p, en nombre

(=) ()

2

On est donc assuré de pouvoir placer tous les points en
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. ,2a2n
question sur unc courbe de degré w 2. Chacun de ces
points entrera pour une simple uaité dans le nombre des
points déterminants de la courbe auxiliaire, mais il dé-
terminera p rencontres; de sorte qu'en appelant y le

nombre des points multiples de degré «, on a la rela-
tion

BB e

2 Uy 2\
d’ou I'on tirera pour y la formule ci-dessus indiquée,
‘A = —p)len(p— 1) —p]
* 7 < (b —1)p

3. On peut se proposer une autre recherche : celle du
nombre des points multiples de degré 1., pour lesquels les
w branches de courbe se touchent, c’est-a-dire ont une
tangente unique sans qu’il y ait d’ailleurs rebroussement.
Cela exige un nouvel artifice. Je prends en chacun de ces
points la tangente commune pour tangente de la courbe
auxiliaire; de sorte que chaque tel point en vaudra deux
par rapport a la détermination de la courbe auxiliaire, et
en vaudra 2 p. pour les rencontres.

Avec cette construction, on prouvera aisément que le
nombre des points en question ne peut pas atteindre
celui des points nécessaires a la détermination d'uné

,n . e . \
courbe du degré — — 2, c’est-a-dire n’atteint pas a

(=2 (i)

2

2
autrement, il serait possible de construire une courbe de

z n ’
ce degré — — 2, ayant, avec la proposée, un nombre de
fl.

Ann. de Mathémat., t. X. (Mars 1851 ) 7



rencontres dgal a

«’est-a-dire égal a (f——-2> (n + p), ce qui est absurde.
F.

Partant de 1a et appelant z le nombre des points dont
il s’agit, on aura aisément 'inégalité

"n ' n
=) i)
5 +2({L—l)z<(;~—2>n,
d’ou
" c=n—2pn(2p—1)—p]
‘ < Gp(p—1)
4. En dernier lieu, on peut demander le nombre maxi-
mum des points dont le degré de multiplicité est p, ct
ou p' branches ont une méme tangente. Je supprime le
calcul, mais il sera aisé au lecteur de trouver que si v est

le nombre de ces points, on a

’
Q ,— (r—e—p) |
( ) v Y] / )
<(p+p)(p+p—2

Si I'on suppose u' =y, on retombe surla formule (B),
comme cela doit étre. Mais cette formule (C) ne donne
pas la formule (A) par la substitution de p'= o; elle est
alors en défaut, ct cela s’explique parce qu’elle est con-
struite comme la formule (B) en imaginant que la courbe
auxiliaire touche dans ses points déterminants les branches
(ui ont la méme tangente; ce qui n’a plus de sens si I'on
suppose ensuite qu’aucuncs branches ne se touchent.

5. Cramer, dans son Introduction a Uanalyse des
lignes courbes algébriques (1750), a traité la question
du nombre des pornts multiples qu'une courbe d’un ordre
quelconque peut avoir. L’auteur, aprés avoir observé

[27(p+p' —1)—p—p]
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qu’'une courbe de V'ordre m ne peut avoir un point mul- .
tiple de ce méme ordre sans se réduire a ce point unique,
ou a un faisceau de m droites , établit, par la simple pro-
priété du nombre des rencontres de la proposée avec une
ligne droite, puis avec une courbe du deuxiéme ordre ou
du troisiéme ordre, etc., qu'une courbe de I'ordre m ne
peut pas avoir :

Deux points dont les degrés de multiplicité comptés
ensemble fassent plus de m;

Cing points dont les degrés de multiplicité comptés en-
semble fassent plus de 2 m;

Neuf points dont les degrés de multiplicité comptés en-
semble fassent plus de 3m;

Etc....

D’aprés cela, l'auteur forme pour les huit premiers
ordres 1€ tableau complet des diverses sortes de points
multiples qui peuvent coexister sur une méme courbe,
toutefois sans avoir égard a la circonstance que deux ou
plusieurs branches peuvent se toucher au point mul-
tiple. On pourrait réduire sa théoric en un algorithme
trés-simple ou les nombres de points multiples de chaque
sorte coexistant dans une méme courbe, entreraient
comme des indéterminées dans une équation du premier
degré, dont il suffirait de chercher les solutions en
nombres entiers et positifs; et alors les formules que nous
avons données se présenteraient comme répondant aux
cas trés-particuliers ou il n’y aurait 4 la fois qu’une sorte
unique de points multiples.

Nous donnerons bientdt 1a démonstration que vient de publier Viljustre
M. Jacobi, que toute ligne plane de degré n'a {n(n—2)(n*—q) tan-

gentes doubles. (CreLLE, tome XL, page 237; 1850.)
O. TeRQUEM.
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GEOMETRIE SEGMENTAIRE. SUR LES POLYGONES.

1. Soit une courbe F jouissant de ces deux propriétés :
1° deux de ces courbes, en se coupant, forment quatre
angles; les augles opposés au sommet sont égaux, et les
angles adjacents sont supplémentaires; o étant I'un de
ces angles, supposons que 'on ait

pe)=¢(27—a),

4 désignant une fonction qui a la propriété énoncée par
P’équation ; il existe une infinité de ces fonctions ; la plus
connue est

y(a)=sin;
2 dans un triangle ABC formé pal:‘ trois de ces courbes I¢,
supposons que 1'on ait toujours

bla) _$(0)_ ¥(e),

?(A) " ¢(B)7 ¢(C)
A, B, C désignent les angles; a, b, ¢ les longueurs des
cotés opposés, et ¢ une fonction douée de la propriéié
écrite dans I'équation. Pour de telles courbes, on a le
théoréme suivant.

TreoriME. Un polygone formé par des courbes ¥ étant
coupé par une transversale ¥, le produit des fonctions {
des segments d’indices pairs est égal au produit des
Sonctions ¢ des segments d’indices impairs.

Les cas les plus simples sont ceux ou I'on a

¢(a)=sina et {(a)=a,
‘ou bien

Y (a)=sina,
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et dont nous avons donné la démonstration la plus simple
possible (tome VII, page 459), et ce méme moyen de
démonstration s’applique mot 4 mot au cas général, qui
existe peut-étre pour des lignes géodésiques autres que la
droite et le cercle.

2. Le théoréme segmentaire de la transversale sub-
siste aussi pour des polygones plans non convexes et pour
les polygones étoilés; de méme pour les polygones sphé-
riques: observation essenticlle qu'il ne faut pas omettre.

3. Tatorime. Un polygone gaucle étant coupé par
un plan , le produit des segments d’indices pairs est égat
aw produit des segments d’indices impairs.

Démonstration. Menons un plan perpendiculaire au
plan transversal, et projetons le polygone gauche sur ce
plan. L’intersection des deux plans est une transversale
dans le polygone en projection; les segments en projection
élant proportionnels aux segments projetés, on peut sub-
stituer les uns aux autres, et 'on obtient la propriéié
énoncée (*).

4. Tutorime ve M. Poncerer. 8i, parun point pris
& volonté dans le plan d’un polygonc quelconque d’un.
nrombre impair de cétés, on mene & chaque somunet une
droite prolongde jusqu’au cété opposé, le produit de tous
les segments d’indices pairs est égal au produit des seg-
ments d’indices impairs.

Solution. Soient 2 n -+ 1 le nombre de cotés; les droites
menées aux angles forment un faisceau plan de 27 + 1
rayons; et en prolongeant chacun de ces rayons jusqu’aux
cbtés respectivement opposés, on partage le polygone en
4 n + 2 triangles; aux segments, on peut substituer les
aires des triangles) ct a celles-ci les sinus des angles formés

(*) Voyez Théorémes et Probtémes de Géométrie élémentaire, par LAFRE=
MOIRE; seconde édition, page 224.
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par deux rayons adjacents, et les mémes sinus se trou-
vant dans deux produits segmentaires, ces produits sont
égaux.

Observation. Le théoréme subsiste pour les polygones
non convexes ou étoilés, et aussi pour les polygones sphé-
riques, en substituant aux segments les sinus des seg-
ments.

Lorsque le nombre des cotés est pair, on méne par un
sommet quelconque une droite qu’on suppose étre la di-
rection d'un coté devenu nul en ce point, et le théoréme
s'applique aussi pour ce cas.

Obscrvation. Ce théoréme a é1é énoncé la premiére
fois, en 1822, pour les polygones, dans le Traité des
Sfigures projectives, page 85. C'est Jean Bernoulli qui, le
premier, a donné cette proposition pour le triangle; voici
son énoncé :

Si per quodvis punctumn in triangulo quovis rectilineo
ex singulis angulis ducantur rectee ad latera opposita;
erunt solida ex tribus laterum segmentis, non contiguis,
facta inter se wqualia. (Op. omnia, tome IV, n° 145,
page 335 1742.)

Le théoréme de M. Poncelet est une belle généralisation
du théoréme de Bernoulli.

3. Tutorime. Etant donné un polygone gauche d’un
nombre impair de cétés, si, par une droite fixe et par
chaque sommet du polygone, on méne un plan qui coupc
le coté respectivement opposé en deux segments, le pro-
duit des segments d’indice pair est égal au produit des
segments d’indice impair.

Démonstration. En projetant le polygone sur un plan
perpendiculaire & la droite fixe, on est ramené au théo-
réme de M. Poucclet, car les projections des segments
d’un méme coté sont proportionnelles a ces segments.

Obsersvation. On comple les segments en partant d’un
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sommet quelconque, et parcourant le périmétre dans le
méme sens , les segments ayant des indices de méme parité
n’ont jamais de points en commun.

6. Un faisceau plan étant coupé par une transversale,
si I'on forme un rapport projectif avec ces segmeuts, on
peut substituer aux segments les sinus des angles formés
par les rayons du faisceau ; considérant le sommet du fais-
ceau comme le centre d'une sphére, la transversale sc
projette sur la sphére suivant un arc de grand cercle, et
les rayons du faisceau divisent cet arc en segments circu-
laires dont les sinus fournissent le méme rapport projec-
tif que celui qui existe entre les segments rectilignes. Clest
un moyen général de transporter aux polygones sphé-
riques les propriétés projectives segmentaires des poly-
gones rectilignes.

7. Le théoréme de M. Rouart (voir tome IX, page 400)
subsiste aussi pour les polygones sphériques circonscrits a
un méme petit cercle. Imaginons un cone concentrique a
la sphére ayant pour base les deux polygones. Coupant ce
cone par un plan, on obtient deux polygones rectilignes
circonscrits & un cercle; appliquant a ces polygones le
théoréme de M. Rouart, on peut remplacer chaque seg-
ment par le sinus de 'angle que forment les deux rayons
qui vont aux extrémités du segment. Ce méme théoréme
subsiste-t-il pour des polygones sphériques quelconques ?

METHODE GHEZY.

Tous nos ouvrages classiques , tous les professeurs, cn-
seignent aujourd’hui a discuter les courbes du second de-
gré, en résolvant I'équation par rapport i une des coor-
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dounées; la quantité qui est hors du radical détermine
un diamétre, et le coeflicient du carré de la seconde coor-
donnée qui se trouve sous le radical caractérise I'espéce de
la courbe; mais aucun ouvrage, & ce que je sache, ne
nous apprend que cette méthode ne remonte qu’a 1791,
et qu'on la doit 4 un homme de grand mérite, moral
et intellectuel, nommé Chezy, sur lequel on trouvera
plus loin quelques détails. La méthode a été développée
et publiée par le céléhre Prony (¥*), éléve de Chezy,
dans un Mémoire épuisé depuis longtemps, et dont voici

le titre : Exposition d’une méthode pour construire les
équations indéterminées qui se rapportent aux sections
coniques, a 'usage de I'Kcole des Ponts et Chaussées;
par M. de Prony, ingénieur des Ponts et Chaussées. A
Paris, de I'imprimerie de Pierre PidotI’ainé; MDCCXCI.
In-4° de 26 pages, 2 planches.

I’auteur commence par montrer comment on peut
ranger, sous une forme de triangle, tous les termes d'une
équation compléte a deux inconnues de degré n: c'est le
parallélogramme de Newton, réduit en triangle par de
Gua; comme, dans le reste du Mémoire, on ne fait aucun
usage de ce triangle, on ne voit pas bien le but de cette
disposition. On donne 4 I'équation hexandéme la forme

r*+ ax’ + bxy +cy +fr + g=o.

La discussion est extrémement détaillée, trés-claire, et
roule sur l’expression—% b* — a qu'on appelle ici la diffé-
rence caractéristigue; c'est le B — 4 AC= m des temps
actuels. On peut reprocher a cette discussion, 1° den’avoir
pas donné de cocflicient & y*; 2° de s’attacher uniquement
a la différence caractéristique qui n’est que le détermi-

(*) Mort le 29 juillet 1839; son éloge. comme Membre de 1'Académic .
est encore a faire en 1851,
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nant des trois premiers termes et d’avoir négligé le déter-
minant L des six termes, et dont 'importance est plus
grande que celle dem ; 3° de n’avoir pas cherché les lignes
limites des coniques, lorsque cinq coefficients restant
constants, le sixiéme varie de — o & 4+ : cest le seul
moyen, dans la discussion générale, de trouver le cas ou
Vellipse se réduit & une droite finie et 'hyperbole a une
droite infinie , mais ayant une solution de continuité dans
son cours. Du reste, soixante années se sont écoulées, et
les deux derniers reproches peuvent encore sadresser a
nos meilleurs Traités de Géométrie analytique. En toute
chose, le bien vient pede claudo.

Note biographique.

Cuezy (Antoine) est né a Chalons-sur-Marne en 17183
il fit ses études au séminaire, et entra dans la savante
congrégation de I'Oratoire. Ses gotits ayant pris une autre
direction, il quitta cette compagnie et fut admis, en 1748,
a I'Ecole des Ponts et Chaussées, alors sous la direction du
célebre Perronet. 11 fut nommé ingénieur en 1761, et ingé-
nieur en chef en 1763. En cette qualité, il a dirigé les tra-
vauxdu pont de Neuilly et du pont de Mantes. 1l a composé
un Mémoire sur lesinstruments propres a niveler nommés
niveaux, qui est inséré dans le tome V des Savants étran-
gers, page 254, 1768, et a inventé le clisimétre, niveaude
pente qui porte encore son nom; on en trouve une bonne
description au livre V¢ de l'ouvrage de M. Breton (de
Champ) (voir tomeIX, page 392). Mis a la retraite et payé
en papier-monnaie, déprécié, il fut réduit & un tel état de
détresse, qu'en 1795, il fut obligé, pour subsister, de
vendre le crin de ses matelas. Son éléve, Prony, le fit’
entrer dans ses bureaux, et obtint pour lui la place de
directeur de’Ecole des Ponts et Chaussées qu’il ne remplit
qu'unc année. 11 est mort le 4 octobre 1798, sans laisser



( 106 )

aucune fortune. Son fils, le célébre orientaliste et sans-
critiste Chezy ( Antoine), le traducteur de Sacontala, du
Ramayana, etc., cut a lutter pour faire subsister sa
mére; et une injustice criante du ministre de I'Instruction
publique Corbiéres a hatéla fin de I'illustre collégue des
de Sacy, Rémusat, etc. Funeste résultat des passions po-
litiques. Que n’essaye-t-on, en toute chose, d’étre sincére
et juste? c’est peut-étre la meilleure politique. Celle qui
est cn usage réussit si peu, méme aux plus habiles, qu'on
ne risque pas beaucoup en en choisissant une autre.

SOLUTION D’UN PROBLEME APPARTENANT A LA GEOMETRIE
DE SITUATION, PAR EULER;

Trapuit vpu raTin, par M. E. COUPY,

Professeur au collége militaire de la Fléche.

Le probleme dont je hasarde ici la traduction est
inséré dans les Commentaires de 1'Académie des Sciences
de Saint-Pétersbourg, tome VIII, page 128, année 1736.
M. Poinsot (*), dans son célebre Mémoire de 1810 sur
les Polygones et les Polyédres étoilés, et Lhuillier, de
Geneive,, dans son Algeébre, U'ont mentionné tous deux.
Ce probléme intéressant, d’une solution fort ingénieusc,
n’a été tradwuit, que je sache, dans aucun recueil fran-
cais, et se trouve enfoul maintenant dans une volumi-
neusc collection a la portée seulement des personnes qui
habitent la capitale. J'ai pensé qu’on lirait, au moins
~avec curiosité, ce probléeme; c’est ce qui m’a décidé a
publier cette traduction que jai faite, il y a quelques
anndes, a Paris.

(*) Voir tome VIII, page 132,
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1. Outre cette partie de la géométric qui traite des
grandeurs et qui a été de tout temps cultivée avec beau-
coup de zéle, il en est une‘autre , jusqu’a nos jours com-
plétement inconnue, dont Leibnitz a fait le premier
mention et qu’il appela géométrie de position. D’aprés
lui, cette partie de la géométrie s’occupe de déterminer
seulement la position et de chercher les propriétés qui
résultent de cette position; dans ce travail, il n’est be-
soin, ni d’avoir égard aux grandeurs elles-mémes, ni de
les calculer; mais il n’est pas encore assez bien établi
quels sont les problémes de ce genre appartenant a la
géométrie de position, et quelle méthode il faut employer
pour les résoudre; c’est pourquoi lorsque récemment il
fut question d’'un probléme qui semblait, & la vérité, se
rattacher a la géométrie ordinaire, mais dont cependant
la solution ne dépendait, ni de la détermination de gran-
deurs, ni du calcul de quantités, je n’ai point balancé a le
rapporter 4 la géométrie de position, d’autant plus que les
considérations de position entrent seules dans la solution,
tandis que le calcul n'y est pour rien. J’ai donc cru
utile d’exposer ici, comme un exemple de géométrie de
position, la méthode que j’ai trouvée pour résoudre les
problémes de ce genre.

2. Or ce probléme, qu’on me disait étre assez connu,
était le suivant :

A Keenigsherg, en Prusse, il y a une ile A appelée
le Kneiphof, entourée d’un fleuve qui se partage en
2 bras, comme on peut le voir sur la figure 1, mais les
brasde ce fleuve sont garnis de 7 ponts a, b, ¢, d, e, f, g,
ct I'on proposait cette question sur ces ponts : Une per-
sonne peut-elle s’arranger de maniére a passer une fois
sur chaque pont, mais une fois seulement? Les uns affir-
maient que cela était possible; d'autres niaient ; d’autres
en doutaient; mais personnue ne pouvait prouver. Quant
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4 moi, j’ai fait de cc probléme le suivant beaucoup plus
général :

Quelle que soit la figure du fleuve et sa distribution
en bras, et quel que soit aussi le nombre des ponts,
trouver si une personne peut traverser le fleuve en pas-
sant une seule fois sur chaque pont.

3. Pour ce qui regarde les 7 ponts de Koenigsherg, on
pourrait résoudre le probléme en faisant I’énumération
compléte de toutes les maniéres de passer qui peuvent
avoir lieu, car on verrait par la quelle est celle qui satis-
fait, ou bien on reconnaitrait qu’il n’y en a aucune. Mais
ce mode de solution, a cause du si grand nombre de com-
binaisons, serait trop difficile ct trop laboricux, ct ne
pourrait méme plus s’appliquer dans les autres questions
ou il y aurait beaucoup plus de ponts. Au reste, si par
.ce moyen I'opération était conduite jusqu’au bout, on
trouverait beaucoup de maniéres de passer qui ne satis-
font pas a la question, et c'est en cela sans doute que
consiste la cause d’'une si grande difficulté. Ayant done
laissé de coté cette méthode, j’en ai cherché unc autre
qui me dounne non pas toutes les maniéres de passer,
mais me montre seulement celle qui satisfait a Ja ques-
tion; ct je regarde une parcillec méthodé comme de beau-
coup plus simple que la précédente.

4. Toute ma méthode se fonde sur une maniére parti-
culiére de représenter chaque passage de pont, dans la-
quelle j’emploie les lettres majuscules A, B, C, D, qui
sont écrites a chaque région que sépare le fleuve. Ainsi, si
quelqu’un va dela région A ala région B, en passant sur
le pont @ ou sur le pont &, je désigne ce passage par les
lettres AB. La premiére marque la région d'ou sort le
voyageur; la seconde, larégion dans laquelle il estparvenu
aprés avoir passé le pont. 5i ensuite le voyageur sen va
dans la région D par le pont f, ce passage sera représenté
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par les lettres BD, et je représente ces 2 passages succes-
sifs AB et BD seulement par 3 lettres ABD, celle du
milieu B représentant, tant la région ou il est parvenu
par un premier passage que celle d’ott il est sorti pour un
second passage.

5. Par un moyen semblable, si le voyageur s’avance de
la région D dans la région C par le pont g, je représen-
terai ces 3 passages faits successivement par 4 let-
tres ABDC, car on comprendra par ces 4 lettres ABDC,
que le voyageur étant d’abord dans la région A, a passé
dans la région B, de 13 s’est avancé dans la région D, et
enfin, dela a passé dans la région C; et puisque ces ré-
gions sont séparées mutuellement par ’eau les unes des
autres, il est nécessaire que le voyageur ait passé sur
3 ponts. De méme, les passages faits successivement sur
4 ponts seront représentés par 5 lettres, et si le voyageur
continue sa marche autant qu’il y a de ponts , son voyage
sera représenté par un nombre de lettres supérieur d’une
unité au nombre de ponts. C’est pourquoi il faut 8 lettres
pour représenter les passages sur 7 ponts.

6. Dans ce mode de notation , je ne considére point par
quels ponts le passage se fait; mais si le méme passage
d’'une région a une autre peut se faire par plusieurs
ponts, peu importe par quel pont on passe d’abord pour
arriver dans la région désignée. On comprend, d’aprés
cela, que si le voyageur peut continuer sa course sur les
7 ponts de la figure 1, de maniére 4 passer une fois sur
chacun d’eux, et jamais deux fois sur aucun, cette course
pourra se représenter par 8 lettres, et ces lettres devront
étre disposées de telle sorte que la succession immédiate des
lettres A et B se présente deux fois puisqu'il y a 2 ponts «
et b qui joignent ces régions A, B: de méme, la succes-
sion des lettres A et C devra aussi se trouver deux fois
dans cette série de 8 lettres et pour la méme raison, en-
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suite la succession des lettres A et D devra s’y trouver une
seule fois, et, enfin, il faudra semblablement que la suc-
cession des lettres Bet D, et celle des lettres C et D s’y
trouvent chacune une fois.

e
QITF?%Q

7. La question est donc ramenée a former avec 4 let-
tres A, B, C, D, une série de 8 lettres dans laquelle
toutes ces successions se présentent autant de fois qu'il
vient d’8tre trouvé. Mais avant de chercher une telle dis-
position, il convient de faire voir si ces lettres peuvent ou
non étre disposées d’'une telle maniére. Car si I'on pou-
vait démontrer qu'une telle disposition des 4 lettres A,
B, C, D est tout a fait impossible, tout travail qui aurait
pour but de la chercher, serait évidemment inutile. Cest
pourquoi j'ai invent¢ une régle par le secours de la-
quelle, tant pour cette question que pour toutes celles du
méme genre, il est facile de discerner si un tel arrangement
des lettres peut ou non avoir lieu.

8. Pour trouver cette régle, je considére une région
unique A ( fig. 2) a laquelle conduisent autant de ponts
quon veut, a, b, ¢, d,...; je prends d’abord un seul de
ces ponts qui conduisent a la région A, par exemple a.
Si maintenant le voyageur passe sur ce pont, ou bien il
devra étre avant le passage dans la région A, ou bien il
parviendra aprés le passage dans cette région A ; c’est pour-

Fig. 1.
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quoi, dans la maniére établic ci-dessus de représenter les
passages , il faut que la lettre A se trouve une fois. Si vous
supposez 3 ponts a, b, ¢ conduisant dans la région A, et
que le voyageur ait traversé ces 3 ponts, alors dans la re-
présentation de ce voyage la lettre A se trouvera deux
fois, soit que ce voyage ait commencé en partant de A,
soit qu’il ait commencé en y allant. De méme, si 5 ponts
conduisent en A, dans la représentation du passage sur
tous ces ponts, la lettre A devra se trouver trois fois; et,
en général, si le nombre des ponts est un nombre impair
quelconque, en augmentant ce nombre de 1, et prenant
la moitié, on aura le nombre de fois que la lettre A doit
se trouver dans la représentation du passage.

9. Dans ce cas donc des ponts de Koenigsberg ( fig. 1),
puisque 5 ponts @, b, ¢, d, e conduisent dansl'ile A, il
est nécessaire que dans la représentation du passage sur
ces ponts la lettre A se trouve trois fois. Ensuite la let-
tre B, puisque 3 ponts conduisent dans la région B,
devra se trouyer deux fois ; de méme la lettre D ainsi que
la lettre C, devra se trouver deux fois et pour la méme
raison. Donc, dans la série des 8 lettres représentant le
passage sur les 7 ponts, la lettre A devrait se trouver trois
fois, et les lettres B, C, D, chacune deux fois, ce qui,
dans une série de 8 lettres, est complétement impossible.
11 suit clairement de 1a que sur les 7 ponts de Koenigsberg,
le passage demandé est impossible.

10. Par un procédé semblable, on peut dans tout autre
cas, pourvu toutefois que le nombre de ponts qui condui-
sent dans chaque région soit impair, on peut reconnaitre
si le passage une seule fois sur chaque pont est possible.
Cars'il arrive que la somme de toutes les fois que chaque
lettre doit se trouver, soit égale au nombre de tous les
ponts augmenté de 1, alors le passage demandé sera pos-
sible. Mais si, au contraire, il arrive, comme dans notre
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exemple , que cette somme soit plus grande que le nombre
total des ponts augmenté de 1, alors le passage demandé
une pourra s’effectuer d’aucune maniére. Mais la régle que
j'ai donnée pour déduire du nombre de ponts conduisant
dans la région A le nombre de fois que la letire A doit
s'écrire, s’applique également, soit que tous les ponts
conduisent d’une seule région B comme le représente la
figure 2, en A, soit qu’ils conduisent de plusieurs, car je
considére seulement la région A et je recherche combien
de fois la lettre A doit se trouver.

?l}:jz %j‘;};&@?}t

11. Mais si le nombre des ponts qui conduisent dans la
région A est pair, alors il faudra distinguer, pour le passage
sur chaque pont, si le voyageur a commencé ou non sa
course en partant de la région A. En effet, si 2 ponts con-
duisent en A et que le voyageur ait commencé sa course en
partantde A, alors la lettre A devra se trouver deux fois;
une fois elle représentera la sortie de A par I'un des ponts
* et encore une fois, pour représenter le retour en A par
V'autre point. Mais si, au contraire, le voyageur avait
commencé sa course en partant de I'autre région, alors la
lettre A ne se présentera plus qu'une fois; car écrite une
fois, clle représentera, d’aprés ma maniére de représenter
ces courses, tant l'arrivée en A que la sortie de cette méme
région.

12. Que 4 ponts conduisent dans la région A et que le
voyageur commence sa course en partant de Aj; alors,
dans la représentation de sa marche compléte, la letire A
devra se trouver trois fois, pourvu toutefois qu'il n’ait
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passé qu’une seule fois sur chaque pont. Mais s'il a conis
mencé a marcher en partant de Iautre région, la lettre A
se trouvera seulement deux fois. S’ily a 6 ponts qui con-
duisent dans la région A, alors la lettre A se trouvera
quatre fois, si le voyageur a commencé par partir de A,
sinon elle ne se trouvera que trois fois, et généralement
s1 le nombre des ponts est pair, la moitié donne le nom=
bre de fois que la lettre A doit se trouver si Pon n’a pas
commencé a partir de Aj; et cette moitié, augmentée de
1, sera le nombre de fois que A devra s’écrire, en com-
mencant la course de la région A elle-méme.

13. Voici de quelle mani¢re je déduis du nombre de
ponts qui conduisent & une région, le nombre de fois que
cette région, présentée par une lettre, devra s’écrire dans
la course désirée. Je prends la moitié du nombre des
ponts augmenté de 1, si ce nombre de ponts est impair,
ét la moitié de ce méme nombre §’il est pair. Ensuite, si
le nombre de fois que toutes les lettres doivent s’écrire est
égal an nombi# des ponts augmenté de 1, alors le passage
désiré a lieu, mais on doit commencer & marcher d’une
région a laquelle conduisent un nombre impair de ponts;
mais si ce nombre de fois est inférieur de 1 au nombre
des ponts augmenté de 1, alors le passage a lieu en com-
mengant par une région a laquelle conduise un nombre
pair de ponts, parce que par ce moyen le nombre des fois
qu’on doit écrire les lettres est augmenté de 1.

14. Etant donc proposée une riviére quelconque, gar-
nie de ponts comme on voudra, pour trouver si une
personne peut passer sur chaque pont une fois seule-
ment, j'établis 'opération de la maniére suivante : 1° je
représente chacune des régions séparées mutuellement
les unes des autres par I’eau, respectivement par A, B,
C, D,...5 2° je prends le nombre total des ponts que
jaugmente de 1, et je note ce nombre pour l'opération

Ann. de Mathémat., t. X. (Mars 1851.) 8
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suivante; 3° & coté de chacune des leures A, B, C,...,
écrites I'une au-dessous de I'autre, j’écris le nombre de
ponts conduisant a la région marquée par la lettre que je
considére; 4° je marque d'un astérisque les lettres qui
ont un nombre pair écrit & coté delles; 5° jécris-les
moitiés de tous ces nombres pairs et les moitiés des nom-
bres impairs, augmentés de 1, dans une méme colonne,
chacune de ces moitiés dans la méme ligne horizontale
que la lettre d’ou elle dépend ; 6° je fais la somme des nom-
bres écrits en dernier lieu. Si cetlte somme est inférieure
de 1, ou égale au nombre trouvé dans le 2°, qui est le
nombre total des ponts augmenté de 1, j’en conclurai que
le passage cherché est possible. Mais pour que cela soit
possible, quand la somme trouvée est inférieure de 1 au
nombre écrit en haut de sa feuille, on doit partir d'une
région marquée d’un astérisque; mais, au contraire, on
devra partir d'une région non astérisquée, quand la somme
sera égale au nombre précité. Ainsi, par exemple, pour
le cas des ponts de Koenigsberg, j'étalfis 'opération
comme il suit :
Nombre des pouts 7 : j'ai donc 8.

Ponts.

A 53
B 3,2
¢ 312
D 3 o

¥t comme la sonmme g de la seconde colonue est > 8, le¢
passage demandé est impossible.

15. Soient 2 iles A et B entourées d’eau, avec lesquelles
communiquent 4 fleuves, comme le représente la fi-
gure 3 ; 15 ponts sont jetés sur ces fleuves, et I'on demande
si une personne peut s’arranger de maniére 4 passer une
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fois et une seule fois sur chacun de ces ponts. Je désigne
d’abord 1° toutes les régions séparées mutuellement pai
'eau, par les lettres A, B, C, D, E, F: J’ai donc de la
sorle 6 régions; ensuite 2° j'augmente de 1 le nombre
total des ponts, et j’écris le nombre 16:

A, 814
B, 4 |=
C, 4|2
D 3|2
E 5|3
F, 6|3

16

3° j’écris les letires A, B, C,..., les unes au-dessous des
autres, et a cdté de chaque letire le nombre de ponts con-
duisant & la région que marque la lettre. Ainsi 8 ponts
conduisant 4 A, 4 4 B, etc. ; 4° je marque d’un astérisque
les lettres a coté desquelles se trouve un nombre pair;
5° j’écris dans une troisiéme colonne verticale les moitiés
des nombres pairs, j'augmente de 1 les nombres impairs,
et J'écris de méme les moitiés de ces nombres impairs
ainsi augmentés de 1; 6° j’additionne les nombres de
cette troisiéme colonne, et j’ai une somme 16 égale an
nombre 16 écrit en haut: il en résulte que le passage peut
étre fait de la maniére voulue, en partant soitde la région
D, soit de la région E, car ces lettres ne sont pas marquées
d’une éoile; la course pourra se faire de la maniére sui-
vante :

EaFbBeFdAcFfCgAhCiDAAmERApBoEID,

notatian dans laquelle j'ai placé entre les lettres majus-
cules les ponts sur lesquels le passage a lieu.
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1.6.511 sera donc trés-facile par ce procédé de reccn-
naitre dans ‘chaque cas proposé, si le passage unique sur
tous les ponts peut ou non s’effectuer. Cependant je don-
nerai encore un moyen beaucoup plus facile de recon-
naitre cela, lequel se déduira sans difficulté de ce qui
précéde, aprés que j’aurai exposé quelques observations
que voici. Je remarque d’abord que la somme des nom-
bres de ponts écrits a coté de chaque lettre A, B, C, D,...,
est double du nombre total des ponts; la raison en est que
dans le calcul qui donne tous les ponts conduisant i unc
région donnée, un pont quelconque est compté deux fois,
c’est-a-dire;que chaque pont est rapporté 4 'une et 'autre
des deux régions qu’il joint.

47. 11 suit de cette observation que le nombre total
des ponts qui conduisent dans chaque région est toujours
un nombre pair, puisque la moitié de cetie somme est
égale au nombre des ponts. Il ne peut donc pas se faire
que parmi les rombres de ponts conduisant 4 une région
quelconque, il n'y en ait qu'un seul d’impair, ou trois, ou
cing, ete. C’est pourquoi, si des nombres de ponts adjoints
aux lettres A, B, C,..., sontimpairs, il est nécessaire que
le nombre de ces nombres impairs soit pair. Ainsi, dans
I'excmple de Keenigsberg, les nombres impairs adjoints
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aux lettres des régions A, B, C, D,..., étaient au nombre
de quatre (voyez n° 14), et dans I'exemple précédent du
n° 15, il y a seulement deux nombres impairs, adjoints
aux lettres D et E.

18. Puisque la somme de tous les nombres adjoints aux
lettres A, B, C,..., égalele double du nombre des ponts,
il est manifeste qu’en augmentant cette somme de 2 et en
en prenant la moitié , on aura le nombre établi au com-
mencement de 'opération. Si donc tous les nombres ad-
joints aux lettres A, B, C,..., sont pairs, et qu'on prennc
la moitié de chacun d’eux pour former les nombres de la
troisiéme colonne, la somme de ces nombres sera infé-
rieure de 1 au nombre que nous savons. C’est pourquoi,
dans ces cas, le passage sur tous lés ponts pourra toujours
s'effectuer; car, en quelque région que la course com-
mence, on sera conduit en cette région par un nombre
pair de ponts, ainsi qu’il est requis. Par exemple, dans
le probléme de Kceenigsberg, on peut s’arranger de ma-
niére a passer deux fois sur tous les ponts, car ce serait
comme si chaque pont cht été divisé en deux, et alors le
nombre des ponts conduisant dans une région quelconquc
sera pair.

19. Maintenant, si I'on suppose qu'il y a seulement
deux nombres impairs adjoints anx lettres A, B, C,...
(on sait qu'il ne peut pas y en avoir un seul), et que tout
le reste soit pair, alors la course demandée est possible,
pourvu que l'on parte d’une des régions a laquelle con-
duit un nombre impair de ponts. Car, si, selon la régle,
on prend la moitié des nombres pairs, et la moitié des
nombres impairs augmentés de 1, la somme de toutes ces
moitiés sera supérieure de 1 au nombre de ponts, et par
conséquent égale au nombre précité lui-méme, et I'on voit
parla que s'ily a ou quatre, ou six, ou huit,..., nombres
impairs dans la deuxiéme colonne, alors la somme des
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nombres de la troisiéme sera plus grande que le nombre
précité, et le surpassera ou de 1, ou de 2, ou de 3,...,
unités, et que, par conséquent, le passage demandé
sera impossible.

20. Quel que soit donc le cas proposé,, on pourra trés-
facilement reconnaitre sur-le-champ, au moyen de la
régle suivante, si le passage une seule fois sar tous les
ponts est ou non possible.

S’il y a plus de deux régions auxquelles conduisent un
nombre impair de ponts, vous pouvez affirnier avec cer-
titude qu'un tel passage est impossible. Mais si I'on est
seulement conduit 4 deux régions par un nombre impair
de ponts, le passage est possible, mais en commengant sa
course par I'une ou l'autre de ces deux régions. Enfin,
il n’y a aucune région a laquelle on soit conduit par un
nombre impair de ponts, alors le passage pourra avoir
lieu, comme on lc désire, et en commencant sa marche
par telle région qu'on voudra. Cette régle satisfait donc
pleinement au probléme proposé.

21. Mais, quand on aura reconnu que la question est
possible, il restera encore & trouver comment la marche
doit étre dirigée. Je me sers pour cela de la régle suivante :
qu’on néglige par la pensée, autant de fois qu'on peut le
faire, 2 ponts conduisant d'une région a une autre; par
cette abstraction, le nombre des ponts se trouvera géné-
ralement de beaucoup réduit; qu'on cherche alors, ce
qui sera facile, la course demandée pour les ponts qui
restent, et cela trouvé, les ponts enlevés par la pensée ne
troubleront pas beaucoup le résultat obtenu, comme il
est aisé de le voir avec un peu de réflexion; et je crois
inutile d’insister davantage pour trouver la marche qu'on
devra suivre pour répondre a la question proposée.
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Note du traducteur. Une application intéressante du
probléme d’Euler peut étre faite a Paris, sur les ponts
nombreux qui garnissent la Scine, depuis le pont d'Iéna
Jusqu’au pontd’Austerlitz, et joignent les iles de 1a Cité et
Saint-Louis En jetant les regards sur un plan de Paris, en
appelant D la rive droite, G la rive gauche, A et B les iles
de la Cité ct Saint-Louis, on reconnait que 11 ponts
conduisent en A, 8 en B, 14 en G, 15 en D; donc le pro-
bléme est possible, d’aprés la régle du n® 20, pourvu
qu’on parte de la Cité ou de la rive droite, et il est trés-
facile de trouver effectivement la marche a suivre. 11 est
clair que dans ce probléme, le pont Neuf et celui de la
Réforme doivent compter chacun pour deux; car l'un
meéne deDen A etde A en G, et autre ménede D en B
etde Ben A.

Un autre probléme célébre de situation est celui du
cavalier aux échecs, donné aussi par Euler, pour la
premiére fois (Méncoires de Berlin, 1759) et dont Van-
dermonde donna depuis une solution plus simple, dans
les Mémoires de I’ Académie des Sciences, pour 1771,
page 566. M. Volpicelli s’est occupé récemment de
ce probléeme. (Comptes rendus, 1850, tome XXXI,
page 314.)

THEOREME DE M. STEINER, SUR LES AXES RECTANGULAIRES,
DANS LES SURFACES DU SECOND DEGRE
{veir t. IX, p. 407);

Par M. F. HEMENT,

Professear au lycée de Strasbourg.

1. Le théoréme dc M. Steiner sur les axes rectangu-
laires dans les coniques peut étre démontré ainsi :
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Prenant pour axes les deux droites rectangulaires, I'é-
quation de la conique est

Ay’+Bxy + Czx*--Dy +Exr+ F=—o.
En faisant successivement x = 0, y = o, on obtient
Ar*+~Dy+F=o,
. Cx*+4+ Exr + F=o,

¢équations qui donnent les segments des droites a et b; on
a donc :

T( 1 1“ ! " ___Ip
X _-C ] Yy = X’

, , F: F:
x'?x 1:__ 6‘27 ‘,y/: J,/r: — —A—'z.

Les racines étant de signes contraires, on a

=7 — 1/=“E2—4CF,
C
y o VDHAE
=Y y = A ’
”,_,:E’——4(J"’ b*:D2_4AP,
C7 A2
¢t enfin

a? b E-’—4CF+D’-—-—4AF
xm‘rm‘ +y/ay//2 = Fz ?

quantité constante; car, comme les deux axes rectangu-
laires sont quelconques, on peut généraliser en changeant
leur direction. On a alors
D"? = (Dsin« + E cos «)?,
E/?=(Dcosz— E sin a ),
D+ E’=D'+FE,
A’ = A sin? « 4+ Bsin« cos « + C cos®«,
C'= Acos’« — Bsinacos z+ Csin’«,
AN+C=A+C,
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F est le méme 5 donc

D'+ E—4{F(A+C)__D"+E’—4F(A'+C)
F* - F’” )

2. Quant au théoréme général, en prenant pour axes
les trois droites rectangulaires, on a pour équation de la
surface

A2+ By*+ Cx*+Dxy +Eyz + Fzz4+ Gz + Ayx +~ Ke+ L =o.
En faisant successivement
(z=o0,y=0), (yr=o0,z=090), (z=o0,2=0),
on obtient
Az?+Bz +~L =—o,
Cz?+Kz+L=o,
By»+Hy+L=o,

équations qui donnent les segments des droites a, b, ¢;

on a donc
G'— AL L
a’::—————-——-Az s z x" = T’
K?— 4 CL .
b= V=
H'— 4 BL L
o= 213 ==,
B?
d’ou
a? b c?

iz +}”2]’”2 + 227"t

2 2 LR -_ -
_ G +K+H 411;1‘ 4CL—4BL _ st

Si l'on prend, en effet, d’autres axes rectangulaires, on
obtient
A+B +C=A+B+4C,
G4+ K+ H*'= G+ H*+ K?,
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en faisant attention aux relations connues qui existent
cntre les cosinus des angles que les nouveaux axes font
avec les anciens : d’ailleurs L ne change pas; donc
D12+E/:+F/:_4L(A/+Br+c/)
L?
_ D+ E+F—{L(A+B+C)
— L'[ .

C. Q F. D.

1 1
——7 -+ 5—; = const.
3

1
Nole. e -+ 7
 x r'r z
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JACOBI.

Le flambeau le plus brillant du siécle est éteint. Jacos:
n’est plus. Il commence sa carriére d’invisible immorta-
lité ; - perte douloureuse, lacune immense, irréparable.
Toutefois, nous conservons un précieux héritage: ses
ceuvres , ou apparaissent inattendues tant de découvertes,
ou disparaissent soudaines tant de difficultés, au souffle de
son génie. Sans orgueil, et en toute vérité, il aurait pu
inscrire au frontispice de ses Fundamentala devise d’Ho-
race : Exegi monumentum ere perennius. En méditant
ces pages, brillantes d’incessantes créations, on reste con-
vaincu que les mathématiques ne sont pas une science,
mais une révélation permanente, un reflet de cette intel-
ligence divine que Jacobi contemple maintenant dans son
ineffable pureté. Il nous a aussi 1égué une pléiade d’illus-
tres disciples qui continuent la gloire du maitre; étendent,
perfectionnent ses travaux ; resserrent d’'un lien toujours
plus étroit le nombre, I'espace, le temps; le continu et le
discontinu; leréel et 'imaginaire,le finiet!'infini ; sublime
synthése, tendance unitaire de notre époque: la est notre
espoir. Puisse le ciel accorder de longs jours au géométre
hors rang, a I'auteur des Disquisitiones; & notre illustre
compatriote, I'auteur des Exercices : 13 est notre couso-

lation. Ce siéclea vu disparaitre successivement Lagrange,
Laplace, Monge , Legendre, Poisson, Abel, Jacobi. Ces
noms vivro tdans la mémoire des hommes , tant que sub-
sistera chez eux le culte de I'idée; le seul qui donue de
la grandeur a la pensée, de la noblesse aux sentiments,
de I'élévation au caractére; ils vivront encore entourés
d’une auréole toujours renouvelée, lorsque les noms de
leurs envieux contempteurs seront, depuis longtemps,

ensevelis dans les ténébres de 'oubli.
O. TerQuem.
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NOTE SUR LES DETERMINANTS.

1. Notation. u étant une fonction de n variables x,,
Xy . .y Lny nous désignons par u, la dérivée de cette fonc-
tion prise par rapport a la variable x,, par u,, la dérivée
u, par rapport a la variable x,, par u,,, la dérivée de u,,
par rapport a la variable 4,, et ainsi de suite. p, ¢, r,.. .,
sont des nombres quelconques de la suite naturelle 1, 2,
3,..., n. Ces dérivées portent aussi le nom de coeffi-
cients différentiels partiels, du premier, deuxiéme, troi-
siéme, etc., ordre. Nous empruntons cette notation com-
mode a M. Hesse, célehre professeur a Koenigsberg.

Observation. On sait que u,,, . reste le méme, dans

quelque ordre qu'on exécute les dérivations.
2. Lemme. u étant une fonction de n variables, le
nombre des coefficients différentiels partiels d'ordre p est

(p+1)(p+2)ec(ptn—1) nin+1)... (p+n—1)

1.2.3. .n—1 1.23...p

Démonstration. Développons (uq =+ us + ...+ u,)?, ol
iy, us, etc., désignent les dérivées premiéres de u, prise
par rapporta xy, x,,. . ., conformément a la notation. Le
premier terme est u/; remplagons-le par u,,; , le
nombre des indices 1 étant p, nous obtenons un coefficient
différentiel d’ordre p ; le sccond terme est nu” ' u, , rem-
Plag;ons-le par tyyyqy1. . lenombre des indices 1 étant p—1,
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nous aurons un second coefficient différentiel d’ordre p;
opérant de méme sur tous les termes, on obtient tous les
coefficients d’'ordre p ; on aura autant de ces coefficients
quil y a de termes dans le développement. Le nombre
de ces termes est celui qui est énoncé dans le lemme
(voir tome I, page 89).

3. Soit u une fonction de deux variables x,, x,; cette
fonction a trois coefficients différentiels du second ordre,
savoir :

Uy Uy Up.

Représentons la fonction wuyy x; + uy, x, par Py, etla
fonction u,, a, + us, x, par P,; de sorte que nous pou-
vons écrire '

:'1) u.‘x‘-{—u.,x.zP,'

X Uy Xy + Upx, = P,

Considérons x,, x, comme deux inconnues de deux équa-
tions du premier degré; le déterminant de ces inconnues
€St Uy Uyy — U}, CAr Uye = Uy : C'est celte expression
uy gy — u}, que nous appelons le premier déterminant
de la fonction «.

4. Théoréme. Soient u une fonction a deux variables
xy, xy, et D le premier déterminant de cette fonction.
Remplacons x, parle bindme linéaire «, y, + «, y,,eta,
par lebinéme linéaire 3, y,+ (s y:; lafonction u se chan-
gera en une fonction des deux variables y,, y,. Soit A le
premier déterminant de cette fonction v, on aura:

A= (a8, — «.f)?D.

Démonstration. On a

(2) = Y+ a:)’z,
! 1‘~,=ﬁx].+.8:7‘-‘



{ 126 )

d'ou
dr, - dx, _ drx, dz,
d?;_a,, @;_a,, ‘Rzp,, 2;.':5”
Li‘i- __ dudz du dz, _
5= Ty, gy, = b
fl:"z:d-—u-d—x-‘ﬁ-}i—lid—%—a u +Byu
dy, dz,dy, dz,dy,” ' Lt/
d?v .
(—1__)’-’:0" =0 Uy 2% % Uy 2] Uy,
dv .
df = e = B w4 2B, Brutra+ B s,
d3v
m =0 == B uy+ (o Bt Bi ) s+ 2, Ba ttas,
d’on
Vi P — ":'.' = ((l. p’ - AB‘ “'—‘)T{MH g — ”!2))
ou bien

A= (a, f.— B, &, D.
C. Q. F. D.

Observation. En considérant, dans les équations (2),
1 et y, comme des inconnues, il est évident que le dé-
terminant est @, 3y — a3 3;.

8. Eremple. Soit

= ax® + bz, x,+ cx)+ dx,+ ex, + f;
il vient
u=2az,+ bxr*4+d, w,=bx 4+ 2cx,+ ¢,

U, =2a, Uy=U,==b, un+ 2¢;

ainst
D =4 ac — b.

Ainsi, ce qu'on désigne par m dans la théorie des co-

niques , est le premier déterminant de la fonction hexa-
ndme, laquelle, étant égalée i zéro, donne I'équation de
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la conique. En remplagant, dans 'équation, x, et x, , res-
pectivement par @, ¥y -+ &y ¥y €t 34 1 + s ¥1, on obtient
une seconde conique qui est la transformée homologigue
de la premiére conique, et 'on a.

A= (2 pi—aB) D;

par conséquent, la seconde conique est toujours de méme
espéce que la premiére; mais on peut transformer une
cllipse en cercle et une hyperbole en kypercle (*).

Les changements de coordonnées sont des cas parti-
culiers des transformations homologiques ; en passant des

coordonnées rectangulaires a d’autres coordonnées rec-
tangulaires, on a

(“1 pl““azﬁs)’: 15

ainsi le déterminant ne change pas de valeur.

6. Soit u une fonction de trois variables x,, x,, xy;
cette fonction a six coeflicients différentiels du second
ordre, savoir : uy,, Uys, Uyg} Ussy Usy s Uss. POSONS

Uy Ty~ Uy X3+ B, =Py,
(3: Uy Ty +Up Ty Uy T3 =Py,
? Uy T\~ Wy Ty Uy X = Py

considérant x,, x,, x; comme trois inconnues de trois
équations du premier degré, et résolvant ces équations,
le dénominateur des inconnues est ce qu’on nomme le dé-
terminant de la fonction u; désignant ce dénominateur
par D, I'on a, comme on sait,

2 2 2
D=t tay oy 28U Uy Uy — U Uy~ Upy Uy — Uy Uy,

7. Tutorime. Soit u une fonction de trois variables

(*) Hyperbole équilatére (voir t. V, p. 535 ).
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x,, Xy, Xy; posons

Ty==o Y+ % Y2+ % )iy
(4) ‘ xa=ﬁ|f|+pz)’z+§:)’ay
[Ty, =9 Y1+ 72 Y+ 9305

la fonction u se changeen une fonction v & trois variables

Y1522, ¥s. Soit A le déterminant de cette fonction v; on
aura

(5) A:(a,ﬁ,y,-—a. ﬁ;y,—dgpx']a"if'“:ﬂs%
+o; Bigr— ;B2 ')'1)2 D.

Démonstration.

du _ du dx, + du dx, du dzx, — s +
d)’l = 2?1‘., dfl dz, d_}’, —+ dz, d—ﬁ = u+ pl Uy T Uy,

Y

V= a’l ll,|+p: Uz~ '}’T Uy 42 pz Uy
~+ 20,y i+ 2 Byl
Vi3 == @,z Uy + §| pz Uzy —+ Y192 Usy + [“l p2+ @1“:] U+ [0‘|71
-+ 71“:] ula"i‘[?: Y2+ Y1 (3:] Uz y
P13 T= 0 &y Uy @1 By ttas 4 13 gy 1y [“1 [33-1- B “3]
-+ 1y, [al'rn + 7 “3] -+ uzs[pl T+ @3]-

On trouve de méme vy, vy, Va3, Vss; substituant dans

le déterminant A les valeurs de ¢ en fonction de u, on
trouve I'équation (5) qu’on peut écrire de cette maniére

[(’1 L (’:s] = [“l ﬂ: 73]7 [ul U,y u:]a

les crochets désignant des déterminants.
8. Exemple. Soient

nw = azx}+ bx, x,+ cxl + dr, x,+ ex, x,+ firl,
u, = 2ax, 4+ bzx,+ dxz,,

u,=2a,

u,=h,

u.—d,
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et, de méme,

uy==2¢, u,=e, U,=2f,

D =8acf+ 4 bde — 2ae* — 2¢d*— 2 fb?*= 2 L.

Ainsi, dans nos relations d’identité, ce que nous avons
appelé m est le premier déterminant de la fonction hexa-
ndéme du second degré a deux variables, et ce que nous
avons nommé L est la moitié du second déterminant de
la méme fonction rendue homogéne et ternaire.

En transformant une conique homologiquement,

ne change donc pas.
Soient encore

u=Azl+ A"z +A"z] + 2Bz, 2,+ 2{3"1'..23-4- 2B'z, x,
420z +2C" x,42C"2,+E;
yy=2Az,4+2B"2,4+ 2B 2,420/,
uy=2A', wu,=2B", wu,=2B,
Up=12A", u,=28, 1y =2A";
d’ou
D =8[A’A”A" -+ 2B'B"B"— A’ B'* — A” B""— A" B"].

C’est le premier déterminant relatif aux équations des
surfaces du second degré, et le second déterminant des
équations des lignes du second. D, pris négativement,
jouit des propriétés analogues a m : ainsi, lorsque D est
nul, le centre est a I'infini; lorsque D est positif, la sur-
face est toujours infinie.

9. TutoriME GENERAL. Soit u une fonction de n va-
riables x,, Xyy. .., X,; posons

Xy, i+ YVt o+ @ Yn,
3'2:&)'1""@2}’2'*‘-- .+Pn)’,.,

ZTn =T YT )t e Ta s
Ann. de Mathémart., t. X. (Avril 1851.) 9



( 130)
lu fonction se change en une fonction v a n variables y,,
Yayerry Yno Désignant par [uy tss... tnn], [¥11 Vae. o Vin ]
[21 o5... @,] les déterminants de u, v, et des coefficients
%335 B1yeeyTi, 0N G

[wvsene van] =[x @r.ee an)? [ w,... u,,,;].

Démeonstration. La méme que ci-dessus pour trois va-
riables.

10. Exemple.

u=Azl-+ Az} + A2, +Ez}+2Bx, 2,4+ 2Bz z,
+2B'x, 2;4+2Cx, 2, +2C a2 +2C" 2, x,.

Calcul fait, on trouve pour le déterminant de quatre
variables,

D=—u ttptyuy—P+Q—R 4S8,

P =ty 4 U} Uy i U A 1 Uy U - W U U]
g w w4 ug g, ul,,

Q=u},u;,+u}, u;,+u’, u},,

R =2 [0 8oy Uy thg = iy g Uy Uy~ Uy Uy oy ug),

S == 2 [ty Uy Uy Uy U W13 U0y Uy~ Uy g Uy Uog —+ U Uy5 U3 Uy )
u,=2Ax,+ 2B x,+2B"x,+ 2Cx;,
u,=2Az,+2Ba;+2B"z,+ 2C z,,
u,= 2A"z,+2Bx,+ 2B x,+ 20" x,
uyuy=2Ez,+2Czx 4+ 20z 4 2C"x,,

u,=2A, u,=2B", u;=2B, wu,=2C, uxy=2A4A

up =28, uy=2C, wu;=2A", u,=20C", u,=2%,

Uy Uy Uy Uy =16 AA’A"E;
P = 16[AA'C"*-+ AA"C*+AUB*+ A’A"C'+ A’EB?+A"EB"?],
Q =16[B*C*+ B"* C*+ B"* C"?],
R = 32[BB"CC”"+ BB'CC’ + B’ B”C'C"],
S = 32[ABC/C” + A’B'CC’ + A”B"CC' + EBB'B"];
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c’est le déterminant de la fonction décanéme a trois va-
riables rendue homogéne et quaternaire. Ce second dé-
terminant D jouit des mémes propr iétés pour les surfaces
du second degré que ce que nous avons nommé L pour les
lignes du second degré. C’est ce que nous verrons dans
nos relations d’identité, appliquées aux surfaces du se-
cond degré. La plupart de ces relations ont été énoncées
pour les formes quadratiques a deux variables par 1'il-
lustre M. Gauss ( Disquisitiones, § 267) ; si je n’en ai pas
averti plus tot, c’est que, par inadvertance, je ne m’en
suis apercu que récemment, a cause de la différence de
notation. Lorsque la fonction u dépasse le second degré,
nous verrons que le déterminant est toujours le résultat
d’une élimination entre des équations de degrés de plus
en plus élevés.

Dans les lignes du second degré, il suffit de connaitre
les deux déterminants pour avoir le produit des axes
principaux et par conséquent l'aire de I'ellipse; de méme
dans les surfaces du second degré, les deux déterminants
donnent le produit des trois axes principaux et le volume
de Vellipsoide. Les déterminants (fonctions cramériennes)
dominent aujourd’hui toute la science mathématique.
C’est donc avec raison qu’on les a 6tés du nouvel ensei-
gnement. On les a fructueusement remplacés par le plan
auxiliatre, le logarithme, le travail élémentaire ; triade
adorable, sans oublier la réglette de saint Gunther que tout
géométre est tenu d’avoir incessamment dans ses poches
ou dans ses mains. Nous verrons renaitre ’ére des Archi-
médes et des Apollonius :

Magnus ab integro seclorum nascitur ordo.



(132)

GEOMETRIE DESCRIPTIVE. CONCOURS D’ADMISSION, EN 1850.

Nous croyons étre agréables a nos lecteurs en réunis-
sant ici les énoncés des questions qui ont été traitées dahs
la composition mathématique du concours d’admission
pour I'Ecole Polytechnique, en 1850, a Paris et dans les
autres villes d’examen.

Il était prescrit, dans chaque programme, de tenir
compte des parties vues et des parties cachées (arétes,
traces, contours, etc.) dans les projections des corps
représentés.

Deux mois environ avant le concours, la dircction des -
études de ’Ecole avait envoyé dans les départements, par
I'intermédiaire des préfets , une Note qui avait pour titre :
Composition mathématique, indications a suivre dans la
partie graphique.

1. Données. Le plan dont P'inclinaison sur le plan
horizontal est de 6o degrés, et dontla trace horizontale ad
fait un angle de 45 degrés avee la ligne de terre; le pen-
tagone P donné par ses cotés et ses diagonales exprimés
cn millimétres; la droite (D, D’) quelconque.

On demande : 1° de construire les projections du po-
lygone P posé sur le plan donné, et de prendre ce poly-
gone pour base d'un prisme paralléle 4 la droite (D, D),
ct dont la hauteur serait de 8o millimétres au moins; 2° de
développer la surface de ce prisme, et de construire I’angle
qui mesure I'inclinaison d’une face sur I'une des bases.

2. Données. Une ellipse E tracée sur le plan hori-
zontal, avec des axes de 50 millimétres et de 35 milli-
métres; le plan dont I'inclinaison sur le plan horizontal
est de 6o degrés, et dont la trace verticale ad fait un
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angle de 45 degrés avec la ligne de terre; la droite (D, D).

On demande : 1° de construire les projections du cy-
lindre qui aurait pour baze Dellipse E., qui serait paral-
lele a la droite (D, D), et qui aurait 8o millimétres de
hauteur; 2° de couper ce cylindre par le plan donné, le
cylindre étant supposé convenablement tourné pour cela;
3° de construire le développement de la surface cylin-
drique sur le plan tangent suivant une des génératrices du
contour horizontal, et d’y tracer la transformée de la
section plane. ,

Le développement sera fait a I'aide d’un prisme inscrit
dans le cylindre.

3. Données. La verticale (a,a’a’), ct Uinclinée
(pm, p'm’), distante de 1o & 15 millimétres de cette ver-
ticale; le plan horizontal HH, plus rapproché de la per-
pendiculaire commune & ces deux droites que ne I'est le
plan horizontal de projection.

On demande : 1° de construire les projections de la sur-
face lieu de toutes les positions de la droite (pm, p'm’):
on constraira au moins douze positions de la génératricc
mobile, dont (pm, p’m!) sera la position initiale; on li-
mitera la surface, d'une part, au plan horizontal de pro-
jection, de 'autre, au plan HHj 2° de couper cette sur-
face par un plan paralléle a la génératrice (pm, p’ m') et
ala cinquiéme a partir de celle-ci; 3° de mener des tan-
gentes aux points a l'infini de la section plane.

4. Données. Le plan P, dont la ligne de plus grande
inclinaison sur le plan horizontal estla droite (prm, p'm’).

On demande : 1° de coustruire les projections d’unc
pyramide pentagonale dont la base serait placée sur lc
plan P, et dont le sommet serait pris a volonté; 2° de
mesurer la hauteur de cette pyramide, de construire sa
base en vraie grandeur, et de calculer son volume en mil-
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limétres cubes; 3° de faire une troisiéme projection de
cette pyramide sur un plan perpendiculaire 4 I'un des
plans de projection.

8. Données. Un prisme pentagonal et un prisme qua-
drangulaire, ni paralléles, ni perpendiculaires aux plans
de projection, dont les projections croisées puissent
donner lieu & une rencontre. )

On demande : 1° de construire la partie commune a
ces deux prismes; 2° de développerla surface de I'un d’eux,
ct de tracer sur le résultat la transformée de la figure de
rencontre des deux surfaces.

On fera attention que différents cas peuvent se pré-
senter, selon que les deux prismes ont ou n’ont pas de
plan rasant commun; un plan rasant étant celui qui
passe par une aréte, et non par une face. On ne traitera
graphiquement qu’'un de ces cas, mais on discutera les
autres dans le texte:

Des questions analogues a la précédente ont été propo-
sées pour une pyramide pentagonale et un prisme qua-
drangulaire, ni perpendiculaire, ni paralléle 4 'un des
plans de projection; pour une pyramide pentagonale et
une pyramide quadrangulaire, etc.

6. Données. Deux surfaces de révolution dont les axes
se rencontrent sous un angle de 45 degrés, dans un plan
vertical non paralléle au plan vertical de projection; une
sphére & axe vertical (a, a’a’), et d'un rayon de 5 cen-
timétres au moins ; un cylindre incliné, de 3 a 4 centi-
métres de rayon, et dont ’'axe ne passe pas par le centre
de la sphere.

On demande : 1° de construire la courbe d’intersection
des deux surfaces ; 2° de mener une tangente en un point
de cette courbe.

7. Données. Le plan P, dont la ligné de plus grande
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inclinaison sur le plan vertical est la droite (pm, p'm').

On demande: 1° de construire les projections d’un
céne oblique dont la base, posée sur le plan P, serait un
cercle de 35 millimétres au moins de rayon, et dont le
sommet serait pris a volonté; 2° de mesurer la hauteur
de ce cone, et d’en calculer le volume en millimeétres
cubes; 3° de faire une troisiéme projection de ce cébne
sur un plan perpendiculaire aux horizontales du plan
donné P. .

8. Données. Le plan P dont la trace horizontale et la
trace verticale font respectivement avec la ligne de terre
des angles de 45 et de 60 degrés; I'ellipse E dontles axes
sont de 45 et de 35 millimétres; la droite (D, D); le
point (m, m’).

On demande : 1° de construire les projections de 'el-
lipse E posée sur le plan P, de maniére que le grand axe
fasse un angle de 30 degrés avec le plan horizontal ; 2° de
prendre cette ellipse pour base d’un cylindre paralléle a
ba droite (D, D’), et ayant go millimétres de longueur;
3° de mener a ce cylindre dcux plans tangents passant par
le point (m, m').

On supposera, lors de la mise a 'encre de I'épure, que
les deux plans tangents existent réellement, et 'on tiendra
compte de cette supposition dans la distinction des parties
vues et des parties cachées.

9. Données. Lellipse E' tracée sur le plan vertical,
avec des axes de 50 et de 35 millimétres ; un point (S, §')
quelconque.

On demande : 1° de construire les projections du céne
qui aurait pour base Vellipse E/, et pour sommet le
point (S, §’); 2° de couper ce cone par un plan qui ren-
contre toutes les génératrices entre la base et le sommet ;
3° de construire sur la surface la courbe lieu de tous les
points distants du sommet dc 20 millimétres; 4° de dé-
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velopper la surface 4 1'aide de cette courbe, et de tracer
sur le développement la transformée de la base ou celle
de la section plane.

10. Données. Le cylindre droit et vertical (A, A’), de
5 centimétres de rayon; le cylindre (B, B’), incliné, a
base circulaire de 4 centimétres de rayon, et dirigé de
maniére a avoir un plan tangent commun avec le précé-
dent; un troisi¢me cylindre (C, C’), paralléle a (B, B),
a base circulaire de 3 centimétres de rayon et concen-
trique a la base du cylindre (B, B'). Les cylindres (B, B’)
et (C, C’), paralléles entre eux, ne devront pas étre pa-
ralléles au plan vertical.

On demande: 1° la courbe d’intersection des cylin-
dres (A, A') et (B, B’); 2° la courbe d’'intersection du
cylindre (A, A’) avec le cylindre (C, C’) qui est enve-
loppé et caché par le cylindre (B, B’); 3°le développe-
ment du cylindre vertical, et, sur ce développement, la
transformée de I'une des courbes d’intersection.

On pourra, si 'on veut, tracer i 'encre rouge le cy-
lindre (C, C') et ses courbes d'intersection, et arréter
les parties vues et les parties cachées comme sil n’était
pas enveloppé par le cylindre (B, B’).

Des questions analogues ont été proposées sur un cy-
lindre droit et sur deux cones de méme sommet, 2 bascs
circulaires et concentriques (le sommet commun n’étant
pas sur I'axe du cylindre), ou sur deux cénes a bases cir-
culaires et concentriques, mais de sommets différents,
'un situé dans le cylindre, I'autre sur le cylindre, etc.

11. Données. Deux surfaces de révolution dont les axes
se rencontrent dans un plan vertical non paralléle au plan
vertical de projection : 1° un hyperboloide 4 une nappe,
«dont I'axe est vertical, et dont le cercle de gorge est de
30 millimétres ; limité, d’une part, au plan horizontal de
projection , de I’autre, a un plan horizontal HH qui donne
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un cercle ‘plus petit que celui de la base; 2° une sphére
de 40 & 50 millimétres de rayon, et dont le centre ne
se trouve pas sur I'axe de I'hyperboloide.

-On demande : 1° de construire la courbe d’intersection
de ces deux surfaces; 2° de mener une tangente en un
point de cette courbe.

On est libre de considérer Fhyperboloide comme une
surface infiniment mince ou comme un solide, I'un et
Pautre étant limités par deux plans horizontaux; mais
on devra tenir compte de la différence qui résulte de telle
ou telle supposition dans la distinction des parties vues
et des parties cachées de la projection horizontale.

12. Données. La verticale (a, a’a’), et l'inclinée
(pm, p’m’) paralléle au plan vertical ; la droite (r, ' r')
perpendiculaire au plan vertical ; le plan horizontal HH
plus rapproché de la perpendiculaire commune aux deux
droites (a, a’a’) et (pm, p'm'), que ne l'est le plan
horizontal.

On demande : 1° de construire les projections de douze
positions au moins de la droite (pm, p’'m') tournant
autour de la verticale (@, a’a’), a partir de (pm, p'm')
comme position initiale : ces droites seront limitées, d’'une
part, au plan horizontal de projection, et, de I'autre, au
plan HH; 2° de couper la surface, lieu de toutes les po-
sitions de la droite mobile (pm, p’m'), par trois plans
passant par la droite (r, 7' '), et rencontrant, I'un, toutes
les génératrices, V'autre, toutes les génératrices moins
une, le troisi¢éme, toutes moins deux; 3° de mener une
tangente en un point situé a l'infini sur celle des trois
sections planes qui présente de tels points.

13. Données. Un plan P, dont on connait un point
(p> p') et les deux droites principales qui passent par
ce point : la paralléle (ph, p’h’) au plan horizontal, et
la paralléle (pv, p’v') au plan vertical; le cercle C d'un
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rayon de 25 millinéwes; une droite (D, D') inclinée
a 45 degrés sur la ligne de terre.

On demande: 1° de construire les projections du cy-
lindre paralléle a la droite (D, D’), dont le cercle C se-
rait la base posée sur le plan P, et dont la longueur serait
triple du rayon de cette base; 2° de mesurer la hauteur
de ce cylindre,, pour en déduire le volume en millime-
tres cubes ; 3° de construire la projection de ce cylindre
sur un plan perpendiculaire i la trace verticale du plan P.

14. Données. Deux surfaces de révolution dont les axes
se rencontrent sous un angle de 3o degrés, dans un plan
vertical non paralléle au plan vertical de projection :
I'une, a4 axe vertical (a, a’a’), est engendrée par une
ellipse méridienne de 8o millimétres de diamétre hori-
zontal et de 5o millimétres de diamétre vertical ; autre
est un cdne dont I'angle au sommet est de 6o degrés, et
dont le sommet pourra étre placé i volonté dans lel-
lipsoide, mais non au centre, sur lellipsoide, ou en
dehors.

On demande : 1° de construire la courbe d’intersection
de lellipsoide ct du coéne; 2° de mener une tangente en
un point de cette courbe.

On fera remarquer dans lc texte qu'il peut y avoir
pénétration ou arrachement.

Note. Nous croyons devoir rappeler un projet d'Instruction sur les tra-
vaux graphiques, dans lequel on trouvera d’utiles renseignements. (Voir
Nouvelles Annales, tome V, page 23.)
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PROGRAMME D’ADMISSION A L’ECOLE SPECIALE MILITAIRE,
EN 1851 (*).

Nous avons en diverses occasions exprimé l’opinion
que le mode d’examen pour I'Ecole de Samt-Cyr était
trés-rationnel, et de beaucoup préférable a celui qui
était en usage pour I'Ecole Polytechnique; toutefois,
on a encore trouvé moyen d'empirer ce dernier mode
d’examen, ce qui paraissait trés-difficile. Par compen-
sation, on a joint maintenant a ce mode d’entrée, un
mode de sortie tout a fait inqualifiable; les dispositions
cn sont tellement draconiennes, que les esprits les plus
illibéraux n’auraient pas osé les proposer dans les jours
les plus mauvais de la monarchie, tant impériale que
royale. Mais parlons des programmes : celui de I'Ecole
de Saint-Cyr, que nous avons sous les yeux, est une
excellente esquisse faite d’aprés un trés-mauvais modeéle.
Les énoncés sont clairs, précis, allant droit au but,
nommant les choses par leur nom, sans ambages, sans
emphase. On dit tout simplement ce qu’il faut apprendre
dans ’arithmétique , la géométrie, I'algébre, saus ajouter
des phrases oiseuses et prétentieuses, telles que celles-ci :
Varithmétique sera exposée avec simplicité, la géomé-
tric sera pratiquée avec dextérité, les équations seront
résolues avec fidélité, on passera légérement sur tel
théoréme, on démontrera rapidement telle théorie, on
insistera sur les mouvements naturels, etc. ; et autres amé-
nités de ce genre qui semblent échappées d’'une plume en
veine de gaieté. Au contraire, le style du programme de

(*) Extrait de PInstruction pour I’admission a ’Ecole spéciale militaire
du 11 février 1€51; 7 pages in-folio. Imprimerice nationale.
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Saint-Cyr est partout convenable et adapté au sujet; les
matiéres y sont arrangées avec méthode, mises 4 la portée
des candidats et appropriées aux besoins de l'enseigne-
ment. Toutefois, il est & regretter que, forcé d'imiter un
mauvais modéle, on n’ait pas admis les fractions continues
dans I'arithmétique ; d’autant plus que ces fractions ren-
trent dans la théoric du plus grand commun diviseur
qu’on a laissé subsister en arithmétique; leur usage,
d’ailleurs, est d’une utilité constante, puisqu’a chaque
instant on a besoin de remplacer de grandes fractions
irréductibles par des fractions plus simples et approchées.
Comment, sans les fractions continues, ramener =
355
3
fractions, expliquer l'intercalation grégorienne, etc.

Il est facheux aussi, toujours en suivant un détestable
guide, d’avoir retranché de la géométrie, la théorie des
polyédres symétriques; formes que I'on trouve dans tout
le systéme des étres organisés, et qui, d’aprés des décou-
vertes récentes, jouent un si grand role dans les phéno-
ménes de la cristallisation. Lorsque nous voyons le
Créateur accorder unc si large part aux corps symétri-
ques dans sa géométric, est-ce le moment de les exclure
de la notre? Il faut convenir qu'un célébre rapportcur,
homme du ciel, a montré en cette occasion peu de défé-
rence pour le maitre de son domaine.

11 est & regretter aussi qu’on n’ait pas ajouté i la géomé-
trie, a la suite des plans, les principaux théorémes des
projections coniques et cylindriques; c’est la leur véri-
table place, et non dans la géométrie descriptive, dont
les procédés ne sont que des applications de ces théorémes,
qui ont d’ailleurs des applications d’une extréme fécondité,
indépendamment de leur utilité graphique.

Les articles de la géométrie descriptive ne se succédent

au rapport d’Archiméde, ou & =? Comment, sans ces
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peut-étre pas daus un ordre bien naturel. Les rabatte-
ments et les plans auxiliaires sont aujourd’hui a Pordre
du jour ct figurent partout. Un moyen certain de rendre
ridicules les meilleurs procédés, est d’en préner sans
cesse et d’en prodiguer I'emploi outre mesure. Disons
un mot du programme relatif 4 l'allemand: il y est dit
qu'on expliquera a livre ouvert un auteur d’ur texte
facile; tout programme de ce genre devrait se réduire a
ce peu de mots : celui qu'on a adopté pour 1'Ecole Poly-
technique semble avoir été rédigé a Dresde pour des
officiers saxons, dont les trois quarts peut-étre n’y
répondraient pas. Mais & Saint-Cyr comme a 'Ectle Po-
lytechnique, on a grand tort d’attacher a cette languc
une importance ridiculement exagérée. Aujourd’hui, Na-
poléon , qui n'avait aucune aptitude pour les langues, ne
serait admis ni & 'une ni & Pautre Ecole. On rapporte
méme a ce sujet une anecdote d’une incontestable authen-
ticité. Junker, professeur d’allemand a I’ancienne Ecole
militaire, a donné au jeune Bonaparte cette note remar-
quable : sujet incapable et sans moyens. Pourquoi? pro-
bablement qu’il ne savait pas conjuguer le verbe seyn.
Quel Junker a donc rédigé le factum ultra-teutonique
al'usage de la scconde Ecole militaire qu'on vient de fon-
der a Paris (*)? Revenons a celle de Saint-Cyr.

Pourquoi exiger la connaissance des origines de I'his-
toire de France et l'histoire de la géographie? Qu’un can-
didat & ’Académie des Inscriptions fasse preuve de ces
connaissances, soit; mais on peut étre un excellent officier

{*) Toute institution ou le sabre prédomine est uniquement mili-
taire, quelque nom qu’elle se donne, diut-elle s’appeler séminaire. Si
Yon y tolére les services civils, tant pis pour ceux-ci; a2 moins qu’ils ne
trouvent avantageux de s’exercer 2 Yhumilité chrétienne. Ces services de-
vraient désormais se recruter a I'Keole Normale, section des sciences; la
sera ’Ecole Polytechniqué; ailleurs de nem. On pourrait alors réunir
peut-étre les deux Ecoles militaires. Nous reviendrons Ja-dessus.
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frangais et trés-instruit, sans jamais avoir entendu parler
des recherches de Montfaucon, du pére Daniel, de Bou-
lainvillers, de Gossehn de Ritter, de Mannert, etc. On
ne saurait aussi blamer trop sévérement la prétention de
vouloir rendre tout également obligatoire, etde n’admettre
aucune compensation : une telle prétention ne s’accorde
ni avec la justice, ni avec le bon sens. Certes, un candidat
qui écrira trés-bien la langue nationale , qui montrera une
haute intelligence scientifique et des connaissances pas-
sables en histoire et en géographie, diit-il méme ignorer
complélement Pallemand, sera certainement préférable
a un concurrent médiocre sur tous ces points (¥).

Ces critiques ne portent que sur des detalls, sur des
défauts empruntés, et, pourainsi dire, imposés ; I'ensemble
du programme mérite des éloges, et procure une véritable
consolation dans un temps ou 'on en a tant besoin.

GEOMETRIE SPHERIQUE ;

Par M. Gustave MARQFOY,
Eléve de I'Ecole Polytechnique.

Déduire des deux relations
(1) sin®§ = sin (« — 0)sin (B —0) sin (y — 0),
a+BA4g=m,
la suivante,
cot8 = cotx -+ cotf + coty (woirtomeIX, page 363).

Si I'on développe le produit indiqué dans le second
membre de (1), on trouve, en ordonnant par rapport aux
puissances décroissantes de sin 6,

(*) Nous n’observons de mesure en rien ; passant immédiatement d’un
extréme & Vextréme opposé. Autrefois, nous permettions une igorance
profonde en histoire et sur les langues; aujourd’hui, nous sommes tra-
vaillés d’une fiévre historique et linguistique.



sin®g — cos o cos B siny | cos 6 sin?0 + cos« sin B siny | cos*d sinf — sin e sin @ siny cos*d = o,
(1 -+ cos & cos 3 cosy) — cos o €osy sin ~+ cosf3 sin & siny

— cos 8 cos y sin e ~+ cosy sine sin 3

ou, en remplacant sin* § par 1 — cos® 6 et cos®§ par 1 — sin* 6,

1+ cosx co8 f3 cosy sin®g <+ cos « sin @ siny sin § — sin o« sin 3 siny €0s® § — cos o cos @ sin y cos §
— cosa sin 8 siny ~+ cos 3 sin « siny ~+ cos & cos @ siny — cos o cos y sin 8
— cosf sin ¢ siny -4 cosy sin« sing ~ cos  cosy sin B ~— €0S 2 cOs y sin o = o.
— €08y sin « sin g8 -+ cos 8 cos y sin «

Mais

o+ pR+y=mx;

donc

~

cos(a+ B+ y)=—1,

(3) sin(a+ B+ y)=o.

(eyr)
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Endéveloppant ces deux expressions, on reconnait que
les coefficients de sin®0 et cos®6 s’annulent. L’équation
précédente devient, en remplacant le coefficient de cos 8
par sa valeur sina sinf3 siny déduite de (3), et en suppri-
mant les facteurs communs

cot§ = cota —+ cotf 4+ cotvy,

formule a laquelle on devait arriver.

SOLUTION DE LA QUESTION 89 (PROUHET)

(voir t. Ifl, p. 876) ;

Par M. r’assg JULLIEN,

Professeur au séminaire de Vals.

Soient F (r) une fonction entiére en x ; @, b deux nom-
bres positifs, et b > a; si ?(ng > oet I—?-(—I))F—,_(ag)ﬁz—) <o,
il y aura au moins deux racines de I’ (x) = o comprises
entre a et b.

Lorsque, dans une fonction entiére F (x), on fait
croitre la variable d’'une maniére continue, ’accroisse-
ment de la fonction F (x + %) — Fx correspondant a la
valeur r = a est toujours de méme signe que la dérivée
F’(x). Donc, si F’ (x) ne change pas de signe, lorsqu’on
y fait varier xx d'une maniére continue depuis @ jusqu’a
b, la valeur de F (xr) ne cesse d’augmenter ou de dimi-
nuer, selon que I’ (a) est positif ou négatif, et la relation
F(b)—F(a)

F(a)

Cette derniére inégalité ayant lieu, F'x change de

signe entre a et b, il existe donc au moins une racine de

< o ne peut subsister.
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I/(x) =o0 comprise entre a et b, et puisque nous avons
R (%) : ‘o .
en méme temps ¥(a) > o, il en existe un nombre pair
dont deux au moins sont inégales.

L’interprétation géométrique de 1'énoncé du théoréme
montre qu’il existe entre les ordonnées F (a) et F (4) ou
un maximum et un minimum de I (x), ou un point d’in-
flexion de la courbe représentée par y =F (x). Ce der-
nier cas ne peut avoir lieu quand la fonction proposée
est entiére, car la tangente trigonométrique de I’angle que
fait la tangente a la courbe avec 'axe des x, doit néces-
sairement passer par l'infini.

SOLUTION DE LA QUESTION 183
(voir t. VII, p. 158);
Par M. v’asg JULLIEN,

Professeur au séminaire de Vals.

ProsrimEe. t, travailleurs, dont la force individuelle
est représentée par f,, exécutent m, métres d’ouvrage
en i, jours, dans un terrain dont la dureté est représen-
tée par d,; Uindice n prend les n valeurs 1, 2, 3,...,n:
combien de jours mettront tous ces travailleurs, au
nombre de t, 4ty 4 t3 +... + t,, travaillant ensemble,
a exécuter M métres d’ouvrage, dans un terrain de du-
reté D? ‘

Solution. Si t, travailleurs exécutent m, métres d’ou-
vrage eu Z, jours dans un terrain de dureté d, , ils exécu-
teront en un jour, employant la méme force, dans un
terrain de dureté D,

1 m,d,
D i
meétres d’ouvrage.
Aun. de Mathémar., t, X. (Avril 1851.) 10
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Par conséquent, 1, +f,+ 3+ ... +1, travailleurs
exécuteront ensemble en un jour, dans le méme terrain,
un nombre de métres d’ouvrage marqué par

1 zm,, d,
D i )

le symbole sommatoire 2 s'étendant a toutes les valeurs

. m,d . .
que prend la fraction ——", lorsqu’on y fait successive-

n

mentn =1, 2, 3,..., 1.
Le nombre de jours qu’emploicront tous ces travail-
leurs pour exécuter M métres d’ouvrage est donc

M myd,
D i (")

AVIS AUX PROFESSEURS, SUR DES EXERCICES DE CALCUL.

Dans la Connaissance des Temps pour I'année 1849,
on trouve, dans le Mémoire de M. Le Verrier sur la pla-
néte Herschel (dite Uranus), un grand nombre de sys-
témes d’équations numériques linéaires a quatre incon-
nues; exercices a 'ordre du jour, pris a bonne source. A
la page 169, on fait usage des formules cramériennes.
C’est ce qu’on devrait se garder d’imiter. Car, I'on a 6té
ces formules de ’enseignement ; mais comment P'illustre
calculateur les aurait-il employées si on ne les lui avait
pas enseignées?

(*) C’est & Pexaminateur Reynaud qu'on doit Vemploi de V'unité dans
ce genre de questions.



(147)

SOLUTION DE LA QUESTION 87 (PROUHET)

(voir t. 111, p. 876 ) ;

Par M. J. DENIS,
Régent au collége de Cherbourg.

Soient p un nombre premier avec 10, k le nombre des
entiers inférieurs et premiers i p; on sait que la division
de 10* par p ne peut jamais se faire exactement, et qu’elle
donne pour reste I'unité. Cela posé :

Tutoreme. Soient ry, rsy 13,..., v =1 les valeurs
absolues des restes obtenus en divisant par p les puis-
sances successives de 10, depuis la premiére jusqu’a celle
10f—1

P
successivement par chacun des restes riy Iy_1ye.., Iy s

de Dordre k; si on multiplie le quotient Q =

en commencant par celui dont le rang est k et remon-
tant jusqu’au premier, les produits obtenus seront tous
composés des mémes chiffres, et dans un ordre tel, que
chaque produit pourra se déduire du précédent en trans-
portant & sa gauche le premier chiffre qui est & sa
droite.

Démonstration. Je suppose pour plus de simplicité que
les restes ry, ry, I'sy,..., Iy, qui sont nécessairement pé-
riodiques , ne forment qu’une période; s’il en était autre-
ment, on se bornerait a considérer les restes contenus
dans une seule période, et les quotients correspondaats,
comme on va le voir dans ce qui suit.

Yappelle g,y g2y Gsy...y gi les chiffres obtenus au
quotient, et correspondant respectivement aux restes
FiyTay I'yyeeny Iy quelques-uns de ces chiffres peuvent
¢tre des zéros, méme les premiers; mais les restes sont

10.
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des nombres d'un ou de plusieurs chiffres chacun, et ne
sont jamais nuls.
D’aprés la définition de la division, on a en méme

temps les deux identités suivantes :

10F=Qp+ ri,

1of=(Q—aq1)p+ ri_,/ X 10,
d’ou I'on déduit

Ty X 10=Tr; =+ qi.p;

ce qu'il est d’ailleurs facile de voir a priori. Mais, en
vertu de la premiére identité,

_1ob— 1y
P = ——Q_‘a
donc
Qricy X 10 = Qri=+ qp(10f = r3),
ou bien
Qriei X 10 = Q + gi(10* —1),
puisque

rr= 1.

Or, on peut admettre que Q a toujours k chifives, les
premiers chiffres 4 gauche pouvant étre des zéros ; alors
le produit Qr;_, >< 10 ou Q — ¢; -+ ¢;. 10* pourra s’ob-
tenir en remplacant par un zéro le chifire ¢, qui est 4 la
droite du nombre Q, et écrivant k rangs plus loin le
méme chiffre g; qui représentera alors ¢ >< 10 ; puis, si
Pon supprime le zéro mis a la place de ¢;, on obtiendra
le produit

Q—aq; .
Qrj = mf] + gqi. 105,
lequel se déduit du premier produit Q >< 1, d’apreés la loi
énoncée plus haut.
Généralement, soit le produit Qr, déduit des précé-



dents comme il vient d’¢tre dit, et soit ¢, son dernier chiffre & droite; je vais prouver que Qr,_;

pourra se déduire de Qr, en transportant a la gauche de ce nombre le chiffre ¢. qui est a sa droite.
D’aprés la définition de la division, on a en méme temps
P ’ P

10F = (Q — gk — qs—1 X 10 — G4y X 10% . o — Gyt X 105771 — g, X< 1057) p 4= 1y XX 1052+
1000 =(Qe— s — @41 X 10— 4, X 10%. .. .. .. s = G X T0F) b S 104,

De ces deux égalités résulte la suivante :

Fat 3 10+ = 1, 5¢ 1047 4 g, 3< 1041 X< p,
1ok— g
Q ?
Qrnes X 1057 = Qry XX 10871 - g X 10477 (100 —1),
Q7 XX 10 = Q7 + ga (105—1).

et comme p =

(691 )

Or r, est plus petit que p, puisque p est le diviseur, et r, la valeur absolue de I'un des restes, et Q p
10t

—1

Q :
toujours étre considéré comme composé de k chiffres, significatifs ou non : par conséquent, le pro-
duit Qr,_, > 10 ou Q7. — ¢. =+ g, >< 10* pourra se déduire de Qr,, en transportant a la gauche de
ce nombre le chiffre ¢, qui est sa droite, et remplacant celui-ci par un zéro; puis, si I'on supprime

est plus petit que 10*, puisque p = ; donc, & plus forte raison, Qr, < 16*; Qr, peut donc
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ce zéro, on obtiendra le produit

* Tn— 4n
an___l:g_"Ta..:l_. +,1"><|0/‘—"

déduit du précédent , d’aprés la loi énoncée.

Si donc un des produits est ainsi formé avec celui qui
le précéde, il en sera de méme de celui qui le suit ; mais
nous avons prouvé cette loi de formation, pour le second :
donc, etc.

Corollaires. 1°. Si le diviseur p est inférieur a 10, le
quotient partiel ¢, sera au moins égal a 1, en sorte que Q
contiendra k chiffres dont le premier ne sera pas zéro;
d’autre part, les restes ry, 1y, 73,..., 3 seront tous des
nombres d’'un chiffre chacun, et comme ils représentent
respectivement des unités de ordre k, k —1 , k—2,..., 1,
il suffira de les écrire de gauche a droite, les uns a la
suite des autres, dans I'ordre ou ils ont été obtenus, pour
former un nombre de k chiffres, tel que si lon multiplie
le quoticnt total () par ce nombre, tous les chiffres
d’une méme colonne wverticale soient égaux, suivant la
remarque faite par M. Prouhet (Nouvelles Annales,
tome III, page 376) sur les produits

142857 < 326451 .

Soit p = 7, on trouve pour quotients partiels
1, 4, 2, 8, 5, 7,
et pour restes correspondants
3, 2, 6, 4, 5, 1;

le multiplicande est 142857, le multiplicateur est 326451,
et les produits partiels suivent la loi indiquéedans ’énoncé
du théoréme préeédent.

2°. Si le diviseur p est supérieur a 10, le premier
ou les premiers quotients partiels ¢,, ¢.,..., seront
nuls, etes restes pourront étre des nombres de plusieurs
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chifires chacun; mais la proposition démontrée n’en est
pas moins vraie, puisqu’il n’a été fait aucune supposition
sur la grandeur des restes, et que les quotients partiels
g1y G2y..+y ¢z Mont pas été supposés non plus avoir des
valeurs particuliéres. Toutefois, pour que les produits
Qriq Qri_sye.., Qr, présentent la méme régularité, il
faudra remplacer par un zéro chacun des quotients
G1y §25.--5 qui sera nul, et effectuer les multiplications
par les restes 7, , 13y ,..., Iy, comme si c’étaient des nom-
bres d’un seul chiffre chacun.-

Par exemple, soit p = 21: on trouve pour quotients
partiels

0, 47 7> 6: Ty Oy

qui forment une période compléte, et pour restes corres-
pondants les nombres

10, 16, 13, 4%, 19, 1,
ce qui donne les produits rassemblés dans le petit tableau
suivant :

047619 X 1 = 047619
047619 X< 19 = 904761
047619 X 4= 190476

047619 < 13 = 61904y
047619 >< 16 = 761904
047619 X< 10 = 476190
Si deux ou plusieurs restes consécutifs sont des nom-
bres d’'un seul chiffre chacun, on peut former, comme
nous I'avons fait plus haut, un multiplicateur de plusieurs
chiffres jouissant de la propriété demandée (question 87).
Il suffit de faire la somme des valeurs relatives de ces
restes, mais en excluant ceux qui précédent et ceux qui
suivent.
Exemple. Soit p=13; on trouvc, pour quotients

partiels, ) '
0, 7, b, 9y, 2, 3.
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qui forment une période compléte, et pour restes corres-
pondants
10, 9, 12, 3, 4, 13

et en multipliant 076923 par le nombre 341 que forment
les trois derniers restes, on trouve les trois produits par-
tiels .
076923
307692
230769
qui jouissent de la propriété demanddée.

3°. 1l est évident que tout ce qui vient d’étre exposé
serait encore vrai, si au lieu de 10* on prenait pour divi-
dende la puissance ¢* d’'un nombre quelconque a, pourvu
que le diviseur p fiit premier avec a, que k fit le nombre
des entiers inférieurs et premiers a p, et qu’on écrivit les
nombres en prenant @ pour base du systéme de numé-
ration.

Exemple. Soient p =5, a = 8; si 'on effectue la di-
vision en écrivant les nombres avec les huit caractéres
1, 2, 3, 4, 5, 6, 7, 0, on trouve pour quotients par-
tiels

I, 4, 6, 3,
qui forment une période compléte, et pour restes cor-

respondants
3, 4, 2, 1.
La multiplication du nombre 1463 par 3421, effectuée
dans le syst¢me de numération dont la base est huit,
donne les quatre produits partiels
1463
3146
6314
4631

ou I'on retrouve la méme régularité que dans les exemples
précédents.
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BIBLIOGRAPHIE.

Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques
se trouvent chez M. BacHeLiER, libraire, quai des Augustins, n° 55.

Notions bE MEcAN1QuE exigées pour I’admission a I'Ecole
Polytechnique; ouvrage rédigé d’aprés le programme
officiel, par M. H. Sonnet, docteur és sciences, inspec-
teur de I’Académie departementale de la Seine, pro-
fesseur adjoint de Mécanique & I'Ecole centrale des
Arts et Manufactures. Paris, 1851 ; in-8°de 199 pages,
4 planches gravées par M. E. Wormser.

C’est le développement complet, p:)nctuel et fidéle des
matiéres énoncées dans le programme officiel ; travail qui
répond a un besoin urgent et qui sera promptement
recherché par professeurs et éléves; ouvrage exécuté
d’apreés un plan utile a la technologie, nuisible 4 'ensei-
gnement classique. Car, ce plan est fondé sur deux idées
qui sont complétement fausses. La premiére, c®st de
croire que la Mécanique est comprise dans la science des
machines; c’est le contraire qui est vrai. La théorie des
machines n’est qu’une application particuliére dela Méca-
nique. Les lois de la Dynamique régissent la nature en-
tiére, tandis que les machines n’effectuent que le travail
trés-restreint de 'homme. On s'imagine, et c’est la se-
conde erreur, qu'on a simplifié ’enseignement et qu’on
I’a rendu plus facile. Il est facile de s’apercevoir que les
autcurs de programmes n’ont jamais enseigné dans les col-
léges, et ne connaissent pas la jeunesse. Les fils de famille,
ayant recu une éducation littéraire, base de toute éduca-
tion libérale, ne sont pas familiarisés avec les outils, les
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instruments, et leurs divers agencements, qu’on rencontre
dans les usines et dans les ateliers; détails fort obscurs
pourdes jeunes gens étrangers aux métiers. L'intelligence
juvénile, bien cultivée, est de préférence accessible aux
idées grandes, abstraites, philosophiques. C’est mécon-
naitre cette intelligence, 'amoindrir, que de vouloir la
rendre de prime abord pratique, ouvriére. L’Ecole Poly-
technique et les Ecoles industrielles n’ont pas le méme au-
ditoire, et par conséquent ne peuvent, ne doivent pasavoir
le méme enseignement, ni pour le fond, ni pour la forme.
L’oubli de cette distinction est 1'origine des malheureux
programmes, fléau pédagogique de notre époque, qui, s'il
durait, abaisserait les études et les ouvrages classiques.
Dans cet ouvrage de Mécanique, Lagrange, Laplace,
Poisson ne sont pasune seule fois nommés; ni les couples,
ni leur illustre auteur ne sont mentionnés ; on ne ren-
contre que deux noms de professeurs machinistes. Une
méthode d’enseignement qui améne un tel résultat est
jugée. La responsabilité porte sur les ordonnateurs de la
méthode et non sur 'auteur d'un ouvrage utile (*).

Arrenpice. 1851 ; in-8°, pages 405-532.

M. Joseph Bertrand, maitre de conférences a I’Ecole nor-
male supéricure, a’publié, en 1850, un Traité clémentaire
d’ Algébre (tome IX, page 439); sous le titre d’ Appen-
dice, le savant auteur jointun complément, faisant suite
auTraité tant pour les chapitres que pour la pagination:
on y parle des séries, des suites, du théoréme de Descartes,
de la résolution des équations numériques, de la méthode
des substitutions équidistantes, de la théorie des dérivées

(*) M. Callon, ingénicur des mines, vient de publier une Mécanique du
méme genre; il en sera rendu compte.
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appliquée aux fonctiens transcendantes ; en d’autres ter-
mes, on donne les principes du calcul aux différences et
du calcul aux différentielles, sans nommer ees calculs.
Pourquoi ne pas mettre ces deux admirables instruments
ouvertement entre les mains des éléves? La réponse est
facile. Cette marche étant indiquée par le bon sens, il y a
la une bonne raison pour qu’on ne la suive que le plus
tard possible. Comme nous prenons un grand intérét aux
succés du jeune professeur, nous croyons devoir I'avertir
que esprit de 'ancienne Ecole Polytechnique perce trop
dans ses ouvrages; ainsi il démontre le beau théoréme de

®
. 1 . . . .
Bernoulli <1+£—> =e. Soit; mais & quoi cela est-il

utile? Comment déduire d’un tel théoréme I'épaisseur
d’un tuyau de conduite (*), ne fiit-ce que pour des eaux
ménagéres ? L’auteur veut encore que les éléves s’exercent
sur cette belle proposition de Gauss : Si dans f(x) = o,
ou f(x) est une fonction entiére algébrique, on remplace
x par x -+ Iy, on obtient

‘P(‘l‘a .7)+i4’(x’ }'):O;
si I’on pose ensuite

. 9l y)=0; Y=z, y)=o,

les deux courbes représentées par ces équations se coupent
orthogonalement. Soit, mais & quoi cela sert-il? Quelle
machine ce théoréme met-il en mouvement? De tels pro-
blémes occasionnent évidemment des pertes de forces vives
intellectuelles.

Au résumé, cet excellent opuscule contient les beaux
travaux des grands maitres, quel’on a soin, comme de juste,
de ne jamais nommer ; par inadvertance, on a laissé sub-
sister deux noms : celui de 'auteur et celui de Descartes;

(*) Raison donnée par les programmes.
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ils disparaitront sans doute dans une nouvelle édition , qui
ne se fera pas attendre. Puisse le maitre des conférences
n’avoir pas irrité le Dieu régnant du jour! le poéte au
wers solitaire a dit :

Le trident de Neptune est le sceptre du monde.

L’Ecole Polytechnique fait partie du monde.

Megmorres sur Lo MecaniQue; par M. le chevalier Du
Buat, capitaine au corps royal du génie; tome I.
Paris, 18213 in-4° de 203 pages, 1 planche.

La belle expérience de M. Foucault sur le pendule
donne une certaine importance & cet ouvrage, peu ré-
pandu. Le tome I seul a paru et ne renferme que trois
Mémoires, mais il y est fait mention d'un dixiéme
Mémoire; l'auteur, fils du célébre hydraulicien, étant
mort, il n’y a pas d’apparence que le reste de I'ouvrage
soit publié. Dans le troisitme Mémoire, page 84, on
trouve cette question :

« Un point matériel ou un corps m, attaché par une
» verge d’'une longueur donnée 4 un centre C, ét sollicité
» par une force accélératrice constamment dirigée vers
» un centre C’, forme ce qu'on appelle un pendule sim-
» ple; nous supposons ici non-seulement que le centre C
» se meut autour de C’, mais encore que le centre C’se
» meut autour d'un troisiéme centre C’, et que le centre
» C” se meut autour d’'un quatriéme centre fixe C”; au
» lieu de trois centres mobiles, on peurrait en admettre
» un nombre quelconque. Nous supposons, de plus, que
» les mouvements uniformes et circulaires de tous ces
» centres s'exécutent dans le méme plan et dans le méme
» sens. »
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Notations :
mG =r; C'=R; CC =R; C'C"=R",
angle C C' C” ' ..
angle C'C”C” A lorigine du

. mouvement

angle de C"C” avec une droite fixe C"W ?
vitesse angulaire de C autour de C’,
vitesse angulaire de C’ autour de C”,
vitesse angulaire de C” autour de C”,
le temps, '
angle m CC/,
force attractive constante.
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L’auteur parvient a cette équation différentielle

- ii_’_g - Rsing

det K p g

+ R/’ sin (g + o+ (i —&)¢] (page 87),

+ R”i”’Siﬂ[q) 4o+ m’—{—(l'—— il)t]

+ Ri%sing

'
K= (R4 72— 2Rrcosg)’.

Equation qui n’est intégrable qu’en supposant trés-petits
¢y 9+ (1—1¥') t, ¢+ (i—i")t, de sorte que ces arcs se
confondent avec leurs sinus, et leurs cosinus avec I'unité;
dans ces suppositions, on obtient

/lq)::/lc Sin(t\/é-f—@)

+ ¢t[R¥*(i — i) cosw + R"i"? (i — i”) cos (o' + )]
+R'i"”?sinw -+ R”i”sin(0’ + o);
gR

h=+R——r

—Ri*— R cosw — R” 1" cos (o + o).

C et 6 sont deux constantes a déterminer par les va-

.. d , 1 e
leurs initiales de ¢, , (72) > ; la durée d’une oscillation est
0
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T\ 3 de 1a Pauteur déduit : 1° que la vitesse angulaire

% du pendule autour de C est périodique; 2° que 'angle ¢

n’est pas périodique; ainsi le rayon CC' ne partage en deux
parties égales ni 'amplitude , ni la durée d"une oscillation;
3° que la durée d'une oscillation dépend non-seulement
des vitesses angulaires ¢, 7', {”, mais encore des angles
w, w' & Porigine du mouvement; 4° que le pendule ne
peut rester en repos dans la verticale, a moins que I'on
n’ait i’ =i’ = i = o ou seulement i” =’ = o, c’est-a-dire
que le pendule ne soit a centres fixes ou a un « seul centre
» mobile; donc un pendule 4 deux centres ou i plusieurs
» centres mobiles, abandonné & lui-méme, commence a
» se mouvoir, et I'on peut demander quelle est la direc-
» tion de son mouvement et quelle est "amplitude de sa
» premiére oscillation. »

Pour résoudre cette question, 'auteur suppose i’ =o;
ce qui est le cas de la nature; et nommant ¢, amplitude
de la premiére oscillation, on trcuve

¥ Cats
reg=nm (—;) R'i"(i —1{") cosw,
et £ étant plus grand que i/, la direction est déterminée par
le signe de cos »: ce résultat s’applique aux pendules qui
oscillent a la surface de la terre dans le plan de I'équa-
teur; on a alors

27 27

"= 864oo " ' = 365.25.86400’

la seconde étant prise pour unité de temps; ¢ étant le
mouvement diurne et & la projéction de la vitesse an-
nuelle sur I'équateur qu'on peut supposer constante pen-
dant un petit nombre de secondes: on suppose aussi
constant le rayon vecteur de I'orbite terrestre projeté sur
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I'équatems-et égal a 23598 R et R = 6366195 meétres;
I’angle @fest évidemment I'amgle horairc du lieu oh est

situé le pendule, le temps étant compté depuis minuit.
La durée d’une oscillation est

, L s
r 2
r (g— 0,034 — 0,006 005w> ’

(uantité variable, dont le maximum correspond a minuit
et le minimum a midi pour un pendule de 1 métre de
longueur; et supposant g =9,7798, le maximum est
1”,00645 et le minimum 17, 00523.

« Les mémes données étant substituées dans I'expres-
sion de r¢, du déplacement spontané du pendule, on
trouve cet arc égal 4 0™,0004353 cosw ou a 0™,5436 cos w,
cn donnant au pendu]e une longueur de 225 meétres. Or,
quoique le signe de I'angle ¢’ soit négatif, quand I’angle
horaire est plus grand qu'un angle droit, il est facile de
voir que le déplacement du pendule a toujours lieu vers
Vest, etc. » (page 95).

L’auteur finit ainsi : « Dans le Mémoire sur la limite
» des durées des oscillations d'un systéme, aprés avoir
» donné les formules du mouvement des pendules a unc
» latitude quelconque, nous en conclurons que la durée
» des oscillations est indépendante de la position du plan
» vertical, dans lequel le pendule oscille; que la gravité
» des corps terrestres est modifiée par le mouvement an-
» nuel, ainsi que par le mouvement diurne, et qu'un
» pendule abandonné a lui-méme dans la verticale, et
» dans un lien quelcongue de la terre, se meut spontané-
» ment. Si ce dernier résultat était vérifié et rendu sen-
» sible par 'expérience, on aurait une nouvelle preuve du
» mouvement de la terre autour du soleil. Cette preuve
» pourrait résulter aussi de I'observation de la marche
» d'une horloge astronomique pendant les différentes
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» heures du jour et de la nuit. 1l est facile @ ;
» conclure de ce qu'on a vu plus haut, quele
» d'une horloge, réglée par un pendule de 1 métre de lon-
» gueur, est plus rapide & midi qu’a minuit, dans le rap-
» port de 1,00645 4 1,00583 ou dans le rapport de
» 7204,44 4 72003 en sorte que si 'horloge a marqué
7200” pendant un certain temps, pris au milieu de la
» nuit, elle marquera 7204” pendant le méme temps,
pris au milieu du jour. En comparant donc I'horloge &
» un garde-temps trés-exact, pendant les intervalles de
onze heures du matin a une heure du soir, et de onze
» heures dusoir a une heure du matin, ¢lle avancera de

<

=

=

» quatre secondes environ, dans le premier de ces inter-
» valles ; nous supposons I'expérience faite a I'équateur,
» car a une latitude un peu élevée Z, les variations dans
la marche d’une horloge, calculées d’aprés la formule

z

1

r T
™ 2
(g — 0™,034 cos*9 — 0™,000 cos ! COS&))

» qui est celle de la durée d’une oscillation du pendule,
» dont la longueur est r, sont tout a fait insensibles, a
» moins que la longueur r ne soit trés-grande. »

Nous voyons, d’aprés ce qui précéde, que Du Buat a
traité la question générale et qu’il a trouvé nécessaire-
ment que I'axe du pendule décrit une surface apparente
gauche dirigée vers V'est; résultat confirmé par 1'ingé-
nieuse observation de M. Foucault; mais pour démontrer
le mouvement de la terre, Du Buat emploie la durée des
oscillations, ce qui exige & nos latitudes un pendule trés-
long, parce que r entre au numérateur. Au résumé, le
pendule offre trois moyens de prouver le mouvement de
la terre : 1° la durée des oscillations; 2° I'amplitude des
oscillations ; 3° le déplacement du plan d'escillation.
Du Buat a indiqué le premier moyen, il a déi nécessaire-
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e le troisiéme moyen que M. Foucault a
heureusement. Ces expériences réussiraiemt
beaucoup mieux dans les hautes latitudes, telles que
Stockholm, Tornea, etc. La durée des oscillations variant
avec lheure du jour, cela ne nécessite-t-il pas, a une
epoque d’extréme précision , quelques nouvelles correc-
tions a faire dans les observations du pendule?

Depuis que ceci est écrit, M. Binet a donné une théorie
analylique rentrant dans celle de Du Buat; M. Foucault a
fourni une ingénieuse explication géométrique , de méme
que M. Poinsot. Ges considérations, purement géométri-
ques, ne sont pas encore d'une parfaite clarté. (Voir les
Comptes rendus hebdomadaires des séances de I’ Acadé-
mie des Sciences, tome XXXII, pages 157, 197 et 206.)

Nous venons de recevoir les deux ouvrages suivants,
auxquels nous ferons de nombreux emprunts.

1. MaraEmMATISCHE ABHANDLUNGEN. Mémoires de Mathé-
matiques; par le docteur Oskar Schlomilch, professeur
de hautes mathématiques 2 I’Ecole royale technique de
Dresde en Saxe. In-8° de 150 pages.

Voici le contenu : .

1°. Mémoire sur la série de Mac-Laurin. On donne
une discussion trés-claire, trés-détaillée sur le caractére
de convergence, la variable ayant pour valeur un nombre

complexe; ce critérium différe de celui que M. Cauchy a

donné, qui est quelquefois erroné. Nous parlerans bien-

tot de ce sujet important qui présente un intérét de cir-
constance. Tout se déduit de considérations sur la discon-
tinuité des fonctions. L’auteur trouve que la série

1+x")-—f lx’+ 1.3 .
S1T 237234

Aun, de Mathémat., t. X. (Mai 1851.) 11
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n’est convergente que pour une valeur comp!
module est moindre que l'unité; lorsque la
réelle il faut qu "elle soit comprise entre + 1 et — 1.

. Sur la série de Biirmann. L’auteur déduit de cette
série remarquable, presque inconnue en France, la série
de Lagrange et encore d’autres, ainsi que plusieurs appli-
cations au retour des suites, au calcul intégral.

3°. Sur les approximations des quadratures. 1} s’agit
de la méthode de Laplace pour les évaluations numériques

I , :
des intégrales définies de la forme f S (z) dz (Théorie

o
analytiqgue des Probabilités, livre I, 2° partie, cha-
pitre IIT) : cette méthode est complétée et généralisée.
4°. Sur une intégrale double avec deux fonctions ar-

b px
bitraires. C'est I'intégale f dx f ’ Sf(x, y)dy, avec
yx
des applications géométriques.

5°. Sur I’évaluation de la masse pour des densités va-
riables. Applications aux surfaces ‘cylindriques et sphé-

riques.
2. MITTHEILUNGEN DER NATURFORSCHENDEN GESELLSCHAFT

ix Bearn. Communications de la Société des investiga-

teurs de la nature, de Berne (1848, 1849, 1850).

Cette collection renferme des documents précieux pour
I’histoire des sciences , en Suisse , patrie de tant d’illustres
géométres, naturalistes et physiciens. On y trouve des
Lettres inédites de Haller, de Bonnet (Ch.), de de Saus-
sure, de Bernoulli, de Lambert, etc., etc. Une lettre de de
Saussure, datée de Paris, le 24 avril 1768, fait un grand
éloge de la bonhomie de Jussien et de Buffon. Il aime
mieux les savants de Paris que les beaux-esprits qui sont
d’un orgueil insupportable. « Les uns et les antres donnent
» trés-peu de temps au cabinet, et sont Rgt‘.(‘x\)nséquent
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bnds ; les plaisirs, les femmes, et surtout la
» passich de voir les grands et de leur faire la cour,
» absorbent la meilleure partie de leur temps » (n* 112
et 113 de 1848, page 33). Les choses sont bien changées.
Aujourd’hui nos savants ne qulttent pas leurs cabinets et
deviennent trés-profonds. Nous avons un spéc1men de
cette profondeur dans les célébres programmes qui ter-
minent si glorieusement la moitié du x1x° siécle (*). Nous
insérerons en entier dans nos .4nnales une Notice auto-
biographique de Bernoulli (Jean I). Tout ce qui se rap-
porte a cette famille prodigieuse, unigue dans les fastes du
monde,, mérite une haute attention. On lit aussi dans ce
recueil des descriptions de livres rares, entre autres des
Tables logarithmiques de Burgi, retrouvées récemment
a la bibliothéque de Munich, et qui ont été composées
peut-étre avant celles de Néper, quoique publiées posté-
rieurement. Nous devons ces richesses littéraires 8 M. R.
Wolf, secrétaire de la Société depuis 1841, qui enrichitle
recueil d’intéressants travaux scientifiques, parmi lesquels
nous avons déja fait connaitre d’élégantes propriétés balis~
tiques. Directeur de I'observatoire de Berne, M. Wolf
publie les résultats journaliers de ses observations. Nous
répéterons ici ce qui est toujours pour nous un sujet
d’étonnement. Lorsque notre Observatoire national pos-
séde tant d’astronomes pleins de jeunesse, de talent,
d'intelligence,, guidés par un chef si diversement célébre,
pourquoi la France est-elle aujourd’hui le seul grand

(*) Certes, ce ne sont pas des esprits frivoles qui ont découvert que
Yanalyse indéterminée, V’élimination , lés !iellx,géOmétriques , etc., sont
inutiles aug éléves. Grice A ces découvertes, les questions du grand con-
cours seront désormais puisées dans Varithmétique de Baréme; c’est la
bonne, on y parle de capitaux, d’intéréts, de salaires, etc. ; applications

utiles, comme & expnment nos intéressants programmes. Quelle magni-
fique génération d'ﬁpmintndas, de Léonidas, nous promet un s si noble
systeme &’éducation? :

171.
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pays civilisé on 'astronomie n’ait pas un Jo
Est-ce le temps qui manque? Personne n’osera dire cela.
Que manque-t-il donc? Serait-ce le zéle, que rien ne

remplace et qui remplace tout?

InsTrucTiON POUR LE PEUPLE. Cent Traités sur les connais-
sances les plus indispensables, etc. 2 vol. in-8°; 1847.

Le peuple, c’est vous, c’est moi, c’est tout le monde;
}e ne connais pas d’autre peuple. Cette dénomination
comprend des hommes instruits et d’autres qui, n’étant
pas instruits, ont le désir de s’instruire. C’est cette por-
tion du peuple que les cent traités ont en vue; ces genres
d’ouvrages sont aussi de bonnes actions, et dés lors on
n’est pas surpris de voir figurer parmi les collaborateurs
le nom d’un ingénieur distingué. L’arithmétiqune et I’al-
geébre, la mécanique, la théorie et I'histoire des machines
a vapeur forment trois traités, qu’on doit i la plume
exercée de M. Léon Lalanne, l'auteur si connu de
I' dbague (tome V, page511); genre de lectures toujours
attrayantes lorsque l'intelligence s’enrichit sans fatigue,
indispensables aux professeurs d’instruction primaire, et
qui ne seront pas infructueusement consultées par les pro-
fesseurs d’enseignement spécial (¥).

Cours ELEMENTAIRE DE DEssIN appliqué a D'architecture,
a la sculpture, a la peinture, ainsi qu'a tous les arts
industriels , etc. ; par Antoinc Etex, statuaire, archi-
tecte et peintre. 1 vol. grand in-4° obloung ; prix, 3o fr.
et 5o fr. sur papier de Chine.

Le prospectus se termine: ainsi :
« 11 (Vouvrage) s’adresse a tous ceux qui veul‘em con-

» naitre I'art sous ses trois faces : peinture, sculpture et

(*) L’auteur vient de publier une seconde édition refondue de son
excellent Abaque universel que nous expliquerons prochainement.
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» archigégture; aux éléves qui étudient les mathéma-

6§ Tomme i ceux qui se destinent a a n’importe
» quelle carriére! En méme temps, c’est un charmant
» album, trés-intéressant pour les gens du monde et les
» amateurs. »

RESOLUTION NUMERIQUE DES EQUATIONS TRINOMES ,
D’arris M. GAUSS.

1. Le Mémoire de l'illustre analyste porte pour titre :
Beitrage zur theorie der. algebraischen gleichungen ;
von Carl Friedric Gauss; Supplément a la Théorie des
équations algébriques. Gottingue, 1849, 1 vol. in-4° de
34 pages. Extrait du tome 1V des Mémoires de I’ Aca-
démie royale des Sciences de Gottingue.

Ce travail est divisé en deux parties : la premiére con~
tient la démonstration du principe fondamental de la
théorie des équations, que 'auteur a donnée en 1799, et
qu'il reproduit sous une nouvelle forme, avec des. addi-
tions considérables. Cette démonstration est connue en
France sous le nom de Théoréme de M. Cauchy, qui a
donné en effet une grande extension & la théorie de
M. Gauss. C'est le sujet d'une belle thése de M. Prouhet
(voir Nouvelles Annales, tome 1, page 438).

2. Laseconde partie, la seule qui va nous occuper, est
consacrée a la résolution des équations numériques de
cette forme

Zmn b epn = f— .

m, n, ¢, f sont des nombres positifs donnés; m ct n
peuvent étre quelconques : mais, sans nuire i la généra-
lité, on admet que m et n sont des entiers, premiers
cntre eux, Cetle forme renferme quatre cas ; mais, comme
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on peut se borner i la recherche des racine
on peut supprimer le cas o tous les signes sohit positifs.

Faisons de plus, pour abréger, {—f— =i

Premiére forme :
2 4 eg™ — f= 0.

Introduisons un angle 6, 4 prendre dans le premier qua-
drant. A cet effet posons

e (126 ex™ 19
= sin?0, -—— ==cos'0,
d'ou 4 !
o cos*6
™= fsin*f, o™ :f pant z" = e tang*9.
Eliminant x, on obtient
__ sin?®g
~ cosim+ang’

équation qui sert i déterminer la valeur de 6. En faisant
croitre 6 depuis o jusqu’a go degrés, on voit que le second
membre de la derniére équation croit depuis o jusqu’a o ;
il existe donc une valeur et une valeur seulement, qui
satisfait & 'équation: aprés qu’on aura trouvé 6, une quel-
conque des équations (1) donnera les valeurs de x.
Lorsque 6 = 45 degrés, on a A = 2"; donc, lorsque 2 est
moindre que 2", il faut chercher 9 dans le premier octant,
et pour A >> 2", il faut chercher § dans le second octant;
on trouve la valeur de 0 par la méthode indirecte connue.

Deuxiéme forme :

2" — exm — f= 0.

Posons :
o feh =sin9,  ex"=cos'0;
ou
e . ot?d
(1) xm"'”-_—‘———‘f s P = -tm“‘f-————-—c >

= — =
sin?8 . cos™d ) e
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et, élimimant x, .
N . sin™9

- cos:m-ﬁ:ng.

6 a une valeur réelle et n’en a qu’une seule.
Pour A < 2™, il faut chercher 6 dans le premier octant, -
et pour X > 2™, dans le second octant.

Troisiéme forme :

™ — eg™ + f== 0.
Posons

x" . z—m

;:sm’e, / = cos?9,
e

d’ou

(r) am™n=ftang?®, az"= S " = ¢sin®0,

= ccos'6’
et de la
A = cos™ @ sin*" §.

Le second membre s’annule en faisant 6 = o ct en faisant
6 = go°; il existe donc un maximum entre o et go degrés.
Le logarithme de cette fonction est ‘

2nlog cos 6 + 2m logsiné;
la différentielle est
(2m cot® — 2n tang6)db;

donc le maximum correspond a une valeur 0, telle, que

Pon ait
m
L. 0, = —_
s = /2

Ainsi, pendant que 6 croit de o & 0, (moindre que go de-
grés), la fonction croit et atteint pour 6 =6,, la plus

grande valeur %, et décroit de 9, i go degrés ou

elle devient nulle; lorsque 6 = 45°, la fonction est égale &

. . m™ " 1
Pk donc on a toujours

(o mpen >,——2»'+" , a moins
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que 'on ait m=rn; dans ce cas, la valeur maximum

devient égale 3 — !

om+n = 2!.‘

On conclut de 14, lorsque
m™n"
> (e
qu’aucune valeur de § ne peut satisfaire a 'équation
) == cos?"0 sin*" 0,
et, par conséquent, I'équation
™ — ex™ 4 f= 0

n’a aucune racine (positive); et si
mm ”II

r << m ’
cette équation a deux racines. Dans le cas spécial on
m"n"
( m —+ ”)m+n’
les deux racines de I'équation deviennent égales, et, pour

les trouver, on peut employer & volonté 'une quelconque
des trois équations

=

fm S m—+n em
O = ey M == - y Z" =
n e n m-n

Cas de deux racines. Si

A > ;':——M et m < n, les deux valeurs de 6 sont dans le pre-

mier octant;
1
A > pecm et m > n, les deux valeurs de 6 sont dans le
deuxiéme octant;
1 , . .
r < Sav) une valeur de 6 est dans le premier octant et une

dans le deuxiéme octant; .

%= ——, une valeur de § est 45 degrés, et Pautre est dans le

2.+R

méme octant que 6,.
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On conclut facilement de 'analyse précédente des trois
" formes, que I'équation trinéme ne peut avoir plus de
trois racines réelles, lorsque m et » n’ont pas de commun
diviseur ; ce qu’on sait aussid’aprés d’autres principes.

3. Pour résoudre I'équation qui donne la valeurde 6,,
on peut se servir des Tables de logarithmes trigonomé-
triques; mais M. Gauss emploie des Tables auxiliaires
extrémement commodes, qu’il a inventées en 1810, et
qui, trés-répandues aujourd’hui en Allemagne et en An-
gleterre, sont encore inconnues en France, méme de nos
calculateurs de profession. Nous en parlerons trés-inces-
samment; nous ne serions pas compris si nous rappor-
tions aujourd’hui les calculs de M. Gauss, qu’il applique
a la résolution de I’équation de la premiére forme '

x4 282 — 8o =0,

ou
__ 6950 1
).—8—2-3—'5437 log)‘_.z,0863825.
On a
A< 8; donc 0450
On trouve

x=1,0228841;
c’est la seule valeur positive.
_ Racines négatives.
Faisant x = — v, il vient
7' —28y* + 480 = o,
équation de la troisi¢me forme; on a
1 823543 7’ 823543 1
3= 680 F.4 6Bgia <3
—; >2 et m> n.

Ainsi l'on a le troisiéme cas, et il existe deux racines; on



((170)
trouve
= 2,4580892, = 2,5778036.

Racmes imaginaires.

4. Pour plus de généralité, on suppose que les coefli-
cients sont des nombres complexes, et I'équation trindme
prend cette forme

(X) @™ 4 e(cose + isine)x™ + f(cosg + i sing) =

On admet encore que m et n sont premiers entre eux ;
e et f sont des nombres positifs. Si le coefficient de x™ est
réel, alors on a

e=o0, ou ¢=180°
de méme, sila quantité toute connue est réelle, on a
¢p=o0, ou ¢=180°:
nous donnons aux racines la forme connue
r{cosp -+ isinp).
Ordinairement on suppose que r est positif; mais pour
notre but, il est plus avantageux de ne pas admettre cette
supposition , mais d’admettre que p est compris entre o et
180 degrés. Lorsque les coeflicients de I’équation (X) sont
réels, le nombre de valeurs de p se réduit 4 moitié, car
une des valeurs étant comprise entre o et go degrés, il
faut prendre une autre racine 180° — p, et remplacer
r par — r; a chaque racine ¢ + fu correspond une autre
racine ¢ — Ju.
S. Divisant I'équation (X) par ™", on obtient
1 + e(cose + i sine)z™ 4+ f(coso 4 I sing)z—™" = o;
remplacant x par sa valeur r(cosp + ¢sinp), on a
1+ er—{cos(np —s)— isin(np—c¢)]
+ frm=r{cos[(m +n)p— 9] —isin[(m+ n)p — ?]% =o.
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Egalant a zéro, la partie imaginaire, on déduit une.va-
leur de r™ en foncuon dep.

Si l'on divise I'équation (X) successivement par son
deuxiéme et son troisiéme terme en opérant comme ci-
dessus, en égalant & zéro la partie imaginaire et réunissant
les résultats, on obtient

fsm[(m+n)n—qa]

== esin(np—g)
’ m+n__f51n(mp+e-—q7)
(1) = sin{np—e¢)

n esin(mp—+s—¢g)
Tsin{(m+n)p — o)’

chacune de ces équations est d’ailleurs une conséquence
des deux autres.

Eliminant r entre deux quelconques d’entre elles,
on a
 \men S0 (mp 4 & — ) sin"(np —)
(2)  A=(=1) Sin" [ (m + n)p — 9]

ou

k:fn'

em+n’

ainsi A est essentiellement positif.

Cette équation détermine les diverses valeurs de p; la
valeur de r, qui correspond & chaque valeur de p, se trouve
au moyen d’une des équations (1), de préférence de la
deuxiéme équation, eu égard a la valeur absolue; toute-
fois, au cas ot m + n est pair, il faudra encore avoir re-
cours a I'une des deux autres équations pour décider si
est positif ou négatif.

6. La solution de I'équation (2) s’obtient facilement
par voie indirecte ; a quoi peuvent contribuer les considé-
rations suivantes :

1°. Les valeurs de p sont entre o et 180 degrés, et, au
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cas ou les coefficients sont réels, il suffit de chercher la
moitié des valeurs, celles qui sont comprises entre o et
9o degrés. : '

2°. Dans l'un et dans 'autre cas, il faut sous-diviser
Pintervalle de o 4 go ou & 180 degrés, au moyen des chan-
gements de signe qu’on observe dans les valeurs du second
membre de I’équation (2), lorsque p parcourt toutes ses
valeurs de o & 180 degrés; changements qui s’opérent évi-
demment lorsque 'un des angles mp+¢—¢, np—c,
(m + n) p — ¢ devient divisible par 180 degrés, et alors
cette fonction devient nulle ou infinie. On n’a pas besoin
d’avoir égard aux valeurs négatives, puisque 1 est essen-
tiellement positif.

7. Cherchons les racines imaginaires de I’équation de
ci-dessus, ‘

2" 4+ 28 2 — {80 = o;

on a

m::4, n:3, c=28, f:480
et

e=o0, =180
Les équations (1) deviennent
., 48osinqgp
r=—=-—gG—7us"
28 sin 3p
480 sin4p
—_— )
sin 3p
28sin fp
sinqp

rie—

r=
I’équation (2) donne

1823543  singp
27 6750  sin®3psin‘4p

L’équation a trois racines réelles et, par conséquent,
quatre racines imaginaires. Il faut donc chercher deux
valeurs de p comprises entre o et go degrés.

On forme facilement le tableau suivant des diverses
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valeurs de la fonction en p, qui établissent des change-
ments de signe,

. 823543 7
p= 0% ....... -+ W—g‘;‘z‘-a
2504, ... ... + o,
45°. . ...... — ®,
51°% — o,
60°........ + o,
77°% — o,
go°. ... .0 + 3

ainsi les deux valeurs de p sont comprises entre 51 3 et
60, et entre 77+ et g8. L’auteur trouve pour premiére
valeur,.

p= 57"4['4!”,366,
et, d’aprés la seconde équation ("), on trouve

log sin4p = 9,8891425n (La lettre n désigne que le
compl. log sin 3p = 0,9193523 nombre est négatif.)
log (— 480) = 2,6812412 7

7 logr = 3,4897360
logr = 0,4985337,

et
_ x =+ 1,6843159 + 2,6637914 ¢,
et aussi

z =+ 1,6843159 — 2,6637914 /,
et la seconde valeur de p = 86°19/13",342

log sin 4p = 9,4049540
compl. log sin 3p = 0,0081108 »
log (— 480) = 2,6812412 »

7logr = 2,0943060
logr = 0,2991866 »

Sil'on veut que rsoit positif, il suffit d’augmenter p de
180 degrés, et de prendre p = 266°19’13”,3427
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8. Ainsi les sept racines de 1'équation
z' 428z — 480 =0

sont o

-+ 1,922884:

— 2,45808g2

— 2,5778036

+ 1,6843159 = 2,6637914 i

—o0,1298113 2 1,9874234 i
La somme des racines est + 0,0000005 ; ce qui s’accorde
avec la vraie valeur (zéro) autant qu’on peut I'espérer, en
faisant usage des Tables avec sept décimales; cherchant
le logarithme du produit de ces racines, on trouve

2,6812411,

qui s’approche suffisamment du logarithme de 48o0.

METHODES POUR TROUVER LES VALEURS APPROCHEES DES
RACINES REELLES DES EQUATIONS ALGEBRIQUES.

Nota. L’'une de ces méthodes se rapporte aux équations trindmes et
Pautre aux équations générales ; elles nous ont été indiquées par M. Pio-
bert, avec une application a V’équation de M. Gauss traitée dans Varticle
précédent; il a bien voulu en permettre la publication.

Premiére méthode.
1. SoitV'équation
IR 4 exm — f=0.
Supposons m > n; faisant m — n = p, I'équation peut se
mettre sous la forme

ZmE—P - ex™ P — fxr—P =—0;
or
m-+n—p=2n,
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Et m—p =n; on adonc
x4 exn —f.z;"l’ = o. M

Résolvant comme une equanon du second degre ‘on ob-
tient

. . —
n— __—e=t -e P -
x 2c ‘/4—}—)‘

.
Occupons-nous des racines positives. Si a est une li-

mite supérieure de x, on a évidemment
1

' x>(~——e+\/—e*+fa—r);,

limite inférieure; en la substituant dans la valeur de x",
on obtient une limite supérieure, et ainsi de suite.

2. Equation de Gauss. Soit
2" + 282 — 480 = o.
Il est évident qu’on doit avoir
282 < 480; dou x<C2,0348;
et méme x < 2. L’'équation donnée peut prendre la forme

480

z‘+28x3——y

r= (—144—\/ 96+48°) = f(=x).

Substituant dans f(x) la limite supérieure 2, on a pour

d’ou

limite inférieure

1,902 < r, v
et de la

1,928 >z, 1,9213<a.

Ces substitutions successives donneraient des valeurs de
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plus en plus approchées ; mais I’on peut accélérer 'opéra-

p 4 aide de cette observation : pour des points situés sur
une droite, les variations des ordonnées sont constamment
proportionnelles aux variations correspondantes des abs-
cisses; il en est de méme pour de trés-petits arcs de
courbe. En d’autres termes, les variations de 2 et de f'(x),
pour des limites trés-resserrées, sont sensiblement pro-
portionnelles. Or, nous voyons que x croissant de 1,902 &
1,9287, augmentant ainsi de 0,0267, fx décroit de 1,9287
a 1,9213, ou de 0,0074. Si donc x devient 1,9287 —J,

alors f(x) devient 1, 9013+—7—4—0__1 9213+0,297 d;

or I'on doit avoir x =f (x), on _
1,9287 —d8=1,9213 + 0,277 8;

d’ou l'on tire
__0.0074

= 0,0058,
1,277

et
z =1,9287 — 0,0058 = 1,9229.
Cette valeur donne, pour une plus grande approximation,

S(x) =1,9228798.
Or
1,9229 — 1,9228798 = 0,0000202.
Divisant par 1,277, on trouve

0 = 0,00001582,
et

z =1,9229 — 0,00001582 = 1,92288418.

Et, continuant & procéder de la méme maniére, on arrive
a [a valeur

z =1,9228841303502,
beaucoup plus approchée que celle de M. Gauss.
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3. Racines négatives. Faisant x =—y, il vient ::
y—a8 y* +‘480 =o0; e

ym (s s

on don avoir-

d'ou

96> ; dou y>2,44897.

Le cube de cette quanme-étant 14,68775, le radical doit
étre plus grand que

0,68775, ou 196 — %9- > 0,473, y>2,4549.
D’un autre cdté, on doit avoir |
yi<l28y", ou .y3< &;8, r < 3,0368;
substituant y = 3, f(y) se réduit a 3s/—z—o-, d’ou

a
y < y20; ou y<2,71442.
On trouve de méme avec cette limite supérieure que
0
480 he peut descendre au-dessous de 177, et que y est
e

< 2,64, et ensuite on parvient a y <[ 2,61. Ainsi les
racines sont.comprises entre 2,4549 et 2,613 ces deux
limites se rapprochant peul’une de I'autre, et toutes deux
rendant f ()< y, il convient d’essayer une valeur inter-
médiaire, telle que 2 5 qul donne f(y)>y : donc2,5 est
compris entre deux racines. En effet, ces racines sont
2,45808g1142 et 2,5778034287.
Ainsi les derniéres décimales données par M. Gauss sont
trop fortes. ‘
4. Par cette met,hode, les px‘emleles approximations
peuvent s'obtenir d’une maniére trés-expéditive, en em-
Ann. de Mathémazt., t. X. (Mai 1851.) 12
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ployant la Régle a calcul; les derniéres seules exigent
I'esgploi des Tables de logarithmes.
« Ce procédé s’applique avec succés a beaucoup. de
cas; par exemple a P'équation suivante, qu'on rencontre
dans les Eléments d’Algébre,

9z — 24 x* + 16 x — 0,001 =o0:

les trois valeurs sont réelles, et deux différent trés-peu.
La plus petite racine est donnée rapidement par les ap-
proximations suivantes :

= 0';%01 = 0,0000625;
a = 2-’—02%——2—4—0—2 = 0,0000625585937 ;
ar= 200 2‘46a 9 0,0000625585936227.

Appliquant ensuite la méthode, on met la proposée sous
la forme,

d’ou

On obtient ainsi sans difficulté les deux racines voisines
1,3424 et 1,3242.

Seconde méthode.

6. Dans cette seconde méthode, on fait usage dela propo-
sée non résolue, et’on emploie les logarithmes et leurs dif-
férences, de maniére a pousser trés-loin les approxima-
tions par une seule substitution ; mais pour cela il faut opé-
rer avec plus de précision qu’on ne le fait ordirairement.
En cffet, dans les logarithmes donnés par les Tables, le
septiéme chiffre n’étant exact qu’a une demi-unité prés de
cet ordre, le logarithme de la puissance n**"* d’un nombre
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peut n étre exact qu é hid \mués du wptleme ordre decunaL »

ce (qui est insuffisant.

De méme la différence de deux logarithmes tabulaires,
consécutifs, peut étre en erreur de prés d’'une unité. Pour
obvier a cet inconvénient, il faut, s'il est trop long de la
calculer par les méthodes connues, prendre la différence
de deux logarithmes comprenant entre eux celui qu'on
considére, puis la diviser par le nombre de rangs qui les
sépare, et qui, pour plus d’exactitude, doit étre égal au
nombre de termes de la série, aprés lesquels les différences
tabulaires irréguliéres reparaissent.

7. Cela posé, prenons I'exemple traité ci-dessus; on a
trouvé pour valeur approchée de I'inconnue, 1,9229=a;
substituant cette valeur dans la proposée, elle se réduit
a + 0,01822. Les différences des logarithmes, prises
comme il a été indiqué, sont, pour les unités du qua-
triéme ordre décimal,

225,84 pour a,
1,1345 pour 284,
4,465 pour a'.

Si a + 0 est substitué dans la proposée a la place de x,
d exprimant aussi des unités du quatriéme ordre déci-
mal, cela revient a écrire : :

225 225,84 & 225,84 ¢
7465 + 4. — T + 182,2 = o;
d’ou : ‘
. 182,2
¢ = 5o 048 — 0,1585;

x=1,9229 — 0200001585 = 1\,92288415.

Poyr pousser I'approximation plus loin, on substitue
dans la proposée le nombre 1,9228841. Mais il faut avoir
son Jogarithine, avec an moins 8 décimales; on le déduit
de celui de 19229 = 7.41:67, que 'on peut obtenir a 20

12.
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et méme 4 61 décimales au moyen des Tables auxiliaires
placées i la suite des Tables de Callet; la proposée devient
égale a

—50,0000349: et &= ;—%’%% = 0,0003035;
d’ou
xz =1,92288413035 racine positive.

8. Premiére racine négative. Le résultat de la substitu-
tion de 2,46, dans P’équation en y, donne — 0,2248,
et I'on en déduit y =2,458089. Pour approcher da-
vantage, il est nécessaire d’avoir le logarithme de cette
valeur avec une grande exactitude; on le déduit de
244808 = 16.27.569, et la substitution donne

~+ 0,0000136;

par suite,
176,78_ 176,79 .
" 0,801 4- 4,24834_—0’136— 03
d’on
0,136 _
6‘:119,52__0,00114, et y=2,45808g114.

9. Deuxiéme racine négative. D’aprés M. Gauss, cette
racine est 2,5778036; pour pousser plus loin I'approxi-
mation, le logarithme de ce nombre se déduit de celui de
25775 = 25 . 1031 la substitution donne

-+ 0,0000234,
etl'on a

168,53, 168,59 -
7 0,574 — 4 3.513 + 0,234 =0;

d’on _
d=—o0,001713, et y=2,5778034287.

SUR LES RACINES REELLES DES EQUATIONS.

' A. Tutorime, Soit I'équation (algébrigue & coefficients
réels) ordonnée suivant les puissances décroissantes de
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Linconnue - .
AxP 4+ A xd ++ Ay ... = o;
le dernier terme n’est pas nul.

On suppose de plus que p —r et ¢ — r sont premiers
entre eux ; cette équation ne peut avoir plus der +3 ra-
cines réelles.

Démeonstration. Prenons les dérivées successives du  pre-
mier membre jusqu’a la dérivée de Pordre », et égalons
ces dérivées a zéro; I'équation dérivée de I’ ordre restde
la forme

axt—r 4 bx?—" 4 ¢ =o.
Cette équation n’a pas plus de trois racines réelles ; donc,
d’apres le théoréme de Rolle, la dérivée qui la précéde n’a
pas plus de qudtre racines réelles, et, remontant jusqu’a
Péquation donnée, on trouve qu’elle n’admet pas plus de
7 -+ 3 racines réelles.

Observation. Si r et p sont de méme parité, il est évi-
dent que I'équation ne peut avoir plus de r 4+ 2 racines
réelles.

2. Soient

B’ + B, x1' + B,
les trois derniers termes de I'équation; les trois premiers
termes de I'équation aux racines inverses seront

B, y? +B,yP—9’_+- Bz +...=o.
Si donc p' et ¢ sont premiers entre eux, cette équation ne

peut avoir plus de p — p’ + 3 racines réelles; cette limite
appartient évidemment aussi a 'équation donnée.

QUESTIONS.

230. Deux polygones quelconques de 27 cotés sont
équivalents quand leurs cotés ont les mémes milieux.
{Prouner. )
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231. La surface d'un polygone de 2z cotés ne change
pas lorsque tbus les sommets de rang pair ou tous les
sommets de rang impair décrivent des droites égales et
paralléles. (Prouner.)

232. P, étant aire d'un polygone' convexe de 2 cdtés;
P, I'aire d'un polygone ayant pour sommets les milieux
des cbtés du premier polygone; Py Yaire d’un polygone
ayant pour sommets les milieux des c6tés du second po-
lygone, et ainsi de suite ; on a

n? — o2 (n’—z’)(n’——4’)
P — 23 P, 2.3.0.5 P,
_(m=2") (2 —§)(r* — 6’)
2.3.4.5.6.7 -
(—-l);-H "’_22.':,:[.};'"'.:_fn—z)’]Pz—_—o, n pair;
2
ni—1? —1’)(11’-—-—3’)
P — 2 P2+ 2.3 4 P;..
n—1
(=1 * (n’—-x’)’(n;— > (n[i 1) #=2)1p, _ =o,nimpair.
2
(ProunET. )

233. T étant laire d’un triangle rectiligne; r et R les
rayons des cercles inscrit et circonscrit; a, b, ¢, les trois
cOtés: ceux-ci sont racines de I'équation

2T *
z’-—--—;—z’-{- (’_]_:_ +4Rr+r">z—-—4RT:0.
Les quantités a +b—c, a+c—b, b—i—c-——a, sont
racines de I'équation
u? —2—? w+4r(fR+r)u—8rT=o.
r

i l'on applique a ces équations le théoréme de Sturm, il

faut, pour la réalité des racines, que 'on ait: 1° R z 2r;
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2° que Tne tombe pas hors des limites

r[aR'+ 10Rr — Pt a YR(E— 2R} ].
Lorsque R > 2 r et que T est égal 4 une de ces limites, le
triangle est isocéle; si R = 2, les deux limites se con-
fondent, T devient égal i cette limite, et le triangle
est équilatéral. (C. Ramus, de I'Univ. de Copenhague )
234. Soit I'équation
(.z' —a,) (z—a,) (z—a;)...[z—ai,_)
+ bz —a,) (z—a;).. . (¥ — @n) =0;
b est un nombre positif; m un nombre entier positif; les
2n— 1 différence a,~—as, Gy—@s, Ay—iyesey Bsny—01,
sont positives; les n racines de I'équation sont réelles et
comprises entre @, et @y, @y €L @y ..., Gy €L Ag...

(Ricrevor. )
235. Résoudre en nombres rationnels I'équation
TI=y*. (GovrpBAcH.)

236. Six*—+ 2ay® est un carré, x* + ay® est la somme
de deux carrés.

237. Soit

S — 1+1 1 +1 _ nl .
"-—[+; §+Z+ n’ q—(n—q)!’

ou n! désigne le produit 1.2.3...7.Ona
(=

n

(Arapt.)

Sp— 7 Sp—i + 1S, —. ..+ (—l)"'"' o (S =

CORRESNNMNGE. -

¢

1. M. Neorouzlan,eleveducollegeSamte-Barbe,annonce-;,
et démontre ce théoréme : ABC étant un triangle c1rcon~ -
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scrit 4 un cercle, A’, B, C' étant les points de contact, on
a I'inégaliré

4 aire. A’B'C’ < aire ABC.

2. M. le professeur Nievengloski nous a adressé une
solution de la démonstration du théoréme de M. Steiner;
elle ne différe pas essentiellement de celle de M. Hément
(page 119).

3. M. Achille Deshons, sorti d’une école primaire ru-
rale, maintenant éléve de M. Haillecourt au lycée de
Nimes, et n’ayant que quinze mois d'étude, nous a
adressé deux bonnes solutions d’une question du grand
concours d’élémentaires de 1845 et d’une des questions du
grand concours d’élémentaires de 1850.

4. M. Haillecourt rappelle ce moyen mnémonique
donné par Mauduit, pour la résolution des triangles
sphériques rectangles: Tracez un pentagone et écrives
successivement sur les cdtés, en allant dans le mémesens,
les cinq quantités a, B, go°—c, go°—b,C; on appli-
que ensuite & chaque cdté (considéré comme arc) ce double
principe :
1° cos (un coté) = produit des sinus des cotés opposés.

2° cos (un cété) = produit des cotang. des cotés adjacents.

Du reste, Mauduit distribue les cinq éléments autour d'un
triangle, en faisant abstraction de l'angle droit A, dans
cet ordre C, a, B, go°® — ¢, go® — b; Cet B sont placés
aux angles (voir .4stronomie de Delambre, t. I, p. 204).
C’est a I'obligeance de M. Caillet, examinateur d’hydro-
graphie, que je dois ce renseignement. (#oir Francoeur,
Mathématiques pures ; 4° édition, tome II, page 273.)
8. La Biographie universelle (Michaud) mentionne
I'ouvrage suivant de Ceva (Jean) : Dere nummaria quoad
‘fieri potuit, geometric¢ tractata. Mantua, 17151, in-4°.
On désire connaitre le contenu de cet ouvrage qui ne
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se trouve pas dans -les bibliothéques publiques de Paris.
6. M. J. Murent, de Clermont-Ferrand, nous fait ob-
server que trois des théorémes énoncés t. IX, p. 281, ont
déja été démontrés par M. Page (t. I, p. 65); et M. Mu-
rent en donne de nouvelles démonstrations directes.
7. M. Edouard Dewulf, éléve du lycée de Donai,

classe de M. Davnd, donne le développement de 2 sina,

etz cosa,, en écrivant
1

Zr"cos a,-+ iznsin a,= &1 — & .eif’ e 3
1 1

remplacant ensuite €™, €. .. par les séries connues,
on trouve les formules connues (voir t. I, p. 345); c’est
lamarche suivie par Bernoulli (J.), auteur de ces formules.
Le méme éléve nous a adressé une solution de la ques-
tion proposée au concours d’admission 4 I'Ecole Normale,
en 1849; il fait observer que le théoréme de M. Steiner
(t.IX, p. 12) donne une solution simple de ce probléme de
trigonométrie, proposé par MM. Briot et Bouquet : On a
une circonférence dont le centre est I; on méne le dia-
métre AIB; sur ce diamétre, on prend un point C par le-

quel on méne la corde quelconque OCO'; on a
tang + CIO
tang +CI0’
Le méme éléve trouve que le lieu d’un point sur la
sphére, duquel menant des arcs tangents a deux petits
cercles donnés, le rapport des cosinus de ces arcs étant
donné, est un petit cercle (tome IX, page 364). Dans ce
genre de probléme, il est avantageux d’employer les coor-
données sphériques de M. Borgnet (voirt. VII, p- 147)-

— constante.

Observation. On écrit Bernoulli et non Bernouilli, orthographe v:cxeme :
qu'on rencontre fréquemment chez les auteurs frangais.
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~ SUR UNE FORMULE RELATIVE AU CALCUL INVERSE DES
’ DIFFERENCES ;

Par M. E. PROUHET.

1. Soit f(x) une fonction algébrique et entiére;
supposons que l'on substitue a la variable n valeurs
en progression arithmétique, depuis x = a jusqu’a
x=a-+ (n—1)k : la somme des résultats sera unc
fonction de n que je désignerai par ¢ (n). Nous aurons
donc

(1) #(n)=Fla)+Flath)+...+Fflatn—1h).
Posons de méme

(2) $(r)=/"(a)+-F'(a+h)+ ... +F (a+n—1 k)
11 en résultera

(3) e(r+ 1) —¢(n)=f(a+nrk),

(4) Y(r+1)—Y(n)=f"(a+ nk).

Mais ¢ (7) est, comme I'on sait, une fonction algébrique
ct enti¢re de n : de sorte que 1¢ gahte (3), qui alieu pour
une infinité de valeurs de n, puisqu’elle est vraie toutes
les fois que 7 est entier, doit étre identique. Nous pour-
rons donc la différentier par rapport a n, ce qui nous

~donnera

o o (n 1) — o' () = Af' (a -+ nk),
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ct, en comparaat avec (4}, .
(6) ?'(”+')'—?'(”)‘—.""\!‘("4+')—"‘N")-

Si maintenant nous changeons successivement, dans
cette égalité, nen n+1,n+2, ..., n+k, et que
nous ajoutions les résultats, nous aurons

¢/ (n+ k) —¢'(r) =hy(n+k)—hi(n),
ou bien ' '

(7)  @'(n)=hd(n)=9'(n+ k) —hy(n+£).

Le premier membre de cette égalité est indépendant de & :
il doit donc en étre de méme du second, mais ce der-
nier est une fonction symétrique de n et de k, et ne peut
étre indépendant de & sans I'étre de . 11'se réduit donc
a une constante, et I'on a simplement

¥ (n) — hy(n)=¢,

ou, suivant les notations usitées,
) d , '
(F) EEf(z):A.z‘Ef(z)—i—c.

C’est la formule que nous voulions établir.
2. On tire de (F), en intégrant,

(1) 2f(x)=Az fif (z).dn + cn,

etil n’y a pas d’autre constante a ajouter, puisque le pre-
mier membre doit s’annuler pour 7 = o. .

On voit, par la, que Zf(x) se raméne a Z f’ (x); de
méme 2 f (x) se raméne a X f” (x), et ainsi de suite.

3. Supposons que f(x) soit du degré m ; alors f™ (x)
sera une constante A, et 'on aura tout d’abord

3™ (x)=An,
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d’oui 'on tire successivement, en appliquant la formule (1),
_ Ahn? B.»

Zf""‘(z)::T; —+ —l—Q

) ARn® B, /in? B,n
V= nEtt e T
AR3nd B,A*nd B, hn? B;n
3 fm—3 —_ s
S (=) l.2.3.4+1.2.3+ s T
Ahm g+t B A% pm B, A2 pm ) B, »
z = 5
(=) (m =+ 1)! m! (m—1)! 1’

By, By, ..., B, , désignent des constantes dont on dé-
terininera successivement la valeur, a chaque intégration,
en faisant n = 1.

4. Proposons-nous maintenant de trouver la somme S,,
des mmes puissances de n nombres en progression arith-
métique. On sait que le procédé ordinaire consiste a ex-
primer S,, en fonctionsdeS,,_,, S,._., etc.; mais on n’ar-
rive ainsi au but qu’a 'aide de substitutions pénibles, et
la complication du calcul croit rapidement avec m. Les
formules (F) et (I) vont, au contraire , nous fournir un
procédé d’une extréme simplicité.

Dans le cas particulier dont il s’agit, on a f(x) = x,
S (x) = mx—*, etles formules (F) et (I) deviennent

() S' = mh Su_, + Bu,

m

(r) S,.:mlzfsm_, dn + n B,.
Comme on conuait Sy =, on aura, d’apres (1),

hn*  2a—h
Si=#hfndn+ nB =— + — n,
2 2
en déterminant la constante B, par la condition que le
second membre se réduise 2 @ pour n = 1. On passera
gec la méme facilité 4 S, , S; , etc.

Par exemple, si I'on veut avoir les sommes des puis-
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sances semblables des termes de la suite naturelle; on
feraa = 1, h = 1, et 'on obtiendra sans peine les résul-
tats suivants : '

Sy =n,

n? n
S|=—‘+ -9

2 2
S, — n® + n® 4 n
T3 2TE
S _nl+ n3+”'.'
*TE T2
S _ns n‘+ n n
S 30

nt ns Ant n?
Ss==+—4+— — —

6 2 12 12
S___Iz’+n“+n"' n® n
‘T g T2 T 2 6 +42’

nt n’ nt n' n?
S,=—+——+j—' S L

8 2 12 24 12

(o nt n’ n® an’ n
L R T N T

9 2 3 15 9 30

n' ' 3nt 7n° n' 3 n?
Sy=— e = — = -,

10 2 4 10 2 20
S ___rz” ntt 5”9 , - nd 5Il
'O_II+>2+F— - n “+ n gga
S N R L S TR S YL 11t 5n?
"Tha ' 2 12 8 6 g + .12’
etc.

5. La formule démontrée au commencement de cet
article n’est pas nouvelle : elle coincide avec la suivante,
citée par Lacroix (¥),

dZu___ du
Tdr T 4 dr’

(*) Traité des différences et des séries, page 93.
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lorsqu'on y fait Ax = 1, n = x et que I'on comprend la.
constante dans le symbole 2; mais Ja conséquence immé-

diate a laquelle elle conduit, lorsqu’il s’agit d'une fonc-
tion algébrique et entiére, ne parait pas avoir été re-
marquée.

Au reste, I'utilité de cette formule n’est pas bornée aux
seules fonctions algébriques ; elle permet encore de rame-
ner 4 un probléme de calcul intégral ordinaire la somma-
tion d’une classe trés-étendue de fonctions transcendantes.
C’est ce que nous allons montrer en commengant par
quelques cas particuliers.

1°. Soient

y=3ue* y =23u e

la formule donne immédiatement

dy
L=ty
équation différentielle du premier ordre qui raméne
Zuer a Lu'e" . Si donc u est une fonction algébrique et
entiére de x, alors y dépendra, en derniére analyse, d’une
¢équation de la forme
dz "
-—=az c
dx ’
qui s'intégre immédiatement.
2°. Soient
y =Zusinbzr, z=ucosbx,
yi=2zu'sinbz, z =34 cosbz;
on aura, en différentiant deux fois de suite,

d
A bz 4y +c,
dx -

diy

dx?

=—by+ bz +y +c,
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ct, enposant V =10z, +y, +c¢,,

dy

L k Qo
dx’+b =V,

équation du second ordre qui raméne Xusinbdx a
24 sin bxet L' cos bx. Onpourra donctrouver Zu sin b,
par une suite de réductions, quand u sera une fonction
algébrique et entiére de x. "
3°. Soient ;
y =Iue“sinbr, z=3Iuc*cosbx, .
yi=3:we** sinbx, z,= Iu'e* cesbr;

on aura
d
7 =y +bz4ay +c,
dx
d? , d
(la;”’-:y' + b(z + by+az+¢~,)+a£-

L’élimination de z entre ces deux équations donnera
une équation du second ordre et fera dépendre y de y,
et de z,. Il sera donc possible d’obtenir les intégrales de-
mandées, si « est une fonction algébrique et entiére de x.

En résumé, le rapprochement des trois résultats qui
précédent montre qu'on pourra trouver

: f (=, sin bx, cos bz, ¢**),

lorsque la fonction f'sera algébrique et entiére.
o . diu du

Toutes ces applications de la formule il N
ont peut-étre été déja faites; mais comme elles ne se
trouvent pas méme indiquées dans le grand Traité de
Laeroix, et a plus forte raison dans les Traitss élémen-
laires, j'ai pensé qu'il n’était pas inutile d’en dire ici
quelques mots. ' ‘ r
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BIBLIOGRAPHIE.

Tous les ouvrages annoncés dans les Nouvelles Annales de Mathématiques
se trouvent chez M. BacueLiER, libraire, quai des Augustins, no 55.

ELEMENTs DE MECANIQUE 2 'usage des candidats 4 I'Ecole
Polytechmque rédigés d’aprés le dernier programme
d’admission a cette Ecole; par M. Callon, ingénieur
ordinaire des Mines, professeur suppléant du cours
d’exploitation et de- mécanique 4 1'Ecole nationale des
Mines de Paris; avec deux planches. Pans, 1851;
in-8° de 199 pages.

A aucune époque de notre histoire, la lenteur n’a été
une vertu éminemment francaise; mais depuis 1'établis-
sement des chemins de fer, cette passion de la witesse
semble avoir augmenté et se manifeste en des occasions
ou l'on ne s’y attendait guére. Ainsi, dans les fameux
programmes, on lit en toutes lettres, qu'il faut démon-
trer certains théorémes, exposer certaines théories rapi-
dement. Cet adverbe est un peu vague. On peut atteindre
a plus de précision, a plus d’exactitude. Voici comment.
On sait qu'aujourd’hui les successeurs de Lagrange, de
Monge, de Fourier, etc., sont placés sous la surveillance
de certains capitaines. C’est la position que des enfants
de 'Ecole Polytechnique ont faite a leur mére. Inspiré
parun si bon exemple, désirant aussi me montrer bon fils,
éléve reconnaissant envers mes anciens maitres, je veux
contribuer pour ma part a discipliner leurs remplagants. A
cet effét, je propose de placer dans toutes les classes de
ole des espéces de chronométres. Chaque théoréme ,
ue théoric, chaque question, aura son coefficient chro-
nbmétrique, comme on en voit aux morceaux de musique,
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réglés sur I'instrument de Melzel ; le c¥pitaine surveillant,
le regard fixé sur le coefficient du jour, pourra commander
au professeur de ralentir ou de hater sa démonstration,
pour que la legon s’exécute avec la ponctualité militaire.
Nous recommandons cette idée , encore imparfaite, & nos
professeurs machinistes ; nous pensons, comme eux, qu'il
faut réduire science, professeurs, examinateurs, éléves, a

’état de machines ; alors nous toucherons a la perfectlon
vers laquelle d’ allleurs nous marchons rapidement.

11 paraxt que ces dispositions chronometrlques com-
mencent a se repandre Ainsi M. Callon a soin de nous
apprendre qu’il a mis trente-cing jours a'composer cette
Mécanique, et cela malgré de nombreuses occupations
professionnelles. L’auteur s’excuse d’avoir mis un temps si
court ; n’est-il pas trop long? Désormais, rien ne se fera
plus vite, plus facilement qu’un traité élémentaire. On
prend le programme article par article; on amplifie, on
développe, on souffle dedans, et I'on obtient un volume.

Tout ouvrage classique ne sera qu'un programme souf-
flé et analogue & certaine composition culinaire de méme
nom. Nous posséderons bientdt une algeébre soufllée, des
arithmétiques soufflées, des géométries soufflées; enfin
toute une mathématique soufflée; il suffira d’en faire sortir
I’air, pour qu'elle s’aplatisse en programme. Quel im-
mense avantage! comme cela facilite 1a besogne de la
critique! L’auteur a satisfait aux conditions du pro-
gramme, phrase stéréotypée , d’une application omnibus.
Ces conditions sont-elles bonnes? Hélas, non. Vouloir
confisquer toute la mécanique au bénéfice des machines
est une entreprise funeste, sous le point de vue philoso-
phique et pédagogique. La mécanique rationnelle n’admet
que la witesse, notion que la nature donne 4 toutle mond
tandis que la mécanique-machine admet la force, la
tesse, le travail élémentaire, trois étres sui generis, dont ™

Ann. de Mathémat., 1. X. (Mai 1851.) 13
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chacun a son théoréme de composition a part. Le.tr avazl
élémentaire n’est pas une idée simple, comme le pré-
tendent nos machinistes; c’est au contraire une idée com-
plexe, dérivée , une conception scientifique que la nature
n’inspire pas d’instinct. Nous possédons maintenant deux
ouvrages de mécanique, composés d’aprés le nouveau
plan, par MM. Sonnet et Callon, deux hommes de mé-
rite, accoutumés au professorat. Ces ouvrages sont plus
difficiles, moins compréhensibles pour les éléves, que les
Eléments de M. Poinsot. Cela tient non au mode d’exé-
cution, mais aux vices du plan, qu’on ne peut reprocher
aux auteurs, puisque ce plan est militairement com-
mandé. L'Université mathématique est entrée dans les
attributions du ministére de la Guerre.

L’ouvrage de M. Callon, exécuté d’urgence, trés a la
hate, n’est qu'un travail provisoire qui a besoin d’une
sévére révision pour la rédaction , I’exposition et la dispo-
sition des matiéres, révision que le savant auteur est,
mieux que personne, en état de réaliser.

Si I'on faisait entrer dans le texte de la Statigue citée
quelques notions de physique moléculaire et les théo-
rémes de rotation que I'illustre auteur a consignés dans
des Mémoires isolés, en y joignant les procédés dynamo-
métriques qui donnent la quantité de travail de Coriolis,
on aurait le meilleur traité élémentaire de mécanique
qu’on puisse offrir a la jeunesse libéralement studieuse de
nos lycées. Une étude est libérale lorsqu’elle a pour but
la recherche du vrai, I'utilité intellectuelle; tandis qu'une
étude qui ne s’applique qu’a la recherche de1’utilité direc-
tement matérielle est une étude servile. Il est fort singulier
qu’on ait attendu que nous fussions en république, pour
nous soumettre 4 un enseignement servile! Il y a tant
’autres singularités de ce genre!
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AppLicATION DE L'ANALYSE A LA  GEoMéTRIE; par
G. Monge. Cinquiéme édition, revue, corrigée et
annotée par M. J. Liouville, Membre de 1'Institut
(Académie des Sciences) et du Burean des Longitudes.
Volume in-4° (638 pages) , imprimé su¢ carré superfin
des Vosges, avec le portrait de Mghex et 5 plan-
ches; 1849. Paris, Bachelier, imprimeur-libraire.
(36 francs.) '

-

Les livres se multiplient avec une stérile abondance ; les
ouvrages deviennent d’'une excessive rareté. Heureux lors-
qu’on fait revivre d’anciens ouvrages; c’est une nouvelle
obligation que le public géométre devra au célébre acadé-
micien. Le volume qu’il édjte renferme deux chefs-d’ccuvre
sur les surfaces, I'un de Monge, chef-d’ceuvre depuis long-
temps épuisé etqu’on ne pouvait consulter que trés-diffici-
lement; 'autre est un Mémoire latin de M. Gauss, trés-
récent, pen connu en France, et qu’on ne saurait trop
répandre (*): letout est enrichi de sept Notes (eno pages)
trés-précieuses. La premiére renferme un beau travail
inédit de M. Serret, sur les courbes 4 double courbure, et
divers théorémes que nous devons a MM. Bertrand, Bon-
net, Puiseux. Les lignes géodésiques, les tracés dits géo-
graphiques et la construction des cordes vibrantes sont
traités avec cette lucidité qui caractérise le beau talent
du savant éditeur. Nous dounerons un extrait étendu de
cette importante production, véritable exposition de la

(*) On prépare une traduction qui paraitra dans les Nouvelles Annales.

13.
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haute indu%rie géométrique, ou chaque mathématicien,
AR -

digne de , voudra faire des acquisitions.
Nous- drons rien de nouveau & nos lecteurs en

faisant ressortir les soins, la correction , I'élégance typo-
graphique et graphique (*); mais on regrette qu’on n’ait
pas confié aux mémes presses le monument national élevé
a la gloire de Laplace. Puisse-t-on y avoir recours pour
Fermat, dont la réimpression, ordonnée législativement
en 1843, n’est pas encore commencée en. 1851.

On dit qu’on publiera les Notes sur Diophante sans le
texte ; c’est u J_""gmsquinerie. La grande nation doit tout
faire grandements Ainsi l'entendait Louis le Grand, que
je suis toujours tenté de saluer en passant sur la place des
Victoires, ne fiit-ce que pour avoir doté mon pays d’un
observatoire et, mieux encore,, d'un Cassini.

(O. TerQuEM.)

RECTIFICATION AU SUJET DU THEOREME TRIANGULAIRE DE
FONTAINE;

Par M. 1’amsé LECOINTE,

Professeur au séminaire de Vals.

Le théoréme triangulaire de Fontaine, tel qu’il se
trouve énoncé dans ces Nouvelles. Annales (tome V,
page 154, et tome VI, page 71), m’a semblé inexact;
aussi j'ai cru devoir en rectifier I'énoncé de la maniére
suivante :

Un point O, situé dans le plan d'un quadrilatére

~(*) M. Bailleul, prote de Yimprimerie de M. Bachelier, a obtenu la
Médaille d’Argent a YExposition de 1849; tous les géométres applaudiront
i cette honorable distinction, si bien méritée.
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ABCD, étant considéré comme le sommet.
triangles ayant pour bases les cotés et les d
quadrilatére, le produit des aires des triang
pour bases les diagonales est égal au produit des triangles
qui ont pour bases deux cotés opposés, plus le produit
des triangles qui ont pour bases les deux autres cotés, si
le point O est situé hors du quadrilatére, et si, en méme
temps, aucun des sommets du quadrilatére n’est situé
dans l'intérieur du triangle formé par ce point O et les
deux extrémités de 'une quelconque desdiagonales, ou
bien moins ce méme produit dans tous’ atres cas.

Du reste, I'inexactitude de ’énoncé de ce théoréme,
tel qu’il se trouve donné aux endroits déja cités de ces
Nouvelles Annales, peuat facilement étre mise en évi-
dence en supposant le point O situé hors du quadrilatére
et sur le prolongement de I'une des diagonales ; car, dans
ce cas, on devrait avoir

OAB < OCD -+ OBC >< OAD = OAC X< OBD,
et comme 'un des triangles OAC, OBD est nul, on aurait
OAB < OCD -+ 0BG <X OAD = o; '

ce qui ne peut étre. Donc, etc.

THEOREME SUR LA SURFACE D'ELASTICITE
Par M. STREBOR.

Etant donné un ellipsoide (A) ayant pour équation
x’ yz 22
aTEta=h
et une surface d’élasticité (B) ayant pour équation
(2 +y' + ) = bex® + acy® + ab2’,
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surface (A) qui est déterminée par unhyper-
ocal quelconque (H) (ou P'aire d’une ligne
B}, sera équivalente a la partie de la surface (B)
déterminéepar le coneasymptotiquede I’hyperboloide (H)

CALCUL DE = AVEC 208 DECIMALES.

Dans les Transactions philosophiques de 1841, M. Ru-
therford a donné la valeur de 7 avec 208 décimales; les
152 premiéres‘décimales sont les mémes que celles qui
ont été calculées par M. Dahse (voir tome IX, page 12),
mais les 56 derniéres décimales différent. V0101 ces 56 dé-

cimales , d’aprés M. Rutherford

48473 78139 20386 33830 21574 73996 00825 93125
gr2g94 01832 80651  744.

Le premier groupe 48473 correspond au groupe 48111
de M. Dahse; ainsi I’exactitude des 152 premiéres déci-
males est contrélée. :

Observation. — Nous devons ce renseignement a 1’o-

bligeance de M. Prouhet.

SOLUTION DE LA QUESTION 196

(voir t. VII, p. 448);
Par M. E. PROUHET.

L’énoncé doit étre rectifié et complété comme il suit :

S,. désignant la somme des puissances m*?™* des ter-
mes de la suite des nombres naturels de o 4 72, on aura,
si m estimpair et plus grand que 1,

Swz=ni(n 4+ 1P g[n (n 1)) = u g (u),
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en posant 71 (n + 1) =u, ct ¢ désignant upe fonction
entiére. . ( ‘

A quoi j'ajouterai que si m .est impair, on

=n(rn+1)(2rn+1)¢{rn(n+1) =u(2n +1) g (#). -

Démonstration. Le théoréme de M. Jacobi se vérifie
directement pour m =3, 5, 7 : il suffira donc de faire
voir que, s'il est vrai jusqu’a un certain nombre impair,
il le sera encore pour le nombre impair suivant.

Mais il nous faut auparavant établir une relation entre
les sommes dont Vindice est de méme pamw

On sait que pour une progression- nque, dont
a et I sont les termes_extrémes et & la ralson, on ala
formule

(P) C"hSp_y+C BSp_y ...+ C_ h™'S, + nhm= (I 4 h)" —

Silon change a, {, & respectivement en /, a, — £, ce
qui revient a prendre les termes de la progression dans un
autre ordre, S,, S, etc., conserveront la mémevaleur, et

-Pon aura

— C" h Sy + CHISp . . ECE_ RS, T b = (2 — )™ — U7
d’ot, en ajoutant cette formule a (P) et divisant par 2,

(a— hy"+ (l+h)"‘——a"‘——l",
2

(R) C:‘h'xsm—a -+ C’:h‘ Sm—‘ “+.. .=

ce qui est la relation cherchée.
Si maintenant on suppose m impair, a =1, h=1,
! = n, cette relation devient
(41— 1 —n"

Cism;2+clsm—i “+.. +C:__|S. = —

ou

(N) C:Snz+ CiSpei+...+C._ S =

m—3
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mn(n—+ 1
Lausecond membreleterme C”_ S, — mn(n+1)
74

me—1

K=(r+1"— 1 —nr"— mn(n+1).

On voit que K s’annule pour n = o et pour n = — 1,
et qu’il en est de méme de sa dérivée

m{n 41"~ — mp' — m(2n +1);

donc K est divisible par n* et par (2 + 1)*.
Maintenant de u = n (n -+ 1) on tire

=1 e LY v
n= 2+2\/.4u +1 et n+1_2+2\/4u’+1,

cequi réduitK a ,
1 I —\" 1 1 —\"
Y A —_—f | —— 2 2 — mu:
(2 2\4"'""‘ I 2+2\/4u+l mu;

et, comme m a été supposé impair, on voit que les radi-
caux disparaitront et que K se réduira a une fonction ra-
tionnelle et entiére de u.

L’égalité (N) pourra donc se mettre sous la forme

Cr Sps+CSp 4+ ..+ C_ Spy=w'F(u),

d’ou I'on tirera évidemment, pour S,,_s, une valeur de la
forme u® ¢ (u), si Sy, Ss. . ., S, sont de cette forme.

Le théoréme relatif au cas de m pair peut se démontrer
d'une maniére analogue, ou mieux encore au moyen de la
relation

l Slzp+\=(2p+ I)S3P7

conséquence de la formule (F’), donnée plus haut,
page 188, et du théoréme précédent, d’aprés lequel S, .,
ne peut évidemment renfermer de terme indépendant
de n.
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CONCOURS I’AGREGATION AUX LYCEES, Am £851
' Par M. DIEU,

Agrégé, docteur és sciences.

COMPOSITION D’ANALYSE.

Déterminer la courbe dont un arc de longueur layant
ses extrémités sur deux droites données, paralléles a
Uaxe des x, soit tel, que le trapéze limité par cet arc,
les ordonnées de ses extrémités et l’axe des x, engendre
un volume maximum en tournant autour de cet axe.
 Démontrer ‘que cette courbe peut étre décrite par le
centre d’une hyperbole équilatére qui roulerait sans
glisser sur ’axe des x.

Nous désignerons par M, M’ les droites données, et
par A, B les extrémités de I’arc cherché.

Soient, en outre,

Xy, X les abscisses inconnues de A, B;
¥1, ¥2 les ordonnées connues de ces points;
s la longueur de I'arc de la courbe pris a partir
d’un point situé au dela de A par rapport a
B, et s'étendant dans le sens de A vers B
jusqu’au point (x, y).

x, peut &tre prise arbitrairement, et nous supposerons
Xy > X1y Ys >t

Le volume dont il s’agit est représenté, d’aprés cela,

par
I,
nf yldx,
T,
et ’on doit avoir

(1) flw’ds=‘l;

r
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ainsi (régle d'Euler) la question revient a la détermi-
nation ée la courbe qui satisfait aux conditions relatives
aux points A, B, et pour laquelle I'intégrale

(1) fr’(y’dx—ltls)

1

est un maximum, A étant une constante qui dépend de
P’équation ().
On a

dz dy
0ds = —.d =, ,
's A Jx—{—ds ddy .

*s dx dz % dz
A Z dédz = ( .d.z)z’—ﬁ dx.d, <d5>7

L“‘yday_—f IRAE AT

car d.xy, dy, et dy, sont nuls; donc la variation de l'in-
tégrale (1) est représentée par

=5+,
S Y7 R B R

Pour que cette variation soit nulle, ce qui est la condi-
tion commune aux maxima et minima de I'intégrale (1),
il faut que

(2) fi—l(a—lf) =o,

d dz\
(3) Q’I{c"”)’ <~a—"‘>=o;

et

(*) Le mode de calcul employé ici a avantage de laisser le choix entre
deux équations, dont V'une est immédiatement intégrable.
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et cela suffit, car 'équation (3), qui est immédiatement
intégrable, ne différe pas essentiellement de celle qu'on
formerait en égalant aussi 4 zéro le coefficient de Jy.

L’intégrale de ’équation (3) est
dx
2 ) —_— = C .
Y s H

mais il faut faire C=o, afin que cette intégrale soit,
d’aprés I'équation (2), vérifiée par les valeurs de y et de

dz . .
7o relatives au point B; on a donc seulement
§ .

@) r— %o

En remplacant dans cette é : ation = ar
plag qu 2 P

. s dy
uis résolvant par rapport a —, on trouve
P p PP dz’

5) : d—y:—'i—-—‘/)"_y‘-
dz 7y?

Les courbes qui satisfont a I’équation (5) sont de I'es-
péce de celles qu’'on nomme courbes élastiques ou lin-
téaires (*).

Il est facile d’en reconnaitre la forme générale qui ne
dépend pas de la valeur de 1, car on aurait évidemment
des courbes semblables entre elles si I'on donnait diffé-
rentes valeurs & cette constante, que I'on peut d’ailleurs
regarder comme positive.

On voit d’abord que, pour ne pas créer de solution de
continuité, on doit alternativement prendre + et — au
second membre de I'équation (5), en changeant de signe

. d
lorsque y passe par une valeur qui rend j—: nulle.

(*) Théorie des fonctions, etc., par M. Cournot, livre V, page 144;
Cours d’analysc, par M. Duhamel, 2° partie, page 258.
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x allant en croissant, si I'on prend premiérement le
signe +§ y doit croitre depuis zéro jusqu'a v, car %est
positive; la courbe a donc un arc tel que CD, touché en
C par une perpendiculaire,, en D par une paralléle 4 I'axe

d
des xr, et concave vers cet axe, car EZ est co pour y = o,
: g

nulle pour y = V1, et diminue constamment de l'un i
Pautre. Le point D est un point maximum, car on doit

. R d . . .
prendre le signe — au dela, et jg change ainsi de signe.

Avec le signe —, y doit décroitre de /A 4 zéro, et I'on a
Parc DC,, qui est symétrique de DC par rapport a 'or-
P . d . .
donnée DP, puisque IJ; a des valeurs égales et de signes

contraires , sur ces deux arcs, pour la méme valeur de y.
En continuant de prendre — jusqu’a ce que y = — y/1,
puis en prenant + jusqu’a y = o, on a au-dessous de
I'axe des x, I'arc C, D, C, = CDC,.

Enfin, la courbe se compose d’'une infinité de parties
telles que CDC, D, C;, se raccordant avec celle-14 et entre
elles, comme DC, se raccorde au point C, avec C,D,.

Y

Si 'on changeait de signe dans I’équation (5), non-
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seulement quand y passe par une des valeurs 4 \/i ou
— A, mais encore quand y passe par zéro, la courbe
qu’on aurait différerait de celle que nous venons de dé-
crire, en ce que les parties placées comme C, D, C, sc
trouveraient du c6té des y positives; elle présenterait donc
des rebroussements, au lieu d'inflexions, en C, C,, etc.,
et offrirait de l'analogie avec la cycloide au lieu d’en
offrir avec la sinusoide (¥).

Les points d'inflexion C, C,, etc., de la courbe
CDC,D, ,... sont des centres de cette courbe.

On peut remarquer encore que le rayon de courbure

est inversement proportionnel & Pordonnée. En effet,
I'équation (5) donne

D dy\ _ __ 2\ .
7\ dx _—+}’3\/X2—-)’"
et, par conséquent,

dy _dy dy
vy, (%

2\
dx* ~ dzx dx

7

donc, comme ——=—, ona
dx y

C(BY b,
dz) “dx* 2y

11 faut chercher maintenant a déterminer A. Cette con-

(*) Toutes les fois que ’on connait la tangente trigonométrique de
Vangle que la tangente a une courbe fait avec un des axes, en fonction de
la coordonnée qui se compte sur cet axe ou méme d’une autre variable, la
discussion de la courbe ne présente pas de difficulté réelle. La discussion
des courbes du second degré suggére aux commencants Vidée qu’il faut
avoir y en fonction de x pour pouvoir reconnaitre la plupart des pro-
priétés d’une courbe, et cette idée se maintient longtemps ; si 'on disait,

dans les cours, quelque chose des courbes du troisieme degré, il n’en
serait pas ainsi.

(**) Voir 1a Note 1.
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stante pouvant étre regardée comme positive, nous ferons
A= a’
En élevant au carré les deux membres deI'équation (4),
remplagant  par ®, (22) par 1 — Y, et résolvant
emplag para’, {7=) P ’ 0

ds
par rapport a ds, on obtient

ds = =+ atdy
,_ - ‘/ai '—]"’
que 'on rameéne a
dsz‘_tl--;/—i{_u—_—’
1T—u
en posant ’
¥y =oau.

D’aprés cela, I'équation (1) devient

. ‘' du {" du

6 a —_ —_ \ =,
( ) l,| Vi—ut Iy, \/r—u‘

3 «

le signe supérieur devant la seconde intégrale se rappor-
tant aux cas dans lesquels I'arc AB coupe M’ entre A et B,
et le signe inférieur aux autres.

On voit immédiatement, quand on prend le signe +
devant la seconde intégrale, que I'on ne peut avoir plus
d'une valeur de «; car les deux intégrales croissent avec a.
11 n’est pas aussi facile de constater le méme fait, quand
on prend le signe —; cependant si I’équation fournissait,
avec ce signe, plusieurs valeurs de « plus grandes que y,,
on devrait avoir pour toutes ces valeurs

4
[l_(fz—)'t)]—"l%(y: -'715 (':?)
I

-y (ri—=17) (5‘)8—--~~=0,
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par le développement des intégrales en séries conver-
gentes. Or cela est impossible; car on tombe sur une
équation -algébrique en (;‘>‘7 A une seule racine positive,
quel que soit le rang du terme auquel on s’arréte. Donc
I'équation” (6) ne donnera pas, en prenant — devant la
seconde intégrale, plus d'une valeur de o supérieurc
a ye. .

On peut supposer que le point B varie sur M’ entre
deux positions extrémes, telles que, pour chaque position
intermédiaire, il y ait une courbe de longueur /, dont
I’équation se déduirait de I'équation (5) par le change-
ment de y* en y*—C, et pour laquelle le volume engen-
dré par le trapéze serait un maximum. Or, on demande
le maximum de ces maxima, qu’il est permis de con-
sidérer comme les valeurs successives d'une fonction
de x,. : )

Le calcul ne doit pas conduire plutdt 4 un maximum
qu'a un minimum. Mais la fonction de x, dont il s'agit
est évidemment tres-petite lorsque x, différe trés-peu
de x,, ce qui est possible; et, par conséquent, elle doit
commencer par croitre. Donc, si I'équation (6) ne fournit
qu’une valeur de « plus grande que y,, celle du volume qui
y répondra sera un maximum. Et si cette équation fournit
deux valeurs de a qui satisfassent 4 la condition « > y,,
I'une donnera un maximum, et 'autre un minimum.

Soit v le volume; on a, d’aprés I'équation (5),

% 4 X3 '
v=m f 2 i/ ra N,
N =7 T, Ve =y

[%

le méme signe devant étre pris devant la scconde inté-
grale que dans I'équation (6). :
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On trouve facilement que

]‘d)’ — ~/m JA+ f .
Vai—gt

et en posant
y=uacosg,
ona
dy T dy .
Ve—r  aya f Yi—tsin'y’
donc, il vient

yove —yi =y, ot — i

_ f°__di_._+ ° ds \}
Va\ o Vi—tsimg ), Vi—ising

s . .. . . J
¢1 et ¢, désignant les plus petits arcs positifs qui aient

et )’ pour cosinus.

wl A

Jnﬁn cette équation prend la forme

yivat —yl £y, Va—y]

e ot ol

par la notation des fonctions elliptiques (*).

Lorsque « aura deux valeurs, la plus grande valeur de ¢
sera le maximum, et I'autre sera le minimum (*¥).

Afin de démontrer le théoréme qui forme la seconde
partie de la question , nous chercherons I'équation de la

(*) On trouvera dans le Traité de M. Cournot, au chapitre déja cité, les
expressions de x et de s en fonction de ¢.

(**) Un maximum d’une fonction peut étre inférieur a2 un minimum ;
mais cela n’arrive que s’il y a entre eux un minimum et un maximum.
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courbe décrite par le centre d’'une hyperbole éqﬁilatére
roulant sur 'axe des .

Soient :
2a la longueur de ses axes;
F,F et U ses foyers et son centre, lorsqu’elle touche

Oxen M;

YY1, les ordonnées de F, F/, U; et
MF =r et UMO=2§.

On a
(1) y+r =2y,
+ pubque U est le milieu de FF’;
(2) yy'=—a,
par une propriété connue de I'hyperbole ;
s i

par les triangles semblables PFM et P'F'M ;

Y

H’

Ann. de Mathémat., t. X. (Juin 1851.) 14
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et le triangle FMF' fournit, d’aprés le théoréme sur
les médianes,

r4(r—2a)P= 2_1\?-U2+ 2_1717‘,,

d’our I'on tire

\ . _
(4) ‘ r(r—2a)= Snp’
en observant que UF = a\/;, et que le triangle MUP
donne

MU ==+ —Z—‘-—
sin 8

[ 4
En multipliant membre 4 membre les équations (2)
et (3), on obtient

. a'r
yi=

3
r—oa

et I'élimination de y’ entre les équations (1) et (3) con-
duit a

=

- a

En remplagant y par cette valeur dans I’équation pré-
cédente, on trouve

a‘
(5) r(r—za)_..y—:,
et les équations (4) et (5) donnent
rno_a =
sin'f 3’
de laquelle on tire
sinf === (Z>’,
a

suppression faite de I'indice de y.
Lorsqu’une courbe est décrite de la maniére indiquée,
la droite qui joint une position quelconque du point géné-

5%
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rateur a celui on la courbe roulante touche la ligne fixe
est toujours normale a la premiére courbe (*); donc, si
U'on représente par x I'abscisse du point U, dont 'ordon-
née est maintenant désignée par y, et par s I'arc du lien
gébmétrique du centre de 'hyperbole compris entre un
point quelconque de ce lien géoméirique et le point
(z, y), ona
Z—:_—-: = sinp
Cette équation et la précédente donnent enfin pour la
courbe décrite par le centre de 'hyperbole, I'équation
@ _ 4 (Z) ,
ds a
qui ne différe de I'équation (4) de la premiére partie que
par le changement de X en ==a?; et cela démontre suffi-
samment le théoréme en guestion.

L’hyperbole équilatére pour laquelle @ = DP ( fig. 1),
ayant son centre en C sur Ox, et étant placée de maniére
que I'asymptote de la branche SH coincide avec cet axe; &
mesure que, par le mouvement de cette courbe, le point
de contact se rapprochera de P, le centre U s’élévera au-
dessus de Ox, et il en sera a la distance maxima DP,
lorsque 'hyperbole touchera Ox en P par son sommet S
(ainsi CP est la différence entre 'asymptote CX et SH);
le mouvement¥ontinuant dans le méme sens, ’hyperbole
touchera swecessivement Ox on son prolongement par
tous les points de la branche SK, et le centre U aura
décrit I'arc DC, lorsque I'asymptote de SK sera venue se
placer sur Ox. Le sens du mouvement changeant alors,
la partie K'S'H' de I'hyperbole touchera successivement

(*) Voir 1a Note IL
4.
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O par tous ses points de K’ vers H’, et le centre U dé-
crira au-dessous de I'axe des x I'arc C,D,C,, etc., etc.

Note 1. On trouve I'équation différentielle des courbes
élastiques, en cherchant la courbe dont le rayon de cour-
bure est inversement proportionnel 4 ordonnée; ainsi ,
cette propriété est caractéristique.

En effet, on peut prendre

[T ..

d*x 2y
dy?

. \ a .
pour 'équation de ce probléme, 7—. étant une ligne don-
2

née au carré de laquelle le rectangle du rayon et de 1'or-
donnée doit étre constamment équivalent.

dx [ . .
Si I'on pose = x/, cette équation devient

dx' _+zydf,
(14 2'?) o

e

etl'on a, en intégrant de part et d’autre,

xl

==L —f
Vi+a? a*

B étant une arbitraire. _‘
Enfin, en résolvant cette derniére équation par rap-

\ dr
port a .1:':;1;, ona

= _ 4 _r—F

dy o — (" — By
Note II. Soient AA' une courbe tracée dans un plan,
BB’ une courbe donnée qui roule sans glisser dans ce plan
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sur AA', ¢t M un point qui suive le mouvement de BB de
maniére que ses distances # deux points déterminés de
cette courbe ne varient pas.

Supposons qu'on ait marqué sur AA’ des points
@y, Gy, .., a,, et sur BB’ les points b,, b,,..., b, qui
viendront successivement coincider avec ceux-la; puis,
que des points (@) comme centres, avec des rayons égaux
abM, 5M,..., 5,M, on ait décrit des circonférences.
Ces circonférences formeront un polygone curviligne,
dont le contour sera nécessairement coupé en des points
my, ms,..., m, par le lieu géométrique de M. Si I'on
prend sur AA’ de nouveaux points entre a; et a,, a, et
aq', etc., en conservant ceux-ci, on aura de méme un
second polygone avec des points intermédiaires entre les
points (), et ainsi de suite.

Or la limite de ces polygones est évidemment un arc
mym, de la courbe décrite par le point M, et les lignes
telles que a;m,, a;m,, etc., sont toutes normales aux
cotés correspondants de ces polygones; donc ces lignes.
sont ausst normales & [’arc mym,.

QUESTION ANALOGUE A CELLE DU CONCOURS.

« Déterminer la courbe passant par deux points
» donnés, dont Uarc compris entre ces points engendre
» une surface minimum en tournant autour de l’axe
v des x, tandis que le trapéze curviligne limité par cet
» arc, les ordonnées de ses extrémités, et l’axe des x,
» engendre un volume donné.

» Démontrer que cette courbe peut étre éngendrée par
» le foyer d’une ellipse ou d’une hyperbole qui roule- .

» rait sans glisser sur l'axe des x.»

AN
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DISCOURS

Prononcé lors de la reprise du Cours de Calcal des Probabxhlcs,
4 la Faculté des Sciences , le 26 avril 1851;

Pas M. LAME,

Membre de Vinstitut.

Messieurs, a I'ouverture de chacune des parties de ce
cours, j'ai pris I'habitude de traiter quelque guestion
relative aux sciences exactes, a leur enseignement, ou a
leurs applications. D’abord, comme les savants qui ont
créé le calcul des probabilités , comme les auteurs qui en
ont traité, j’ai dit, dans un discours préliminaire, dire
ce qu’était cette science, ce qu’elle pouvait, jusqu’on s'é-
tendait son domaine; afin de justifier son droit de cité,
et pour combattre une sorte de défaveur, tenant princi-
palement aux difficultés de son analyse, mais aussi a ses
hardiesses, et A ses solutions prématurées.

Depuis, je crois étre parvenu a simplifier letude des
probabilités, de maniére a la rendre facilement abordable,
sur tous les points, dans toutes les questions relatives a
d’importantes applications. En outre, j'ai'le bonheur de
compter parmi mes amis, un savant { M. Bienaymé) qui
aujourd’hui représente presque seul, en France, parmi
les géometres , la théorie des probabilités, qu'il a cultivée

“avec une sorte de passion, dont il a successivement attaqué
et détruit les erreurs; je dois a ses conseils d’avoir bien
compris la véritable portée de la science que j’enseigne,
et quelles limites elle ne peut franchir sans s’égarer.

Maintenant que la défaveur n’a plus aucune raison.
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d’exister, sa disparition compléte n’est plus que 'affaire
du temps. Mon discours préliminaire n’y aiderait que
fort peu; je pourrais donc m'en dispenser, et, comme on
dit, entrer de suite en mati¢re. Mais, a cette défaveur
particuliére, parait s’en joindre une abtre, plus mena-
cante, beaucoup plus étendue, et qui embrasserait toutes
les mathématiques. Aujourd’hui, sous le prétexte de quel-
ques réformes, peut-étre nécessaires, dans l'enseigne-
ment des sciences exactes, on s'attaque aux théories et
aux savants ; on les déprécie, on les repousse, on restreint
de plus en plus 'espace qu'ils occupent, pour faire une
plus large place aux applications et aux praticiens. Si cet
envahissement systématiquecontinue, la véritable science,
et ceux qui s'en occupent exclusivement , ne tarderont pas
a disparaitre. Une telle révolution dans P’enseignement
sera-t-elle un progrés, ou une décadence? Je n’ai pu ré-
sister au désir d’aborder encore une fois cette question,
de I'envisager aujourd’hui sur toutes ses faces, de jeter
enfin une sorte de cri, dans I'espoir de conjurer un dan-
gereux orage. Tel est le sujet que je me propose de traiter
dans ce discours préliminaire. Que ne puis-je lui donner
une force capable d’agréter la destruction!

D’abord, il me sera facile, sans entrer dans trop de
détails historiques , de faire ressortir cette vérité, que les
mathématiques doivent les immenses progrés qu’elles ont
faits, depuis deux siécles, 4 I'idée de les appliquer; c’est-
a-dire que leur utilité, plus ou moins immédiate, a tou-
jours dicté ces progrés.- Remontez & leurs découvertes
principales, elles n’apparaissent d’abord que comme des
spéculations philosophiques; mais elles sont suivies, de
trés-prés , par des applications importantes qui viennent
doubler leur valeur. Et I'on ne saurait trop admirer
~ cette logique cachée, et en quelque sorte instinctive, de
I'esprit humain, qui, d’abord découvre et perfectionne
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I'instrument , puis entreprend hardiment, et 3 coup sur,
le travail utile pour lequel cet instrument était mdls—
pensable. C e

A peine Descartes et Pascal , Fermat et Leibnitz, ont-
ils jeté les fondements de I’ analyse appliquée, et du calcul
infinitésimal, que Newton découvre le principe de la
pesanteur universelle, et explique les lois qui régissent
les mouvements des astres. Pour déduire toutes les con-
séquences de cette découverte, il a fallu un siécle de pré-
paration : I'infatigable Euler, les Bernoulli,, d’Alembert,
dévoilent successivement toutes les ressources de I'analyse
mathématique, et créent la mécanique rationnelle. La-
grange vient compléter, coordonner, simplifier toutes ces
acquisitions de la science, et les réduire i un petit nombre
de principes. Enfin ses travaux, ceux de Laplace surtout,
de Legendre, Poisson, Ivory, de MM. Gauss, Poinsot,
Binet, etc., achévent cette premiére application des
‘sciences exactes, et ne laissent plus qu’a glaner dans le
champ de la mécanique céleste.

Mais une autre application, plus importante peut-
étre, plus difficile certainement, se prépare depuis long-
temps; c’est celle qui concerne I'egplication de tous les
phénoménes physiques, spontanés sur la terre, ou que
nous pouvons y faire naitre. De ce €6té, la science marche
vers de nouveaux principes, analogues 4 celui découvert
par Newton; et tandis que de nombreux expérimentateurs
recueillent, sur tous les phénoménes physiques, des lois
semblables aux lois de Képler, mais infiniment plus nom-
breuses et plus compliquées, les géométres modifient et
perfectionnent I’analyse mathématique, afin qu’elle puisse
aborder ces lois, pour les calculer, les mesurer, les pré-
voir, les réduire 4 un moindre nombre; et, s’il est pos-
sible, & une loi unique, qui servira de base & une vaste
théorie, a une sorte de Mécanique terrestre, dont la Mé-.
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canique céleste elle-méme ne sera qu'un chapitre patti-
culier. Cette ceuvre immense ‘est i peine commencée;
mais la réalité incontestable de ses premiers progrés ne
permet pas de douter qu’elle ne s’accomplisse un jour, si
des réformes exagérées, et intempestives, ne viennent pas
éteindre le zéle des travailleurs, et anéantu' jusqu’au
souvenir de leurs découvertes.

Il me suffira de résumer succinctement ce que les géo-
métres ont fait depuis cinquante ans, pour justifier plei-
nement cette assertion. Mais d’abord, rappelons les éton- _
nants progrés des sciences physiques, pendant la ' méme
période de temps. La chimie, dégagée de ses langes par
la découverte de Lavoisier, est rapidement élevée au rang
des sciences les plus fécondes, par les travaux de Ber-
tholet, Chaptal, Gay-Lussac surtout, Dawy, Berzelius,
Dulong, Ampére , de MM. Thenard, Chevreul , Dumas,
Pelouze, Regnault, Balard, et tant d’autres. La physique
proprement dite, dont I'origine, comme science, remonte
a peine au dela de Newton, n’avait fait que des pas lents
et clair-semés; a I'époque de la découverte de Volta, qui
date de 1800, elle prend son essor, et ses découvertes se
multiplient rapidement. Malus, Wollaston, ‘Fresnel,
MM. Arago, Biot, Brewster, Babinet , découvrent sur la
lumiére de nouveaux faits, et des lois nouvelles. Gay-
Lussac, Saussure, Dalton, Dulong et Petit, plus tard
MM. Melleni, Pouillet, Despretz, M. Regnault et son
école, font le méme travail sur la théorie physique de la
chaleur. La découverte d’'OErstedt, sa liaison avec celle
du magnétisme en mouvement, les travaux antérieurs de
Dawy, ceux plus récents d’Ampére, de MM. Becquerel,
de la Rive, Faraday, Pouillet, etc., font marcher & pas
de géant la théorie physique de l'électricité. A cette
science si nouvelle, et d'une fécondité sans exemple, se
rattachent, par mille liens, les autres parties de la phy~
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sique, la chimie, et méme les phénoménes de la vie or-
ganique, qu’elle semble convier i venir lui demander leur
cause, leur raison d’étre.

. La minéralogie, qui ne consistait d’abord que dans une
simple classification factice, devient, aprés la découverte
d’Haiiy, une sorte de science rationnelle, fondée sur les
propriétés géométriques, physiques et chimiques des
substances minérales , cristallisées ou amorphes. Par ses
lois naturelles, elle exerce une puissante réaction sur la
chimie, et sur toutes les parties de la physique, comme

*le témoignent les travaux de Beudant, de MM. Mitscher-
lich, Dufrénoy, Senarmont , Ebelmen, Delafosse, Pas-
teur, etc. La géologie, qui se bornait a classer les roches,
et arecueillir les indices que les différents terrains peuvent
offrir, pour signaler la présence des minéraux utiles, de-
vient une science de premier ordre, par les travaux de
M. Elie de Beaumont sur 1'dge relatif des révolutions du
globe, par ceux de Brochant, Brongniart, de MM. de
Buch, Cordier, Dufrénoy, Constant Prevost, etc. Enfin
tous ces divers chapitres de l'histoire physique de notre
globe, joints a la météorologie, et aux faits du magnétisme
terrestre, sont coordonnés par les travaux de MM. de
Humboldt, Arago, Duperrey, Kaémtz, etc.

En présence de cette abondante moisson de faits nou-
veaux, les géomeétres ne pouvaient rester inactifs. Habi-
tués a déduire rapidement les conséquences d’un principe
ou d’une loi posée, ils aident d’abord puissamment aux

" travaux des expérimentateurs, les excitent, et les pré-
voient : plus d’une découverte physique n’a été que la vé-
rification d’une de leurs prévisions. Puis ils cherchent a
poser les fondements d'une théorie mathématique des
nouveaux phénoménes. Ainsi font Malus, Ampére, ou
les inventeurs eux-mémes ; et surtout Fresnel, qui, par
sa théorie de la double réfraction et tous ses autres tra-
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vaux, doit étre regardé comme le véritable fondateurde
la physique mathématique. -

Laplace étudie et explique les phénoménes capnllaxres.
A son exemple, d’autres géométres, se bornant a I'étude
d’une classe trés-particuliérede phénoménes, parviennent
& en donner la théorie mathématique, et éléventainsi quel-
ques jalons d’'une analyse rigoureuse sur le vaste domaine
de la physique. Ainsi font Savary, M. Liouville, pour
"électrodynamique; Poisson, MM. Cauchy, Dubamel,
pour l'acoustique ; M. Bravais, pout les phénoménes op-~
tiques de 1'atmosphére; et encore M. Cauchy, qui parait
étre sur la voie d’une théorie mathématique compléte de
la Jumiére; si bien préparée par les travaux de Fresnel,
Hamilton, Mac-Culagh, Newmann, et d’autres savants..
Mais arrivons aux travaux qui constituent plus particu-
liérement la science générale, et toute moderne, appelée
physique mathématique.

Fourier, et encore Laplace, puis Poisson, et d’autres.
géométres, créent la théorie analytique de la chaleur, qui.
peut étre regardée comme formant le premier livre de la
Mécanique terrestre; la simplicité des phénoménes dont
cette théorie assigne les lois, permettant d’essayer sur
elle, et d'y facenner en quelque sorte les procédés de
I'analyse, avant de les étendre & des théories plys com-~
plexes, et plus immédiatement applicables. Les travaux

. des mémes géométres, sur les lois qui régissent les tem-
pératures du globe terrestre,, prouvent d’ailleurs I'utilité
directe de cette premiére théoric géuérale. '

. Enfin, Navier, puis Poisson, M. Cauchy et d’autres.
savants, créent la théorie mathématique de D'élasticité.
des solides. 1ls font voir que l'explication compléte des.
phénoménes qui en dépendent n’est maintenant arrétée
que par des difficultés d'intégration. Comme exemples ,.
ils vérifient la plupart des découvertes de Savart sur les.
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vibratiéns des corps sonores, et donnent plusieurs foi-
mules de correction indispensables. Je dirai plus tard
tout ce que cette seconde théorie générale recéle dans son

.

sein. .

De ces deux premiéres théories, et d'autres encore,
résulte, pour toutes, une marche uniforme, que I'on
peut résumer ainsi : la théorie mathématique d’une classe
de phénomeénes a pour base, un ou deux principes, un ou
deux faits empruntés a 'expérience, et que 'on considére
comme des axiomes; Ppar eux, et & I'aide du calcul infi-
nitésimal, on parvient & représenter ’ensemble - de ces
phénoménes par des équations différentielles, ‘on plutdt
aux différences partielles; I’étude de ces équations donne
déja une grande partie des lois que I'on cherche; enfin
leur intégration, plus ou moins avancée, faite d’aprés
des circonstances données, peut seule embrasser toutes
ces lois. Cette marche était indiquée par le chapitre de
Pattraction des sphéroides, lequel n’est au fond que la
théorie mathématique d’une certaine classe de phéno-
ménes, la premiére qui ait atteint une perfection relative.

Ce premier résultat important sur I'ordre des travaux
i entreprendre , pour atteindre le but désiré, prouve que
les progrés de la physique mathématique sont subor-
donnés 3 ceux du calcul intégral, et particuliérement a
ceux de l'intégration des équations aux différentielles
partielles. L’état dans lequel la Mécanique céleste a laissé -
ces instruments d’analyse, exigeait de nouveaux perfec-
tionnements. 1l fallait surtout étudier de plus prés les pro-
priétés des surfaces en général, considérées comme li~
mites des intégrations, ou comme celles des corps sur
lesquels on se propose d’étudier les phénoménes physi-
ques. A cet appel de la science répondent une multitude
de travaux sur I'analyse appliquée a la géométrie, depuis
ceux de Monge et Hachette, jusqu’a ceux de MM. Gauss,



( 221 )

Ch. Dupin, Poncelet, Brianchon, Chasles, valn
Liouville, et autres:..

En outre, les fonctions exponenuelles et circnlaires
étaient insuffisantes; il fallait étendre la méthode des
quadratures, l'enrichir de nouvelles fonctions, en étu-
diant avec soin leurs propriétés. Tel a été le but des-tra-
vaux de Legendre, et des admirables découvertes d’Abel et
de Jacobi, sur les transcendantes , elliptiques ou autres;
découvertes dont ’extréme importance est successivement
dévoilée par de nombreux commentateurs, et qui font
plus que doubler la puissance de 'analyse mathématique.

Ce n’est pas tout. La mécanique rationnelle n’avait été
inventée et fagonnée que pour résoudre les questions de
la mécanique céleste; il fallait appliquer ses principes
généraux, surtout celui des vitesses virtuelles et celui des
forces vives, aux mouvements qui ont lieu a la surface
de la terre; en déduire la théorie des machines, celle des
moteurs, les perfectionnements qu’exige I'emploi de ces
instruments, et de ces agents industriels. Les travaux des
deux Carnot, de Prony, Poisson, Ampére, Navier, Co-
riolis, de MM. Poinsot, Ch. Dupin, Poncelet, Reech,
ont successivement levé les principales difficultés de cette
application nouvelle.

Ce résumé, si rapide et si plein, de tout ce que les
géométres modernes ont entrepris, pour hater les progrés
des sciences d’application, est encore fort incomplet. Je
n’ai pas cité d'importants travaux., sur la théorie des
nombres, par Lagrange, MM. Gauss , Poinsot, Dirichlet,
Lebesgue ; sur 'analyse pure, par MM. Cauchy, Jacobi,
Sturm, Liouville, Binet, Blanchet ; sur le calcul des pro-
babilités, par Laplace, Poisson, M. Bienaymé; travaux
dont P'utilité serait facilement constatée, soit par les ap-
plications directes qu’elles ont fait naitre, soit par leur.
influence, parleur réaction sur les autres branches des.
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mathématiques. En outre, je n’at pas nommé sous les sa-
vants, ni les plus jeunes et les plus actifs, lesquels ont
pris une large part a cette ceuvre si étendue, et dont les
recherches s’enchevétrent, se croisent, naissent les unes
des autres. J'ai cru pouvoir les passer sous silence, et
m’effacer moi-méme, dans oette description sommaire.

N’est-il pas de la derniére évidence que, durant le demi-
siécle qui vient de s'écouler, les sciences exactes ont réel -
lement fait,, en vue méme des applications , beaucoup plus
de progrés que dans tous les siécles précédents? Si ’on ob-
jectait que les savants de nos jours , a qui la gloire en re-
vient, ne paraissent pas cependant, étant vus de prés,
pouvoir étre comparés aunx illustres géomeétres qui les ont
précédés, nous répondrions que la plus grande importance
des résultats obtenus s’explique tout naturellement, et par
le plus grand nombre des travailleurs modernes, et par
les ressources qu’ils ont puisées dans I’héritage méme du
siécle dernier.

Tout indique que cette ardeur scientifique, loin de se
ralentir, va au contraire en s’accélérant; les annales de
la science inscrivent fréquemment les noms de nouveaux
géométres que signalent la France, I’ Allemagne, et méme
I’Angleterre, ol les mathématiques étaient peu cultivées
depuis I'époque newtonienne, et qui se réveille enfin d’'un
long assoupissement. Et c’est lorsque le travail est si bien
préparé, lorsque tant d’efforts s’y concentrent, c’est ce mo-
ment que Yon semble choisir pour arréter le mouvement
scientifique en France, par des réformes, au moins inop-~
portunes. ‘ :

‘Mais a coté, et parallelement i la phalange des géo-
métres théoriciens, qui parait destinée & poursuivre le
grand ceuvre de la Mécanique terrestre, s’en meut une
autre, plus nombreuse, plus impatiente, moins disci-
plinée, celle des géométres praticiens. Entéte, se trouvent
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les savants qui appliquent les formules trouvées a ’astro~
nomie, construisent les Tables des mouvements plané-
taires, déduisent, de longs calculs numériques, le retour
des cométes, I'instant de leur passage au périhélie, Pexis-
tence et les éléments de nouvelles planétes perturbatrices,
et qui, comme Clairaut, Delambre, Bessel, Savary et
M. Le Verrier, vérifient les dernié¢res conséquences du
principe de la pesanteur universelle. Puis viennent les sa-
vantsqui utilisent les Tablesde statistique, pouren déduire,
a I'aide des formules fournies par le calcul des probabi-
lités , le mouvement de la population, le taux des rentes
viagéres, celui des assurances de toute espéce. Enfin se.
présentent les ingénieurs, qui appliquent la mécanique
rationnelle 4 I'étude de leur art; qui s’efforcent de dé-
duire, du principe des forces vives, le calcul complet de
Peffet des machines, du travail des moteurs, de la résis-
tance des matériaiix, et qui, ne trouvant pas les sciences
théoriques assez avancées pour résoudre complétement
toutes ces questions, comblent les lacunes par des. pro-
cédés approximatifs , pouvant suffire actuellement : tel est,
en effet, le but d’'une multitude de travaux de MM. Pon-
celet, Piobert, Morin, Combes, et de presque tous nos
ingénieurs.

Ce partage des géometres , en théoriciens et praticiens,
n’établit aucun paralléle défavorable & 'une ou i I'autre
des deux classes. Les fonctions sont seules essentiellement
différentes. Ces fouctions sont éminemment utiles, cha-
cune de son coté, pas plus I'une que I'autre; et dans cette
division du travail général, il importe que la concerde
régne dans les deux camps, afin que leur puissance d’ac-
tion ait tout son effet. Il arrive souvent d’ailleurs qu'un.
méme savant cumule les deux fonctions, an grand avan-
tage de la théorie et de I'application. Je citerai comme
exemples : M. Delaunay, théoricien par ses recherches d’a-
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nalyse, de géométrie et de mécanique, praticien par ses
travaux sur les Tables lunaires et sur les marées; M. Bien-
aymé , théoricien par ses recherches sur le caleul des pro-
babilités, et praticien par ses travaux sur les Tables de
mortalité et sur d’autres applications; enfin M. Poncelet,
théoricien par ses belles recherches sur la géométrie et la
mécanique rationnelle, praticien par ses calculs sur les
machines et les moteurs. :

Mais, en dépit de tant de liens et malgré toutes les ap-
parences d’une entente parfaite, c’est dans le camp des
géomeétres praticiens purs que.s’est.propagée une fausse
appréciation de l'utilité des sciences exactes. Erreur,
illusion dangereuse; car si elle parvient & diriger I’ensei-
gnement, la décadence est imminente. Les ingénieurs,
habitués a de pénibles travaux d’application, voyant clai-
rement les imperfections de la théorie, ne pouvant y re-
médier a l'aide d’une analyse. rigoureuse, ont essayé d'y
suppléer par d’autres recherches ; ils ont créé une sorte de
physique mathématique factice, s’appuyant sur des for-
mules empiriques, c'est-a-dire déduites de ’expérience,
et qui peuvent étre employées, sans de graves erreurs,
entre certaines limites.

Reconnaissons-le, ce travail préliminaire était utile,
indispensable. L’industrie humaine ne peut régler son
pas sur la marche mesurée et prudente de la science. Son
impatience I'en éloigne ; elle se contente d’a peu prés. Si
elle a besoin de certains nombres , il faut les lui calculer,
exacts ou approchés, rigoureux ou erronés, peu lui im-
porte. Elle court 4 de nouvelles conquétes, sans s’'embar-
rasser de ce qu’elle laisse d’imparfait derriére elle. La vé-
ritable - science arrivera la, plus tard, pour corriger,
consolider, perfectionner. Mais , ne 'oublions pas, il faut
-que la science suive, et d’assez prés pour étre entendue,
pour avertir quand on fait fausse route. Si vous étouffez
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sa voix, si vous méprisez ses travaux, wous marchez a
I’aventure; vous vous perdrez infailliblement.

Souvent, 'homme absorbé par un travail long et fati-
gant, auquel il a consacré sa vie active ou intellectuelle,
finit par mal juger tout ce qui ne rentre pas dans le cercle
restreint de. ses idées ordinaires; il est insensiblement
conduit a refuser une valeur réelle 4 tout autre mode
d’activité de l'esprit, 2 mépriser méme ceux qui s’en oc-
cupent. Ainsi font beaucoup de praticiens: la science
empirique qu’ils ont édifiée, leur a suffi, a présidé a tous
leurs travaux, leur a permis de les exécuter tant hien que
mal; alors ils ne voient plus qu'elle; ils la regardent
comme la seule utile, comme la seule qui doive étre en-
seignée a leurs successeurs. Ils oublient que s’ils ont pu
créer cette science d’attente, c’est parce qu'ils avaient été
préalablement nourris des saines doctrines , parce qu’ils
avaient pu prendre leur point de départ sur un terrain
solide, dans la véritable science. Mais ils la méprisent au-
jourd’hui, ils la méconnaissent au point de nier les nom-
breux emprunts qu’ils lui ont faits. Et leur ceuvre, en-
core si imparfaite, ils veulent la livrer 2 de nouveaux
praticiens qu’ils auront formés dans l'ignorance de la
vraie théorie! Mais si cette nouvelle génération d’ingé-
nieurs veut aussi réformer, que sera cette seconde puis-
sance de I'a-peu-prés!!

On voit ainsi se produire dans la science, et parmi les
savants, les mémes égarements que dans un tout autre
monde. Une question difficile se présente, mais elle n’est
pas assez bien définie dans toutes ses parties pour quon
puisse la résoudre d’'une maniére compléte et rigoureuse;
si cependant une solution telle quelle est indispensable,
alors on a recours a quelque procédé transitoire qui donne
le temps d’attendre, et qui n’engage pas l'avenir. Mais
les impatients, ceux qui se-sentent ou qui se croient ca-

Ann. de Mathémat., t. X. (Juin 1851.) 15
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pables d’abordes des questions de cette nature, qui méme
ont fait leurs preaves sur des sujets moins épineut, nec
peuvent se résigner a I'inaction. De 1 les fausses théories,
les utopies de toute espéce que leurs inventeurs essayent
de propager par tous les moyens, dussent-ils rendre im-
possible I'avénement de la véritable solution.

Cest ainsi que d’habiles géométres, tant théoriciens
que praticiens, ont quelquefois sacrifié leur talent a de
fausses idoles. Et la preuve n’est pas loin : feuilletez I'im-
mense recueil des travaux mathématiques de notre époque,
vous y distinguerez facilement deux genres d’analyse ap-
pliquée. L'une prudente, rigoureuse, ne s’appuyant que
sur des principes incontestables, riche de déductions, fé-
conde par ses conséquences , & laquelle les amateurs don-
nent a bon droit I'épithéte d'élégante. L’autre, plus har-
die d’abord, mais s’appuyant sur des hypothéses hasardées,
qui la conduisent péniblement & des résultats numériques
incertains, noyés dans des calculs lourds, inextricables,
résultats isolés et sans avenir.

1l existe un caractére infaillible auquel tout géométre
pourra reconnaitre, lui-méme, sison travail appartient
au premier ou .au second genre. $'il est dans le vrai, §'il
a abordé une question bien posée et que ’analyse mathé-
matique puisse résoudre, a chaque difficulté qu’il ren-
contre, qu'il parvient a surmonter a force de persévérance,
et quelquefois par une véritable découverte analytique,
il voit ensuite la question marcher en quelque sorte toute
seule, les conséquences se multiplier d’elles-mémes, jus-
qu’a ce qu'un nouvel obstacle exige une nouvelle concen-
tration d’efforts, dont le succés raméne la méme fécon-
dité; alors il travaille dans le premier genre. Mais s'il a
entrepris de résoudre un probléme mal défini & 'aide de
principes douteux, il est obligé de tourner les obstacles
plutdt que de les franchir; la question est, en quelque
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sorte, récalcitrante, elle ne marche que quand on la
pousse; le géométre travaxlle alors dans le second genre;
et st son cetivre pénible n’est pas indispensable, il ferait
bien de ne pas la publier. Malheureusement, nous n’ai-
mons pas & perdre complétement nos peines, et, par ce mo-
tif ; bien des ceuvres indigestes ont vu le jour. D’illustres
géométres ont péché parla : comparez le beau Mémoire de
Poisson, sur I'équilibre de I’électricité statique a la surface
des corps conducteurs, avec son pénible travail sur le
magnétisme, méme en mouvement, qu’il veut expliquer
par existence de deux fluides magnétiques , et vous com-
prendrez la distinction que j’établis.

Mais quittons cette pierre de touche des bons travaux,
et revenons aux praticiens. Les circonstances ont surtout
favorisé la propagation de U'erreur ou de l'illusion que je
déplore , et dont je crains les résultats ; un excés dans la
division du travail a trop éloigné les ingénieurs des sujets
de leurs premiéres études, et du commerce des théoriciens.
Deux exemples anecdotiques feront mieux comprendre
toute ma pensée. J'emprunte I'un d’eux & ma propre bio- .
graphie; mais le role que j'y ai joué, dii en grande partie
aux circonstances, tout autre ett pu le remplir 4 ma place.

Il 'y a plus de trente ans, en 1820, M. Clapeyron et
moi nous quittions le corps des mines, en France, pour
aller 4 Saint-Pétersbourg relever une école d’ingénieurs,
qui menacait ruine faute de professeurs. L&, nous avons
dd enseigner, successivement et simultanément, toutes
les mathématiques depuis les éléments jusqu’au calcul
infinitésimal, la mécanique rationnelle, la théorie des
machines, et le cours de construction dans toutes ses par-
ties. Dans cette école, le temps consacré aux études scien-
tifiques était plus limité qu'il ne Pest en France; par
exemple, il fallait parcourir toute la mécaniqué ration-
nelle en trente lecons; c’était bien peu. Pour utiliser le

15,
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mieux possible le temps assigné, nous avons a peu prés
réduit le cours a la connaissance approfondie du principe
des vitesses virtuelles, et de celui des forces vives , en thul-
tipliant leurs applications sur des sujets nombreux. Le
cours de machines et celui de construction, que nous pro-
fessions aussi, nous venaient en aide par les exemples
qu'ils fournissent. Et ces trois cours, réunis dans les
mémes mains, formaient un tout homogeéne , ou dominait
la rigueur mathématique, et d’ou I'empirisme était scru-
puleusement banni.

Toutefois, pour rester dans ces conditions dont nous
ne voulions nous départir & aucun prix, nous avons dit
nous condamner a de rudes travaux de préparation. C’est
ainsi que nous avons introduit, peut-étre les premiers,
dans les cours d’application, le chapitre relatif aux en-
grenages, a leur génération, au calcul de leurs frottements;
celui de la poussée des voiites et du tracé de leurs joints de
rupture; chapitres qui forment, dans les cours dont ils
font partie, comme deux oasis de théorie rigoureuse. Ce-
pendant nous n’étions pas satisfaits, nous cherchions 4
jeter les bases de la théorie mathématique del’élasticité, et
‘notre travail sur 1'équilibre intérieur des corps solides
indique tous les efforts que nous avons faits, pour éviter
I’empirisme et ses funestes conséquences.

En France, 4 la méme époque , Navier se trouvait a la
fois professeur d’analyse et de mécanique rationnelle a
I’Ecole Polytechnique, et chargé d’un cours de machines
et de construction aux Ponts et Chaussées. Sans doute do-
miné comme nous par cette passion pour la rigueur ma-
thématique, que les sciences exactes inspirent i tous ceux
qui les professent, il chercha longtemps aussi a restreindre
I’espace occupé par I'empirisme dans les cours d’applica-
tion. Les mémes circonstances le conduisirent au méme
but; et il venait de présenter son travail sur les corps



(1229 )
élastiques quand le notre, presque idemique au sien, et
enfanté a 8oo lieues de Paris, arrivait & son examen. Les
erches de Poisson et de M Cauchy sur le méme quet
sont postérieures aux siennes.

Ainsi, placez des ingénieurs dans des circonstances
telles, qu'’ils doivent s’occuper 4 la fois de cours de théo-
rie et de cours d’application, ils travailleront pour ne
jamais abandonner la rigueur mathématique ; et leur con-
cours accélérera les progrés de la véritable science. Isolez-
les, au contraire, chargez-les uniquement de cours d’ap-
plication, ils resteront géométres praticiens; et de plus en
plus identifiés avec leur science d’attente, ils essayeront
de la faire régner seule et sans partage.

Et voila ce qui explique ce fait singulier, que les plus
grands détracteurs d’'une célébre institution, que ceux qui
veulent la détruire, s'ils ne la réforment d’aprés leurs
idées anti-scientifiques , ont cependant passé par cette in-
stitution méme. Résultat déplorable, qui conduit a penser
qu’au lieu de restreindre, dans les écoles générales, ’en-
seignement théorique, pour tailler une plus large place
aux cours dits pratiques, ce serait précisément le con-
traire qu’il faudrait faire; c’est-i-dire introduire, dans
les écoles d’application , des cours de haute théorie, semer
le bon grain a coté de l'ivraie, afin que les éléves ne per-
dent pas de vue les saines doctrines, que, constamment
placés entre la rigueur mathématique et I’empirisme, leur
choi® ne soit pas douteux, et, qu'une noble passion ai-
dant, ils fassent aussi tous leurs efforts pour hater I'époque
ou ’on pourra se passer de 1’2 a-peu-prés. Si cette sage me-
sure avait été priselors de’organisation des corps savants,
nous compterions aujourd’hui plus d’un Prony, plusd’un
Brisson , plusd’unNavier, plus d'un Coriolis, qui auraient
cultivé la science, au lieu de la proscrire.

Ne croyez pas qu’en proposant de développer, dans le
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amp méme des géométrea praticiens, le drapeau qu'ils
repoussent, je ne fasse qu’opposer une exagération a une
autre. Non : cette mesure se présente d’elle-méme & {'ss-
pnt lorsqu’on se rend bien compte de I'état actuel. de.la
science, et qu'on cherche ce qu'il serait convenable de
faire pour accélérer ses progrés. Il me sera facile de mettre
cette vérité hors de doute, en utilisant le tableau que je
viens d’exquisser.

On est généralement convenu d’attribuer & Bacon, toute
une théorie sur.]a marche que 'esprit humain doit suivre
pour arriver a la connaissance et & I'explication positive
des. phénoménes naturels. J’avoue humblement que j'ai
en vain cherché, dansson Novum organum, des traces bien
certaines de tout ce qu’on lui a prété; et j’aime mieux at-
tribuer 'honneur de cette découverte , s'il y a découverte,
a Pesprit humain lui-méme, dont la logique instinctive
s'est si souvent manifestée. Quoi qu’il en soit, la marche
dont il s’agit a été admirablement tracée par la série des
travaux qui ont élevé I'astronomie au degré de perfection
que nous lui connaissons : premiérement, observations
multipliées et recueillies avec soin ; secondement, travail

-de Képler pour résumer les résultats de ces observations

par un petit nombre de lois; troisiémement, application
de I'analyse, faite par Newton, pour ramener ces lois a
une seule, c’est-a-dire au principe de la pesanteur uni-
verselle; quatriémement, enfin, travail inverse des com-
mentateurs, pour expliquer par ce principe tous les f)hé-
noménes célestes, et embrasser 4 la fois les états passés,
présents et futurs.

Dans Vceuvre semblable , mais beaucoup plus com-
plexe, que la science poursuitaujourd’hui, laméme marche
se reproduit, etl’on y reconnaitfacilementles quatre genres
de travaux. Les découvertes, les faits ont été accumulés
outre mesure; c'est le premier travail, le recueil des ob-
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servations, Des milliers d’expériences ont éié entreprises
pour atudler successivement toutes les classes de phéno-
pour les coordonner, les résumer par un certain-
nombire de lois; c’est le travail képlérien. Les géométres

ont réussi' 4 ramener a une seule toutes les lois de cer-

taines classes particuliéres de phénomeénes ; voila I'époque
newtonienne ébauchée. Enfin quelques savants ont été
assez heureux pour déduire, de théories mathématiques
partielles, I'existence de phénomeénes non soupgonnés par
les physiciens, et que I'expérience a vérifiés : tels que les
cristaux a deux axes, la double réfraction conique, -la
double réfraction cylindrique, les franges lumineuses
dans 'ombre d’un disque, etc., conséquences nécessaires

des théories de Fresnel, et encore certains faits déduits de
I'électrodynamique. On reconnait la des indices certains
de cet immense travail en retour, qui consistera a expli-
quer et A prévoir les phénomeénes , quand leurs principes
seront découverts.

On voit que I'activité n’a pas fait défaut dans les quatre
ateliers. Les deux premiers , surtout, ont a peu prés achevé
leur tiche. Mais le troisiéme, celui des géométres théo-
riciens, est évidemment en retard; les difficuliés qui s’y
rencontrent suspendent les progrés du travail général;
c’est 1a qu'il conviendrait d’accumuler, de concentrer de
nouvelles forces , de multiplier les travailleurs. Sinon, si
cet état se prolonge, les autres ateliers abandonneront la
partie, et on ne les retrouvera plus, quand il s’agira d’ap-
pliquer la théorie, et de vérifier ses résultats par I’expé-
rience. Déja, dans leur impatience, ils emploient leurs
forcesades travaux étrangers, utiles sansdoutesousd’autres
rapports, mais qui ne concourent plus au but commun,
qui méme peuvent en retarder I'avénement.

C’est ce que fait le quatriéme , celui des géométres pra-
ticiens , des ingénieurs , lequel devait couronner I'ceuvre,
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qui était constitué, de longue main, pour commenter les
principes trouvés, pour traduire en nombres toutes leurs
conséquences. Le premier, celui des pionniers de la s&ﬂiﬁce,
des chercheurs de faits nouveaux, a, depms pluﬁieurs
années, abandonné la voie commune; il s’est jeté dans
des applications étrangéres : la photographie, la galvano-
plastie, la télégraphie électrique et d’autres inventions,
prouvent toute sa fécondité; mais, tout en admirant ces
découvertes, on doit reconnaitre qu’elles n’avancent pas
celle des principes.

Enfin le second atelier, celui des expérimentateurs,
s'est attaqué aux lois trouvées: il a perfectionné ses pro-
cédés au point de rendre sensibles les plus petites inexac-
titudes de ces lois. Et rien ne fait mieux sentir le retard
des géométres dans l'ceuvre commune: car, supposez que,
immédiatement aprés les travaux de Képler, les procédés
employés par les astronomes observateurs, se fussent assez
perfectionnés pour permettre d’apercevoir les inexac-
titudes des lois trouvées, la connaissance de ces inexacti-
tudes pouvait ajourner le travail de Newton. Heureuse-
ment, elles n’ont été bien constatées qu'apreés la décou-
verte du principe, et s'expliquant merveilleusement par
les perturbations dues aux actions mutuelles des planétes,
elles sont venues confirmer le puncxpe plutét que de I'in-
firmer.

N’est-il pas clair, maintenant, que si 'on veut aider
aux progrés de la science, si I'on veut hater I'ceuvre de
notre siécle, ce qu'il faudrait faire aujourd’hui, ce serait
d’encourager, d’exciter les géométres théoriciens , d’aug-
menter leur nombre par tous les moyeuns possibles, de di-
riger I'enseignement des sciences exactes, de telle sorte
que les éléves connaissent bien tous les instruments de
Panalysc, ceux-la méme qu'il faut perfectionner pour
atteindre le but désiré. F1 I'on voit que cette conclusion
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toute naturelle est diaméiralement opposée a celle de nos
séformateurs. .

Mais, nous dira-t-on, la nouvelle époque newtonienne
dont vous annoncez la venue, est un réve de votre imagina-
tion ; 'humanité courra éternellément aprés les principes,
sans jamais les atteindre ; et ce serait folie d’organiser quoi
que ce soit en vue de ce but chimérique. Notre réponse est
préte : quelle que puisse étre notre croyance a cet égard,
nous ne demandons rien d’aussi sublime; notre but est
infiniment plus accessible, nous le touchons presque, et
(pardon de la chute) il s’agit, tout bonnement, d’intégrer,
d’une maniére convenable, les équations aux différences
partielles qui représentent I'équilibre intérieur des corps
solides élastiques; et voila tout.

Lorsque cette intégration sera faite , étudiée, commen-
tée, il n’y aura plus rien d’indéterminé dans vos construc-
tions; vous pourrez calculer exactement la forme précise
des solides d’égale résistance dans toutes les circonstances,
diminuer considérablement les poids de vos machines,
réaliser des applications importantes, que l’exagération
de ces poids rend actucllement impossibles. Et il vous se-
rait difficile de dire ou s’arréteront, pour les arts indus-
triels, les conséquences de cette intégration, que mnous
poursuivons.

Voila pourquoi nous voudrions que le plus de mem-
bres possible des corps savants, qui peuvent si bien com-
prendre toute 'importance de la découverte dont il s’agit,
connussent a fond I’analyse mathématique, afin d’aider a
Pachévement d’un travail commencé par des ingénieurs-
géometres. Or, pour obtenir ce résultat, il faut se garder
de restreindre 'enseignement des sciences exactes dans les
écoles générales, et, en outre, introduire des cours de
théorie pure dans les écoles d’application. Voila ce que je
voulais établir.
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Mais , nous dira~t-on encore, vous parlez d'augmenter
le nombre des géométres-théoriciens, comme si cela était
possible, comme si les vocations s’imposaient , et , pourun
ou deux sujets éminents, capables de remplir vos vues, et
qui, de loin en loin, pourraient passer par nos écoles,
vous voulez encombrer I'enseignement de cours inutiles &
la totalité des éléves. L'objection est spécieuse; la réponse
ne sera pas moins catégorique.

D’abord, entendons-nous sur le mot inutile. Comme je
I'ai dit et répété dans mes premiers discours : « L'utilité
» principale et premiére de I'étude des seiences exactes
» est de faire naitre, d’exercer, de perfectionner la fa-
» culté du raisonnement, de la rendre en quelque sorte
» infaillible, en Tappliquant constamment, et pendant
» de longues années, a des sujets qui soient & 'abri de
» toute controverse;... I'utilité immédiate, ou pratique,
» de cette étude ne vient qu’en seconde ligne.... » Or,
l'utilité principale profitera a tous les éléves, et dans
Pécole générale, et dans les écoles spéciales, ou il est trés-
important que la saine théorie ne les abandonne pas en
présence de 'empirisme et de I'A-peu-prés, si propres a
faire dévier I'esprit, méme le plus solide.

Ensuite n’oublions pas que tous doivent entrer dans les
corps savants, pour y remplir la fonction de géométres-
praticiens, pour y commenter les résultats théoriques a
mesure que la science les découvre, pour exprimer nu-
mériquement leurs derniéres conséquences; et si vous
leur laissez ignorer les procédés analytliques qui ont pré-
sidé a la découverte de ces résultats, comment voulez-vous
qu’ils les appliquent, qu'ils remplissent leur mission?
C’est comme si vous exigiez qu'ils obéissent & un ordre
écrit dans une langue qui leur serait inconnue. Vous le
voyez, les cours de théorie auront cette utilité pratique
que vous admettez seule, et ces cours profiteront a tous
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les éléves indistinctement; ils ne seront inutiles pour
aucun. . o

Parlons maintenant de la wocation. On dit,+et I'on
croit assez généralement, que chaque génération apporte
un contingent trés-limité, et i peu prés constant, d’hom-
mes supérieurs, dans telle ou telle faculté, pour tel ou tel
mode d’activité de I'esprit. Je ne.sais: mais 4 moins d’éta-
blir des analogies singuliéres entre les différents genres
de célébrité, ou a moins d’attribuer une élasticité fort
grande a cette limitation naturelle, il me parait difficile
d’expliquer, dans ce systéme, pourquoi tel siécle abonde
en littérateurs distingués, celui-1a en artistes du premier
ordre, celui-ci en savants illustres. Il me semble plus ra-
tionnel d’admettre qu’a toute époque, la société renferme
les éléments nécessaires pour répondre a tous les besoins;
forces nombreuses et variées, qui restent latentes si elles
ne sont pas actuellement utiles, et qui se manifestent avec
abondance quand les circonstances sont favorables.

Quoi qu'il en soit, une longue pratique dans I’enseigne-
ment des sciences, des observations suivies sur la marche
et les variétés de l'intelligence, m’ont conduit a une
formule qui parait exprimer assez bien la force produc-
tive qu'il nous importe de connaitre. Parmi les éléves qui
suivent les cours de mathématiques de nos colléges, un
tiers apporte toute I’attention nécessaire pour profiter de
ce genre d’études, et pour comprendre tout ce qu’on leur
enseigne. Ce premier contingent, qui peuple seul les di-
verses écoles générales, s’y fractionne encore une fois,
sous le point de vue de l'aptitude mathématique; la, le
quart des éléves étudient les sciences exactes avec gofit, et, .
peuvent, si 'enseignement est complet et bien dirigé, de-
venir des géométres-théoriciens. Enfin, le plus oule moins
de succés des étndes concomittantes, et leur influence
sur le classement définitif, répartit uniformément ce
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noyau d’analystes dans tous les services publics; en sorte
que, dans chaque école d'application, le quart de toute
promotion pourrait tirer, du cours de théorie pure, I'uti-
lité particuliére que nous avons en vue. N'est-ce pas
assez pour justifier la mise 4 exécution de la mesure que
nous proposons? Surtout si 'on considére qu’il ne s’agit
pas ici de ces étres privilégiés et exceptionnels, qui, de
loin en loin, viennent étonner le monde savant par la
précocité et la puissance de leur intelligence; ils sont
trop rares pour qu’on doive compter sur eux.

En résumé, si I'on veut absolument modifier I’ensci-
gnement des mathématiques, deux systémes opposés se
présentent pour diriger les réformes. L’un d’eux propose
de restreindre de plus en plus les cours de théorie, et de
faire prédominer les cours d’application, les idées de pra-
tique immédiate, en s’étayant sur des lois empiriques.
L’autre demande, au contraire, que les cours de théorie
soient complétés, qu'ils s’étendent jusqu’aux derniéres
découvertes des géométres, daus le but de restreindre, de
plus en plus, Pespace occupé par I'empirisme dans les
cours d’application. Le premier, ne croyant pas aux pro-
grés futurs de la théorie, et satisfait de son état actuel ,
veut la fixer & tout jamais dans cet état. Le second, con-
sidérant que la science s’éteint et se perd quand on I'em-
péche d’avancer, et croyant fermement & ses progrés,
veut les préparer et les exciter.

On. comprend toute la gravité du choix que l'on va
faire. Ou le mouvement scientifique continuera & s’accé-
lérer en France, jusqu’a Pachévement de I'ceuvre que j'ai
définie; ou bien I'honneur d’y mettre la derniére main
appartiendra i une autre nation, et probablement & une
autre époque. D'un coté la gloire,, de 'autre la décadence.
Tout & espérer ou tout & craindre. Cruelle incertitude
que je voudrais en vain dissiper, et que de nouvelles ex-
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plorations sur cette question brilante ne serviraient qu’a
augmenter. . : -t

On pourra trouver que j’attribue trop d'influence a cer-
tains actes, m’accuser méme de douter de la science, qui
marche et atteint son but, malgré les efforts contraires
de ceux qui la dédaignent. On pensera que si, par suite
des réformes dont j’ai signalé le danger, telle institution
ne produit plus de bons géomeétres, alors ceux=ci se for-
meront ailleurs; dans une école voisine, par exemple;
école d’ou sont déja sortis tant d’excellents professeurs, et
des jeunes savants dont les noms retentissent dans nos
académies.

Tout cela ne me rassure pas: il est un élément essentiel
que ces réformes suppriment, et qui, seul, pouvait accé-
lérerI'ceuvre séculaire. Dans les sciences exactes, plusieurs
routes différentes s’offrent aux géométres. La théorie des
nombres , 'analyse pure, la géométrie, la mécanique ra-
tionnelle , la physique mathématique, la théorie des pro-
babilités, réclament toutes des travailleurs. Mais, pour
réussir dans telle de ces carriéres, il faut un apprentissage
spécial , sans lequel 'analyste le plus éminent ne produira
le plas souvent que des ceuvres éphéméres.

Aujourd’hui, le géométre qui voudra sérieusement
faire avancer la mécanique rationnelle ou la physique
mathématique, devra réunir des connaissances étendues,
sur les machines, sur les moteurs, sur les matériaux de
toute espéce employés dans les arts, ou connaitre a fond
la physique, la chimie, tous les modes d’action des forces
naturelles. Sans ces études préliminaires, il ne pourra
travailler fructueusement que sur les nombres, sur ana-
lyse pure, sur la géométrie, sur les probabilités. Ces
quatre branches des mathématiques pourront encore faire
des progrés en France, quand nos géometres sortiront
tous d’une école oul'on ne s’occupe pas d’applications;
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mais les deax autres branches, la mécanique rationnelle
et la phy51que mathématique, resteront’ probablement
stationnaires, ou passeront  I'état de sciences empiriques.

Voila ce qu’on éviterait en modifiant, dans le sens que
j'ai indiqué, le programme des études dans I'école géné-
rale et dans les écoles spéciales de nos corps savants. Un
géometre sorti de cette institution, ainsi perfectionnée,
mais aprés I'avoir parcourue dans toutes ses phases , serait
plus utile aux progrés de lanalyse appliquée que tous
ceux qui auraient suivi I'autre route....

SUR L’APPROXIMATION DES CALCULS NUMERIQUES PAR LES
DECIMALES ;

Par M. AMIOT.

Professeur au lycée Saint-Louis.

1. Dans I’évaluation des quantités en décimales , il de-
vient souvent inutile de considérer beaucoup de chiffres
décimaux. Ainsi, dans les valeurs monétaires, on ngtient
ordinairement compte que des centiémes; dans les me-
sures linéaires, que des milliémes, etc., parce qu’il n’existe
pas de monnaie au-dessous du centime, ni de division du
métre inférieure au millimétre. Mais, quand il s’agit de
déterminer, soit par le calcul, soit par I'expérience, des
nombres qui doivent étre soumis a des opérations, comme
multiplication, division , etc., il importe de conserver un
assez grand nombre de chiffres décimaux, pour peu que I'on
tienne A quelque exactitudedansles résultats. Par exemple,
quand on emploie le poids spécifique des corps pour dé-
terminer leur volume connaissant leur poids, ou bien
leur poids connaissant leur volume, on peut commettre,
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sur le résultat, une erreur assez considérable, si I'on ne
prend qu’un petit nombre de chiffres décimaux, et quel-
quefois méme si 'on en prénd le plus possible.

Un des principaux objets que nous nous proposons
dans cette Note, c’est de montrer, i 'aide de simples con-
sidérations arithmétiques, l'utilité de conserver le plus
possible de chifires décimaux dans les résultats, toutes les
fois que ceux-ci, soit qu’on les obtienne par le calcul ou
Pobservation , sont destinés & étre soumis a des opéra-
tions d’arithmétique; et de tracer en méme temps, sans
qu’on soit obligé de recourir aux procédés algébriques,
une marche certaine pour déterminer, dans chaque cir-
constance, ce qu'il y a de réellement exact dans les résul-
tats des calculs auxquels on soumet ces nombres.

2. Nous commencerons par rappeler en peu de mots
led procédés d’abréviation que l'on suit ordinairement
dans chacune des opérations d’arithmétique, lorsque, les
nombres proposés renfermant beaucoup de chiffres déci-
maux, on veut se contenter d un résultat approché a moins
d’une unité d’erreur d’un certain ordre décimal. Ensuite
nous verrons comment les mémes procédés peuvent con-
duire 4 déterminer quelle est la partie du résultat sur
Pexactitude de laquelle on peut compter lorsque les nom-
bres proposés ne sont eux-mémes approximatifs qu’a une
unicé ou une demi-unité d'un certain ordre décimal.

3. On sait, etil est aisé de se convaincre, que pour ob-
tenir la somme de plusieurs nombres décimaux a moins
d'une demi-unité d’crreur d’un.certain ordre décimal, on
prend d’abord des valeurs approchées de ces nombres a
moins d’une demi-unité de 'ordre immédiatement infé-
rieur; puis on additionne tous ces nombres, et 'on efface
le dernier chiffre & droite de la somme, en ayant soin,
toutefois , d’augmenter d’une unité le dernier chiffre res-
tant, lorsque celui qu’on efface égale ou surpasse 5.

.
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4. D’aprés cela, si un ou plusieurs des nombres donnés
étaient approximatifs 4 moins d’une demi-unité d'un cer-
tain ordre décimal, il n'y aurait qu’a prendre de tous les
nombres, des valeurs approchées au méme degré que
celui qui P'est le moins, et I'on serait ramené 4 opérer
comme dans le cas précédent. Donc, régle générale :

Pour additionner plusieurs nombres approximatifs
aprés avoir écrit le premier, je suppose, celul qui contient
le moins de chiffres décimaux, conservez-en le méme
nombre dans tous les autres, et effectuez I’opération
d’aprés la régle connue, puis effacez lg dernier chiffre
du résultat. De sorte que vous aurez autant de chiffres
décimaux exacts moins un, qu’il y en a dans celui des
nombres proposés qui en contient le moins. -

Il est & remarquer, toutefois, que cette régle n’est
applicable qu'au cas ou l'on additionne moins d'une
vingtaine de nombres. Autrement il faudrait effacer sur
la droite du résultat un chiffre de plus pour chaque
vingtaine de nombres additionnés.

8. Nous ne citerons la soustraction que pour mémoire,
parce qu'il est évident que, si I'on soustrait deux nombres
approchés & moins d'une demi-unité d’erreur d’un certain
ordre quelconque, le résultat sera lui-méme approché a
moins d'une demi-unité du méme ordre.

6. Quant a la muliiplication, on trouve, dans la plu-
plart des Traités d’arithmétique (voyez Arithmétique de
M. Bourdon, 15¢ édition : Note sur les approximations
numérigues), une démonstration de la régle suivante :

Pour multiplier deux nombres I'un par I'autre a moins
d’'une demi-unité d’erreur d'un certain ordre décimal
donné, écrivez le multiplicateur au-dessous du multipli-
cande, enrenversant 'ordre des chiffres du multiplicateur,
et placant celui des unités sous le chiflre du multiplica-
teur de I'ordre immédiatement inférieur au degré d’ap-
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proximation donné; multipliez’ ensuite sucmsiveﬁéht
par chaque ordre d'unités du multiplicateur toute la par-
tie du multiplicande placée a sa gauche, en commencant
par le chiffre qui'lui correspond ; et ajoutez, au produitdu
premier chiffre, la retenue qui aurait été fournie par la
multiplication du chiffre précédent; enfin, écrivez tous
les produits partiels de telle fagon que, Ie premier chiffre
de chacun étant dans une méme colonne verticale, tous
les autres chiffres se correspondent; puis additionnez et
effacez le premier chiffre a la droite du produit, en ayant
soin d’augmenter d’une unité le’ premier chiffre restant,
si celui qu'on efface égale ou surpasse 5. Il ne restera
plus qu’a placer la virgule, ce qui est aisé d’aprés le degré
d’approximation donné ou bien d’aprés 'ordre du dernier
chiffre décimal qui est toujours facile & déterminer dans.
chaque cas. :

Si les nombres proposés renfermaient un grand nombre
de chiffres décimaux, ou méme étaient illimités, comme
une fraction périodique par exemple, on négligerait évi-
demment, dans 'opération, tous les chiffres de chaque
facteur auxquels il n’y en a point de correspondant dans
l'autre. )

7. Supposons actuellement les deux facteurs approchés
chacun A moinis d'une demi-unité d'un certain ordre dé-
cimal. Il est évident qu’en multipliant tout le multipli-
cande par I'ordre d’unités le plus élevé du multiplicateur,
le produn partiel que I'on obtiendra ne sera approché
qu’a moins de quelques unités décimales d'un ordre qu'’il
sera aisé de déterminer dans chaque cas. On prendra
donc; suivant la régle qu’on vient de tracer, des. valeurs
de tous les autres produits partiels approchées 2 moins
d’une demi-unité #u méme ordre (4), puis on effectuera
I’addition et on placera convenablement la virgule. .

Aun, de Mathémat | t. X. (Juillet 1851.) 16
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1ent pour exemples les deux nombres 54,865 et
75,346 supposés approximatifs chacun i moins d’un
demi-milliéme. Jécris d’abord ces nombres conformément

54865 .. i ce qu'on vient de dire, etj’effectuel opéra-

64357  tion comme on le voit ci-contre. Pour placer

384055 la virgule j’observe que les milliémes du mul-

27432 tiplicande 5, multipliés par les dizaines du
1646 multiplicateur 7, donnent des centiémes ; de
a1g sorte que le chiffre effacé 4 étant des cen-

. 32 tiémes, le chiffre suivant 8 est des dixiémes,

413384 et partant le produit 4133,8 est approché a
moins d’'un dixiéme d’erreur.

Lorsque les nombres proposés ne renferment pas le
méme nombre de chiffres, tant décimaux que non déci-
maux, c'est toujours celui qui en contient le moins que

" P'on prend pour multiplicande, afin de faire porter les
erreurs d’approximation sur le premier chiffre de chaque
produit partiel, que 'on supprime ensuite, et non surle
nombre de ces produits. Donc, régle générale :

Pour multiplier U'un par U’autre deux nombres ap-
proximatifs, prenez pour multiplicande celur qui con-
tient le moins de chiffres ; puis, écrivez le multiplicateur
au-dessous, en renversant lordre de ses chiffres, et pla-
cant celui de Uordre le plus élevé sous le premier, a
droite du multiplicande; effectuez ensuite l’opération
d’apres la régle du n°® 6, et placez enfin la virgule
d’apres l’ordre que doit représenter le premier chiffre, a
droite du produit.

8. Appliquons cette régle a quelques exemples :

1°. Quel est le poids d’une certaine quantité d'acide
sulfurique, dont le volume a été trouvé égal a 25',54,
4 moins d'un demi-centilitre d’erreur *
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25,54 Mnltlphons ce nombre par 1, 8409, poids

go481  spécifique de I'acide sulfurique; jai 490, et,
" 2554 comme le (o) exprime des dixxémes, jai
2043 47,0 kilogrammes, & moins de ‘100 grammes
102 d’erreur. Mais on peut sé tromper de plusieurs
2 dizaines de grammes. Pour obtenir un plus
470+ haut degré d’exactitude; il aurait fallu mesu-
rer le volume avec plus de précisionl Toutefois, cette pré-
cision deviendrait elle-méme illusoire, dés que le volume
contiendrait plus de chiffres que le poids spécxﬁque ce
qu’on peut voir dans 'exemple suivant :
2°. Quel est le poids d'un lingot d’argent pur, dont le
volume a été trouvé égal a 1567°°,843, & moins d'un
demi-milliéme d’erreur?
Le poids spécifique de I'argent étant 10,4743, je maul-
10,4743 tiplie ce nombre par le volume donné, et
3487651 Jobserve que le chiffre 3 des milliémes du
104743 multiplicateur, ne correspondant a aucun
52371 chiffre du multiplicande, devient; ainsi que
6284 tous ceux qu’'on aurait pu mettre a la droite,
733 complétement inutile dans la multiplica-
83 tion (6). Pour placer la virgule, je re-
4 - marque que le premier chiffre 8 du produit
"164218 résultant de dix-milliémes multipliés par
des mille, exprime des dixiémes, et, comme on I'efface,
on a 16423 grammes ou 16,423 pour le poids de-
mandé approximatif seulement & moins d'un gramme
d’erreur. Et, chose remarquable, c'est qu'une fois le vo-
lume meSure avec autant de chiffres qu’il y en a'dans le
poids $pécifique, toute approxxmauon plus grande dans
la détermination du volume ne peut rien ajouter a celle
du poids. ",
3°. Quelle est la quantité d’argent pur contenue dans
16.

A

Eas
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une ancienne piéce de 6 livres, dite aux trois couronnes?

Je trouve, dans Y Annuaire du Bureau des Longi-
tudes, que cette piéce, au titre de 0,917, pése 308°,594.
Je multiplie 'un par I'autre ces deux nombres, qui ne

‘917 _peuvent étre qu approximatifs, & moins d’une

49503 demi-unité de leur dernier ordre décimal. Je

2951 trouve pour produit 281, et, placant la vir-

46 gule, jai enfin 28¢7,1, 4 moins d'un dixiéme

8 de gramme d'erreur. Toutefois, on peut se

2805 tromper de plusieurs centiémes de grammes,

ce qui peut avoir une certaine importance , surtout lors-

que cette erreur peut se répéter un certain nombre de
fois pour plusieurs piéces.

9. Passons 4 la division, et, comme ce sera encore du
procédé par lequel on abrége ordinairement Popération
que nous déduirons nos régles d’approximation, et que
dailleurs les Traités, de nous connus au moins, donnent
plutét de ce procédé une simple explication qu’une dé-
monstration rigoureuse, nous commencerons par en ex-
poser complétement une théorie nouvelle, basée sur le
principe suivant : :

Etant donnée une fraction proprement dite quel-
conque, si l’on augmente ou si I’on diminue le dénomi-
nateur d’un certain nombre, sans altérer le numéra-
teur, la fraction subit elle-méme une diminution ou une
augmentation, laquelle est plus petite que le quotient du
nombre dont on a augmenté ou diminué le dénomina-
teur divisé par le dénominateur de la nouvelle fraction.

En effet, soit la fraction 7757 dont jaugmente le déno-

minateur de 2, par exemple; jaurai Pyt fraction
e T 2

plus petite que la propbsée. Pour obtenir la différence



(245 )

entre ces deux fractions, je les réduis au méme dénomina-
teur, ct, en indiquant simplemenr les caleuls, je trouve

1242 < 12 . .
20i2+2) 112 ‘pour la
12(13+2) 12(12412) *
seconde. Le numérateur de la premiére contient évidem-
ment 7 < 2 de plus que celui de autre, et par consé-
quent la premiére surpasse la seconde de

7X2 ‘~7

. 12(124+12) 5 < 1242

pour la premidre, et

Or, le premier facteur de ce produit xlz est la fraction

proposée, qui est par hypothése < 1; si donc on divise la

. 2
différence par ce facteur, le quotient sera plus
par ce lacteur, le qu 242 P
grand que cette différence. Donc, enfin,’augmentation de
2 .
la fraction proposée sera plus petite que ——. Ce qu'il
proposee sera plus petite qué =—— q
fallait démontrer.

En général , soit%

la quantité dont on augmente ou dont on diminue le dé-

une fraction proprement dite; et d

. . o , . a
nominateur, suivant que d est positif ou négatif, 54
sera la nouvelle fraction, etsi’on appelle x la différence
entre ces deux fractions, on a

2 a __a(b+d)——ab ad a>< d
TS Tbxd b(b+d) bb+d) b5 b+
_d

l

Et comme 2 < 1,évidemment en valeur absolue x < —— Py

que d soit posmf ou- neganf Donc, etc.
10. Pour appliquer ce principe, soient d’abord pro-
posés les deux nombres 758275 15634, dont on demande
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6 - le quotient, & moins d’une unité
758235 | 5634  d’errenr. Le dividende peut étre dé-
758300 { 1346 composé en 758300-25, et nous pou-

1949 | vons ne considérer que la premiére
26o ' partie; en négligeant la fraction
36 ’

o ‘5(23_§Z<"'+117) d’unité , dont le
quotient se trouve augmenté.

La question étant ainsi ramenée i diviser 758300 par
5634, j'effectue, suivant la régle ordinaire, la division
de 7583 centaines par 5634 ; je trouve pour quotient 1 et

1949

la fraction 5634 de centaine. En diminuant le dénomina-

l949

teur de cette fraction de 4, j’aurai =) avec une aug-

d(, centaine, ou

mentation < 5643 563" et a fortiori <

1
<... +-l—6d unité.

En consentant 4 cette erreur, je n’'aurai qu’a diviser
19490 par 5630, ou, ce qui revient au méme, 1949 par
563, pour avoir les dizaines du quotient. J’aurai ainsi 3

260
ct la fraction £z de dizaine, En diminuant le dénomina-~

563
260 . 3
tcurde3, J'aurai z, avec unc augmentation <3gg® OB
s o . 1 s . . 1 .
a fortiori <C Too de dizaine, ou hien <Z... +7s d’unité.
Pour avoir les unités, je divise 2600 par 560, ou 260

par 56, et je trouve 4 et la fracuon d unité. Cette fois

. . . 6
J'augmente le dénominateur de 4, ce qui me donne(%

avec une diminution < gaa et, a fortiori, <... o d’unité.
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Alors enfin je divise 360 par 60, ou 36 par 6, et j'ob-
tiens un chiffre de dixiémes. On aura denc 134,6 ou’
plutdt 135 unités pour le quotient cherché i moins d’'une
unité d’erreur, puisque la somme detoutes les erreurs com-

mises (plus petites respecuvement que + —1-6—0 > +—’

-+ ;%%;'3) constitue a peine un ou deux dixiémes. On
déduira aisément de ce raisonnement la régle génerale
suivante :

Pour obtenir le qaotzent de deux nombres entiers, &
moins d’une unité simple d’erreur, effacez d’abord, sur
la droite du dividende, autant de chiffres moins deux
quily en a dans le diviseur ; divisez ensuite, d’ aprés la
régle ordinaire, la partie conservée du dividende, puis
continuez l’opération en effacant, a chaque division
partielle, un chiffre sur la droite du diviseur. Vous au-
rez ainsi un chiffre de trop au quotient, que vous efface-
rez en ayant soin d’augmenter d’une unité le chiffre
précédent, si celui qu'on efface égale ou surpasse 5. On
aura toujours le méme soin d’augmenter d’une unité le
dernier chiffre restant a la droite, soitdu dividende, soit
du diviseur, lorsque le chiffre suivant, qu’on snppose
effacé, égalera ou surpassera 5.

11. En apphquant cette régle a un exemple quel-
conque, on verra, par le raisonnement qui précéde, que,
méme dans les cas les plus défavorables, ceux ou les pre-
miers chiffres du diviseur sont trés-petits, jamais aucune
des fractions dont on altére successivement le quotient ne

-peut surpasser une assez petite fraction de I'unité du pre-
mier ordre. D’ailleurs, en général, une partie de ces
erreurs augmente le quotient, tandis que les autres le di-
minuent, de sorte qu'en définitive, l'altération totale
restera au-dessous d'une unité simple. Cependant, si les
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nombres proposés renfermaient un grand nombre de
‘chiffres, il pourrait arriver que la méthode abrégée donnat
réellement une ou méme plusienrs unités d’erreur au
quotient. Ainsi, dans la division de 568387658964785637
par 1243242436, on trouve, en appliquant directement Ja
méthode abrégée, 4576642858, ou plutdt 457664286,
tandis que le quotient n’est réellement que 457664283 et
une fraction. Mais de pareils cas sont fort rares, et, d’ail-
leurs, il suffirait alors de chercher le quotient avec deux
chiffres de trop, en en conservant un de plus au premier
dividende partiel , pour étre bien siir de ne pas commettre
une unijté d’erreur sur le premier ordre.

42. Passons maintenant au cas ot I'on demande le quo-
tient de deux nombres entiers ou décimaux, 3 moins d’'une
unité d’erreur, d'un ordre décimal donné. On commence
alors par effacer la virgule du diviseur, et par reculer celle
du dividende d’autant de rangs sur la droite qu’il y a de
chiffres décimaux au diviseur, ce qui n’altére en rien le
quotient; puis on réduit le dividende en unités décimales
del’ordre correspondant au degré d’approximation donné,
et la question se trouve ramenée a déterminer le quo-
tient de deux nombres entiers 4 moins d'une unité du
premier ordre d’erreur. Soit proposé pour exemple de
diviser 856,784 par 6,2785, 4 moins d'un milliéme d’er-
reur. Effacant la virgule du diviseur et reculant celle du

389  dividende de 4 rangs, jai

8567840000 62785 8567840 adiviser par62785;

228934 1364631  jeréduis le dividende en mil-

405790 » liémes, en metiant 3 (o) 212
2go8o droite, et j’effectue enfin la -

3964 division de 8567840000 par

196 : 62785, ce qui me donne

7 1364631 pour quotient; effa-

' cant le dernicr chiffre, et
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separant rois chiffres décimaux pour avoir des lmlhem& ,
jai enfin 136,463 pour le quotient demandé.

- 13. Appliquons la méme régle & trouver le quotient de
38,5674, par 48,565 a moins de 0,01 d’erreur. On ramé-
nera d’abord la question i diviser 3856740 par 48565
4 moins d'une unité d’erreur. Ce diviseur ayant 5 chiifres,
j'en éfface 3 sur la droite du divideride ; mais alors la par-
tie restante 3856 ne contenant plus le diviseur, j'efface,
sur la droite de celui-ci, assez de chiffres pour qu’une
premiére division partielle soit possible, de sorte qu’en
définitive je divise 3857 par 486, et j’ai pour quotient
792, ou plutdt 0,79, en supprimant le dernier- chiffre,
et placant la virgule. On doit remarquer que chaque di-
vision partielle donnant un chiffre, tout se réduit en dé-’
finitive & conserver au diviseur autant de chiffres plus
un, que 'on veut en avoir au quotient et au dividende
assez pour contenir cé diviseur par plus de neuf fois. Or
il est aisé, dans chaque cas, de déterminer combien le
quotient doit contenir de chiffres: d’abord, le degré
d’approximation donné indique le nombre de chiﬂres
décimaux, et il n’ 'y a qu'a multiplier le diviseur par
0,01 — 0,1 — I — 10 — 100... pour trouver celui d’uni-
tés entiéres. Donc, régle génerale :

Pour trouver le quotient a moins d’une unit¢ d’erreur
d’un ordre décimal donné, de deux nombres décimaux,
composés de beaucoup de chiffres ou méme illimités,
commencez par déterminer le nombre des chiffres du
quotient, puis conservez-en un de plus sur la gauche du
diviseur, et qﬁ'acez surla droite du dividende tous ceux
qui ne font pas partie du premier dividende partiel ; il
ne reste plus alors qu’a effectuer Uopération d’apreés la
méthode connue (12). Soit, par exemple, proposé de di-
viser 756,85463485463... par 27,5648756487... 4 moins

de 0,001 d’erreur. Le diviseur; multiplié par 10, donne
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un résultat plus petit que le dividende, tandis que, mul-
tiplié par 100, il en donne un plus grand. Le quotient
aura donc 2 chifires d'unités entiéres. On en veut 3 de
décimales, c’est en tout 5. Je prends donc pour diviser
les 6 premiers sur la gauche du diviseur proposé, et je
divise 756855 par 275649. F obtiens le quotient 274570,
je supprime le dernier chiffre et j’en sépare 3 décimaux,
ce qui me donne 27,457 pour le quotient cherché.

14. Passons, enfin, au cas ou les nombres proposés
sont eux-mémes approximatifs chacun, & moins d'une
demi-unité de son dernier ordre. Alors, on pourra les
considérer comme étant chacun la partie qu'on aurait
conservée de nombres décimaux illimités. Mais, pour plus
'de clarté, nous distinguerons deux cas :

1°. Sile dividende, abstraction faite des virgules, est
plus grand que le diviseur, comme il résulte de la théorie
de la division abrégée, qu'une erreur de quelques unités
sur le dernier chiffre du diviseur ne peut avoir d’influence
que sur le chiffre du quotient qu’on efface, on commen-
cera par mettre un (o) & la droite du diviseur, puis on effa-
ocra, sur la droite du dividende, tous les chiffres qui ne
feront pas partie du premier dividende partiel. On effec-
tuera ensuite la division d’aprés la régle du n° 11, et 'on
placera la virgule, en déterminant, comme on I'a dit au
numéro précédent, combien le quotient doit avoir de
chiffres d’unités entiéres.

Toutefois, on observera que, si le diviseur commen-
cait par un chiffre au-dessous de 5, et que le quotient
contint un assez grand nombre de chiffres, on devrait,
pour -étre tout a fait siir de I'exactitude des. chifires con-
servés, en effacer 2 sur la droite du quotient (11);

2°. Si, au contraire, le dividende est plus petit que le
diviseur, toujours abstraction faite des virgules, on com-
mencera par mettre un (o) a la droite du dividende , puis
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on effacera sur la droite du diviseur, assez de chiffres
pour rendre poesxble la premiére. division paruelle, et
I'on sera ainsi ramené au cas préoédent. -

Soit, par exemple, i diviser 356,37694 par 2,47936
ces nombres élant supposés npproxxmanfs chacun & une
unité de son dernier ordre. Je mets (o) a la droite du di-
vxseur, puis je néglige le dernier chiffre du dividende, et
je divise 3563769 par 2479360. Jobtiens 14373, et
comme le diviseur, multiplié par 100, donne un résultat
plus petit que le dividende, tandis qu’il en donne un plus
grand si on le multiplie par 1000, le quotient cherché
sera 133,73 4 moins d’un centiéme d’erreur.

Pareillement, pour diviser les deux nombr2s approxi-
matifs 3,5678 par 4,1256842, je commence par msttre
un (o)  la droite du dividende, puis je supprime les deux
derniers chiffres a la droite du diviseur, et je divise
3567850 par 412568. Le quotient 864796 étant évidem-
ment compris entre 1 et 0,1, sera 0,86479, 4 moins d’un
cent-milliéme d’erreur.

15. Dans le cas ou un seul des deux nombres serait
approximatif et I'autre exact, on opérerait exactement
de la méme maniére en mettant toutefois A la droite du

nombre exact assez de (o) pour rendre possible une pre-
miére division partielle,

Soit, par exemple, le nombre exact 547 4 diviser par
le nombre approximatif 8769. Je mets d’abord un (o) 4 la
droite du diviseur, puis trois (o) a la droite du dividende,
et je divise 547000 par 87690, ce qui me donne 62378,
ou plutét 6238 ; et, comme le quotient ne doit contenir ni
unités pi dixiémes, on a 0,0623.

16. Nous terminerbns par observer que, si |'un des
nombres étant approximatif, l'autre était illimité, ou
bien devait étre déterminé soit par un calcul, soit par
une expérience, il serait inutile de chercher un nombre
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de chiffres plus considérable que ccux qm sont néces-
saires pour satisfaire a la reg}e du numéro précédent,
tous les autres ne pouvant avoir d mﬂuence sur D'exacti-
tude du résultat.

17. Faisons-en lapphcauon a 'que]ques quesnons nu-
menques 3

1°. Quel est le volume d’un tonneau remph d'eau de
mer, dont le poids a été obtenu egal a 1524¥.37?

Le poids spécifique de I'eau de mer étant 1,0263, a
moins d'un demi-dix-milli¢me, je divise le nombre donné
par celui-ci, ou plutdt, suivant la régle du n° 14, je di-
vise 152437 par 102630, ce qui me donne 148521. Je
dois effacét le dernier, ou méme ici les deux derniers
chiffres (11), et comme d’ailleurs le quotient est compris
entre 1000 et 10000, j’ai enfin 1485 litres. On ne peut
compter sur I'exactitude que des unités de litres, sans y
pouvoir rien ajouter par une plus grande précision dans le
1)01ds donné.

°. Quel est le volume de 846¢*,34 d’alcool pur?

La densité de ce liquide étant supposée 0,792, &
moins d’'un demi-milliéme d’erreur, je divise le premier
de ces nombres par le deuxiéme, ou plutét 8563 par
7920, et j'ai 108. Comme il faudrait séparer 4 chiffres
non décimaux, et que, pour réduire en litres, il faut di-
viser par 1000, j’ai enfin 1',08. Le dernier chifire du
poids a été inutile,

3°. Quel est le volume d’un ballon rempli d’un poids
d’hydrogéne égal a 525 grammes, dont le poids spé-
cifique est 0,0688, ces deux nombres étant supposés
approximatifs, 4 moins d'une detm-umte de leur dernier
ordre?

Je divise 5250 par 688, et jai 762 pour quonent sup—
primant le dernier chiffre, et plagant la virgule, j’ai 7,6.
Pour trouver le volume en litres, je multiplic ce nombre
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par 770, et J’ai un produit compris entre 5800 et 5900 ;
ainsi, T'erreur peut bien &tre de prés. d'une centame de
litres.

1l est inutile de multiplier davantage les exemples pour
montrer de quelle importance il peut étre, dans certains
cas, de trouver dans les Tables de poids spéc:ﬁque , DR
autres, les résultats écrits avec un grand nombre de
chiffres décimaux. :

18. On peut apphquer les mémes principes a la déter-
mination des racines carrées et cublques des nombres
approximatifs. Commencons par les racines carrées, et
rappelons d’abord ce principe démontré dans tous les
Traités d’Algébre : Quand on a obtenu la moitié plus un
des chiffres d’une racine carrée, par la méthode géné-
rale, on obtiendra tous les autres en divisant le reste par
le double de la partie trouvée de la racine. En combi-
nant ce principe avec celui de la division abrégée, on dé-
terminera aisément, dans tous les cas, la partie exacte de
la racine d'un nombre approximatif. Mais, pour plus de
facilité, distinguons deux éas :

°. 8i le nombre approximatif proposé contient un
nombre pair de chiffres décimaux, extrayez la racine,
comme si le nombre était exact; puis mettez un (o) & la
droite du dernier reste, et effectuez la division abrégée
de ce nombre par le double de la racine. ¥ ous placerez
la partie exacte de ce quotient a la droite de la racine
déji obtenue, et vous aurez la racine, & moins d’une
unité d’erreur de son dernier ordre décimal. Soit pour
exemple le nombre approximatif 3,456783. Je trouve
- d’abord, par la méthode ordinaire, 1859 avec le reste
902. Je mets un (o)  la droite de ce nombre, et je divise
go20 par 3718, double de la racine, ce qul me donne

2435 ou 243, et , partant, Jai, pour la racme cherchée,
1,859243. :
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2°. 8i le nombre proposé contient un nombre impair
de claffres décimaux, commencéz par mettre un (o) & la
droite, et vous serez rainené aucas précédent. Seulement,
il ne sera plus permis de mettre un iouveau (o) a la droite
du dernier reste, et, pour rendre la premiére division
partielle possible, vous devrez commencer par effacer le
premier chiffre & la droite du diviseur. Soit pour exem-
ple le nombre approximatif 5426,356; j’extrais la racine
de 54263560, et j’ai 7366 avec le reste 5604. Je le divise
par 14732, ou plutdt par 1473, et j'ai 381, de sorte que
la racine cherchée égale 73,6381, & moins d’un cent-
milli¢éme d’erreur.

19. Quantaux racines cubiques, on démontre pareille-
ment que, si I’on a obtenu par la méthode générale plus
de la moitié plus deux, des chiffres d’une racine cubique
quelconque, on peut obtenir tous les autres en divisant
le reste par trois fois le carré de la partie connue de la
racine. De ce principe, combiné avec celui de la division
abrégée, on a déduit la régle suivante, pour extraire la
racine cubique d’'un nombre approximatif:

1°. 8i le nombre proposé cantient un nombre de chiffres
décimaux multiple de 3, on en extraira la racine cu-
bigue comme s’il était exact, puis on divisera le dernier
reste par trois fois le carré de la racine trouvée, en ne
cherchant de ce quotient qu’autant de chiffres moins trois
qu’on en a déja obtenu & la racine.

2°. 8i le nombre proposé ne contient pas un nombre de
chiffres décimaux multiple de 3, on commencera par ra-
menerce cas au précédent, en placant un ou bien deux (o)
& la droite du nombre. Pazce qu’en effet les deux derniers
chiffres du nombre n’influent cn rien ni sur la partie de
1a racine qu'on cherche par la méthiode générale, ni sur
celle qu'on obtient par la division abrégée, le quotient
contenant toujours beaucoup plus de chiffres-que I'on ne
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doit en conserver. Appliquons cette régle & un exemple;
mais auparavant exposons, sur le procédé général de 'ex~
traction des racines cubiques , une remarque qui n’a point
encore été faite , du moins nous le pensons, et qui abrége
considérablement les calculs de cette opération, surtout
quand le nombre proposé contient beaucoup de chiffres.

20. On saitqu’a 'exception du premier, tous les chiffres
d’une racine cubique s’obtiennent en divisant par trois fois
le carré de la racine déja obtenue, le reste correspondant
suivi du premier chiffre de la tranche suivante. Pour véri-
fier ce chiffre, que 'on peut toujours considérer comme
des unités, les autres étant des dizaines, etobtenir le nou-
veau reste, on peut former le cube de toute la racine, etle
soustraire de toute la pame du nombre sur laquelle on a
opéré; mais on peut aussi former directement les trois
parties3a® b + 3ab* + b* (a désignant les dizaines, et b
les unités) contenues dans le reste, et les en retrancher.
Pour cela , on écrit, I'un au-dessous de I'autre , les trois
nombres 3a*, 3 ab, b* (en les réduisant, au moyen de
deux (o) pour le premier, et de un (o) pour le deuxiéme,
en unités du premier ordre) , puis on additionne ces trois
nombres, et I'on multiplie la somme par b.

Le premier procédé est beaucoup plus long, et , cepen-
dant, on le préfére ordinairement parce que, dit-on, en
formant le cube de la racine on a le carré, et, partant, on
obtient aisément trois fois ce méme carré qui sert i trou-
ver le chiffre suivant. Mais, dans la deuxiéme maniére, on
peut aussi obtenir trés-aisément trois fois ce carré (et c’est
en cela que consiste notre remarque), en observant que

3(a+byP=3a*+3.2ab+3b*=3a*+2.3ab+ 3.6
Or, les trois-nombres qu'on a additionnés dans I

ration précédente, étant 3a*, 3ab et b*, il suffit de mul-
uplier respectivement ces trois nombres par 1, par a
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etpar3,etd’ a]outer les trois résultats pour avoir trois fois
le carré de la racine. 1l en résulte une méthode d’opérer
qui nous a paru remarquable, tant pour la symétrie des -
calculs et pour la facilité avec laquelle elle se démontre,
que pour la simplification qu’elle mtrodmt dans P'extrac-
tion des racines cubiques.

Pour en donner un exemple, aiusi que de la régle d’ap-
proximation , soit proposé d’extraire la racine cubique du
nombreappronmatlf57524,8567236 Jemetsd’aborddeux
(o), et j’extrais la racine cubique de 57524856723600.

30 X 3 X 8= go X 8
380 X 3 X 6= 1140 X 6 .
38600 X 3 X 2 = 115800 X 2
57524856723600 ( ' 38602 '

30524 2700 1 2900
2652856 720 2 1440
12400723600 64 3 192
3460500392 3484 433200 1
6840 2
36 3
440076 -
433200 : 4469880000
13680 463200
108 12
4469880000 1 4470343212
231600 2
4 3
4470111604
3460 (447
33 774
16

Racine = 38,60277.

Pour effectuer cette opération, j’ai d’abord pris la ra-
cine cubique du plus grand cube contenu dans 57, ce
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qui m’a donné 3 avec le reste 303 a coté de ce reste, j'ai
abaissé les trois chiffres suivants; j’ai séparé les deux der-
niers et j’ai divisé la partie de ‘gauche 305 par 27, égal
a trois fois le carré de la racine trouvée 3.

Le quotient étant supposé 8, pour le vérifier, je mets
deux (o) a la droite de 27 ; j’écris au-dessous le produit
30 >< 3 >< 8 et encore le carré de 8 ; j’additionne ces trois
nombres ; je multiplie la somme 3484 par 8, et je sous-

. trais le produit de 30524: a 1a suite du reste 2652, j Ja-
baisse les trois chiffres suivants du nombre, je sépare les
deux derniers, et je divise la partie de gauche 26528 par
trois fois le carré de 38. Pour obtenir ce diviseur, je place
1, 2 et 3 respectivement a droite des nombres 2700, 720
et 64, que je multiplie les uns par les autres; j’addi-
tionne les produits, et la somme 4332 est le diviseur
cherché; la division de 26528 par 4322 me donne le
quotient 6 avec le reste 12400, a la droite duquel j’a-
baisse les trois chiffres suivants.... En continuant d’opérer
toujours exactement de la méme maniére, j’obtiens les
cing chiffres 38602 avec le reste 3460500392.

Aprés avoir obtenu cing chiffres, on en peut avoir deux
en divisant le reste par trois fois le carré de la racine
= 4470343212, Comme on n’a kesoin, au quotient, que
de deux chiffres, je divise simplement 3460 par 467 et
J'ai 77. Mettant le quotient 77 a la droite de la racine déja
obtenue, j’ai, enfin, 38,60277 pour la racine cherchée, a
moins d’un cent-milliéme d’erreur.

Ann. de Mathémat., t. X, (Juillet 1851.) 17
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SUR UN CERTAIN SYSTENE IEQUATIONS DU PREMIER DEGRE;

D’arnis M. JACOBI (*).
(Journal de M. Crelle, t. XXX, p. 51-94; 1846.)

1. Soit le systéme suivant de n équations linéaires
entre les n inconnues &, 3, 7,..., T :
a o+ )P +aiy+ ... +ad, m=ta,
dio+ad B+ ... +d n=18,
(1) :

a4 a4 ... alr =t
On suppose qu’on a la relation

[§ .
(2) aq") = a:”,

p et ¢ étant des nombres de la suite 1, 2, 3,..., n.

On a n équations entreles n —1 rapports E, g,---, g;
éliminant ces rapports, on obtient, comme on sait, une
équation en ¢, de degré n.

Soient ¢, t3,..., t,, les n racines de cette équation.
Substituant successivement ces racines dans n — 1 quel-
conques des équations du systéme (1), on aura n sys-
témes de valeurs, pour les n — 1 rapports. Si 'on pose,

de plus,
(3) P =1,

1 s,
;,_7 s€ra une quantne connue; donc « sera. connu, de

méme 8, etc. Ainsi, & l'aide de I'équation (3), les n

(*) Onlitl'extrait d’'unbeau Mémoire de M. Sturm, sur le méme sujet,
dans le Bulletin de Férussac (Mathématiques, t. XII, p. 316; 1829).
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systémes de valeurs des inconnues seront comp]etement
déterminés.

2. De51gnons par a"’) B® ., =P les valeurs des
inconnues qui correspondent a la racine ¢,; (p) désigne
un nombre d’accents.

Les équations (1) donnent done

dao +d,p +...+d =,
aio! +af + ... +a o =¢p,

(") I+a"lﬁl+'. +a("lﬂ_ :t.ﬁ-

Si I'on additionne ces équations aprés avoir multiplié
la premiére par «”, la seconde par £”,..., la derniére par
n", le coefficient de o', dans le membre 4 gauche, sera
a'\a"+a' p"+...a"n"; et, daprés la relation (2),
cette expression est la méme que

da’ +a, B +dy"+ ... +ad 7"
mais cest ce que devient le membre 4 gauche de la pre-
miére des equauons (1), pour la racine ¢, : donc le coef-
ficient de a' est t,a”. On prouve de méme que le coeffi-
cient de {3’ devient ¢, 3", et ainsi des autres ; donc on a
t(da +Fp 9 4 1:”)

=t (da +pp"+ ... 7).
Et lorsque ¢, n'est pas égal 4 t,, on a
(4) ’ I/+ﬁ§”+ -+ﬂ’7’r”:0.

Cette relation montre, selon l'observation de M. Cau-
chy (¥*), que toutes les racines de 'équation en ¢ sont
réelles.

En effet, soient ¢, , t,, deux racines imaginaires conju-

(*) Ce mode de démonstration a déja été employ¢ par Lagrange
(Méc. anal., t. 11, p. 248; 2° édit.)

17.
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- " ’ ”
gudes, les rapports = et {3”, :,, Z—,,, etc., qui sont des

ﬁl
o
fonctions rationnelles de ¢, auront aussi des valeurs ima-

" I Il
ginaires conjuguées. Ainsi les produits = ﬁ,ﬁ” ' 5 ,,7 seront

chacun la somme de deux carrés, ce qui rendrait im-
possible la relation (4); donc, etc.
3. Considérons les n équations linéaires suivantes :
p=dg+ad" g+ ...+ a"q,,
p=Fqa+pf e+ ...+ p"q,
(5) :

Ph=7q4+n"q+ ... +7n"q,;

a'y @, etc., ayant la méme signification que ci-dessus.

Si I'on additionne les carrés de ces expressions, et
que l'on ait égard aux relations (3) et (4), on obtient
(6) pl4+pi+ ... +p=qi+q¢+q+ ... +q

Additionnant ces équations, aprés avoir multiplié la
premiére par a', la deuxiéme par 3/,..., et la derniére par
%, on trouve

@=p&+pf+ ... +pr,
et, de méme,

(7) g=pa’ +pf 4+ par,

Ga=pia™ 4 p, M4 L L+ py (™,
Substituant ces valeurs dans la premiére des équa-
tions (5), on trouve
p=[@)+ (") + o («™) )P,
(F + "8 + ... +aBO]p,,

[a.'n' + a”n'” + e+ a(">1r(")]p,,;
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ct, a cause de 'indépendance de p,, p, ,..., p,, on a
(8) ()24 (a") 40 + (a)r1= 1,
B+ "B+ o aBM =0,
Y "y + Lo+ ey =g,
(9) :

' w4 ... 4 a® ) = o,
On trouve des équations analogues pour ', 7/, etc.

4. La premiére des équations (1) donne

to! =ad\ e +ad,p + ... + arn’,
o' =a " +d, B+ ... + a ",

Si I'on additionne ces n équations, aprés avoir multi-
plié la premiére par a’, la deuxiéme par «”, etc., en ayant
égard aux équations (8) et (9), on obtient

a4 a4 .. +tae=d,
et, de méme,
tll 0("3,'*- t Gl”p”—i- ... +t"a(u)pfn,‘ =a’z§
et encore n — 2 relations semblables pour v, d,..., x.
Faisant usage de ces n relations, on déduit des équa-
tions (7),
Ly, e+ tagl
=d,pl+2a pp+24dpp +...
(10) a,p + 247 pyp,
+asp;
La loi est évidente. On forme le carré de
potEprt+ .o Hpy;
& chaque terme p, p, on donne pour coefficient 2 OR
et au terme (p,)® le coefficient ¢ (.
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Formules générales de correction pour les valeurs
des inconnues. ‘

5. Supposons que les coefficients «, , 4, etc., des in-
connues varient de quantités finies, mais assez petites pour
qu’on puisse négliger les puissances des variations supé-
rieures a la premiére puissance. Il s'agit de déterminer
les variations correspondantes des inconnues.

Soient Aa') la variation du coefficient 2, et At, , A/
les variations correspondantes de ¢, et «’. Les équations (1)
donnent : .

a’ Aty — (e’Ad, + p'Aa" +9'Ad 4. ..)
=([(d, — t,)aa’'+d Af+a" Ay + ... ];

(1) {  @an—[a'a(a’)+ pad, +y'ad) + .. ]
=a'Ad+ (@, —t)AR +a Ay + ...
etc.

Ajoutant ces équations, multipliées la premiére par ',
la deuxiéme par @, la troisiéme par y’, etc., on obtient,
d’aprés les relations données ci-dessus,

A, =—aAd, 42 oz'p’Aa'2 -+ 20:'7'Aa'3 + 2a’§'Afx" Faee
B'7Aal + 2f'y Ad, +2f/ ¢ A +...
(12) 7'Aa% 4 2980 +...
0 Aay +-...
etc.

La loi est évidente. On a donc At, en fonction des
augmentations des coefficients. Ajoutant aux deux mem--
bres des équations (11) (7, —7,) Az’ a la premiére,
{(ts—t;) AP’ ala seconde, (t;—t;) Ay’ a la troisiéme,
et ainsi de suite, et puis additionnant ces équations, apres
avoir multiplié la premiére par a”, la deuxiéme par ",
et la troisiéme par y”, etc., on obtient

(t,— &) (#"A s+ B'AB+ "8+ . ..)
= a"a'Ad, + (a"B'+ o B") Ad, + BB AL, + 1.
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et, de méme,. :
(1 — 1) (ko BB 0 )
= o"olAd + (" B'+ o' ) A d, + B Ad, + .
On a ainsi n— 1 é uations entre les n variations Acc
qu )
Af/,etc.; & quoi il faut ajouter la nitme gquation déduite
de I’équation (3),
AL+ AR+ Ay 4 ..t =o.
Multipliant les z— 1 équations respectivement , la pre-

" "

.Y 3 . . oa
miére par » la deuxiéme par
B (B

— etc., et la nitm
3

équation par «', et les ajoutant, les grandeurs Af/,
Ay, etc., seront, en vertu des relations (9), simultané-
ment éliminées, et 'on obtient

, , «? o3 ' ,
Ao'=— -+ t+“' Aa’,

tL— L — 1
g lllz + + , ‘a/lp/l _| alll A ,
o | —— - ——.
tl—t, t— t, t, — 2, tl—t3+"' ] a,
’/ Il/plll "
/ .) A
+p<f|—t,+t,—t3 ) a,; +

Les équations (12) et (13) donnent donc les coeffi-
cients différentiels exacts,
dt,
da’, : x da '2 =

do’ , "2 o
& (t, —-t2+t, —'t3+ )’
d“, a’/ pll alll glﬂ
—_— R — — .
(14) da, p(t.~t,+t.—t3+"')’
do! B da’ o da
\da’, o da' + B’ da’)’

2

-

do’ 'y ﬁdx
@ =

etc.
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Par des mutations convenables , ces élégantes formules
donnent les premiers coefficients différentiels de toutes
les inconnues des n systémes pris par rapport aux coeffi-
cients du systtme donné (1). On voit que les premiers
coefficients différentiels des 7 racines t,, ts,...,t, sont
donnés immédiatement par les valeurs des inconnues, et
que les coefficients différentiels des inconnues &, 3,
pris d’aprés les coeflicients du systéme (1), peuvent se
calculer aisément, seulement 4 'aide des coeflicients diffé-
rentiels pris d’aprés a’,, a'; yaly, eti entre lesquels existe

méme la relation &' 2 ._.ﬁ’ o , ., les premiers coeffi-

cients différentiels de oy By etc., donnent les seconds
coeflicients différentiels des racines ¢,, ¢,, etc. Si les in-
créments Aa, et Aa’, ne sont pas égaux, alors il faut rem-

placer dans I'équation (12) Aa’, par 12 (Ad,+Ad)), e,

dans Péquation (13), il faut dans ce qui multiplie Aa’,,
multiplier la premi¢re partie par Aa’, et la seconde par
Aad'.

Application astronomique.

6. Le but du présent Mémoire n’est pas purement
analytique; mais I'illustre auteur s’est proposé de fournir
un procédé simple de résoudre numériquernent les équa-
tions qui se présentent dans la théorie des perturbations
séculaires (LarLace, Mécanique céleste, liv. 11, § 55). On
lit en cet endroit du Mémoire de Jacobi sept équations dif-
férentielles du premier degré, relatives aux sept orbites de
Mercure, Vénus, la Terre, Mars, Jupiter, Saturne et
Uranus. L’intégration fournit sept équations du premier
degré, & huit inconnues, ayant la forme des équations du
systéme (1). A I'aide d’ingénieuses transformations, on ob-
tient des équations dont les coefficients satisfont a la re-
lation (2); les données numériques sont empruntées au
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beau travail de M. Le Verrier sur le méme sujet (Addi-
tions & la Connaissance des Temps pour 'année 1843 ).

Les calculs, trés-nombreux, ont été exécutés par M. Louis
Seidel, de Munich, éléve de Jacobi. Les résultats com-
parés montrent que le procédé de Jacobi est beaucoup
plus exact que celui dont M. Le Verrier a fait usage
(voyez pages go, 91 et 92 du Mémoire allemand).
Dans I'absence si regrettable d'un journal d’Astronomie,
M. Liouville, Membre du Bureau des Longitudes, sup-
pléerait, autant que faire se peut, a une lacune si hon-
teuse pour le pays, en insérant in extenso le Mémoire
de lillustre Prussien, et d'autres travaux analogues,
dans son précieux Recueil destiné aussi aux mathéma-

tiques appliquées (*).

SUR LES SURFACES ORTHOGONALES;
Par M. LEBESGUE.

Définition. Si deux surfaces, ayant pour équations
u=o0, v=o0, se coupent suivant certaines lignes c,
.¢’, etc.; et lorsque, pour tous les points d'une de ces
courbes, ¢ par exemple, les plans tangents aux surfaces

(*) Pourquoi la nation ne fait-elle pas construire dans les environs
de Paris un observatoire-modéle, a Yinstar de celui de Pulkova? L’argent
ne nous fait pas défaut pour atteindre le niveau astronomique de la Russie.
Car nous consacrons bien des centaines de mille francs a publier des
vignettes, des dessins de catacombes, etc. Les sites ne manquent pas
non plus. On pourrait approprier a cette destination le chateau de Meu-
don, ou bien la tour dite des Anglais prés Clamart. L’exactitude moderne
exige que les murs du batiment soient abrités contre les commotions de
la ville; et méme ses habitants, les observateurs. Uranie est une déessc
jalouse, imposant a ses fidéles un culte assidu, exclusif, une adoration
perpétuelle.
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sont perpendiculaires entre eux, les surfaces elles-mémes
sont dites orthogonales. '

Remarque. Il peut se faire que I'orthogonalité ait lieu
pour une courbe et non pour I'autre. Ainsi, il est aisé de
former des équations de courbes qui se conpent perpendi-
culairement en un point, obliquement en un autre; telles
seraient , par exemple, les courbes d’équations y* = apx,
x*= aqy, toujours perpendiculaires a ’origine , et jamais
ausecond pointderencontre. Simaintenantonles fait tour-
ner autour d’une droitedeleurplan, on auradeux surfaces
derévolution, qui se couperont perpendiculairement sur le
paralléle décrit par I'origine, et obliquement sur le paral-
léle décrit par le deusiéme point d’intersection.

Trtorkme 1. Pour que les surfaces u =o ,v=o0 soient
orthogonales, il faut que les valeurs réelles x= ¢z,
y =1z, tirées de ces deux équations, rendent iden-
tigues 1’équation

(w;)-:i‘.‘_..d_v. +ﬂ.d_".+ﬂ.ﬂ’ : 0.
de dx " dy dy dz dz

Démonstration. Si 'équation (uv) = o se réduisait a
6(z) = o, la perpendicularité aurait licu aux points seuls
de l'intersection déterminés par I'équation 6 (z) = o; il
faut donc que z disparaisse pour que la perpendicularité
ait lieu sans discontinuité.

Exemples. Pour les surfaces

»2? 2 2 2 2 2
c=fredoime mBef et

’équation (uv) = o ne deviendra identique que moyen-
nant les conditions @ — @' = b — b= ¢ — ¢’, qui expri-
ment que les sections principales ont les mémes foyers.

Pour les surfaces

x a x? 2
u:zz-———-——J—zo, (!:22*——‘2——0 =o,
a

b a b
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Péquation (uv) = o ne devient identique que par les con-
ditions a — a'= b — b' = ¢/, qui expriment encore que
les sections principales ont les mémes foyers.

Trtoreme 1. Si les surfaces u= o, v = o sont ortho-
gonales, l’équation (uv)==o entraine cette autre d(uv)=o,
qui doit aussi devenir identique par l’élimination de x, y,
au moyen des équations u=o0, v=o0. .

Démonstration. Cela résulte de ce que I’équation
(uv) = o doit étre aussi satisfaite par x + dx,y -+ dy,
z +dz, en supposant les rapports de dx, dy, dz déter-
minés par les équations

du du du dv dv dv
_d +—dy+ dz_.o, Izdx+-¢1__ydf+cl_zdz_o’

mais, comme cela doit avoir lieu, quel que soit z, z doit
disparaitre du résultat.

Remarque. Si les équations u=o0, v=o0, (uv) =o,
d(uv) = o s’accordaient sans que les denx derniéres de-
vinssent identiques par 1’élimination de z, il faudrait en
conclure seulement que la perpendicularité des plans
tangents aurait lieu pour deux points consécutifs de I'in-
tersection.

Tutorime I11. 8i les deux surfaces u = o, v =osont
orthogonales, et que la condition d(uv)=o se partage
en ces deux autres ,

“ d du +dvd du dul du —o

d.z: 2 dzx dy " \dy + & \dz) =%

du , [(dv du , (dv du , (dv

—d | — —d|(— | +-—d|{—])=

z \dx) +dyd<dy) t & (dz> °
qui, ainsi que (uv) = o, deviennent identiques par 1’éli-
mination de x, y, les deux surfaces se couperont suivant
une ligne qui sera, poul chaque surface, une ligne de
courbure.

Démonstration. Jignore si ce théoréme remarquable
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a déja été donné, mais il se démontre en quelques mots: on
a les équations
“dv dv dv
—d. — — =
dx z+dydj+dzdz %
dv du dv du dv du
dz dz " dy dy v &

dv du dv du dv du
z4(z) +2;"(@) +g(z)=>

=0,

L’élimination de dv * donne immédiatement
d d d
du du du
d| — dz — —
(:u) (”J’ dy)
du du (7]
W) i) (& - %)

du du
+a(3) (Eo—Fe)=o

qui n’est autre que I'équation des lignes de courbure sous
la forme que lui a donnée M. Joachimsthal.

Remarque. Pour les surfaces orthogonales du second
degré données plus haut , on reconnait de suite que I'équa-
tion de condition d (uv) = o se partage comme il est in-
diqué plus haut; ainsi ces surfaces se coupent suivant des
lignes de courbure. Je reviendrai plus loin sur cette re-
marque.

Tutoreme IV. 8i deux surfaces orthogonales u=o,
v = o, se coupent suivant une ligne de courbure de la
surface u = o, lintersection sera aussi une ligne de
courbure de la surface v =o.

Démonstration. On a ici 'équation (A) du théoréme
précédent; puis les équations

%dx—i-j—;dy-i— Z—:dz =o,
du dv  du dv  de dv

R il v M



donnent
dv dv : dv
dz _ dy - dz )
du du , ~ du du , ~ du du
ds — Cde = —dy — 2=
dy TV & d= dz d dx & dy dz

ce qui réduit P'équation (A) a

dv‘d du +dvd du +dvd du —:
dr ~ \dx dy ~ \dy dz \dz )~ "’

par suite, on aura

dud dy dud dv +dud dv —0
dzr  \dz +dy dy dz dz) — "

De sorte que le théoréme III mentionne que l'intersec-
tion est une ligne de courbure pour chaque surface.

Tratortme V. Si trois surfaces, u=o0, v=0, w=o0,.
sont orthogonales deux a deux, les équations d(uv)=o,
d(vw) =0, d(wu) = o se partagent, comme il est dit
plus haut, et les trois courbes d'intersection passant par
le point m sont tangentes aux lignes de courbure re-
latives & ce point.

Démonstration. La comparaison des équations

dudx—i—d—u

dv dv
dr dy

dv
dxdx-}— z;d_y-+—d—zdz'._ o,

dy + :'{1; dz = o,
a celles-ci :
du dw du dw du dw
T I +Z-r2.; +E.(E=O’
do dw  do de_ do dw_
de dr " dy dy dz dz T 7’
montre que les dx, dy, dz relatifs 4 I'intersection des
. . dw dw
surfaces u = o, v =0 sont proportionnels a = @
dw
=

De méme, pour I'intersection des surfaces y = o, w=o0,

9
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Ia du du

dz’ dy’ dz’
pour 'intersection des surfaces w=o,u=o, les dx, dy,dz
do d v
dy dz

les dx, dy, dz seront proportionnels a —

. d
seront proportionnels a ——0 Cela posé, dans le

développement des équanons
d(uv)=o0, d(vw)=o0, d(wu)=o,

ou bien dans les équations
[ «(2)+5+(5) & «(%)]
e L e e
(& (%)~ 5 (5) + & «(Z)]
[£-48)-5-4(2) (2]
() () )]s

on reconnait de suite que 'on a
P=P, Q=0Q, R=R';
par suite
P+Q+R=o,
d'ou
R=o0o, P=o0, Q=0
On trouve, en eflet, pour P,

dv d?*u dw d*u dv dw d*u de dw
Gmdwds Vdpdydy T dr & dz
d*n (dv dw dv dw d*u [ dv dw dv dw
+m;<d:71;+d—,z) +J;.Tz<d—zd7+£a‘>
d*u [dv dw dv dw : '
T @ (@zﬂzzf?):“
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quant 3 P/, il ne différe de P que par le changement de

v en w, et réciproquement, d’ou il résulte que P =P’.
Puisque le partage des équations

d(w)=o0, d(vw)=o, d(wu)=o,

a lieu au point m, on en conclura, par le théoréme III,
qu’en ce point les intersections sont tangentes aux lignes
de courbure. Il n’est pas méme nécessaire que les trois
surfaces soient complétement orthogonales, il suffit que
les équations (uv) = o0, d (uv) = o, etc., aient lieu pour
deux points consécutifs.

Trutorkme VI. Sil’on a trois séries continues de sur-
Saces Sy, Sy, Sy, qui soient orthogonales deux & deux,
les intersections d’une surface déterminée s, , du premier
groupe, par deux surfaces déterminées s, , sy, des deux
autres groupes, seront précisément les lignes de cour-
bure de S,. ‘

Démonstration. C’est une conséquence immédiate du
théoréme précédent; car, si I'on nomme m, m', m’,...,
les points de rencontre des surfaces S; avec I'intersection
de s,, s,, on reconnaitra que les points m, m’, m’,...,
appartiennent auneligne de courbure des surfaces s, 5, (¥).

Ce théoréme est de M. Dupin (Dév. de Géom., t. 1,
p- 239). Pour l'appliquer a la détermination des lignes
de courbure, il faudrait, en prenant une série continue S,
contenant une surface donnée s, , déterminer les deux sé-
ries continues S,, S;, orthogonales a S, et, de plus,
orthogonales entre elles. C’est une question difficile sur
Iaquel]el auteur se proposait de revenir (Dév. de Géom.,
t. I, p. 330). Il me semble que le théoréme III doit étre

(*) Dans une Note du tome VIII, p. 382 de ces Annales, j’ai mal énoncé
et mal démontré cette proposition ; les théorémes V et VI serviront de recti-
fication.
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d’une application plus facile. M. Dupin a donné, pour
les surfaces du second degré, les trois séries continues
S, S;, S;; on lui doit aussi un théoréme particulier
pour déterminer les lignes de courbure des surfaces du
second degré : L'intersection de deux surfaces du second
degré, trajectoires réciproques orthogonales, est précisé-
ment, pour l'une et pour l’autre, une des lignes de leur
courbure. (Dév. de Géom., t. 1, p. 303.)

Or ce théoréme est un cas particulier du théoréme III.

Si I'on prend les deux systémes

x'l y? zz ‘tz y? z?
U= — =4 ——1=0 =— 4" 4t —1=0
a b c ’ ad b ?
x2 y? xﬁ ‘}/2 ,
U=2F— ——"y =22 ————c'=0
a b a ¥ ’

on reconnait de suite que les équations

d du dv+(lu dv_l_du do\_
di'dz " dydy dz )

duddv duddv duddu__
dz “\dz +d_y. dy +T &)=

(1) (%) () <,
dz dz dy dy) ' ds dz ’
sont les mémes en supprimant un facteur numérique
constant. La méme chose aurait encore lieu si, dans les
équations , I'exposant 2 était remplacé par V'exposant m;
mais il est probable qu’alors les conditions qui servent a
rendre (uv)= o identique, par I'élimination de x, y,
seraient généralement trop nombreuses pour s’accorder.
Voici les équations au moyen desquelles il sera facile
de discuter les lignes de courbure des surfaces du second
degré, en supposant que ces lignes doivent passer par un

point (a, 3, 7).
yz z?

x? ,
Pour la surface — "7 +—=1, et, par conséquent,
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2 2 2
‘l;_ 4;% + 26- =1, on prendra la surface orthogonale
2 2 2 . -
L % 1, il enrésultera

a—u b—u c—u

xi yi zl
a(a—u)+b'(b—u)+c(c-—u)

= o,

qui revient & (uv) = o; de 13,
a! ﬁ? 72
ala—u) TE(b—a)

;—(‘5_ “) =0,

et, par suite, en posant
2p=a +b4+c—a— p’._.-y",

on aura

a'.‘ 62 2

w— 200+ beZ +cat 4+ ab L =o,

a b c

d’on
w=pEyR;

mais, comme on a

2

Rep (el ?) .
=(a—p)—(b—a)(c—a)%
= (b= p)—(c—b)(a—1)F
=(c—p)—(a—c)(b—e)L,

on reconnaitra que R n’est jamais négatif; et si I'on
représente par R, = R, = R;, les trois derniéres formes
de R, on aura

a—-u::a—-gxg/l\—,,
b—u:b-—px\/ﬁ:,

c—-u:c—9¢\/f{:.
Ann, de Mathémat., t. X, (Juillet 1851.) 18



(274)

Jomets le reste de la discussion; il sera bon de consi-
dérer i part chaque espéce de surface. Comme les deux
surfaces orthogonales & la surface donnée sont ortho-
gonales entre elles, on voit que les lignes de courbure se
coupent a angle droit.

‘ZJ J-'l ﬁ}
Pour la surface 2z — — — -+ et ay= ~+ 5 en pre-

nant la surface orthogona]e

$7 y?
+ o+,
a —u —_u

22 =
d’ott
a‘l ) p?
a(a— u)+ b.(b—u)

+1=o0,

etposam
* 20=a+b+ 2y,

on aura
u -—9pu !-ab+b——+—a%:o;
de la
) . w=p + YR,
puis
R:p’—(ab-{»—b———,—a—l—g\)
=(a—p)+(a—0b)=
=(b—-9)’+("—-")p—,:7
ou

R=R, =R,
et, par suite,
a—uw=a—pFVYR, b—u=b—px

Dans la discussion, qui ne présente pas de difficulté, il
sera bon de considérer a part chaque espéce de parabo-

loide.
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NOTE SUR UNE CERTAINE EQ‘I]A’I:!ON NUMERIQUE DU SIXIEME
DEGRE;

Par M. A.-J.-H. V.

A la page 89 du tome X (mars 1851) des Nouvelles
Annales, M. Prouhet démontre 1a non-réalité des racines
de deux équations empruntées au Mémoire d’un illustre
astronome.

Je vais appliquer au second des deux exemples (celui
du sixiéme degré) la méthode Budan-Fourier, telle qu’elle
a été modifiée dans le Journal de M. Liouville et dans les
Mémoires de la Sociétédes Sciences, etc., deLille. (L’exem-
ple du quatriéme degré est trop facile pour nous arréter. )

Toute la démonstration résulte de I'inspection du ta-
bleau suivant, dont je vais expliquer la formation et les
conséquences.

—12797
-+

—25857
-+

—12797

La ligne premiére contient les coeflicients de 1’équation
proposée pris a rebours, et changés de signe de deux en
18.
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deux, parce qu’il n’y a lieu de chercher que des racines
négatives.
La ligne deuxiéme est formée par I'algorithme suivant.
Si I'on nomme A, B, C, D, etc., les nombres de la pre-
miére ligne, et A/, B/, C/, etc., ceux de la seconde, ona

AA=A+B+ C+ D+ E4+ F+ G

B = B+2C+3D+4E+ 5F+ 6G
C' = C+3D+6E+4+10F 415G
D= D4+ 4E+10F+20 G
E'= E+ 5F+15G
F'= F+ 66G.
G = G

tous calculs de la plus grande simplicité, de la derniére
facilité, d’une absolue généralité.

Les nombres de la troisi¢me ligne, sous-entendus parce
que 'on n’a besoin que de leurs signes, et que ces signes
sont tous des -, seraient formés des nombres. de la
deuxié¢me ligne, par-le méme algorithme qui a servi a
tirer ceuzeci des nombres de la premiére ligne. '

Cette premiére partie du calcul achevée, j’en conclus
que les racines cherchées, supposées réelles, sont néces-
sairement comprises, quatre au plus entre o et — 1, et
deux au plus entre — 1 et — 2, autant que de variations
perdues en passant de chaqueligne a la suivante.

Je passe & la seconde partie du calcul. La quatriéme
ligne se compose des nombres de la premiére ligne pris
rebours. (Ce sont donc les coefficients de 1’équation.)

La cinquiéme ligne se tirerait de la quatriéme au moyél”
del’algorithme ; mais un coup d’ceil suffit pour reconnaitre
qu'il n’y aurait que des signes .

Donc, 1° les quatre racines supposées entre o et — 1,
sont toutes les quatre imaginaires.

. La sixiéme ligne se compose des nombres dela deuxiéme
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ligne pris a rebours; la septiéme se tirerait de la sixiéme
par l'algorithme ; mais on apercoit sur-le-champ que I'on
n’aurait que des +-.

Donc, 2° les deux racines supposées entre — 1 et — 2,
sont imaginaires.

Donc, enfin, les six racines sont imaginaires.

N'est-il pas surprenant qu'une méthode de séparation
des racines aussi simple, aussi facile, aussi générale, n’ait
pas obtenu la moindre mention des savants auteurs qui
se sout occupés, dans ces derniers temps, de la théorie
des équations (*).

EXERCICES NUMERIQUES SUR LA VIS A FILET CARRE,
AVEG FROTTEMENT.

1. Notation :

P = puissance,
Q = travail résistant = 6000%,
f = coefficient du frottement, )
R = bras du levier i extrémité duquel agit la force P = 1™,5,
» = rayon du filet moyen dela vis = o™,04,
% = pas de la vis = 0,016,
n = 3,1416,

;= travail moteur développé par la force P,

Ty= travail consommé parle frottement = T,— Q = Tn— 6000.

(*) On profite de Yoccasion pour prier le lecteur de biffer une Note
qui se trouve dans le Journal de M. Liouville, tome III, page 239, et
Mémoires de la Société de Lille, année 1838, 3¢ partie, page 9.
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2. Formules :
_r _htazarf
P_I_invrr—/z]’
2nr

Tn=P. R
Voir Sonner, Notions de mécanique, page 191. Dans

la formule F = —;- P ib tang (i + ¢), il faut remplacer F,

h
P, &, tang i, tang ¢ par P, 2 Q, R, 2—;:—;,f, etl'on trouve
la formule donnée ci-dessus.

3. Tableau des valeurs de P et T, correspondant a
deswaleurs données de f :

Seeiiil 0,04 0,06 0,7 0,08
P..... 16¥,62823584 18,2439648 21,48162176 23,10355776
Tw.... 9794,86232 10746,60746 12653 ,741297 13613,26
foouenn 0,10 0,12 0,14 0,15
P..... 26,3536648 29,61211184 32,8789312 34,5154904
Tm.... 15523,62615 17443,01448 19367,33442 20331, 34961

REPRESENTATION DES ANGLES POLYEDRES (*).

Représenter :

1°. Un angle diédre convexe par rapport au plan hori-
zontal et compris entre deux faces triangulaires ;

(*) Ces questions sont tirées de Vexcellent ouvrage intitulé : Notes et
Croquis de Géométrie descriptive, par M. Bardin, ancien éléve de VEcole
Polytechnique, professeur a PEcole d’artillerie de Metz ; 2¢ édition, 1839,
Nous parlerons plus amplement de cette production, vade-mecum des
professeurs de géométrie graphique.
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2°. Un angle diédre concave par rapport au plan hori-
zontal et compris entre une face triangulaire et une face
quadrangulaire;

3°. Un angle triédre droit;

4°. Un angle tri¢dre, ayant un angle diédre droit.

5°. Un angle triédre, ayant un angle diédre birectangle;

6°. Unangle triédre, ayant un anglediédre trirectangle;;

7°. Développer un angle triédre et mesurer I'inclinai-
son des faces;

8°. Un tétraédre; construire les intersections des arétes.
avec les plans de projection;;

9°. Construire une pyramide, connaissant : 1° sa hau-
teur; 2° sa base (e, b, ¢, d); 3° le plan de cette base;
4° la projection du sommet sur ce plan;

10°. Un prisme hexagonal, la base étant située sur le
plan vertical.

SOLUTIONS DES QUESTIONS 236 ET 234

{voir t. X, p. 183) ;

Par M. A. THIOLLIER,

Eléve du lycée Charlemagne; classe de M. Orcel.

Question 236.

. Sixz*+ 2ay® estuncarré, x* + ay® est la somme de
“deux carrés.
En effet, soit x* + 2 ay® = z?,

_z_z’hx’ﬁ(z+x)(z—x)'
Y= T 2a

Or on peut toujours supposer z + x = 2 am, m étantquel-
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conque; alors on a
y’ﬁ 2 am® — 2 mx,
par suite,
T+ ay'=zr'4-2a*m*— 2 amzx = (2 — 2 amx + a’ m*) 4 a*mn?,
ou
2 4 ay*==(xz — am)*® + (am)*.
Donc x* + ay* est la somme de deux carrés. C. Q. F. D.

Question 234.
Soit I'équation
(x —a)(z—a;)(x— a)... (x — azn_,)
+ b (x — a)) (z—a) (x—ag)... (x —an)=o0,
b est un nombre positif; m est un nombre entier positif;
les 2 n — 1 différences
A — Q34 Ay — A3y Uy — A4y Q= Q59.0.y g = A3y

sont’ positives; les n racines de I'équation seront réelles
et comprises entre a, et a,, a; el a,, @; €t agy... , Az,
et a,,. (RicueLor.)

D’aprés la condition

a,;>Sa, >a, >a; >a;. .. < A < Ay,
sil'on donne & x les valeurs
Ay Ayy Qyy Ary-00y Qopy,y

la premiére partie de I'équation sera nulle, et si nous
supposons que n soit pair, la fonction prendra d'abord le
signe + pour x = a,, puis le signe — pour x =a,, et
ainsi de suite alternativement. La fonction prendra les

signes
+ - + — 4. =

correspondant a

X =dyy A3y A3y Ty Aogyes ey Ay
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il n'y a donc qu’une seule racine comprise entre chacun
de ces n nombres.

Si, maintenant, on donne a4 x les valeurs a,, a,, a,,
@g,...y @y, , CE Sera, au contraire, la seconde partie de
I'équation qui deviendra nulle, et le premier terme sera
négatif pour-x = a,, positif pour x = a,, et ainsj de
suite alternativement. La fonction prendra les signes
correspondant a

T =a,, a;, G5, Gy, Ay..., Q243

on peut donc écrire ainsi le tableau des variations de la
fonction
T==a,, a,, U3, Qiy Ay, Agy Ary Agyes.y Aop_iy Aany

S(x) 4+, —, —, 4, 4y — —y ey, —y A
La fonction change n — 1 fois de signe ; par suite, puisqu’il
doit y avoir au moins une racine entre deux nombres
donnant des résultats de signes contraires lorsqu’on les
substitue dans la fonction, il y aura une racine et une
seule entre a, et a,, a;s el a,, as €L gy..., As,_q €L ay,,.
C’est ce qu'il fallait démontrer.

Si I'on supposait 7~ impair, on tomberait identique-
ment sur le méme résultat; le raisonnement est absolu-
ment le méme : il suffit d’observer que si; pour x =aq,
(p étant compris entre 1 et 2n), la fonction prend le
signe + dans le premier cas, elle prendra le signe — dans
le deuxiéme, et réciproquement.

Le méme éléve énonce ct démontre ces deux théorémes
de géométrie, dont le second est un corollaire du premier :
Soientune premiére sphéredonnéeetunesecondesphére
passant par le centre de la premiére sphére; la zone de
cette seconde sphére, interceptée par la premiére, a une
aire constante, quel que soit lerayon de la secondesphére.
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Soient deux sphéres données de méme centre, et une
troisiéme sphére passant par ce centre; la zone a deux
bases, interceptée sur cette troisiéme sphére par les deux
premiéres, a une aire indépendante du rayon de la trotr-
sieme sphére. '

Note. M. Ed. Terré, éléve de la méme classe, adresse le lieu. géomé-
triqn'e d’une tangente commune a deux cercles dont les centres sont fixes,
et dont les rayons sont liés par une équation linéaire. Le lieu est un sys—

téme de quatre cercles. Nous donnerons prochainement ce beau travail,
que son étendue nous oblige d’ajourner.

BIBLIOGRAPHIE.

ComPLEMENT D’ALGEBRE, contenant les matiéres exigées,
suivant le programme ofticiel, pour l'’admission a
'Ecole Polytechnique, et qui ne se trouvent pas dans
la cinquiéme édition du T'raité élémentaire d’ Algébre,
de MM. Choguet et Mayer; par M. Choquet, docteur
& sciences, professeur de mathématiques. In-8°, de
o pages. Paris, 1851. Bachelier, libraire. 1 fr. 50 c.

Nous avons un budget ordinaire, extraordinaire, sup-
plémentaire, complémentaire; et le Ministre des Finan-
ces nous a dit récemment que les quatre adjectifs se
réduisent 3 un seul impératif : Payez. Cette régle de
grammaire est d'un usage assez fréquent, méme hors fi-
nance. Ainsi, nous jouissons d’une certaine géométrie des-
criptive, ordinaire, extraordinaire (*), supplémentaire,
complémentaire, et les quatre adjectifs équivalent a un
seul impératif : 4chetez. Nous pouvons méme espérer,

(*) Et trés-extraordinaire. On y voir surgir des points=points, des
points-surfaces, des points-volumes; des coniques plancs du quatriéme
degré; des théorémes quasi vrais, méme nullement vrais et pourtant
rigourcusement démontrés; enfin, une géométrie tératologique.
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si le régne du programme dure (et quel régne peut se.
flatter de durer), de voir toutes les sciences sujettes a

examen revétir les quatre formes réductibles 4 une seule.

Dans cette prévision , nous croyons utile (mot sacramen-

tel) d’établir d’avance la distinction entre le supplément

et le complément. Lorsqu’a un ouvrage achevé on ajoute

de nouvelles théories, non contenues dans V'ouvrage, et
pourtant nécessaires, on fait un supplément. Sil'on se
borne a développer, 4 mieux expliquer des théories déja
exposées dans 'ouvrage, on fait un complément.

Cette distinction admise, nous crpyons que le Complé-
ment actuel est un supplément, car on y trouve les princi-
pes du calcul aux différences, une méthode de résolution
des équations transcendantes, uneméthode d’interpola-
tion, etc.; théories qui ne se trouvent pas dans le Traité
élémentaire. Peu importe le titre, I'essentiel est que I'au-
teur, vétéran dans I'enseignement examinatoire, montre

_ici les qualités que vous savez : clarté, méthode, rédaction,
objections prévues et résolues, exercices numériques bien
choisis , nettement calculés et bien discutés. Pour résoudre
les équations, on a recours a la méthode Budan, qu’un
travail remarquable de M. Vincent a rendue rigoureuse.
Sans ce travail, la méthode est incompléte. I est vrai
qu’aujourd hui la rigueur est décriée; on soumet les ma-
thématiques & I'empire des & peu prés. Excellente lo-
gique! Voici d’ailleurs une de ces équations :

4Q

2
x* — 0,00000504 %—2 z'—o ,08.26 % Z —0,00222 o= =0,
L = longueur d’une conduite rectiligne de diamétre uniforme
= 757%, ‘
Q = volume d’eau qui s’écoule en une seconde = o™™,08g,
H = hauteur de colonne d’eau équivalente a la pression a I'o-
rifice = 12, ST
x = lc diamétre inconnu.
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Substituant ces valeurs, I'équation devient

x5 — 0,000464 Fi—o ,000654 z— 0,01331 = o.

L’auteur emploie une méthode d’approximation qui
serait trés-abrégée en faisant emploi des logarithmes de
Gauss ; on trg)u}re finalement 0,4306 > x >>0,4305.

Comment, avec tous ces expédients, calculer les ra-
cines imaginaires, qui occupent de plus en plus une place
réelle dans la science? Ils n’en savent rien et ne s’en
inquiétent pas. Les équations du cinquiéme degré sont
spécialement signalées par le programme , parce qu'elles
servent & supputer le diameétre d'une conduite. Applica-
tion utile! ce mot décide tout, ferme la bouche a tout :
c’est le sans dot de M. Harpagon.

Le programme donne I'excellent conseil de s’occuper
de la résolution numérique des équations transcendantes ;
ce sont, en_effet, les équations qu’on rencontre le plus
fréquemment. Ces racines ne peuvent généralement s’ob-
tenir que par le théoréme de Fourier; aussi ce théoréme
sert de base au Mémoire couronné de M. Stern, sur la
résolution numérique de ce genre d’équations : Mémoire
dont nous présenterons I'analyse a nos lecteurs. Ce théo-
réme n’étant pas mentionné dans le programme , M. Cho-
quet a recours a des procédés, a des expédients : il choi-
sit, pour exemple ,.le probléme dit de Kepler, renfermé
dans I'équation

t—esinu=—2yg,

u = anomalie vraie, inconnue, .

e == excentricité = 0,5; ce qui se rapporte a une comete.

¢ = anomalie moyenne = 38°27’ 18”,7.

Encore une application utile, recommandée.

Dans un Avertissement , 'auteur préconise les procédés
rapides, et considére les régles générales comme une
géne pour le calculateur; considération trés-désinté-



( 285 )

ressée , car elle rend superflu et trés-génant le Traité élé-
mentaire d’ Algébre, de I'auteur, presque entiérement
consacré aux régles générales ; que, pour cette raison,
J’ai toujours considéré et considére encore comme un de
nos meilleurs ouvrages en ce genre. Il est le premier qui
nous ait fait connaitre le théoréme de Sturm et la véri-
table régle de Descartes, avec toutes ses importantes con-~
séquences , qui n’ont pas échappé a 'ostracisme de 1850.

On sait avec quel enthousiasme, tenant de I'époque,
le moyen age a accueilli apparition de I'algébre, de la
science cossique, du divin algorisme. Les écrivains n’en
parlent qu’avec les transports de la plus vive admiration.
Pourtant, dans un memorandum officiel, qui occupe cent
quinze colonnes du Moniteur, on exprime le regret de ne
pouvoir faire disparaitre I'algébre de I'enseignement (¥).
En plein dix-neuviéme siécle! ou allons-nous?

A Table of anti-logarithms ; containing to seven places
of decimals, natural nombers, auswering to all loga-
rithms from .00001 to .99999, and an improved Table
of Gauss’s logarithms, by wich may be found the loga-

rithms to the sum or difference of two quantities whose

(*) « L’algébre n’est pas, comme V’arithmétique et la géométrie, indis-
» pensable a tous les hommes. Ce n’est qu’avec une grande réserve qu’on
» doit Pintroduire dans I’enseignement général de la jeunesse, et nous
» I’en verrions méme disparaitre sans regret, les logarithmes exceptés, si
» cette simplification devait profiter a I’étude de Parithmétique et de la
» géométrie. » (Moniteur, 12 janvier 1851; supplément C, page 11, pre-
miére colonne, §IV.)

C’est au contraire P’algébre qui simplifie tout, tellement qu’il y aurait
avantage d’en introduire Vécriture dans les institutions des demoiselles :
rien n’est facile comme V’algébre, disait Lagrange. On n’excepte que les
logarithmes. Décidément , parmi les maladies en ite, telles que la gastrite,
la cardite, la bronchite, etc., il faut aussi classer la logarithmite. Elle
est endémique dans la contrée des programmes.
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logarithms are giwen ; preceded by an Introduction,
containing also the history of logarithms, their con-
struction, and the various improvements makethereon
since their invention. Table d’anti-logarithmes ; conte-
nant les nombres naturels avec sept chiffrm, correspon-
dant 4 tousleslogarithmes,depuis .00001 jusqu’a .99999,
etune Table perfectionnée des logarithmes de Gauss, an
moyen desquelles on peut trouver les logarithmes de la
somme ou de la différence de deux quantités dont les lo-
garithmes sontdonnés; précédéed’ uneIntroductioncon-
tenant P'histoire des logarithmes, leur construction et les
divers perfectionnements, depuis leur invention; par
M. Herschell E. Filipowski. Londres, 1849; in-8°,

de xvi-220 pages.

Le but final de tout calcul par logarithmes n’est pas de
trouver des logarithmes de nombres, mais des nombres
mémes. S'il est donc important d’avoir les logarithmes
des nombres, il est non moins important et méme davan-
tage d’avoir avec exactitude les nombres correspondant
aux logarithmes. Les Tables ordinaires ne satisfont qu'im-
parfaitement et laborieusement 4 ce besoin a I'aide des
parties proportionnelles. Le célébre Wallis (J.) écrivait
déja en 1685 : Cui ut obvietur incommodo, desiderandus
videtur Canon anti-logarithmicus; in quo, positis lo-
garithmis continuo ordine sequentibus, ab o ad 10000,
adscribantur numerd naturales his respondentes. Eo fine
ut qua facilitate ex canone quem habemus pro dato nu-
mero habetur logarithmus ; eadem ex canone sic conden-
do, pro dato logarithmo habeatur numerus (Algebra,
page 63). Il ajoute qu'il ignore si Thomas Harriot a com-
mencé une telle Table, mais que les papiers de Harriot
ont été remis & Walter, Warner qui a commencé ou
achevé le travail, aidé par le célébre J. Pell, de 1621
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a 1630; celui-ci annonga & Wallis que le travail était
entre les mains de Richard Busbey, docteur en théologie
etdirecteur de I’Ecole de Westminster, etcedernier promit
a Wallis de publier, 4 condition que Wallis s’engageat a
remplacer Pell en cas de mort. Wallis accepta, et Pell étant
mort en 1685, I'édition n’étant pas méme commencée,
tout en resta la. Un spécimen de Table anti-logarithmique
a été inséré par Long dans les Transactions philoso-
phiques, année 1714. Cette petite Table ne contient que
soixante-douze logarithmes. C'est James Dodson (*) qui, le
premier, a publié, en 1742, en un volume in-folio, une
Table de logarithmes se succédant suivant I'ordre naturel,
avec cinq figures décimales , depuis .00001 jusqu'a .99999
et en regard les nombres correspondants avec onze chiffres.
Ces Tables trés-rares sont incommodes a manier et rem-
plies de beaucoup de fautes dont une partie a été indiquée
par Pauteur méme. M. Filipowski, jeune Polonais rési-
dant 2 Londres, a eu ’heureuse idée de donner une nou-~
velle édition de ces Tables, corrigée et sous un format
portatif in-8°; les logarithmes sont avec cinq chiffres et
les nombres correspondants avec sept chiffres, et les loga-
rithmes vont de .00001 4 .99999. Une Table de différences
qui procéde par centiémes permet de trouver les nombres
correspondant i des logarithmes ayant septchiffres, ce qui
est suffisant pour la pratique. Chaque page contient cing
cents résultats distribués en dix colonnes, chacune de cin-
quante lignes. De sorte que les cinquante premiers nom-
bres de chaque centaine sont sur la page b, et les cinquante

derniers sur la page en regard a; ’argument contient

(*) Le méme a publié the Calculator, in-4°, 1747, pour abréger les
&lculs d’arithmétique; et e Mathematical Repository; en 1756 il a donné,
dans des le¢ons publiques, la premiére idée d’une Société d’assurances
pour la vie et la survie; cette Société a été établie vers 1765.
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quatre chiffres, et le cinquiéme est en téte de la colonie;
quelquefois, le septiéme et dernier chiifre a droite d'un
nombre est remplacé par la lettre italique v; cela indique
que ce chiffre est 5, mais douteux, parce qu'il n’est de-
venu 5 qu’a raison de ce que le huitiéme chiffre est 5 ou
supérieur & 5. On évite ainsi le point que M. Babbage
place sur les chiffres forcés.

On comprend que les Tables peuvent aussi servir, mais
moins commodément que les Tables ordinaires, & trouver
le logarithme d’un nombre donné. Les calculateurs font
donc bien de se munir des deux Tables.

Logarithmes de Gauss. L'Algébre de M. Finck (¥)
est, a ma connaissance, le seul ouvrage francais ou I'on
explique ces logarithmes, qui commencent i se répandre
en Allemagne ct en Angleterre. On peut s’en servir non-
seulement pour abréger les calculs trigonométriques,
mais méme pour chercher les racines numériques des
équations par de rapides approximations. Au moyen de
cette Table, connaissant les logarithmes de deux nombres,
on peut trouver immédiatement, soit le logarithme de la
somme des deux nombres, soit le logarithme de leur dif-
férence, sans avoir besoin de connaitre ces nombres eux-
mémes. C'est en 1812, dans la Correspondance de Zach
(part. XXVI) quel’illustre astronome a publié cette Table
pour la premiére fois avec cinq décimales; il dit : « L’ob-
» jet de cette Table est de faciliter les procédés de calcul
» qu’'on rencontre fréquemment en astronomie. Car au
» lieu d’une triple, ou, au moins, d’'une double entrée
» dans les Tables ordinaires de logarithmes , le méme ré-
» sultat peut étre obtenu au moyen de notre Table ou par

.
) Eléments d’Algdbre, 2° édition, 1846, page 518; c’est le Traité le
plus complet sur cette matiére.
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» une seule inspection. Autant que je sache, cette idée
» appartient & Leonelli ; son dessein était de calculer une -
» telle Table avec quatorze déeimales, ce qui me parait
» inapplicable. Il est 4 désirer qu'on construise une telle
» Table d’'une étendue dix fois ou cent fois plus grande,
» et avec sept décimales; ce serait un supplément im-
portant a joindre aux Tables ordinaires. » Cette Table
consiste en trois colonnes désignées respectivement par
A, B, C. La Table A vade 0,0 & 2,0 avec trois décimales ,
de 2,0 4 3,4 avec deux décimales, et de 3,4 & 5 avec
une décimale. Soit ¢ un nombre de cette colonne A,
logarithme de a'. Alors le nombre correspondant dans la

colonne B est log (1+ %), et le nombre de la colonne C

est log (1 + a'), de sorte qu'on a toujours C = A + B;
supposons maintenant qu'on ait les deux logarithmes
log m, log n, sans connaitre ni ;2 ni 7, et qu'on veuille
trouver log (m +- n) au moyen de la Table. On cherche,
dans la colonne A , le nombre a égal 4 log m —log n, donc

a = %; la seconde colonne B donne log ( 14 i—) ; ajou-

tant ce nombre i log m, on obtient log (m + n), oubien
encore, prenant le nombre correspondant dans la colonne

m . %
C,onalog (1 + ;) ; ajoutant ce nombre a log n, on

obtient encore log (m + n). On voit comment il fau-
drait procéder pour obtenir log (m — ), ce qui fournit

. . m . ’
quatre solutions. Si log — surpasse 0,301030, il faut le

. m . .
chercherdanslacolonneC; silog —est moindrequeo,30103,

il faut chercher dans la colonne B. Ona joint aux Tables
ce qui est nécessaire pour les interpolations, -
En 1817, M. F.-A. Matthiesen a publié, i Altona, une

Ann. de Mathémar., t. X, (Aott 1851.) 19
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semblable Table avec sept décimales; une autre a été pu-
bliée 2 Londres, en 1849, par Peter Gray avec six déci-
males. Dans une nouvelle édition des Tables de Véga, on a
inséré les Tables de Matthiesen, mais encore perfection-
nées. Enfin M. Filipowski a donué a ces Tables une nou-
velle forme qui donne aux deux opérations log (a + 4) et
log (@ — b) plus d’uniformité et plus de facilité. Il nous
serait difficile de faire comprendre la disposition imaginéc
par I'ingénieux auteur sans qu’on et ses Tables sous les
yeux.

L’ouvrage est terminé par un Appendlce publiéen 1850,
ct contenant une Table d’annuités 4 3 pour 100 pour
trois tétes, ave: toutes les combinaisons d’age de cinq a
cent années, d’aprés les Tables de mortalité de Carlisle.
M. de Morgan, célébre professeur a I'Université de Lon-
dres, a donné son approbation a ouvrage de M. Fili-
powski. Une telle autorité dispense de tout autre éloge.
Le mérite essentiel de Tables consiste dans I'exactitude;
qualité que le long usage, par beaucoup de calculateurs,
peut scul constater. L’habileté de M. Filipowski permet
d’espérer que son ceuvre si utile soutiendra cette épreuve.

Trarré pe Triconomtrrie; par M. J.-A. Serret,
examinateur pour ’admission a I Ecole Polytechnique.
Paris, 1851; in-8” de 215 pages et deux planches.
Bachelier, libraire. Prix: 3 fr. 50 c.

Ceute Trigonométrie cst destinée a trois classes de lec-
teurs : 1° aux candidats pour I'Ecole Navale et I'Ecole
de Saint-Cyr; 2° aux candidats pour, I'Ecole Poly-
technique; 3° a ceux qui veulent apprendre les Mathé-
matiques. C’est surtout a cette derniére catégorie que
nous recommandons l'ouvrage, comme le meilleur qu'ils
puissent étudier sur cette matiére. Le célébre géométre a
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mis -dans I’examen des fonctions circulaires, le méme
esprit de sagacité qu’il a porté naguére dans ses travaux
sur les fonctions elliptiques. Ainsi le livre I** (1-28)
traite des fonctions de lignes qui se rattachent au mouve-
ment d'un point sur une circonférence, dans un sens et
dans le sens opposé. L’auteur fait ressortir avec soin
Vamplitude et la périodicité de ces fonctions, propriétés
qui occupent aujourd’hui une place si importante dans
les transcendantes d’'un ordre intégral plus élevé ; car
on sait que toutes les transcendantes ont pour origine
des intégrales possibles, mais non algébriguement pos-
sibles. Rattacher les sinus, cosinus, etc., 4 un mouvement
de va-et-vient est une idée newtonienne. Le grand homme
est le premier qui ait indiqué la vraie naissance de la
quantité, en la considérant comme le résultat d’un flux
continuel avec des witesses variées, variation de concep-
tion innée et qui contient la véritable métaphysique du
calcul infinitésimal auquel Leibnitz a assigné son vrai
algorithme. Le point initial des espaces est d'un choix
arbitraire; mais le choix étant fixé, les signes donnent
aux quantités une valeur de position forcée et non pas
conventionnelle, comme on le dit quelquefois. Dans
I’échelle généiique de la quantité, la place du zéro est
arbitraire; mais les quantités en decé et au dela sont
nécessairement de signes opposés. D’ailleurs, la méthode
cartésienne consiste essenticllement dans I'application
des théories équationnelles aux affections géométriques;
dans une équation, les grandeurs relatives des racines ne
changent pas en remplacant I'inconnue par une autre
inconnue quelconque augmentée d'un nombre quelcon-
que; de méme la position respective des points ne change
pas par un déplacement d’origine, et c’est ce qui fait de
Pinterprétation des signes une proposition apodictique,
19.
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indépendante de notre volonté, nullement convention-
nelle.

Le livre II (29-68) renferme I’addition, la multiplica-
tion et la division des fonctions circulaires. La discussion
des racines, leur raison d’étre est faite avec beancoup de
soin et avec une extréme clarté; bonne préparation pour
des études semblables sur les fonctions elliptiques. On dis-
tingue le'rapport de I'arc a la circonférence et le rapport
de I'arc au rayon, distinction utile pour établir I’homo-
généité des formules. 11 est i regretter que I'on ait omis
le calcul et 'algorithme des différences et des différen-
tielles des fonctions circulaires ; ce calcul appartient aux
¢éléments, il est méme tacitement employé dans le livre
suivant, ou les coefficients différentiels (quotients différen-
tiels des Allemands) portent pour masque le mot limite.

Le livre III (69-96) est consacré a la construction des
Tables des lignes trigonométriques et de leurs logarithmes.
Les applications numériques et bien choisies familia-
risent promptement avec l'usage des Tables dites de
Callet. La Trigonométrie rectiligne est enseignée, théorie
et pratique , dans le livre IV (97-138). Nous signalerons
la question suivante (page 131) assez intéressante: Quel
doit étre le rayon d’un cercle pour que la différence
entre un arc de 10 métres et sa corde soit plus petite que
1 millimétre? Le rayon doit étre égal ou supérieur a
250 métres ou ;; de lieue. La propriété segmentaire
anharmonique est le sujet d’'un probléme.

Le livre V (139-176) contient la Trigonométrie sphé-
rique : on démontre la généralité des trois formules fon-
damentales. Nous préférons la démonstration si simple
qu'on doit 3 M. Foucaut, aujourd’hui éléve a I'Ecole
Polytechnique (tome VIII, page 58). Le théoréme de
Legendre, relatif a la réduction du triangle sphérique au
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triangle rectiligne, est clairement développé, mais pas
avec la rigueur que lui a donnée Gauss. Une application
numérique de ce beau théoréme est ici & désirer.

Le livre VI et dernier (177-215) est intitulé : Complé-
ment de la Théorie des fonctions circulaires. On y lit
une belle exposition des théorémes de Cotes et de Moivre,,
fondée sur les propriéiés des expressions complexes
a -+ bi, que MM. Gauss et Cauchy ont rendu d’un em-
ploi si universel. Peut-ttre qu'on aurait dii donner la
résolution trigonométrique de I'équation x'" —1=o, et
indiquer quelques propriétés qui lient les fonctions cir-
culaires 4 I'arithmologie; liaison qu’on rencontre aussi
dans les fonctions elliptiques, et qui existe probablement
aussi pour les fonctions abéliennes.

Les séries principales relatives aux fonctions circu-
laires terminent cet ouvrage, digne de l'auteur de I' 41-
gébre supérieure (*), qui occupe un rang si haut dans ’en-
seignement. Le plus bel éloge que nous puissions en faire
est de dire que la marche suivie par M. Serret est au
niveau de Détat actuel et aux antipodes de la marche
prescrite par certain document officiel que nous ne voun-
lons pas nommer.

La science est un édifice & plusieurs élages. Chacun
doit présenter des degrés pour monter a I'étage supérieur ;
conditions que doit remplir tout ouvrage légitimement
classique. C’est une qualité qui distingue éminemment
cette Trigonométrie ou plus exactement cette Théorie
élémentaire des fonctions circulaires.

{*) Prix: 7 fr. 50 c. Bachelier, libraire.
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METHODE NOUVELLE POUR CALCULER RAPIDEMENT LES LOGA-
RITHMES DES NOMBRES ET POUR TROUVER LES NOMBRES
CORBESPONDANT AUX LOGARITHMES; précédée d'un Rap-
port fait & I’Académie des Sciences, au nom d'une
Commission composée de MM. Liouville, Binet,
Cauchy rapporteur. Par M. Philippe Koralek, ancien
éléve de I'Ecole Polytechnique de Vienne en Autriche.
Paris, 1851; in-8° de 59 pages. Bachelier, imprimeur-
libraire. Prix : 2 francs.

Dans cet opuscule, on apprend a calculer avec sept
chiffres décimaux exacts le logarithme d’un nombre entier
compris entre un et dix millions, et i faire 'opération in-
verse, en moins de minutes qu'on ne met ordinairement
de quarts d’heure. C’est une sorte de locomotive attachée
4 la construction des Zables. Est-ce au moyen d'une nou-
velle théorie? Non. L’auteur a-t-il découvert quelque
nouvelle formule? Non. Fait-il emploi de quelque for-
mule connue, mais peu répandue? Non. II se sert de la
formule la plus vulgaire, savoir:

2 3 4
log(1+x)=M(.z——‘f2—+z——x—+ )

11 fait sur cette formule une observation tellement simple,
que chacun peut se croire légitimement capable de faire
cette observation. Et cette observation si simple vous
permet pourtant, & I'aide de ces cinq valeurs: log 2, log 3,
log 7, log 11, log 13, de calculer en moins de six minutes
le logarithme d’un nombre quelconque pris dans Pinter-
valle ci-dessus indiqué. Quelle est cette observation? Je
vous engage a la lire dans 'ouvrage méme. Les profes-
seurs y trouveront une méthode qu'ils voudront enseigner
a leurs éléves; et ceux-ci y trouveront des exemples de
calcul logarithmique. :

Le programme exige le calcul de vingt logarithmes.
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D’aprés la méthode usitée, il faut cing heures de travaily’
deux heures suffisent d’aprés la nouvelle méthode. Mais
P'utilité de la seconde partie de 'ouvrage nous semble en-
core plus grande : une Table, placée 4 la fin, permet de
trouver les logarithmes avec vingt-sept chiffres décimaux ;
ce qui est d'un immense avantage en beaucoup d’occa-
sions. Car on sait que nos Tables & sept figures décimales
sont loin de satisfaire & tous les besoins du calculateur.

11 est i espérer que la méthode de M. Koralek se répan-
dra promptement. La modicité du prix et la simplicité des
raisonnements mettent 'ouvrage a la portée intellectuelle
et financiére de tout le monde.

Puisse I'auteur nous gratifier bient6t de sa méthode
expéditive pour calculer les logarithmes des lignes trigo-
nométriques.

Les Tables de Callet sont toujours stéréotypées; mais
la science ne se préte pas a un trop long stéréotypage.
Voici des améliorations trés-désirables.

1°. Indiquer, par un signe de convention, si les loga-
rithmes sont par excés ou par défaut, a I'instar des Tables
de Babbage. )

2°. Mettre les lignes trigonométriques naturelles sur
le verso et les logarithmes correspondants sur le recto
de la page suivante, comme dans les Tables de Hutton.

3°. Ajouter les sinus-verses, lignes qu’on rencontre si
souvent dans les machines dynamométriques.

4°. Ajouter les logarithmes de Gauss, d’une application
si commode dans la résolution des équations numériques.
On les trouve dans les Tables stéréotypées de Vega,
éditées en 1849, par M. le D" Hulse, & Leipzig (*).

5°. Ajouter les renseignements nombreux qu’on trouve

(*) Ces Tables ne cotitent que 15 francs. Une régle i calcul cotte ; francs.



(296 )
dans ces derniéres Tables , sur les nombres premiers, sur
les puissances des nombres, etc.

6°. Ajouter au texte le procedé Koralek et 1'instruc-
tion sur la régle a calculer, d’aprés M. Lalanne, dont
nous parlerons prochainement. Nous aurions ainsi le
Manuel du calculateur.

A cette occasion, nous recommandons des Tables d’un
autre genre qui viennent de paraitre A Berlin. M. le
Dr Minding a publié une collection de toutes les intégrales
indéfinies et. définies connues, y compris les fonctions
elliptiques (*). L’ouvrage a été publié sous les auspices
du Ministre du Commerce et des Travaux publics a
'usage des Ecoles industrielles (gewerbschule)! Qu'en
disent ceux qui regrettent de ne pouvoir faucher sur notre
sol la simple algébre?

CORRESPONDANCE.

1. M. Dupuy (Léon) adresse une seconde et honne
solution détaillée et discutée de la question 66. (Foyez
tome IX, page 188; Margfoy.)

2. M. Mannheim, sous-lieutenant éléve d’artillerie
(voyez tome IX, page 419) , a publié a Metz, en janvier
1851, une Note lithographiée sur la théorie des polaires
réciproques (Mémoire in-4° de 13 pages). L’auteur fait
usage de cette méthode pour transformer une propriété
géoméirique donnée en d’autres propriétés. A cet effet, il
transforme une propriété, par le principe de dualité et a
laide d’un cercle directeur, dans la propriété polaire cor-

(*) Le prix est de 4 francs. Une régle a caleul coite 7 francs.
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respondante , et ensuite il transforme cette seconiie‘iiyro?
priété en une troisiéme a 'aide d’'un second cercle direc-
teur,etc.; c’est un moyen euristique assez fécond. L’auteur,
s'adressant aux géométres, s'exprime avec une extréme
concision, peut-étre aux dépens de la clarté.

3. M.E. de Sécillon, éléve au lycée de Nantes, adresse
ce théoréme : Un octogone étant inscrit dans une co-
nique, on peut considérer les cotés pairs comme cotés
d’un quadrilatére et de méme les cotés impairs ; or, deux
quadrilatéres se coupent en seize points; huit de ces
points sont évidemment sur la conique donnée et les huit
autres points sont sur une seconde conique. Le moyen de
démonstration est celui que M. Gergonne a donné le pre-
mier pour démontrer 'hexagramme de Pascal, moyen qui
peut se généraliser ainsi: Etant données deux courbes
planes de degré n chacune, elles se coupent en n* points;
si np de ces points sont sur une ligne de degré p<n,
les n (1 — p) points restants sont sur une ligne de degré
n —p. Dans le théoréme énoncé ci-dessus, n=4, p =2.
Lorsque le polygone inscrit est d'un nombre impair de
cbtés, on remplace le c6té manquant par une tangente (¥).

4. M. Joseph-Edmond Wagner, aujourd’hui éléve a
'Ecole Polytechnique, dans un Mémoire accompagné
d’épures trés-bien exécutées, s’occupe de la division des
angles au moyen de ce lieu géométrique : sur une corde
donnée de position et de longueur, on fait passer-des arcs
de cercles que I'on divise chacun dans le méme rapport
donné de 1: n. Les points de division forment une ligne
dont il est facile de trouver I'équation ; cette ligne étant
construite, elle peut servir 4 diviser un arc et aussi un
angle donné. On sait que pour la trisection on obtient
une hyperbole; I'auteur trace cette hyperbole ainsi que

(*) Nous donnerons une Note instructive de M. Abel Transon sur ce
théoréme.
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la courbe relative a la quintisection. Le Mémoire est ter-
miné par la construction et la discussion du folium sui-
vant qui peut seevir a diviser un angle dans un rapport
donné m:n. Soient AFC un triangle donné rectangle
en F, et AFM un triangle dont le sommet est mobile.
Soit H le point d’intersection de la droite mobile AM
avec la droite fixe FC; supposons qu’on ait la relation,
11— MFC _FH
19 ~ FC
du litu du point M. Ce travail remonte au temps ou 'au~
teur était encore éléve au collége de Saverne et annonce
de 'application et de I'intelligence.

5. M. Bugnat, éléve de Mathématiques supérieures
au lycée de Versailles (classe de M. Vannson), énonce
et démontre ce théoréme :

Dans une conique, si l’on méne la normale en un
point quelconque P et par le foyer f une droite fK
paralléle a cette normale, rencontrant la directrice
voisine en Ky la droite PK est un diamétre de la co-
nigue.

A T'aide de ce théoréme, M. Bugnat résout le probléme
suivant :

Connaissant les sommets et les foyers d’une conique,
trouver le point de contact d’une tangente donnéc de
direction, sans que la conique soit tracée.

La démonstration synthétique est facile.

6. M. Bories (Alphonse), éléve au lycée de Montpel-
lier, énonce et démontre les théorémes suivants :

1°. Soient le triangle rectiligne ABC; abc une trans-
versale coupant respectivement BC, AC, AB ena, b, c;
menons les droites Aa, Bb, Cc. Soient a,, by, c,, les
intersections respectives des tll‘ozles BbetCc,AactCec,
Aa etBb; les droitesCe,, Bb, , Aa, convergent versle
méme pomt.

angle

» de 12 on déduit I'équation polaire

Démonstration par les propriéiés scgmentaires. Le
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théoréme est évident lorsqu’on suppose la transversale
paralléle 2 un des cotés du triangle, et de cette position
particuliére, on passe par la perspective a la position
générale et aussi au triangle sphérique.

2°, Mémes données et mémes constructions; en outre,
circonscrivons une circonférence au triangle ABC; sup-
posons que cette circonférence coupe Aaen a, Bb enf3,
Cc en y; les trois droites aa, , Bb,, yc, se coupent en un
méme point. ‘

Les propriétés des sécantes donnent

¢B.c.B=c¢cy.0C,
(1) Sa.y.a‘C_—_ a,z.aA,
[ 6,.b,A=b,p.5,B;
d’'ou
caB.yy.bia ¢,B.aC.bA=cy a,«.b,p.c,C.a,A.bB.

D’aprés le théoréme précédent, les droites ¢,C, 6, B,
a, A passent par le méme point. Donc, par une propriété
segmentaire, on a
¢,C.aA.5,B=1¢,B.a,C.b,A,
puis,
. aB.ay.bia=cry.a,a.bp;

donc les trois droites ¢,y, a,a, b, 3 convergent vers le
méme point. C. Q. F. D

Cette solution ne différe que trés-peu de celle qui a été
donnée tome VI, pages 376 et 377.

3°. Etant donnés un cercle et un triangle circonscrit
ABC; prenant respectivement les points a, b, ¢, sur les
cotés BC, AC, AB, tels que les droites Aa, Bb, Cc,
convergent vers le méme point. :

Sotent a le point d’intersection de la seconde tangente
menée par a avec le c6té be, 5 le point d'intersection de
la tangente menée par b avec le cété ac, et de méme v
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sur-le c6té ab; les trois points a, 8, y sont en ligne droite.

En effet,, désignons par «,, f3, 7i, les points de contact
des cotés BC, AC, AB avec le cercle, et par M, le point
de contact de la seconde tangente menée par b; il suffit de
démontrer que les trois polaires de «, 3, y sont conver-
gentes, etrappelons que la polaire d'un point s’obtient en
joignantpar une droiteles pdles de deux droites passant par
ce point; que le pole d’une droite s’obtient par I'intersec-
tion des polaires de deux points pris sur cette droite. Le
pole de B est un point 3, de la droite «, 3, polairede b;
lepole de Aa est un point a, deladroite 3, y,, etle pdle de
Cc est un point y, dela droite «, 3, ; mais les trois droites
Aa, Bb, Cc étant convergentes, leurs poles oy, 85, 7,
sont en ligne droite transversale par rapport au triangle
@y 34 71. Cherchons le pole de ac; «, 2, est évidemment la
polaire de @, y, , la polaire de c; donc le pole de ac est
I, intersection des droites a, s, 7,7:3 M; I, est donc la
polaire de 7, et les trois points 8,, M;, 3, sont en ligne
droite, car 3, M 3, est la polaire du point &; donc la
circonférence coupe la droite 3, 3, menée du point 3, i la
transversale a, 3; 7, au point M,. Si nous désignons par
M,, M; les points ou les droites o @5, 73 7. sont coupées
par la circonférence, et par I, I, les points analogues a I,
on voit, d'aprés le théoréme II, que les droites I, M, ,
I, M,, I; M, sont convergentes et sont les trois polaires
de «, B, 7. '

Corollaire. Par les points a, b, c on peut faire passer
une conique touchant le triangle en ces points. Projetant
coniquement la figure sur un plan, on obtient une pro-
priété de collinéation entre deux coniques inscrites au
méme triangle, et projetant la figure sur une surface
quelconque, on parvient & une propriété entre certaines
courbes tracées sur ces surfaces.

Observation. C'est unc généralisation d'un théoréme
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de M. Chasles, question dn grand concours de 1847
(tome VII, pages 294 et 3o1).
Nous fehcuons M. Bories de manier si bien les pro-

priétés segmentaires et polaires; qu’il persevére et se rap-
pelle ce vers du fabuliste :

Laissez dire les sots, le savoir a son prix.

ELEMENTS D’ARITHMETIQUE, EXPOSES SANS LE SECOURS
DE L’ALGEBRE,
Par M. E.-A. TARNIER, docteur és sciences
(voir t. IX, p. 439);

Par M. H. HARANT,

Professeur, licencié és sciences.

i

L’Arvithmétique de M. Tarnier a sa place marquée dans
les bons livres élémentaires qui ont paru depuis quelques
années. L’auteur a su, méme aprés la publication des
excellents traités de MM. Reynaud, Cirodde, Guilmin,
Bertrand , Briot, faire un ouvrage utile, et utile surtout:
a un ﬂrand nombre de lecteurs.

La plupart des Traités qui ont paru dans ces dernlera
temps s’adressent principalement i des éléves qui ont
déja certaines notions élémentaires sur l'arithmétique,
ou qui se sont familiarisés avec les méthodes de calcul;
M. Tarnier a voulu que son livre pfit étre mis entre les
mains du commencant, et qu’il pit lui suffire pour con-
tinuer ses études jusqu’aux parties les plus élevées de
I’arithmétique.

Ce livre se divise en deux parties : dans la premiére,
que 'auteur appelle Tarithmétique proprement dite, il
expose, en adoptant la méthode appelée synthétigue, les
premiers éléments, comprenant 'exigé du baccalauréat
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és lettres et és sciences physiques, les quatre premiéres
opérations sur les nombres entiers, les fractions ordi-
naires et décimales, les caractéres-de divisibilité les plus
simples, le systtme de numération décimale, le plus
grand commun diviseur i deux nombres, 'extraction de
la racine carrée, les proportions , et I'exposé du systéme
métrique ; enfin un trés-grand nombre de questions sur
les intéréts, les partages proportionnels, les fonds pu-
blics, les alliages, etc.; complément indispensable pour
faire connaitre a ’éléve toutes les ressources que les mé-
thodes purement arithmétiques peuvent apporter a la ré-
solution des problémes. Nous approuvons fort I'impor-
tance que M. Tarnier a donnée a cette partie de son livre,
et sa préoccupation d’y éviter 'emploi de la résolution
d’équations et de notations algébriques; bien convaincu
que, malgré la simplicité qu’introduisent dans la résolu-
tion de ces mémes questions les notations et le calcul
algébrique , on ne peut pas offrir aux jeunes intelligences
d’exercice plus utile et plus propre a leur développement ;
mais c’est surtout, nous le répétons, en évitant tout
moyen de solution qui ne serait qu'une traduction de la
mise en équation du probléme , que ces exercices acquié-
rent toute leur importance.

Dans la seconde partie se trouvent les propriétés géné-
rales des nombres, l'extraction de la racine cubique, la
théorie des progressions et des logarithmes, le complé-
ment de la théorie des fractions décimales périodiques, et
quelques notes sur les approximations décimales. Cette
partie est traitée d'une maniére assez compléte pour que
ce livre puisse, comme nous le disions en commengant,
conduire 'éléve jusqu’a la fin de ses études arithmé-
tiques.

Les détails abondent assez dans ce Traité et y sont choi-
sis avec assez de variété pour que le lecteur ne soit pas
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obligé d'aller chercher ailleurs des applications et des
exercices ; les démonstrations y sontexposéesavecnettetéet
rigueur; nous ajouterons cependant que la méthode syn-
thétique ou plutét dogmatique que M. Tarnier a employée
dans son livre, ne doit pas, a notre avis, étre exclusive-
.ment adoptée : si cette méthode est utile pour éviter aux
commencants des titonnements trop nombreux, nous
croyons, d’autre part, que I’état intellectuel de I'individu
passe par les mémes phases que celui de I'espéce, et il n’est
peut-étre pas sans utilité, pour bien faire connaitre une
science, de I’exposer dans son ordre naturel, qui est le
plus souvent I'ordre historiques; il faut que I'éléve abor-
dant une nouvelle opération, le procédé spontané lui
soit d’abord indiqué, puis successivement toutes les sim-
plifications introduites pour arriver a I’état final.

Quant au plan de tout 'ouvrage, en tant qu’exposition
d’un systéme complet d’arithmétique,, nous ne saurfons y
donner notre approbation, et nous sommes certain que
I'auteur lui-méme est de cet avis; car, d’aprés le but
qu’il se proposait, il a été obligé, pour tracer le plan de
son arithmétique et pour en délimiter les parties, de
s'assujettir al'ordre arbitraire et irrationnel du programme
du baccalauréat, ou la racine carrée se trouve dans une
partieet la racine cubique dans I'autre, etc.

Enfin, 'ouvrage de M. Tarnier a pour caractére prin-
cipal de se mettre, comme nous le disions, 4 la portée des
éléves les moins avancés, et de pouvoir servir aux intel-
ligences les plus rebelles, tout en restant suffisant pour
les éléves qui ont i faire des études complétes ; I'autenr a
voulu consciencieusement faire un livre utile, et il a
réussi.
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NOTE SUR LES SECTIONS CIRCULAIRES DANS LES SURFACES
DU SECOND DEGRE;

Par M. TILLOL, professeur a Castres. ‘

Cette Note a pour but de rendre la recherche des sec-
tions circulaires indépendante dela transformation d’axes
dans le plan de la section.

Soient F = o I'équation de la surface; f==o, fi =0
les équations de deux plans qui la coupent. L’équation

F4+)\ffi=o

représente une surface passant par les points d’intersec- '
tion de la surface F = o avec chacun des plans f=o,
Jfi = 03 dés lors, si I'équation

F-+2ffi=o

peut devenir celle d'une spheére, il sera établi que la sur-
face admet des sections circulaires, et les équations
f= o, fi = o en détermineront la direction.

Soient

F=Px+P )y +P 2+Qe+Qy+Qz+E=o0,
I'équation de la surface dans laquelle P, P’, P”, Q,...

peuvent admettre des valeurs numériques et des signes
quelconques , et

f=azx+ by +cz+d=o, f.:a’.r+b'y+c’,z—.{-.d’=o,

les équations des deux plans; I'équation de la surface
auxiliaire sera

Px*+ Py +P'22+Qr+Qy+Q'z+ E
+Max+ by + ez +d) (dxz+ by + 2+ d')=o,
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ou, en développant,
(P+2ad')x* + (P'+ )-bb'))”l-i— (P" +ec') 22
+M[(ab'+ ba’) zy + (ac'-+ca’) 2z + (b’ + cb’) yz)

+ [Q+ M(ad’ + da')]z + [Q + (b + ab')] y
+[Q"+ N ed + dc’)]z + E+2dd’ = o.

Pour que cette équation représente une sphére, en suppo-
sant les axes rectangulaires, il suffit de poser

P+ draad' =P 4 2bd = P" 4 e,
ab' 4 ba' =o0, ac' 4ca'=o0, b+ cb =o.
Ce dernier systéme peut étre vérifié de plusieurs ma-
niéres. Posons d’abord
a=a =o;

 les équations de condition deviendront, dans cette hypo-
theése,

P="P 4+ 2b0'=P"+)cc', b + cb'=o0;

d’ou
cc’ _P— P”
6 T P—p
. c ¢!
et, a cause de =~
¢t e _p—p
B b0 T P—p
d’ott enfin

Les équations
f=o0, fi=o,
Ann, de Mathémat., t. X. (Aot 1851.) 20



( 306 )

deviendront, dans ce cas,

de méme, les conditions b = b= o, ¢ = ¢'= o, donnent

PI_PII d
x4ty m-{—:—:o,

(2) i
P—pP" d
S VAN Ty i
z+.r\/P_Pl+ d =o0
; P —p” c
(3)

Il résulte de ces six équations que les surfaces du second
degré admettent, dans six directions différentes, des sec-
tions circulaires (réelles ou imaginaires) et paralléles a
I'un des axes principaux de la surface; de l1a aussi un
théoréme remarquable de Hachette, savoir que deux
cercles quelconques appartenant a des séries différentes
sont toujours situés sur une méme sphére.

SiTon part de I'équation plus simple

Pr*+ P y*+P"'z22=+H,
dans laquelle on a les relations
H>o0, et P>P >P,

on voit que dans le cas de I'ellipsoide, le systéme (3) est
seul récl, ce qui indique que les sections circulaires sont
paralléles a 'axe moyen.
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Dans I'hyperboloide a une nappe, P” <o, le sys-
téme (3) est seul réel, et les sections sont paralléles an
plus grand des axes reels

Dans le cas de 'hyperboloide a deux nappes, P’ et P”
sont négatifs, le systéme (3) est seul réel, et les sections
sont paralléles au plus grand des axes imaginaires.

Les équations de condition étant indépendantes des
coefficients Q, Q’, Q”,..., E, les plans qui déterminent
les sections circulaires dans les hyperboloides les déter-
minent aussi dans le cone asymptote. Une section d’'une
série peut étre regardée comme la base du cone, I'autre
comme une section anti-paralléle.

Dans le cas des paraboloides, I'équation en coordon-
nées rectangles peut toujours prendre la forme

P'y*+P'z22—Qzr=o,
P’ et P’ étant de mémes signes dans le paraboloide ellip-

tique, et de signe contraire dans le paraboloide hyper-
bolique. Dans le premier cas, on peut avoir

PP>P, ou PP,

d’ou

P—P" d P—p  d
z -y ———P,—,——-—l—;:o, xr—y P +z,—=o,
et

P’ d P’ d’
SR VA T S V8 s A

dans ce cas il y aura deux séries de plans perpendiculaires

aceluides xy et des xz. SiP'=P’,il n’y aura plus qu'une

série de plans perpendiculaires a I'axe du paraboloide.
Dans le paraboloide hyperbolique, on a

P>o0 et P"<To;

20.
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les équations des plans deviennent alors
P d P’ df

+5=0, ry-— + 45 =0;

Yy+z T3 z Py

elles paraissent indiquer deux séries de dections circu-
laires. Mais I’élimination successive de y et de z entre ces
équations et I’équation
Py:—P'z22—Qx =o,

conduisant & deux équations du premier degré, il s'en-
suit que les projections de I'intersection sur les plans des
xz et des yz sont du premier degré, et que par suite les
intersections sont des lignes droites.

(Extrait d’un ouvrage inédit.)

DE LA SUITE MEDIANE ET DES SUITES CONSTANTES QUI
TENDENT A SE FORMER DANS LES SUITES DIATOMIQUES
(voir t. VIII, p. 428);

Par M. pe POLIGNAC,
Eléve de I'Ecole Polytechnique.

A cause de la symétrie des suites diatomiques, si, au
lieu de partir de zéro pour former une période d’une

. . . .P . ey
suite diatomique, on part de l—‘——;’—'; on formera la moitié

d’une période en allant jusqu'a wP,. Désignons par a le
.P cq. .
nombre fi—i—l, et considérons la suite des nombres na-

turels

..a—6,a—5,a—4,a—3,a—2, a—1, a
a+1, a+2, a+3, a+4, a+5, a+6,....

11 est clair d’abord que tous les termes de la forme
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az=2n 1 seront effacés comme nombres pairs, puis-
que a est impair; maintenant si j'efface (en partant de a),
de3en3,de5enb5,de eny,...,de P, en P,, il est
clair qu'en prenant n assez grand, on effacera tous les
termes de la suite précédente (jusqu'a un terme choisi
arbitrairement), excepté les puissances de 2 diminuées
d’une unité. On voit donc qu’il tend i se former, au milien
des suites diatomiques, une suite constante que j’appellerai
suite médiane et qui n'est aulre que les puissances succes-
sives de 2 diminuées d’une unité. On voit de plus que la
suite médiane s'étend au dela de toute limite. Les termes
milieux des suites diatomiques terndent donc vers un état

définitif, les puissances successives de 2. s présemtent le
tableau suivant :

. 255, 127, 63, 31, 15, 7, 3, 1, §, 1, 3, 7, 15, 31, 63, 127, 255,....

En particulier, on remarquera que le terme milieu est 3,
résultat déja énoncé précédemment.

On peut se proposer, étant donnée une suite dlatomlque,
de déterminer le nombre des termes de la suite médiane
qui appartiennent a cette suite diatomique. Je n’ai pu
Jusqu’a présent résoudre cette question; toutefois il est
facile d’avoir une limite inférieure du nombre cherché.
En effet, ce nombre sera au moins égal 4 deux fois le
nombre des puissances de 2 inférieures a P, augmenté
d’une unité.

p P"
Si maintenant, au lieu de =2 on prend le nombre £2%

2.3’
on trouve qu’a partir de ce terme il se forme a droxte et

a gauche une suite qui n’est pas symétrique et dont le
e /s P

terme milieu est 5; désignons % par b, et prenons la

suite des nombres naturels :

b—3, b—2, b1, b, b1, b2, b4+3,...,
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tous les nombres de la forme & + 27 + 1 seront effacés
comme nombres pairs. Maintenant il y a deux hypothéses
a faire :

1°. b —1=o0(mod. 3).

Dans ce cas, en effagant de 3 en 3 a partir de b — 1, puis
de5en5,de 7 en 7,..., de P, en P, & partir de b, on
voit que dans la portion de droite tous les nombres seront
effacés, excepté ceux de la forme b + 22" ou de la forme
b + 2%.38, et dans la portion de gauche il n’y aura de
conservés que les nombres de la forme b —2?"*" ou

b—2*.38, En sorte que les termes de la suite considérée
sont, pour la partie droite,

2% 38 o% 38y, ou 2%.3F— 22", on 22"— 2%,36__y,
et, pour la partie gauche,

2°¢.3ﬁ_2a”3ﬁ’_ 1, 24.3/3_2271—{—-!___]’

ou
22n+1__ Hz 3/3__ I.

On peut réunir ces différentes formes dans une seule for-
mule, sauf a la discuter dans les deux cas ou P'on pren-
drait la portion de droite ou la portion de gauche de la
série; cette formule est

2“.3ﬁ'(iz“““’.3ﬁ_ﬁ'$l) I..

Sil’on se donne « et 3, & et 3’ sont déterminés. Suppo-
sons d’abord que 3 ne soit pas nul; alors, si la valeur de
@’ n’est pas nulle non plus, le terme trouvé pour la por-
tion de droite se trouvera aussi dans la portion de gauche
de la série. Admettons encore que 3 > o; alors, si '=o,
la formule pour représenter un terme de droite devra
étre telle que o = 2k, et pour un terme de gauche
o/ = 2k’ + 1. Enfin, si =0, pour un terme de droite
onaura o = 2k, et pour un terme de gauche & = 2k 1.
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f3 et ' ne peuvent étre nuls a la fois; quant aux expo-
sants « et &, aucun d’eux ne peut étre nul.

2°. (& +1)==0 (mod. 3).

11 est aisé de voir dans ce cas que la partie gauche devient
la partie droite, et wice wersd; c'est 1a le seul change-
ment qui ait lieu.
. . P .

La suite qui se forme autour de ;—3—“ ne change pas in-
définiment avec P,; comme la snite médiane, elle tend
vers un état constant, seulement elle peut changer de
sens, c'est-a-dire que les termes qui se trouvaient a gau-

P \ . P .
che de £=7 peuvent se trouver a droite de =%, et wice
2.3 p 2.3

wersd. Ainsi la suite est constante, par rapport a la va-
leur des termes, et elle n’admet que deux états en consi-
dérant leur disposition. Dans tous les cas, I'inspection
pPa
2.3
quer sil’on a unde ces états ou l’autre.

On peut observer que si 'on écrit les deux états de
la suite I'un au-dessous de l'autre, de maniére que
les deux termes milieux 5 se trouvent sur une méme co-

seule de la forme *—, par rapport a 3, suffira pour mar-

lonne verticale, et si I'on additionne terme & terme, on
obtiendra évidemment une suite symétrique.
Généralisons ces considérations. Dans toute Suite dia-
©Pa
2.3..... P
de termes dont les valeurs ne dépendent pas de la gran-
deur de P, (on suppose que P; reste constant, et qu'on
fasse croitre P,), mais de la forme de . P,, par rapport
aP,,Pi_y,..., 5, 3. On voit donc que le nombre des
A fLPn
2.3,..., P,
mité; de plus on voit qu'a chaque séric il en correspond

tomique il se forme, autour de » une suite

séries fixes qui se forment autour de est li-
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une autre telle, qu’en les ajoutant terme a terme, on a
une série symétrique. Par conséquent, la somme de toutes
les séries sera aussi symétrique.

Je me propose, dans un autre article, de parler des
propriétés de ces suites constantes qui, on le voit, ten-
dent a se former dans les suites diatomiques, et nous per-
mettent de découvrir de loin en loin, dans ces suites, des
groupes de termes connus, sans qu'il soit besoin de for-
mer les suites diatomiques elles-mémes.

THEOREME DE GEOMETRIE ;
Par M. A. NEVROUZIAN ( Arménien),

Eleve, en spéciales, du lycée Louis-le-Grand, institution Sainte-Barbe.

Un triangle ABC étant inscrit dans un cercle, si, par
deux points H, K de la circonférence, on fait passer
trois cercles tangents, respectivement, aux trois cétés
du triangle, de maniére que les points de contact des
deux premiers soient sur les cotés AB, AC, et le point
de contact du troisiéme, sur le prolongement du troi-
siéme coté BC; les trois points de contact D, E, F seront
en ligne droite. ‘
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Démonstration. Appelons m, n, p les points ou la
corde HK rencontre les trois c6tés du triangle ABC,
On a, a I'égard du point D,
—3
nD = nrA.nB, ou ;—%:%;
d’ou je tire
nA—nrD n2D—nB

nA - nD
c’est-a-dire
DA_BD  DA_ _nA
nA_nD ° DB~ ~ D

On a de méme, sur le coté AC,

EC _  pC

EA pA’
et, sur le coté CB, '

FB_ mF

FC~ — mC

Multipliant ces trois équations membre 3 membre, on a

DA.EC.FB__ 2»A pE mF

— e ¢ e o cm——

DB.EA.FC nD pA mGC

11 faut prouver que le second membre est égal & +- 1.

Or

7D = nA.nb; ;;_Ezsz.pC; _r;f"z-:mB.mC;
d’ou
nD nB ])_E::pC_ EIE mB

PSRy S S

donc

nA pE mF__+ nA pC mB

nD pA mC~ VYV 2B pA mG
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Or, le produit sous le radical est égal a + 1, parce que
les trois points m, n, p sont en ligne droite; il vient
donc

L’inspection de la figure montre que le signe du
second membre doit étre — , parce que les deux rap-

nA pE .. . ey mF , .
ports —> A sont positifs, et le troisiéme C négatif.
I1 en résulte I'équation

DA EC FB_
DB EA FC— T’

ce qui prouve que les points E, D, F sont en ligne
droite. C. Q. F. D.

SOLUTION DE LA QUESTION 198

(voir t. VII, p. 448);

[Par M. A. VACHETTE,

Licencié és sciences physiques et licencié és sciences mathématiques.

Prosrime. Des hyperboles équilatéres concentriques
sont coupées orthogonalement par une méme droite :
quelle est leur courbe enveloppe? (STrEBOR. )

Solution. Prenons pour origine le centre commun des
hyperholes équilatéres, et pour axe des y une paralléle
a la droite qui les coupe orthogonalement. L’équation

I3

générale des hyperboles équilatéres sera de la forme

—

1) ry+Azxy—2*+B=o.
La droite orthogonale aura pour équation

r=a,
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et si b est 'ordonnée qui répond sur la courbe a I'ab-
scisse a, la tangente 3 'une des courbes au point dont les
coordonnées sont a et b aura pour équation

y=b,

qu'il faut identifier avec I’équation de la tangente a la
courbe (1),

by+§bx+%a_y—am+B=o.

Cette identification donne les relations

2B
Ab—'ﬁa—-o, b——m, .
d’ou I'on déduit
A:%‘lv B=(a’+b’),

et, en substituant dans ’équation (1), elle devient

2a

(2) r 3 zy —x* — (a*+ b*) = o,

ou b est le seul paramétre variable. Il faut donc élimi-

. J » . o
ner b etitre I'équation (2) et la dérivée prise par rapport
a b, c’est-a-dire entre les deux équations

b(y*—a2*—a*) — b+ 2azxy =o,

y*—x*—a*—3b*=o;

ce qui donne enfin, pour la courbe enveloppe,

(3) y*—ax'—a'+ 3 (axy)’ =o.
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SOLUTION DES QUESTIONS 230 ET 234

(voir t. X, p. 181 et 182) ;

Par M. r’assé JULLIEN,

Du séminaire de Vals.

Question 230. Deux polygones quelconques de 2 n cotés
sont équivalents quand leurs cotés ont les mémes milieux.

(Prouner.)

Solution.Soient P et P’ deux polygonesde 2 n cotés dont
les cotés ont les mémes milieux. Joignons par des droites
les sommets de P aux sommets correspondants de P’; ces
droites sont égales et paralléles, car elles forment avec
les demi-c6tés des polygones 4 n triangles, ayant deux a
deux un angle opposé au sommet compris entre cotés
égaux. Prolongeons ces lignes de jonction jusqu’a la ren-
contre d’une droite A menée arbitrairement dans le plan;
la droite A, les lignes de jonction et les cotés des poly-
gones forment des trapézes, et chaque trapéze terminé
au polygone P est équivalent au trapéze terminé au coté
correspondant du polygone P’.

Les surfaces de P et de P’ s’exprimant par celles des
trapézes correspondants, il en résulie que les polygones
sont équivalents. ,

Question 231. La surface d'un polygone de 271 cotés
ne change pas lorsque tous les sommets de rang pair ou
tous les sommets de rang impair décrivent (dans la méme
direction) des droites égales et paralléles.

(Psouner.)

Solution. Soit d la longueur des droites parcourues
par les sommets de rang pair, ou par ceux de rang impair.
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Dans le mouvement des sommet¥, les milieux des cdtés

d . . :
ont avancé de 3 dans la méme direction. Conservant au

polygone sa seconde forme, nous pouvons, par un mou-
vement de direction contraire, ramener les milieux des
cotés en leurs premiéres positions; dés lors I'équivalence
des polygones est établie (question 230).

Remarque. On reconnait trés-facilement les deux
propriétés précédentes en considérant la formule qui
donne Iaire du polygone en fonction des coordonnées des
sommets (voirtome IX, page 65).

SOLUTION DE LA QUESTION 209 )
(voir t. VIIL, p. 236);

Par M. JUBE,

Professeur a Saint~Omer.

On peut réduire un systéme de forces a trois forces
dont deux forment un couple agissant dans un plan per-
pendiculaire a la troisi¢me force; on peut aussi réduire
le systéme & deux forces. La plus courte distance de ces
deux forces rencontre a angle droit la troisiéme force de
la premiére réduction. (CuasvLEs.)

La question peut étre présentée de cette maniére en la
renversant :

Etant données deux forces non situées dans un méme
plan, on peut les réduire 2 un systéme de trois forces
dont deux forment un couple agissant dans un plan per-
pendiculaire a la troisiéme, Cette troisiéme force est per-
pendiculaire & la plus courte distance des deux forces
données. :

Soient Q et R les deux forces données, AB leur plus
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courte distance. En %ortant au point B la force Q
parallélement 2 elle-méme, on obtient un couple
(Q, —Q) et une force S résultante de Q et R, et per-
pendiculaire 2 BA.

L’axe-du couple (Q, — Q) est aussi dans le plan de R
et S, perpendiculaire 4 BA. De sorte qu’en transportant
la force S parallélement i elle-méme en un point quel-
conque C de BA, on formera un nouveau couple dont
I’axe sera aussi dans ce méme plan perpendiculaire  BA,
et le point C pourra étre choisi de telle sorte que le couple
résultant de (Q, — Q) et de (S, — S) ait son axe dirigé
suivant BS ou son prolongement. Il suffit pour cela que

BC = g— cos QBS >< BA.

Le plan de ce couple résultant sera bien alors perpendi-
culaire & la troisi¢me force S appliquée en C, et celle-ci
d’ailleurs sera perpendiculaire 4 BA.

GRAND CONCOURS DE 1851

(voir t. IX, p. 282).

QUESTIONS PROPOSEES.

Mathématiques supérieures.

Etant donnée une droite L, on méne de chacun de ses
points M deux droites & deux points fixes P, P’. Deux
autres points fixes O, O’ sont les sommets de deux an-
gles AOB, A’O’B', de grandeurs données et constants,
que l'on fait tourner autour de leurs sommets respectifs,
de maniére que leurs cotés OA, O’ A’ soient respective- -
ment perpendiculaires aux deux droites MP, M'P’.
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On demande quelle est la co& décrite par le point
d’intersection N des deux droites OA, O’ A/, et la courbe
qui est décrite par le point d’intersection N' des deux
autres cotés OB, O'B’, quand le point M glisse sur la
droite fixe L. :

Mathématiques élémentaires.

Etant donnés deux cercles O et O’, qui ne se touchent
Ppas, mais qui peuvent se couper ou ne pas se couper in-
différemment, de chaque point M, de I'un O on méne
deux droites aux centres de similitude S et S’ des deux
cercles; ces droites rencontrent 'autre cercle O’ en quatre
points m, n, m', n'. .

On demande de prouver que deux de ces points sont
sur un diamétre du cercle O’ et les deux autres sur une
droite qui passe par un point fixe, quel que soit le
point M pris sur le cercle O.

Note. Trés-bonnes questions. Par le temps qui court, elles font honneur
a 'Université. Puisse-t-elle persévérer !

SOLUTION GENERALE DE LA QUESTION 78

(voirt, I, p. 484) ;

Par M. P..TARDY,

Professeur de Mathématiques 4 Génes.

Soit
Ay=a+~a;+a;,+... + a,,

ct désignons par

EA:[I, 2, 3,..., m]

) : <.y , . r
la somme des quantités qu’on déduit de A, en changeant
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les signes a un noml%u des lettres a,, a,,..., a,, eten
faisant toutes les combinaisons possibles : le nombre de ces
n(n—1)..(n—m- 1)
1.2...m
que mnous représenterons, pour abréger, par le sym-

bole (n )
m

Posons

Sa=A, =N AL [+ A%, 2] —. ..

+(—l)"ZA:[I, 2,..., 1];

quantités sera évidemment égal a

(1)

il est clair qu'en développant, suivant les puissances de

n 7. ’
a,, 2 A’[1, 2,...,m], nous aurons pour terme général

w\ EA"‘ (1, 2y..., m]
(p.)a" P e . D

l)"_PlZAZ'._-l[l, 2,...(m—1)]

cxcepté le cas de m = n, dans lequel nous obtiendrons
seulement

(:.) a. M (=" P ZA’:—I [1, 2,.., (r—1)].

.
Cela posé, le terme général, dans le développement de
S, sera

(n)err =™

lequel deviendra évidemment égal a zéro toutes les fois
que n— p, est un nombre pair, et si 7 — p, est impair,

——EAH___I () +...
4 (=) ZA’;‘~[[1,2,...,(n-1
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il se réduira a

n—p,

P P

<n> AP ZA 01+

2
n

P +(—l)n—leZl——l[" 2,...,(7!-—-1)]

Considérant la série entre parenthéses, nous aurons de
méme, pour terme général de son développement,

2 P
N YA W LGN (I E
9 Pt aPn P )
p: n—1 ?

+(——1)"_22Af:’_2[|, 2yueey (R—2)]

ou zéro, selon que p, — p, est impair ou pair.

Si nous continuons ainsi, et dans '’hypothése que
n—Pys Pr—Pyse++s Py —,— P, soient tous des nombre;
impairs, il est clair que nous parviendrons i un terme

général
Pu Pu
A — > A 4...
Pﬂ—')a”‘u—l—/’,u nTe 2 ”‘l-*[ 1+
n— -1 n—p. »
+ (—1) ZA"‘“ [1, 25000y (7 —p)]

dans lequel on aura p,=1

Maintenant la quantité

An—[u.—zA,,_.,‘[l)—}—...
+(1=)" “ZA a2, (n—p)],

sera nulle, excepté dans le seul cas ou A

(2)

n— p =@, Cest-
a-dire u = n — 1. En effet, prenons une quelconque des
lettres qui entrent dans A, _ ; elle se trouvera dans

N2, m],

Ann. de Mathémat., t. X. (Septembre 1851.) 21
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\'»‘41- . ’ | .
avec le signe positif un nombre de fois égal a celui des
combinaisons qu'on peut faire avec n — u— 1 objets
pris m a m, et avec le signe négatif un nombre de fois

_égal au nombre des combinaisons qu’on peut faire avec

n — u—1 objets pris m —1 & m — 1, c’est-a-dire qu’elle
. —p—1 n—p—1 .

ipliée par (" ¥ — ¥ :
sera multipliée p m m—, )retypar

conséquent, dans I'expression (2), elle aura pour coeffi-
cient la série

n-p=1

+,_("-f;")+,.._(n-f:-n)__(_l)n-,u, =20—1) =

Mais si p=n —1, la valeur de I'expression (2) de-
vient 2a,. Or, pour arriver jusqu’a la quantité (2) avec
u=n— I, sans qu'aucun des termes généraux des déve-
loppements précédents se soit évanoui, il faut que toutes
les différences

Pp—1 —Pp> pIu—Q-—pIu——l yreey Pg Py Py
soicnt égales a 'unité, c'est-a-dire qu'on ait p, = n —1.
De la nous pouvons conclure que dans le développement
du second membre de I'équation (1), tous les termes qui

contiennent des puissances de a, supérieures a la pre-
miére se détruisent, et il restera

S, =o2n.a,.S.,.
Par la méme raison
Spi = 2(~— 1)@y .Sy,

Sy = 2(" _ 2)~”n-1-sn-—:\’

S, = 2.2a,.5,,

S, = 2a,.

En multipliant ces équations membre & membre, et
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otant le facteur commun S,_;.5,... S;.S,, il viendra
S,=2".1.2.3...n.a,.a5.a,. .. a,;
puisqu’en général on a
14
ZA:[I y Zyeeey M| = (—1)"2An (1, 2,...,(n—m)],

I'équation (1) pourra s’écrire ainsj : i

n—1

I L WU O PSR CI) 3 FRENS “]}

pour n impair, et
A= 3 A ]+ . )
S, =2 n—2 ) +(——I)QZA:[1,2,‘..,;—'J
h " n—2
“+ (—1) 2 ZA"[I,'Z,..., 5 J :
pour 7 pair.

., n .
La quantité EA: [l, 2,.. ;J contient un nombre

\

pair de termes, lesquels sont deux a deux égaux, et si
e - n
nous indiquons par ZA:’ 1, 2,..., —:’ la somme de ces
2 c

. . n .,
termes ou parmi les 3 lettres a prises négativement se

trouve a, , nOLS aurons

B n - n
EA:[I, 2,-..,;]:22An[l, 2,...., ;]’
et, par conséquent, on obtiendra les formules (*)

2" 1.2... 0.0,.0,. Ay = A:—ZA:[!] -+ ZA:[l, 2]—...

n—iI
Y N n—1
+ (=) ZAn[I’2"'7’ P ]

(*) M. Cauchy a indiqué une démonstration de cette formule, Comptes
rendus, 1840, 1°F semestre, page 569, et d’une maniére plus développée
dans le tome Il des Exercices, page 141.

21I.
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si n estimpair, et

212, n.a.a,..a,= A —EA:[I]-’-EAZ[': 2]— ...

n—2a

(1) ? 2A:[l,2,...,n;—2 I

n

° ¢ -
V2 N n
“+{—1) ZAn[x, 2,...,;J
si n est pair.

Ainsi pour 7 =3, on a
24.a,a,a, = (a,+ a;, + a,)’ — {a, -+ a, — a,)
—(a+a,—a,)* — (ar+a,—a,);
et, pour n = 4,
192.4,@,8,a, = (a, + @, +a, + a,) — (a, +a,+ a, — a,)'
—(a.+a2+a,—n3)‘ —(a,+a;+a,— a,)

—‘(aa+aa+aq —a|)‘ -+ (au+ﬂ3—ad'—“|)‘
“+(a;+a;—a,—a,) —(a,+ a;— a, — a,)".

SOLUTION D'UN PROBLEME SUR LA SOMMATION D'UNE SOMME
DE PUISSANCES (*);

D’arrks M. A. THACKER.
(Journal de M. Crelle, tome XL, page 89; 1850.)

1. ProsrLime. Soient m et n deux nombres entiers po-
sitifs, trouver la somme des puissances d’exposant n, de
tous les nombres premiers & m et plus petits que m.

]

Solution. Soit m = a*bfc?...; a, b, c,... étant des

(*) M. Binet vient de traiter le méme sujet. (Compte rendu, t. XXXII,
p. 918.)
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nombres premiers; posons
9 (p)=1"+2"43"+...+4p", pétant unnombre entier.

Les nombres compris entre 1 et m et divisibles par a
sont

m
a, 2a, 3a,..., —a;

par conséquent, d’aprés 'énoncé du probléme, il faut
rejeter la somme
a+ (2a)+ (3a)y+.. + (%a) =a"y <ﬂ)
a

Posons

R=g¢(m)—a"yp <ﬂ>

a

Dans R rejetons les puissances 7 des nombres divisibles
par b; raisonnant comme ci-dessus, il faudra rejeter de
¢ m la somme

bro <~’;—1) s etdans a"b"g <;—';> y

il faut rejeter

n n { n n m n— 5 I m
a [b +(26) + (3b) +...+<a—b)b] =a"b ?<E>5

il faut donc rejeter

[)n ® ('_Z) — a® bnq) (”_;) .
a

Représentant le reste par R, on obtient

[ G —_ht T____n ,_'i_“nu ﬁ.
R/ = ¢(m) (lqa(a) b?<b>+abq:(ab).

/

eflagant dans chacun des quatre termes ceux qui se rap-
portent au diviseur c, et désignant ce qui reste par R”,



on a

— a*b g <-‘-l%1;> ’

et ainsi de suite.

Pour fixer les idées, supposons qu’il n’y ait que trois
facteurs a, b, c; alors R” sera la somme cherchée. Dési-
gnons cette somme par S,. On sait que 'on a

mnt+t 1 X

1
—_— —_ n —_ n— ___ __ n—3
cp(m)__n+,—|—2m +2n.B,m 4113B3m
1
+gmBm—.

ou n,, ns, ng,... sont des coeflicients binomiaux, et
B,, B:, B; sont les nombres Bernoulliens.

Si nous remplagons dans I'équation (1) ¢ (i), ¢ <—'Z—>, e

par leurs développements, si nous ordonnons par rapport
a m, nous obtiendrons

=i () (=) (-0).

+én.B.m"_'(‘—"“)(l—b)(‘—c)

—%n,Bam"*(l—a’)(l—- ) (1—¢*)

1

+5

n,B.m" (1— a*) (1— 6°) (1— ¢*)

Si n est pair, le dernier terme est

é(n-i-z)
1
(—1) = Ay Bim(a—a")(1— b)) (1—c>'),
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et le nombre des termes est

~(n+2)
—~(n R
2 b

si n est impair, le dernier terme est

1
5(n+1)

(—1)

et le nombre des termes est

p ; Ry_y B"_2 mQ(l —_ an—z) (l — bm—z) (' —_ (;n—z) ,

I
;(n +1).
2. Adpplications. 1°. n=o0; on a

wmn{i=3) (1) (2)

formule connue, trouvée par Euler, et qui indique com-
bienil y a de nombres inférieurs et premiers 4 m (tomelV,

page 75). -

o — .
2°. n=1;

3°. n=2;

s=i(=2) (=3) (-3)

+gmi—a)(1=b) (1—e),
ou

= (=) (=) () (=)

attendu que .
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4°. n=3;

s (=2) (-5 (-3

Soit m =60 =12%*.3.5;0n a

S.'=16, S, =480, S,=19120, S;=2856800.

NOTE SUR LA SOLUTION PRECEDENTE;

Par M. E. PROUHET.

Ainsi, en résumé, si I'on suppose ¢ (m) développé
suivant les puissances descendantes de m, il suffira, pour .
obtenir S,, de multiplier respectivement tous les termes
de ¢ (m) par P_,, Py, Py, Py, etc., en posant, pour
abréger,

Pi= (1 — ai) (1— b). . .(1— 8i);

mais on peut parvenir a ce résultat d’'une autre maniére,

qui nous fera connaitre en méme temps une relation
entre S, et S,_,.
Posons

¢(p):l+2n——l_i_3n-—l+_..__l_pn—l’
on aura

S =¥ (m) —Za"—'¢ (%’) +2a"—‘b"—'~.p (%) —
s.= o0 = Sere (2) + Bersre (5) —

ou les SIgnes sommatoires se rapportent aux nombres pre-
miers qui entrent dans m.
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Si I'on prend la dérivée de S, par rapport a m, en trai-
tant a, b, etc., comme des constantes; on aura

= )= By (2) + B (5) -

Mais on a (page 188)

o' (p) =nY(p) + Basss

r=nf4m—Baei(2)+..] |
+ B (1= B P — )

ou, ce qui revient au méme,

donc

an =nS,— + B Pu;
m
d’ou
: m
(2) S, :rzf Sp_dm—+B,_ P, m,
. o 5

. .

et il n’y a pas de constante a ajouter, puisque la for-
mule (1) montre que S, ne doit pas avoir de terme indé-
pendant de m.

Mais , d'un autre c6té, en posant s,= ¢ (m), on a

m
(3) s,,:nf Sprdm 4+ B,_,m;
o

par ou l'on voit que si P'on se sert de I'équation (2) pour
. calculer S,, S,, S;, etc., ou de I’équation (3) pour cal-
culer s,, s;, etc., le premier résultat ne différera du
second que par le changement de B, en By P,,-de B, en
B, Py, etc.; ce qui s’accorde avec la régle énoncée plus
haut.

Nous avonsdonné, dans un autre article, les valeurs de
505 §14-05 52 (p. 189); on pourra donc en déduire, sans
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nouveau calcul, les valeurs de S, S, ,..., S, : on aura ainsi

+

m® m? m
Sl:P‘—I"5‘+ P'_3—_~P3§(_),

“m® ‘ 2
SS-: -—Iﬁ+5P|T"‘—‘P3'”i’

6 12 12

m’ 5 md
Ss’:.P__,-—7——|- PI%~P3%+P54"‘_2,
etc.

CONCOURS D’AGREGATION AUX LYCEES, ANNEE 1841;
Par M. DIEU,

Agrégé, docteur és sciences.

COMPOSITION DE MECANIQUE.

Déterminer le mouvement d’un point matériel repoussé
par un centre fixe, en raison inverse du carré de la dis-

lance.

¢ : V"\"\

F étant le point d’ot émane la force répulsive, M la
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position du mobile, et MV la direction de sa vitesse a
Pépoque a partir de laquelle on compte le temps, il est
évident qu’il ne sortira pas du plan FMV.

Nous prendrons F pour pole, FM pour axe polaire, et
nous désignerons par , p et v les coordonnées et la vi-
tesse du mobile a la fin du temps ¢, par p, et v, les valeurs
initiales de p et v, par « I'angle FMV, compris entre
o et 7, enfin par p la force répulsive rapportée aux uni-
tés de masse et de distance.

Le principe des forces vives donne

dp*+ p’de’ 2

(1) de? = 3

2 , . .
en posant v} + £ = ¢ pour abréger, ct celui des aires,
Po

(2) pldew = cdt,

¢ étant déterminée en fonction des données p.,, v, et & par
Péquation

€ == pyv, Sina.

L’élimination de dt, entre les équations (1) et (2),
conduit a

ct,

en résolvant cette équation par rapport a dw, puis tn
intégrant, on trouve

w—B==ctarc.cos [ ——L" |,

— (3 étant la constante amenée par cette derniére opéra-
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tion; et l'on tire de la

cl

— [
‘ P ac? *
) ,?+l.cos(w—p)-—1

Afin que w = o donne p = p,, il faut qu’on ait

(3)

C +pop
e
et nous prendrons pour 3 le plus petit arc positif qui
satisfasse a cette équation.

L’équation (3) représente une hyperbole dontle point F
est un des foyers ; le mouvement s’effectue sur la branche
opposée a ce foyer, puisque p a initialement la valeur
positive p, qui répond & un point de cette branche; et
P'on voit facilement que la droite qui va du foyer F &
Pautre fait avec FM, dans le sens de w, un angle égal

cosf =

a 2m— B oua 3, suivant que a« > gou <§-

A et B désignant les demi-axes de cette hyperbole,
on a
B ¢ AB' ac
—=—y —0G— =5+,
A ® A? B
d’ou
A= E, B= -f: 9
a Va
et 'on pourrait la construire d’aprés ces formules; mais
il est préférable d’employer le théoréme de Newton, par
lequel on a N =R cos*¢, N étant la normale, R le rayon
de courbure, et ¢ I'angle compris entre la normale et le
rayon vecteur. Pour cela, on décompose la force répul-

sive :—, » qui répond & la position initiale M du mobile, et
[]

qui est dirigée suivant le prolongement de FM, en deux
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autres forces dirigées P'une suivant MV ou son prolon-
gement MV’, et 'autre suivant la perpendiculaire KK’ &
VV’; cette derniére composante, qui est représentée par
IL

;. sina, est égale a la force centripéte correspondant a
L

la position initiale, de sorte qu'on a

o

XY

_Eg
= —5Sina,
0

=

d’ou
AN
@ sina
R désignant maintenant le rayon de courbure relatif au
8 y (
point M; on prend, d’aprés cette équation, MC =R

sur la partie de KK’ ot tombe la composante t.sma
p p )

on méne CD perpendlculau'e a FG, DN perpendxcu]alre
a KK/, ce qui donne, en vertu du théoréme précité, le
pied N de la normale au point M; enfin FN est consé-
quemment la direction de Paxe focal, et la construction
de I'hyperbole s’achéve par des procédés qu’il est inutile
de rappeler.

On tire des équations (1) et (2)

d
+dt = &a
ap’—2pp —c?

el, en intégrant cette éguation, on a

it:a_lz \/ap’——zp.p—-c"

(4) tog |/ap2— ZPP___(_.z) _c,

‘L
a a (\/; a\/5+ a

C étant une constante.

.

. T . .
Sia> 5> P augmente continuellement avee ¢; on doit
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donc prendre + devant dtet ¢, et faire

c=Lyap—amm=v
()
o s (f s =),
afin que p = p, donne t=o.
Si a < 12_:, p diminue d’abord, puis ensuite augmente
avec f, et son minimum, qui répond & w = (3, est
‘ o

@
ac?

iy “+1—1
[

= A+ YA+ B =p;

on doit donc prendre premiérement le signe — devant dt
et ¢, ainsi que la valeur précédente de C; puis, lorsque p
atteint p, et dépasse ce minimum, ce qui arrive quand

P ¢
t = C .-—.._. 3 —— ——
a\/n (\/a a \/a>
prendre + devant dt et t, et faire

1oy C____ lo. _______ﬁ —[", .
() o 8(\/; ; a)

afin que p = p, donne t =1¢'.

Les équations (3) et (4) fourfissent directement 1'é-
poque du passage du mobile en un point de I’hyperbole
donné seulement par la valeur correspondante de . Si
I'on voulait sa position & un instant donné, il faudrait
résoudre I'équation (4) par rapport 4 p, mettre la valeur
obtenue dans I'équation (3), puis la résoudre par rap-
port a w.

La vitesse ‘est toujours dirigée tangentiellement a I’hy-
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perbole, et sa grandeur est donnée par I'équation (1) de

laquelle on déduit
= \/,, TS
F

Si > T, elle augmente continuellement, tandis que si
2

a <£, elle diminue d’abord jusqu’a \/ a— Ep_ff, et aug-
1
mente ensuite; dans les deux cas elle tend a devenir uni-
forme et égale a ya. On peut remarquer que » ne dépend
pas de «, de sorte que la vitesse aura la méme grandeur
a des distances égales de F, quel que soit cet angle. 11
n’en est pas ainsi de ¢ dont P’expression contient ¢ qui
dépend de a; c a bien la méme valeur pour des angles ()
supplémentaires I'un de I"autre , mais la constante C doit
recevoir la valeur (y) pour un de ces angles, et la valeur
(7') pour I'autre quand on considére des rayons vecteurs
égaux. _
Si 'on suppose que le mouvement a commencé avant
Pinstant & partir duquel on compte le temps, on peut
demander de le déterminer & une époque quelconque
antérieure a celle-la. Il suffit pour cela de considérer des

s . . ki3
valeurs négatives de t et de ; si « > ~, on prendra -+
2

devant de et t, avec la valel‘lr (7) de C, jusqu’'a p =p,,
qui répond & w = — 3, et t = — ¢, puis antérieurement
on prendra — devant dt et ¢, avec la valeur (y') de C; et

. T . .
si a< o> on prendra toujours — avec la valeur (7'). On

peut remarquer que des arcs de méme longieur et symé-
triques par rapport a 'axe focal de I’hyperbole scront
* décrits par le mobile dans des temps égaux.

Enfin, si l'on avaite =7 ou a = o, la trajectoire se-
rait évidemment la droite FM. Dans ces deux cas parti-



Lt

g (336 )
culiers, on a
dp\'_ , _ 2
<7t~> =a — —P-’
d’on
+dt = ———~P—dp———~;
Vap—2pp

donc la formule (4) s’y applique en faisant c=o, et la
discussion en serait semblable & celle qui précéde.

QuesTions.

I. Déterminer le mouvement d’'un point matériel re-
poussé par un centre fixe, en raison inverse du cube de
la distance.

II. Déterminer le mouvement de deux points maté-
riels qui se repoussent ou qui s’attirent, en raison directe
de leurs masses et en raison inverse des carrés des dis-
tances ; ces deux points ayant des witesses initiales in-
versement proportionnelles & leurs masses, et dirigées
en sens contraires, suivant deux droites paralléles entre
elles.

DE LA COURBE BALISTIQUE, PAR JACOBI (¥);

TravulT DU LATIN, PAR M. A.,
Ancien éléve de 1'Ecole Polytechnique.

Le grand géometre Jean Bernoulli, dans les Actes de
Leipsick pour 'année 1719, ramena aux quadratures le
mouvement d’un point pesant dans un milieu résistant
uniformément, chaque fois que la résistance est propor-
tionnelle a une puissance quelconque de la witesse. Pro-
voqué a déterminer le mouvement pour une résistance

(*) Extrait d’'un Mémoire sur le mouvement d’un point. (Crelle,
t. XXIV, p. 25; 1842.)



(337)

proportionnelle au carré de la vitesse, il résolut aussitét
la question plus générale. L'illustre Legendre apprit a
ramener le probléme balistique aux quadratures, quand
la résistance est proportionnelle au carré de la vitesse
plus une constante. Comme aucune de ces deux questions
ne se trouve dans les Traités de Mécanique, j’examinerai
en peu de mots le cas ou la résistance du milieu est pro-
portionnelle & une puissance quelconque de la vitesse plus
une constante. Cette supposition embrasse 'une et I'autre
question.

Soit a + bv" la résistance, a et b désignant des con-
stantes, les équations dynamiques deviennent

d’x_dz’_ bon 2!

priabriailCh sl or

d*y dy’ Yy
T dt h——(a*—bw)?—g'

Il suitde la
(a4 bo") (2’ dy’ — y' da’) = gvdx’,
d’ou, en posant
) z'=vcosn, y =wvsiny,
on tire
v(a+ bvydn = gdz' = g(cosndv — vsinndy),
ou

g.cosn v—(*+dy — (a + g sinn)v"dn= bdn.
Supposons que la partie a gauche de I'équation qui pré-
céde, multipliée par un facteur convenable, devienne
égale a la difiérentielle .Mv~", on aura
ﬂl_ . n(rl—i—-gsinm)dn

M g cosn
d’ou

x|§

bl

(1) M = cosn™". tang (45° + i n)

Ann. de Mathémat., t. X. (Septembre 1851.) 22
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et le multiplicateur devient

nM
g cosn
De la, Vintégrale
(2) Mo 7" bl\‘l'dn.
T g cosn

Cette formule continue 4 avoir lieu si b est une fonc-
tion quelconque de »; elle aura encore lieu en supposant
a fonction de n, pourvu que dans I'expression (1) on
change le second facteur M.

r

Posons
[ 1
7= tang (45u +3 n) ,
d’ont
. Xt —1 d dr
cosn = -y sinn = , Lh_
1 -7 1+ r COS 7 r
De la, en posant
a
a1 l),
. g
on tire
(3) M=2—n,.n(c—|}(l+,:1)n;
d’out
nb dr
(4) 2" My—" = — — f""(""')(l ~+ ’.?)n. .
. 4

Cette formule devient finie toutes les fois que n est un
nombre entier positif. L'expression de v en r devient sur-
tont trés-simple si 'on suppose

a n—4 2
—_—=c= ;
I 4 n
car alors on a, par la formule qui précéde,
nb
2 2\ — 2\n4t
I(l+l)t’ 2("_*_')(l—f--r) “+ «,

« désignant une constante arbitraire.
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Ayant déterminé v en fonction de r, les formules gé-
nérales donneront les expressions de x, y, t en fonction
de la méme quantité, au moyen des seules quadratures;
car, w désignant la résistance, on a les équations

dx’ z’
T
!
%—:: L w—g,
d’ou
w(z' dy! —y' dz') = godd/,
ou
(5) vwdn = gdx'.
11 suit de ces formules,
e vdn i
. x’w g cosy g7
6) { de=a'de=—"% 2odr
g g(1+r)
dy = y'dt = — v*tangn dn - v (r’— 1) (lr.
It gr(t+r)

En substituant dans ces formules générales I'expression
de la vitesse v en % ou en r, et intégrant, on obtient les
valeurs de ¢, x, y. Si dans les formules (3) et (4) on
pose a=c =0, n =2, on a les formules qu'on donne
ordinairement. . .

La réduction aux quadratures réussit aussi lorsque la
résistance est exprimée par la formule a+ 5 loge. Je ne
poursuis pas plus loin cette hypothése, parce qu’elle n’a
pas lieu dans la nature et qu’elle est comprise dans les for-

" ;s b b .
mules précédentes, en écrivant a — — et S 3u lieude a et

b, et posant ensuile n = o.
Pour obtenir des approximatiens, Newton et les an-
22,
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teurs venus aprés lui mettaient, au lieu de la constante b,
des fonctions de v ne variant pas beaucoup et donnant
pour v, , y, t des quadratures faciles. On en voit divers
exemples dans le Mémoire de l'illustre Legendre; mais
les méthodes d’approximation de ce genre paraissent trop
vagues.

ENVELOPPE D'UNE TANGENTE A DEUX CERCLES VARIABLES;
Par M. Eo. TERRE,

Eléve de M. Orcel, lycée Charlemagne.

ProsrLiME. On donne deux cercles dont les centres sont
fixes, et dont les rayons U et V doivent satisfaire a la
relation :

mU 4+ nV =p? .

m, n, p représentant des lignes.

On demande l’enveloppe des tangentes communes a
ces deux cercles.

Solution. Soient ces deux cercles U et V dans une posi-
tion particuliére (*). Soient TT', #:' les tangentes com-
munes a ces deux cercles. Soit 2 d la distance des centres.
Je prends pour axe des x la ligne des centres, et pour axe
des y une perpendiculaire a cette droite élevée parle point
O, milieu de la distance des centres.

L’équation de la droite T'T’, dans une position parti-

“culiére, est

y=ax+ b;
on aura
ad — b —ad— b
U= ———» _— .
=+ \at + 1 e +1

{*) On est pric¢ de faive la figure.
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La relation
mU + nV=p*

va me servir a déterminer b en fonction de a.
L’équation de la tangente TT’ peut se mettre sous la
forme
y =ax —+ ¢ (a).
Si, alors, on fait croitre @ d’'une maniére insensible, on
aura les équations successives des différentes tangentes
qui, par leurs intersections, donneront le lieu cherché.
La méthode générale consisterait a prendre la dérivée par
rapport & a de 'équation
y=ax—+g¢g ( a ),
et ensuite a éliminer a entre ces deux équations. Mais si
I'on essaye le calcul, on verra facilement que I'équation
finale serait du huitiéme degré. 11 faut donc, pour arriver
a un résultat simple, avoir recours a quelques artifices.
Je vais, a cet eflet, déterminer d’abord I'enveloppe
des tangentes extérieures T'T'. Je reprends I'équation
y=ax + b,

en y supposant a positif.
Les valeurs de U et de V seront, dans ce cas,

d—b — ad —
U= a_._._., V:._agﬁb,
Var+ 1 Var+ 1
ou bien
d—b — ad —
U:—a—;_-—a V:——‘i:—-—_—bﬂ
——\/a’—{-l — a1
La relation
mU + nV = p?

donne pour b, si 'on prend les premiéres valeurs de U
etdeV,

— (a?
m—n_ )P (a +l),
m—n (m+n)

b= +
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les secondes valeurs de U et de V donnent

MR ad+ \/p————-———‘(a’_m,):
m~—u (m 4+ n)y

Péquation de la tangente devient

b= +

" m—n pt(a® + 1)
= cad ;= ——
s (w+m+n “+ (m—+n)

Sil’on cherche I'équation de la tangente intérieure tt’, en
supposant toujours a positif, on trouve

_ m-+n . P (a+1)
.y_a‘r—*—m__n ad+\/(m‘_n)2‘,‘

si l'on suppose a négatif, les équations de ces tangentes

sont
m—n d— a‘+l
= — axr — ca
4 m—4-n -+ {m+n ,
m-+n p(a ~+1)
—_ — ax — cad —=¢ /22 T,
r ax m—n ad + (m—n)

Les équations générales des tangentes communes aux deux
cercles sont donc

m— n /Pt (at41)
—+ e - ad—
y=Xax: T ad = \/ -—————-( n)" )

n-arl'— (e +
- (”'*")

y = _Lax =+

Je dis maintenant que si I'on cherche I'enveloppe de I'une
de ces droites, on aura une courbe du second degré.

La maniére dont s’engendre le licu fait voir évidem-
ment que I'axe des x est un axe de symétrie.

Par conséquent, si cette enveloppe est une courbe du
second degré, elle sera de la forme

ry*+Cx'+2Ezx+4 F=o;
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or on sait que I’équation de la’tangente a cette courbe est

2 (F 2 — 30 — (2
) y___m_*_a.gi_\/a (E FC)C-:-EL ‘CF

On voit, a I'inspection de cette équation, qu'on peut I'i-
dentifier avec une quelconque des droites précédemment
trouvées. Donc le lieu se compose d"un systéme de courbes
du second ordre. ’ ,

L’équation (1) conduit au radical affecté du double
signe == ce qui indique que le lieu se composera de
quatre courbes du second ordre.

Je vais démontrer maintenant que ces courbes du se-
cond degré sont des cercles. Je compare a cet effet I'équa-
tion (1) avec une des équations précédentes, avec 1'équa-
tion suivante par exemple,

. ad
“ "'\/(m+n)”

on aura les équations de condition,
—FC_ p* E'C—CF P
C? (m + n) [ ( m+ ﬂ)

_y—ax-{—

d’ou
E'—FC__E'— FC

- 7

(o G

ou enfin C = 1.
On obtient donc un cercle.
On a immédiatement
m—n __(m-——n)’d’—p‘

E= ——.d; F =
mAn (m 4 nY

L’équation du cercle est donc

m—n ' »
m -+ n) T (m4-ny

ri+ ($+ d

Par un calcul analogue, on tronvera pour équation des
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autres cercles :

m 4+ n\? p'
2 d. =

‘_7+<.r+ m—n) (m—n)”
.7:+(.2‘—d-m—_” = LA 7
\ m+n)  (m-+n)

m—+ n\? p
2 —d. = .
7 (z m-—-n> (m —n)

Ces quatre cercles sont donc renfermés dans les deux équa-
tions suivantes :

r+ (zim‘nd)zz( P

m-n m+n)"’
m—n \? pt
2 -t — .
re (e i) =t

on trouve donc en général quatre cercles placés symétri-
quement par rapport 4 I'origine, et égaux deux & deux.
Ce probléme est susceptible de discussions.

Note. L'auteur donne ces discussions intéressantes, mais sans difficultés.

NOTE SUR LE PROBLEME PRECEDENT;
Par E. C.

Si I'on partage la distance des centres en deux parties
inversement proportionnelles & m, r; puis que, du point
ainsi obtenu, on abaisse une perpendiculaire J sur la tan-
gente commune, on aura, par un théoréme connu,

(m+nr)d=mU~+nV;
donc

o= _P .
m-+n

La distance ¢ étant constante, il s’ensuit que le lieu
cherché est une circonférence.



(345 )

GENERATION MODULAIRE ET OMBILICALE DES SURFACES DU
SECOND DEGRE.

1. Etant donnés: 1° un point fixe (foyer); 2° une
droite fixe (directrice); 3° un plan fixe ou seulement
donné de direction ; 4° un point de I'espace déterminé de
telle sorte que la distance de ce point au foyer, divisée par
la distance du méme point a la directrice, distance mesu-
rée parallélement au plan, soit égale 4 un nombre donné.
Lelieu de ce point peut devenir une surface quelconque
du second degré, excepté les surfaces engendrées par la
révolution d'une conique autour d’un axe focal.

C’est ce que les Anglais nomment la génération modu-
laire; le nombre donné s’appelle module.

2. 11 est évident que le plan passant par le foyer, per-
pendiculairement & la directrice, est un plan principal.

3. Sil’on prend, par rapport a ce plan principal, un
plan symétrique au plan fixe, en prenant le plan symé-
trique pour plan directeur, on obtient la méme surface.

4. Un plan paralléle au plan directeur coupe la sur-
face suivant un cercle ou suivant une droite.

En eflet, soient I le foyer, I le point ou le plan paral-
léle rencontre la directrice ; M étant un point de la surface,

MF , . .
le rapport - est douné: le lieu du point M est donc

ou sur une sphére, si ce rapport n’est pas égal a I'unité,
ou sur un plan, si ce rapport est égal a I'unité;
donc, etc.

5. Conservant le méme module et le méme plan di-
recteur, la méme surface peut étre engendrée par une
infinité dc foyers et de directrices; tous ces foyers sont
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sur une conique (la conique focale de M. Chasles) située
dans le plan principal perpendiculaire i la directrice, et
toutes les directrices sont sur un cylindre droit. Chaque
ditectrice a pour polaire réciproque, par rapport a la
surface, une tangente a la focale conique, et le point de
contact est le foyer correspondant. La base du cylindre a
été nommée conique directrice modulaire.

6. Dans 'hyperboloide & une nappe et dans le parabo-
loide hyperbolique, les deux coniques focales réelles (3)
sont modulaires, pouvant servir 4 engendrer la surface
maisdans I'ellipsoide, dans le paraboloide elliptique etdans
I'’hyperbole a deux nappes, iln’y a qu'une des deux focales
coniques qui soit modulaire: c’est celle qui ne rencontre
pas. L’autre n’est pas modulaire, elle rencontre la surface
aux ombilics; on la nomme conigue focale ombilicaire.

7. Lorsque la méme surface peut étre engendrée par
deux coniques focales, les modules ue sont pas les mémes,
ni les plans directeurs.

Soient m et n les deux modules, ¢ et ¢’ les angles cor-
respondants que font les plans directeurs avec les plans
principaux respectifs; on a la relation

2 2 o/

8. Soit m le module, et faisons varier m? de © ao:

1°. m = o & m = 1; la surface est un hyperboloide a
une nappe, et le foyer est sur une cllipse focale;

2. m = 1; la surface est un paraboloide hyperbolique
ctVon a une parabole focale;

3°. De m=14a m=cos¢; jusqu’a une certaine va-
leur intermédiaire entre m =1 et m=cosg, la sur-
face est un hyperboloide & une nappe, mais ayant une
position diflérentede cellequ’il a pourde m =0 am=1;
les axes directifs réels et imaginaires échangent leurs
positions respectives, et la parabole focale devient une
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hyperbole. Lorsque m atteint cette valeur intermédiaire ,
la surface devient un cone, et I'hyperhole focale se change
en deux droites ; depuis cétte valeur intermédiaire jusqu’a
m = cos¢, on a un hyperboloide & deux nappes et la
focale devient une hyperbole, mais dans une position
conjuguée & la premiére; pour m = cos ¢, la surface de-
vient un paraboloide elliptique et la focale une parabole,
et de m=rcosg a4 m = o, la surface devient et reste un
ellipsoide et la focale une ellipse.

Génération ombilicale.

9. On donne 1° un point fixe (foyer); 2° deux plans
fixes; 3° un nombre fixe. On cherche un point dans I’es-
pace tel, que le carré de sadistance au foyer, divisé par le
produit de ses deux distances aux plans fixes, soit égal
au nombre fixe; le lieu de ce point est une surface du
second ordre.

BIBLIOGRAPHIE.

Tous les odvrages annoncés dans les Nouvelles Annales de Mathématiques
se trouvent chez M. BacueLier, libraire, quai des Augustins, n® 55,

LEGONS SUR LES APPLICATIONS PRATIQUES DE LA GEOMETRIE
ET DE LA TRIGONOMETRIE; par MM. J.-4. Serret et
Ch. Bourgeois; ouvrage servant de complément an
Traité de Trigonométrie de M. J.-A4. Serret, examina-
teur pour I'admission & I’Ecole Polytechnique, et ren-
fermant les matiéres exigées pour I’admission 4 cette
Ecole, d'aprés le Programme arrété par la Commission
nommée en exécution de la loi du 5 juin 1850, et ap-
prouvé par M. le Ministre de la Guerre. Paris, 1851;
in-8° de 82 pages, avec planches. Prix, 2 francs: chez
Bachelier, libraire.

Toute pratique renferme trois parties : 1° la descrip-
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tion des instruments; 2° I’emploi de ces instruments; 3° la
théorie des procédés. Lors méme que la construction des
instruments est détaillée avec beaucoup de clarté, texte
et dessin, et c'est le cas du présent ouvrage, il y aura
toujours des difficultés de compréhension pour ceux qui
manquent d’habitude. Prenons pour’ exemple léquerre
A’arpenteur, instrument trés-simple et bien décrit (p. 14).
Les éléves en auront-ils une idée bien nette? C’est dou-
teux. Il n’y a pas méme lieu au doute pour des descrip-
tions plus compliquées, celles du cercle répétiteur, de la
stadia, etc. Il semble qu’on aurait méme pu se dispenser,
dans un ouvrage si élémentaire, d’insister tant sur les
régles de Clerc (page 27). Nous engageons donc les éléves
d’abord & woir et & manier les instruments; ensuite ils
liront ces six Lecons non-seulement avec une extréme fa-
cilité, mais encore avec plaisir. Du reste, comme c’est le
premier ouvrage de ce genre publié a 'approche des exa-
mens, il y a nécessairement quelques légéres traces de
hate dans ’exécution. Les développements ne sont peut-

" étre pas convenablement gradués sous le point de vue pé-
dagogique. Il y aurait méme 4 examiner s'il ne serait pas
avantageux de méler la pratique avec la théorie a I'instar
de Bezout, qui reste toujours un modeéle , non encore égalé,
de bon sens, de clarté et de rédaction. N'oublions pas
que nos éléves doivent sortir des colléges munis d’un grand
fonds de théorie avec quelques notions de pratique, et
cnsuite sortir des écoles d’application avec beaucoup de
pratique et quelques notions de théorie ; distinction que
le Programme a constamment oubliée. Il est a regretter
aussi que ce Programme n’ait pas admis la théorie des
transversales, si utile dans la géométrie pratique, comme
I'ont fait voir deux géométres éminents, Servois que nous
avons perdu, et M. Brianchon que nous avons le bonheur
de posséder encore.
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Nous avons en France un savant qui sest illustré par
les progrés qu’il a fait faire a la nouvelle géométrie; un
autre savantest parvenu subiterenta une hauteréputation
presque populaire, en réduisant en nombre, en temps
opportun, avec un bonheur inoui, des formules de la
Mécanique rationnelle. Ces deux savants ayant i régle-
menter I'enseignement mathématique en ont retranché,
quoi? la nouvelle géométrie et la mécanique rationnelle.
Ces étranges anomalies me rappellent un ouvrage de mo-
rale intitulé Bechinot Olam (*), et cet ouvrage débute
ainsi : « On ne peut sonder ni les abtmes de la mer, ni

» la profondeur des cieux ; plus impénétrables sont en-
» core les replis du coeur humain. »

OBSERVATIONS SUR LA RESOLUTIGN DES EQUATIONS DU TROI-
SIEME DEGRE PAR LES FORMULES DE TARTALEA, sur le cas
irréductible, sur le probléme de la trisection de I'angle
et de la duplication du cube; par un mathématicien.
Quimper, 1850 ; in-8° de 16 pages.

L’auteur montre, par des exemples, que si I'équation
du troisiéme degré a une racine de la forme @ 4 /3, a
et b étant des nombres commensurables, les quantités
contenues sous le radical, dans les formules ordinaires,
deviennent des carrés parfaits; il montre, mais ne dé-
montre pas que cela doit étre ainsi. Courtois, professeur
au collége Stanislas , dont la perte récente est si regret-
table , s’est occupé de cette question qu'il a probablement
résolue (**). Parlant de la trisection de 'angle, le mathé-
maticien croit qu'on peut faire cette opération par la géo-

(*) Appréciation du monde, traduite de Phébreu en frangais, par
Michel Berr.

(**) Voir Nouvclles Annales, t. 11, p. 50; Courtois est mort en 1849.
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métrieélémentaire. Wantzel en a démontré 'impossibi-
lité. M. Sturm a rendu cette démonstration plus rigoureuse
et plus simple, a ce qu'on dit.

E’mmas SUR LA TRIGONOMETRIE SPHERIQUE, suivies de nou-
velles Tables trigonométriques, donnant la valeur des
angles horaires du cadran solaire dans toutes les posi-
tions, la série des heures du lever et du coucher du
soleil pour toutes les latitudes, et la solution abrégée
de beaucoup d’autres problémes d’astronomie, de géo-
graphieetdenavigation; par M. 4lphonse Heegemann,
membre de la Société nationale des sciences, de I'agri-
culture et des arts de Lille. Lille, 1851; in-8° de
192 pages, une planche. (Extrait des Mémorres de cette

- Société, année 1849.)

Ces Etudes sont terminées par deuxTables A et B, et
c’est par la que nous commencons, car tout 'ouvrage est
dans cette fin. La Table A est & double entrée et repré-
sente ’équation indéterminée a trois variables

sin &« sin y = sin z;

Tarc x qu’on suppose plus grand que y est a I'entrée su-
périeure ou horizontale, les arcs se succédent de 3o’ en 30/,
depuis 0° 30’ jusqu’a 9o°; et I’arc le moins élevé occupe
V’échelle latérale ou verticale, et ces arcs se succédent
aussi de 30’ en 30’. Supposons, par exemple, x = 69°,
¥ =25°30'; prenant dans la colonne herizontale 6q°,
et dans la colonne verticale 24° 30/, on lit dans l'intérieur
de la Table 22°466 a I'endroit ou les deux lignes, partant
de ces deux points trouvés, se croisent; ainsi 'on a

z = 22°46’ 36”.

Ledegré étantsupposé diviséen six cents parties oudixiémes
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de minute, il faut multiplier le troisiéme chifire décimal 6
par 6 pour avoir les secondes. Cette méme Table, qui
donne les produits des deux sinus, donne aussi évidem-
ment les quotients, et, par conséquent aussi, les produits
d’un nombre quelconque de sinus divisés par un produit
semblable; le tout a vue et sans recourir aux Tables de
logarithmes’; mais dans ce cas la méthode perd son avan-
tage.
La Table B représente ’équation indéterminée

sin z tang y = tang z.

Sa construction est analogue & celle de la Table A il
est presque inutile de dirc que les Tables s’appliquent
aussi & des cosinus et a des cotangentes. Les nombres in-
termédiaires s’obtiennent a I'aide d’'une méthode d’inter-
polation fondée sur le théoréme de Taylor appliqué & une
fonction a deux variables; ce qui nécessite deux ordres de
différences , inconvénient assez majeur, les unes prises
dans les lignes horizontales et les autres dans les colonnes
verticales. Ces différences se rapportent a 15’ de diffé-
rence; une Table spéciale donne les parties proportion-
nelles. Ces Tables occupent soixante-quatre pages. Les
deux équations fondamentales résolvent directement les
dix-huit problémes qu’on peut proposer sur le triangle
sphérique rectangle , avec un suffisant degré d’exactitude
qui dépend aussi de ’exactitude des Tables qui, 4 ce que
je sache, n’est pas encore constatée. Les triangles obli-
quangles se décomposant en deux triangles rectangles,
on peut encore avoir recours aux Tables. L’auteur les a
calculées en grande partie jusqu’aux secondes de degré.
Des vues d’économf® et des difficultés typographiques ont
fait renoncer a la publication de ces grandes Tables;
projet dont I'exécution serait assez utile. Un grand nom-
bre de problémes de trigonométrie, d’astronomie, de na-
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vigation , de gnomonique, se résoudraient pour ainsi dire
a vue, sans calculs, sans logarithmes. Telles qu’elles sont ,
les Tables sont suffisantes pour les marins dans les calculs-
des levers, des amplitudes, etc., et, en général, dans tous
les calculs approchés a moins d’'une minute de temps
prés. L'ouvrage contient un grand nombre d’applica-
tions a I'astronomie nautique, etc. ; 'auteur appropriea ses
Tables les formules pour calculer les parallaxes , la réfrac-
tion, etc. C’est ce qui recommande principalement cet
ouvrage aux professeurs d’hydrographie. On aurait peut-
étre pu se dispenser d’établir de nouveau les formules des
deux trigonométries; elles nous semblaient suffisam-
ment connues et bien établies.

GRANDZUGE DER ALGEBRAISCHEN ANALYSIS, etc. Prin-
CIPES DE L'ANALYSE ALGEBRIQUE; par le D* J. Dienger,
professeur de mathématiques a I'Ecole Polytechniquc de
Carlsrushe. — Carlsrushe, 18515 1-8, x1iv-216.

Le savant auteur, connu par des travaux de haute ana-
lyse, a rédigé cet ouvrage élémentaire pour la seconde
classe de I'Ecole Polytechnique badoise. L’ouvrage con-
tient deux divisions. La premiére est consacrée aux fornc-
tions, aux séries et au calcul aux différences. La huitiéme
section , consacrée a la série binomiale, donne la somme

,
de la série infinie 1+ mx + MZZL)’ X+ ... pourx
véel ou imaginaire; dans la quatorziéme section, on dé-

montre, d’aprés M. Cauchy, que fgx +1) ——fx et ‘[;

atteignent la méme limite pour x croissant indéfiniment;

flz+1) T la
W et f(x) L

de méme les deux expressions



(353)
deuxiéme division traite des équations; résolution des
équations du troisi¢me et quatrléme degré, d’aprés Euler;
existence des racines, d’aprés M. Cauchy; communs divi-
seurs de deux polyuomes ; théoréme complet de Sturm;
méthode de Lagrange (fractions continues); recherches

)

des racines réelles, d’aprés Horner (*); méthode de
Newton. Un appendice contient les formules sin (a + bt),

cos (a + bi), etc.; sommation de la série

12 1.3
R SRR
x étant imaginaire; démonstration des formules de Cra-
mer ; méthode d’approximation de Fourier.

Les éléves sortant dela classe élémentaire de M. Dienger
auront une instruction mathématique plus compléte, plus
solide que leséléves sortant de notre Ecole Polytechnique,
telle qu’on I'a faite, ou mieux, telle qu’on I'a défaite.

SOLUTION DE LA QUESTION 233

. (volr t. IX, p. 182);

Par M. ROUCHE,

Eléve en spéciales du lycée de Montpellier.

T étant 'aire d'un triangle rectiligne, r et R les rayons
des cercles inscrit et cxrconscrlt a, b, ¢ les trois cotés,
on a les équations

a+b+c=2p, pr=T,
plp—a)(p—0b)(p—ec)=T? abc=4RT.

En combinant les deux premiéres, et développant la troi-

(*) La méthode dite de Horner est dans les Transactions philosophiques,

1819. Nous ne voyons pas en quoi elle différe dc la méthode Fourier-
Budan.

Ann. de Mathémat., t. X. (Septembre 1851.) 23
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si¢me, on obtient le systéme

n

2T T? ;
Zaz—;, Zab:; + 4Rr+ 7, abe=4RT,

qui, par le changement de a, b, ¢, en 2(p—a),
2(p—>5), 2(p—c), donne a son tour

Satp—a)=2% Fa(p—a) 2(p—b)=r(4R+7),
2(p—a).2(p—2b).2(p—c)=28/T.

Les cotés a, b, c sont donc racines de I’équation

2
(1) z3—ﬂz*+(%+4Rr+r’)z-—4RT:o;
r

et les quantités a+b—c, a+c—b, b+ c—a,
sont racines de celle-ci :

(2) u3~2§u’+4r(4R+r)lt—8rT:o.

En appliquant le théoréme de M. Sturm a I’équation
générale :

r— Axr’+Bxr— C=o,
on trouve, pour la réalité des racines, la relation unique
— {A°C + A'B'+ 18ABC — 4B — 29C* >0 (*).

Cette condition, relativement aux équations particu-
liéres (1) et (2), fournit le méme résultat

T'—2r'(2R*+10Rr—r) T+ r* (4R 4~ r* < o.
Le premier membre est un trinéme du second degré
en T*; pour qu’il soit négatif, il faut que ’équation obte-
nue en I'égalant & zéro ait ses racines réelles, et que T*
soit compris entre les deux racines.

(*) Nouvelles Annales, t. 1ll, p. 161; Note de M. Tarnier.
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Ces deux racines ont pour expression

r’[zR’-)— 10Rr—ri-2yR(R ;2r)3],

et comme elles sont positives en méme temps que réelles,
les conditions précédentes deviennent

R>or

et

rV2R' 4 10Rr — r* 4+ 2yR(R— 2rP > T,

T>ry2R*+ 10Rr— r*— 2R (R — 2r)p.

Lorsque R >> 27 et que T est égal a une de ces limites,
I'équation (1) a deux racines égales, et le triangle est
isocéle.

Si R = 2r, les deux limites se confondent, T devient

égal & cette limite 37* V3 ; I'équation (1) prend la forme

z3—6\/—§rz’+36r’z——24\/§r‘=o;

elle a ses trois racines égales, et le triangle est éqnila-
téral.

On parviendrait aux mémes conditions de réalité en
faisant évanouir les seconds termes des équations (1) et
(%), et appliquant ensuite le caractére 4p® 4 27¢* < o.

Note. Cet éléve fait la judicieuse rémargue que la question 230 est un
corollaire de la question 232.

THEOREMES SUR LES EQUATIONS ALGEKBRIQUES.

1. Soit une équation algébrique entiére de degré n,

P=Ax"'+ Az '4...+ A, =0 =/f(x),
23.
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a étant une quantité quelconque; on aura les identités

P =P (z—a)+ f(a),
P, =P, (z—a)+f"(a),

"
o
P, =P, (x—a) +£?!-)’

PJ :P‘ (.r——a)+ (. 9

Pn—l:pn (x_“) +“'"_‘”“

b L)

:nl

Il
>

P,, Py, Py,... sont les parties entiéres des quotients
P P, P,
x — a’ X — tl, X — o

Corollaire.

> ete. (¥).

(z

P=fla) + (= — ) f' () + E=L g

*““"‘(x; 2L () o (o — “>"f'{n_(:))! +(z—a)A
=fla+ (z—a)] =f(x);
résultat évident d’aprés le théoréme de Taylor.
2. Soient ¢(x, y) =o0, ¢(x, y) = o, deux équa-
tions algébriques entiéres ; si le déterminant

dedy. d?ﬂ

est identiquement nul, les deux équations sont ou in-
compatibles ou rentrent Uune dans Uautre.

(*) On n’insérera pas de démonstration de ce théoréme.
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© QUESTIONS.

238. Quand une suite d’ellipsoides est inscrite dans un
cbne de révolution suivant la méme courbe de contact,
on a, entre leurs demi-axes, a, b, ¢, la relation suivante :

. b
V(e —37) (b —¢?)

= constante.

(MicHAEL Roserrs. )

239. Démontrer la formule suivante :

¢ —xiatzx
= —y

2 I —a? [4 d‘y‘
2

e * zidx ae"”dy

x

TS Ve—@ ) Ja—p
_ xe—xidz ' ae—”y’dy
A \/-T’—a’ A \/;—-———-1— y; .
(STrEBOR. )

240. La position d’équilibre d’un corps surnageant
n’a lieu que lorsque la distance du centre de gravité du
liquide déplacé au centre de gravité du corps est un
maximum ou un minimum, ou bien encore lorsque le
centre commun de gravité du corps et du fluide déplacé
esta sa plus haute ou plus basse position. [Cravsen (Th.)
astronome de I'observatoire d’Altona. ]

241. Soit

?

Tipe=a T — b T,‘,
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équation caractéristique d’une série récurrente; on a

3 2
Ty —aToTop + 8 Tn constante
bu - °

(EuLer.)

242. Soit
Toya = 2Tnsi + Thy

équation d’une série réeurrente. Les deux premiers termes
étant 1 et 3, aucun terme n’est un carré, 4 l'exceptiondex.

243. Soit I'équation

(z—a)(z—a,)(z—as)(z — a) (z — @)+ (Z—aynm)
+ b (x —a,)(x—a)(x —a;) (¥ —as). . . (2 —Gint ) =0;
les indices angmentent successivement d’une unité et de
trois unités; les différences a;—as, @s—as ..., @un_y—ain
sont positives; b est un nombre positif; m un nombre
entier positif; les 2n racines sont réelles et comprises
entre a, et @y, Gy €t @yy. .., @yn_y €t @,,. (RicEELOT.)

244. Dans un produit de n facteurs mondmes, on ne
peut changer que 2"~* —1 fois les signes des facteurs, soit
en totalité, seit en partie, sans changer le signe du produit.

245. Soit

z=—ma, x,+a,x,+a; x4+ ...+ QX ‘

SUpposons que Iy, s, - - -, L, puissent prendre respecti-
vement m,, m,, . .., m, valeurs différentes; alors z aura
au plus m, my m; . . . m, valeurs différentes; mais il peut
en avoir moins. Dans quel cas?

246. Résoudre I’équation

u — 6y + aw’ +qu' — 3au + f=o.
247. Résoudre I'équation
F =84+ — 35 (*)

248. 4mn — m ~1 ne peut jamais étre un carré, soit

entier, soit fractionnaire. (GovLpmacn. )

(*) Les équations de cette forme ont toujours deux racines réelles.
{D. BernovLL. )



EXERCICE NUMEB!QUE SUR LES EQUATIONS DU PREMIER
DEGRE; LOGARITHMES DE GAUSS. '

Soient les quatre équations:
124944,66 = 0,03820252 — 0,00655533p — 0,0718334y -+ 0,0565703 3,
152292,21 = 0,0465752 2 — 0,00407850 B — 0,0915866 7 + 0,0362259 4,
168846,94 = 0,0517211 2+ 0,00054720 8 — 0,1032346 y — 0,004g063 d,
105498,00 = 0,0323338 « + 0,00305495 B — 0,0634685 y — 0,0271300d;
d’ou .
3270589 = « — 0,171594 8 — 1,880334 ¢ + 1,4808004,
3269812 = « — 0,087568 8 — 1,9664677 + 0,777743 9,
3264566 = « + 0,010580 B — 1,995987 7 — 0,094861 7,
3262771 = « + 0,094481  — 1,9629109 — 0,839084 ¢;
797 = — 0,084026 8 + 0,086133y + 0,703007 8,
6023 = — 0,182174 B -+ 0,115653 y + 1,57566:1 ¢,
78018 = — 0,266075 B + 0,082576y + 2,3198843;
 9247,1=— B + 1,022917y + 8,36654 3,
33061,8 = — B + 0,6348497 + 8,64924 43,
29382,7 = — f + 0,310349y + 8,719054;
23814,7 = — 0,387868y + 0,282708,
3679,1 = + 0,3245019y — 0,06984 9 ;
61399 = — v + 0,728856 7,
11338 = + y — 0,215131 8

72737 = + 0,5137259;
8= 141589,4, y= 41798, B= 1218098, a = 3348538.
(Extrait de I'ouvrage : Base du systéme métrique
décimal, etc.; tome III, page 3. 1810.)



( 360 )

C’est surtout ce genre de calcul que les logarithmes de
Gauss abrégent considérablement.
Prenons pour exemple les deux équations
ar + by =c,
arz+bVy=<c;

on en tire successivement

X4 —y=—
a a
14 ¢
.z—f—-;,_y::—,—,
b b ol
Ne=@)Ta—a
c c
PR
=% v
;__7

Employant les logarithmes, il faut chercher les six loga-
rithmes loga, log b, log ¢, log @', log &/, log ¢'; de 1a on
déduit

’ /
Iogg, log%, log;l—,, log%v

ensuite revenir de ces quatre logarithmes aux nombres ;
substituer ces nombres dans la valeur de v, et prendre de
nouveau le logarithme du numérateur et celui du déno-
minateur : c’est la marche ordinaire; tandis que par les
Tables de Gauss, il n’est pas nécessaire de revenir des
logarithmes aux nombres, et de connaitre les valeurs effec-

. c d A .
tives de Set de — car,commeon connaitleurslogarithmes,

7/

. . oor c ¢
ces Tables donnent le logarithme de la différence =

et de méme le logarithme de g — % Voici le procédé gé-
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néral : prenons trois équations a trois inconnues ; on rem-

place chaque coefficient par son logarithme, et I'on écrit
ces équations de cette maniére :

zloga + ylogb +zloge =logd,
zloga’ + ylog b’ + zlogc’ = logd’,
zloga” + ylog b” + zlogc” = logd”.

Il est presque inutile d’avertir que ces équations et les
suivantes n’existent pas entre les logarithmes, mais entre
les nombres correspondants.

De 14, on tire

z+ylogB <+ zlogC = logD,
z + ylogB’' + zlogC' = log D',
*z + ylogB” + zlog C" =log D",

logB =logb —loga, logC=logec—loga,...;
et ensuite, par soustraction,
y logB + zlogy —logd,
y log @'+ zlogy’ =logd’,

logB=log(B—B’), logy =1log(C—C),...,

et I'on trouve log £, log7, etc., par les Tables de Gauss ;
n’ayant plus que deux équations 4 deux inconnues, on
continue i opérer comme ci-dessus. Toute I'opération se
réduit donc a prendre les logarithmes des coefficients et a
faire ensuite un certain nombre de soustractions.

Cette méthode serait particuliérement utile aux
éléves (*) assujettis a chercher guarante logarithmes et
autant de nombres correspondants; et a calculer vingt

logarithmes.

(*) Matiére taillable et corvéable a merci.
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INTEGRATION D'UNE EQUATION DIFFERENTIELLE

f ydy )
(r+8)Wr—r1’

Par M. Ta. CLAUSEN.

(Nouvelles astronomiques de Schumacher, n° 442; t. XIX, p. 178; 1842.)

Posons
— - 2
=21, ? =y, z”=(‘y I),
Vr—i Vr =t
: — 3y + 2 , 3 rid
di= =TT 2y, A=t L,
2(y*—1)? Vri—i
A 3__3 2 ___ + 4
d =t Y23y br+4,
> (=}
2 _ _ 1y—2y—2 dy ,
1=32 2y —2y+4
e 3 dy ,
49 2748/
2’  vy—1 dy
z”’--l—g.— 2 y+2 \/y"——l
d’ou
dz dz dz” 6y dy

1— 33"+z”+9+3”’+9:(y’+8)~/;“—;*').

ne
ydy 1 1 1+2\/§
—— = og =
f(y’+8)\/y3——-x 123 1 —zy3
1

1 1 I
-+ —l—garc langgz’—i— 3 2z’ arc tang gz"

Do

_ 1 \7f’+y+l+Vy—!-\/§>
T r3\Vr+r+1—yVyr—1.y3
1 Sy(r—1) 1.
+T§arctang[(4-y)&/y7__‘]
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Observation. Legendre trouve cette intégrale par un
moyen trés-compliqué et la vérifie par une méthode plus

courte. (Traité des Fonctions elliptiques, chapitre XX VI,
n° 138.)

QUESTIONS DE TRIGONOMETRIE ;
D’arris M. GAUSS (*).

Soient
. e?cos' P
® = Y —e? ’
asin Q = sinP,
acosP
A= = e——%
«cosQ 1 — & sin’ P
o ° l I
o tang <45 +2P> (;-esinP\)E“”,
- ' 2 sin P ’
tang <45°+%Q) 1+ esinP
faisant

sing —e,

tangt == tangg cos’P,
tangn ==sin § tang P,
sing =z ¢sinP,

(*) Untersuchungen uber gegenstande der hohern geodesic : Recherches sur -
des-objets de la géodésie supérieure. Gestingue, 1844 ; imj* de 45 pages.
(Extrait du second tome des Mémoires de I’Académie de Gouiugue.) Lil-
lustre auteur promet une suite de Mémoires sur le'méme sujet; un second

* Mémoire a paru en 1847. - -
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on aura
— I
= cost’
sin Q = cos¢ sinP,
cos»n c0sQ = cosP,
sin n = tang tang Q,

fang—i(P-—Q):tang'-;—c tangin,

sin(2f —¢) =-ecos2Q,
Cos9 = cos{ cosn cosb,

A 40089
T I _e&sn'P
tang * <45“+ —;-P) .
K —

tang <45°+ % Q> tang* ¢ (450 + »; 9)

Calcul numérigue.
loga = 6,514823533
données { loge = 8,9122052097 ¢ logarithmes hyperboliques;
Q — 520 40/ ol/
d’ou
= 4°41" 9",98262,
P =52°42’ 2”,53251,
£ = 1°4326",80402,
n= 2°15'42",34083,
log« = 0,0001966553,
6 = 3°43' 34",24669,
logA = 6,5152074703,
logil = 0,0016708804 ,

Observation. 52° 40 est environ la latitude du paral-
léle moyen qui traverse le royaume de Hanovre, dont la

carte a été levée par l'illustre directeur de I'observatoire
de Gottingue.
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EXERCICES SUR LES EQUATIONS NUMERIQUES.

r#— 182’4+ 22— =0, z=17,91015.

'+ 92’ + 312 + 48z — 32 =0, x=2,4{8906685.

. — 4o+ x4+ 4=0, x=1,23772905.

.2+ 8x+ 142 —8x+1=0, £=10,236 (il y a deux racines
différant peu de 0,23).

'+ gr*— 6z +5=o, z=0,357401208 == 0,656331949 V—r.

. x'— gx* — Q-+ 1000 =0, x=7,0295488!5i1,555451499\/:.

C & — 2+ 14,22 — 20,1 z + 26 =0, x=0,7183:_t1,9288\/:_1.

2 —fr 41427 — 202+ 12=0, T=1 i2,7578\/_-—-—1.

.2+ z—+1=o0, x est compris entre — 0,7 0,03y—1 et

— 0,8 +0,3y—1.

1°. Equatz’ons & deux inconnues.

o -

© ® a o %

2+ by —2y'—10=0, z=2, r=75,43637043,
0'%‘175—{—31"]-1'-3-1')’2—‘98:0’ r=3, y:—0,85308876.
z— 22+ fay —y =0, =0,773571776,
Vet 4+ yrz —y* =0, y = 1,625681024.
zt + y* = 300, = =2,4223817,

120 0 4y =80, y=4,0368508.
20, .Equations transcendantes.

13. 2°=10, z=12,506184.
14. 4+ 5= 10, x=1,0697432.
185. e =22+ 5, 2=2,25163, r= 2,892+7,210¢:,

30, A deux inconnues.

=5, z=12,5416,

16.
6 y =4, y=1,7253.
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4°. Racines exprimées en produits in_ﬁm's."

17. ©* — 182*+ 22— =0, £=17.1,05.1,003.1,0003...,
18. '+ ga'—6z+5=0, z=(0, 35+0, 65y—1).1,01
< (1, 002 — 0, 004 y—1)

> (1,0002 — 0,0005 V—1)-

' + y* == 300
r z=2,4.1,008.1,001..., y =4.1,009....

19, .
x4 y* =280 |

Ces exemples sont tirés de 'ouvrage : Allgemeine auf
losang der zahlen-gleichungen mit einer oder mehre-
ren unbekannten : Solution générale des équations numé-
riques 4 une inconnue et i plusieurs inconnues; par
Simon Spitzer, professeur suppléant & VInstitut poly-
technique de Vierme. Vienne, 1851 in-folio de 73 pages.

L’auteur donne & chaque racine la forme générale

a b, b b )
a,+ +_+_+"'+<b,"+ﬁ+?ﬁ+ﬁ+m, V—r1;

a, et by sont des nombres entiers quelconques , zéro com-
pris; @, @y y..ey by 4 by,... sont des nonibres entiers qui
ne peuvent dépasser 93 les quantités b sont nulles pour

. , Iy . » a; i .
les racines réelles. Aprés avoir trouvé a, + 750 on dimi-

nue toutes les racines de cette quantité, par le procédé
Budan; la nouvelle équation a une racine moindre que

1 . a . .
vy et, par approximatlion, on trouve —-—“:0- On diminue
1

. . , - a
alors toutes les racines de la derniére équation de j’, on

obtient une équation qui a une racine moindre qu’'un
centiéme, et, par approximation, on trouve a,; et ainsi
de suite. La méme marche, mais plus compliquée, pour
les racines imaginaires et pour les équations & plusieurs
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mcmmu(.s On ne peut connaitre le degré d’exactitude,
pomt essentiel dans les méthodes approximatives; du
reste, dans la pratique, la substitution directe fournit

toujours un moyen de vérification. Nous reviendrons sur
cet ouvrage.

EXAMEN D’ADMISSION A L’ECOLE FORESTIERE. PARIS, 1851.

COMPOSITION DE MATHEMATIQUES.

Trigonométrie.— U:s‘age des Tables. Ancienne division.

Deuxiéme question (plus difficile). Les lignesa, b, ¢
sont des cdtés du périmétre d’une coupe de bois que lon
vient d’asseoir. En calculant la surface de cette coupe,
on la trouwve trop grande de 1***:,75. On veut opérer
le retranchement de cet excédant au moyen d’une pa-
ralléle au cité a.

Déterminer sur le coté b la distance AC & laquelle
doit éipe menée cette paralléle.

Dans la figure jointe au texte, le c6té b (ligne CA) fait
avec le coté a (AB) un angle de 63227, etle coté a (AB)
fait avec le coté suivant ¢ un angle de 79°17'. On ne
donne pas la valeur numérique de a. Comment alors faire
usage des Tables? Si I'on ne voulait qu’une solution géo-
métrique, d'ailleurs nullement difficile, & quoi bon les
données numériques ?

On ne saurait donner trop d’attention aux quesuons
qui décident de la carriére et soavent du sort des jeunes
gens. En toute justice, cette composition doit étre consi-
dérée comme non avenue, et le résultat 8tre annulé.
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LOGARITHMES AVEC 27 DECIMALES DU MODULE;
‘ Par M. Pa. KORALEK,

Professeur.’

On a souvent besoin de connaitre, avec une grande exac-
titude, le logarithme du module.
Désignant ce nombre par M, on a, comme on sait,

M =0,43429 44819 03251 82765 11289 189166;
appliquant & ce nombre ma méthode de calcul, je trouve
log tabulaire de M = 0,63778 4311300536 78912 2955917 — 1,
log népérien de M = 0,16596 75547 52044 200196760285 —1.

(Poirp. 394.)
On ne sache pas qu’on ait calculé ces logarithmes avec
plus de 10 décimales.

BIBLIOGRAPHIE.

INSTRUCTION SUR LES REGLES A CALCUL, ET PARTICULIERE-
MENT SUR LA NOUVELLE REGLE A ENVELOPPE DE VERRE;
par M. Léon Lalanne, ancien éléve de I’Ecole Poly-
technique, ingénieur en chef des Ponts et Chaussées.
Paris, 18513 in-r12; vir-136 pages.

La méthode des cotes, la seule presque qui soit en usage
dans les services publics, a é1é introduite depuis quelques
années dans P'enseignement graphique de 1'Ecole Poly-
technique. 11 serait A désirer que ce procédé fit admis
aussi dans les lycées, et qu’il précédit méme la méthode
des épures a deux plans de projections. On sait qu’avec
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s, on n’a besoin que d’un seul plan, au moyen du-
qéift-on peut représenter des points dans ’espace et exé-
clter diverses opérations sur ces points. Ce plan unique,
plus facile & comprendre; peut servir de transition aux
deux plans. Les cotes peuvent aussi étre employées pour
représenter une courbe plane au moyen d’une seule droite.
" A cet effet, prenons un point O pour origine, et menons
les droites OX, OY, axes. Soit A, le point ou I'axe OX
rencontre la courbe, de sorte qu'en A, on a y = o} fai-
sons OA, = 1; portons sur I'axe des r, et toujours dans
le méme sens, OA, =2, OA; =3, OA, =4, etc., et
menons les coordonnées correspondantes A, M,, Ay M,
A,M,, etc.; inscrivons 3 l'extrémité d’une droite le
nombre 1; & partir de 1 portons sur la droite 'ordonnée
A,M,, et inscrivons au bout le nombre 2 et, toujours a
partir de 1, portons Ay M; et inscrivons 3, et ainsi de
suite. Il est évident qu’au moyen de cette droite, si P'on
a pris 'unité OA suffisamment petite, on pourra recon-
struire la courbe, et, sans recourir a cette construction,
on peut trouver approximativement I’aire de la courbe, les
coefficients angulaires des tangentes , faire des interpola-
tions, etc. Choisissons la logarithmique y=log x; alorssur
la droite représentative le nombre 1 indique le logarithme
de 1 ou zéro, le nombre 2 indique que 'intervalle 12 est
le logarithme de 2 ; le nombre 3 marque que linter-
valle 13 est le logarithme de 3, et ainsi de suite. Sup-
posons maintenant deux de ces droites ainsi préparées et
juxtaposées, 1 étant vis-a-vis de 1, 2 vis-a-vis de 2, etc.;
rendons fixe une de ces droites, et appelons-la régle, et
rendons mobile la seconde droite, le long d’une rainure
pratiquée dans la régle. Appelons cettc seconde droite
réglette. Faisant glisser la réglette jusqu’a ce que son
nombre 1 soit vis-a-vis le nombre quelconque m de la
régle, alors le nombre quelconque'n de la réglette sera
Ann. de Mathémat., t. X, (Octobre 1851.) ' 24
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vis-a-vis un nombre x de la régle, et la distance
la régle sera égale i la somme des distances 1m et™s#h.
Or ces distances représentent les logarithmes; donc,
d’aprés la propriété connue x=rmn, on connait le
produit des deux nombres m et n; 'addition des loga-
rithmes qu’on exécute avec les Tables et avec la plume
s’opére par la régle glissante (slide rule), sans Tables et
sans plumes, & P'aide d’un simple déplacement. On voit
comment, par un mouvement inverse, on peut opérer la
soustraction des distances, et par conséquent la division,
et aussi l'extraction des racines. Il est évident que s’il
fallait inscrire tous les logarithmes, I'instrument serait
inexécutable; mais on peut se contenter, pour les usages
ordinaires, d'un petit nombre de logarithmes. En effet,
admettons qu’on ait inscrit seulement les nombres de 1
a 9; 1 est le commencement de la régle et représente zéro
ou le logarithme de 1. Supposons que la régle soit pro-
longée seulement dans le sens de 21, alors le zéro de 1’é-
chelle tombe en dehors; le 1 représentera le logarithme
de 10; le 12 le logarithme de 203 le 13 le logarithme de
3o, et ainsi de suite ; de méme 12 peut présenter le loga-
rithme de 200 et 13 le logarithme de 300, etc. ; les nom-
bres intermédiaires s’obtiennent par interpolation. Du
reste, Vinstruction est tellement détaillée, les maniéres
d’opérer sont si nettement indiquées, les figures sont si
parlantes, que tout le mécanisme devient d’une facilité
extréme. M. Lalanne s’est rendu accessible aux moindres
intelligences, et nous ajouterons aux plus modestes
fortunes. Sa régle a enveloppe de verre ne coiite que
3 francs; celle qui est en bois coute 7 francs (*). L’in-

(*) Les divisions doivent étre parfaitement égales, les traits minces et
pourtant visibles, et bien se correspondre sur la régle et la réglette;
conditions dont I’exécution exige beaucoup de soin et rendent I'instru-
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strpment de M. Lalanne suffit parfaitement aux éléves
qui doivent seulement connaitre la régle et la maniére de
s'en servir, sans avoir besoin d’acquérir une habileté
qu’ils acquerront promptement lorsqu’ils seront devenus
praticiens; habileté d’ailleurs qu’on ne conseive qu’en pra-
tiquant constamment. Nous recommandons donc la régle
économique, surtout pour le nouvel enseignement, bien
plus dispendieux que P'ancien. Il est vrai que le nou-
veau offre plusieurs compensations ; il est plus pénible,
plus long, de qualité trés-inférieure, et les chances des
éléves sont plus embrouillées. Ainsi dans le nouveau mode
d’examen (*), les éléves seront classés d’aprés douze
moyennes prises sur des objets différents, ayant chacun
un coefficient particulier, méme fractionnaire ( Moniteur,
5 juillet 18515 page 1899, 1™ colonne, article 42). Les
éléves sont assimilés & des orbites planétaires, dont on
détermine les dimensions d’aprés douze observations,
ayant chacune son poids spécial. L’enseignement est évi-
demment sous une influence astronomique. Je crois
méme qu'il est sous la domination du Cancer.

ment assez cher. L’action de la température et 1'usage font méme dispa-
raitre ces conditions assez vite. Les éléves n’ayant besoin que de connaftre
Pinstrument, le moins dispendieux est le meilleur pour les classes.

(*) On a adopté V'excellent systéme suivi pour VEcole de Saint-Cyr,
mais en le gatant. Le Président doit étre un protecteur donné aux can-
didats, et vous en faites un troisi¢éme examinateur. Il y a hypertrophie
d’examens. D'ailleurs, on ne devient pas mathématicien, physicien, chi-
miste, etc., par ordonnance ministérielle. En multipliant outre mesure
les moyennes diverses, vous avez accumulé les chances d’erreurs. A travers
les larges trous de vos cribles, les médiocrités passent aussi et méme plus
facilement que les supériorités. Au milieu de cette macédoine d’épreuves,
le controle de vos jugements devient impossible, et, par conséquent, les

injustices sont possibles. En ce genre, le possible finit toujours par
-exister.

24.
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DES SYSTEMES DE CHIFFRES
‘En usage chez différents peaples, et de Uorigine de la valear de position
des chiffres indiens.

(Journal de M. Crelle, tome IV, page 206; 1829. )

Mémoire lu a I'Académie des Sciences de Berlin, le 2 mars 1829, par
M. le baron ALExAaNDRE DE HUMBOLDT.

TrabuiT DE L'ALLEMAND, PaR M. F, WoEerckk.

Jusqu’a présent, dans les recherches sur les signes de
la numération (les seuls hiéroglyphes qui, chez les peu-
ples de I'ancien continent, se soient conservés a co1é de
Y écriture littérale, anatomie phonétique de la parole), on
s’est occupé plutét de la forme individuelle des signes, que
de I'esprit des méthodes & 'aide desquelles le génie humain
a réussi & exprimer des quantités avec plus ou moins de
simplicité. Le point de vue sous lequel on a envisagé cet
objet, a été presque aussi borné que celui qui, pendant
longtemps, a fait comparer les langues plutét relativement
ala fréquence de certains sons etde certaines terminaisons,
ou relativement a la forme des racines, que par rapport
a la structure organique de leurs grammaires. Depuis plu-
sicurs années, je me suis efforcé, continuellement et avec
une prédilection particuliére,, de mettre sous un point de
vue général les systémes de chiffres en usage chez diffé-
rents peuples anciens et modernes. La connaissance de
certains chiffres chez les A4ztekes (Mexicains) et chez
les Muyscas (*) (habitants du plateau de Cundinamarca)

(*) Quant a l'opinion que les chiffres des Muyscas (employés en méme
temps comme hiéroglyphes des jours de ’age de la lune), dérivent de la
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que j’ai remportés de mon voyage; la déeouverte, faite
par Thomas Young, du chiffre égyptien, dont les signes
(comme nous le savons a présent) n’expriment pas tous
par juxtaposition le multiple des groupes;-le chiffre
gobar (de poussiére) des Arabes, trop peu remarqué
encore, découvert par Silvestre de Sacy, dans un ma-
nuscrit de la Bibliothéque royale de Paris; les comparai-
sons que j’ai établies entre ces derniers signes de numé-
ration et les chiffres mexicains et chinois; la certitude
acquise par un grand nombre de grammaires publiées
dans I'Inde, que les chiffres et les lettres employées
comme signes de numération, en deca et au dela du
Gange, sont non-seulement d’une forme tout a fait diffé-
rente, mais que les systémes de chiffres eux-mémes sont
essentiellement différents, ayant ou n’ayant pas une va-
leur de position; enfin' une méthode indienne entiére-
ment inconnue, qui se trouve dans une scolie du moine
grec Véophytos : voila une suite de matériaux qui peu-
vent jeter quelque lumiére sur notre systéme de numéra-
tion soi-disant arabe. En 1819, dans un Mémoire lu a
Paris, dans une séance de I'Académie des Inscriptions
et Belles-Lettres, j’ai essayé de démontrer commeént, chez
des peuples qui abrégent la méthode de la simple juxtapo-
sition, en écrivant (a la maniére des Mexicains dans
leurs ligatures de 4 fois 13 ou 52 années, des Chinois, des
Japonais et des Tamouls) des. exposants ou des indica-
teurs au-dessus des signes de numération, comment, dis-je,
ces indicateurs, par la suppression des signes de groupes
arrangés en séric horizontale ou verticale, ont pu donner
naissance a I'admirable systéme indien de la valeur de posi-

figure lunaire, qui se développe i t avec les ph -

sives, voyez Humboldt, Vues des Cord. et Monuments des peuples indi-
génes de 'Amérique, t. II, p. 237-243; P1. XLIV, ‘
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tion. La propagation de ce systéme a di étre favorisée par
Pusage antique des cordons dont on se servait pour aider
la mémoire et pour compter. Détachés, comme les quip-
pos des Tatares, des Chinois, des E’gyptiens, des Péru-
viens (*) et des Mexicains, ces cordons se changeaient
en chapelets chrétiens, pieuses machines a calculer (**);
tendus sur des cadres, ils forment le suanpan de toute
I'Asiecentrale,l'abacus des Romainsetdes Tusciens (¥**¥),
et les instruments de ’arithmétique palpable des races
slaves (¥***). Ces systémes de cordons ou de fils de fer
du simple suanpan asiatique, représentent les groupes
plus ou moins élevés d’un systéme de numération, soit
dizaines, centaines et mille; soit, suivant la division
sexagésimale, degrés, minutes et secondes. L’esprit de la
méthode est le méme. Les perles de chaque cordon sont
les indicateurs des groupes ; un cordon vide indique zéro;
ainsi il indique le vide sunya (sanscr.) sifr, ou plutét
proprement sifron sihron (arabe, suivant Meninski:
prorsus wacuum). Je ne puis pas prouver historique-
ment que I'origine de la valeur de position donnée par les
Indiens aux neuf chifires a été réellement celle que je
viens d’indiquer; mais je crois avoir montré le chemin
qui peut successivement conduire a cette découverte. En-
trevoir de semblables probabilités, voila tout ce qu'on
peut attendre de la ténébreuse histoire du développement
des forces de l'esprit humain, histoire que son obscurité
ne rend que plus attrayante.

(*) Voir sur Yemploi des guippos pour compter les péchés au confes-
sionnal, Acosta, Hist. natural de las Indias, lib. 6, cap. 8; el Inca Gar~
cilaso, lib. 6, cap. 9; Fréret, Mém. de I’Acad., t. VI, p. 6og.

(**) Klaproth, Asiat. Mag., th. II, s. 78.

(***) Otfried Miiller, Etrusker, t. II, p. 318.

(****) En russe, le chapelet s’appelle tschothi; la table a calculer aux
eordons (le suanpan des Tartares), tschatii.
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Un court extrait du Mémoire lu devant ’Académie des
Inscriptions a été imprimé, et cela dans un endroit ou
Pon ne le cherche guére (*). Le manuscrit méme se
trouve entre les mains de M. Chawmpollion, qui se propose
de le publier avec d’autres découvertes beaucoup plus im-
portantes encore, faites par lui & Zurin, et relatives aux
différentes méthodes des chiffres égyptiens. Depuis lors,
j’ai continué de compléter de temps en temps mon pre-
mier travail; mais comme je ne puis espérer de trouver
assez de loisir pour le publier dans toute son étendue,

_Jessayerai d’en réunir ici les résultats principaux. En
présence du nouvel et heureux essor qu’a pris I'étude des
langues et des monuments, en présence du commerce
croissant avec les peuples de I’Asie méridionale et occi-
dentale, il n’est peut-étre pas tout a fait inutile de discuter
des problémes qui touchent de si prés 4 la marche que suit
Pesprit humain et méme aux plus brillants progrés des
mathématiques. Un des plus grands géomeétres de notre
temps et de tous les temps, l'illustre auteur de la Méca-
nique céleste, dit (**) : « C'est de I'Inde que nous vient
I'ingénieuse méthode d’exprimer tous les nombres avec
dix caractéres en leur donnant i la fois une valeur absolue
et une valeur de position; idée fine et importante qui
nous parait maintenant si simple, que nous en sentons a
peine le mérite. Mais cette simplicité méme, et I'extréme

(*) Gay-Lussac et Arago, Annales.de Chimie et de Physique, t. XII,
p- 93; dans les Comptes rendus mensuels de I'Institut; Humboldt, Essais
pol. sur la Nouv.-Espagne ( 28 édit.), t. Ill, p. 122-124.

(**) Laplace, Expos. du systéme du monde, livre V, chapitre 1. Avec ce
jugement, contraste singuliérement I'opinion émise par Delambre dans
sa polémique sur le mérite de 'ancienne arithmétique indienne, telle
qu’elle se trouve dans la Lilawati de Bhascara Acharya (Hist. de 1’Astro-
nomie ancienne, t. I, p. 543 ). Il n’est guére probable que la langue seule
conduise a la suppression des signes des groupes.
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facilité qui en résulte pour tous les calculs, placent notre
systtme d’arithmétique au premier rang des inventions .
utiles; et 'on appréciera la difficulté d’y parvenir, si I'on
considére qu’%l a échappé au génie d’Archiméde et d’Apol-
lonius, deux des plus grands hommes dont I'antiquité
s’honore. » Les observations suivantes démontreront, je
Pespére, que la méthode indienne pouvait dériver succes-
sivement de méthodes antérieures, en usage encore aujour-
d’hui dans I’Asie orientale.

La langue, généralement parlant, détermine V'écriture,
et Décriture, sous certaines conditions examinées par
Silyestre de Sacy et par mon frére, réagit sur la langue;
de méme les maniéres de compter si différentes chez les
différents peuples, et les hiéroglyphes numératifs exercent
les uns sur les autres une influence intime. Cette in-
fluence réciproque cependant n'est pas toujours d’une
rigoureuse conséquence. Les signes de numération ne
suivent pas toujours les mémes groupes d’unités que la
langue; la langue n’offre pas toujours les mémes points
d’arrét (les mémes intervalles quinaires) que les signes de
numération. Mais en réunissant sous un seul coup d’ceil
tout ce que la langue (noms de nombre) et la graphique
numérique présentent dans les zones les plus éloignées,
tout ce qu’a produit 'intelligence humaine, dirigée sur
les relations quantitatives : alors on retrouve dans I'écri-
ture numérique d’'une race les singularités isolées, en
apparence, de la langue d’une autre race. Il faut ajouter
méme qu’une certaine maladresse dans les parties de la
langue et de I'écriture, relatives 4 la numération , n’offre
qu’une mesure trompeuse de ce qu'on se plait & nommer
Vétat de culture de I’humanité. On rencontre a cet égard,
chez les différents peuples, les mémes complications, les
mémes contrastes que ces peuples présentent sous d’au-
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tres rapports. A coté des degrés les plus variés de' cul-
ture intellectuelle et de constitutions politiques, tantét
ils ont I'écriture littérale, tantdt seulement des signes
idéographiques; tantot une richesse abondante de formes
grammaticales, de flexions dérivées organiquement du
son radical, tantét des langues presque destituées de
flexions et de formes, engourdies, pour ainsi dire, dés
leur naissance. Ainsi P’action réciproque du monde in-
térieur et du monde extérieur (action dont les pre-
miéres causes déterminantes restent plongées dans les
ténébres d’un temps mythique) pousse le genre humain
unique de nature dans les directions les plus divergentes,
le plus souvent irrésistiblement; et cette divergence
se conserve, quand méme de grandes révolutions cosmi-
ques rapprochent de nouveau géographiquement les fa-
milles de langues les plus hétérogénes. Mais certaines res-
semblances, certains accords qui, 4 d’immenses distances,
seretrouvent dansles formes grammaticales, dans les essais
graphiques, pour exprimer de grands nombres, témoignent
de 'unité du genre humain, de la prépondérance de ce
qui prend sa source dans l'intelligence intérieure et dans
I’organisation commune de I’humanité.

Des voyageurs qui virent qu'en comptant on réunissait |
des cailloux ou des grains en tas de 5 ou de 20, préten-
dent que beaucoup de nations ne comptent pas au dela
de 5-ou de 20 (*). De cette maniére on pourrait prétendre
aussi que les Européens ne comptent pas au dela de 10,
parce que dix-sept est composé de 1o et de 7 unités.
Chez les nations les plus civilisées de 'Occident, par exem-
ple chez les Grees et les Romains, les langues , comme
on sait, rappellent encore cette habitude de former des

(*) Pauw, Recherches philos. sur les Américains, t. II, p. 162. (Hum-
boldt, Monuments américains, t. U, p. 232-237.)
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tas ou des groupes; de la les expressions psephizein,
ponere calculum, calculum detrahere. Des groupes d’uni-
1és offrent, en comptaunt, des points d’arrét, et les peu-
ples les plus différents, en vertu d’une commune organi-
sation corporelle (quatre extrémités, dont chacune divisée
en cinq parties), s’arrétent : ou bien 4 une main, ou aux
deux mains, ou aux mains et aux pieds. Selon cette diffé-
rence des points d’arrét , il se forme des groupes de 5, de
10 et de 20 Toujours est-il remarquable que sur le nou-
veau continent, comme chez les Mandingas d’Afrique,
chez les Basques et chez les races kymriques (galiques )
de D’ancien continent, on trouve, pour la plupart, des
groupes de 20 (*). Dans la langue chibcha des Muyscas
[ nation qui, semblablement aux Japonais et aux Tibé-
tains, était gouvernée par un chef ecclésiastique et par
un chef séculier, et dont j'ai fait connaitre la-méthode
d’intercaler un trente-septiéme mois, pareille i celle de
I'Inde septentrionale (¥*)], 11, 12, 13, s’appellent :
pied un (quihieha ata), pied deux (quihiecha bosa), pied
trois (quihieha mica), composés de quihicha ou ghieha
(pied), et des trois premiéres unités ata, bozha ou bosa
et mica. Le numératif pied indique 10, parce qu'on
vient au pied aprés avoir parcouru en comptant les
deux mains. Vingt, conséquemment , dans le systéme de
langues auquel appartient celle des Muyscas, s’appelle :
pied-dix ou maisonnette (gueta), peut-étre parce qu’en
comptant on employait des grains de mais au lieu de cail-
loux, et qu’une petite pile de mais rappelait le magasin,

(*) Des exemples de pareils groupes de 20 unités sont fournis en Amé-
rique par les Muyscas, les Otomites, les Astekes, les Indiens-Cora, etc.

(**) Mopum. amér., t. Il, p. 250-253. Les Muyscas avaient des pierres
couvertes de chiffres , dont 1a suite facilitait aux prétres (xeques) V'inter-
calation de I'année rituelle; voyez la représentation d’une telle pierre
d’intercalation , loc. cit., tab. XLIV. .
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la grange & mais. Du mot maison, gueta ou vingt (les deax
pieds et les deux mains), se forment ensuite 30, 40, Bode
la maniére suivante : vingtplus 10, deux fois vingt, quatre
fois wingt, tout & fait semblables aux expressions celtiques
qui ont passé dans les langues romanes : quatre-vingt et
quinze-vingt, et ces autres plus rares : six-vingt, sept-
vingt, huit-vingt. Deux-vingt et trois-vingt ne sont pasen
usage en frangais’, bien que dans le dialecte galique ou cel-
tiquede la Bretagne occidentale, que j’ai parcourue il y a
quelques années, de ugent, vingt, on forme : daou-ugent,
deux-vingt ou 4o; tri-ugent, trois-vingt ou 6o, et méme
deh ha ndo ugent, 1go ou dix sur neuf-vingtaines (*).

Je pourrais donner encore d’autres exemples remar-
quables de I’analogie qu’offre la langue avec I'hiérogly-
phique numérative; j’en pourrais trouver dans la juxta-
position, dans la soustraction des unités qu'on place gra-
phiquement avant le signe de groupe, dans des degrés in-
termédiaires de 5 a 15, chez des peuples qui comptent
par groupes de 10 ou de 20. Chez des tribus américaines
trés-grossiéres encore, par exemple chez les Gueranis
et chez les Lulos, 6, 7, 8 s’appellent quatre avec deux,
quatre avec trois, cing avec trois. Chez les Muyscas, plus
civilisés que ceux-la, on trouve vingt (ou maison) avec

dix pour 30, de méme que les Kymres du pays de Galles

(*) Davies, Celtic Researches, 1804, p. 321; Legodinec, Grammaire
celto-bretonne, p. 55. Dans le dialecte celtique ou kymrique du pays de
Galles, 5 s’appelle pump, 10 deg, 20 ugain, 30 deg ar ugain (10 et 20),
4o deugain, 6o trigain. ( William Owen, Dict. of the Welsh language,
vol. I, p. 134.) Suivant ce méme systéme de vingtaines, on trouve en
basque: bi 2, lau 4, amar 10, oguai 20, birroguai 4o, lauroguai 8o,
berroguetamar 50, c’est-a-dire, 4o et (ata) dir. Larramendi, Arte de la
lengua bascongada, 1729, p. 38. (Les numératifs basques et kymriques
ne sont pas confusément mélés dans mes Monum., t. II, p. 237, mais
placés ensemble afin d’en faciliter la comparaison; seulement, par suite
d’une faute d’impression, on y lit: les premiers au lieu de les deux ou de
les ans et les autres.)
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disent dig (dix) or urgain (avec vingt), et que les Fran-
cais. désignent 70- par soixante et dix. Partout, chez les
Etrusques, les Romains, les Mexicains et les Egyptiens,
on trouve des additions par juxtaposition; dun autre
coté, les langues offrent des formes soustractives ou mino-
ratives (¥); c'est ainsi que I'on trouve dans le sanscrit,
chez les Indiens : unavinsati, 19; unusata, 99; chez les
Romains : undeviginti (unus de viginti), 19; undeoc-
toginta, 79; duo de guadraginta, 38; chez les Grecs :
cikosi deonta henos, 19, et pentekonta diioin deontoin,
48, c’est-a-dire deux manquant de cinquante. Cette méme
forme minorative de la langue a passé dans la graphique
numérique lorsqu'on place des caractéres a gauche des
signes de groupes 5, 10, et méme de leurs multiples; par
exemple 50 ou 100 (IV et IA, XL et XT pour désigner
4 et 4o chez les Romains et chez les Tusciens (**), quoi-
que chez ces derniers, suivant les nouvelles recherches
d’Otfried Miiller, les chiffres probablement doivent leur
origine entiérement & l'alphabet). Dans certaines rares
inscriptions romaines, recueillies par Marini (**¥), on
trouve méme quatre unités avant 10, par exemple IIIX
pour désigner 6. Nous verrons bientdt que chez des
races indiennes il existe des méthodes graphiques dans les-
quelles 1a valeur de position, selon la position ou la direc-
tion des signes, indique addition et multiplication ; tandis
que chez les Tusciens et les Romains, la position est ad-
ditive ou soustractive. Dans ces systémes indiens (pour me
servirdechiffres romains), IIX indique vingt, et XII douze.

Dans un grand nombre de langues, les groupes normaux

(*) M. Bopp cite méme g5 ou cent diminué de cing pantschonam satan
{ contraction de pantscha 5 et ana moins).

(**) Oifried Miiller, Etrusker, t. 11, p. 317-320.

(***) Iscrizioni della villa di Albano, p. 193. Hervas, Aritmetica delle
nazioni, 1786; p. y1-16.
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5,10, 20 sontappelésrespectivement unemain, denxmains,
main et pied (chez les Guaranis mbombiabe). Lorsqu’on
a parcouru en comptant les doigts des deux extrémités,
I’homme entier est pris pour symbole de 20; ainsi, dans la
langue des ¥arkcnos (nation dont j’ai trouvé des villages
de mission trés-peuplés sur les rives du fleuve Apace,
tributaire de 1'Orinoco), 4o s’appelle deux hommes,
noenijemne, de noemi deux et jemne homme. En persan,
comme on sait, pentscha signifie le poing, et pendj cing,
dérivant du mot sanscrit pantscha. C'est ce dernier, sui-
vant Pobservation ingénieuse de M. Bopp, qui a produit
le mot latin gquinque, de méme que de tschatur (sanscrit)
vient quatuor. Lepluriel de tschatur (4) est tschatvaras,
qui s’approche beaucoup de la forme dorico-éolienne
tettares. Car le ch indien, prononcé comme en anglais,
tsch, dans les formes grecques se change en t, donc
tschatvaras se change en tatvaras, et pantscha en penta
(en grec pente, dialecte éolien : pempe, d’ou penpezein,
compter sur les cing , ¢’est-a-dire sur les doigts). Enlatin,
c'est ¢ qui correspond au #sch indien, conséquemment
tschatur et pantscha se changent en quatuor et quinque.
Le mot pantscha, méme dans le sanscrit, ne signifie
Jamais main, mais désigne uniquement le nombre 5.
. Cependant pantschasatcha est une expression descrip-
tive pour désigner la main comme organe & cing
branches (*).

De méme que la parole (et avec une naiveté toute par-
ticuliére les langues de I’Amérique méridionale) désigne
comme points d’arrét les groupesde 5, 10, 20, de méme
nous reconnaissons ces mémes groupes dans I’hiéro-

(*) M. Bopp, a Paris, en 1820, m’a communiqué un intéressant Mé-
moire manuscrit sur les numératifs de la langue sanscrite comparés a
ceux des langues grecque, latine et gothique, qui était destiné originaire-
ment a étre publié da?s mon ouvrage : Sur les chiffres des divers peuples.
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glyphique numérative. Les Romains et les Tusciens ont
des chiffres slmples * pour désigner 5, 50, 500. Le
systéme quinaire s'est conservé a coté du systéme dénaire.
Dans la langue (mexicaine) des Aztekes, on trouve non-
seulement des signes de groupes, par exemple, pour dési-
guer 20, un drapeau; pour désigner le carré de 20 ou 400,
une plume remplie de grains d’or, qui, en quelques pro-
vinces mexicaines , servait de monnaie; pour désigner le
cube de 20 ou 8000, un sachet (xiquipilli) contenant
8000 féves de cacao, servant également au commerce
d’échange; mais aussi (parce que le drapeau est divisé en
quatre champs et colorié & demi ou aux trois quarts) des
chiffres pour désigner demi-vingt, ou 10, et $ de vingt ou
quinze, pour ainsi dire : deux mains et un pied (*¥).
Mais c’est I'/nde qui offre la plus remarquable de toutes
les preuves de l'influence réciproque qui existe entre
I'écriture et la langue. En sanscrit, la valeur de posi-
tion des unités est entrée méme dans le langage. Clest-
a-dire que les Indiens ont une certaine méthode figu-
rative d’exprimer des nombres par des objets dont on
" connait un nombre déterminé. Surga (soleil), par
exemple, signifie 12 parce que, dans les mythes indiens,
on suppose douze soleils suivant I'ordre des mois. Les
deux Aswinas (Castor et Pollux) qui se trouvent aussi,
parmi les naktschatras et mansions lunaires expriment 2 ;
manu signifie 15, conformément aux menus de la mytho-
logie. Ces indications feront comprendre comment surg-
manu, composé des symboles de 12 et 14, peut exprimer
le millésime 1214. Je dais la connaissance de ce fait a la
communication bienveillante du savant Colebrooke. Pro-

(*) Relativement au signe tuscien pour 500, voyez Otfried Miiller,
Abth., IV, fig. 2.

(**) Humboldt, Monum, amér., t. I, p. 309.
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bablement suivant le méme principe, manusurga signifie
1412, et aswinimanu 214. En sanscnt, d’allleurs, 1a
numération est tellement parfaite, qu'on trouve méme un -
simple mot, koti, pour dix millions, de méme que la
langue gquischna (péruvienne), qui ne compte pas sui-
vant des groupes 'de 20, posséde un simple mot (hunu)
pour exprimer un mlllxon.

Si, comme le dit Ovide, nous ne comptons suivant
des dizaines « quia tot digiti, per quos numerare so-
lemus, » ’homme avec des extrémités divisées six fois,
serait arrivé a une échelle duodénaire, a des groupes de

2 (¥*), qui offre le grand avantage de divisions sans
fractions par 2, 3, 4 et 6, et dont les Chinois, depuis les
temps les plus recules, se servent pour leurs mesures et
leurs poids.

De ces réflexions sur la relation qui existe entrela langue
et'écriture, entre les numératifs etles signes numériques,
nous passons a ces derniers mémes. Je répéte que, dans
cet extrait de mon grand ouvrage non achevé, il ne sera
pas tant question de la formation hétérogéne de tel ou
tel élément (chiffre), que de Z'esprit des méthodes em-
ployées par les différentes nations pour exprimer des
quantités numériques. Je ne parle ici de la figure et de la
forme des chiffres que lorsqu’elles peuvent influer sur des
raisonnements relatifs a I'identité ou I'hétérogénéité des
méthodes. Car les maniéres de procéder pour exprimer
les multiples purs on mixtes des groupes dénaires fon-
damentaux (par exemple 4 n, 4n* ou 4 n + 7,4 n*+ 6 n,
4 n*+ 6 n+5) sont trés-variées et se font tantdt par ordi-
nation (valeur de position) chez différents peuples in-
diens; tantot parsimple juxtaposition, comme chezles Tus-
ctens, les Romains, les Mexicains, les E’gyptiens; tan-

(*) Debrosses, t. 11,p. 158.
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tot par des coefficients placés & cété, chez les habitants
du midi de la péninsule indienne qui parlent la langue
Tamoul ; tantét par certains exposants ou indicateurs
placés au-dessus des signes de groupes, chez les Chinois,
les Japonais et dans les myriades des Grees; tantét, sui-
vant la méthode inverse, par un certain nombre de zéros
ou de points superposés & neuf chiffires pour indiquer la
valeur relative ou de position de chaque chiffrg; ce sont,
pour ainsi dire, des signes de groupes placés au-dessus
des unités,. comme dans le chiffre gobar des Arabes et
dans un systéme de chiffres indiens, expliqué par le moine
Néophytos. Les cinq méthodes qu’on vient d’énumérer
sont tout a fait indépendantes de la figure des chiffres, et,
pour faire ressortir plus encore cette indépendance, je me
suis fait une loi de n’employer dans ce Mémoire d’autres
signes que ceux qui sont communément employés dans
P’arithmétique et I’algébre. De cette maniére, ’attention
est-plus fixée sur ce qui est essentiel, sur Uesprit de la
méthode. Déja, a I'occasion d’un autre sujet trés-hétéro-
géne a celui-ci, relativement a la suite réguliére et souvent
périodique des courbes géognostiques [ dans les additions &
V'Essai géognostique sur le gisement des roches (¥) ],
j'ai essayé de montrer comment des notations pasigra-
phigues peuvent contribuer a la généralisation des idées.
On supprime les considérations secondaires, quoique trés-
importantes en elles-mémes, sur les formes et les fusions
individuelles pour mettre sous un jour d’autant plus clair
un phénoméne qu’on désire examiner particuliérement,
avantage qui peut justifier 4 un certain degré la sécheresse
et la froideur de pareilles observations.

On est accoutumé a distinguer dans les méthodes gra-
phiques des peuples: 1° des signes indépendants des

(*) Edit. de 1823, p. 364-375.
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lettres de P'alphabet; 2° des lettres qui, par un dertain
arrangement, par certains traits ou points ajoutés, ou
(se rapportant & la langue) comme initiales des numé-
ratifs (*) indiquent la valeur numérique. 1l est, comme
on sait, hors de doute que les races helléniques, ainsi
que les races sémitiques ou aramaiques (parmi celles-ci
les Arabes eux-mémes, jusqu’au v¢ siécle (**) aprés
I'hégire, avant de recevoir les chiffres des Persans), a
I'époquedeleur culture développée, se servaientdes mémes
signes comme lettres et comme chiffres. D’un autre cdté,
nousrencontronsdanslenouveaucontinentdeux nationsau
moins, les 4 ztekesetles Muyscas, qui avaient des chiffres
sans posséder une écriture littérale. Chez les Egyptiens,
les hiéroglyphes les plus usités, pour les unités, les
dizaines, les centaines et les mille, ne semblent pas non
plus dépendre des hiéroglyphes phonétiques. De méme le
chiffre pehlwi de la Perse ancienne, dans les neuf pre-
miéres unités, est tout a fait indépendant de I'alphabet,
comme c’est le cas également chez les Tusciens, chez les
Grecs dans les temps les plus anciens, et chez les Ro-
mains. Anquetil (***) observe déja que I'alphabet zend,
dont les 48 éléments auraient pu faciliter Pexpression des

(*) Le chiffre diwani des Arabes, composé uniquement de monogrammes
ou abréviations de numératifs, effre ’exemple le plus compliqué d’une
telle écriture d'initiales. 11 est plus douteux qu’on ne le croit ordinairement
que les C et les M des Tusciens et des Romains soient des initiales emprun-
tées aux langues tuscienne et romaine. ( Leslie, Philos. of arith., p. 7-9,
211; Debrosses, t. 1, p. 436; Hervas, p. 32-35; Otfried Miiller, Etrusker,
p- 304-318.) La croix grecque rectangulaire, tout & fait semblable au
signe chinois pour 10, dans les inscriptions les plus anciennes, désigne
mille ( Boerkh, Corp. inscript. graec., vol. I, p. 23) et n’est autre chose
quela forme la plus ancienne du chi (Nouveau traité de diplom., par deux
Religieux de Saint-Maur, vol. I, p. 678).

(**) Silvestre de Sacy, Gramm. arabe, 1810; t. I, p. 74; note 6.

(***) Mém. de ’Acad. des Belles-Lettres, t. XXXI, p. 357.

Ann. de Mathémat., t. X. (Octobre 1851.) 25
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nombres, n’est pas employé comme chiffre, et que,dans les
livres zends, les nombres sont toujours exprimés 4 la fois
par le chiffre pelilwi et par les mots zends. Si des recher-
ches ultérieures corroboraient cette absence d'un chiffre
zend, cela favoriserait I'opinion que, vu I'affinité intime
des langues zend et sanscrite, le peuple zend devait s'étre
séparé des Indiens dans un temps ou la valeur de position
des chiffres étaitencore inconnue a ceux-ci. Dans le pehlwi,
a partir de g, les signes de groupes 10, 100 €t 1000 sont
composés de lettres. Dal est 10, re joint au za 100, re
joint au ghain 1000. En considérant le peu que nous con-
naissons de la masse de chiffres dont le genre humain fait
usage, on trouve que la division des chiffres en chiffres lit-
téraux et chiffres proprement dits , est aussi incertaine et
aussi stérile que la division des langues en langues mono-
syllabiques et polysyllabiques, abandonnée depuis long-
temps par les véritables philologues. Qui peut décider avec
certitude si le chiffre tainoul des Indes méridionales, qui
n’admet pas la valeur de position , et qui, le signe de 2
excepté, est tout a fait différent de celui employé dans les
manuscrits sanscrits ; si, dis-je , ils ne font pas dériver ce
chiffre de I’alphabet tamoul méme, puisque, dans celui-
ci, on croit reconnaitre, sinon le signe de groupe de 100,
pourtant celui de 10 (la lettre ya) et le chiffre 2 (la
lettre u)? Le chiffre telougon (*), admettant la valeur
de position également en usage dans la partie méridionale
de la péninsule, différe singuliérement, pour les signes
de 1, 8 et g, de tous les chiffres indiens qui nous sont

(*) Campbell, Grammar of the teloogoo language (Madras, 1816),
p- 4-208. Le telougon est la langue que par erreur on nommait gentoo, et
est appelée par les indigénes trilinga ou telenga. Comparez la Table de
chiffres donnée par Campbell a d’autres variétés de chiffres indiens qui
se trouvent dans Wahl, Hist. universelle des langues orientales, 1784, tab. I.
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connus jusqu’a présent, tandis qu'il leur est conforme
pour les signes de 2, 3, 4 et 6. Le besoin d’exprimer
graphiquement des nombres a sans doute été éprouvé le
premier, et les signes numériques font partie des plus
anciens de tous les signes graphiques. Les instruments de
r anthmeuque palpable, que M. Leslic dans son ouvrage
ingénieux : the Philosophy of Arithmetic (1817) met en
regard delarithmétique ﬁguratwe ou graphigie, sont : les
deux mains de ’homme, de petites piles de cailloux (cal-
culi, psephoi), des grains de semence, des cordons séparés
et a noeuds (cordons & calculer, guippos des Tartares et du
Pérou), des suanpan encadrés et des Tables d’abacus,
la machine a calculer des peuples slaves a boules ou grains
enfilés. Tous ces instruments offraient a*I'ceil les pre-
miéres maniéres de désigner graphiguement des groupes
de différents ordres. Une main, ou un cordon a noeuds ou
a boules ghssan’tes, désigne les unités jusqu’a 5, ou jus-
qu'a 10, ou jusqu’a 20. I’autre main indique comblen de
fois, en comptant, on a passé sur les cinq doigts de la pre-
miére (pampezesthei) ; chaque doigt de la seconde main,
c’est-a-dire chaque unité, exprimera donc alors ungroupe
de 5. Cest la méme chose pour deux cordons 4 neeuds que
pour deux mains; et si I'on passe aux groupes de 2°, 3 et
4° ordre, la méme relation de groupes supérieurs et infé-
rieurs a lieu dans les cordons 4 calculer tendus sur des
cadres et garnis de boules, le suanpan de I’Asie ancienne
qui, de bonne heure, a passé sous forme d’abax ou de
tabula logistica aux peuples occidentaux (peut-étre par
des Egyptiens aux temps de la confédération pythagori-
cienne). Les koua’s, qui sont plus anciens que I'écriture
chinoise actuelle, et méme les hgnes paralléles noueuses,
semblables 4 des notes de musique et souvent interrom-
pues des livres magiques (raml) del’ Asie intérieure et du
Mexigue, ne semblent éire que des projections gra-

25.
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phiques de ces cordons a calculer et mnémoniques (*).
Dans le suanpan asiatique ou dans V'abacus [dont les
Romains, par suite de leurs chiffres incommodes, se ser-
vaient beaucoup plus souventque les Grecs (**) chez qui la
graphique numérique avait fait des progrés plus heureux],
a coté des séries dénaires qui se suivaient en progression
géoméirique, il se conservait aussi des séries quinaires.
A cbté de chaque cordon des groupes ou ordresn, n*, n®
il se trouvait un cordon plus petit, qui désignait cinq des
boules du grand cordon par une seule boule. Au moyen
de cet arrangement, le nombre des unités fut déterminé
en sorte que le cordon principal n’avait plus besoin que
dequatre boules, et le cordon secondaire d’une seule (**¥).
Les Chinois semblent, depuis les temps les plus reculés,
avoir considéré arbitrairement un quelconque de la suite
des cordons paralléles, comme le cordon des unités, de
maniére qu’en descendant et en remontant, ils obtenaient
des fractions décimales , des nombres entiers et des puis-

(*) EnOrient, on appelle 'art négromantique raml,’art du sable. Des
lignes entiéres ou brisées et des points servent d’éléments pour guider le
divinateur. (Richardson and Wilkins, Diction. Persian and Arabic., 1806,
t. I, p. 482.) Le manuscrit remarquable, bien véritablement mexi-
cain, couvert comme de notes de musique, conservé a Dresde et dont j’ai
donné un dessin dans mes Monum. amér., Pl. 44, fut reconnu par un
persan savant, qui vint me voir a Paris, 2 premiére vue comme un tel
raml oriental. Depuis ce temps, j'ai découvert des koua véritablement
américains et des dessins linéaires en forme de notes de musique, bien
semblables a ceux dont je viens de parler, dans plusieurs manuscrits hié-
roglyphiques d’origine astéke et dans les sculptures de Palenque dans I'Etat
de Guatimala. Dans le chiffre chinois d’ancien style, le signe de groupe
pour 10, une perle sur un cordon, est évidemment pris du quippu (comme
projection).

(**) Nicomaque dans Ast, Theologumena arithm., 1817, p. g6. Dans les
affaires financiéres du moyen age, la table a calculer [le comptoir ] (abax)
se changeait en exchequer. .

{***) Ainsi c’est le cas dans Yabacus romain. Dans 'abacus chinois on

employait 5 et 2 boules, puis on placait de c6té les boules qui ne comp-
taient pas.
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sances de 10. Combien (*) la connaissance des frac-
tions décimales a été introduite tard dans 'Occident (au
commencement du xvi°® siécle), tandis que l'arithmé-
tique palpable de I'Orient y était parvenue depuis long-
temps! Chezles Grecs, 1'échelle ascendante n’était connue
au dela de I'unité que dans le systéme sexagésimal des
degrés, minutes et secondes; mais comme on n’avait pas
n — 1, c’est-a-dire 59 signes, la valeur de position n’était
observée que par rangées de deux nombres.

En examinant l'origine des nombres, nous trouvons
que, au moyen de piles de cailloux ou sur les cordens
des Tables a compter, chargées de boules, on écrivait et
lisait transitoirement des nombres avec une grande régu-
larité. Les impressions que laissaient ces opérations ont
partout influencé les commencements de la graphique
numérative. Dans les hiéroglyphes historiques , rituels et
négromantiques des Mexicains, que j’ai fait connaitre,
les unités jusqu’a 19 (le premier simple signe de groupe
est 20) sont placées I'une prés de l'autre en forme de
gros grains colorés, et, ce qui est particuliérement re-
marquable, le calcul.va de droite & gauche, comme 1'é-
criture sémitique. On remarque parfaitement cet ordre
dans 12, 15, 17 ou la premiére série contient 10, et la
seconde n’est pas tout a fait remplie. Dans les monu-
ments helléniques les plus anciens, dans les inscriptions
sépulerales tusciennes, chez les Romains ct chez les
Egyptiens (ainsi que Thomas Young, Jomard et Cham-
pollion T'ont prouvé), les unités sont désignées par des
lignes perpendiculaires. Chez les Chinois et sur quelques
monnaies véritablement phéniciennes décrites par Eckhel
(tome III, page 410), ces traits sont horizontaux jus-

(*) Relativement aux premiers essais de notation décimale faits par
Michel Stifelius d’Eslingen, Stevin de Bruges et Bombelli de Bologna,
voyez Leslie, Phil. of arithm., p. 134.
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qu'a 4. Les Romains (en négligeant le signe de groupe
quinaire) joignaient ensemble, dans les inscriptions,
quelquefois jusqu’a 8 traits comme unités. Beaucoup
d’exemples en sont donnés par Marini dans I'écrit re-
marquable : Monumenti dei fratelli Arvali (*). Les
tétes de clous servant a régler I'ancienne année romaine
(Annales antea in clavis fuerunt, quos ex lege vetusta
figebat pretor maximus, Puis., VII, 40) auraicnt pu
conduire aux points des unités qui se trouvent chez les
-Mexicains, et ces points se rencontrent en effet (i coté
des lignes horizontales, chinoises et phéniciennes) dans
les subdivisions des onces et des pieds (**). Les points et
traits, au nombre de neuf ou de dix-neuf, dans I'échelle
dénaire ou vicésimale (échelle des mains ou des mains et
pieds) de I'ancien et du nouveau continent, sont la plus
grossiére de toutes les notations du systéme de la juxtapo-
sition. On y compte plutét les unités qu’on ne les Zit.
L’existence indépendante, l'individualité, pour ainsi
dire, de certains groupes d'unités, comme notations, ne
commence que dans les numératifs alphabétiques des races
sémitiques et helléniques, ou chez les Tibétains et les
peuples indiens, qui expriment r, 2, 3, 4 par des signes
particuliers et idéographiques. Dans le pehfwi de la
Perse ancienne, il se présente une transition remarquable
de la juxtaposition grossi¢re de signes d’unités 3 Pexis-
tence isolée d’hiéroglyphes composés et idéographiques.
Ici Porigine des premiers neuf chiffres par le nombre des
incisions ou dents est évidente; cinq jusqu’a dix ne sont
méme que des enlacements des signes 2, 3, 4 sans que le
signe 1 revienne. Dans les systémes véritablement indiens
des chiffres devanagari, persan et arabo-européen, on

(*) T.1, p. 31; t. I, p. 675, par exemple dans Octumvir. -
(**) Marini, t. 1, p. 228.
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pe saurait reconnaitre que dans 2 et 3, des contrac-
tions (*) de 2 et 3. unités; certainement pas. dans les
chiflres plus élevés qui, dans la péninsule indienne , dif-
férent entre eux de la maniére la plus réguliére.

En parlant ici, et dans la suite de ce Mémoire, des
nombres indiens, il faut que je m’explique d’abord sur
cette dénomination et sur les anciens préjugés qui consis-
tent a croire que I'Inde posséde des chiffres d’'une forme
unique avec exclusion des numératifs alphabétiques; que
dans toute I'Inde on trouve la connaissance de la valeur
de position et non pas I'usage de signes de groupes parti-
culiers pour n, n*, n%.... De méme que, comme I'a dit
souvent mon frére, Guillaume de Humboldt, le sanscrit
n’est désigné que trés-inconvenablement par les noms de
langue indienne, ancienne langue indienne, vu qu'il
existe dans la péninsule indienne plusieurs langues trés-
anciennes et ne dérivant pas du tout du sanscrit ; de méme
Vexpression chiffre indien, ancien chiffre indien est, en
général , trés-vague, tant pour la forme des chiffres que
pour le génie des méthodes , employant tantédt la juxtapo-
sition , tant6t des coefficients, tantét la simple valeur de
position des groupes principaux n, n?, n® et de leurs
multiples 27, 3n.... Méme D'existence d'un signe pour
zéro n’est pas encore, dans les chiffres indiens, une con-
dition nécessaire de la valeur de position, ainsi que le
prouve la scolie de Néophytos. Dans la partie méridio—
nale de la péninsule, les langues tamoul et telougon sont
les plus répandues. Les Indiens qui parlent zamoul ont
des chiffres différents de leur alphabet, parmi lesquels 2
et 8 ont une ressemblance éloignée avec les chifires (deva-

(*) Abel Rémusat, Langues tartares, p. 3o. Pour le singulier chiffre
indien de Java, voyez Crawfard, ¢. 11, 263. ‘.
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nagari) indiens 2 et 5 (*). Les chiffres cingalais (**)
différent plus encore des chiffres indiens. Ni ceux-ci, ni
les chiffres tamouls n’ont de valeur de position ni de signe
pour zéro; les groupes n , n*, n*,... y sont représentés par
des hiéroglyphes particuliers. Les Cingalais opérent par
juxtaposition, les ZTamouls i aide de coefficients. Au
deld du Gange, dans I’empire Burman, on trouve la va-
leur de position et un signe pour zéro, mais des figures
des chiffres entiérement différentes des chiffres arabes,
persans et devanagari-indiens (***). Tous les neuf chiffres
persans employés par les Arabes différent entiérement
des chiffres devanagari (****); 7 est formé comme une S
romaine, 8 comme une S tuscienne. Parmi ceux qu’aujour-
d’hui nous nommons chiffres arabes, uniquement 1,2, 3
ressemblent aux chiffres devanagari correspondants, le de-
vanagari 4 est notre 8 ; notre g est un 7 devanagari ; notre
7 estun 6 persan. En Bengali, 5 a la figure d’un crois-
sant, et 3, 5, 6, 8, g différent entiérement des chiflres
devanagari (****¥), Les chiffres de Guzerath ne sont que
des chiffres devanagari-indiens mal formés (**¥**¥¥).

Des réflexions sur l'influence des chiffres primitifs sur
Palphabet, sur des déformations des lettres faites & dessein,
afin de distinguer les lettres des chiffres, surles différents

(*) Robert Anderson, Rudiments of tamul grammar, 1821, p. 135.

(**) James Chafer, Grammar of the cingalese language; Colombo, 1815,
p. 135. .

(***) Carcy, Grammar of the rurman language, 1814, p. 196. Unique~-
ment les chiffres rurmans 3, j et 7 ressemblent quelque peu a 2, 5 et 7.

(****) Voyez John Shakespear, Grammar of the hindustani language.
1813, p. 95 et P1. I. William Jones, Grammar of the persian language, 1809,
p. 93. Silvestre de Sacy, Grammaire arabe, P1. VIIL.

(***=x) Graves Chamney Hanghton, Rud. of bengali grammar, 18275,
p. 133,

(x&xk&) Robert Drummond, lllustrations of the grammat. parts of the
Guzertith and Mahratt Janguage, 1808, p. 25.
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arrangements des lettres numératives, qui, chez le méme
peuple, ne correspongdent pas toujours a Pordre usuel de
Palphabet {ainsi que c'est le cas pour Paboudjed des peu-
ples sémitiquesdel’ Asieetdel’ 4 frigue (*),sontétrangéres
4 ce Mémoire et ont donné naissance a bien de vagues hy-
pothéses dans le domaine des alphabets et des hiéro~
glyphes comparés. Moi-méme j’ai émis autrefois la con-
jecture que les chiffres indiens, nonobstant les formes
de 2 et de 3, sont des lettres d’'un ancien alphabet dont
on retrouve des ‘reflets dans les caractéres phéniciens,
samaritains, palmyriens et égyptiens (sur les momies) et
méme sur les anciens monuments persans de Nakschi-
Rustan (**). Combiendelettres de ces alphabets ne ressem-
blent-elles pas aux chiffres nommés exclusivement indiens?
D’autres savants (***) ont avancé déja que ces chiffres soi-
disant indiens sont d’origine phénicienne, et I'ingénieux
Echkel a déja fait observer que les lettres phéniciennes
ressemblent a des chiffres d'une maniére tellement frap-
pante, quon désigne le mot abdera par 19ggo et par
15550 (***¥). Mais cette origine des chiffres et des lettres
est enveloppée de ténébres qui, vu I'état actuel des maté-
riaux dont on peut disposer, rendent impossibles des re-
cherches philosophiques sérieuses, si 'on ne veut pas se
borner a des résultats négatifs.

Les mémes peuples comptent souvent en méme temps
avec des lettres numératives et avec des signes de nom-
bres idéographiques ou choisis arbitrairement; de méme

(*) Silvestre de Sacy, Grammaire arabe, t. I, p. 10.

(**) Silvestre de Sacy, Antiquités de la Perse, P1.1, n. 1. Comparez les
inseriptions numériques du Sinai, et Descript. de PEgypte, t. V, P1. LVIL

(***) Guyot de la Marne, Mém. de Trévoux, 1736, p. 360; 1740, mars,
p. 260. Jakn, Bibl. archzolog.,B. I, p.479. Biit ner, Tables comparat., 1742,
St. 2, p.13. Eickhorn, Introd. au vieux Testament, B. I, p. 197. Wahl, Hist.
littér. de 1'Orient, p. Gor-630. Mines de 1'Orient, B. HI, p. 87.

(¥****) Doctrina nummorum veterum, 1794 ;-t. 11, p. 396-404, 421, 494.
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on trouve dans un méme systtme numérique les mé-
thodes les plus différentes pour exprimer les muluples
du groupe fondamental. Quelquefois ce qui n’est qu’in-
diqué dans un systéme se trouve complétement développé
dans un autre. Cest ainsi que dans le domaine de la pa-
role, certaines formes grammaticales qui ne font pour
ainsi dire que préluder chez une nation, se trouvent dé-
veloppées chez une autre avec prédilection et avec toute 1'é-
nergie de ses forces intellectuelles. En décrivant un a un
les systémes numériques employés par chaque peuple , on
obscurcit les ressemblances des méthodes, on perd la trace
du chemin qui a conduit I'esprit humain au chef-d’ceuvre
de I'arithmétique indienne , dans laquelle chaque signe a
une valeur ahsolue et une valeur relative , suivant laquelle
ils croissent de droite 4 gauche en progression géométri-
que. Je quitte donc, dans ce qui suit, 'ordre ethnogra-
phique, et ne ferai qu'examiner les différents moyens
employés pour exprimer graphiquement les mémes grou-
pes d’unités (groupes mixtes ou simples).

Premikre méTHODE. — Juxtaposition. Simplement ad-
ditive des lettres numératives et les véritables chiffres.
Ainsi chez les Tusciens, les Romains, les Grecs, jusqu’a
la myriade; les races sémitiques, les Mexicains et dans la
plupart des chiffires pehlwi. Cette méthode rend le calcul
particuliérement incommode lorsque les multiples des
groupes (27, 3n, 2n%,...) n'ont pas de signes particu-
liers. Les Tusciens et les Romains répétent les signes 10
jusqu’a 50. Les Mexicains, chez lesquels le premier signe
de groupe est 20 (un drapeau), répétent le méme hiéro-
glyphe jusqu’a 400. Les Grecs, au contraire, ont, dans les
deux sériés des dizaines et des centaines, commengcant
respectivement avec iata et rho, des signes pour 20, 30,
400 et 600. Trois épisémes (lettres d’un alphabet antique)
bau, koppa et sampi, expriment 6, go et goo; ces deux
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derniers terminent les séries des dizaines et des centaines,
circonstance qui rendiplus semblable la valeur numérique
des lettres grecquesd celle de Paboudjed sémitique (*).
M. Bockh, dans ses recherches savantes sur le digamma,
a montré que bau est le wau des Sémites (des Latins) ;
koppa était le koph sémitique (9), et sampi le schin sémi-
tique (**). Le série des unités depuis alpha jusqu’a I héta
forme , chez les Grecs, les nombres fondamentaux (puth-
menes) avec lesquels, a aide d’artifices découverts par
Apollonius (**¥),on opérait en calculantde maniére qu’en
dernier résultat on les réduisait aux nombres correspon-
dants des séries deuxiéme et troisiéme (des analogues).

SeconpE METHODE. — Multiplication ou diminution de
la valeur par des signes placés au-dessus et au-dessous.
Dans la quatriéme série de la notation grecque, les puth-
ménes, comme on sait, reviennent par analogie , multi-
pliés par mille au moyen de I'apposition d’un petit trait
mis au bas de la lettre. Ainsi 'on arrivait jusqu’a la my-
riade; on écrivait jusqu’a g9g9. Si I'on avait appliqué
cette notation par accents a tous les groupes en supprimant
tous les signes apreés le théta (g), on aurait, en donnant &
un 3 deux ou trois accents, des expressions pour 20, 200
et 2000 ; de cette maniére on se serait rapproché du chiffre
arabe gobar, et, par cela, dela valeur de position ; mais
malheureusement on passait les groupes des dizaines et
des centaines pour ne commencer la notation par accents
qu’avec les mille, et sans méme l’essayer pour les grou-
pes supérieurs.

Tandis qu’un trait mis en bas multipliait le nombre

(*) Hervas, Arithm. delle nazioni, p. 78. Relativement a I'ancien ordre
des alphabets sémitiques, voyez Descript. de PEgypte moderne, t. I,
PL. 11, p. 208.

(**) Economie nationale des Athéniens, B. 11, p. 385.

(***) Delambre, Histoire de I'Astr. ancienne, t. II, p. 10.
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par-mille, un trait vertical placé en haut désigne, chez

les Gmcs, une fraction ayant powﬁ%mérateur Vunité et
pour dénominateur le nombre plagé sous Paccenté-Ainsi,

I .
3 mais lorsque le nu-

4

mérateur est plus grand que I'unité, il est désigné par le
nombre inférieur, et alors le dénominateur de la fraction
lui est ajouté en guise d’exposant, de sorte que, par

" chez Diophante, y' est §a =

3 . . .
exemple, y¢ = Z (*). Dans des inscriptions romaines ,

un trait horizontal ajouté en haut multiplie le nombre
par mille, ce qui peut étre considéré comme un moyen
d’abréviation pour économiser I'espace.

La méthode d’ Eutocius, pour exprimer les myriades, est
plus importante. Ici nous rencontrons, chez les Grecs,
la premiére trace du systéme exponentiel ou plutét d’indi-
cation, si important pour I'Orient. M*, M#, M” désignent
10000, 20000, 30000. Ce qui ici est appliqué exclusive-
ment aux myriades s’étend, chez les Chinois et chez les
Japonais, qui recevaient leur culture des Chinois 200 ans
avant notre ére, A tous les multiples des groupes. Trois
traits horizontaux sous le signe 10 indiquent 13; trois
traits horizontaux au-dessus signifient 30. Suivant cette
méthode on écrivait le nombre 3456 ainsi (en employant
les chiffres romains comme signes de groupes, les chiffres
indiens comme exposants) :

M.’S
(&

'x_i
I,

(*) Delambre, t. 11, p. 11. L'accent ajouté au haut des lettres, unique-
ment pour indiquer qu'elles ont été employées comme nombres, ne doit
pas étre confondu avec le signe de fraction. Aussi dans plusieurs anciens
manuscrits mathématiques, n'est-il jamais proprement perpendiculaire,
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Chez les Egyptiens on trouve les mémes indices. Au-des-
sus d’un trait recough®-(*) qui signifie 1000, on place
2 on 4unités pots exprimer 2000 et 4000. Chez les
A ztekes ou Mexicains j'ai trouvé le signe de la ligature
avec six unités comme exposant, pour exprimer 3r2 an-
nées (6><52=312); j’en ai donné la représentation
dans mon ouvrage sur les Monuments américains. Chez
les Chinois, les A ztekes et les Egyptiensle signe de groupe
est toujours le signe inférieur, comme si 'on écrivait X*
pour 50; dans le chiffre arabe gobar, le signe de groupe
est placé au-dessus de 'indicateur. Il faut savoir que dans
le gobar-les signes de groupes sont des points, consé-
quemment des zéros; car dans 1'Inde, en Tibet et en
Perse, des zéros et des points sont identiques. Les signes
gobar, qui depuis I’année 1818 ont.fixé toute mon atten-
tion, ont été découverts par mon ami et maitre M. Silvestre
de Sacy, dans un manuscrit de I'ancienne abbaye Sainz-
Germain-des-Prés. Ce grand orientaliste dit : « Le gobar
a un grand rapport avec le chiffre indien, mais il n’a pas
de zéro» (*¥). Je crois toutefois que le signe pour zéro
y existe, mais, comme dans la scolie de Néophytos, il
est placé au-dessus des unités, non pas a coté; ce sont
méme exactement ces z€éros ou points qui ont fait donner
a ces caractéres le nom singulier de gobar ou écriture de
poussiére. Au preuier coup d’ceil on doute si P'on doit

mais horizontal, en sorte qu’il ne peut jamais étre confondu avec le signe
de fraction. ( Bast, De usu litterarum ad numeros indicandos, et Gragorii,
Corinthii liber de dialectis lingue graece, 1811, p. 850.)

(*) Kosegarten, de Hierogl. ®gypt., p. 54. L’opinion émise par Gatterer
d’aprés Rianchini (Décad. I, cap. 3, p. 3), Goguet (t. I, p. 226) et De~
brosses (t.1, p. 432), que des Egyptiens donnaient la valeur de position
aux g unités en direction verticale, n'a été aucunement corroborée par
des recherches modernes. Gatterer, Histoire universelle jusqu’a Cyrus,
p. 555-586. A

(**) Grammaire arabe, p. 76, et la note ajoutée a la P1. VIIL.
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y reconnaitre un passage des lettres-aux chifires. On ne
distingue qu’avec peineles 3, 4, & ndiens. Daletha
sont peut-étre les chiffres 1nd1ens 6% mal podl i
dication au moyen des points est la suivante :

3" pour 3o,

4" pour 400,
67 pour 6ooo.

Ces points rappellent une notation grecque ancienne, mais
rare, qui ne commence qu’avec les myriades : «” pour

10000, 3 pour 200 millions. Dans ce syst¢me de progres-
sions géométriques il y a originairement un point, que
cependant on n’emploie pas, pour indiquer 100. Chez
Diophante et Pappus, un point est placé entre les lettres
numératives, pour remplacer I'initiale Mu (myriade).
Alors un point multiplie par 10000 ce qui est a gauche.
On serait porté a croire que des idées obscures sur des no-
tations au moyen de points et de zéros, venues de'Orient,
s’étaient répandues par des A4lexandrins en Europe. Le
véritable signe de zéro pour indiquer quelque chose qui
mangque, est employé par Ptolémée dans I'échelle sexagé-
simale descendante, pour exprimer des degrés, minutes ou
secondes qui manquent. Delambre veut aussi avoir trouvé
le signe de zéro dans des manuscrits du commentaire de
Théon sur la Syntaxe de Ptolémée (**). L’usage de ce

(*) Ducange, Palzogr., p. 13.

(**) Hist. de UAstron. ancienne, t. 1, p. 547; t. 11, p. 10. On ne trouve
pas le passage de Théon dans ses ouvrages imprimés. Delambre penche
tantdt vers une explication du signe grec pour zéro comme abréviation
de ouden, tantot il voudrait le dériver d’une relation particuliére du nu-
mératif omicron avec les fractions sexagésimales , loc. cit., t. 1I, p. 14, et
Journal des Savants, 1817, p. 53g. Il est singulier que dans I'ancienne
arithmétique indienne de la Lilawati, zéro placé prés d'un nombre indi~
que qu'il faut retrancher le nombre, Delambre, t. 1, p. 540. Qu'est-ce que
désigne le ling (un véritable zéro), écrit dans les chifires chinois sous 12,
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onc antérieur de beancoup a I'in-~
"écrit de Planude sur les Arith-

— Muluplication de la waleur
par des coefficients. Ce que chez les Chinois nous avons
trouvé comme indicateurs dans lecrnure perpendicu-

lalre la différence entre X =12 et X= 20, se trouve

répété en direction horlzontale chez les Grecs, les Armé-
niens et les habitants parlant tamoul de la partie méridio-
nale dela péninsule indienne. Diophante et Pappus écri-
vent 3 Mu pour deux fois dix mille ou 20000, tandis que
aMu 3 (lorsque {3 se trouve & droite de l'initiale de la my-
riade) signifie une fois dix mille plus deux ou 10002. La
méme chose a lieu dans les chiffres tzamoul, comme qui di-
rait 4 X = 4o et X4 =14. Dans le pehlwi de I’ancienne
Perse, suivaut Anquetil, et dans Yarménien, suivant
Cerbied (*), on reconnait des multiplicateurs placés a
gauche pour exprimer les multiples de 100. Il faut aussi
rapporter a cette méthode le point de Diophante, men-
tionné ci-dessus, qui remplace Mu et multiplie en 1000
ce qui précéde (*¥).

QuaTteikme mérODE. — Multiplication et diminution
ascendantes et descendantes, par division en rangées
de nombres dont la wvaleur diminue en progression
géométrique. Archiméde dans les octades, 4pollonius
dans les tétrades, n’ont employé cette notation que pour

13, 22, 132? Dans les inscriptions romaines, des zéros sont des oboles
répétées plusieurs fois (Rockk, Economie nationale des Athéniens, B. 2 ,
p- 379)-

(*) Grammaire arménienne, 1823 p. 25.

(**) De telles divisions au moyen de points, qui, d’ane maniére d’ail-
leurs trés-incomséquente, indiquent une valeur de position, on trouve
aussi en trois endroits de Pline, souvent discutés (t. VI, p- 24-33;
t. XXX, p. 3).,
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des nombres au dela de (10000)* ou
myriades de myriades (*). Ici il , de
position des mémes signes, se su en i (G-
rentes; il y a donc valeur absolue et relative, comme dans
P’échelle sexagésimale des¢endante des astronomes alexan-
drins, pour indiquer les degrés, les' minutes et les se-
condes. Mais puisque, en ¢ce dernier cas, faute de n — 1
ou 59 signes, chaque rangée est composée de 2 chiffres,
la valeur de position .ne peut pas offrir I'avantage des
nombres indiens. Lorsque les trois cent soixantiémes de
la circonférence sont considérés comme entiers, les
minutes sont des soixantiémes de cet entier, les secondes
des soixanti¢mes des minutes, etc. ; comme fractions, ils
recurent de Ptolémée le signe de fraction, I'accent ajouté
en haut, et pour indiquer la progression descendante, dans
laquelle chaque rangée de 2 chiifres est 60 fois plus petite
que la précédente, les accents furent multipliés de rangée
en rangée. De cettemaniére, lesminutes recurent lesimple
accent des fractions grecques ordinaires (ayant I'unité
pour numérateur), les secondes regurent deux accents,
les tierces trois, les degrés mémes, comme entiers, pas
d’accent, peut-étre comme rien (ouden) un zéro (*¥).
Je dis peut-étre, car dans Ptolémée et Théon , les zéros,
comme signes de degrés , manquent encore.

(*) Delambre, Hist. de I'astr. ancienne, t. I, p. 105; t. II, p. g.

(**) Relativement a ’emploi du signe zéro, V. Leslie, p. 12-135; Rui-
then, Germanen und Griechen Hist., II, p. 2-33; Ducange, Glossar.
mediz gracitatis, t. I, p. 572; Maumert, De numerorum quos arabicos
vocant origine; Pythagor. , p.17. Dans I'arithmétique grecque, M° désigne
une unité, monas, de méme qu’un delta avec un zéro ( proprement omi-
cron) superposé, signifie tetartos; Bast, Gregor., Cor., p. 851. Ainsi chez
Diophante, M%x« est 21. Le signe grammatical indien auuswara a, en
effet, la forme d’un zéro indien (sunga). Mais il n’indique qu'une modi-
fication de la prononciation de la voyelle placée a coté et est entiérement
étranger au sunga.

i
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La simple énumération des différentes méthodes em-
peaplas: uxquels V'arithmétique indienne
xpmmer les multiples des groupes
fon&aﬂentaux prese'nte je crois, I'explication du déve-
loppement success1f du systéme deen. En écrivant 3558
perpendiculairement et horizontalement au moyen d’in-

dicateurs M C X i, on reconnait facilement qu’on peut
se passer des signes des groupes M, C.... Or, nos chiffres
indiens ne sont autre chose que les multiplicateurs des
différents groupes. Cette notation, au moyen de seules
unités (multiplicateurs), est rappelée d'ailleurs par les
cordons successifs du suanpan représentant les mille, les
centaines, les dizaines et les unités. Ces cordons, dans
I'exemple donné, montraient 3, 5, 6 et 8 boules. La on
ne voit point de signes de groupe. Les signes de groupes
sont les positions mémes, et ces positions (cordons) sont
remplies par les unités (multiplicateurs). Donc, par les
deux voies deI'arithmétique figurative et palpable, on est
conduit a la position indienne. Si le cordon est vide, que
la place en écrivant reste libre, qu'il manque un groupe
(un terme de la progression), le vide est rempli gra-
phiquement par I'hiéroglyphe du vide, un cercle vide :
sunga, sifron, zaphra (*).

Que la notation numérative ne s’est perfectionnée dans
I'/nde que successivement , c’est ce qui est confirmé par
le chiffre tamoul qui, au moyen de g signes d’unités et
de signes de groupes pour 10, 100 et 1000, exprime toutes
les valeurs a I'aide de multiplicateurs ajoutés a gauche;
cela est confirmé aussi par les éiranges arithmot indikoi

(*) En anglais cypher s’est conservé pour indiquer zéro, tandis que
dans les langues occidentales qui emploient zéro (sifron, siron) pour zéro,
chiffr¢ n’indique qu’un numératif en général. En sanscrit, suivant Wilson,
nombre ou quantité s’appelle sambhara.

" Ann. de Mathémat., t. X. (Novembl:e 1851.) 26
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de la scolie du moine Néoph _ytos conserve ala b)bhothéque
de Paris (Cod. reg, fol. 15), et dos lois la connais-
sance a la commnunication bxenvelllanta de M. 16 of
seur Brandis. Les g chiffres de Néophytos, hormis le 4,
sont tout a fait semblables aux chiffres persans. Les
chiffres 1, 2, 3 et g se trouvent méme dans des inscrip-
tions numériques égyptiennes (*). Les 9 umités sont
multipliés par 10, 100 ou 1000 par la superposition de
un, deux ou trois zéros, comme qui écrirait

;=20, 024=24, 04.:400, 6 = 6ooo.

En imaginant des points au lieu de zéros, on a le chifre
arabe gobar. Voici une traduction latine textuelle de cette
scolie. Le moine nomme par erreur tziphror un mot
indien. .
"« Tzyphra est et vocatur id, quod cuivis litterz inde
» a decade et insequentibus numeris quasi suxpor inscri-
» bitur. Significat autem hac indica voce tali analogiam
» numerorum. Ubi igitur scriptum est simile prime lit-
» lere «Aa, pro unitate scripta, atque super impositum
» habet vel punctum vel quasi duxpor, addita altera figu-
» ra litterz indice, diflerentiam et augmentum numero-
» rum declarat. E. g. pro primo grzco numero, & scrip-
» to, apud Indos | sive linea recta perpendicularis,
» quandonon habet superimpositum punctum vel Gizpdy,
» ipsum hoc denotat unitatem; ubi vero superimpositum
» sit punctum atque altera littera adscripta sit, figura
» quidem similis priori, significat XI, propter addita-
» mentum similis litter® atque superimpositum unum
» punctum. Similiter etiam in reliquis litteris , quemad-
» modum adspectus docet. Si vero plura habet puncta,

*) Kousegarten, p. 54.
(*) Koseg P
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» plura denotat. ‘Quod intelligas, lector, et suppuws

}:pu plus de position que dans la mé-

thode gobar. On écrivit donc 3006 ainsi : 5 6; mais on
- devait remarquer bientdt que les mémes chlﬁ'res reve-
naient avec d’autres valeurs, que (si tous les groupes

étaient remplis), dans 3 £6 74 les points ou zéros, di-
minués ainsi réguliérement, devenaient superflus. Ces
zéros ne faisaient en quelque sorte que faciliter la pronon-
ciation des nombres. Si I'usage s'introduisait d’écrire les
zéros & coté au lien d’au-dessus des chifires, on avait la

N 0
. 1s . 00
notation indienne actuelle du groupe simple 3 = 3o000.

o

Si l'on voulait ajouter t’; ou 3000 a 04 = 4o on remplissait
cette place qui est assignée a 4o par son exposant ou indi-
cateur de groupe, Ainsion obtenait 3040, et des 3 zéros,
attribut caractéristique des mille, descendus ala ligne des
unités, il restait deux comme places vides. Suivant la
scolie de Néophytos, les zéros sont donc (comme les
points du gobar) des indicateurs pour la notation des
groupes ascendants, et I'on congoit , d’aprés les réflexions
qu’on vient de développer, comment ces zéros, lorsque la
valeur de position des chiffres fut introduite, pouvaient
descendre dans la ligne et s’y maintenir.

En jetant encore un coup d’ceil rétrospectif sur le
grand nombre de méthodes de notation des peuples des
deux continents, trop peu connues, nous remarquons :

. Peu de signes de groupes et presque exclusivement
pour n*, n®, n*..., non pas pour 2, 3 net2n?, 3nt,...,
comme chez les Romains (*) et les Tusciens X, C, M

(*) Nous faisons abstraction, dans la vue d‘abreger, des signes de groupes
du systéme secondaire quinaire V, L, D,.....

26.
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(de sorte que tous les degrés intermédiaires, par exemple
2nou 2 n*, sont exprimés par juxtaposition XX, CCC);

2°. Beaucoup de signes de groupes, non-seulement
pour 72, n* (iota et rho des letires numératives grecques),
mais aussi pour 3 » ou 4 n* (A etv), ce qui produit une
grande hétérogénéité des éléments de P'expression pour
2 + 2 n + 2 n* (par exemple ox3 pour 222);

3¢. Expression des multiples du groupe fondamental ct
de ses puissances (2 n, 3n, 4n*, 5 n*), soit par 'appo-
sition (en bas ou au-dessus) d’indicateurs aux signes de

2 3 4 5
groupes (chinois: X, X, C, C; indien-tamoul : 2 X,
3X,4C, 5C), soit par une ponctuation ou accentuation
graduelle des 9 premiers signes d’unités, de sorte que,

a=10, =20, a=100, «= 1000, ¢ =40000;

cn- gobar, dans la scolie de Néophytos et dans I'échelle
sexagésimale descendante des astronomes alexandrins,

(S| 1 .
pour g == £ en écrivant, par exemple,

1°37' 37" 37"....

Nous avons vu, enfin, comment les indicateurs (mul-
tiplicateurs) des peuples de I’ Asic orientale, des habitants
de la partie méridionale de la péninsule indicnne, ou,
s'il existait originairement des signes de groupes différents
pour 2, n*; n®, comment 'accentuation des puthmeénes
du systéme gobar ou de la scolie de Véoplytos; enfin,
comment les cordons du suanpan, dans lequel une va-
leur élevée & une puissance n’est exprimée que par la
position relative du cordon, pouvaient conduire a la va-
leur de position.

Si le simple systéme de position indien a été introduit
en Occident par suite du séjour que le savant astronome
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Rihan Mahommed ebn Ahmet Albiruni fit . dans
I'Inde (*) ou par des douaniers moresques de la cote sep-
tentrionale de I’Afrique et le commerce qm ¢’établissait
cntre ceux-ci et les marchands italiens, c’est ce que, ici,
nous laissons indécis. Malgré 'antiquité de la culture in-
dienne, il est tout aussi incertain si le systéme de posi-
tion qui a si puissamment influencé I'état des mathé-
matiques était connu déja du temps de I'expédition
macédoine au dela de I'Inde. Combien Archiméde, Apol-
lonius de Perge et Diophante auraient transmis plus
perfectionnées les sciences mathématiques a I'Age savant
des Hachémites, si I'Occident avait regu douze ou treize
siécles plus tot, par 'expédition d’Alexandre, I'arithmé-
tique indienne de position! Mais la partie de 'Inde anté-
rieure, qui fut traversée par les Grecs , le Pendjab jusque
vers Palibothra, était, suivant les savantes recherches
de M. Lassen, habitée par des peuples peu cultivés. Ils
furent méme appelés Barbares par ceux qui habitaient
plus vers l'orient. Ce n’est que Seleucus Nicator qui pé-
nétra au dela de la limite qui séparait la civilisation de la
barbaric, depuisle fleuve Sarasvatis (**) jusqu’au Gange.
Dc T'ancien chifire indien tamoul, qui exprime 2n,
3n?,... par des'multiplicateurs apposés, et par conséquent
a, outre les signes des neuf premiéres unités, des signes
particuliers pour n, n*, n®,..., nous concluons que dans
P'Inde, a c6té du systéme a valeur de position nommé
presque exclusivement indien (ou arabe), il existait aussi
d’autres systémes de chiffres sans valeur de position.
Peut-étre ni Alexandre ni ses successeurs bactriens, en
pénétrant temporairement dans I'Inde, ne venaient-ils en

(*) Cest Popinion émise par le savant orientaliste M. Sédillot, connais-
seur également profond de V'astronomie grecque et de Vastronomie
arabe.

(**) Lassen, Comment. geogr. de Pentapot, p. 58.
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contact avec des nations chez lesquelles Ia méthode de
position était exclusivement en usage.

Puissent les traces de tout ce qui reste encore a décou-
vrir étre poursuivies bientdt avec plus de zéle, soit par
des philologues ayant I'occasion d'examiner des ma-
nuscrits grecs, persans ou arabes (*), soit par des
voyageurs séjournant dans la péninsule indienne méme.
Rien que la pagination de vieux volumes manuscrits de
la littérature sanscrite peut conduire i des observations
remarquables. Qui aurait soupconné, par exemple, que
parmi les Indiens, a co1é de I'arithmétique décimale de
position, il existait un systéme sédécimal sans position;
que certains peuples indiens comptaient de préférence
suivant des groupes de 16, comme les peuples américains,
les Kymwres et les Basques suivant des groupes de 20? Or
une telle numération singuliére a été découverte, il y a
plus de dix ans, dans un manuscrit de T'ancien poéme in-
dien Mahabharata (Cod. Reg., Paris, page 178), par
M. le professeur Bopp qui, du temps ou je présentai mon
premier Mémoire sur les chiffres des peuples 41’ Académie
des Inscriptions et Belles-Lettres, a bien voulu me la com-
muniquer pour que je la fasse connaitre. Soixante-cing
pages de ce manuscrit sont paginées de lettres numéra-
tives indiennes, cependant de maniére que seulement les
consonnes de I'alphabet sanscrit (k pour 1, k% pour 2...)
soient employées , ce qui est en contradiction avec le pré-
jugé (**) bien généralement répandu jusqu’a présent,

(*) Parmi les manuscrits arabes, je recommande surtout ceux qui trai-
tent des affaires des finances ou de V'arithmétique en général, par exem~
ple, Abn Jose Alchindus, De arithmetica indica; Abdel Hamid ben vasee
Abalphadl, De numerorum proprietatibus; Ahmad ben Omar Alkarabisi,
Liber de indica numerandi ratione ; 'Algébre indienne de Katka; Moham-
med ben Lara, De numerorum disciplina (Casici, Bibl, arabico-hispana,
t. 1, p. 353, 405, 410, 426, 433).

(**) Si Varithmétique de position n’est pas originaire de I'lnde, clle
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qu'on trouve cmployés dans I'lnde exclusivement des
chiffres et non pas des lettres en guise de chiffres, comme
chez les peuples sémitiques et chez les Grecs. A la soixan-
tiéme page commence la remarquable notation sédécimale.
Dans les premiers 15 puthménes, c’est 4 peine si 'on recon-
nait deux signes qui sont des lettres sanscrites, ¢ aspiré et
d, etsemblent correspondre a 3 et a 12 respectivement ; on
yretrouve aussi peu les signes nommés proprement indiens
(arabes). Il est remarquable que le chiffre 1 avec un zéro
apposé signifie 4, et que le chiffre 1 redoublé (deux traits
perpendiculaires) avec un zéro apposé signifie 8; ce sont
pour ainsi dire des points d’arrét, des devrés intermé-

diaires du systéme sédécimal, pour i nets Ul mals n (12}

est sans zéro et a un propre hleroglyphe, semblab]e au
4 arabe. Pour le groupe normal 16 et pour ses mul-
tiples 2 n, 3 ,..., on emploie les chiffres bengali connus,
en sorte que 16 est exprimé par le 1 bengali précédé
d’un trait courbé; 32 par le 2 bengali; 48 par le 3 ben-
gali. Les multiples de n ne sont donc que commé des
nombres de premier, second, troisiéme... ordre; les nom-
bres 2 n + 4 ou 3 n + 6 (c’est-a-dire, dans le systéme sé-
décimal, 36 et 54) sont désignés par un 2 bengali et un
chiffre mahabharata (*) 4 placé a coté, ainsi que par un
chiffre bengali 3 et un chifire mahabharata 6; méthode
de numération trés-réguliére, mais incommode et com-
pliquée, et dont l'origine est d’autant plus énigmatiquc
u’elle présuppose la connaissance des chiffres bengali.

doit au moins y avoir existé de temps immémorial ; car on ne trouve chez
les Indiens aucune trace d'une notation alphabétique telle que la notation
des Hébreux, des Grecs et des Arabes (Delambre, Hist. de I'Astr. an-
cienne, t. I, p. 543).

(*) Je me sers ici de cette expression 1mpropre uniquement pour de—
signer par un terme convenable le systéme de chifires que présente une:
copie de ce poéme.
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TANGENTES COMMUNES A UNE CONIQUE ET A UN CERCLE.

Prosrime. Par deux points D, E, donnés sur une
ellipse HEDK , on fait passer une circonférence quel-
conque DEAB, puis on méne a ces deux courbes des
tangentes communes HAS , KBS : trouver le lieu géomé-
trigue du point S de rencontre de ces tangentes.

(CHasLEs. )

Pour résoudre cette question, j'établirai le lemme
suivant :

Sotent HEDK , DEAB, une ellipse et une circonfé-
rence tangentes aux deux droites SX , SY, et se coupant
en deux points D, E : si l’'on méne dans Uellipse une
corde quelconque D'E/ paralléle a DE, il sera toujours
possible de faire passer par les deux points D', E/,
une circonférence qui soit tangente aux deux droites

SX, SY.
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Je prolonge les cordes paralléles DE, D'E/, jusqu’a ce
qu'elles coupent les tangentes aux points C, G, C', G';
et je prends C’' A’ moyenne proportionnelle entre C'E/,
C'D’, et de méme G'B’ moyenne proportionnelle entre
G'E’; G'D’. La circonférence conduite par les trois
points D, E/, A’ sera tangente a la droite SY en A’; de
méme, la circonférence qui passe par D', E’, B’ touche
la droite SX en B'. Pour faire voir que ces deux circon-
férences coincident, il suffit de démontrer qu’on a

SA’ =SB/,
ou, ce qui revient au méme,
AA’ =BB'.
Je nomme a, b, ¢, les diamétres de V'ellipse respecti-
vement paralléles aux droites DE, SX, SY : d’aprés le

théoréme de Newton, on a, en désignant par K et H les
points ou l'ellipse touche SX, SY,

GDXGE a 6B @
— = F, ou —_— = -b—’;
GK GK
ce qui donne
GB = 6K X 7;
de méme
G'B = G'K X %’
d’ou

GB + G'B' = GG’ §,
et, par suite,

BB’ = GG’ (x+ %)
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On aura semblablement
AA’:CC’(!-I—-S) ;
d’ou

a
GG’ BB ¢

() A VY

.De plus

: b
SK = SG +GI(::SG+GB.§=SG+(SG—-SB)~

a
= SG <:+f) —sB.2,
a «a
de méme
SH = SC <n+5> —sA.Z.
a a
Mais, d’aprés le théoréme de Newton,
S _ b
SH™ ¢’
ou
SK X< ¢ =SH X b.

Cc qui donne, en remplacant SK et SH par leurs valeurs,
SG (c+l)£> —SBﬁzsc <b+ b_c_) —-SAE'
a a a a
Ou, parce que SB = SA,

, ,
SG (ac-l—bc) =Sc(ba+bc>;
a a

il en résulte

[
— 41
c

S_C:__ba—}—lw_
SC  ac 4-be

a+l
b
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a
- +|
Remplagant : par 5= dans I'égalité (1), il viendra
Y] Qe . )
b

66 _ BY  SG
CC’ T AN SC

Or, & cause des paralléles GC, G'C’, on a
GG’ SG

@ T sC
donc
/
;{—,:1, ou AA'=BB;
c’est ce que nous voulions démontrer.

De 14 nous conclurons que le lieu géométrique reste le
méme quelle que soit la grandeur ou la position de la
corde DE, pourvu que sa direction ne change pas. Que si,
par exemple, au lieu de faire passer les circonférences par
les extrémités de la corde DE, on les méne par les extré-
mités de D'E’, on trouvera absolument les mémes points
de rencontre pour les tangentes communes. Cette conclu-
sion étant vraie quelque rapprochées que soient les extré-
mités D’; E’ de la corde, doit encore subsister lorsque
ces deux points se confondent. Dans ce cas, la corde D'E’
devient la tangente RTR’ 4 Dellipse; les circonférences
sont elles-mémes tangentes a I'ellipse au point T. On sait
déja (Nouvelles Annales, tome 111, page 495) qu’alors
le licu géométrique est une hyperbole qui a les mémes
foyers que Vellipse (*).

G.

(*) La solution purement analytique présente des difficultés de calcul,
a cause des quatre tangentes communes. Cette solution serait trés-instruc-
tive (voir tome 11, page 431).
.
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NOTE SUR LA FORMULE DE SIMPSON ET SUR UNE AUTRE
FORMULE DE QUADRATURES

Par E. CATALAN.

(Communiquée a la Société Philomathique.)

Pour évaluer l'aire comprise entre un arc de courbe,
P’axe des abscisses et deux ordonnées extrémes, il faut,
aprés avoir inséré, entre ces deux derniéres droites, un
nombre impair d’ordonnées équidistantes, remplacer la
courbe donnée par des arcs de paraboles tels, que chacun
d’eux passe par les extrémités de trois ordonnées consécu-
tives, et faire la somme des segments paraboliques ainsi
obtenus.

Telle est la Méthode de Robert Simpson.

Il n’est pas difficile de voir que cette méthode doit, en
général , conduire & des résultats peu approchés. En effet,
les paraboles substituées a la courbe proposée, au lieu dc
former unc ligne continue, présentent, le plus souvent,
des jarrets a leurs points d’intersections; car chacunc
d’elles est déterminée indépendamment de celle qui la
précéde et de celle qui la suit. En cherchant a corriger le
défaut inhérent 4 la formule de Simpson, j’en ai rencontré
une autre qui, si je ne me trompe, pourra presque tou-
jours étre préférée a la formule de Simpson et i celle de
M. Poncelet.

Pour arriver a cette formule, proposons-nous d’abord
de remplacer une courbc donnée, par unc suite de para-
boles du second degré.



fa |

i .

ixgﬁxxsx s Dt \ T
o x b ¢ < m n p

AP étant I'arc donné, menonsjles ordonnées extrémes
Aa, Pp; divisons lintervalle ap en un nombre quel-
conque n de parties égales; puis_élevons les ordonnées
bB, ¢C,...,Nn.

Cela éiant, faisons passer, par les trois points consécu-
tifs A, B, C, une parabole dont I’axe soit paralléle & Aa,
et conservons seulement l’arc AB de cette ligne. De
méme, par les trois points B, C, D, faisons passer une
nouvelle parabole, et ne conservons que la partie BC de
cette courbe, etc. En continuant ainsi, nous arriverons
aux trois derniers points M, N, P, que nous joindrons
par un arc parabolique, pris cette fois dans son entier.

11 est visible que les paraboles employées dans cette
construction se raccordent mieux que celles du tracé de
Simpson ; car deux arcs consécutifs, au lien d’avoir seu-
lement un point de commun, en ont deux. Si donc on
fait la somme de tous les segments paraboliques Aa Bb,
Bb Cc,...,MnPp, on aura une aire A’ qui différera assez
peu de l'aire cherchée A.

1l est bon d’observer pourtant que, la construction étant
irréguliére dans la partie MNP de la courbe, la valeur de
A’ ne sera pas symétrique. Mais si I'on refait, dans un
ordreiinverse, cette méme construction, et que I'on prenne
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la moyenne des deux aires A’, A” obtenues, on aura, a
fort peu prés, la valeur de A.

Développons les calculs qui viennent d’étre indiqués.

Désignons par yo, ¥1, ¥sy-e+yYuet1y Jn les ordonnées
des points A, B, C,..., N, P, et'par J l'intervalle de
deux ordonnées consécutives. Menons la corde ARC; pre-
nons BS = BR, et menons AS; cette droite sera tangente
a I'arc AB de la parabole ABC. Or, le triangle parabo-

ligue ABR est les deux tiers du triangle rectiligne ARS;
donc

ABR = Rs-ﬂb:-EBR.ab:_z.(_7[_.-7“'*"-7") 5

2 1
32 3 3 2

D’ailleurs,

ARald =.l_ <y0+fo+yz) s,
2 2

Donc, en ajoutant,

- _l_ _2_ _J’o+}':
ABab— (2yu+ 3_7'! __']2 >8.

Un simple changement d’indices donne ensuite

—(t 2, ity
BCbc_<2y.+3y., = >6,

v (L 2 Yt
LDcd._(Zy,+3_73 = )6,

_ {1 2 AW
MN mn = (;fn_z+3fn—| —*12 )O,

1 2 Yn—+Yn—2
= (- = Yooy — ————} 4.
NP np (2)'n+3y . T >
La somme de ces valeurs sera

1 2 )
;(S-J'n—l) +3(S —XYo—n +}’n—|)
A=
_ 2S“"J’u—|—]o‘—)’1+}’n_2
12
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ou
. 7 1 1 1 2
A= (S—Efu“f"l‘;fl "‘l—i}'n—7+‘z.7a-|_‘§yn)3a

S étant la somme de toutes les ordonnées.
Changeant y, en y,, y, en y,_,, etc., nous aurons

" __ _l N _l__ — .
A —(S lz)ln""lz]’n—l J’z+4)’| 3.70)3,
d'ou ‘
5 1
2S"Z(yo+}’n)+§(]‘|+yn—i)
AI+AII: . 6\‘
_';;(.7'2"‘]'"—2)'

La formule cherchée est donc

5 *
A=[8 =g (rebrn) + gl ran) = g (b rna3(°):

Le plus court chemin d’an point & un autre, sur la surface d’ane sphére,
est le plus petit des arcs du grand cercle qui passe par ces points ;

Par M. BARBET,

Chef* d’institution.

Si I'on suppose entre A et B une ligne ADCEB autre
que arc de grand cercle AB qui les joint, cette ligne ne

(*) Contrairement & ce que j'avais cru d’abord, cette formule n’est
pas nouvelle : elle n’est méme qu’un cas particulier de celle que fournit
le calcul des différences. (Lacroix, tome 11, page 183.) En publiant cette
Note, je w’ai donc eu qu'un but, colni d’¢ire utile aux éléves.
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sera pas le plus court chemin entre A et B car on pourra
en trouver un plus court.

Pour le démontrer, on prend sur la ligne ADCEB un
point C; on le joint aux points A et B par les arcs de grand
cercle AC, BC, et I'on forme un triangle sphérique ABC
dans lequel on a AB < AC + BC. Donc si I'on fait pivo-
ter autour du point A, sur la surface de la sphére, la por-
tion de ligne ADC ct I'arc de cercle AC jusqu’a ce quele
point C vienne en C/, et si 'on opére de méme sur la por-
tion de ligne BEC et I'arc de cercle BC, par rapport au
point B, le point C tombe sur AB entre A et C’ au point
C”. Les deux parties du chemin deviennent AD’C/, BE'C”
et se coupent en F, de telle sorte que le chemin AD’FE’' B
est plus court que le chemin ADCEB de la ligne brisée
C'FC".

1 Remarque. Le succés de cette démonstration résulte
de ce que les deux arcs de cercle AC et BC ayant été ra-
battus surI'arc AB, la portion BE'C” du chemin ADCEB
coupe en F la portion AD’C’. Il pourrait se faire que la
deuxiéme portion du chemin, au lieu d’avoir la position
CEB, eit la position CGB, de telle sorte qu’aprés le ra-
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battement de I'arc BC sur BA cette portion CGB prit la
position C"G'B. Il n’y aurait pas alors de point de ren-
contre de cette portion C'G'B avec AD'C’. Mais s'il y a
d’un c6té d’un arc de grand cgrcle BC uue ligne BGC, on
peut en concevoir une BEC symétriquement placée de
Pautre c6té, et égale a la premiére Substituant celle-ci &
P’autre, on peut prendre au lieu du chemin ADGEB le
chemin égal ADCEB, auquel on applique la démonstra-
tion précédente.

2¢ Remarque. Sila ligne qui-va du point A au point B,
autre que I'arc de cercle AB, au lieu d’étre placée entiére-
ment d’'un méme c6té de 'arc AB, le coupait en plusieurs
points D, F, H, K, on établirait comme ci-dessus que
chaque segment tel que AD est plus petit que ia partie
correspondante ACD de la ligne , autre que I'arc de grand
cercle AB, qui va du point A au point B. Et en ajoutant
membre 4 membre toutes ces inégalités on en conclurait

arc AB < ACDEFGHIKB.

Ann. de Mathémat., t. X. (Novembre 1851.) 27
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INTEGRATION DE DEUX EQUATIONS DlFFi!REN'I‘lELI.ES;
Par M. J. DUPAIN,

Eléve de I'Ecole Normale.

On propose d'i mtegrer le systéme d’équations simul-
tanées suivant:
d‘ dy dz

(1) Yo +2~;E~+asmz_o,
d*y dz \?
(2) T (E_> —acosz = o.

Nous prendrons de nouvelles variables ¢, u liées aux
anciennes par les relations

t=ysinz, u =y cosz.

Les premiers principes du calcul différentiel nous
feront connaitre les dérivées de ¢ et de u,

de dy . " dz due __dy 052 si 2

;‘;:——.;Slnz t ‘700523;’ d—t—(lf Y lnzdx,

dit  d'y dy dz . dz \* diz

(_I-,;'=EFSlHZ+2LOS d—;—--—ysmz ar -{—]‘COSZ‘}‘—-Z‘;,
2 dz \ ? d?

Z;?:%cosz— 2sinz 73— — ycosz (E> —_ysmzd—f

Ajoutons au second nombre de I'équation (4) le premier
membre de D'équation (1) multiplié par sin z, et retran-
chons-en le premier membre de I'équation (2) multiplié
par cos z; il vient, réductions faites, .

d*u

(5) i
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Une combinaison analogue des équations (i), (2), (3)
conduit a :
dt
(6) a 03
les équations (5), (6) fournissent immédiatement les
intégrales '

2
u:a—;-—f-A.z-l—B, t=Cz+D,

A, B, C, D étant des constantes arbitraires. On repasse
aisément aux variables y, z,

t
z:arctang;, y =y +u*;

les intégrales demandées sont donc

2(Cz + D)

= tang —mm——————
#=are gnx’+2A.z+2B’

y =3 VE(Cz + D + (ar" + 2 Az + 2BJ.

SUR LE MOUVEMENT D'UN CORPS SOLIDE AUTOUR D°UN
POINT FIXE;

Par M. STURM.

On doit a M. Poinsot une nouvelle théorie fort ingé-
nicuse de la rotation-des corps, aujourd’hui bien connue
et appréciée des géometres. Toutefois 'ancienne méthode
analytique est encore en usage, précisément parce qu’elle
exige moins de raisonnement. Il peut donc étre utile de
simplifier la partie essentielle de cette analyse, qui est la
formation des équations d'Euler, d’out I'on déduit ensuite

27.
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toutes les circonstances du mouvement et méme les pro-
priétés nouvelles découvertes par M. Poinsot.

Considérons d’abord en lui-méme, et indépendamment
des forces qui le produisent, le mouvement d’un corps
solide autour d'un point fixe. En adoptant les notations
de la Mécanique de Poisson, soit O le point fixe, soient
x, ¥, z les coordonnées d’'un point quelconque m du
corps rapporté a trois axes fixes rectangulaires passant
par le point O, et x,, y,, 2, les coordonnées du méme
point m rapporté & un autre systétme d’axes rectangu-
laires liés au corps et tournant avec lui autour du pointO.
Ces derniers axes seront dans la suite les axes d’inertic
prmcnpaux du corps pour le point O. On a les formules

sx_a.z'  + by, +cz,,
(1) ly=adz, +by +cz,
{z =a"y, +b"y + 'z,

les cosinus a, &, c, etc., étant liés par les relations

connues
ata*4a" =1, ab+a' b +a’b” =o,

(2) Sil?-(—b”-i-b”-—l, ac+a'c +a’¢” =o,
¢4 =1, be +b¢ +b"¢" = o,

qui en entrainent d’autres équivalentes

(3) a4+ b;-i—c’:l, aa’ + bb’ + e’ = o0, etc.

Les composantes de la vitesse v du point m paralléles

aux axes fixes Ox, Oy, Oz, ou les projections de cettc
vitesse sur les axes sont

dzx da + db a dc
&= G T g tE
. dy _ da db’ dc’
(4) 7l e e i P
dz da" db” dc”

a =" T g
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Comme les axes fixes sont arbitraires, il nous est permis
de supposer que leur position soit celle qu'occupe le sys-
téme mobile des axes Ox,, Oy,, O z, au bout du temps z,
position dont ce dernier systéme s'écartera aprésle temps £.

dx dz
Alors 7 %, A deviennent les composantes u,, v,, W,

de la vitesse v paralléles aux axes Ox;,, Oy,, Oz,, au

bout du temps ¢, pourvu qu'on prenne les valeurs de
da db
7 7 e dans cette hypothése. Or les relations™(2)

donnent, quels que soient les axes fixes,
ada + a'da’ 4 a"da" =o,
bdb 4+ b'db’ 4+ b"db" = o,
cde 4+ c'de’ 4" de” = o, -
adb 4 a’' db’ + a" db" + bda + b' da’ 4+ b" da" = o,
ade + a' dc' 4-a" d¢" + cda + ¢'da’ + ¢" da” = o,
bde + b de' 4= b" de” 4+ cdb 4+ ¢ db’ + ¢"db"” = o.
Si I’'on suppose que ces axes fixes coincident avec O x, ,
ppose q /
Oy,, Oz, au bout du temps ¢, on a alors

a=1, b=o, ¢ =o,
a =o, b =1, ¢ =o,
a’"=o b'=o, =1,

et les équations qui précédent deviennent

da =o, db 4+ da’ = o,

db' = o, de +~da’ = o,

de” = o, de’ 4+ db” = a,
On aurait les mémes résultats en différentiant les équa-
tions (3).

Posons

db” dd de da” da’ db

ST @ T T a T T T aTh
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nous aurons
(5) w,=qz,—ry,, v, =re,—pz, w,=py —qr,

Ces quantités p, g, r détermineront le déplacement
aprés le temps dt des axes Ox,, Oy,, O z,, liés au corps,
car leurs directions nouvelles aprés le temps dt que nous
désignons par Ox’, Oy’, O 2/, font avec celles qu’ils ont
au bout du temps ¢, et qu'on vient de prendre pour axes

fixes, les angles qui ont pour cosinus 2+ da, b+ db, etc.;
en faisant

a=1t, da=o0, b=o, db= —rde, etc.,
c’est-a-dire qu’on a
cosr, 0z’ —=a+da=r,
cos 2,0y’ =db=rdt,

cos x,0z = de = — ¢dt,

cosy, O0x' =da' = —rdt,
(6) cosy, Oy'=1,

cosy, 0z = dc' = — pdt,

cos 2,02 =da" = — qdt,

cos 2,0y’ = db” = — pdt,
cosz, 0z =1.

Sil'on reprend desaxes fixes quelconques Ox, Oy, Oz,
les lignes Ox, et Oy’ feront avec eux des angles ayant
pour cosinus a, a’, a” et b+ db, ¥ + db, b" + db";
on aura

cosx, 0y’ ou rdt=a(b-+db)+a’(b'+ db’)+a"(b"+4-db"),
ou

(7) rdt = adb + a' db’ + a” db”,

et aussi

rdt=—cosy, 0z'= — b (a+da)—b' (a'4-da’)—b" (a"+da"),
ou '

(7) rdt = — bda— b da’ — b" da’.
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On aura de méme les expressions générales de pdt
et gdt pour des axes fixes quelconques; et I'on en déduira

les relations g: =aq—bp, etc., pda+qdb-+rdc=o, etc.,

qui se trouvent dans la Mécanique de Poisson, tome II,
page 135 ; seconde édition. ’

Les points du corps dont la vitesse est nulle a Iépo-
que z, se trouvent sur une droite OI représentée par les
équations

9z, — 7, =0, Ir,—pz =0, py,—qr =0,
ou '
z/

L
p g

Cette droite passe par le point fixe et fait avec les

axes des angles dont les cosinus sont
P q r
Vpra+r Nprqg+r Vprgrr

Le corps tourne donc autour de cette droite pendant le
temps infiniment petit dz. Mais la position de cet axe
peut changer d'un instant 4 un autre; c’est pourquoi on
Pappelle 'axe instantané de rotation. Les lieux des axes
instantanés successifs dans le corps et dans I'espace sont
deux surfaces coniques ayant pour sommet le point fixe O;
elles se touchent a I'époque ¢ suivant la droite qui est
Paxe instantané actuel , et aprés le temps dt suivant une
autre droite infiniment voisine qui a décrit un angle infi-
niment petit du second ordre, pour devenir le nouvel axe
instantané. De sorte que le mouvement du corps n’est
autre que celui du premier cone attaché au corps rou-
lant, sans glisser sur la surface de 'autre cdne fixe dans
Pespace.

La vitesse angulaire de rotation autour de I'axe instan-

tané est égale a Vp*+ ¢* +71* que je désignerai par w.
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En eflet, la vitesse v d’un point quelconque m est

0 =V(qz,— 15,V ~+ (rx, — pz, )+ (py, — 92,)"
=V(p+ ¢ + ) (@ 4y 5f) — (pa,+ gy, + 77,)’

=Vu'.0m*— (0.0 m*—cos10m)*=w.0m.sin10 m = pow,

p étant la perpendiculaire abaissée du point m sur I'axe
OI; ainsi @ est la vitesse angulaire.

On peut aussi I'obtenir, en cherchant la vitesse d'un
point particulier, et la divisant par la distance dece point &
I'axe instantané. Sil'on choisitle point situé sur'axe O z,,
a une distance de I'origine égale a 'unité, on a

z,=o0, y =0, 2z=1,
et
u,=9q, v,=p, wW=0,
d’ott résulte
=TT
la distance de ce point a I'axe est
sin10z, ou 1— cos 10z
r VP + ¢
= I — =
Pg+rt g e
En divisant v par cette distance, on a bien la vitesse angu-
laire égale 4 \p* + ¢*+1* ou w.
On vérifie que la direction de la vitesse v est perpendi-

culaire au plan mOl, en observant que les formules (5)
donnent les relations

x/-“/“"f/":':—zlwr:o’ p”/+9"1+’wr:°‘
1
Prenons les moments par rapport aux axes Ox,, Oy,,
Oz,, de la quantité de mouvement iy du point m, comme
si ¢’était une force (qu’on remplacerait, dans la théorie

des couples, par une force égale et paralléle appliquée &
Porigine et un couple).
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Le moment de my, parrapport O x,, est m (w,y,—v;2,),
ou
my, (py, — q2,) — mz, (rz,— pz,).
La somme des moments de tous les points du corps par
rapport a I'axe O x, est donc

pZm(y,’ +37)— qZﬁx,y,— rzmx,z,.

Cette somme se réduit & Ap, en supposant que les axes
Ox,, Oy,, Oz, soient les axes d’inertie principaux du
corps pour le point O, et désignant par A la somme

Doy} +3)

Ainsi, en nommant A , B, Cles trois moments d’inertie
principaux du corps par le point O3 A p, Bg, Cr sontles
sommes des moments des quantités de mouvement des
points du corps par rapport aux axes principaux Ox,, Oy,,

Oz,. <Dans la théorie des couples, ces moments sont ceux

de trois couples agissant dans les trois plans coordonnés
X,, OY,,.... Ils donnent un couple résultant dont le mo-

ment G = yA?p? + B?¢* +- C*r*; la perpendiculaire a
son plan fait avec les axes Ox,, Oy,, Oz, des angles qui
ont pour cosinus A_Gp, l% ’ -%r - M. Poinsot a remarqué
que ce plan est le plan diamétral conjugué au diamétre de
Pellipsoide central AX* + BY* + CZ? = 1, qui est dirigé
suivant 'axe instantané, pour lequel les cosinus sont
P a2,
W ® ©

Si I'on prend des axes fixes quelconques, on aura la
somme des moments des quantités de mouvement par rap-
port a 'axe Ox d’apreés les lois connues de la composition

des moments ou des couples, en multipliant les moments
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Ap, Bg, Cr relatifs aux axes Ox,, Oy,, Oz, par les
cosinus a, b, c des angles que OX fait avec ces axes,
ct ajoutant, c'est-a-dire que
dz dy
z-m (y‘—it- —z t—{—f—) =Apa +Bgb +Cre,

(8) Em (z%':—:—x?g):Apa’+qu’+Crc',

dy dz "
—_——y— ) = " + Bgb ",
E m (mdt ydt) Apa” +Bgb" 4 Crc

Equations du mouvement. Supposons maintenant que
des forces motrices données agissent sur le corps solide.
Désignons par X, Y, Z les composantes paralléles a des
axes fixes de la force appliquée 4 la molécule m qui a pour
coordonnées x, y, z. D’aprés le principe de d’Alembert,

de?
équilibre autour du point fixe O: il faut et il suffit pour
cela que la somme de leurs moments, par rapport a chacun

des axes fixes, soit égale a zéro, ce qui donne les trois
équations

[ d*z dy .
Xm '\fzrz"‘ﬁx> =2y —Ys=1,
d*x dz
dy d*x .
S («GF—rG) =%

en désignant par L, M, N les sommes de moments des
forces motrices par rapport aux axes fixes,

Z(Z_y—Yz), E(Xz—-Zx), E(Yz‘——Xy\

La premiére équation piut s’écrire ainsi :

d dz dy
{9) F{Zm( F{—t——zzt—/_L.

d? . R
les forces perdues (X——m—x, etc.> doivent se faire
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Mais on a trouvé plus haut, équation (8),

dz dy :
Zm <‘7(_l_i‘ z3;>_APa+qu+Cr(r.

Donc on a

d
e (Apa+ Bgb + Cre) =
ou

dp da db
Aad +Bb +Cc—+Ap5+Bant+C = L.

Faisons coincider les axes fixes avec les axes principaux

du corps Ox,, Oy,, O z,, pris dans la position qu'ils occn-

pent au bout du temps ¢. Nous aurons alors :
da o db dc
-—= —_——=—r, —=
de Y ode Y ode

En méme temps il faut remplacer L ou 2 m(Zy—Yz)

par la somme des moments des forces données

Zm(zrf/_le/)’

par rapport a 'axe O x,, que nous désignerons par L,.
L’équation précédente devient

(10) AP By

,.

Les deux autres équations (9) donnent, de méme,

d
q—l—(A—-—C)pr_-M
d

CE' (B—A)pg=N,.

Ce sont les formules d’Euler; L,, M,, N, désignant les mo-
ments des forces motrices par rapport aux axes principaux.
du corps a I’époque ¢.
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On les obtient encore de la maniére suivante :

D’aprés les lois de la composition des moments ou des
couples, analogue & celle des forces, la somme Ap des
moments des quantités de mouvement par rapport a
Paxe O, est égale a la somme des moments par rapport
aux axes fixes multipliés par les cosinus a, @/, a’, des an-
gles que O.r, fait avec ces axes fixes. Ainsi, 'on a

dy \ , dx dz
Ap= a2m< YL T* d—’)+02m<zz—mﬁ)
d.
e (),

si,’ en différentiant,
A;.ggza zm <y_‘{d:_z_z{_(l;t);> + a Zm <z %—xfi—tz‘-)
+ a” Em (.z-(f;t{ —yli;:) + (:1—{:2”' <y3——': — z.:%\
G 2 (i) G )
ou, d'apreés les équations (9),

dp da dz dy)
A L= ’ ” hated o,
T aL+aM+4a N+ Em <‘ydt ‘zdt/

dz da” [ dy du
+ G35 (/t)“f‘:z;‘Z"' (+ = %)
Si I'on fait coincider les axes fixes avec les axes Owx, Oy,
O z,, au bout du temps ¢, cette équation deviendra
» d,

L _ —
Adt =L, +r.Bg—gq.Cr,

ou

dj
dP (C—B) gr=1L,.

Car, dans cette coincidence, on a

da da’ db”

a=1,a =o0, a"=o, T =0 = =4
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L devient L,, et les sommes des moments _

deviennent celles qui se rapportent aux axes Oy,, Oy,
0z, c’est-a-dire Ap, Bg, Cr.

On arrive ainsi aux équations d’Euler sans avoir be-
soin de calculer les forces accélératrices d'un point quel-
conque paralléles a des axes fixes, ou aux axes principaux
du corps, ni les forces centrifuges de M. Poinsot. Au
surplus, on peut encore trouver les expressions de ces
forces d’une maniére assez simple.’

Les projections de la vitesse v sur les axes Ox,, O
Oz, étant données par les formules (5), sa projection su
Pun des axes fixes Ox, est '

dx
(1) Sy =algs,—1y,) +b(rz,—pz) +c(py,— q2,).

De la résulte

d*z dy _dr ( dr d/)
7172—"<z'%‘“3'a;> +olng T
d, d . da db-
+"<J’zg§""x: 'J?) +(‘lz:“"’.7:);l‘t'+("”,—l’zr)zt‘
de .

+ (pr,—q2) 3

Si 'on prend encore pour axes fixes les axes Ox,, Oy,,
2

’odr
deviendra la composante p, de la force accélératrice du

02z, dans la position on ils se trouvent a 'époque ¢

point m paralléle & I'axe Ox,, et I'on aura (en faisant

da db dc
a=1,b=0,c=0,7 =0, = =1, = =¢

dg dr
plzzrz—"f/(_{;—’_ (py,-—-qd‘,)q+ (r.r,—pz,)r,
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ou
— ﬂ _ ‘ﬂ‘__ 2 2 2 ) *
P= z/ dt -yl dt (1’ +’I +r )‘t1+p(p‘t/+’/fl+rzi)( )'

On connait donc les composantes p,, ¢,, r, de la
force accélératrice du point m paralléles aux axes Oux,,
Oy,, Oz,.

Les forces perdues X,—mp,, Y,—mgq,, Z,—mr,
doivent se faire équilibre autour du point fixe O; en
égalant leurs moments a zéro, on aura

N ((z,—mr,)y,— (Y,—mg)z])=0, et

Substituant les valeurs de p,; ¢,, r, et réduisant, on re-
trouvera les équations d’Euler.

A ces équations, qui expriment comment varient la
vitesse de rotation et la position de I'axc instantané par
rapport aux axes principaux du corps, il faut joindre les
formules (3 ), ou plutdt trois relations équivalentes entre
P> g, 7 et les variations des angles désignés par ¢, 6, o
de la Mécanique de Poisson, angles qui définissent la
position des axes principaux du corps solide par rapport
a un systéme d’axes fixes Ox, Oy, Oz.

On obtient immédiatement les formules de la page 134,

pdt=sin¢sin 0dy + cos 9d, etc.,

(*, Si du point m on abaisse mi perpendiculaire sur I'axe instantané,
on voit que la partie — (p* +¢*+r*)x,+p (px, -+ 97, -+ r2,) représente
la projection sur I'axe O x, d’une force dirigée suivant cette perpendicu-
laire mi et qui a pour valeur w*.mi. Car, en projetant le triangle O mi sur
Ozx,ona

mi cos (mi, Oz,)=0icos (0i, 0z,)— Omcos(Om, Ox,)
r
= (.E‘-r,‘i'!‘f,—f"“ 51) £ —,,
(7] (] « «
d’out

wi.mi.cos(mi, O0z,)=p (px,~+qy,+12,) —(p*+¢*+r*)z,.
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a I'aide du théoréme sur la composition des rotations in-
finiment petites, en vertu duquel, si I'on prend sur I'axe
de chaque rotation (dans un certain sens) une longueur
qui représente la grandeur de cette rotation, la somme
des projections sur une droite quelconque de plusieurs
rotations est égale i la projection de la rotation résul-
tante. Il en résulte que la rotation w dt du corps autour
de I'axe instantané équivaut aux trois rotations succes-
sives p dt, qdt, rdt autour des axes Ox,, Oy,, Oz, et
aussi aux trois rotations successives du corps autour des
lignes Oz, ON et Oz, indiquées par les différentielles d{,
d6 et dg. En outre, p dt, projection sur la ligne Ox,de:
la rotation effective wdt, éstégale a la somme des projec- -
tions sur Ox, des trois rotations correspondantes a d,
df et dg, c'est-a-dire qu'on a

Vi

pdt = dycosz0x,+ dbcos NOx,+ dg cosz,0x,,

ou
p= cos:pie- -+ sinesin?ﬂ-
de’ dt
. - do
On trouve de méme ¢ et r, et, réciproquement, Al
d¢ .
et == en fonction de p, ¢, r.

On trouve aussi les mémes formules en différentiant
simplement les équations

”

C
tang«}»:——?, cos b =c", tangq;:i)?:

puis, remplacant de, dc', etc., par les valeurs qui sc

trouvent a la page 135, et qu’on obtient aussi en compa-
. \ dr

rant les expressions (4) et (11) de 7 e

On peut abréger de la méme maniére les calculs par
lesquels M. Coriolis a établi son théoréme sur le mouve-
ment relatif d’un point ou d’'un systéme de points par
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rapport a des axes qui ont un mouvement donné dans
Pespace (Calcul de Ueffet des Machines, pages 4o et
suivantes). Pour le cas d'un systéme, il faut prendre la
formule générale de dynamique

S (G e+ G oy + G 52)
=) (X8z + Yoy +232), u ¥ Pip,

l’.r d’y d2
dr?’ drt’

substituer les valeurs de

537 ° 6‘x, a)’, dz
qui résultent des formules

z=¢+axz, +by, =+ ez,

y=n+az, +b’y,+c’z

z=¢+a"z+b"y+c"z,
ou¢,a,b,c,x, etc.,sont variables avec ¢, et prendre
ensuite les axes fixes Ox, Oy, Oz paralléles aux axes
mobiles Ox,, Oy,, O z, considérés dans la position qu’ils
occupent au bout du temps ¢, ce qui donne

a=1, b=o, c=o, etc,
da db

— =0, _—
dt dt
0z =90z, dy=29y,, dz=29dz, etc

=r, etc.,

Les liaisons du systéme étant exprimées par des équations
L=o0, M=o, elc.,.

entre f, X,,y,, Z,, €lC., on arrive, par la méthode de La-

grange, 4 des équations telles que

d'z, - dz, dy, d dM
m_c_i?;_ X—X—m(q;l-‘— T +-l +pdx+

X, étant la composante paralléle a Ox, de la force mo-

trice appliquée au point m, et X, celle de sa force d’en-
trainement.
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NOTICE HISTORIQUE SUR LE CALCUL DES VARIATIONS ;
Taavuir pe r’aLLemasp pE M. STRAUCH (*).

1. Quelques problémes de Géométrie et de Mécanique
ont donné naissance au calcul des variations, branche la
plus élevée de I'Analyse. Nous rencontrons encore ici
une marche particuliére .4 Pesprit humain qui va du
difficile au facile, du comgli’qué au simple, tandis qu’on’
devrait s’attendre i une marche opposée. Que de disser-
tations et de Mémoires ont dii &tre composés avant de
débarrasser 'idée simple de ses accessoires, avant d’éta-
blir avec clarté le point esscntiel du sujet !

Le premier probléme de ce genre a été résolu par
Newton lorsqu’il détermina la forme de la surface de ré-
volution /qui éprouve la moindre résistance en se mou-
vant dans un fluide, suivant la direction de son axe.

C’est en 1687 qu'il a publié le résultat cans faire con-
naitre son procédé (Principia Philos. naturalis mathe-
matica, secl. II, prop. 35, scol., édition de 1687 : cest
la prop. 34 dans les éditions postérieures).

Le second probléme est celui de la brachistochrone.

Déja Galilée s’est proposé ce dernier probléme et trouva
erronément que la courbe était le cercle (Liber de motu

et mech., dial. I1, prop. 34, scol., page 209).

Y

(*) Extrait d'un Traité complet sur le calcul des variations, publié , en
2 volumes in-8°, 4 Zurich, en 1849; un troisiéme volume, consacré aux
intégrales doubles, est sous presse; ouvrage important sur lequel nous
reviendrons, pour montrer qu’on a été doublement injuste envers ce
calcul, en en exagérant la dificulté et atténuant Futilité.

Ann. de Mathémat., . X. (Novembre 1851.) 2§
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Mais en 1693, Jean Bernoulli résolut exactement lc pro-
bléme de la brachistochrone, et découvrit que c’était une
cycloide, et, en 1696, il fit paraitre, a cesujet, une pro-
vocation adressée aux géométres. Cette invitation porte :

Problema novum ad cujus solutionem mathematici
invitantur.

« Datis in plano verticali duobus-punctis A et B, as-
» signari mobili M viam AMB, per quam gravitate sua
» descendens, et moveri incipiens a puncto A, breyis-
» simo tempore perveniat ad alterum punctuin B. »
(Acta Eruditorum Lipsiensia, 1696 , page 269.)

Leibnitz , Newton, Jacques Bernoulli, le marquis de
I’Hépital fournirent des solutions. Newton donna encore
ici le résultat sans le procédé (Philosophical Transac-
tions de 1697, n° 224, page 384). De méme, le marquis
de I’Hopital. Ces divers travaux furent réunis par Leib-
nitz qui les publia en 1697 (Act. LErud. Lips., 1697,
mai). La solution de Jean Bernoulli parut aussi en 1697
(Act. Erud. Lips., 1697, mai, p. 206).

Ce probléme peut étre considéré comme le commence-
ment de cette longue suite de travaux qui ont pour objet
les maximums et minimums des intégrales (¥).

Ensuite on joignit 4 la condition des valeurs extrémes
encore cette autre condition, savoir, que la courbe cher-
chée ait une longueur donnée.

Jacques Bernoulli est le premier qui proposa publique-
ment de tels problémes. Jean Bernoulli adressa un pa-
quet cacheté a I’Académie royale des Sciences, avec la
condition de n’ouvrir le paquet que lorsque son frérc
Jacques aurait fait connaitre sa solution (Journal des
Savants, février 1701).

Jacques publia sa solution la méme année sous ce titre :

(*) Nous donnerons, d’aprés M. Strauch, une Notice particuliére sur ce
probléme.
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Analysis magni problematis isoperimetrici; Basle, 1701.

Cette solution , fondée sur un principe vrai, est exacte.
Celle de Jean ne fut insérée qu'en 1706 dans les Mé-
moires de I’ Académie des Sciences. La solution est fau-
tive; c’est ce que 'auteunr finit par reconnaitre lni-méme.,
1 donna une nouvelle solution dans les Mémoires de 1 718
de la méme Académie. Le principe est le méme que celui -
de son frére, mais avec des simplifications. Il en est de
méme de la solution que Taylor a donnée dans son ou-
vrage : Methodus incrementorum directa et inversa 5
Lond., 1715.

L’égalité des périmétres fit donner 4 ce genre de ques-
tions le nom de questions isopérimétrigues, et la recherche
d’une méthode pour les résoudre fut connue sous le nom
de probléme isopérimétrique.

Les questions on il s’agit de trouver des courbes satis-
faisant & certaines conditions de maximum ou de minj-
mum s’étant multipliées considérablement, il en résulta
qu’on prit ces deux dénominations dans un sens plus gé-
néral, plus étendu que ne comportent leurs significations
litérales. On comprit sous le nom de guestions isopéri-
métrigues toutes celles ou il faut déterminer des courbes
Jouissant de certaines propriétés de maximis et minimis,
n’importe le nombre et 'espéce des conditions acces-
soires.

Les solutions s’accordaient bien dans les principes;
mais il n’y avait pas de méthode générale. Euler entre-
prit cette recherche, et la poursuivit sans relache.

Un premier Mémoire sur ce sujet parat en 1739
(Comm. Petrap., tome V1, 1739 : Problematis isoperi-
metrici in latissimo sensu accepti solutio generalis). Les
divers problémes sont partagés en classes :

Premiére classe. Trouver toutes les courbes ot une
certaine propriété A acquiére une valeur extréme.

28,
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Deuxiémeclasse. Parmi toutesles courbesdela premiére
classe, trouver celles qui jouissent de la propriéié B.

Troisieme classe. Parmi toutes les courbes de la
deuxié¢me classe, trouver celles qui jouissent de la pro-
priété C; et ainsi de suite.

Ce Mémoire avait besoin de perfectionnements et de
développements.

Le second Mémoire parut en 1741 (Comm. Petrap.,
tome VIII, 1741 : Curvarum maximi minimive propric-
tate gaudentium inventio nova et facilis). 11 contenait
des parties défectueuses et peu claires.

En 1744, il publia un ouvrage étendu sous ce titre :

Methodus inveniendi lineas curvas maximi minimive
proprietate gaudentes, seu solutio problematis isoperime-
trici in latissimo sensu accepti. Lausannz et Geneve,
in-4°, 1744.

Tous les problémes y sont partagés en deux classes. La
premiére renferme les recherches de maximums et de mi-
nimums absolus. Dans la seconde classe, il s'agit des
maximums et minimums relatifs. Aux problémes connus,
Euler en ajoute une foule d’autres qui enrichissent son
ceuvre d'une maniére brillante. Les regles énoncées sont
parfaites, en ce sens qu’elles sont générales et conduisent
toujours au résultat vrai. Une régle de grande valeur est
surtout celle par laquelle les questions de la seconde
classe sont ramenées a celles de la premiére classe; mais
toutes ces régles sont fondées sur des considérations géo-
métriques, et 'on ne saurait trop admirer la perspicacité et
’adresse avec laquelle I'illustre géométre surmonte toutes
les difficultés. Toutefois la science pouvait prétendre a
une méthode plus parfaite. C’est ce qu’Euler non-seule-
ment sentait, mais ce qu’il a exprimé explicitement ainsi :
Une mcthode débarrassée de toute considération géo-
métrique est encore & désirer, qui puisse expliquer pour-
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quoi dans ce genre de questions il faut remplacer Pdp
par — pdP ( Methodus inveniendi, etc. Au bas de la
page 56 on lit : Desideratur itaque, etc.).

Cette méthode analytique si désirée fut découverte par
Lagrange. Il en fit part dés 1755 4 Euler qui avait si bien
mérité du sujet (Miscellanea Taurinensia, tome IV,
années 1766-69, 2° partie, page 163).

Fuler apprécia de suite la haute importance de la nou-
velle invention, et le jugement qu’il en porta est consigné
dans une lettre en date du 2 octobre 1759, adressée a
Lagrange etou onlit: Lasolution analytique duprobléme
isopérimétrique ne laisse plus rien & désirer, et je me rc-
jouis que cet objet, dont je me suis occupé si longtemps
presque seul, ait été porté par vous au plus haut degré
de perfection. L'importance du sujet m’a engagé, a
laide de wvos éclaircissements, de rédiger aussi une so-
lution analytique du probléme; mais je ne ferai rien
parailre jusqu’é ce que vous ayez fait imprimer vos re-
cherches, afin de ne pas vous dérober la moindre par-
celle de la gloire qui vous appartient (*) (voir la méme
page des Miscellanea Taurinensia citée ci-dessus).

La nouvelle invention ne fut rendue publique qu’en
1761 ( Miscellenea Taurinensia, tome 1I, 1760-1761,
2¢ partie, page 173 : Essai d’'une nouvelle méthode
pour déterminer les maxima et les minima des formules
intégrales indéfinics). Cette invention consiste en ceci :
Lagrange soumet une expression composée de variables
et de différentielles 2 une nouvelle différentiation qu’il
désigne non par la lettre usitée d, mais par la lettre J;
et, quand cette lettre § se trouve avant le signe d
ou f, il le place derriére ces signes. Ensuite, il opére au-

(*) Excellente legon de morale, de probité scientifique; exemple peu
contagieux. Tu.
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tant d'intégrations partielles jusqu’a ce qu'on ne ren-
contre plus sous le signe / aucune variable affectée a la
fois des deux lettres d et d.

Les avantages de ce procédé sont :

1°. D’étre simple et général, c'est-a-dire qu’il peut
s'étendre & un nombre quelconque de variables; de sorte
que la recherche des courbes a double courbure et des
surfaces devient aussi facile qu’auparavant, celle des
:courbes planes.
"%+ 2° On obtient non-seulement les équations princi-
pales, mais les équations aux limites ; ce n’est que d’alors
qu'il fut possible de poser des équations de condition et
de les introduire dans le calcul.

Nonobstant ces avantages, on ne peut se dissimuler
que dans ce premier Mémoire de Lagrange le manque
d’un fondement scientifique se fait encore sentir, car. il
est loisible de demander :

1°. Quelle différence existe entre la nouvelle différen-
tiation ¢ et V'ancienne d?

2°. Est-on autorisé ou obligé d’écrire dd, J'd au lieu de
ad,of? ,

3°. La valeur de la différentiation pour d n'est pas
changée par les intégrations partielles ultérieures, pour-
quoi faut-il pourtant faire ces intégrations?

Alors Euler se permit de publier aussi ses travaux
analytiques; il fit paraitre deux Mémoires en 1766. Le
premier porte le titre: Llementa calculi variationum,
et le second : A nalytica explicatio methodi maximorum
et minimorum; les deux Mémoires se trouvent dans les
Novi Comm. Acad. Petrop., tome X; 1766. Ici, Euler
s'applique a établir des principes a 'aide desquels on
puisse donner des fondements solides 4 la méthode de
Lagrange, & laquelle il donne le nom de calcul des varia-
tions, qui est resté. A la fin du second Mémoire, il donne
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pour la premiére fois 1'équation connue sous le nom d’é-
quation de condition d mtegrabllzte. ‘

Quoique Euler reconuiit les droits de Lagrange, lll-
lustre inventeur eut pourtant des désagréables prétentions
a repousser. Dés 1734, Fontaine avait appliqué une mé-
thode nouvelle et qui lui est particuliére pour résoudre le
probléme de la ligne tautochrone (Mémoires de U’ Aca-
démie royale des Sciences, 1734). En 1767, il prétendit
que cette méthode s’app]iquait a toutes les questions. ¢
maximis et de minimis; mais qu'on n’en avait pas. fait
usage. A cet effet, il publia un Mémoire, pour soutenir
cette assertion (Memo:res de U Académie, 1767). La, il
accuse Lagrange de s'étre égaré dans la nouvelle route
que ce dernier avait choisie, parce qu’il n’avait pas assez
approfondi la théorie, etc.; il propose en méme temps
deux méthodes qu'il donne pour nouvelles et meilleures
que toutes celles que 'on a publiées sur cet objet. La-
grange répondit ainsi, en 1770 : Pour ma justification, je
crois n’avoir rien de mieux & faire que d’'engager les con-
naisseurs & lire le Mémorre de M. Fontaine. On verra
que Uune de ces méthodes est celle qu’ Euler a publiée
dans son ouvrage de 1744, et que la seconde n’est autre,
pour le fond, que la mienne et n’en différe que par une
exposition moins bonne (Miscell. Taurin. , t. IV, an-
nées 1766-1769; 2° partie, p. 164 ; ce volume, malgré cette
date, renferme pourtant la justification de Lagrange,
écrite le 28 mai 1770, comme on peut voir a la page 187;
on y trouve méme un Mémoire de 1771, p. 250).

A cette occasion, nous devons mentionner une seconde
circonstance ou Lagrange croyait-qu’on voulait lui dis-
puter I'honneur de I'invention. Les deux géométres Jac-
quier et Leseur avaient publié, & Parme, un Traité du
Calcul thtégral ; un chapitre entier du second volume est
consacré a la nouvelle méthode, sans en nommer I'au-
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teur; Lagrange dit i cela: Je ne me serais pas plaint,
s’ils s’étaient contentés d’accepter ma méthode, sans en
nommer Uinventeur; c’est un procédé dont ils se sont
rendus coupables en d’autres endroits ; mais comme ils
citent le Mémoire d’ Euler, il parattrait quils veulent lui
attribuer la méthode, tandis que j'en suis le premier
inventeur (Miscell. Taurin., t. IV, p. 165).
- Le célébre Borda écrivit aussi un Mémoire dans lequel
cherche 2 montrer que les équations aux limites, obte-
fiiles par la méthode de Lagrange, n’ont pas une entiére
certitude (4 cadémie royale des Sciences, 1767 et 1768).
A ceteffet, il résout le probléme dela brachistochrone dont
Lagrange s’est occupé dans son premier Mémoire. Borda
parvient a un résultat exact et qui ne s’accorde pas avec
celui de Lagrange. Toutefois, ce fait ne prouve rien contre
les équations aux limites. La raison en est que Lagrange
est parti d’'une formule qui n’est pas assez générale; car
Vdz' + dy + dz°
Vz

rin., t. II, p. 176); x sont les coordonnées paralléles a
la direction de la pesanteur. Cette formule ne s’adapte
qu'au cas ou le mouvement commence avec x= o, et ne
eonvient pas aux cas ou le mouvement commence a un
autre endroit. Depuis, Lagrange a amélioré sa formule
(Miscell. Taurin., v. IV, p. 183) et I'a arrangée de ma-
niére que le mouvement peut commencer & un point quel-
conque de la brachistochrone. Dés lors Lagrange pouvait
montrer que sous certains rapports ses premiers résultats
(Miscell. Taurin., t. I, p. 179 et 3180) étaient exacts,
et sous d’autres rapports Borda avait aussi raison. La
certitude des équations aux limites fut ainsi établie d’'une
maniére brillante. _

En 1770, Fuler publia un nouveau Mémoire sur le

il pose la formule 7 = (Miscell. Tau-
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calcul des variations, et qu'il a ajouté au troisiéme vo-
lume de son 7'raité de Calcul intégral (*); la, tout ce
qui précéde est surpassé. Jusqu’ici on n’avait mis le calcul
des variations en relation qu’avec des questions de maxi-
mis et de minimis. L’auteur se débarrasse de cette idée
étroite et annonce (§ 115) que ce calcul pouvait étre
rendu plus général, et que les problémes se divisent
en deux classes. Dans la premiére classe sont les pro-
blémes ou la relation entre y et x est considérée comme
étant donnée, et 'on cherche la variation de I'intégral
JS'Vdx, en atiribuant 4 xx et & y des variations quelcon-
ques; dans la seconde classe, on cherche une relation
entre x et y telle qu’elle donne une certaine propriété a
Vintégrale /'V dx; par exemple que, devenant un maxi- ~
mum ou un minimum, la premiére variation J f'V dx
s’annule.

Euler s’appliqua désormais non-seulement a consolider
les principes du calcul des variations, mais aussi a rendre
plus intime la connexion de ce calcul avec les autres bran-
ches de I’Analyse. En 1772, parut un autre Mémoire :
Methodus nova et facilis calculum variationum trac-
tandi (Novi Comm. Petrop., t. XVI, 1772); jusqu’ici
on n’avait appliqué la méthode qu’a des expressions inté-
grales. Dans ce Mémoire, I'auteur se débarrasse de cette
restriction, et réunit en trois catégories toutes les expres-
sions qu’on peut soumettre a des variations; a la premiére
appartiennent les expressions qui ne renferment que des

(*) Institutiones calculi integralis, 3 T., Petrop. ; 1768-70. Le professeur
Salomon en a publié une belle traduction allemande en 4 volumes in-89;
Vienne, 1828-30; le quatriéme volume contient de nouveaux Mémoires
d’Euler qui ne sont pas dans V'original latin. Une traduction francaise
serait encore aujourd’hui d’une immense utilité. C'est au Ministre de
I'Instruction publique a faire ouvrir cette riche mine d’enseignements.
Cela viendra I'an 2440 quand on s’occupera des choses et non uniguement
des personnes, quand la science sera séparée de la politique.
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formes fonctionnelles; 4 la seconde, les expressions ou
Pon rencontre aussi des différentielles; et & la troisiéme,
les expressions ou il y a aussi des intégrales.

Au § 4, il reproduit le principe sur lequel il avait
établi jusqu’ici le calcul des variations, et qui consiste &
distinguer deux sortes de changements dans y : I'un dé-
signé par dy provient de ce que x devient x + dx;
I'autre désigné par Jdy est entiérement arbitraire et ne dé-

' pend pas de x. Ainsi considéré, le calcul des variations
semblait constituer un genre particulier de calcul ; mais
en scrutant plus exactement I'essence de ce calcul, Euler
découvrit qu’on pouvait le ramener entiérement a la
théorie des différentielles partielles. Aulieu de conserver
" le changement appelé variation, il remplace I'équation
y=09(x), d’abord par celle-ci y + Ay =7¢ (x)+1{(x)
ou ¢ est un infiniment petit; puis, passant 4 une forme
"plus générale, il considére y non plus comme une fonc-
tion de x seulement, mais comme une fonction de deux
variables x et ¢, t étant une variable nouvellement intro-
duite. C’est ce qu'il explique de cette maniére : Soit
y =0 (x) Péquation d’une ligne; y =¢(x, t) repré-
sentera toutes les lignes infiniment voisines si ¢ (x, t) est
telle, qu’en faisant ¢t = o, ¢ (x, ) revient & ¢ (x), et la

do(x, t . . s 2ed A4 .
formule _?_(—t—t’—)dt remplace ce qui avait été désigné

[
par dy.

Certes, l'introduction d’une nouvelle variable a donné
au calcul des variations sa base véritable. Toutefois, je
fais voir (§ 61) que ce moyen n’est pas a I'abri de quel-
ques objections, et j'indique (§ 53) un autre procédé.

Dans aucun de ses Mémoires , Euler ne s’est occupé des
variations du second ordre, nécessaires pour savoir s’il y
a maximmum ou minimum, ou si aucun des deux n’a licu.
Les premiéres recherches de ce genre ont été publiées par
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Laplace, en 1772 (Nova Acta eruditorum, 1772, p. 193).
Ensuite Legendre s’est occupé du méme objet, dans un
Mémoire de 1786 et dans un second Mémoire de 1787
(Académie des Sciences, 1786, p. 7, et 1787, p. 348);
mais dans ces trois Mémoires il n’est question que des cas
ou y est fonction de la seule variable x.

Lagrange s'efforca aussi de consolider et d’étendre sa
méthode. C’est ce qu'il fait dans sa Théorie des fonctions
analytiques dont la premiére édition est de 1797, et la se-
conde de 1813. On y trouve bien des recherches sur les
variations du second ordre , mais aussi pour les cas oul’on
ne cherche qu’une seule fonction y d’une seule variable x
(seconde partie, chap. XII, n° 64-70; 2° édition); et la
méthode ne s'étend ni aux cas ou y et z sont des fonctions
de x, ou bien z fonction des deux variables x, y; une
seule question est pourtant traitée, ou paraissent y et z,
fonctions de x (seconde partie, chap. XII, n° 73; 2° édi-
tion); mais cette question est spéciale, et 'on ne donne
pas de régles pour le cas général. Dans cet ouvrage, on
trouve pour la premiére fois un probléme ou il s’agit de
rendre maximum et minimum une expression qui ren-
ferme des différentielles, mais pas d’intégrales (seconde
partie, chap. XI, n° 59 et 6o; 2° édition) ; mais on ne
donne que de faibles indications sur la théorie nécessaire
pour résoudre de tels problémes.

En 1806, dans la 2° édition des Lecons sur le calcul
des fonctions, Lagrange a considérablement perfectionné
sa méthode, etl’a enrichie de beaucoup de problémes inté-
ressants (*). Imitant Euler, il renplace la fonction ¢ (x)
par celle-ci, ¢ (x, t), telle qu’en faisant t = o, ¢ (x, ?)
revienne 4 ¢ (x); ensuite il développe ¢ (x, t), par le

L]

(*) La 1¥¢ édition forme le 12¢ cahier du Journal de 'Ecole Polytech-
nique, 1804. La 2¢ édition, qui a paru chez Courcier en 1806, est tellement
augmentée, qu’on ne peut plus citer la 1@ édition.
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théoréme de Maclaurin, en cette série,

q)(x)+tq;(x)+-l{—22x(x)+.f..

Cette marche, la méme que celle d’Euler, est sujette aux
mémes objections. Ainsi tout le calcul des variations
étant fondé sur le théoréme de Maclaurin, il posséde tous
les avantages attachés a ce théoréme.

Jetant un regard sur ce qui précéde, nous voyons :

1°. Qu'Euler, par la méthode géométrique, porta si
loin le probléme isopérimétrique, que la science devait
nécessairement découvrir une méthode analytique;

2°. Que Lagrange fit cette découverte;

3°. Qu’Euler s’est efforcé de consolider et de développer
la méthode de Lagrange, et qu'il a considérablement per-
fectionné cette méthode, surtout en introduisant une nou-
velle variable;

4°. Que Lagrange a reconuu que cette idée était la
plus convenable au sujet et I'a adoptée comme base de sa
méthode.

Outre Laplace et Legendre, auxquels, comme nous
avons dit, le calcul des variations doit de précicuses
acquisitions, d’autres géomeétres ont cru devoir s’occuper
de ce calcul; la plupart, sans faire avancer la science, se
sont contentés de réunir, selon leurs propres vues, les
propositions connues. 1l serait superflu de donner une
Notice déraillée de ces écrivains. Il nous suflit de dire que
quelques-uns se sont tenus strictement a la forme géné-
rale qu’'Euler a donnée pour base, savoir : de représenter
la variation immédiate par une série infinie.

Parmi ceux-ci, on remarque Lacroix, qui a recueilli
dans son ouvrage, et a exposé clairement et dans un bel
ordre, tout ce qui a été fait ( Traité du calcul différentiel
et intégral, 2° édition, t. 11, 1814; p. 724, 744, 751).

D’autres ont adopté une forme qu’Euler a déja déclaréc



trop speuale savoir : la'forme finie ¢ (x) + ¢ (x) (*);
croyant ainsi donner au procédé de I élégance et le rendre
simple, ils 'ont entaché de grands défauts. En effet, pour
qu'une fonction ¢ (x) puisse se changer dans la fonction
arbitraire ¢ (z, t), le développement de ¢ (x, ) doit
étre représenté par uue série infinie, réellement ou au
moins idéalement existante. Si I'on prétend que la série
est finie, il faut que la fonction ¢ (x, t) jouisse de cer-
taines propriétés qui permettent d’arréter la série, et alors
la fonction cesse d’étre entiérement arbitraire. En outre,
ce procédé conduit & beaucoup de contradictions, comme
nous verrons dans divers endroits de cet ouvrage.

Toutefois, M. le professeur Martin Ohm fit paraitre
en 1825, 1831, 1833, 1839, quatre éerits qui méritent
d’étre pris en considération. Le calcul s’est enrichi et
a pris de 'extension , ainsi que nous allons le faire voir.

Donnons d’abord les titres de ces ouvrages :

1°. Lehre des grosten and kleinsten. Théorie du
maximum et du minimum ; Berlin, 1825.

2°. System der mathematik. Systéme des mathémati-
ques, t. V; Berlin, 1831.

3°. Idem, t. VII; Berlin, 1833.

4°. Lehrbuch der hohern mathematik, en 2 vol., t. II;
Berlin, 1839 (*¥).

L’ouvrage de 1825 contient une théorie générale du
calcul des variations, trés-compléte et ou plusieurs points

(*) Nous n’en citerons que trois :

19, GERGONNE , Annales des Mat., t. XIII; 1822.

20, DirksEN, Analytische darsiellung der variations rechnung (Exposition
analytique du calcul des variations ); Berlin, 1823.

30, Poisson, Mémoires de I'Académie des Sciences, t. X11; 1833, p. 231
et 243. Traité de Mécanique, 2© édition; 1833, t. I, § 199, 203.

(**) On peut aussi citer les travaux de Jacobi (Liouville, tome HI);
de M. Cauchy ( Exercices d’Analyse, tome III; 1844); de M. Delaunay
(Liouville, tome V1), etle Mémoire couronné de M. Sarrus ( Savants étran~
gers, tome X; 1848). Tw.
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difticiles sont mieux traités qu'& ¥ordinaire. On y trouve
aussi une théorie trés-développée du maximum et du mi-
nimum. L’auteur, d’aprés Euler, raméne toutes les ques-
tions & trois catégories. 1° Les expressions purement fonc-
tionnelles. Les recherches sont assez complétes; toutefois,
il y manque plusieurs cas que jai indiqués dans mon ou-
vrage, t. I, § 162-199, et auxquels les questions 55-60
servent d’applications. 2° Les expressions ou entrent aussi
des différentielles pour lesquelles Lagrange n’a donné que
de légeéresindications;ici, ce cas est traité pour la premiére
fois et avec une étendue suffisante. 3° Les expressions qui
renferment aussi des intégrales. Beaucoup de ces recher-
ches se distinguent par la plénitude, et quelques-unes sont
manquantes; ainsi: 1° on trouve ici pour la premiére
fois une recherche générale des variations du second
ordre, pour le cas d'une intégrale simple, a deux limites
constantes et pour deux fonctions y et z indépendantes
I'une de I'autre, et chacune fonction de x; 1. ais lorsque
oy et z sont liées par une relation (par une équation algé-
brique ou différentielle) , la recherche est a peine indi-
qude, et, toutefois, une régle spéciale est nécessaire. De
méme, ce qui concerne la variation du second ordre lors-
que les limites des intégrales sont variables est inexact.
2° Lors d’'une intégrale double, on traite ici, pour la
premiére fois, le cas ou la variable, suivant laquelle se
fait la premiére intégration est une fonction de la va-
riable suivant laquelle on fait la seconde intégration. On
montre comment il faut alors transformer la variation du
premier ordre; mais cette transformation n’a rien de pra-
tique. Pour des intégralesdoubles, les équations auxlimites
présentent une infinité de cas a discuter, et nonobstant on
ne mentionne que quelques cas particuliers ; ainsi sous
ce rapport il n’y a comme rien de fait. La variation du
second ordre manque en entier.

Dans les ouvrages de 1831 et 1839, on donne une



théorie du calcul des ions, et, de plus, des sé-
ries élégantes, utiles, gul’méritent de fixer I'attention.

Dans les deux ouvrages de 1833 et 1839, on trouve
aussi une théorie générale du maximum et du minimum;.
c’est un extrait de I'ouvrage de 1825, une sorte d’expo-
sition plus succincte.

Venons maintenant au point principal. Sur quelle base
Pauteur a-t-il fondé son calcul? Cette base ofire quelque
chose de trés-particulier. L’auteur pose de suite pour la
variation immédiate,

. x? x3
Yz:]f+x)'|+;—.;yz+mys 4.y
ou bien

x* x
= ') —0%y 4 ———— 0 ve-
Ye=r -+ y+l.28‘7+l.2.3a"’+ ’

sans dire le moins du monde ou il a pris cette série, ni
d’ou elle a pu se déduire. En effet :

Dans I'ouvrage de 1825, on lit: « Lorsqu'une expres-
sion y se développe par elle-méme, indépendamment
d’une autre expression, en une série ascendante suivant
les puissances entiéres de 7, alors on dit que r expresswn
y est immédiatement variée selon Ty mais si une expres-
sion V ne peut se développer en une telle série que parce
qu’elle dépend d’une autre expression développée suivant
une telle série, on dit alors que V est varide médiate-
ment selon 7s Lorsque 7 est infiniment petit, yz —y, ou
V. — V sont les variations de y oude V. »

En représentant les variations immédiates par des sé-
ries infinies, M. Ohm n’a fait que revétir son calcul dc
la vraie forme. Mais on est en droit de demander : d’ou
l'auteur déduit-il ces séries? Pourquoi n’a-t-il pas pris
une marche d’ot ces séries ressortent nécessairement
Pourquoi, sans dire le motif, a-t-il renoncé a la base
posée par Euler et adoptée par Lagrange, etc.?.

On a déja dit que dans le Traité complet de 1825, on



trouve trés-peu de chose sur’ égrales doubles. Clest
ce qui a engagé Poisson a publier, en 1833, un Mémoire
spécial sur cet objet (Académie des Sciences, t. XII;
le Mémoire a été lu le 10 octobre 1831). Pour le cas ou
les limites de I'intégrale double sont variables, I'illustre
analyste croit devoir introduire un nouveau principe;
a la place des deux variables x, y, il met deux fonctions
de deux nouvelles variables u et v, etc., et raméne fina-
lement les deux variables « et y. Par ce procédé, la recher-
che, pas déja trés-simple, a été rendue plus compliquée
ct surchargée de difficultés superflues.

C’est la raison qui a porté M. Ostrogradsky a traiter le
méme sujet dans un Mémoire publié en 1834 (Acad. de
Pétersb., 6° série, t. Il1I; et Journal de M. Crelle, t. XV,
4° cahier; 1836). Il montre que I'introduction de deux
nouvelles variables n’est pas nécessaire et que le principe
fondamental du calcul des variations suffit pour réunir
toute généralité désirable et une extréme simplicité.

Toutefois, j’ai montré dans cet ouvrage (t. II, § 737
et 738), que les deux Mémoires, sous le rapport de la
théorie et de la pratique, ne répondent pas a ce que le
sujet exige. L’expression pour la variation du premier
ordre n’est pas pratique, et est méme inachevée. La va -
riation du second ordre manque complétement dans les
deux dissertations. On n’y trouve pas un seul exemple
spécial propre a éclairer des recherches si difficiles dans
les détails, etc. .

Cette courte esquisse présente |'état ou est actuellement
la branche la plus élevée de I’ Analyse; beaucoup a été fait
et il reste encore bien des choses 4 faire. Nous avons vu
aussi que, sous le rapport pratique, les ouvrages d’Euler et
de Lagrange sont ornés d’applications belles et intéressan-
tes ; et cependant nous verrons plus loin que c’est précisé-
ment pour les applications qu’il reste le plus a faire.



QUESTIONS DE GEOMETRIE DESCRIPTIVE PROPOSEES AU
CONCOURS D’ADMISSION A L’ ECOLE POLYTECHNIQUE,EN 4854.
L

Comme 'année derniére, nous avons recueilli les pro-
grammes des questions de géométrie descriptive qui ont
été proposées au concours d’admission a I'Ecole Poly-
technique, et nous les mettons sous les yeux de mnos
lecteurs. Ainsi rapprochés, ils montrent la tendance de
I’Ecole a faire disparaitre graduellement des travaux gra-
phiques des candidats la méthode qui consiste a repro-
duire les épures gravées des auteurs, pour lui voir sub-
stituer celle des programmes écrits dans lesquels chaque
éléve trouve des données numériques différentes.

Quinze programmes, relatifs & l'intersection de deux
surfaces de révolution, ont été envoyés dans les villes
d'examen. Afin d’éviter des redites inutiles, nous les
grouperons de la maniere suivante :

Sphére pleine et cone de révolution dont laxe est
incliné. — Dans les cinq programmes, la sphére est
donnée par la position de son centre et par la grandeur
de son rayon; le cone est défini par la position de son
axe et de son sommet, et par le rayon de la section droite
faite 2 une distance déterminée du sommet. Par exemple :
axe incliné de 45 degrés sur le plan horizontal , distant de
1 centimétre du centre de la sphére, et non paralléle au
plan vertical ; sommet situé 8 centimétres au-dessus du
centre de la sphére; section droite de 7 centimétres de
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fﬁﬂn ct distante de 15 cent:  du sommet du céne.

Ou bien: axe non paralléle an plan vertical, incliné

de 30 degrés sur chacun des plans de projection, et dis-

tant de 2 centimétres du centre de la sphére; sommet si-

tué & 12 centimétres au-dessus du plan horizontal ou en
avant du plan vertical ; section droite, etc.

On demandait: 1° de définir graphiquement, d’apres
les procédés ordinaires de la géométrie descriptive, les
formes, dimensions et positions des deux surfaces don-
nées, en adoptant pour le edne une position choisie &
volonté entre toutes celles qui satisfont aux conditions
prescrites; 2° de construire la courbe d’intersection de la
surface conique et de la surface sphérique; 3° de discu-
ter, dans un texte, les particularités que peuvent pré-
-senter la question générale-de I'intersection d’une sphére
et d'un cdne, et la recherche des points remarquables de
la courbe d’intersection.

Sphére creuse et cone droit. —Deux programmes.

Sphére donnée par la position de son centre et par la
grandeur des rayons des surfaces intérieure et extérieure.
Céne ayant son axe perpendiculaire au plan horizontal
ou au plan vertical, et distant de 5 centimétres du centre
de la sphére; son sommet a 15 centimétres du plan hori-
zontal ou du plan vertical; sa trace, horizontale ou ver-
ticale, de 5 centimétres de rayon et tangente 4 la ligne de
terre. '

On demandait : 1° de construire les courbes d’intersec-
tion des surfaces sphériques avec la surface conique;
2° de projeter séparément, sur un plan vertical , le cone
aprés Varrachement par la sphére ou la sphére aprés
larrachement par le cone; 3° de discuter dans un
texte, etc.

Sphére pleine et cylindre de révolution dont laxe
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est incliné. — Cinq programmes tout a fait analogﬁs
- aux cing premiers.

Par exemple : axe du cylindre non paralléle au plan
vertical, incliné de 3o degrés sur chacun des plans de
projection et distant de 2 centimétres du centre de la
sphére ; rayon de 3 centimétres; limites : le plan vertical
d’une part, et, de 'autre, un autre plan vertical égale-
ment distant du centre de la sphére et du plan vertical
de projection.

Ou bien : cylindre dont I'axe, incliné de 45 degrés sur
le plan horizontal, est distant de 2 centimétres du dia-
metre vertical de la sphére et est placé, par rapport au
centre (O, O'), de telle maniére que le pied de la droite
qui mesure la plus courte distance entre V'axe et le dia-
metre vertical tombe sur ce diamétre & 1 centimétre au-
dessus du centre (O, O'); dont le rayon est de 3 centi-
meétres , dont les limites sont, ete.

On demandait : 1° de construire la courbe d'intersec-
tion de la surface cylindrique et de la surface sphérique;
2° de développer la surface cylindrique sur un plan tan-
gent vertical , et de tracer sur ce développement la géné-
ratrice de contact et la transformée de la courbe cylindro-
sphérique; 3° de discuter dans un texte, etc.

Cylindre droit perpendiculaire & l'un des plans de
projection et cylindre de révolution dont laxe est in-
cliné. — Trois programmes.

Le cylindre droit est donné par la position de son axe
et par la grandeur de son rayon. Le cylindre incliné est
défini comme dans la question de la sphére et du cone.

On demandait, etc. (voyez le programme précédent ).

Enfin, cylindre de révolution creux dont I'axe a pour
projections deux droites inclinées a 45 degrés chacune sur
la ligne de terre ; dont les rayons des surfaces extérieure et

29.
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intérieure sont respectivement de 4 et de 3 centimétres ;
et cylindre de révolution plein, dont I’axe, situé dans
un plan perpendiculaire 4 la ligne de terre, rencontre
cette ligne et I'axe du premier cylindre; dont le rayon est
de 2 centimétres.

On demandait : 1° de construire les courbes d’intersec-
tion de la surface du cylindre plein avec les surfaces exté-
rieure et intérieure du cylindre creux; 2° de projeter sur
un plan perpendiculaire a la ligne de terre le cylindre
creux et le trou qui le traverse, le cylindre plein ayant
d’abord été retiré de ce trou; 3° de discuter dans un
texte, etc.

Au premier abord, ces programmes paraissent plus dif-
férents par la difficulté qu’ils ne le sont réellement. Lors-
que la misé en projection du probléme est difficile, la
partie purement graphique est diminuée. Toutefois, il
faut reconnaitre que le travail était trop considérable
relativement au temps accordé, quatre heures, tandis que
I’année derniére on avait accordé six heures.

11 faut aussi reconnaitre que les programmes de Paris
étaient un peu plus chargés et surtout d'une rédaction
moins explicite que ceux de la province, oul'on a eu l'at-
tention de faire ressortir la mise en projection des surfaces
données comme une question, au lieu de la laisser enve-
loppée dans I'énoncé. Ces petites inégalités, presque iné-
vitables, n’ont pas empéché les candidats de Paris de se
trouver en trés-grande majorité sur la liste d’admission ;
on en compte soixante-huit sur quatre-vingt-quinze, ce qui
fait deux fois et demie ce que la province a donné; rapport
qui se trouve étre le méme que celui des compositions
écrites qui ont été corrigées.

Ce n’est pas ici le lieu, ce n’est peut-étre pas non plus
le moment de rechercher les causes de cet envahissement
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de Paris. Les nouveaux programmes des épreuves ugus

placent dans une de ces époques de transformation peu

propre a un examen de cette nature. Il convient d’at-
tendre.

ENSEIGNEMENT DE LA GEOMETRIE DESCRIPTIVE.

Nos lecteurs , géomeétres-dessinateurs,, nous sauront gré
sans doute de porter a leur connaissance une collection de
reliefs géométriques qu’ils consulteraient avec profit. Le
prospectus porte, pour préambule, les observations sui-
vantes qui nous paraissent d'une grande justesse.

Collection de corps géométriques en pldtre, destinée a

- lenseignement de la géométrie descriptive et de ses
applications.

« Dessiner d’aprés le relief, c’est prendre sur les corps
solides eux-mémes (*) les données numériques qui fixent
leurs dimensions et leur situation dans I'espace, et c’est
se servir des mesures ainsi obtenues pour construire les
projections géométriques qui non-seulement représentent
ces corps, mais encore suffisent pour les reproduire, comme

(*) «Sousles noms de hauteur, largeur, épaisseur, profondeur, distance,
rayon, diamétre, abscisse, ordonnée, cété, etc., on fait de nombreux me-
surages pour lesquels suffit le Autsch, ou double décimétre subdivisé en
centimétres, millimétres, et demi-millimétres au besoin. On peut méme
arriver a une approximation plus grande en lui adaptant un curseur a
vernier. .

» Pour les perpendiculaires, trés—nombreuses aussi, qu’on a besoin de
mener a un plan, on doit employer 'équerre a trois dimensions, instru-
ment que, pour abréger, on pourrait appeler équerrc-relicf. C'est un
angle triédre bi-rectangle trés-facile a exécuter en bois ou ‘en papier:
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cela se pratique dans les arts de construction, sur les pro--
jets des ingénieurs.

» Cet exercice, en graduant les difficultés de 1'en-
seignement du dessin des projections, prépare les éléves
aux épures d’aprés des programmes écrits ou d’aprés leurs
propres conceptions dans la géométrie des trois dimen-
sions. Les reliefs, en montrant d’avance au dessinateur
le résultat de ses recherches, en lui en donnant le senti-
ment, facilitent nécessairement son travail. Cet exercice,
dont 'utilité est évidente, est cependant presque inconnu.
Est-ce parce que les modéles manquent?

u Observer sur la surface rigoureusement définie des
corps géométriques les effets de lumiére, d’ombre, de
reflet qui s’y manifestent, et les effets de contour appa-
rent de leurs vues perspectives; s'exercer a rendre rapi-
dement 4 P'estompe et au crayon ces accidents d'une va-
riété infinie et d’une précision saisissable par l'ceil le
moins exercé; ces deux études constituent un enseigne-
ment gradué, rationnel, et de nature a préparer a tous
les genres de dessin. Ainsi tous les effets de lumiére et de
perspective que peuvent présenter les sujets ordinaires du
dessin d'imitation se trouvent nettement accusés sur les
polyédres, sur les comes et les cylindres, sur les corps de
révolution, sur les formes tarses des colonnes , des limons

qu’on plie une feuille de papier fort ou du carton mince, et 'on a une
régle qui peut étre d’un bon usage; qu’on fasse un second pli exactement
perpendiculaire au premier, qu'on Pouvre plus ou moins, et I'on a une
équerre a trois dimensions. Le second pli étant entiérement ouvert, on
arrive & V'équerre & deux dimensions, c’est-a-dire a 1'équerre plane de la
géométrie élémentaire; c’est aussi 'équerre du relieur. Une feuille de
papier et un kutsch suffisent donc pour exécuter le lever des corps géomé-
triques. Lorsque le plan de position du corps est horizontal, on peut
substituer, mais sans avantage, le fil @ plomb a Uéquerre-relief.
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d’escalier et des serpentins, en un mot, sur toutes les sur-
faces de la géométrie, convenablement éclairées (*).

» Cet enseignement d’ute simplicité et d’une utilité
mconteslables n’est pas assez repandu est-ce parce que
les modeles manquent?

» Si cette lacune existe réellement dans ’ensemble des
moyens propres A ’enseignement du dessin, notre collec-
tion aidera 4 la combler. .

» La vue attentive des corps solides a 'avantage de
familiariser avec-les formes et les appellations de la géo-
métrie ; les combinaisons de ces formes entre elles, par
intersection et par contact, donnent la connaissance d’un
grand nombre de résultats que les éléves n’ont pas le temps
de chercher, qu'il n’est pas nécessaire de leur faire cher-
cher, qu’il suffit de leur montrer, et en grand nombre,
parce qu'il y a de I'instruction dans la variété; enfin, le
groupement de ces corps fournit une suite sans nombre
de modéles faciles et intéressants a reproduire par le
dessin. .

» Si cette collection est bien accueillie, elle recevra un
développement qui en accroitra beaucoup l'utilité (¥¥). »

(*) « La lumiére d’une lampe ou la lumiére solaire, dans laquelle les corps
sont plongés, produit sur leur surface des ombres noires et tranchées qui
sont d’un effet peu agréable; aussi ne manque-t-on pas de les adoucir par
quelques artifices, mais sans les dénaturer. Les ombres géométriques, qui
leur sont tout a fait comparables, doivent &tre traitées comme elles, de
maniére a produire des résultats qui se rapprochent de ceux du dessin
d’imitation proprement dit, ou 1'on suppose les.objets éclairés par la lu-
miére diffuse de Vatmosphére.

» Quant a ce qui regarde la perspective,, il nous suffira de dire, pour étre
compris, qu'une glace interposée entre 'oculaire, point ou I'on suppose
Peeil du dessinateur, et ’objet a représenter, est de tous les moyens a em-
ployer le plus simple et le plus clair pour faire sentir et comprendre les
effets de ce que I'on nomme avec raison la perspective linéaire, pour la
distinguer de la perspective aérienne. »

(**) S’adresser a M. Bardin, rue du Cherche-Midi, 23 4 Parls. On cst
prié d’affranchir les lettres.
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On doit désirer que cette collection, que nous avons
visitée avec un véritable intérét, se répande et soit ap-
préciée. Elle est déja trés-étendue, trés-variée, et 'on y
trouve réalisées en relief toutes les questions d’intersec-
tion ‘de surfaces qui ont été proposées cette année au
concours d’admission de I'Ecole Polytechnique. 1l est
bon, quand les programmes des épreuves de concours de-
viennent de plus en plus difficiles, que quelgues per-—
sonnes se préoccupent de venir en aide aux candidats et
a I'enseignement.

L’auteur ne parle pas, dans son prospectus, de la belle
suite de reliefs topographiques qui constitue, i vrai dire,
la partie principale et la plus importante de son musée
stéréotomique. Cette réserve semble indiquer qu’il veut
en faire I’objet d'un programme particulier.

NOTE SUR LA METHODE DES MOINDRES CARRES;
Par M. P. HOSSARD,

Chef d’escadron d’état-major.

Afin de mieux fixer les idées, soit une fonction 4 deux
variables considérée comme 'ordonnée verticale d’une
surface. Supposons d’abord que les constantes a déter-
miner soient telles, que leur variation ne donne lieu qu’a
un déplacement paralléle de la surface dans le sens des
verticales, et que, par expérience, on ait déterminé un
certain nombre de points devant lui appartenir. Si ces
points ne s'accordent pas parfaitement entre eux, c'est-
a-dire g’ils n’appartiennent pas exactement a une déter-
mina@ﬁn;g’pique de la surface, il est évident que la posi-
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tion a adopter serait celle qui établirait cette relation,
savoir : que la somme des différences positives entre les
verticales des points obtenus par expérience et les or—
données correspondantes de la surface, fussent égales aux
différences négatives ; c’est-a-dire que cette position serait
donnée par une moyenne arithmétique, comme dans le
cas de la détermination d’'un point sur une verticale
unique.

Généralement , la variation des constantes a déterminer
donnera lieu a une déformation et & un déplacement non
paralléle aux ordonnées; il est clair alors que la surface &
adopter ne correspondra plus & une égalité entre les er-
reurs positives et négatives des observations, car I’ordon-
née de la surface, selon qu’elle correspondra a tel ou tel
point observé, éprouvera des variations différentes pour
une méme variation des constantes; mais il devient évi-
dent que le résultat de chaque observation devra avoir
une influence d’autant plus grande dans la détermination
de la surface a adopter, que cette observation corres-
pondra & un point dont le déplacement sera plus consi-
dérable pour une méme variation des constantes. Ainsi,
une observation correspondante a4 un point invariable de
la surface devrait rester sans influence, et étre négligée,
quelle que fat d’ailleurs la différence eantre I'ordonnée
donnée par I’observation et 'ordonnée du point fixe. Il est
évident encore qu'un point obtenu par l'observation, 1a
ou la surface éprouve les déplacements les plus considé-
rables pour une méme variation des constantes, serait
des plus propres a fixer la valeur de ces constantes; enfin
que si'deux observations correspondent & deux points de
la surface, dont I'un éprouve un déplacement double de
I'autre pour une méme variation des constantes a déter-
miner, le premier point sera deux fois plus convenable
que le second pour fixer cette surface, et, par wnsequent,
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devra entrer avec une influence double, relativement a
celui-ci, dans le choix a faire.

Pour arriver a la détermination la plus avantageuse de
la fonction cherchée, nous devrons donc prendre une
moyenne arithmétique , comme dans le premier cas con-
sidéré, mais en faisant entrer chaque observation avec
r mﬂuence qui lui est propre.

Les idées de géométrie introduites ici ont eu pour but
de rendre la démonstration plus tangible, pour ainsi dire,
mais ne sont nullement nécessaires a son exactitude.

11 nous reste maintenant a montrer que ce procédé
n’est autre que la méthode des moindres carrés donnée
par Legendre, démontrée par Laplace et Poisson.

Soit une fonction de la forme

mf+ne+...,
S5 @, etc., étant des expressjons sans coefficients indéter-
minés et dont les valeurs numériques sont des données de
Pobservation ; m, n,etc., étantdes constantes a déterminer,
indépendantes, d’ailleurs, les unes des autres.

Par d’autres observations, on aurait

mf + n¢’...,
mf’ + mv”.. 5
mf" - mp ceey

Soient ¢, ¢/, v”,..., les valeurs respectives de ces fonc-
tions, déduites de Vobservation, et

e, ey e’ e’ ..,
les erveurs ou différences entre les résultats qui seraient
donnés par la fonction adoptée comme la plus probable,
et ceux donnés par 'observation. On aura
e =mf + ng... —v,
e =mf' + n¢'... — v,

”

=mf" + nq)’"... —_0,
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Or, si, dans la fonction, nous faisons varier successive-
ment chacun des coefficients m, n, p, etc., en laissant les
autres constants, nous remarquerons :

1°. Que lorsque m variera, la fonction éprouvera une
variation proportionnelle & f pour I'erreur e, proportion-
nelle 4 f’ pour Perreur e’, proportionnelle 4 f” pour l'er-
reur e, etc. ; ces différentes erreurs devront donc entrer
dans la formation de la moyenne avec des poids respecti-
vement proportionnels a .

S S S

et I'on aura la relation
fe+fle! + fre".. . =o.
2°. Que, pour r variable, on aura
9e + 9'e’ +¢"¢”... =o0,

et ainsi de suite.

Ces équations, qui seront en uombre égal aux con-
stantes, serviront a les déterminer; on sait d’ailleurs

, . . . . .. ,
qu’elles reviennent a la condition du minimum des carrés
des erreurs.

Soit, en effet,

et e" ...,
la somme des carrés des erreurs. Différentiant, en faisant

varier successivement m, 7, etc., les conditions du mi-
nimum seront :

de | 0% ey =0
¢ dm dm dm """ T 7
de’ de”

e—‘-l—?-+e’—+e”—+ =o0
dn dn d T

L T I T T R )
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Or
de de’ , de” .,
an = =" ="
de de’ de”

—_— 4

_ r 8
(E.—?’ dr ? dn_?’

On peut donc dire que la méthode des moindres carrés

revient en réalité au calcul élémentaire des moyennes

arithmétigues, en tenant compte, toutefois, du poids
relatif de chacune des observations.

RECLAMATION

pe M. HEEGMANN,

Membre de la Société nationale des Sciences et Arts de Lille.

(Extrait d’une Lettre.)

En rendant compte de mon ouvrage de Trigonométrie,
vous dites (p. 351) ne pas savoir si 'exactitude des Tables
a été constatée. Or, j’ai fait, pour obtenir cette exacti-
tude, des dépenses considérables, dont il ne faut pas
juger par le profit que peut me donner le livre, qui n’a
d’ailleurs été tiré qu’a un trés-petit nombre d’exem-
plaires. J’ai employé séparément plusieurs calculateurs,
de maniére a contréler une partie notable de leurs cal-
culs, les uns par les autres.-Un second contrdle, non
moins efficace, résultait de l'examen des diférences,
opération qui a été faite sur le manuscrit et répétée sur
les épreuves de I'imprimerie.
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SOLUTION DE LA QUESTION 247

(voir t. IX, p. 388);

Par M. BUGNOT (1.),
Eléve de I'Ecole Polytechnique.

Résoudre I'équation
(x) 3= 5fx — 135.

Je remarque que 54=12.3% et que 135 =75.3%
I'équation est done
' Fr=2.32—5.3.

Je pose
(2) z=3+y;
et, divisant tout par 3%, j’ai

J=22—5=2(3+y)—5=2y+1,
ou
(1+2)y=2y—+1;

je développe le premier membre par la formule du bi-
noéme, et il vient

J(Y—I)[2+%‘-ﬂ2’+...]=o.

De la sorte, les deux racines y = o0, y = 1, sont mises
en évidence; et, se reportant a I'équation (2), on en
tire
x=3 et z=4¢,
racines qui vérifient 'équation (1).
Actuellement, ramenant I'équation (1) a la forme

flad=o,



( 462 )
je prends la dérivée .
[ (z)= 3log’ 3 — 54.
Pour que cette dérivée soit négative, il faut que 'on ait

. b
¥ <iog' log”3’

inégalité qui sera vraie, a fortiori, si 'on a

3 <54

= 2

ou 27;

car
log’ 3 = 1,0986122... < 2.

Or cette inégalité est évidemment satisfaite par

xf3.

Vv

On voit de méme que, pour x

Sf(z)>o.

Donc la fonction est constamment décroissante depuis
x = — o jusqua x =3, et croissante depuis x =4
jusqu’a x = + o ; et, conséquemment, I'équation n’a
pas de racines en dehors des limites 3 et 4. '
En second lieu, il est évident que si une valeur de x
rend positif le bindme 3+ log’ 3 — 54, toute valeur su-
périeure x + % le rendra, a fortiori, positif. Donc,
quand la fonction f'(x), décroissante a parur de x=3
et devenue négative, aura atteint son maximum, elle
«croitra constamment et d’'une maniére continue jusqu’a
I'infini. Donc elle ne pourra passer qu'une fois par zéro,
ce qui aura lieu pour x = 4, puisque f(4) = o. Ainsi
I’équation proposée admet les racines 3 et 4 et n'en a pas
d’autres.

4, on a toujours
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_QUESTIONS NON RESOLUES
Dans les dix premiers volumes.

TOME 1. TOME ViI.
Nos, Pages. Nos, Pages.
4 (bl's) 123 180 157
25 247 182 Ibid.
41 : 396 190 240
47 519 192 368
: 193 Ibid.
TOME 1L 108 448
& : o TOME VIl
79 454 )
199 44
. TOME IIl. 205 10
8 0
8 o TOME IX.
87 ) 376 218 1
228 . 298
TOME 1V.
0 259 TOME X.
' 238 357
TOME ¥. 240 Ibid.
120 202 245 258
136 672 248 Ibid.
TOME VI.
141 © 134
145 216 b
148 Ivid.
153 242
165 394

Observation. Sur 248 questions, il en reste 31 a résoudre. Les autres
sont résolues et imprimées ou bien en manuscrit et paraitront-en 1852.
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ERRATA.

TOME V. ( Quatriéme supplément.)
Page 7, ligne 5 en descendant, au lieu de 1,0079361, lises 1,0079368.
Page 7, ligne 6 en descendant, au lieu'de o 0000004, lisez 0,0000003 ;
I’erreur est en moins. i
5 FES
Page 7, ligne 11 en descendant, au lieu de ( E) ’ lisex~€§-) .

Page 7, ligne 7 en remontant, aprés méthode, ajoutez d’extraction des
racines.

TOME VII. ( Troisiéme supplément.)

. . . [ b
Page 277, ligne 10 en reméntant, au lieu de -, lisez —

S
Page 278, ligne 1 en descendant, au lieu de — 4 bf, lisez — 2 b 1.

Page 278, ligne 3 en'descendant, au licude — 4 b f, lisez — 2} /.

TOME IX. ( Premier supplément.)

Page 74, ligne 1 en descendant, au lieu de par le produit, etc , lisez

par le quotient du plus simple multiple n de ces dénominateurs par le
dénominateur correspondant, on obtient, etc.

Page 110, derniére ligne, au lieu de a T, lisez a;: 2.

Page 111, ligne 6 en descendant, au lieu de (xm—x)"'+"_
(x—1 .

Page 111, avant-derniére ligne, au lieu de moyen, lisez majeur

Page 114, ligne 17 en descendant, au lieu de «, lisez 2

Page 11}, ligne 19 en descendant, au lieu de S ™"

', lisez

, lisez Sz ™!,

TOME X.

Page 81, ligne 15, au licu de sont donc en méme temps pairs ou im-
pairs, lisez qui doivent étre en méme temps pairs et impairs, sont donc
tous les deux pairs.

Page 82, ligne 7 en remontant, au lieu de hq*, lisez [ 9*.

Page 83, lignes 1 et 2, au licu de q et ¢*, lisez p et p*.
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Page 83, lignes 3 et 4, au lieu de pair ou impair comme %, lises si g est
pair, et un diviseur } g*(p* + 4 ¢*), si g est impair.
Page 176, ligne 28, au lieu de 303502, lises 532510054445033004
-Page 177, ligne 22, au lieu de 1142, lisez 168053879.
Page 177, ligne 22, au lieu de 287, lisez 89710526,
Page 177, ligne 24, au lieu de trop fortes, lises I'une trop forte,
Yautre trop faible.
" Page 179, ligne 29, au lieu dc 841, lisez 8415.
Page 180, ligne 4, au lieu de 3491, lises 0337.
Page 180, ligne 4, au lieu de 3035, lises 0325.
Page 180, ligne 6, au liew de 3035, lisez 5325.
Page 189, ligne 12, au lieu de 244808, lisez 245808.
Page lignes 13, 15 et 17, au lieu de 136, lisez 201.
Page 180, ligne 15, au lieu de 4,2483, lisez 0,42483.
Page 180, ligne 17, au lieu de 114, lises 168.
Page 180, ligne 22, au lieu de + 0,0000234, lisez — 0,00004056.
Page 180, ligne 24, au lieu de 3,513, lises 0,3513.
Page 180, ligne 24, au licu de + 0,234, lisez — 0,4056.
Page 180, ligne 26, au lieu de — 0,001713, lisez + 0,002971.
Page 180, ligne 26, au lieu de 4287, lisez 8971.
Page 182, ligne 14, au lieu de | S lisez P

2 2
ds
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2
Page 418, ligne 6, au licu de ‘-’d—:, lLises
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