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ANALYTIC THEORY OF NON-LINEAR SINGULAR
DIFFERENTIAL EQUATIONS

By W. J. TRJITZINSKY,

Professor at the University of Illinois (U. S. A.).

——> Q) G————

Introduction. — In this work we consider the non-linear diffe-
rential equation of order n

(A) zryW(z)=afz,y, yN, ..., y"=8)  (p a positive integer),

where

0

() al@, p, 0,0 = D gt (@) gy et

oyeeeyln—120

[@...0 (%) =0], the a,_, (o) are analytic for [z |<r and the series
involved in the second member of (1) converges for

(1a) lz|Sry,  1yL 1y .. lyr <o (1)

Our present object is to investigate the character of solutions
of (A) in the neighborhood of the singular point z=o. This

(') Without any loss of generality it may be assumed that not all the numbers
ay..i,—,(0) are zero. In fact, if the contrary were the case p could be diminished.
Throughout the paper, whenever a statement is made that a power series converges
in a closed circular region, it *will be understood that the radius of the involved
circle is sufficiently smallso that the function represented by the series is analytic
at every point of the region. That is, all such statements are made for sufficiently
small circles. A similar remark 1s made concerning power series in several variables.
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investigation will be given in the complex plane of the variable z.
Only those solutions will be considered which vanish at z =o (*).
It will be convenienl to write (A) in the form

(A1) zPy)(z) —ai(x, y, W, L, y=)y = as(a, y, yU, coey ylat)),

where a, (z, y, ), ..., yi»=1) is the parl of the second member
of (A) linear in y, ¥y, ..., y(»=1), Accordingly, a.(z, ¥, ¥y, ...,
yn=1) is represented by a sum like (1) with ¢o+4~. ..+ i,_;2> 2. Inthe
special instance when the second member of (A,) is identically zero
there is at hand a linear homogeneons differential equation of order r

(Az2) zPy ™ (2) —ai(z, ¥, yM, ooy ynt) =0

which at # = o possesses a singular point (regular or irregular).
Essenlially complete developments of the theory of such equations,
inasmuch as they relate 1o the properties of solutions in the
neighborhood of the singular point, have been recently given by
W. J. Trjitzinsky [cf. [19 a], in the sequel referred to as (T,); also,
[19 8] which will be referred to as (T,)]. Since some of these results
will be needed in the present work it will be assumed that the reader
is acquainted with the developments just referred to.

The equation (A,) possesses n linearly independent formal solu-
tions (?)

@ { si(z) = eb¥ pho,(2)
[Q:(«) polynomial in z—1/%:; integer o;21; i =1, ..., r),
where
(2a) ei(z) = o0i(2) +10:i(x) logx +.. .4 m0i(z) logniz,
with
= ha
(28) @)=Y e (=0, 1, .., m).
v=0

Let R denote any one of the aggregate of regions (extending to
z = 0) corresponding to which, according to (T,), (A,) possesses
a set of 7 linearly independent solutions y;(z), analytic in R( 5 o)

.
(') The trivial solution ¥ = o is to be disregarded of course.
(2) That is, the power series involved in these solutions may diverge for all
2(# o).
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and such that

(3) yi(z)~si(z) (i=1,...,n;zin R).

If nothing is said regarding the number of terms to which an
asymptotic relationship holds, such a relalionship will be understood
to be in the ordinary sense (that is, to infinitely many terms). A rela-
tion (3) signifies that y;(z) is a cerlain function which can be obtai-
ned by replacing in s;(z) the formal series ,o:(x) [cf. (2 b)] by
certain functions, analytic in R(2 5% o) and correspondingly asymp-
totic to the joi(2) when « is in R.

In treating the case when n2 2 it will be assumed that not all
the polynomials Q;(z), involved in the formal series (2), are
identically zero.

In the theory of differential equations (and in the fields of certain
other important types of equations) the study of the behaviour of
solutions in the neighborhood of a singular point can be best effected
on the basis of suitable formal series solutions (the formal series in
general involve divergent series). By some analytic process ¢ actual ”
solutions are found which are functions related in one way or another
to the formal solutions. In this connection outslanding are (1) the
methods based on what essentially amounts to ‘¢ exponential summa-
bility "’ of the formal solutions (this involves factorial series and
Laplace integrals leading to expressions involving convergent factorial
series) and (2) the asymptotic methods. At the basis of the methods
of the first type to a large exlentlie certain fundamental developments
due to N. Nérlund [15]. Whenever methods (1) are applicable the
results are superior to those derived by asymptotic methods. Now,
as pointed out in (T,;), an equation (A,) may possess formal solu-
tions to which methods (1) are not applicable. The equation (A.),
however, constitutes a special case of (A;). Consequently, whith the
problem formulated as above, it is observed that asymptotic methods

are to be employed in so far as the general problem on and is con-
cerned.

It is essential to note that, generally speaking, a differential
system of the form

(I) %:a,(x,yi, cees Yn) (i=1,...,n)
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is in a certain sense equivalent to a single ordinary differential
equation of finite order. In fact, let ¢o=go(2, ¥4, ..., yn) be an
arbitrary function of the displayed variables. On writing

(11) Y =20(2, Y1, «vry ¥n),

by successive differentiations and at each step using the relations of
the given differential system we obtain certain expressions

av
(=) =@y oy =01, 0.

With a suitable choice of the function ¢, the Jacobian of the o,
(v=0,1, ..., n—1), with respect to ¥y, ..., ¥, willnot vanish in
some domain (@ of the complex variables z, yi, ..., yn. It is then
possible to solve the first n equations y™¥)' = ¢, for y,, ..., ¥n,

(IIT) yi=gl(z, ¥, yW, ..., yln—1)) (i=1, ..., n).

Substituting (III) in the relation y™) = @,(z, ¥, . .., ¥n) one obtains
an equation of the form

(Iv) yn = g(z, y, yV, ..., yr—1).

Here the second member depends on the a, of (I) and on the choice
of ¢,. It is clear that, subject to the condition that the Jacobian men-
tioned above should not vanish in a suitable domain @, the function
@o must be chosen as ‘¢ simple "’ as possible in order to avoid those
difficulties which intrinsically do not belong to the given problem.
The solutions of (1) are seen to be expressible with the aid of (11I)
in terms of a solution of (IV).

In the present work we shall not go any further in the study of the
connection hetween a system (I) and an equation (IV).

Some facts of interest will be pointed out. Suppose the systewn (I)
has a singular point at # = . Then one can form the corresponding
single equation (IV) so that the latter will posses at # = o a singular
point of essentially the same type. The parlicular very important case
of (1), namely when the system is of ageneral type occuring in dyna-
mics (x in the a, absent; the a; analytic in y4, ..., ¥, at

Y=..=yn=0;

the a;=o for y, =...=y,=0) leads one to a single equation (IV)



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. 5

with the following property. If in g only the part linear in y,
yU, ..., y—)is retained, there is on hand an ordinary linear diffe-
rential equation which at 2 = has an irregular singular point
generally of rank one. Analogous statements can be made when (I)
is of a more general or different type. For instance, the @; may be
periodic in z, or the system (I) may be of the type considered in the
highly significant researches of Bohl [4], Cotton [7] and Perron
[16].

If we fix our attention on that very important tradition in the
investigation of general problems of dynamics which goes back to
the famous memoirs of Liapounoff [12] and Poincaré [18] and is
receiving its culminating development in the profound investigalions
of Birkhoff [3], we observe that it is possible to carry out the deve-
lopments which are of a purely analytic character (in the small) with
the aid of a corresponding equation (IV), provided a suitable ana-
lytic theory of the latter equation has been developed.

In alater word the present author intends to present developments
of the character just mentioned.

We note that equation (A) does not contain as a special case the
equation (1V) corresponding to a system of dynamical type (whether
following Birkhoff. Liapounoff and Poincaré or Bohl, Cotton and
Perron). In fact, the present work is not concerned directly with
any dynamical aspects of the theory of differential equations.
However, there is no doubt that, with suitable modifications, ana-
lytic methods of the type presented in the subsequent pages are
adequate for the treatment of micro-analytic difjerential pro-
blems of dynamical character. This circumstance adds to the signi-
ficance of the present work.

The mnethods of the present author on the whole do nol follow any
of the earlier patterns. These methods consistin part of the following,
The problem (A) is resolved into a succession of linear problems.
each with a singular point at x = o. These problems are treated
by asymptotic methods with the aid of some earlier results due to
Trjitzinsky [19]). This is followed by a corresponding transfor-
mation. Finally, by a certain limiting process the transformed
equation is shown to possess certain suitable solutions.

First we shall treat the case of the problem (A) when n=1.
Then (2) will consist of a single convergent series (not involving
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logarithms). There will be only one polynomial Q(z). When n=1
it will not be neccessarily required that Q(z) should be distinct
Jrom zero. The main result for this case is given in the Ezxistence
Theorem I(§6). The treatment of the first order problem is followed
by that of the general n-th order problem (7 >2). The main result in
this connection is embodied in the Existence Theorem II (§ 10).
The reason, for the separate treatment of the two cases is that when
n =1 results can be obtained which are more specific than those for
the higher order problem. Moreover, in developing the first order
case one can take advantage of certain previously established results
due to Horn [9], Picard [17] and Poincaré [18]. The higher order
problem is treated in sections 7, 8, g, 10.

- When rn =1 equation (A) will be written in the form

(B) mk+1y(i)(x)=a(x,y)=z ay(z)yY,

v=1

(5-) av(x) =Zav,zwl (V =1, 2, ...).

Tt will be assumed that the series here involved converge for
(ba) lz|sr, |yl<e.

For the case when in (B) the integer 4 is zero essentially complete
results have been obtained previously. Accordingly, in treating
this equation it will be assumed that k > o. With k > o the deve-
lopments of Horn [9] would apply only of a,,054 0. We impose no
restrictions on a, .

Problem (B) falls in the following two cases.

Case I. — In (B) we have not all of the numbers

(6) Qay oy ai,i) veey a1'k_1
zéro. Thus
(6“) a\l’o=a,’,=...=a,,z_,=o, ul,[;éo (Oglgk-l)‘,

Case I, — In (B) all the numbers (6) are zero.

In any case without any loss of generality it may be assumed
that in (B)

(7) 0= ARt = B k+2 =100



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. 7
In fact, the transformation

(8) y(z)=g(z)y(x),

where

f (@, k411, k-2 X 40 00)d
(8a) g(z)=1+ g1x + gra?+...=¢€"*

will yield the equation

(ﬁ) xk+1;(1)(x)=;(z, .;) =2;v('”);v:
v=1

in which

(9) a1 (2) = ay,g+ AT +. . . ay k2K,

(92)  ay(@)=ay(2)g () = N aviat  (v=2,3, )

1=0

the series involved in(B) and (9 @) being convergent for |z |<r,
|l [<e-

2. Formal solution (case I). — Functions y,(2)(j=1, 2, ...)
will be determined so that the formal series

(1) s(z) =2 yi(z)e (c an arbitrary constant).
]1=1

will formally satisfy (B). We note that

(2) #(@) =X, wi(@)e (@) =ofor j <),
J=1

where for j2v2>2

(0) 271(@) = 3, (@) Pra()-. Fna(2)

(Pi+ marovo ny=J; 1SR4, oy o0y, RySF—1).

When v22 the inequalities n,, ns, ..., nySj—1 will necessarily
hold in view of the following considerations. Suppose one of the
numbers 74, n,. ..., ny, say n,, is 2j then, since n, +n.4...4+n,
has more than one term (each being not less than unity). we would
have 7y +. ..+ ny2j + 1. Thus a contradiction would result.
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On substituting (1) in (B) and on using (2) it follows that
(3) ak+tst)(z) — a[z, s(2)] =2 [#k+1y}" (@) — a1 (@) g, () — W, (2)] ¢/ = 0.
J=1
Thus, the y;(«) (j21) are to satisfy Lhe equations
(4) akriy (@) —ay(2)y,(2) =W/ (z) (j=1,2...)
where ¢, (z)=o and, for j =2, 3, ...,

(4a) Wi(z)=")(2, Yo, --+s ¥j—1)

/ ]
=Y au(@) vy (2) = 2, a(@) X, In(®) y (@) - yn(2)

(ni=+e..+ny=j5;18n, ..., S j—1).
Accordingly, for j =1, (4) will yield

f% () x—k—1dx

(%) ri(z)=t(z)=e = e9(@) gas k
where

(6) g(z)= qrz—*—0+. .  +qia—,
(6a) qv =—$a1,k_.v v=r1,2,k—1),
(60) g1 # © (k—121).

Thus, in Case 1, the polynomial g(2) is not identically zero.

Derinimon 1. — Let R(ry), where o <r,<r, denote a region
satisfying the following conditions.

1° The boundary of R(r,) consists of an arc of the circle
|#| =ro and of curves B, B, (each with a limiting direction at
the origin) extending from the extremities of this arc to the
origin. Except at the origin B, and B, have no points in common.

2° The real partof q(z)[cf. (6), (6 a), (6 b)] does not vanish

interior B(r,); moreover.

(7) e7(x)~ o [ in R(7)].

3° When z is in R(r,) every u on the rectilinear segment (o, z)
isin R(ry).
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4° When z is in R(ry) and u is on the rectilinear segment (o, x)
the upper bound of

(7a) [e(u)u—t—t]  [ef. (5)]
is attained at x.

It will be shown that in the Case I regions satisfying the above
definition always exist. On writing

u=peV—19,  gi=Llg, (i=1,...,k=1),

b=arp—k—1=b+ =10,
it follows that

(78) G(p, 0) =log| t(u)u—t1|
= qi—t| p~=0 cos[(k — 1)8 — gr—t] +...

“+|q1]p? cos( 6 — 71_1)+ b'logp — b"0
and

aG —_
(70)  pige =— (k=) gr-t| g~k cos[(k— )0 —gr—t] +...
— | g1lptcos(0 —gy)+ b

‘With &(> o) a fixed number, however small, define sectors Wm(ro)
with the aid of the inequalities

1\ = qk 1
(7d) (2m+2)—k 7 +¢

k—1
Slzg (2m+ %) ch—l+ kq""l—s (m=o0, 1,:..; |2 |SreSry).
For uin Wy,(ry)
(7€) | gatlcos[(k— D0 —qrtls—F (<o),

where { is independent of u, and £ -0 when ¢ o. Thus, by (7 ¢)
and since (kK — )| gz—| > o, it is inferred that

P G =— (k=) | git | p=#=D cos[(k— )0 — ga_d] 1+ o(p, 0]

where | ¢(p, 6)|<1 for n in Wy (ro) (1o sufficiently small). Whence
on taking account of (7 b) it is concluded that

d%logl t(u)u=*t=1120  [uin Wn(ry)]
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Accordingly it is seen that W,,(r,) satisfies conditions 1°, 3°, 4°, of

Definition 1. Now

(0f) Rqw)=|gi]p~tk=Dcos|(k =10 —gr—s] +...+ | g1 | p~* cos (8 g1)
= | qa—t] p~*=Dcos[(k— )8 — gi—z] [1+ ' (p, 0)]

where, by (7€), |¢'(p, 8)|<1/2 for u in Wy (r,), provided ry is suf-
ficiently small. Rg (%) can not then vanish in W,,(r,). Moreover, by

(7f) and (7€)

|eq(@) |<e— p—(k=hE.[1+4-01 (p, 0)]5 e—p—(k=1 E/z,

whenever uis in W, (r,). Hence, in W, (r), (7) is satisfied. Thus it
has been shown that regions exist, for instance in the form of sec-
tors Wn(ro) [cf. (7 d)] which, when r, is sufficiently small,
satisfy all the conditions of Definition 1. With the aid of more
extended developments existence of more general regions, satisfying
Definition 1, can be established.

From (4) it follows that

(8) $2(2) = a:(2) yi(z) = 22(z) 92(2),

(8a) 7:(2) = as(2) = Y 922"

=v

the latter series being convergent for |2z |<r. On writing (4) in the

form
du

0 p@=@) [ ey gs =3, )
and on using (8) it is seen that

(10) (@) = () [ utte()o(w) du
= t(w)fmu—k—l""‘t:ke‘l(")Qg(u) du.
In consequence of the methods of asymplotic integration developed
in (T,) the following statement can be made.
Let
(11) Q(z)=QgzB+ Qg1a—B+...+ Q2! (Qp=o0; B21)
and let R be a region' of the type specified by Definition 1 [with



ANALYTIC THEORY OF NON-LINEAR SINGULAR DIFFERENTIAL EQUATIONS. I

q(z) = Q(=), and the conditions (4°) possibly omitted}|, Suppose
¢(z) s analytic in R(z 3 o) and

(11a) o(z) NE ozt (zmR).

Then the integral

(12) .o f uaeQulo(u) du
can be evaluated as a function of the form
(12a) za+f+ied® ()

where'{(Z) is analytic in R(x # o) and
(125) () ~2 Gt [« R; o=—/(BQp)]

With the above in view and on taking account of (6), (6 b) it si
concluded that the function y,(z) can be evaluated with the aid
of (10) as an expression of the form
(13) y:(x) = t(x)x—k—i—f-a‘,l’"k—l-!—i eq(x) -qz(z)

=z~ (2)n:(2);

here ny () is analytic in R(r) (# £ o) and

(13a) (@)~ N neazt [@in R(ro)] (1),
By (4) )
(14) $2(@) = ax(2) 271 (2) y2(@) + as(2) 1 (@).

Thus, in consequence of (5) and (13), (13 a),
(14a) $3(z) = z=13(2) 93(x)

where
03(2) = 2a:(2) N2(2) + as(2) 2!

(1) In the case corresponding to that treated by Horn we would have a,, o
and ! =o,
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is a function analytic in R(r), such that

(145) (z)~ Y ezt [@in R(r)].

Suppose now that

(15) { Frot (@) = & 00— () nyy (2),
by (z)=a U2 (2)9, () (v=2,..0,J—1) (!),
where the functions n,_,(z), ¢,(z) are analytic in R(7) (7 0) and
Ny—1 (2) NZ Ny—1,1 Tt
(15a) lio [zin R(r); v=12,3, ..., J—=1]s
) oy () NZ Qv X!

For « in R(r), e"9~o (m=1, 2, ...). Hence application of the
statement in italics, following (10), is possible to enable evaluation of
the integral

(16) .7’1-—1(w)=t(.z')f u—k—iq,l_i(u)_tzl_:)

Il

T
t(z) j u—k—1—U—=1t1=2 (1) 5,y () due

x
= t(z)f k=== —askel—2A9 o, 4 (u) du

= t(x ) 2—l—()=3) 1+ ()—2)as k () —2)q (x) Ny—1 (,1; )
= o=t (2,1 ()

where n,—; (#) is analytic in R(r) (2 3£ 0) and

(16a) n,—1 () ~2 N2t [z in R(r)].

i=0

With the aid of (15), (15 a) (16), (16 a) it follows from (4) that

J

(17) ¢, (=) =2 av(x)z a—(n1)i—{ma—t)l= —(n =) gytnptotn( z)

v=2

X N (2) Ny (2)e oM, () [Ra+o-ny=7; 1S04, vory nySf—1].

(1) For the present it 1s assumed that ; 1s a fixed integer 2 3.
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Thus
]
17a)  4(@) =, av(@)a= 8% t1(2) Y, 10, (2) 10y ().« (@)

== (x) ¢, (),
whete

J
(175) % (2) =v§av<w)zw—ﬂ12 g (2)-w. ()

(rm+...4+ny=7j5;18ny, ..., ny$j—1).

Manifestly ¢, () is analytic in R(r) (z 7 0); moreover,

(17¢) 2(@)~ Y e [oinR(r)]
Lemma 1. — Consider Case I (§ 1) of the equation (B) (§ 1),
(B) bty (2) = a(e, y) =Y, av(@) y*(2).

Let t(z) be defined by (5) and let R(r) be a region as specified
by Definition 1. Equation (B) possesses a formal solution,

(18) s(z‘)=2 y,(z)cl:Z 000t (@), (x)cl.

=1 ]j=1
Here c is an arbitrary constant, the n,(z) are functions analytic
in R(r) (z £ o), such that

(18a) n, () NEn,,,xl [j=1,2,...; zin R()],

1=0
m(x)=1; moreover, the n;,(z) are defined in succession with the
aid of the relations (9), (4)-

Whenever the series (18) converges, for z in a region
R(rg)o <1487

and for |c|<c, (¢, sufficiently small), it will represent an analytic
solution of (B); moreover, te above lemma would give detailed infor-
mation regarding the behaviour of this solution, for z in R(r), in

MEMORIAL DES S8C. MATH — N° 90, 2
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the vicinity of the singular point. When ! = o, convergence of (18)
follows from the developments of Horn in consequence of the consi-
deration of an equation

(B*) ki y ) (2) = a* (2, y*) = Y, a3 (2) 1™

v=1

which is of the same character as (B) but is so chosen that it has a
convergent formal series-solution of type (18); moreover, from the
convergence of this series convergence of the original series may be
inferred. Proceedings of this type appear to break dow for /> o.
However, it is of interest to observe that the equation

lt
(9 lzln p T =ai(l2),0)y"
dy*?
T =Bz =177

(o<|z|sr<r)

is ¢ dominant " with respect to (B) provided a, B, 1 are suitable
positive numbers and provided .

) at(|z], §) = R(ay, 12!+ ar, izt +.o+ ay g 2b1) + | 2 [k Ray,k
a
(19 (Ru = real part of u; § angle of z) (1).

This equation, as can be easily observed, is of the same type in | z |
as the equation (B), whenever o <<|2|<r,. It has a formal solution
(20) sz l) =Yl |) 5 (|2 )e,

J]=1

where ¢* is an arbitrary posilive constant and
|| .
(20a) t(lz))=e(2], ) =ef Izi-tatdzLbalz

The following can be /demonstrated. The =) (|z|) are analytic in |z |
for o <|z|<ry <r; moreover, they are positive and

(208) (@)~ Dzl [o<|z|Sromi(e))=1;7=23 ...],

1=0

(*) When [ = o (Horn’s case) it is possible to simplify (19 a) by letting a} = Ra, .
In the general case, however, in (19 @) the numbers a,,,,, ..., a, ; cannot be repla-
eed by zero.
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provided (as is assumed throughout) that ¢ is allowed to assume only
the values of the angle of z, when z is restricted to the region
R(ro) (*).

Furthermore, there exists a constant 0, independent of z and ¢,
such that the functions n,(2) occurring in Lemma I, satisfy the ine-
qualities

(21) nj(2) | <ninj(lz]) (J=23,...;¢=Lx)
for z in R(r,).

Thus, whenever the formal solution (20), of (19), converges for
o < |z|SroSr (¢ restricted as in the statement following (200b)],
the formalsolution (18)of (B) will converge for z inR(ro)(o < ro<r)
and for | c|Sco(ro or co sufficiently small).

When the series (20) diverges the « dominant » equation (19) is
still useful, as with the aid of the ine qualities (21) and in consequence
of the special form of (19) it is always possible 1o obtain cerlain ine-
qualities for the absolute values of the n;(«) occurring in (18) (?).
But inasmuch as construction of an « actual » solution is concerned
we shall have to employ certain asymptotic methods (¢f. § 4, 6 below).

3. A transformation (Case I). — Let n be a positive integer. In
the transformation

(™ (@) = Yna(2, ¢) +c*pn(2, ¢)

let

(ta) Yal@, o)=Y pj@e  [pj(@) =y;(@); j=1, ..., n—1; ¢ (18),§2],
J=1

pn(z, ¢) will be a new variable. As a matter of convenience we shall

write

@) { pi(z)=y;(z) (j=1,2, ..., n—1);
pj($)=o (j=n,n,+l,....).

(1) § (=angle of z) plays the role of a parameter of the equation (19).
(%) For the present these details will be omitted.
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Before applying (1) to the equation (B) the function
3) Fu(z, ¢) = ot Y1) (2, ¢) — a(z, Ya)

will be first considered in some detail.

One taking account of (2)itis noted that F,(, ¢) can be expressed
in powers of ¢ by means of an expression analogous to that involved in
the second member of (3; § 2),

(4) Fa(z, c)si [wk+16(0(2) — as(@) p;(#) — ¥ (@) ] e/
here =

(4a) V(@) =4j(@, poy -y pj=1)  [cf. (4a), § 2].

In consequence of (2) and (4@) by (4; § 2) it follows that

ah+t o(z) — ay(x) pj(2) — bj ()

(5) = @b+t i (2) — au(2)y) (@) — 4y () = 0
(j=1,2, ..., n—1);
(5a) ztt ol (2) — ay(2) pr(@) — Yn(2) =— Y (2);
(55) {xkﬂ p(2) — as(2) pj(2) — §j(2) =— ¥, ()
(J=n+1,n+2,...).

The §;(z) are known functions given by relations of the type of (17 a;
§ 2). Thus

(6) Yi(z)=z-U-0d(z)3;(2) (j=n,n=+1,...),

where the ¢;(z) are analytic in R(r) ( £ 0) and
(6a) Gi(@)~ X piaat [inR(r); 2a(2) = pa()].

This follows from the fact that the ¢;(z) are the same functions of
the n;(z) [the n;(z) are the counterpart of the n;(z) of § 2] as the
¢,(z) are of the n;(z). while n;(z) =ni(z) ({=1, 2, ..., n —1) and
ni(z) =o(i=n, n+1,...). Hence by virtue of (5), (3a), (5b)
and (6), on writing

(7) ezl t(z) =1(2),
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it follows that
(8) —Fa(@, o) = a2 ¥ 5,(2)v ()  [ef. (6a)].

j=n

The series in the second member of (8) converges for |¢|<¢,. # in
R(ro) (o <rySr; ¢ or ry sufficiently small).

Substituting (1) in (B) we get
(9) 2k [Y{(, ¢) + crpll) (@, ¢)]

=a(z, Yo+crtop)=a(x, Yn)+a(z)con—+ as(z)c2pd +.. ,

where
(9a) am(2) = % gi“%ﬁ,—fn"'&]v:vn
=an(x) +2’° CL™ arem(2) Yy (2, ¢)
=1
On writing =an(z)+ Bn(z, ¢) '(m=1, 2y 00l)e
(10) crpon(z, ¢) = zltn(z) 3(2, c)

and on observing that

(@) —1  tw(e) —1
@) - w T ey~ T als)

(10a)

it is concluded that
(108) cnpi) (2, c)
= zltn(z) [(—l -+ nﬂ“(x)) z(z, ¢) + z3()(z, c)]

x t(z)

=zl (zx) [<— (n— I);i- + ng—k-1 a1(a:)> z(z, ¢) + 3\l (z, c)].
In consequence of (10), (10b), (3) and (8) from (9) we obtain
zl+EHL T (g) [(— (n—1) é + na—k—1 ai(x)> z(z, ¢)+ s (z, c)]

= 22 (2) 3|3, (2) T=1(2) + a (@) 2t 5(@) 3(@, c)
J2n
“+ as(z)x2 i (2) 22 (2, €) +. ..,

so that,

(11) zW(2, ¢) = a(z) + ¢'(2) 2(, ¢) + T[z, z(=, ¢)].







