Étude des fonctions quasi-stationnaires et de leurs applications aux équations différentielles opérationnelles

Mémoires de la S. M. F., tome 6 (1966)

<http://www.numdam.org/item?id=MSMF_1966__6__3_0>
ÉTUDE DES FONCTIONS QUASI-STATIONNAIRES
ET DE ßEURS APPLICATIONS AUX ÉQUATIONS DIFFÉRENTIELLES OPÉRATIONNELLES,
par VO-KHAC Khoan (*)

TABLE DES MATIÈRES

<table>
<thead>
<tr>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION - RÉSUMÉ</td>
</tr>
<tr>
<td>PARTIE A - FONCTIONS QUASI-STATIONNAIRES</td>
</tr>
<tr>
<td>CHAPITRE A1 - ESPACES DE BESICOVITCH-MARCINKIEWICZ</td>
</tr>
<tr>
<td>CONTINUITÉ - CONVOLUTION</td>
</tr>
<tr>
<td>Le groupe \mathbb{G}^p</td>
</tr>
<tr>
<td>Espaces $\mathcal{M}^p(\mathbb{G}^p; x)$ de Besicovitch-Marcinkiewicz</td>
</tr>
<tr>
<td>Fonctions \mathcal{M}^p-continues</td>
</tr>
<tr>
<td>Convolutions des \mathcal{M}^p-fonctions</td>
</tr>
<tr>
<td>CHAPITRE A2 - ERGODICITE ET PRESQUE-PÉRIODICITÉ</td>
</tr>
<tr>
<td>Semi-groupe ergodique</td>
</tr>
<tr>
<td>Ergodicité et ergodicité totale</td>
</tr>
<tr>
<td>Presque-périodicité faible et forte</td>
</tr>
<tr>
<td>Approximation des éléments presque-périodiques</td>
</tr>
<tr>
<td>Applications aux espaces $\mathcal{M}^p(\mathbb{G}^p; x)$</td>
</tr>
<tr>
<td>Résultats spéciaux</td>
</tr>
<tr>
<td>CHAPITRE A3 - MOYENRABILITÉ ET COMPARABILITÉ</td>
</tr>
<tr>
<td>Fonctions \mathcal{M}^p-régulières</td>
</tr>
<tr>
<td>Fonctions moyennables</td>
</tr>
<tr>
<td>Comparabilité par duality - Corrélation</td>
</tr>
<tr>
<td>Espaces $\mathcal{S}^p(\mathbb{G}^p; x)$</td>
</tr>
<tr>
<td>Espace $\mathcal{S}(\mathbb{G}^p; H)$ de Bass</td>
</tr>
<tr>
<td>CHAPITRE A4 - FONCTIONS QUASI-STATIONNAIRES</td>
</tr>
<tr>
<td>Propriétés élémentaires</td>
</tr>
<tr>
<td>Analyse spectrale énergétique - Applications</td>
</tr>
<tr>
<td>Analyse spectrale élémentaire</td>
</tr>
<tr>
<td>Fonctions stationnaires</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Titre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>A5</td>
<td>Fonctions 1-quasi-stationnaires</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Propriétés élémentaires</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Représentation spectrale</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td>Fonctions 1-quasi-stationnaires dans \mathbb{C}^n</td>
<td>56</td>
</tr>
<tr>
<td>A6</td>
<td>Fonctions complètement quasi-stationnaires</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Applications multilinéaires bornées</td>
<td>58</td>
</tr>
<tr>
<td></td>
<td>Fonctions complètement quasi-stationnaires</td>
<td>59</td>
</tr>
<tr>
<td></td>
<td>Fonctions complètement quasi-stationnaires dans \mathbb{C}^n</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Opérateurs quasi-stationnaires</td>
<td>64</td>
</tr>
<tr>
<td>A7</td>
<td>Fonctions scalairement quasi-stationnaires</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Fonctions scalairement quasi-stationnaires dans un Banach</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>Fonctions scalairement quasi-stationnaires dans un Hilbert</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>Problèmes non linéaires</td>
<td>70</td>
</tr>
<tr>
<td>A8</td>
<td>Constructions de fonctions complètement pseudo-aléatoires</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Corrélations multiples - Lemme fondamental</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>Suites équiréparties</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>Théorèmes fondamentaux</td>
<td>77</td>
</tr>
<tr>
<td></td>
<td>Un théorème d'existence presque sûre</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>Nombres normaux</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Polynômes de Weyl</td>
<td>82</td>
</tr>
</tbody>
</table>

--- PARTIE B - Solutions quasi-stationnaires des équations différentielles opérationnelles ---

<table>
<thead>
<tr>
<th>Chapitre</th>
<th>Titre</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>B0</td>
<td>Rappel de quelques résultats de la partie A</td>
<td>86</td>
</tr>
<tr>
<td>B1</td>
<td>Étude de la \mathcal{M}^a-derivation</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>\mathcal{M}^a-dérivée (forte) d'une \mathcal{M}^a-fonction</td>
<td>93</td>
</tr>
<tr>
<td></td>
<td>Espace de Wiener des fonctions indéfiniment \mathcal{M}^a-dérivables</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>Dérivation des \mathcal{M}^a-distributions</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>\mathcal{M}^a-dérivée faible d'une \mathcal{M}^a-fonction</td>
<td>102</td>
</tr>
<tr>
<td>B2</td>
<td>Solutions quasi-stationnaires d'un système différentiel</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Solutions quasi-stationnaires d'un système différentiel linéaire</td>
<td>104</td>
</tr>
<tr>
<td></td>
<td>Solutions quasi-stationnaires d'un système différentiel non linéaire</td>
<td>107</td>
</tr>
<tr>
<td></td>
<td>Applications</td>
<td>109</td>
</tr>
<tr>
<td>Chapitre</td>
<td>Titre</td>
<td>Pages</td>
</tr>
<tr>
<td>----------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>B3</td>
<td>Solutions faibles et quasi-stationnaires d'équations différentielles opérationnelles linéaires</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Données du problème</td>
<td>113</td>
</tr>
<tr>
<td></td>
<td>Le problème B3</td>
<td>114</td>
</tr>
<tr>
<td></td>
<td>Théorème d'unicité</td>
<td>115</td>
</tr>
<tr>
<td></td>
<td>Théorème d'existence</td>
<td>116</td>
</tr>
<tr>
<td></td>
<td>Approximation par la méthode des différences finies</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>Méthode constructive de Galerkine (approximation par projection)</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>Régularisation elliptique (méthode de perturbation)</td>
<td>120</td>
</tr>
<tr>
<td></td>
<td>\mathcal{H}^2-dérivabilité de la solution</td>
<td>122</td>
</tr>
<tr>
<td></td>
<td>Interprétation du problème B3</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>Méthode reposant sur l'analyse spectrale</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>Exemples</td>
<td>127</td>
</tr>
<tr>
<td>B4</td>
<td>Solutions faibles et quasi-stationnaires d'équations différentielles opérationnelles non linéaires</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Données du problème</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Le problème B4</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Théorème d'unicité</td>
<td>129</td>
</tr>
<tr>
<td></td>
<td>Transformation du problème - Théorème d'existence</td>
<td>130</td>
</tr>
<tr>
<td></td>
<td>Théorème d'existence par la méthode de Galerkine</td>
<td>131</td>
</tr>
<tr>
<td></td>
<td>Remarque importante</td>
<td>134</td>
</tr>
<tr>
<td>B5</td>
<td>Solutions fortes et quasi-stationnaires d'équations différentielles opérationnelles linéaires</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Données du problème</td>
<td>135</td>
</tr>
<tr>
<td></td>
<td>Position du problème</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Théorème d'unicité</td>
<td>136</td>
</tr>
<tr>
<td></td>
<td>Lemmes fondamentaux</td>
<td>137</td>
</tr>
<tr>
<td></td>
<td>Propriétés de la solution</td>
<td>139</td>
</tr>
<tr>
<td></td>
<td>Existence de la solution</td>
<td>139</td>
</tr>
<tr>
<td>B6</td>
<td>Solutions fortes et quasi-stationnaires d'équations différentielles opérationnelles non linéaires</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Données du problème</td>
<td>141</td>
</tr>
<tr>
<td></td>
<td>Position du problème</td>
<td>142</td>
</tr>
<tr>
<td></td>
<td>Théorème d'unicité</td>
<td>143</td>
</tr>
<tr>
<td></td>
<td>Deux lemmes</td>
<td>144</td>
</tr>
<tr>
<td></td>
<td>Théorème d'existence</td>
<td>144</td>
</tr>
</tbody>
</table>
CHAPITRE B7 - APPLICATION À L'HYDRODYNAMIQUE

Introduction ... 148
Espaces de Sobolev ... 150
Décomposition de l'espace \(\mathcal{H}^0(\Omega) \) ... 152
Prolongement de l'opérateur de Laplace ... 152
Etude d'un opérateur non linéaire ... 154
Application au système de Navier-Stokes ... 156
Conclusion ... 160

INDEX DES NOTATIONS ... 162

BIBLIOGRAPHIE ... 173
Le point de départ de ce travail est la théorie des fonctions pseudo-aléatoires de J. Bass dont les idées essentielles se trouvent résumées dans le fascicule 153 du Mémorial des Sciences Mathématiques (cf. J. Bass [21]).

Il arrive fréquemment en Physique que, en partant de données expérimentales bien simples, on obtienne des phénomènes de structure compliquée. De tels phénomènes se rencontrent par exemple en Électricité (courant responsable du "bruit de fond"), en Mécanique ondulatoire (fonctions d'onde non stationnaires) et surtout en Hydrodynamique et en Aérodynamique (turbulence). Le dispositif expérimental employé est construit de telle sorte que le phénomène reçoive une quantité d'énergie proportionnelle au temps et soit permanent à grande échelle. Mais, à échelle fine, il n'est pas absolument permanent, et présente dans le détail des oscillations très irrégulières qui, bien que relativement petites, jouent un rôle essentiel.

Le problème mathématique qui se pose alors est celui de l'étude de fonctions $f(t)$ du temps, permanentes en moyenne, mais compliquées dans le détail. Comment peut-on essayer de représenter de telles fonctions ?

La méthode "naturelle" à laquelle il faut penser est celle de l'analyse harmonique, dont l'objet est de représenter la fonction $f(t)$ par superposition de fonctions circulaires de périodes et d'amplitudes diverses. Cette superposition consiste mathématiquement en une intégrale de Fourier-Stieljes relative à une mesure μ. Mais l'intégrale de Fourier-Stieljes classique n'a qu'un champ d'application limité. Elle est valable seulement dans deux cas :

- phénomène à autocorrélation temporelle identiquement nulle (c'est-à-dire phénomène amorti dans le temps) si μ est une mesure continue,

- phénomène à forte autocorrélation temporelle si μ est une mesure discrète (ce dernier cas est celui de la série de Fourier généralisée dont la somme est une fonction presque-périodique).

L'analyse harmonique classique laisse donc échapper toute une classe importante de phénomènes naturels : les phénomènes à faible autocorrélation, ceux pour lesquels ce qui se passe dans le détail à l'instant t n'a pratiquement pas d'influence sur ce qui se passe à un instant ultérieur suffisamment éloigné.

A défaut de bonnes représentations purement analytiques, on a fait appel au calcul des probabilités et aux fonctions aléatoires. Le rôle fondamental joué par diverses moyennes est une justification a priori de l'intérêt de ces méthodes. On considère alors la fonction $f(t)$ comme le résultat d'une épreuve sur une fonction aléatoire stationnaire et, par le jeu d'un "principe ergodique", on interprète les moyennes temporelles comme des moyennes stochastiques. Ce mode de représentation est excellent.
en principe et permet un maniement commode des moyennes. Il est aussi bien adapté aux phénomènes à forte autocorrélation qu'aux phénomènes à faible autocorrélation. Mais il ne donne pas en général d'indications bien précises sur les propriétés de la fonction \(f(t) \) elle-même. Ces propriétés sont essentielles lorsque \(f(t) \) est assujettie à vérifier une équation fonctionnelle, ce qui est le plus souvent le cas. En outre, surtout s'il s'agit d'une équation fonctionnelle non linéaire, la représentation de \(f(t) \) par une fonction aléatoire est parfois tout à fait inefficace.

Le problème se pose donc de donner une image directe des fonctions \(f(t) \) ayant les propriétés qualitatives suivantes : ce sont des fonctions du temps qui représentent un phénomène permanent à grande échelle, qui varient d'une façon irrégulière, en subissant des oscillations nombreuses, non périodiques, qui possèdent une autocorrélation faible (mais non identiquement nulle).

L'ensemble de ces propriétés a conduit J. BASSE à définir un type de fonctions auxquelles il a donné le nom de fonctions pseudo-aléatoires.

Une fonction pseudo-aléatoire, au sens de J. BASSE [1], [2], [3], est une fonction \(f(t) \) complexe, bornée et nulle pour \(t < 0 \), dont la fonction d'autocorrélation

\[
\gamma_h(k) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f(t, h) f(t, k) \, dt
\]

existe, est continue, n'est pas nulle pour \(k = 0 \) et tend vers zéro lorsque \(h \to \infty \).

Les fonctions pseudo-aléatoires ont été étudiées avec assez de détail, on en connaît de nombreuses propriétés et on en construit des classes très larges (cf. J. BASSE [1], [2], [3], [4], J.P. BERTRANDIAS [2], [3], M. MENDES-FRANCE [1], [2], VO-KHAC KHOAN [1]).

Un inconvénient des fonctions pseudo-aléatoires (ainsi définies) est qu'elles ne forment pas un espace vectoriel, et l'espace vectoriel naturel dans lequel on peut les placer (espace \(\mathbb{C}^a \) de Besicovitch-Varcinkiewicz) est trop grand pour donner des résultats précis. Un des buts principaux de la thèse de J.P. BERTRANDIAS [1] est de trouver des sous-espaces vectoriels de l'espace \(\mathbb{C}^a \) mieux adaptés, permettant une étude plus facile de ces fonctions. Ces résultats précieux sont, en un certain sens, cependant insuffisants, surtout pour l'application aux équations différentielles opérationnelles et aux problèmes non linéaires.

Au lieu de plonger l'ensemble des fonctions pseudo-aléatoires dans un espace vectoriel plus grand, comme l'a fait J.P. BERTRANDIAS, nous cherchons au contraire des sous-espaces vectoriels de l'espace des fonctions pseudo-aléatoires (comme l'a amorcé J. BASSE [2], [3]), et nous généralisons cette étude en vue des problèmes non linéaires.

Ce travail se compose de deux parties :

Dans la première partie, on étudie les propriétés d'une certaine classe de fonctions, que je nomme fonctions quasi-stationnaires. Ces fonctions englobent les fonctions pseudo-aléatoires et les fonctions presque-périodiques, et par suite peuvent représenter soit des phénomènes à faible autocorrélation, soit des phénomènes à forte autocorrélation.
Le chapitre A1 étudie les espaces de Besicovitch-Marcinkiewicz des fonctions définies sur un groupe topologique abélien localement compact \mathbb{G}, et à valeurs dans un espace de Banach \mathbb{X} (\mathbb{G} sera, dans la deuxième partie, le groupe additif \mathbb{R} des réels; mais, pour des raisons théoriques et pratiques (applications possibles aux moyennes spatiales), on ne suppose pas dans la première partie que $\mathbb{G} = \mathbb{R}$).

Le chapitre A3 introduit la notion de moyennabilité et celle de comparabilité, très importantes pour la suite. Ces notions nous amènent à considérer un sous-espace métrique non vectoriel de l'espace \mathbb{W}^*: l'espace \mathfrak{F} de J. BASS.

Le chapitre A4 étudie les fonctions quasi-stationnaires à valeurs dans un espace de Hilbert quelconque : on démontre leur faible-presque-périodicité, et on examine en détail l'analyse spectrale énergétique et l'analyse spectrale élémentaire de ces fonctions.

Les chapitres A5 et A6 étudient les fonctions L- quasi-stationnaires et complètement quasi-stationnaires en vue des applications aux problèmes opérationnels linéaires et non linéaires.

Le chapitre A7 étudie les fonctions scalairement quasi-stationnaires à valeurs dans un espace de Banach : on les définit par dualité.

Le chapitre A8 donne quelques méthodes de construction des fonctions complètement pseudo-aléatoires à l'aide de la théorie des suites équiréparties modulo-un. Il prouve aussi qu'il n'y a pas que les fonctions uniformément-presque-périodiques dans l'ensemble des fonctions complètement quasi-stationnaires.

Dans la deuxième partie, on se propose d'étudier les solutions quasi-stationnaires des équations différentielles opérationnelles linéaires et non linéaires.

Le chapitre B1 étudie l'opérateur de \mathbb{W}^*-dérivation (bien que, dans la suite, on n'utilise qu'un petit nombre de ces résultats).

Le chapitre B2 étudie les solutions quasi-stationnaires d'un système différentiel linéaire ou non-linéaire. On met en évidence l'intérêt et l'utilisation de l'analyse spectrale énergétique et de l'analyse spectrale élémentaire des fonctions quasi-stationnaires. En outre, ces résultats sont susceptibles d'applications en mécanique (systèmes vibrants).

Les chapitres B3 et B4 définissent et étudient les solutions faibles et quasi-stationnaires de certaines classes d'équations différentielles opérationnelles linéaires et non linéaires. Diverses méthodes ont été utilisées pour montrer l'existence, l'approximation et la régularisation de ces solutions. Certaines de ces méthodes peuvent être utilisées pour la construction numérique.
Les chapitres B5 et B6 définissent et étudient les solutions fortes et quasi-stationnaires d'équations différentielles opérationnelles linéaires et non linéaires. On utilise ici la théorie des semi-groupes et celle des dérivées fractionnaires d'un opérateur.

Le chapitre B7 étudie plus spécialement les solutions pseudo-aléatoires des équations de Navier-Stokes (problème de la turbulence en hydrodynamique, cf. J. BASS [4], [5], [6], [7].

Ce travail a été abordé dans quelques notes aux Comptes Rendus de l'Académie des Sciences, et a été exposé sommairement au séminaire de J. LERAY (Collège de France, Novembre 1964) (cf. VO-KHAC, KHOA [11], [21]).
I - LE GROUPE \mathcal{G} - (cf. E. HEWITT et K.A. ROSS [11])

Soit \mathcal{G} un groupe topologique, abélien (noté additivement), localement compact, avec une mesure de Haar positive ν. Soit \mathcal{G}' le groupe (abélien, localement compact) des caractères de \mathcal{G}. La dualité entre \mathcal{G} et \mathcal{G}' sera désignée par (t, χ) où $t \in \mathcal{G}$ et $\chi \in \mathcal{G}'$. Très souvent, on écrit symboliquement (et incorrectement) $\varepsilon^{it\chi}$ au lieu de (t, χ).

1°) Hypothèses sur le groupe \mathcal{G} -

Supposons qu'il existe une famille $\{\Omega_j\}$ (où j est un élément d'un ensemble J totalement ordonné) ayant les propriétés suivantes :

i) Chaque Ω_j est un ouvert relativement compact ou un compact de \mathcal{G}.

ii) L'application $j \rightarrow \Omega_j$ est croissante : $j' > j \Rightarrow \Omega_{j'} \supset \Omega_j$.

iii) La famille $\{\Omega_j\}$ recouvre le groupe : $\bigcup_{j \in J} \Omega_j = \mathcal{G}$.

Pour tout élément fixé t de \mathcal{G}, et pour tout nombre positif ε donné à l'avance, il existe un élément $j_0 \in J$, ne dépendant que de t et de ε, tel que si $j > j_0$, on peut trouver j' et j'' ($j'' < j' < j$) satisfaisant aux conditions suivantes :

\[
\begin{align*}
\Omega_{j''} &\subset t + \Omega_{j'} \subset \Omega_j, \\
\frac{\nu(\Omega_{j''})}{\nu(\Omega_j)} &> 1 - \varepsilon \quad \text{et} \quad \frac{\nu(\Omega_{j''})}{\nu(\Omega_j)} \leq 1 + \varepsilon.
\end{align*}
\]

2°) Exemples -

a) \mathcal{G} est le groupe additif \mathbb{Z} des entiers. On peut prendre :
\[J = \mathbb{Z}^+ = \mathbb{N} \text{ avec } \Omega_\delta = \{ p \in \mathbb{Z} : -\delta \leq p \leq \delta \} \]

L'hypothèse \(\varphi_b \) est satisfaite si l'on prend
\[j_0 = \left(\frac{\lfloor |t| \rfloor}{\varepsilon} \right)^+ + 1 ; \quad j' = j + |t| ; \quad j'' = j - |t| \]

Note : \(\varepsilon \) désigne la partie entière de \(\varphi \).

b) \(\varphi_b \) est le groupe additif \(\mathbb{R} \) des réels - On peut prendre :
\[J = \mathbb{R}^+ \text{ avec } \Omega_\delta =]-\delta, \delta] \quad \text{ou} \quad \Omega_\delta = [-\delta, \delta] \]

L'hypothèse \(\varphi_b \) est satisfaite si l'on prend :
\[j_0 = \frac{\lfloor |t| \rfloor}{\varepsilon} ; \quad j' = j + |t| ; \quad j'' = j - |t| \]

On peut aussi prendre :
\[J = \mathbb{N} \text{ avec } \Omega_\delta = [-\delta, +\delta] \]

L'hypothèse \(\varphi_b \) est satisfaite si l'on prend :
\[j_0 = \left(\frac{\lfloor |t| \rfloor}{\varepsilon} \right)^+ + 1 ; \quad j' = j + |t| + 1 ; \quad j'' = j - (|t| + 1) \]

c) \(\varphi_b \) est le groupe additif \(\mathbb{R}^m \)

On peut prendre \(J = \mathbb{R}^+ \), et \(\Omega_\delta = \) l'hypercube (ouvert ou fermé) centré à l'origine, de côté égal à \(2\delta \).

On peut aussi prendre \(J = \mathbb{R}^+ \), avec \(\Omega_\delta = \) l'hypersphère centrée à l'origine, de rayon égal à \(\delta \).

Dans les deux cas, l'hypothèse \(\varphi_b \) est satisfaite avec
\[j_0 = \left(\frac{\lfloor |t| \rfloor}{\varepsilon} \right)^{m-1} ; \quad j' = j + |t| ; \quad j'' = j - |t| \]

Dans tout ce qui suit, nous fixerons une fois pour toutes la famille \(\{ \Omega_\delta \} \).

3°) Remarque sur l'hypothèse \(\varphi_b \)

Cette remarque est en marge de l'exposé, sa lecture est recommandée après celle du prochain paragraphe.

L'hypothèse \(\varphi_b \) est postulée pour assurer l'invariance par translation de la norme dans les espaces de Besicovitch-Marcinkiewicz que nous définissons au paragraphe suivant. Cette hypothèse est trop restrictive et je ne sais pas si elle est vérifiée pour tout groupe abélien localement compact.

On peut remplacer cette hypothèse \(\varphi_b \) par la suivante

\(\varphi_{\text{bis}} \) Pour tout voisinage relativement compact \(\mathcal{V} \) de l'élément neutre du groupe, et pour tout \(\varepsilon > 0 \) donné à l'avance, on peut trouver un élé-
ment $\delta_0 \Subset J$ tel que :

$$\forall \left\{ \left(\Omega_3 + \mathcal{U} \right) \cap \left(\Omega_3 \right) \right\} < \varepsilon \quad \text{dès que } d > \delta_0 (\varepsilon, \mathcal{U}).$$

(où $\left(\Omega_3 \right)$ désigne le complément de l'ensemble Ω_3).

Désignant par $\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$ l'espace de Besicovitch-Marcinkiewicz relatif à la famille $\left\{ \Omega_3 \right\}$, posant

$$\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X) = \bigcap \mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$$

et prenant comme norme dans $\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$ le nombre

$$\| f \| = \sup_{\left\{ \Omega_3 \right\}} \| f \|_{\left\{ \Omega_3 \right\}},$$

on démontre que cette norme $\| \| \|$ est invariante par translation.

Les hypothèses \mathcal{Q}_a et \mathcal{Q}_b bis sont moins restrictives que les hypothèses \mathcal{Q}_a et \mathcal{Q}_b et sont vérifiées par tout groupe abélien, localement compact et \mathcal{Q}-compact (cf. E. Hewitt et K.A. Ross [11, lemme 18, 13]).

Dans tout ce qui suit, nous ne ferons pas ce que nous venons de dire. Nous considérons une famille unique $\left\{ \Omega_3 \right\}$, essayant ainsi de généraliser la notion de "valeur principale de Cauchy" rencontrée dans le cas où $\mathcal{Q} = \mathbb{R}$.

II - ESPACES $\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$ DE BESICOVITCH-MARCINKIEWICZ

1°) Définition

Soit X un espace de Banach, muni de la norme $\| \|$. Considérons l'espace vectoriel $\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$ des fonctions $t \rightarrow f (t)$, définies sur le groupe \mathcal{Q}, à valeurs dans l'espace de Banach X, localement \mathcal{L}^p-intégrables (ρ réel fixé > 1) et telles que

$$\sup_{\Omega_3} \frac{1}{\mathcal{V}(\Omega_3)} \int_{\Omega_3} \| f(t) \|^p \mathcal{V}(t) < \infty.$$

Posons

$$\| f \|_{(\lambda)} = \left\{ \sup_{\Omega_3} \frac{1}{\mathcal{V}(\Omega_3)} \int_{\Omega_3} \| f(t) \|^p \mathcal{V}(t) \right\}^{1/p}$$

et

$$\| f \| = \inf_{\lambda \rightarrow \infty} \| f \|_{(\lambda)} = \lim_{\lambda \rightarrow \infty} \| f \|_{(\lambda)} = \left\{ \lim_{\lambda \rightarrow \infty} \sup_{\Omega_3} \frac{1}{\mathcal{V}(\Omega_3)} \int_{\Omega_3} \| f(t) \|^p \mathcal{V}(t) \right\}^{1/p}$$

On voit aisément que $\| f \|$ est une semi-norme sur l'espace $\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$.

Soit N_f le noyau de $\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)$: c'est l'ensemble des f tels que $\| f \| = 0$. Considérons l'espace-quotient

$$\mathcal{M}^p (\left\{ \Omega_3 \right\}; \mathcal{Q}; X)/N_f,$$
et structurons-le en un espace vectoriel normé, à la manière habituelle (c'est-à-dire en prenant comme norme d'un élément \(f \) de \(\mathcal{M}^p(\psi; x) \) le nombre \(\| f \| \), où \(f \) est un représentant de \(f \)).

L'espace \(\mathcal{M}^p(\psi; x) \) s'appelle espace de Besicovitch-Marcinkiewicz d'ordre \(p \) des (classes de) fonctions à valeurs dans \(x \), définies sur \(\psi \), et bornées en moyenne asymptotique d'ordre \(p \).

Un élément de \(\mathcal{M}^p(\psi; x) \) s'appelle une \(\mathcal{M}^p \)-fonction (cette terminologie est un abus de langage, car un élément de \(\mathcal{M}^p(\psi; x) \) n'est pas une fonction, mais une classe de fonctions).

Remarque -

Contrairement à une notation due à N. BOURBAKI [11], et presque universellement adoptée, nous avons utilisé les lettres "droites" pour désigner les espaces semi-normés (non séparés) et les lettres "cursives" pour désigner les espaces normés (séparés) associés.

2°) Théorème de Marcinkiewicz -

L'espace \(\mathcal{M}^p(\psi; x) \) est un espace complet; l'espace \(\mathcal{M}^p(\psi; x) \) est un espace de Banach.

a) Première démonstration -

Soit \(\lambda_0 \) une valeur fixée de \(\lambda \). On démontre que :

i) L'application \(f \rightarrow \| f \|_{(\lambda_0)} \) définit une norme sur l'espace \(\mathcal{M}^p(\psi; x) \).

Cette topologie ainsi définie sera appelée \(\mathcal{T}_{\lambda_0} \)-topologie.

ii) Muni de cette \(\mathcal{T}_{\lambda_0} \)-topologie, l'espace \(\mathcal{M}^p(\psi; x) \) est complet (conséquence immédiate du théorème de Riesz-Fischer).

iii) Le noyau \(N_p \) est fermé dans \(\mathcal{M}^p(\psi; x) \) muni de la \(\mathcal{T}_{\lambda_0} \)-topologie. Par suite, l'espace \(\mathcal{M}^p(\psi; x)/N_p \), muni de la \(\mathcal{T}_{\lambda_0} \)-topologie-quotient, est complet.

iv) Sur \(\mathcal{M}^p(\psi; x)/N_p \), la \(\mathcal{T}_{\lambda_0} \)-topologie-quotient et la \(\mathcal{M}^p \)-topologie coïncident.

Cette démonstration est due à J.F. MELA (article non publié).

b) Deuxième démonstration -

Soit \(\{ f_n \} \) une suite de Cauchy d'éléments de \(\mathcal{M}^p(\psi; x) \). De cette suite, on extrait d'abord une sous-suite \(\{ f_{n_i} \} \) telle que :

\[
\| f_{n_i} - f_{n_i+1} \| < \frac{1}{2^{i+1}}
\]

Puis, on choisit une suite \(\{ \lambda_i \} \) telle que :

\[
\{ \sqrt{(\Omega_{\lambda_i+i})} > 2 \sqrt{(\Omega_{\lambda_i})} \\
\| f_{n_i} - f_{n_i+1} \|_{(\lambda_i)} < \frac{1}{2^i}
\]
On pose alors :

\[f(t) = \begin{cases} f_{\mu_1}(t) & \text{si } t \in \Omega_1 \cap \Omega_{\lambda_{i+1}} \\ 0 & \text{si } t \in \Omega_1 \end{cases} \]

On démontre ensuite, exactement comme dans J. MARCINKIEWICZ [1] que

\[\| f - f_{\mu_1} \| < \frac{1}{2^{i-3}} \]

Par suite :

\[\| f - f \| < \frac{1}{2^i} + \frac{1}{2^{i-3}} \quad (\mu_i \leq \gamma \leq \mu_{i+1}) \]

ce qui démontre le théorème.

3°) Étude des translations -

a) Proposition -

La semi-norme \(\| \cdot \| \) est invariante par translation. Autrement dit, si \(U_{\theta} \) est l'opérateur défini par \(U_{\theta} f(t) = f(t + \theta) \), alors on a :

\[\| U_{\theta} f \| = \| f \| . \]

b) Démonstration -

Utilisons les notations de l'hypothèse \(\phi \) (cf. paragraphe I). Nous avons :

\[\int_{\Omega_3} \| f(t + \theta) \|^p \, d\gamma(t) = \int_{\Omega_3} \| f(t) \|^p \, d\gamma(t) \]

\[\frac{1}{\gamma(\Omega_3)} \int_{\Omega_3} \| f(t) \|^p \, d\gamma(t) \leq \frac{1}{\gamma(\Omega_3)} \int_{\Omega_3} \| f(t + \theta) \|^p \, d\gamma(t) \leq \frac{1}{\gamma(\Omega_3)} \int_{\Omega_3} \| f(t) \|^p \, d\gamma(t) \]

Faisons tendre \(\theta \) vers \(\infty \), l'hypothèse \(\phi \) montre alors que :

\[\| f \| \leq \| U_{\theta} f \| \leq \| f \| , \]

ce qui démontre le théorème.

c) Remarque -

i) L'opérateur \(U_{\theta} \) est l'opérateur de translation par \(-\theta\) ; la fonction \(U_{\theta} f \) est la translatée de la fonction \(f \) par \(-\theta\).
ii) Soit \(\mathfrak{f} \) un élément de \(\mathcal{M}_p(\mathcal{A};X) \). Considérons un représentant \(\mathfrak{f} \) de \(\mathfrak{f} \); \(\mathfrak{f} \) est un élément de \(\mathcal{M}_p(\mathcal{A};X) \). On peut définir \(\mathfrak{g}_\mathfrak{f} = U_\mathfrak{f} \mathfrak{f} \). Soit \(\mathfrak{g} \) l'image canonique de \(\mathfrak{g}_\mathfrak{f} \) dans \(\mathcal{M}_p(\mathcal{A};X) \). On pose \(\mathfrak{g}_\mathfrak{f} = U_\mathfrak{f} \mathfrak{f} \), ce qui permet de définir l'opérateur \(U_\mathfrak{f} \) pour tous les éléments de \(\mathcal{M}_p(\mathcal{A};X) \). Le théorème précédent montre alors que :
\[
\| U_\mathfrak{f} \mathfrak{f} \| = \| \mathfrak{f} \| \quad \text{(invariance de la norme)}.
\]

d) Espaces \(\mathcal{T}(f;\mathcal{M}_p,X) \) et \(\mathcal{T}(f;\mathcal{M}_p,X) \)

On appelle \(\mathcal{T}(f;\mathcal{M}_p,X) \) la variété linéaire fermée engendrée par les translatées \(U_\mathfrak{f} \mathfrak{f} \) de \(\mathfrak{f} \).

On appelle \(\mathcal{T}^b(\mathfrak{f};\mathcal{M}_p,X) \) l'enveloppe convexe (fermée) des translatées \(U_\mathfrak{f} \mathfrak{f} \) de \(\mathfrak{f} \).

D'après le théorème précédent, ce sont des sous-espaces fermés et invariants par translation de l'espace \(\mathcal{M}_p(\mathcal{A};X) \).

On appelle \(\mathcal{T}(f;\mathcal{M}_p,X) \) l'image canonique de \(\mathcal{T}(f;\mathcal{M}_p,X) \) dans \(\mathcal{M}_p(\mathcal{A};X) \). Il est facile de voir que \(\mathcal{T}(f;\mathcal{M}_p,X) \) est l'enveloppe linéaire (fermée) engendrée par les translatées \(U_\mathfrak{f} \mathfrak{f} \) de \(\mathfrak{f} \) (ou \(\mathfrak{f} \) est l'image canonique de \(\mathfrak{f} \) dans \(\mathcal{M}_p(\mathcal{A};X) \)).

De même, on appelle \(\mathcal{T}^b(\mathfrak{f};\mathcal{M}_p,X) \) l'image canonique de \(\mathcal{T}^b(\mathfrak{f};\mathcal{M}_p,X) \) dans \(\mathcal{M}_p(\mathcal{A};X) \).

4°) Transformations linéaires

Soient \(X \) et \(Y \) deux espaces de Banach. On désigne par \(\mathcal{L}(X \rightarrow Y) \) l'ensemble des opérateurs linéaires bornés de \(X \) dans \(Y \).

a) Proposition

Si \(\mathfrak{f} \) est un élément de \(\mathcal{M}_p(\mathcal{A};X) \) et si \(A \) est un élément de \(\mathcal{L}(X \rightarrow Y) \), alors \(A \mathfrak{f} \) est un élément de \(\mathcal{M}_p(\mathcal{A};Y) \); en plus
\[
\| A \mathfrak{f} \| \leq \| A \| \| \mathfrak{f} \|
\]
Ce théorème résulte de l'égalité suivante :
\[
\int_A \mathcal{A} \mathfrak{f}(t) d\mathcal{V}(t) = A \int_A \mathfrak{f}(t) d\mathcal{V}(t).
\]

b) Remarque

Soit \(\mathfrak{f} \) un élément de \(\mathcal{M}_p(\mathcal{A};X) \). Considérons un de ses représentants \(\mathfrak{f} \); \(\mathfrak{f} \) est un élément de \(\mathcal{M}_p(\mathcal{A};X) \). On peut définir l'élément \(\mathfrak{g}_\mathfrak{f} = A \mathfrak{f} \). Soit \(\mathfrak{g}_\mathfrak{f} \) l'image canonique de \(\mathfrak{g}_\mathfrak{f} \) dans \(\mathcal{M}_p(\mathcal{A};Y) \). On pose \(\mathfrak{g}_\mathfrak{f} = A \mathfrak{f} \) ce qui permet de définir l'opérateur \(A \) pour tout élément \(\mathfrak{f} \) de \(\mathcal{M}_p(\mathcal{A};X) \). Le théorème précédent montre que \(A \) est un opérateur linéaire borné de \(\mathcal{M}_p(\mathcal{A};X) \) dans \(\mathcal{M}_p(\mathcal{A};Y) \).
c) Espace \(\mathcal{T}(f; \mathcal{M}^p, X \rightarrow Y) \) -

On appelle \(\mathcal{T}(f; \mathcal{M}^p, X \rightarrow Y) \) la variété linéaire fermée engendrée par l'ensemble \(\{ \sum A f | A \in \mathcal{A} ; A \in \mathcal{L}(X \rightarrow Y) \} \).

On désigne par \(\mathcal{T}(f; \mathcal{M}^p, X \rightarrow Y) \) l'image canonique de \(\mathcal{T}(f; \mathcal{M}^p, X \rightarrow Y) \) dans \(\mathcal{M}^p(\mathcal{Q}_0, \mathcal{Y}) \); on voit que \(\mathcal{T}(f; \mathcal{M}^p, X \rightarrow Y) \) n'est autre que l'enveloppe linéaire (fermée) de l'ensemble \(\{ \sum A f | A \in \mathcal{A} ; A \in \mathcal{L}(X \rightarrow Y) \} \), où \(\hat{f} \) est l'image canonique de \(f \) dans \(\mathcal{M}^p(\mathcal{Q}_0, \mathcal{X}) \).

On posera : \(\mathcal{T}(f; \mathcal{M}^p, X \rightarrow X) = \mathcal{T}(f; \mathcal{M}^p, X) \).

5° Transformations non linéaires - Relation de Hôlder -

Dans tout ce qui suit, on désigne par \(p, q \) et \(\sigma \) trois nombres \(> 1 \) tels que \(\frac{1}{p} + \frac{1}{q} = \frac{1}{\sigma} \).

Proposition -

Si \(f \) est un élément de \(\mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \) et \(g \) un élément de \(\mathcal{M}^q(\mathcal{Q}_0; \mathcal{Y}) \), alors \(\varphi = \| f \|, \| g \| \) est un élément de \(\mathcal{M}^r(\mathcal{Q}_0^2; \mathbb{R}) \) et \(\| \varphi \|_p \leq \| f \|_p \cdot \| g \|_q \) (inégalité de Hôlder).

En effet, cette inégalité est valable pour toutes les semi-normes \(N_p \) (cf. N. BOURBAKI [1], inégalités de convexité).

a) Première conséquence -

L'application \(\varphi \rightarrow \| f \|_p \) est croissante dans \([1, \infty) \). Autrement dit, si \(p > p' \), alors :

\(\mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \subset \mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \)

Remarquons que nous n'avons pas le droit d'écrire

\(\mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \subset \mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \)

En effet, les noyaux \(N_p \) (i.e. ensemble des fonctions \(f \) telles que \(\| f \|_p = 0 \)) ne sont pas identiques pour tout \(p \). Deux éléments équivalents dans \(\mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \) ne sont pas forcément équivalents dans \(\mathcal{M}^q(\mathcal{Q}_0; \mathcal{X}) \). Par suite, l'application canonique de \(\mathcal{M}^p(\mathcal{Q}_0; \mathcal{X}) \) dans \(\mathcal{M}^q(\mathcal{Q}_0; \mathcal{X}) \) n'est pas injective.

b) Deuxième conséquence -

Soient \(X, Y, Z \) trois espaces de Banach. Nous désignerons par \(\mathcal{L}(X, Y \rightarrow Z) \) l'ensemble des opérateurs bilinéaires (ou sesquilinéaires) bornés de \(X \times Y \) dans \(Z \), c'est-à-dire l'ensemble des opérateurs \(\Omega \) qui :

i) appliquent \(X, Y \) dans \(Z : (x, y) \rightarrow \Omega(x, y) \).
ii) sont linéaires en x, linéaires (ou semi-linéaires) en y.

iii) sont tels que : $\| \Omega(x, y) \|_Z \leq \lambda \| x \|_X \| y \|_Y$.

Proposition -

Si $f \in M^p(\mathcal{G}_x; X)$ et $g \in M^q(\mathcal{G}_y; Y)$, alors $\Omega(f, g) \in M^\lambda(\mathcal{G}_z; Z)$ quel que soit $\omega \in \Xi(x, y \rightarrow z)$. En plus $\| \Omega(f, g) \|_Z \leq \lambda \| f \|_X \| g \|_Y$.

Cette proposition permet de définir $\Omega(f, g)$ pour $f \in M^p(\mathcal{G}_x; X)$ et $g \in M^q(\mathcal{G}_y; Y)$ et de montrer que ω est un opérateur bilinéaire borné de $M^p(\mathcal{G}_x; X) \times M^q(\mathcal{G}_y; Y)$ dans $M^\lambda(\mathcal{G}_z; Z)$.

Ex:

i) Soit A une algèbre de Banach. Prenons $X = Y = Z = A$ et pour ω l'opérateur de multiplication de l'algèbre.

ii) Prenons $X = Y = Z$ et ω un opérateur bilinéaire borné de X^2 dans X.

iii) Prenons $X = X$ et $Y = X^*$ (dual topologique de X), et ω l'opérateur qui met X et X^* en dualité.

c) Troisième conséquence -

Si $f \in M^p(\mathcal{G}_x; X)$, alors :

$$\left\| \int \int_R f^p - f^p \right\|_p \leq \lambda \left\| f^p \right\|_p \leq \left\| f^p \right\|_p \left\| f \right\|_p$$

Cette inégalité aura d'importantes conséquences, et sera appelée inégalité H^p. Pour la démontrer, on utilise l'inégalité de Hölder ($\alpha = 1$) et l'inégalité suivante :

$$\left\| a^p - b^p \right\| \leq 2 \left\| a - b \right\| (a, b)^{p-1} \quad (\alpha \neq 1)$$

pour tout couple de nombres positifs (a, b).

d) Quatrième conséquence -

Pour tout nombre $\alpha > 0$, l'application $\gamma \rightarrow \| \gamma \|^{\alpha-1}$ est définie et continue dans le complémentaire de l'origine 0 de e ; en outre, comme $\| \|^{\alpha-1} = \| \|^{\alpha}$, cette fonction tend vers 0 avec γ, et on peut donc la prolonger par continuité au point 0 en lui donnant la valeur 0 en ce point, même si $\alpha < 1$.

Théorème -

Soient p et q deux nombres réels tels que $1 \leq p < \infty$, $1 < q < \infty$.

Si une fonction f appartient à $M^p(\mathcal{G}_x; X)$, alors la fonction $g = \left\| f \right\|^{1/p-1} \cdot f$ appartient à $M^q(\mathcal{G}_x; X)$ et réciproquement. De plus, l'application $f \rightarrow \left\| f \right\|^{1/p-1} \cdot f$ est un homéomorphisme de $M^p(\mathcal{G}_x; X)$ sur $M^q(\mathcal{G}_x; X)$.
Démonstration -

On a :

\[\| g \|^q = \| f \|^{p-q} \| f \|^q = \| f \|^p. \]

D'où :

\[\| g \|_m^q = \| f \|_m^p. \]

La réciproque est immédiate, car \(f = \| g \|_m^{-q} g \). La transformation est donc biunivoque.

En ce qui concerne l'homéomorphisme, il suffit d'examiner le cas où \(q = 1 \). On utilise les inégalités suivantes :

\[2^{-p} \| y-x \| < \| y \|^{p-1} (y-x) \leq 2^p \| y-x \| \left(\| y \| + \| x \| \right)^{p-1} \]

L'inégalité de Hölder montre ensuite la bicontinuité de l'application considérée.

III - FONCTIONS \(M^p \)-CONTINUES -

1°) Définitions -

Une \(M^p \)-fonction \(f \) est dite \(M^p \)-continue au point \(\varepsilon \) si

\[\| U_\varepsilon f - U_\varepsilon f \| \text{ tend vers 0 quand } \| x \| \text{ tend vers l'élément neutre } o \text{ du groupe.} \]

D'après la propriété d'invariance de la norme \(\| \| \) par translation, on en déduit que : si \(f \) est \(M^p \)-continue au point \(\varepsilon = o \), alors elle est \(M^p \)-continue pour tout \(\varepsilon \).

On désignera par \(M^p_c(\varepsilon; X) \) l'ensemble des \(M^p \)-fonctions \(M^p \)-continues, et par \(M^p_c(\varepsilon; X)/N^p \) le quotient \(M^p_c(\varepsilon; X)/N^p \).

2°) Proposition -

L'ensemble \(M^p_c(\varepsilon; X) \) est un sous-espace vectoriel fermé, invariant par translation de l'espace \(M^p(\varepsilon; X) \).

La démonstration est immédiate.

3°) \(M^p \)-dérivation -

Considérons l'opérateur \(U_\varepsilon \) de translation (par \(-\varepsilon \)) défini précédemment. C'est un opérateur linéaire, borné (de norme égale à 1) de l'espace \(M^p(\varepsilon; X) \). Considérons la famille \(\{ U(\varepsilon) = U_\varepsilon, \varepsilon \in \varepsilon \} \). C'est un groupe fortement continu d'opérateurs linéaires bornés de \(M^p(\varepsilon; X) \).

Plaçons-nous dans le cas où \(\varepsilon \) est l'ensemble des réels \(R \). On appelle opérateur \(V \) de \(M^p \)-dérivation, le générateur infinitésimal du groupe \(U(\varepsilon) \).
La théorie générale des groupes de contractions (cf. E. HILLE et R.S.
PHILLIPS [1]) montre que :

i) le domaine $\mathcal{D}(\mathcal{V})$ est dense dans $\mathcal{M}_c^p(\mathcal{F};X)$

ii) l'opérateur de \mathcal{M}_c^p-dérivation est fermé sur $\mathcal{D}(\mathcal{V})$

iii) l'opérateur résolvant $R(\lambda,\mathcal{V}) = (\lambda I - \mathcal{V})^{-1}$ existe et est borné
par $\frac{1}{|\lambda|}$ pour tout nombre complexe λ non situé sur l'axe des ima-
pers.

iv) l'opérateur de \mathcal{M}_c^p-dérivation est conservatif : $R[e^f,\mathcal{V}] = 0$, où $[\quad]$ désigne un semi-produit-scalar de l'espace $\mathcal{M}_c^p(\mathcal{F};X)$
(cf. LUMER et PHILLIPS [1]).

L'étude détaillée de l'opérateur de \mathcal{M}_c^p-dérivation sera examinée au
chapitre Bl.

4°) Transformations linéaires et non linéaires -

On obtient des résultats analogues à ceux obtenus aux paragraphes
II 4°) et II 5°).

En particulier :

a) Si $f \in \mathcal{M}_c^p(\mathcal{F};X)$ et $A \in \mathbb{L}(X \rightarrow Y)$, alors $A f \in \mathcal{M}_c^p(\mathcal{F};Y)$

b) Si $f \in \mathcal{M}_c^p(\mathcal{F};X)$ et $g \in \mathcal{M}_c^q(\mathcal{F};Y)$, alors $\Omega(f,g) \in \mathcal{M}_c^2(\mathcal{F};Z)
quel que soit $\Omega \in \mathbb{L}(X,Y \rightarrow Z)$.

c) Si $f \in \mathcal{M}_c^p(\mathcal{F};X)$, alors $g = \| f \|^{-1} \cdot f \in \mathcal{M}_c^q(\mathcal{F};X)$

d) Si $f \in \mathcal{M}_c^p(\mathcal{F};X)$, alors $\| f \|^{-p} \in \mathcal{M}_c^q(\mathcal{F};\mathbb{R})$.

Ces résultats se démontrent à partir des résultats des paragraphes
II 4°) et 5°).

IV - \mathcal{M}_c^p-CONVOLUTIONS -

Lemme -

Soient f un élément de $\mathcal{M}_c^p(\mathcal{F};X)$,

μ une mesure de Radon définie sur \mathcal{F}

Δ un ensemble μ-mesurable, de μ-mesure finie.

Si nous posons

$$g_{\Delta}(t) = \int_{\Delta} f(t+\lambda) \, d\mu(\lambda),$$

alors nous avons :

$$\| g_{\Delta} \| \leq \| f \| \int_{\Delta} |d\mu(\lambda)|.$$
Démonstration -

i) Supposons d'abord que \(f \) est une \(M^c \) fonction numérique positive et que \(d\mu \) est une mesure positive. Par l'invariance de la mesure de Haar, on a :

\[
\| \mathcal{U}_0 \mathcal{U}(\xi) \| = \frac{1}{\sqrt{\Omega_0}} \int_{\Omega_0} f(t, \xi) \, d\nu(t) = \frac{1}{\sqrt{\Omega_0}} \int_{\Omega_0} f(t) \, d\nu(t)
\]

D'après l'axiome du paragraphe I, dès que \(J \) est assez grand :

\[
\| \mathcal{U}_0 \mathcal{U}(\xi) \| < \frac{\sqrt{\Omega_0}}{\sqrt{\Omega_0}} \cdot \frac{1}{\sqrt{\Omega_0}} \int_{\Omega_0} f(t) \, d\nu(t) < \frac{3}{2} \left(\| \mathcal{U} \| + \frac{1}{2} \right)
\]

pour tout \(\xi \in \Delta \).

Comme \(\Delta \) est de \(\mu \)-mesure finie, on a, dès que \(J \) est assez grand :

\[
\int_{\Delta} \sup_{\alpha} \| \mathcal{U}_0 \mathcal{U}(\xi) \| \, d\mu(\alpha) < \infty.
\]

Utilisons un théorème de Lebesgue relatif à l'intégration des suites. Extrayons une suite \(\{ \| \mathcal{U}_0 \mathcal{U}(\xi) \| \} \) de la famille \(\{ \| \mathcal{U}_0 \mathcal{U}(\xi) \| \} \). D'après ce théorème, nous pouvons écrire :

\[
\limsup_{\mathcal{K} \to \infty} \int_{\Delta} \sup_{\alpha} \| \mathcal{U}_0 \mathcal{U}(\xi) \| \, d\mu(\alpha) \leq \int_{\Delta} \sup_{\alpha} \| \mathcal{U}_0 \mathcal{U}(\xi) \| \, d\mu(\alpha) \leq \int_{\Delta} \sup_{\alpha} \| \mathcal{U}_0 \mathcal{U}(\xi) \| \, d\mu(\alpha)
\]

On obtient une majoration indépendante de la suite \(\{ \| \mathcal{U}_0 \mathcal{U}(\xi) \| \} \) extrait. Par suite :

\[
\| \mathcal{U}_0 \mathcal{U}(\xi) \| = \limsup_{\mathcal{K} \to \infty} \int_{\Delta} \sup_{\alpha} \| \mathcal{U}_0 \mathcal{U}(\xi) \| \, d\mu(\alpha) < \| \mathcal{U} \| \int_{\Delta} \mathcal{U}(\xi) \, d\mu(\alpha).
\]

ii) Le cas général se démontre en utilisant l'inégalité de Hölder, et en remarquant que si \(f \in M^p(\mathcal{U} ; X) \), alors \(\| f \|_p^p \in M^p(\mathcal{U} ; \mathbb{R}) \). Il suffit d'écrire :

\[
\| \mathcal{U}_0 \mathcal{U}(\xi) \| < \left(\int_{\Delta} \| f(t, \xi) \|_p \, d\mu(\alpha) \right)^{\frac{1}{p}} \left(\int_{\Delta} \| d\mu(\alpha) \|_q \right)^{\frac{1}{q}}
\]

avec \(\frac{1}{p} + \frac{1}{q} = 1 \).

Le résultat obtenu en (i) montre alors que :

\[
\| \mathcal{U}_0 \mathcal{U}(\xi) \|^p < \| \mathcal{U} \|_p^p \left(\int_{\Delta} \| d\mu(\alpha) \| \right)^{\frac{p}{q}}
\]

21
Comme $1 + \frac{p}{q} = p$, le lemme est démontré.

1°) **Convolution d'une \mathcal{M}^p-fonction par une mesure de Radon**

Soient f un élément de $\mathcal{M}^p(\mathfrak{G}; X)$ et $d\mu$ une mesure de Radon définie sur le groupe \mathfrak{G}. Soit $f \in \mathcal{M}^p(\mathfrak{G}; X)$ un représentant de f.

a) Définition de $g = f * d\mu$.

Soit Δ un ensemble μ-mesurable du groupe \mathfrak{G}; posons:

$$g_{\Delta}(t) = \int_{\Delta} f(t-\phi) \, d\mu(\phi)$$

Le lemme précédent montre que:

$$\|g_{\Delta}\| \leq \|f\| \int_{\Delta} |d\mu(\phi)|$$

Considérons une famille $\{\Delta_k\}$ d'ouverts relativement compacts recouvrant le groupe \mathfrak{G}. On peut définir, d'une manière unique (d'après l'inégalité précédente) un élément $g \in \mathcal{M}^p(\mathfrak{G}; X)$ par:

$$g = \lim_{k \to \infty} g_{\Delta_k}$$

et du représentant f.

L'élément g ne dépend pas de la famille $\{\Delta_k\}$ choisie et sera appelé produit de convolution de la \mathcal{M}^p-fonction f et de la mesure de Radon $d\mu$.

Comme:

$$\|g\| \leq \|f\| \int_{\mathfrak{G}} |d\mu(\phi)|,$$

la convolution ainsi définie est un opérateur linéaire borné de $\mathcal{M}^p(\mathfrak{G}; X)$ dans lui-même.

b) Cas d'une \mathcal{M}^p-fonction \mathcal{M}^p-continue

i) Définition

Soit f un élément de $\mathcal{M}^p_c(\mathfrak{G}; X)$ et $d\mu$ une mesure de Radon sur le groupe \mathfrak{G}. On appelle produit de convolution de f par $d\mu$ l'intégrale suivante:

$$f * d\mu = \int_{\mathfrak{G}} \mathcal{L} f \, d\mu(\phi).$$

D'après cette définition, le produit de convolution de f par $d\mu$ est un élément de $\mathcal{T}(f; \mathcal{M}^p, X)$ si $f \in \mathcal{M}^p_c(\mathfrak{G}; X)$.

ii) Théorème

Si $f \in \mathcal{M}^p_c(\mathfrak{G}; X)$, les deux définitions du produit de convolution $f * d\mu$ sont équivalentes.
Démonstration -

Donnons un $\varepsilon > 0$ arbitraire. Puisque f est \mathbb{R}-continue, il existe un voisinage $U(0)$ de l'élément neutre 0 du groupe \mathbb{R} tel que :

$$\|U \cdot f - f\| < \varepsilon$$

pour tout $\eta \in U(0)$.

Comme Δ est relativement compact, il existe des $\delta \in \mathbb{R}$ tels que :

$$\bigcup_{\delta} (\delta + U) \supset \overline{\Delta}.$$

On peut donc définir n ensembles U_δ disjoints tels que :

$$U_\delta - \delta < U$$

et

$$\bigcup_{\delta} U_\delta = \Delta.$$

D'où :

$$g_\Delta(t) = \int \sum_{\delta=1}^{n} f(t - \delta) d\mu(\delta) = \sum_{\delta=1}^{n} \int f(t - \delta) d\mu(\delta).$$

Posons :

$$h_n(t) = \sum_{\delta=1}^{n} f(t - \delta) d\mu(\delta)$$

et

$$\Phi_\delta(t) = \int [f(t - \delta) - f(t - \delta)] d\mu(\delta).$$

D'après l'inégalité triangulaire, on a :

$$\|g_\Delta - h_n\| < \sum_{\delta=1}^{n} \|\Phi_\delta\|.$$

Par une démonstration analogue à celle du lemme :

$$\|\Phi_\delta\| \leq \|U_\delta f - U_\delta f\| \int |d\mu(\delta)|.$$

Comme $U_\delta - \delta < U$, on a :

$$\|\Phi_\delta\| \leq \varepsilon \int |d\mu(\delta)|.$$

Par suite :

$$\|g_\Delta - h_n\| \leq \varepsilon \sum_{\delta=1}^{n} \int |d\mu(\delta)| = \varepsilon \int |d\mu(\delta)|.$$

Cette inégalité montre l'équivalence des deux définitions de $\int f d\mu$. En
effet \(f \text{d}\mu \) peut être considérée soit comme \(\mathcal{M}^\infty \)-limite de \(g_A \) (première définition), soit comme \(\mathcal{M}^\infty \)-limite de \(h_n \) (deuxième définition).

c) \text{Convolution par une } L^1 \text{-fonction}

\text{Théorème}

Le produit de convolution d'une \(\mathcal{M}^p \)-fonction par une fonction numérique absolument sommable sur \(\varphi \) est \(\mathcal{M}^p \)-continue.

\text{Démonstration}

On a :

\[g_A(t) - g_A(t) = \int_{\Delta} \left[h(\omega A - h) - h(\omega) \right] d\varphi(\omega) \]

D'après le lemme, on tire :

\[\| U_h g_A - g_A \| \leq \| U_h \| \int_{\Delta} \left| h(\omega A - h) - h(\omega) \right| d\varphi(\omega) \]

Le théorème résulte alors de la proposition suivante : une fonction appartenant à \(L^1 (\varphi; \mathbb{R}) \) est aussi \(L^1 \)-continue.

2°) Convolution opérationnelle

\(a) \) Soient \(f \) une \(\mathcal{M}^p \)-fonction à valeurs dans \(X \), et \(K(t) \) un opérateur linéaire borné de \(X \) dans \(Y \), dépendant du paramètre \(t \in \varphi \), et absolument sommable sur \(\varphi \).

Soit \(\Delta \) un ensemble relativement compact de mesure \(\nu(\Delta) \) finie. Posons :

\[g_A(t) = \int_{\Delta} K(\omega) f(t - \omega) d\varphi(\omega) \]

Par le lemme, on a :

\[\| g_A \| \leq \| U_h \| \int_{\Delta} \| K(\omega) \| d\varphi(\omega) \]

On peut donc définir d'une manière unique un élément \(g \) de \(\mathcal{M}^p(\varphi; X) \) par :

\[g = \lim_{k \to \infty} g_{kA} \]

L'élément \(g \) sera appelé produit de convolution de la \(\mathcal{M}^p \)-fonction \(f \) par l'opérateur \(K \).

\(b) \) Lorsque \(f \) est \(\mathcal{M}^p \)-continue, on peut démontrer que \(g \) coïncide avec l'intégrale suivante :

\[g = \int K(\omega) f d\varphi(\omega), \]

qui est un élément de l'espace \(L^\infty(\varphi; \mathcal{M}^p, X \to Y) \).

La démonstration est analogue à celle du paragraphe IV 1(b) ii).
Nous allons commencer par rappeler la théorie générale de l'ergodicité et de la presque-périodicité relative à un groupe d'opérateurs dans un espace de Banach (cf. W.F. EBERLEIN [1], K. JACOBS [2]). Ensuite, nous appliquons cette théorie au cas du groupe des translations dans les espaces de Besicovitch-Marcinkiewicz. Enfin, nous étudions quelques résultats particuliers concernant l'ergodicité et la presque-périodicité dans ces espaces de Besicovitch-Marcinkiewicz.

I - SEMI-GROUPE ERGODIQUE -

Considérons un espace vectoriel topologique localement convexe Z et un semi-groupe \mathcal{U} d'opérateurs linéaires U de Z dans lui-même. On suppose que \mathcal{U} contient l'identité 1. On désigne par $\text{convexe}(\mathcal{U})$ l'enveloppe convexe fermée de l'ensemble $\{U\mathcal{Z} | U \in \mathcal{U}\}$, pour chaque $\mathcal{Z} \in Z$.

1°) Définitions -

a) On appelle système d'intégrales presque invariantes une suite généralisée d'opérateurs M_α (i.e. une famille d'opérateurs M_α, indexée par un ensemble ordonné filtrant $\{\alpha\}$) possédant les propriétés suivantes :

i) M_α est un opérateur linéaire de Z dans Z, pour chaque α ;

ii) Pour chaque \mathcal{Z}, et pour tout $\alpha : M_\alpha \mathcal{Z} \in \text{convexe}(\mathcal{Z})$;

iii) Les opérateurs M_α sont équicontinus ;

iv) Pour chaque $\mathcal{Z} \in Z$, et pour tout $U \in \mathcal{U}$, on a :

$$\lim_{\alpha} (UM_\alpha \mathcal{Z} - M_\alpha \mathcal{Z}) = \lim_{\alpha} (M_\alpha U \mathcal{Z} - M_\alpha \mathcal{Z}) = 0.$$
b) Le semi-groupe U est dit ergodique s'il possède au moins un système d'intégrales presque invariantes.

2°) Théorème ergodique d'Eberlein -

Soient U un semi-groupe ergodique, γ un élément de Z et $\{ M_\alpha \}$ un système d'intégrales presque invariantes. Alors, les conditions suivantes sur un élément γ de Z sont équivalentes :

i) γ est convexe (γ) et $U_\gamma = \gamma$ pour tout $U \in U$ (élément invariant);

ii) $\gamma = \lim \alpha M_\alpha \gamma$;

iii) $\gamma = \lim$ faible $M_\alpha \gamma$;

iv) γ est un point d'accumulation faible de $\{ M_\alpha \}$.

La démonstration de ce théorème se trouve dans W.F. EBERLEIN [11].

3°) Existence des semi-groupes ergodiques - Théorème -

Dans un espace de Banach, tout semi-groupe abélien et borné est ergodique.

II - ERGODICITE ET TOTALE-ERGODICITE -

Dans tout ce qui suit, Z est un espace de Banach. Soit γ un groupe abélien localement compact (noté additivement). Soit $U = \{ U(t) \mid t \in \gamma \}$ un groupe d'opérateurs linéaires bornés (uniformément en t) de Z :

$$U(t+s) = U(t)U(s)$$

$$\| U(t) \| \leq M \quad \text{quel que soit } t \in \gamma.$$ D'après le théorème précédent, ce groupe est ergodique.

1°) Définitions -

a) Eléments ergodiques -

Un élément $\gamma \in Z$ est dit ergodique pour le groupe ergodique U s'il existe un élément invariant (point fixe) γ dans convexe (γ); γ sera appelé moyenne de γ relative au groupe U, et sera désigné par M_γ.

L'ensemble des éléments ergodiques sera désigné par γ.

b) Eléments totalement ergodiques -

Soit χ un caractère de γ (χ est un élément du groupe dual $\widehat{\gamma}$ de γ).

On appelle coefficient de Fourier de $\gamma \in Z$ au point χ la moyenne, si elle existe, de γ relative au groupe $\{ U(t) \chi(t) \mid t \in \gamma \}$.

Un élément γ est dit totalement ergodique si ses coefficients de Fourier existent en tout point χ du groupe γ.
L'ensemble des éléments totalement ergodiques sera désigné par \mathcal{E}_t.

On appelle spectre d'un élément totalement ergodique x, l'ensemble des points $x \in \hat{\mathcal{E}}$ tels qu'en chacun de ces points x, le coefficient de Fourier de \hat{x} n'est pas nul.

2°) **Propriétés** - (cf. W.F. EBERLEIN [1]) -

a) La moyenne d'un élément ergodique est unique, et on a :

$$\mathbf{M} = \lim_{\alpha} \mathbf{M}_{\alpha}$$

L'opérateur de moyenne \mathbf{M} est un opérateur linéaire, borné par M, invariant sous le groupe \mathcal{U} (il n'est pas défini dans tout l'espace \mathbb{Z}, son domaine est \mathcal{E}).

b) \mathcal{E} et \mathcal{E}_t sont des sous-espaces vectoriels fermés, invariant sous le groupe \mathcal{U} de l'espace \mathbb{Z}.

III - **PRESQUE-PERIODICITÉ (FAIBLE ET FORTE)** -

1°) **Définitions** -

a) Un élément $x \in \mathbb{Z}$ est dit faiblement-presque-périodique pour le groupe \mathcal{U} si son orbite $\mathcal{U}(x)$ est relativement faiblement compacte (les diverses notions usuelles de faible compactité dans un Banach sont équivalentes d'après le théorème de Smulian-Eberlein (cf. W.F. EBERLEIN [3], ou N. DUNFORD et J.T. SCHWARTZ [1]).

b) Un élément $x \in \mathbb{Z}$ est dit presque-périodique pour le groupe \mathcal{U} si son orbite est relativement compacte.

c) Un élément $x \in \mathbb{Z}$ est dit fuyant (fluchtvektor) pour le groupe \mathcal{U} s'il est faiblement-presque-périodique et si son orbite admet l'élément nul de \mathbb{Z} comme point d'adhérence faible.

d) Un élément $x \in \mathbb{Z}$ est dit pseudo-aléatoire pour le groupe \mathcal{U} s'il est faiblement-presque-périodique et si son spectre est vide.

On désignera par \mathcal{F}, \mathcal{P}, \mathcal{F} et \mathcal{A} respectivement l'ensemble des éléments faiblement-presque-périodiques, l'ensemble des éléments presque-périodiques, celui des éléments fuyants et celui des éléments pseudo-aléatoires.

2°) **Propriétés des ensembles \mathcal{F}, \mathcal{P}, \mathcal{F} et \mathcal{A}** -

Théorème -

Les ensembles \mathcal{F}, \mathcal{P}, \mathcal{F} et \mathcal{A} sont des sous-espaces vectoriels fermés, invariants sous le groupe \mathcal{U} de l'espace \mathcal{E}_t des éléments totalement ergodiques.

3°) **Décomposition de \mathcal{F} - Théorème de Jacobs** -
L'espace \mathcal{F} est la somme directe des deux sous-espaces "disjoints" Π et Φ :

$$\mathcal{F} = \Pi \oplus \Phi,$$
avec $\Pi \cap \Phi = \{0\}$.

On en trouve la démonstration dans K. JACOBS [1].

4°) Identité entre \mathcal{F} et Φ -

Théorème -

Pour qu'un élément soit fuyant, il faut et il suffit qu'il soit pseudo-aléatoire.

Démonstration -

Montrons que la condition est nécessaire. Soit χ un caractère de \mathcal{F}. Il est immédiat que si l'élément nul appartient à la fermeture faible de l'ensemble $\{U(t)\chi | t \in \mathbb{Q}\}$, elle appartient aussi à celle de l'ensemble $\{U(t)\chi(t)\chi | t \in \mathbb{Q}\}$. La proposition (nécessaire) résulte, dès lors, du théorème de Mazur suivant : dans un Banach, l'enveloppe convexe fermée d'un ensemble est faiblement fermée (cf. E. HILLE et R.S. PHILLIPS [1]).

Montrons que la condition est suffisante. Soit γ un élément pseudo-aléatoire. D'après le théorème de décomposition de Jacobs, on peut écrire :

$$\gamma = \gamma_1 + \gamma_2$$

où γ_1 est fuyant, et γ_2 presque-périodique. Le spectre de γ_2 est vide si celui de γ est vide. D'après le théorème d'unicité (qu'on va démontrer au prochain paragraphe), γ_2 est l'élément nul. Par suite

$$\gamma = \gamma_1.$$

IV - APPROXIMATION DES ÉLÉMENTS PRESQUE-PÉRIODIQUES -

1°) Lemme -

Soit γ un élément de \mathcal{F}. Considérons la fonction $t \rightarrow \theta_\gamma(t)$ définie sur \mathbb{Q}, à valeurs dans \mathbb{Z}, définie par

$$\theta_\gamma(t) = U(t)\gamma.$$

Si γ est un élément presque-périodique pour le groupe \mathbb{U}, alors $t \rightarrow \theta_\gamma(t)$ est une fonction de Bohr-Bochner (fonction uniformément-presque-périodique); les coefficients de Fourier α_x de θ_γ aux points $x \in \mathcal{F}$ sont égaux aux coefficients de Fourier α_x de γ aux mêmes points.

Le lemme résulte immédiatement de l'inégalité suivante :

$$\sup_t \| \theta_\gamma(t + t) - \theta_\gamma(t + a) \| \leq \| U(t)\gamma - U(a)\gamma \|.$$

2°) Théorème d'unicité -

Deux éléments presque-périodiques ayant même coefficients de Fourier sont égaux.
Tout revient à démontrer qu'un élément presque-périodique \(\gamma \) dont le spectre est vide est l'élément nul. Or le lemme précédent montre que le spectre de la fonction \(t \rightarrow \Theta_\gamma(t) \) est vide. D'après le théorème d'unicité pour les fonctions uniformément-presque-périodiques à valeurs dans un Banach (cf. S. BOCHNER et J. VON NEUMANN [1]), la fonction \(t \rightarrow \Theta_\gamma(t) \) est identiquement nulle. Par suite \(\gamma = 0 \).

3°) Convolution par une fonction de Bohr

On désignera par \(\mathcal{U} \) l'ensemble des fonctions de Bohr (fonctions numériques uniformément-presque-périodiques) muni de la topologie de convergence uniforme.

Soient \(\gamma \) un élément totalement ergodique \((\gamma \in \mathcal{C}) \) et \(\varphi \) une fonction de Bohr \((\varphi \in \mathcal{U}) \).

On appelle opérateur de convolution (au sens de Bohr) une application de \(\mathcal{C} \times \mathcal{U} \) dans \(\mathcal{U} \) qui, à chaque \(\gamma \in \mathcal{C} \) et \(\varphi \in \mathcal{U} \), fait correspondre l'élément \(C_\gamma \varphi \) de \(\mathcal{U} \).

i) qui est linéaire

ii) qui est fermée.

Il est immédiat que cette application est unique, et est définie dans tout l'espace \(\mathcal{C} \times \mathcal{U} \).

La convolée de \(f \) par \(\varphi \) sera notée \(f \otimes \varphi \).

4°) Théorème d'approximation

Tout élément presque-périodique \(\gamma \) est limite des "polynômes exponentiels" \(\sum_{i=1}^{n} C_i \varphi_i \).

Démonstration

Soit \(\{\varphi_\alpha\} \) une "identité approchée" de l'algèbre des fonctions de Bohr (cf. N. DUNFORD et J.T. SCHWARTZ [1], [2]); autrement dit soit \(\{\varphi_\alpha\} \) une suite généralisée de fonctions de Bohr positives, de moyenne égale à 1, telle que :

\[
\lim_{\alpha} \text{uniforme } \varphi_\alpha \otimes \varphi_\alpha = \varphi
\]

pour toute fonction de Bohr \(\varphi \).

Formons \(\gamma \otimes \varphi_\alpha \), puis montrons que

\[
\lim_{\alpha} (\gamma \otimes \varphi_\alpha - \gamma) = 0.
\]

On vérifie facilement que :

\[
[\gamma \otimes \varphi_\alpha] \otimes \varphi = \gamma \otimes [\varphi_\alpha \otimes \varphi],
\]
ce qui montre que :
\[\lim_{\lambda} \left(\lambda \otimes \varphi_{\lambda} - \varphi \right) = 0 \]
et par suite
\[\left\{ \lim_{\lambda} \left(\lambda \otimes \varphi_{\lambda} - \varphi \right) \right\} \otimes \varphi = 0 \], quel que soit \(\varphi \in \mathbb{R} \).

D'après le théorème d'unicité, on a :
\[\lim_{\lambda} \lambda \otimes \varphi_{\lambda} - \varphi = 0. \]

V - APPLICATIONS AUX ESPACES \(\mathcal{M}_P^p \left(\varphi ; X \right) \)-

Nous pouvons appliquer cette théorie générale de l'ergodicité et de la presque-périodicité au groupe des translations dans l'espace \(\mathcal{M}_C^p \left(\varphi ; X \right) \). Tous les résultats sont évidemment valables. Introduisons cependant de nouvelles terminologies.

1°) On appelle fonctions \(\mathcal{M}_C^p \)-constantes les éléments de \(\mathcal{M}_C^p \left(\varphi ; X \right) \) invariants par translation.

On appelle fonctions \(\mathcal{M}_C^p \) -ergodiques (resp. \(\mathcal{M}_C^p \)-totalement-ergodiques, resp. \(\mathcal{M}_C^p \)-faiblement-presque-périodiques, resp. \(\mathcal{M}_C^p \)-presque-périodiques, resp. \(\mathcal{M}_C^p \)-pseudo-aléatoires) les éléments de \(\mathcal{M}_C^p \left(\varphi ; X \right) \) ergodiques (resp. totalement ergodiques, resp. faiblement-presque-périodiques, resp. presque-périodiques, resp. pseudo-aléatoires) pour le groupe des translations.

2°) On appelle \(\mathcal{M}_C^p \)-moyenne la moyenne relative au groupe des translations dans \(\mathcal{M}_C^p \left(\varphi ; X \right) \). On désigne par \(\mathcal{M}_C^p \) l'opérateur de \(\mathcal{M}_C^p \)-moyenne.

On appelle coefficient de Fourier-Besicovitch le coefficient de Fourier relatif au groupe des translations dans \(\mathcal{M}_C^p \left(\varphi ; X \right) \).

3°) On appelle \(\mathcal{M}_C^p \)-polynômes exponentiels les polynômes exponentiels à coefficients \(\mathcal{M}_C^p \)-constants.

4°) Le théorème de décomposition de Jacobs s'énonce :
Toute \(\mathcal{M}_C^p \)-fonction \(\mathcal{M}_C^p \)-faiblement-presque-périodique se décompose, et d'une seule façon, en somme d'une fonction \(\mathcal{M}_C^p \)-presque-périodique et d'une fonction \(\mathcal{M}_C^p \)-pseudo-aléatoire
\[\mathcal{F}_P \left(\varphi ; X \right) = \mathcal{M}_P \left(\varphi ; X \right) \oplus \mathcal{M}_P \left(\varphi ; X \right) \]

Ce théorème a été démontré par J.P. BERTRANDIAS dans le cas où \(\varphi \in \mathbb{R} \) et \(X \subset \mathbb{C} \) en utilisant la notion "d'ensemble de corrélations".

5°) Le théorème d'approximation s'énonce :
Toute \(\mathcal{M}_C^p \)-fonction \(\mathcal{M}_C^p \)-presque-périodique est limite de \(\mathcal{M}_C^p \)-polynômes exponentiels.
L'ensemble des fonctions \mathfrak{M}_c^p-constantes (resp. \mathfrak{M}_c^p-ergodiques, resp. \mathfrak{M}_c^p-totalement-ergodiques, resp. \mathfrak{M}_c^p-faiblement-presque-périodiques, resp. \mathfrak{M}_c^p-presque-périodiques, resp. \mathfrak{M}_c^p-pseudo-aléatoires) sera désigné par $\mathfrak{K}_c^p(Q ; X)$ [resp. $\mathfrak{C}_c^p(Q ; X)$, resp. $\mathfrak{C}_c^p(Q ; X)$, resp. $\mathfrak{C}_c^p(Q ; X)$, resp. $\mathfrak{C}_c^p(Q ; X)$, resp. $\mathfrak{C}_c^p(Q ; X)$].

VI - RESULTATS SPECIAUX -

1°) Expression explicite de la \mathfrak{M}_c^p-moyenne -

A tout $f \in \mathfrak{M}_c^p(Q ; X)$, associons la famille $\{M_d f\}$ définie par:

$$M_d f = \frac{1}{\sqrt{\left(\Omega_d^p\right)}} \int_{\Omega_d^p} f(t - \sigma) \, d\sigma$$

Les fonctions $M_d f$ sont appelées les moyennes approchées de Bohr de la fonction f. Ce sont les produits de convolution de f par les fonctions $$\frac{1}{\sqrt{\left(\Omega_d^p\right)}}$$ où Ω_d^p désigne la fonction caractéristique de Ω_d^p.

Les résultats obtenus au chapitre Al sur le produit de convolution montrent que les opérateurs M_d possèdent les propriétés suivantes :

1) Pour chaque d, M_d est un opérateur linéaire de $\mathfrak{M}_c^p(Q ; X)$ dans lui-même ;

2) Pour chaque f, et pour tout d, on a $M_d f \in \mathcal{C}(f ; \mathfrak{M}_c^p, X)$;

3) Les opérateurs M_d sont uniformément bornés par 1 ;

4) Pour chaque $f \in \mathfrak{M}_c^p(Q ; X)$, et pour tout $\Delta \in \mathfrak{M}_c^p$, on a :

$$\text{lim}_{d \to \infty} \left(\mathfrak{M}_c^p \mathfrak{M}_c^p \lim \left(U_d M_d f - M_d f \right) \right) = 0$$

(pour démontrer (ii), on reprend le raisonnement Al, IV 1°) b, on pose

$$a_d = \int_{U_d^p} d\mu(\sigma) = \int_{U_d^p} \frac{\sigma}{\sigma} \, d\nu(\sigma) = \frac{\nu(U_d^p)}{\nu(\Delta)}$$

comme les U_d^p sont disjoints et tels que $\Delta = \bigcup_{d=1}^{\infty} U_d^p$, on a $\sum_{d=1}^{\infty} a_d = 1$)

La famille d'opérateurs $\{M_d\}$ forme donc un système d'intégrales presque invariantes pour le groupe ergodique des translations. Le théorème ergodique d'Eberlein fournit alors l'interprétation suivante de la \mathfrak{M}_c^p-moyenne

Si la \mathfrak{M}_c^p-moyenne d'une \mathfrak{M}_c^p-fonction f existe, alors elle est la \mathfrak{M}_c^p-limite de

$$M_d f(t) = \frac{1}{\sqrt{\left(\Omega_d^p\right)}} \int_{\Omega_d^p} f(t - \sigma) \, d\sigma$$
et réciproquement.

2°) Théorème de sommation -

Soit f une fonction \mathcal{M}^p-presque-périodique, à valeurs dans un espace de Hilbert H. Soient C_{X_i} ses coefficients de Fourier-Besicovitch. Alors :

i) la série de Fourier-Besicovitch $\sum_{i=1}^{\infty} C_{X_i} X_i$ de f converge dans $\mathcal{M}^p(\ell^2; H)$ vers f,

ii) la série $\sum_{i=1}^{\infty} \| C_{X_i} \|^2$ converge dans $\mathcal{M}^p(\ell^2; \mathbb{R})$ vers $\mathbb{M} \{ \| f \|^2 \}$.

iii) on a la formule de sommation suivante :

$$\| \sum_{i=1}^{\infty} C_{X_i} \|^p = \| f \|^p$$

La démonstration se fait comme dans J.P. BERTRANDIAS [I, dernier chapitre]. On note que l'on a la formule de sommation bien que $\mathcal{M}^p(\ell^2; H)$ ne soit pas un espace de Hilbert.

3°) Transformations linéaires -

Soient x et y deux espaces de Banach, A un opérateur borné de x dans $y : A : \mathcal{L}(x \rightarrow y)$.

Proposition -

Si f est une fonction \mathcal{M}^p-(totalement)-ergodique, ou \mathcal{M}^p-(faiblement)-presque-périodique, ou \mathcal{M}^p-pseudo-aléatoire, à valeurs dans x, alors Af est une fonction "de même nature" à valeurs dans y.

La démonstration est immédiate.

4°) Transformations non-linéaires -

On obtient des résultats analogues à ceux du paragraphe A1, II 5°). En particulier, retenons le résultat suivant.

Proposition -

Soient x, y et z trois espaces de Banach. Considérons un élément Ω de $\mathcal{L}(x, y \rightarrow z)$. Soit f un élément de $\mathcal{M}^p(\ell^2; x)$.

Si $g \in \mathcal{S}^p(\ell^2; y)$, alors $\Omega(f, g) \in \mathcal{S}^p(\ell^2; z)$

Si $g \in \mathcal{F}^p(\ell^2; y)$, alors $\Omega(f, g) \in \mathcal{F}^p(\ell^2; z)$

Si $g \in \mathcal{T}^p(\ell^2; y)$, alors $\Omega(f, g) \in \mathcal{T}^p(\ell^2; z)$

Si $g \in \mathcal{A}^p(\ell^2; y)$, alors $\Omega(f, g) \in \mathcal{A}^p(\ell^2; z)$

$$\Omega = \frac{1}{p} + \frac{1}{q}.$$
I - FONCTIONS \mathcal{M}^p-RÉGULIÈRES -

1°) Définitions (cf. J.P. BERTRANDIAS [1]) -

On dit qu'une \mathcal{M}^p-fonction est \mathcal{M}^p-régulière si, quel que soit $h \in \mathfrak{Q}$, on a :

$$\lim_{j \to \infty} \frac{1}{\mathfrak{V}(\mathfrak{W}_j)} \int_{(h, \mathfrak{W}_j) \cap \mathfrak{W}_j} \|f(t)\|_p \, d\mathcal{V}(t) = 0$$

On désignera par $\mathcal{M}^p_0(\mathfrak{Q}; X)$ l'ensemble des \mathcal{M}^p-fonctions \mathcal{M}^p-régulières, et par $\mathcal{M}^p_0(\mathfrak{Q}; X)$ le quotient $\mathcal{M}^p_0(\mathfrak{Q}; X)/\mathcal{N}^p$.

2°) Propriété -

L'ensemble $\mathcal{M}^p_0(\mathfrak{Q}; X)$ est un sous-espace vectoriel fermé de $\mathcal{M}^p_0(\mathfrak{Q}; X)$. La démonstration est immédiate.

3°) Rapport entre les différents espaces $\mathcal{M}^p_0(\mathfrak{Q}; X)$ et $\mathcal{M}^p_0(\mathfrak{Q}; X)$ -

a) Si $f \in \mathcal{M}^p_0(\mathfrak{Q}; X)$, alors $f \in \mathcal{M}^q_0(\mathfrak{Q}; X)$, avec $q < p$. Ce résultat est une conséquence de l'inégalité de Hölder.

b) Si $f \in \mathcal{M}^p_0(\mathfrak{Q}; X)$ et $g \in \mathcal{M}^q(\mathfrak{Q}; Y)$, alors $\Omega(f, g) \in \mathcal{M}^p_0(\mathfrak{Q}; Z)$ pour tout $\Omega \in \mathcal{J}(X, Y \to Z)$.

4°) Exemples de fonctions \mathcal{M}^p-régulières -

a) Toutes les fonctions \mathcal{M}^p-constantes sont \mathcal{M}^p-régulières (cf. J.P. BERTRANDIAS [1]).
b) On en déduit que toutes les fonctions W_j-presque-périodiques sont M_p-régulières.

c) Les \mathcal{G}_p-fonctions, qu'on étudiera au paragraphe IV, sont des fonctions M_p-régulières.

II - FONCTIONS MOYENNABLES -

1°) Opérateur de moyenne approchée M_j -

Soit f un élément de $M'(\mathcal{G}_j; X)$. Posons :

$$M_j f = \frac{1}{\nu(A_j)} \int f(t) \, d\nu(t),$$

ce qui définit l'opérateur linéaire M_j de $M'(\mathcal{G}_j; X)$ dans X. Cet opérateur n'est pas continu, car $\|f\|_1 = 0$ n'entraîne pas $M_j f = 0$.

2°) Opérateur de moyenne - Fonction moyennable -

On dit qu'une M'-fonction est moyennable si $M_j f$ tend vers une limite g, appelée moyenne de f, quand j tend vers ∞.

On pose :

$$g = M f \quad \text{ou} \quad g = M_j f(t),$$

ce qui définit l'opérateur de moyenne M de $M'(\mathcal{G}_j; X)$ dans X.

On a :

$$\|M f\| \leq \|g\|,$$

si f est moyennable.

Il est immédiat que toute M'-fonction de semi-norme nulle est moyennable et de moyenne nulle. Cette propriété nous permet de définir la moyennabilité et la moyenne d'un élément de $M'(\mathcal{G}_j; X)$.

Evidemment, l'opérateur de moyenne M n'est pas défini dans tout l'espace $M'(\mathcal{G}_j; X)$, son domaine sera noté $M(\mathcal{G}_j; X)$.

3°) Propriété de l'opérateur M -

L'opérateur M est un opérateur linéaire borné et fermé de l'espace $M'(\mathcal{G}_j; X)$ dans X.

Autrement dit :

i) la M-limite d'une suite convergente $\{f_n\}$ de fonctions moyennables est une fonction moyennable f ;

ii) la x-limite de $M f_n$ est $M f$.

Démonstration -

Comme l'opérateur M est borné, il suffit de démontrer la proposition (i).
Ecrivons :
\[\| \sum_{j} f - \sum_{j} f_{n} \| < \| \sum_{j} f - \sum_{j} f_{n} \| + \| \sum_{j} f_{n} - \sum_{j} f_{n} \| + \| \sum_{j} f - \sum_{j} f_{n} \| \]

Donnons \(\varepsilon > 0 \), et choisissons \(n \) assez grand \(n > N(\varepsilon) \) pour que :
\[\| f - f_{n} \| < \varepsilon . \]

Fixons \(n = n_{0} > N(\varepsilon) \). Il existe \(J_{n}(\varepsilon) \) tel que :
\[\| \sum_{j} f - \sum_{j} f_{n} \| < 2 \varepsilon , \]
dès que \(j > J_{n}(\varepsilon) \).

D'autre part, \(f_{n} \) est moyennable. On peut donc choisir \(J_{n}(\varepsilon) \) tel que :
\[\| \sum_{j} f_{n} - \sum_{j} f_{n} \| < \varepsilon , \]
dès que \(j \) et \(k \) dépassent \(J_{n}(\varepsilon) \) et \(J_{n}(\varepsilon) \). Par conséquent, dès que \(j \) et \(k \) dépassent \(J_{n}(\varepsilon) \) et \(J_{n}(\varepsilon) \), on a :
\[\| \sum_{j} f_{n} - \sum_{j} f_{n} \| < 5 \varepsilon , \]
ce qui montre que \(f \) est moyennable.

Nota - On remarque l'analogue de cette démonstration et de celle (d'une partie) d'un théorème d'Ascoli.

4°) Invariance par translation -

Si \(f \) est une fonction moyennable et \(\mathcal{M}^{1} \)-régulière, alors \(Uhf \) est aussi moyennable, quel que soit \(h \), et
\[\mathcal{M}f = \mathcal{M}(Uhf) \]

Le résultat est une conséquence immédiate de la définition de la \(\mathcal{M}^{1} \)-régularité.

5°) Fonctions moyennables et fonctions ergodiques -

Une fonction moyennable n'est pas nécessairement \(\mathcal{M}^{1} \)-ergodique, et une fonction \(\mathcal{M}^{1} \)-ergodique n'est pas nécessairement moyennable.

Cependant, on a le théorème suivant :

Théorème -

Si \(f \) est une fonction \(\mathcal{M}^{1} \)-régulière, alors entre ses moyennes approchées \(\mathcal{M}_{a}f \) et ses moyennes approchées au sens de Bohr \(\mathcal{M}_{b}f \), on a la relation suivante :
\[\lim_{a \to \infty} \inf \| \mathcal{M}_{a}f \| = \inf \| \mathcal{M}_{b}f \| . \]

Démonstration -

Par définition des moyennes approchées :
\[\mathcal{M}_{a}f = \frac{1}{\nu(A_{a})} \int_{A_{a}} f(t) \, d\nu(t) \]
\[\mathcal{M}_{b}f(t) = \frac{1}{\nu(A_{b})} \int_{A_{b}} f(t+a) \, d\nu(a) \]
Evidemment, nous avons :

\[\frac{1}{\nu(A_{\delta})} \int_{A_{\delta}} M_{\delta}(U_{\delta}f) \, d\nu(t) = \frac{1}{\nu(A_{\delta})} \int_{A_{\delta}} M_{\delta} f(t) \, d\nu(t) \]

D'où :

\[\limsup_{\delta \to \infty} \left\| \frac{1}{\nu(A_{\delta})} \int_{A_{\delta}} M_{\delta}(U_{\delta}f) \, d\nu(t) \right\| = \limsup_{\delta \to \infty} \left\| \frac{1}{\nu(A_{\delta})} \int_{A_{\delta}} M_{\delta} f(t) \, d\nu(t) \right\| \leq \| M_{\delta} f \|_1 . \]

Il nous reste donc à démontrer la relation suivante :

\[\limsup_{\delta \to \infty} \| \int_{A_{\delta}} M_{\delta}(U_{\delta}f) \, d\nu(t) \| = \limsup_{\delta \to \infty} \| \int_{A_{\delta}} M_{\delta} f \, d\nu(t) \|. \]

Pour cela, il nous suffit de démontrer l'égalité suivante :

\[\lim_{\delta \to \infty} \int_{A_{\delta}} \| M_{\delta} f - M_{\delta}(U_{\delta}f) \| \, d\nu = 0 . \]

Or, par hypothèse \(f \) est \(\mathcal{M}^p \)-régulière, on en déduit :

\[\lim_{\delta \to \infty} \| M_{\delta} f - M_{\delta}(U_{\delta}f) \| = 0 . \]

Le théorème de Lebesgue sur l'intégration d'une suite majorée donne ensuite le résultat voulu.

Corollaire important -

Si la \(\mathcal{M}^p \)-moyenne d'une fonction \(\mathcal{M}^p \)-régulière \(f \) existe et est nulle (en norme), alors la moyenne ordinaire de \(f \) existe et est nulle.

En particulier, si \(f \) est une \(\mathcal{M}^p \)-fonction \(\mathcal{M}^p \)-pseudo-aléatoire \((\mathcal{P} > 1) \), alors :

\[\mathcal{M}_{\delta}(t) \left\{ \int e^{ixt} f(t) \right\} = 0 , \text{ quel que soit } x \in \mathbb{S} . \]

III - COMPARABILITÉ PAR DUALITÉ - CORRELATION -

1°) **Définitions** -

1) On dit que les éléments \(f \in \mathcal{M}^p(\mathbb{R}_+ \times X) \) et \(g \in \mathcal{M}^q(\mathbb{R}_+ \times X') \), où \(\frac{1}{p} + \frac{1}{q} = 1 \), sont \(\gamma \)-comparables si la fonction numérique \(t \rightarrow \int f(t)g(t) \) est moyennable.

La moyenne de cette fonction définit la corrélation entre les fonctions \(f \) et \(g \) :

\[\gamma_{f,g} = \mathcal{M}_{\delta}(t) \int f(t)g(t) \]
ii) On dit que deux sous-ensembles \(A \subset \mathcal{M}^p(\varphi; x) \) et \(B \subset \mathcal{M}^q(\varphi; x^r) \) sont \(\# \)-comparables si tout élément de \(A \) est \(\# \)-comparable à tout élément de \(B \).

Il est évident que si une \(\mathcal{M}^q \)-fonction \(\mathcal{M}^q \)-régulière \(g \) est \(\# \)-comparable à toutes les translatées \(\Lambda_k \) d'une \(\mathcal{M}^p \)-fonction \(f \), alors les deux sous-espaces \(\mathcal{C}(f; \mathcal{M}^p, x) \) et \(\mathcal{C}(g; \mathcal{M}^q, x^r) \) sont \(\# \)-comparables. La fonction \(h \rightarrow \gamma_f\left(\frac{h}{t}\right) = \mathcal{C} \left\langle f(t + h) \mid q(t) \right\rangle \) s'appelle fonction de corrélation mutuelle des fonctions \(f \) et \(g \).

2°) Suites \(\# \)-comparables - Théorème -

Soient deux suites convergentes \(f_n \) et \(g_n \) tendant respectivement dans \(\mathcal{M}^p(\varphi; x) \) vers \(f \) et dans \(\mathcal{M}^q(\varphi; x^r) \) vers \(g \).

i) Si les fonctions \(f_n \) et \(g_n \) sont \(\# \)-comparables pour chaque \(n \), alors les fonctions \(f \) et \(g \) sont \(\# \)-comparables et \(\gamma_{f_n g_n} = \gamma_{fg} \).

ii) Si les fonctions \(f_n \) et \(g_n \) sont régulières et si les espaces \(\mathcal{C}(f_n; \mathcal{M}^p, x) \) et \(\mathcal{C}(g_n; \mathcal{M}^q, x^r) \) sont \(\# \)-comparables pour chaque \(n \), alors les espaces \(\mathcal{C}(f; \mathcal{M}^p, x) \) et \(\mathcal{C}(g; \mathcal{M}^q, x^r) \) sont \(\# \)-comparables et \(\gamma_{f_n g_n}(h) \) tend uniformément vers \(\gamma_{fg}(h) \).

Démonstration -

L'inégalité de Hőlder montre que les fonctions

\[
t \rightarrow <f_n(t, h)|g_n(t)>
\]

tendent vers la fonction

\[
t \rightarrow <f(t, h)|g(t)>
\]

dans l'espace \(\mathcal{M}^p(\varphi; \mathbb{C}) \).

Dès lors, le théorème à démontrer est une conséquence immédiate du fait que l'operateur de moyenne est borné et fermé de l'espace \(\mathcal{M}^p(\varphi; \mathbb{C}) \) dans \(\mathbb{C} \).

IV - ESPACES \(\mathcal{G}^p(\varphi; x) \) -

1°) Définitions -

Une \(\mathcal{M}^p \)-fonction \(f \) est dite \(\mathcal{P}^p \)-fonction si \(\|f(t)\|_p \) est une fonction moyennable.

On désignera par \(\mathcal{P}^p(\varphi; x) \) l'ensemble des \(\mathcal{P}^p \)-fonctions et par \(\mathcal{G}^p(\varphi; x) \) le quotient \(\mathcal{P}^p(\varphi; x)/\mathcal{M}^p \).
2°) Propriétés -

a) L'ensemble $G^p(\varphi, x)$ n'est pas un espace vectoriel.

b) Toute G^p-fonction est M^p-régulière.

c) Si f est une G^p-fonction, alors $U_p f$ est aussi une G^p-fonction.

d) Avec la topologie induite par celle de $M^p(\varphi; x)$ l'ensemble $G^p(\varphi; x)$ est un espace métrique complet.

En effet, si $f_n \rightarrow f$ dans $M^p(\varphi; x)$, alors $\| f_n \|^p \rightarrow \| f \|^p$ dans $M^p(\varphi; \mathbb{R})$. Comme l'opérateur de moyenne est borné et fermé, la proposition (d) est démontrée.

3°) Comparabilité linéaire dans les espaces $G^p(\varphi; x)$ -

a) Définition -

Les G^p-fonctions f_n sont dites linéairement comparables si la somme $\lambda_1 f_1 + \ldots + \lambda_n f_n$ est une G^p-fonction, quel que soit le nombre complexe λ_i ($i = 1, \ldots, n$).

b) Proposition -

Soient $\{f_n\}$ et $\{g_n\}$ deux suites convergentes de G^p-fonctions linéairement comparables pour chaque n. Alors leurs M^p-limites f et g sont linéairement comparables.

Il suffit de remarquer que la suite $\{f_n + \lambda g_n\}$ tend vers la fonction $\{f + \lambda g\}$ quel que soit λ, suivant la M^p-métrique. Comme $G^p(\varphi; x)$ est fermé dans $M^p(\varphi; x)$ la proposition est démontrée.

c) Sous-espaces de Banach de $G^p(\varphi; x)$ -

La fermeture, dans $M^p(\varphi; x)$, de tout sous-espace vectoriel E de $G^p(\varphi; x)$ est encore un sous-vectoriel E de $G^p(\varphi; x)$ d'après la proposition précédente; E est donc un Banach.

V - ESPACE $G(\varphi; H)$ DE RASS -

Plaçons-nous dans le cas particulier très important où $p = 2$ (on n'écrira jamais l'indice 2) et où x est un espace de Hilbert H. Nous obtenons l'espace $G(\varphi; H)$ de J. BASS [1], [2], [3].

Notons les résultats suivants :

1°) Deux éléments f et g de $G(\varphi; H)$ sont linéairement comparables si et seulement s'ils sont φ-comparables.

Leur corrélation peut s'exprimer en fonction des normes de leurs combinaisons linéaires :
2°) Si plusieurs \(S\)-fonctions sont \(\ast\)-comparables deux à deux, elles sont linéairement comparables dans leur ensemble et réciproquement.

3°) Chaque ensemble de \(S\)-fonctions \(\ast\)-comparables deux à deux est donc un sous-espace vectoriel \(E\) de l'espace \(S\) \((\mathcal{S} ; H)\). L'adhérence \(\overline{E}\) de \(E\) dans \(\mathcal{M}_c(\mathcal{S} ; H)\) est dans \(S\) \((\mathcal{S} ; H)\) et peut être structuré en un espace de Hilbert en prenant comme produit scalaire \(\langle f(t) \mid g(t) \rangle_{\mathcal{L}}\).

Dans la suite, tout sous-espace vectoriel fermé de \(S\) \((\mathcal{S} ; H)\) sera structuré en un espace de Hilbert par ce procédé.

Convention très importante -

Dans la suite, nous étudierons des sous-espaces fermés, invariants par translation de l'espace \(\mathcal{M}_c(\mathcal{S} ; X)\). Nous désignerons (incorrectement) par la même lettre un sous-espace de l'espace semi-normé \(\mathcal{M}_c(\mathcal{S} ; X)\) et son image canonique dans l'espace normé \(\mathcal{M}_0(\mathcal{S} ; X)\). De même nous désignons par la même lettre un élément de \(\mathcal{M}_c(\mathcal{S} ; X)\) et son image canonique dans \(\mathcal{M}_0(\mathcal{S} ; X)\).
I - PROPRIETES ELEMENTAIRES -

Soit $t \rightarrow f(t)$ une fonction définie sur le groupe \mathbb{G}, à valeurs dans un espace de Hilbert \mathcal{H}, localement intégrable.

1°) Définitions -

La fonction f est dite quasi-stationnaire si :

i) f est une \mathcal{M}^2-fonction \mathcal{M}^2-continue

ii) f est une \mathcal{F}-fonction comparable à toutes ses translatées.

La moyenne en b de $\langle f(b + k) | f(t) \rangle$ s'appelle fonction d'autocorrélation $\gamma(k)$ de la fonction quasi-stationnaire f.

L'ensemble des fonctions quasi-stationnaires sera désigné par $S(\mathbb{G}; \mathcal{H})$, c'est un sous-espace métrique non vectoriel de l'espace $\mathcal{M}^2(\mathbb{G}; \mathcal{H})$.

2°) Invariance par translation (1) -

(1) Note - Considérons la famille $\{ f_k = U_k f ; k \in \mathbb{G} \}$. On a :

i) $\mathcal{M} \| f_k \| < \infty$ pour chaque k

ii) $\mathcal{M} \langle f_{k + h}, f_k \rangle = \gamma(h)$ ne dépend pas de k.

Selon une terminologie probabiliste (cf. par exemple J.L. DOOB [1]), chapitre II, paragraphe 8 b), cette famille est quasi-stationnaire (ou stationnaire au sens large).
a) Proposition - Si \(f \) est quasi-stationnaire, alors \(U \phi \) est aussi quasi-stationnaire, quel que soit \(\delta \in \mathcal{H} \); de plus \(U \phi \) admet la même fonction d'autocorrélation que \(f \).

En effet, d'après le paragraphe A3, \(\gamma \), la fonction de corrélation peut s'exprimer au moyen des normes qui sont invariantes par translation.

b) Espace \(\tau(\mathcal{F} ; \mathcal{H}) \) -

L'espace \(\tau(\mathcal{F} ; \mathcal{H}) \) a été défini au paragraphe Al, II 3°) c. C'est un sous-espace vectoriel fermé de l'espace \(\mathcal{F}(\mathcal{H}) \). Nous le structurons en un espace hilbertien par la méthode indiquée au paragraphe A3, \(\gamma \).

c) Conséquence immédiate - Toute fonction quasi-stationnaire est \(\mathcal{H} \)-faiblement-presque-périodique.

Cette proposition découle de la faible compacité de la boule unité d'un espace de Hilbert.

3°) Théorème caractéristique -

1) La fonction d'autocorrélation \(\gamma(\mathcal{F}) \) d'une fonction quasi-stationnaire \(f \) est une fonction uniformément-faiblement-presque-périodique (fonction d'Eberlein [1]). En particulier, elle est uniformément continue en \(\mathcal{F} \).

ii) Réciproquement, si \(\gamma(\mathcal{F}) \) existe pour tout \(\mathcal{F} \) et est continue pour \(\mathcal{F} = 0 \), alors \(f \) est quasi-stationnaire.

Démonstration -

La proposition (i) est une conséquence immédiate d'un théorème d'Eberlein [1] et du fait que \(U_\phi \) est un opérateur unitaire de l'espace hilbertien \(\tau(\mathcal{F} ; \mathcal{H}) \).

La proposition (ii) se déduit de l'égalité suivante :

\[\| U_\phi f - f \| = 2 \gamma(0) - \gamma(\eta) - \gamma(-\eta) \]

4°) Fonctions quasi-stationnaires comparables -

a) Définition -

Des fonctions quasi-stationnaires \(f_i \), \(i = 1, \ldots, n \), sont dites linéairement comparables dans leur ensemble si :

\[\lambda_1 f_1 + \ldots + \lambda_n f_n \]

est encore une fonction quasi-stationnaire, quels que soient les nombres complexes \(\lambda_i \).

b) Conséquence -

Deux fonctions quasi-stationnaires \(f \) et \(g \) sont linéairement comparables si et seulement si les fonctions \(U_\phi f \) et \(U_\phi g \) sont +-comparables, quel que soit \(\mathcal{F} \) (cf. paragraphe A3, III). La fonction \(\mathcal{F} \rightarrow \mathbb{R} \langle f(t),\mathcal{F} \rangle g(t) \rangle \)
On en déduit que si des fonctions quasi-stationnaires \(f \) et \(g \) sont linéairement comparables deux à deux, alors elles sont linéairement comparables dans leur ensemble. Elles forment donc un sous-espace vectoriel de l'espace \(S(\mathbb{Q}; H) \).

5°) Convergence dans l'espace métrique \(S(\mathbb{Q}; H) \) -

a) Théorème - L'ensemble \(S(\mathbb{Q}; H) \) est un sous-espace fermé de l'espace \(M^2(\mathbb{Q}; H) \).

Plus précisément : Soient \(\{f_n\} \) et \(\{g_n\} \) deux suites convergentes de fonctions quasi-stationnaires linéairement comparables pour chaque \(n \). Alors, leurs \(M^2 \)-limites \(f \) et \(g \) sont des fonctions quasi-stationnaires comparables; la fonction de corrélation mutuelle \(\gamma_{fg}(\mathbb{K}) \) est limite uniforme de la suite \(\gamma_{f_n g_n}(\mathbb{K}) \).

Ce théorème est un cas particulier du théorème du paragraphe A3, III 2°).

b) Application -

Tout sous-espace vectoriel de fonctions quasi-stationnaires peut être complété; on obtient ainsi un espace de Hilbert de fonctions quasi-stationnaires.

II - ANALYSE SPECTRALE ENERGETIQUE -

1°) Mesure spectrale énergétique -

Théorème - La fonction d'autocorrélation \(\gamma \) d'une fonction quasi-stationnaire \(f \) est la transformée de Fourier d'une mesure \(\sigma \) positive bornée appelée mesure spectrale énergétique de \(f \):

\[
\gamma(\mathbb{K}) = \int_\mathbb{Q} e^{ix\mathbb{K}} d\sigma(\chi), \quad \text{avec } \sigma(\mathbb{Q}) < \infty
\]

Démonstration -

D'après la proposition I 2°) sur l'invariance par translation, l'application \(\mathbb{K} \mapsto \mathcal{U}(\mathbb{K}) \) est une représentation unitaire continue du groupe \(\mathbb{Q} \) dans l'espace hilbertien \(\mathcal{U}(\mathbb{Q}; \mathbb{H}) \). Par suite (cf. par exemple J.DIXMIER [21], théorème 13.4.5 (ii)), la fonction \(\mathbb{K} \mapsto \gamma(\mathbb{K}) \) est continue et de type positif. La proposition à démontrer résulte alors d'un théorème classique de Bochner (cf. par exemple A. WEIL [11]).

2°) Coefficients de Fourier-Bohr de \(\gamma(\mathbb{K}) \).

Théorème - Les coefficients de Fourier-Bohr \(a_\lambda \) de la fonction \(\mathbb{K} \mapsto \gamma(\mathbb{K}) \) existent, sont réels positifs et égaux aux sauts \(a_\lambda \) de la mesure \(\sigma \) aux points \(\lambda \).

Le spectre de la fonction \(\mathbb{K} \mapsto \gamma(\mathbb{K}) \) est donc l'ensemble des points de discontinuité de la mesure \(\sigma \).

42
Ce théorème est classique; la démonstration se trouve par exemple dans W.F. EBERLEIN [4].

3°) Coefficients de Fourier-Besicovitch de f

Comme toute fonction quasi-stationnaire est M^2-faiblement-presque-périodique, elle est M^2-totalement-ergodique (chapitre A2).

Plus précisément :

Théorème -

i) Les coefficients de Fourier-Besicovitch C_λ d'une fonction quasi-stationnaire sont des fonctions quasi-stationnaires M^2-constantes.

ii) La M^2-norme de la fonction $t \mapsto C_\lambda(t)$ est égale au saut Δ_λ de la mesure spectrale énergétique au point λ.

Il suffit de démontrer le théorème pour $\lambda = 0$, le cas général s'en déduit facilement.

D'après les propriétés de la M^2-moyenne, C_0 est un élément de l'enveloppe convexe fermée $\mathcal{C}^F(f; M^2, H)$. On en déduit d'abord que la fonction $t \mapsto C_0(t)$ est quasi-stationnaire. D'autre part, d'après le théorème du paragraphe I 5°) sur la convergence dans l'espace $S(f^2; H)$, $\| C_0 \|^2$ est un élément de l'enveloppe convexe fermée engendrée par la fonction $k \mapsto \gamma(k)$. Autrement dit :

$$\| C_0 \|^2 = \gamma_{(k)}(h_0) = \lambda_0.$$

4°) Classification des fonctions quasi-stationnaires - Décomposition -

a) Fonctions S-presque-périodiques -

Une fonction f est dite S-fonction S-presque-périodique si elle est en même temps quasi-stationnaire et M^2-presque-périodique.

Les résultats précédents montrent alors qu'une fonction quasi-stationnaire f est S-fonction S-presque-périodique si et seulement si l'une des conditions (équivalentes) suivantes se réalise :

i) σ est une mesure atomique (ou discrète) : $\sigma(\lambda) = \Sigma \delta_\lambda(\lambda)$, où $\delta_\lambda(\lambda)$ est la masse de Dirac placée au point λ.

ii) $\gamma(k)$ est une fonction de Bohr (fonction uniformément-presque-périodique):

$$\gamma(k) = \Sigma \Delta_\lambda e^{i\lambda k}.$$

Les théorèmes d'approximation et de sommation démontrés au chapitre A2 s'appliquent évidemment aux S-fonctions S-presque-périodiques; notons que les coefficients de Fourier-Besicovitch sont dans ce cas des fonctions quasi-stationnaires M^2-constantes.
b) \(S\)-fonctions \(S\)-pseudo-aléatoires

Une fonction \(f\) est dite \(S\)-fonction \(S\)-pseudo-aléatoire si elle est en même temps quasi-stationnaire et \(M^2\)-pseudo-aléatoire.

Les résultats précédents montrent alors qu'une fonction quasi-stationnaire \(f\) est \(S\)-pseudo-aléatoire si et seulement si l'une quelconque des conditions (équivalentes) suivantes se réalise :

i) \(\sigma\) est une mesure diffuse (ou continue)

ii) le spectre de \(\gamma(h)\) est vide; autrement dit \(\|\gamma(h)\|^2 = 0\).

Les propriétés démontrées pour une fonction \(M\)-pseudo-aléatoire sont évidemment aussi celles des fonctions \(S\)-pseudo-aléatoires (cf. chapitre A2). En particulier :

La moyenne et les coefficients de Fourier d'une fonction \(S\)-pseudo-aléatoire existent et sont nuls (cf. chapitre A3, paragraphe II 5°).

c) Théorème de décomposition

Toute fonction quasi-stationnaire \(f\) est décomposable, et d'une seule façon, en somme d'une \(S\)-fonction \(S\)-presque-périodique et d'une \(S\)-fonction \(S\)-pseudo-aléatoire.

Démonstration

Considérons \(f\) comme une fonction \(M\)-faiblement-presque-périodique. D'après le théorème de décomposition de Bertrandias (cf. chapitre A2), on peut écrire, et d'une seule façon :

\[f = f_1 + f_2\]

où \(f_1\) est \(M\)-presque-périodique
\(f_2\) est \(M\)-pseudo-aléatoire.

Il s'agit de démontrer que \(f_1\) et \(f_2\) sont quasi-stationnaires. Comme \(f\) est quasi-stationnaire, les coefficients de Fourier-Besicovitch \(C_\lambda\) de \(f\) sont des fonctions quasi-stationnaires linéairement comparables à \(f\). D'après le théorème de sommation (chapitre A2), \(f_1\) est la \(M\)-limite de la fonction \(t \rightarrow \sum C_\lambda(t) e^{i\lambda t}\). D'après le théorème sur la convergence dans l'espace \(S(\mathbb{Q}; H)\), \(f_1\) est une fonction quasi-stationnaire linéairement comparable à \(f\); ce résultat montre alors que \(f_2\) est aussi quasi-stationnaire.

Remarque

On désignera par \(S\Pi(\mathbb{Q}; H)\) l'ensemble des fonctions \(S\)-presque-périodiques et par \(S\mathcal{M}(\mathbb{Q}; H)\) l'ensemble des fonctions \(S\)-pseudo-aléatoires. Le théorème de décomposition s'écrit :

\[S(\mathbb{Q}; H) = S\Pi(\mathbb{Q}; H) \oplus S\mathcal{M}(\mathbb{Q}; H)\]

Nota - Nous utilisons le signe \(\oplus\) bien que \(S(\mathbb{Q}; H)\) ne soit pas un espace vectoriel.
5°) Convolution d'une fonction quasi-stationnaire par une mesure de Radon -

Puisqu'une fonction quasi-stationnaire f est \mathcal{F}-continue, sa convolution $g = f \ast \mu$ par une mesure de Radon μ appartient à $\mathcal{C}(\mathcal{F})$. C'est donc une fonction quasi-stationnaire. Plus précisément, nous avons le résultat suivant :

La fonction d'autocorrélation de g est donnée par :

$$\gamma_g(k) = \int \left| \hat{\mu}(\lambda) \right|^2 e^{i\lambda k} d\sigma(\lambda)$$

où $\hat{\mu}$ est la transformée de Fourier-Stieltjes de μ.

Démonstration -

En effet :

$$g = \int U(\cdot, s) f d\mu(s)$$

D'où :

$$\gamma_g(k) = \mathcal{F} \left[\int U(-\cdot, s) f d\mu(s) \right] = \int \left| \hat{\mu}(\lambda) \right|^2 d\sigma(\lambda)$$

Or, l'opérateur de moyenne \mathcal{F} est borné et fermé ; par suite :

$$\gamma_g(k) = \int \left| \int \frac{\lambda}{\hat{\mu}(\lambda)} d\sigma(\lambda) \right|^2 d\mu(s) d\mu(t)$$

Comme

$$\gamma_k(x) = \int e^{ix^2} d\sigma(x)$$

et $\hat{\mu}(\lambda) = \int e^{i\lambda x} d\mu(x)$,

la proposition est démontrée.

III - ANALYSE SPECTRALE ELEMENTAIRE -

1°) Mesure spectrale élémentaire -

Proposition - La fonction $h \rightarrow U(h)f$ est la transformée de Fourier d'une mesure vectorielle γ définie sur le groupe \mathcal{F}, à valeurs dans $\mathcal{C}(\mathcal{F})$, appelée mesure spectrale élémentaire de f.

Démonstration -

Considérons le groupe d'opérateurs unitaires continus à un paramètre $U(h)$ de l'espace hilbertien $\mathcal{C}(\mathcal{F})$. D'après le théorème de Stone (cf. F. Riesz et Sz. Nagy [11]), ce groupe définit une décomposition de...
l'unité (résolution de l'identité); autrement dit, il admet la représentation spectrale suivante :

$$U(k) = \int \frac{e^{ikx}}{\sqrt{2}} dE(x),$$

où $E(x)$ est une famille spectrale (déterminée d'une façon unique).

Il suffit de poser $\gamma = E$ pour obtenir la proposition à démontrer.

2°) Relation entre la mesure spectrale énergétique et la mesure spectrale élémentaire -

La mesure spectrale énergétique σ introduite précédemment est liée à la famille spectrale par

$$d\sigma(x) = d||E(x)||^2$$

Par suite si Δ est un ensemble σ-mesurable, alors Δ est aussi γ-mesurable et :

$$||\gamma(\Delta)||^2 = \int_{\Delta} d\sigma(x)$$

Plus généralement, si Δ et Δ' sont deux ensembles σ-mesurables, alors

$$\mathcal{M} < \gamma(\Delta) \mid \gamma(\Delta') > = \int_{\Delta \cap \Delta'} d\sigma(x)$$

où la notation $\mathcal{M} < \gamma >$ désigne (symboliquement) le produit scalaire dans l'espace $\mathcal{T}(\mathcal{F}; \mathcal{M}^*, \mathcal{H})$.

3°) Représentation spectrale de l'espace $\mathcal{T}(\mathcal{F}; \mathcal{M}^*, \mathcal{H})$ -

Nous allons donner une représentation spectrale de $\mathcal{T}(\mathcal{F}; \mathcal{M}^*, \mathcal{H})$ en utilisant le "principe de l'extension par continuité uniforme" (cf. N. DUNFORD et J.T. SCHWARTZ [11]).

a) Définition de l'intégrale $\mathfrak{g} = \int \mathcal{C}(x) \gamma(x)$. Nous définissons d'abord l'intégrale pour les fonctions étagées :

$$\mathcal{C}(x) = C_{\Delta} \text{ si } x \leq \Delta$$

Par définition :

$$\mathfrak{g} = \sum_{\Delta} C_{\Delta} \gamma(\Delta)$$

A toute combinaison linéaire des \mathcal{C} correspond la même combinaison linéaire des \mathfrak{g}. De plus :

$$||\mathfrak{g}||^2 = \sum_{\Delta} \sum_{\Delta'} C_{\Delta} \overline{C}_{\Delta'} \int_{\Delta \cap \Delta'} d\sigma(x) = \int \mathcal{C}(x) \mid^2 d\sigma(x)$$
Considérons les espaces complets \(L^k(\sigma) \) et \(\tau(f; \mathcal{M}^2, H) \). L'ensemble \((\mathcal{E})\) des fonctions étagées est dense dans \(L^k(\sigma) \). L'application \(\mathcal{F} : \mathcal{E} \rightarrow \mathcal{E} \) est définie sur \((\mathcal{E})\) et à valeurs dans \(\tau(f; \mathcal{M}^2, H) \). Comme cette application est isométrique, on peut la prolonger, et d'une seule façon, en une application isométrique sur \(L^k(\sigma) \).

b) Isométrie entre \(\tau(f; \mathcal{M}^2, H) \) et \(L^k(\sigma) \)

Montrons que

\[
\mathcal{F}[L^k(\sigma)] = \tau(f; \mathcal{M}^2, H)
\]

Soit \(\varphi \) un élément de \(\tau(f; \mathcal{M}^2, H) \). On peut toujours le considérer comme \(\mathcal{M}^2 \)-limite des combinaisons linéaires des translatées \(U_k f \) de \(f \). Or :

\[
U_k f = \int \mathcal{E}^k d\mathcal{Y}(x).
\]

Par suite \(U_k f \in \mathcal{F}[L^k(\sigma)] \). Comme \(\mathcal{F}[L^k(\sigma)] \) est complet, la proposition est démontrée.

En résumé : L'espace \(\tau(f; \mathcal{M}^2, H) \) et \(L^k(\sigma) \) sont isométriquement isomorphes. L'isométrie peut se réaliser par l'intégrale :

\[
\varphi = \int \mathcal{E} \mathcal{Y}(x) d\mathcal{Y}(x) \quad \text{où} \quad \{ \begin{array}{l}
\varphi \in \tau(\mathcal{M}^2, H) \\
\mathcal{E} \in L^k(\sigma)
\end{array}
\]

4°) Représentation spectrale de la \(\mathcal{M}^2 \)-dérivée

Plaçons-nous au cas où \(\mathcal{G} \) est le groupe additif des réels \(\mathbb{R} \). La formule :

\[
U_k = \int_{-\infty}^{\infty} e^{ix^k} d\mathcal{E}(x)
\]

peut encore s'écrire

\[
U_k = e^{ix^A}
\]

où \(A \) désigne la transformation autoadjoint \(\int_{-\infty}^{\infty} x d\mathcal{E}(x) \).

Ce résultat montre que \(iA \) est le générateur infinitésimal du groupe \(U_k \).

D'où la représentation spectrale suivante de la \(\mathcal{M}^2 \)-dérivation \(\nabla \) :

\[
f' = \nabla f = \int_{-\infty}^{\infty} iX d\mathcal{Y}(x)
\]

On en tire :

\[
\mathbb{R} \langle \mathcal{M}_0 \mid f \rangle = 0,
\]

ce qui démontre de nouveau que l'opérateur de \(\mathcal{M}^2 \)-dérivation est conservatif.
5°) Espace hilbertien engendré par deux fonctions quasi-stationnaires linéairement comparables -

Soient \(f_1 \) et \(f_2 \) deux fonctions quasi-stationnaires linéairement comparables. On désigne par \(\mathcal{T}(f_1, f_2; \mathcal{M}^e, H) \) l'enveloppe linéaire \(\mathcal{M}^e \)-fermée de l'ensemble \(\{ \sum_k \alpha_k f_i \mid k \in \mathbb{R}, i = 1, 2 \} \). C'est un sous-espace vectoriel fermé de l'espace \(S(f_1, f_2; H) \), d'après le théorème du paragraphe I 5°.

On structure \(\mathcal{T}(f_1, f_2; \mathcal{M}^e, H) \) en un espace de Hilbert par le procédé habituel.

Soient \(\gamma_1 \) et \(\gamma_2 \) les mesures spectrales énergétiques de \(f_1 \) et \(f_2 \); \(\gamma_1 \) et \(\gamma_2 \) leurs mesures spectrales élémentaires. Tout élément de \(\mathcal{T}(f_1, f_2; \mathcal{M}^e, H) \) est \(\mathcal{M}^e \)-limite des combinaisons linéaires des fonctions de la forme :

\[
\begin{align*}
q_1 &= \int C_1(x) \, d\gamma_1(x), \quad C_1 \in L^2(\gamma_1) \\
q_2 &= \int C_2(x) \, d\gamma_2(x), \quad C_2 \in L^2(\gamma_2)
\end{align*}
\]

Proposition -

Il existe une mesure complexe bornée \(\sigma_{12} \) telle que :

\[
\mathcal{M}_b \langle q_1 \mid q_2 \rangle = \int C_1(x) C_2(x) \, d\sigma_{12}(x)
\]

Démonstration -

En effet, on peut écrire :

\[
\begin{align*}
\mathcal{M}_b \langle q_1 \mid q_2 \rangle &= \mathcal{M}_b \langle \int C_1(x) \, dE(x) f_1 \mid \int C_2(x) \, dE(x) f_2 \rangle \\
&= \mathcal{M}_b \int C_1(x) C_2(x) \, dE(x) f_1 \mid f_2 \rangle \\
&= \mathcal{M}_b \int C_1(x) C_2(x) \, d < E(X) f_1 \mid f_2 > \\
\text{Il suffit, dès lors, de poser} &:
\]

\[
d < E(X) f_1 \mid f_2 > = d \sigma_{12}(X)
\]

Remarque -

Soient \(\sigma' \) et \(\sigma'' \) les mesures spectrales énergétiques des fonctions quasi-stationnaires \(f_1 + f_2 \) et \(f_1 - i f_2 \). Il est facile à vérifier que :

\[
\begin{align*}
\text{Ré } \sigma_{12} &= \frac{\sigma' + \sigma''}{2} \\
\text{Im } \sigma_{12} &= \frac{\sigma' - \sigma''}{2}
\end{align*}
\]
IV - FONCTIONS STATIONNAIRES -

1°) Définition -

On appelle fonction stationnaire toute fonction quasi-stationnaire moyennable.

Il résulte immédiatement de cette définition que si \(t \rightarrow f(t) \) est une fonction stationnaire, alors \(t \rightarrow f(t) + \kappa \), où \(\kappa \) est une constante de l'espace \(H \), est aussi stationnaire. En particulier, \(t \rightarrow f(t) - \mathcal{M}f \) est aussi stationnaire si la fonction \(t \rightarrow f(t) \) l'est ; la fonction d'autocorrélation de \(f - \mathcal{M}f \) sera appelée fonction d'autocorrélation centrée de \(f \).

2°) Exemples -

a) Une fonction \(S \)-pseudo-aléatoire est stationnaire, car elle possède une moyenne qui est nulle (cf. chapitre A3).

b) Considérons l'ensemble \(E \) des fonctions uniformément presque-périodiques (cf. VON NEUMANN (11)). Sa fermeture \(\bar{E} \) dans l'espace \(\mathcal{M}^S(\mathcal{G} ; H) \) ne contient que des fonctions qui sont en même temps \(S \)-presque-périodiques et stationnaires. \(\bar{E} \) est un sous-espace vectoriel fermé de l'espace de Base \(\mathcal{G}(\mathcal{G} ; H) \) ; on peut toujours le structurer en un Hilbert (par le procédé habituel).

3°) Fonctions pseudo-aléatoires décentrées -

Soit \(f \) une fonction stationnaire.

a) Si \(f \) est \(S \)-presque-périodique, alors \(f - \mathcal{M}f \) l'est aussi et réciproquement.

b) Si \(f \) est \(S \)-pseudo-aléatoire, alors \(f - \mathcal{M}f \) l'est aussi (car \(\mathcal{M}f \neq 0 \)).

c) Si \(f - \mathcal{M}f \) est \(S \)-pseudo-aléatoire, alors \(f \) n'est pas nécessairement \(S \)-pseudo-aléatoire.

On dit que \(f \) est une fonction \((S-) \) pseudo-aléatoire centrée si \(\mathcal{M}f = 0 \), décentrée si \(\mathcal{M}f \neq 0 \).

4°) Remarque -

La notion de stationarité, très importante en pratique, a peu d'intérêt en ce qui concerne l'étude théorique des fonctions quasi-stationnaires. Dans la suite, sauf indication contraire, nous ne parlerons que des fonctions quasi-stationnaires.
I - PROPRIÉTÉS ELEMENTAIRES -

1°) Définition -

Soit \(t \rightarrow f(t) \) une fonction quasi-stationnaire à valeurs dans un Hilbert \(H \), et soit \(\mathcal{L}(H \rightarrow H) \) l'ensemble des opérateurs linéaires bornés de \(H \) dans \(H \).

On dit que \(t \rightarrow f(t) \) est une fonction 1-quasi-stationnaire si, quel que soit \(A \in \mathcal{L}(H \rightarrow H) \), la fonction \(t \rightarrow Af(t) \) est quasi-stationnaire.

L'ensemble des fonctions 1-quasi-stationnaires à valeurs dans \(H \) sera désigné par \(\mathcal{S}(\mathcal{G}; H) \). Evidemment :

\[
\mathcal{S}(\mathcal{G}; H) \subset \mathcal{S}(\mathcal{G}; H) \subset \mathcal{M}(\mathcal{G}; H)
\]

On munira \(\mathcal{S}(\mathcal{G}; H) \) de la \(\mathcal{M} \)-métrique.

2°) Étude des translations -

L'ensemble \(\mathcal{S}(\mathcal{G}; H) \) est invariant par translation. Plus précisément : si \(f \) est une fonction 1-quasi-stationnaire, alors la fonction \(\mathcal{U}_{\phi} f \) est aussi 1-quasi-stationnaire, quel que soit \(\phi \in \mathcal{G} \); les fonctions \(\mathcal{A}_t \mathcal{U}_{\phi} f \) et \(\mathcal{A}_t f \) admettent la même fonction d'autocorrélation, quel que soit \(\phi \in \mathcal{G}(H \rightarrow H) \).

La démonstration est immédiate.

3°) Fonctions 1-comparables -

a) On dit que des fonctions 1-quasi-stationnaires \(f_i \), \(i = 1, \ldots, n \) sont 1-comparables dans leur ensemble si

\[
\mathcal{A}_t f_1 + \cdots + \mathcal{A}_t f_i + \cdots + \mathcal{A}_t f_n
\]
est une fonction quasi-stationnaire, quels que soient les \(A \in \mathcal{L}(H \to H) \).

Conséquence -

Deux fonctions l-quasi-stationnaires \(f \) et \(g \) sont l-comparables si et seulement si les fonctions \(A f \) et \(U g \) sont \(\ast \)-comparables (la notion de \(\ast \)-comparabilité est définie au chapitre A3) quels que soient \(A \in \mathcal{L}(H \to H) \) et \(\ast \leq \# \).

b) On dit que deux suites \(\{f_n\} \) et \(\{g_n\} \) de fonctions l-quasi-stationnaires sont l-comparables si \(f_n \) et \(g_n \) sont l-comparables pour chaque \(n \).

4°) Convergence dans l'espace métrique \(\mathcal{L}(\mathcal{M}^2; H) \) - Théorème -

L'ensemble \(\mathcal{L}(\mathcal{M}^2; H) \) est fermé dans \(\mathcal{M}^2(\mathcal{M}^2; H) \). Plus généralement et plus précisément :

Les \(\mathcal{M}^2 \)-limites (respectives) \(f \) et \(g \) de deux suites de fonctions l-quasi-stationnaires l-comparables \(\{f_n\} \) et \(\{g_n\} \) sont des fonctions l-quasi-stationnaires l-comparables.

Démonstration -

Par hypothèse, la fonction

\[F_n = A f_n + B g_n \]

est quasi-stationnaire, quels que soient les éléments \(A \) et \(B \) de \(\mathcal{L}(H \to H) \).

La fonction

\[F = A f + B g \]

est \(\mathcal{M}^2 \)-limite de \(F_n \), car

\[|| F - F_n || \leq || A || \cdot || f_n - f || + || B || \cdot || g_n - g ||, \]

ce qui montre que \(F \) est quasi-stationnaire.

5°) Espace \(\mathcal{C}(\mathcal{M}^2; H) \) -

En complétant tout sous-espace vectoriel de fonctions l-quasi-stationnaires, le théorème précédent montre que l'on obtient un espace vectoriel de fonctions l-quasi-stationnaires.

En particulier, le sous-espace \(\mathcal{C}(\mathcal{M}^2; H) \) défini au paragraphe A1, II 4°) ne renferme que des fonctions l-quasi-stationnaires (si \(f \) est l-quasi-stationnaire), c'est un sous-espace vectoriel fermé de l'espace de Banach \(\mathcal{M}^2(\mathcal{M}^2; H) \); on le structure en un Hilbert par le procédé habituel (cf. chapitre A3).

6°) Fonctions \(\mathcal{M} \)-pseudo-aléatoires et fonctions \(\mathcal{M} \)-presque-périodiques -

a) On désignera par \(\mathcal{M} \mathcal{A}(\mathcal{M}^2; H) \) et \(\mathcal{M} \mathcal{P}(\mathcal{M}^2; H) \) respectivement les ensembles \(\mathcal{M}(\mathcal{M}^2; H) \cap \mathcal{A}(\mathcal{M}^2; H) \) et \(\mathcal{M}(\mathcal{M}^2; H) \cap \mathcal{P}(\mathcal{M}^2; H) \) (cf. chapitre A2).
Un élément de $\mathcal{S}(\mathcal{Q}; H)$ sera appelé fonction \mathcal{S}-pseudo-aléatoire.

Un élément de $\mathcal{S}(\mathcal{Q}; H)$ sera appelé fonction \mathcal{S}-presque-périodique.

Les ensembles $\mathcal{S}(\mathcal{Q}; H)$ et $\mathcal{S}(\mathcal{Q}; H)$ sont "disjoints" (leur intersection est la fonction équivalente à O), et on a :

$$\mathcal{S}(\mathcal{Q}; H) = \mathcal{S}(\mathcal{Q}; H) \oplus \mathcal{S}(\mathcal{Q}; H)$$

Nota - Nous utilisons le signe \oplus bien que $\mathcal{S}(\mathcal{Q}; H)$ n'est pas un espace vectoriel.

b) On montre facilement que :

Si f est une fonction \mathcal{S}-pseudo-aléatoire, alors $\mathcal{C}(f; \mathcal{M}, H)$ ne contient que des fonctions \mathcal{S}-pseudo-aléatoires.

Si f est une fonction \mathcal{S}-presque-périodique, alors $\mathcal{C}(f; \mathcal{M}, H)$ ne contient que des fonctions \mathcal{S}-presque-périodiques.

7°) Fonctions 1-quasi-stationnaires à valeurs dans deux espaces de Hilbert -

Soient H_1 et H_2 deux espaces de Hilbert. Considérons l'ensemble $\mathcal{L}(H_1 \rightarrow H_2)$ des opérateurs linéaires bornés de H_1 dans H_2.

a) Proposition -

Si $t \rightarrow f(t)$ est une fonction 1-quasi-stationnaire à valeurs dans H_1, alors $t \rightarrow A f(t)$ est une fonction 1-quasi-stationnaire à valeurs dans H_2, quel que soit $A \in \mathcal{L}(H_1 \rightarrow H_2)$.

b) Démonstration -

Soit A^* l'opérateur adjoint de A. C'est un élément de $\mathcal{L}(H_2 \rightarrow H_1)$. Par définition même :

$$\langle Ax|y \rangle_{H_2} = \langle x|A^*y \rangle_{H_1}, \quad \forall x \in H_1, \quad \forall y \in H_2$$

Par suite :

$$\langle A f(t) \rangle_{H_2} = \langle f(t) \rangle_{H_1}$$

Comme $A^*A \in \mathcal{L}(H_1 \rightarrow H_1)$ et $f \in \mathcal{S}(\mathcal{Q}; H_1)$, la relation précédente montre que $g = A f \in \mathcal{S}(\mathcal{Q}; H_2)$.

De même, soit un élément quelconque B de $\mathcal{L}(H_2 \rightarrow H_2)$. On a :

$$\langle B g(t) \rangle_{H_2} = \langle f(t) \rangle_{H_1}$$

52
Comme $A^*B^*BA \in \mathcal{L}(H \rightarrow H)$, on déduit que $B \in S(\mathcal{L}^2; H_e)$ quel que soit $B \in \mathcal{L}(H_e \rightarrow H_e)$. Autrement dit :

$$q \in S(\mathcal{L}^2; H_e)$$

c) Conséquence: Espace $\mathcal{C}#(f; \mathcal{L}^2, H, \rightarrow H)$

D'après la proposition précédente, l'espace $\mathcal{C}#(f; \mathcal{L}^2, H, \rightarrow H)$ défini au paragraphe A1, II 4°) ne contient que des fonctions 1-quasi-stationnaires à valeurs dans H_e. C'est donc un sous-espace vectoriel fermé de l'espace de Bass $\mathcal{F}(\mathcal{L}^2; H_e)$, et on le structure en un espace de Hilbert par le procédé habituel.

II - REPRÉSENTATION SPECTRALE

Soit f un élément de $S(\mathcal{L}^2; H)$. Puisque f est quasi-stationnaire, on peut définir sa mesure spectrale énergétique σ et sa mesure spectrale élémentaire γ (cf. chapitre A4) et réaliser l'isomorphisme isométrique des espaces $L^2(\sigma)$ et $\mathcal{C}(f; \mathcal{L}^2, H)$ au moyen de la représentation spectrale suivante :

$$q = \int_{\mathcal{L}^2} \mathcal{C}(X) d\mathcal{Y}(X) \quad \text{où} \quad \left\{ \begin{array}{l}
q \in \mathcal{C}(f; \mathcal{L}^2, H) \\
c \in L^2(\sigma)
\end{array} \right.$$

Nous allons donner une représentation spectrale de l'espace $\mathcal{C}#(f, \mathcal{L}^2, H)$.

1°) **Tenseur spectral énergétique**

Soient A et B deux éléments de $\mathcal{L}(H \rightarrow H)$. D'après les résultats du paragraphe A4, III 5°), il existe une mesure complexe bornée Σ_{AB} telle que :

$$\mathcal{M}_B \langle A\tilde{f}(t) \mid B\tilde{f}(t) \rangle = \int_{\mathcal{L}^2} d\Sigma_{AB}(X)$$

Plus généralement, on a :

$$\mathcal{M}_B \langle A\gamma(A) \mid B\gamma(A') \rangle = \int_{\mathcal{L}^2} d\Sigma_{AB}(X)$$

Considérons la fonction $A, B \rightarrow \Sigma_{AB}(X)$. C'est une application sesquilinéaire hermitienne positive continue de $\mathcal{L}(H \rightarrow H) \times \mathcal{L}(H \rightarrow H)$ dans l'espace de Banach \mathcal{R} des mesures de Radon.

Par définition, Σ sera appelé tenseur spectral énergétique de la fonction 1-quasi-stationnaire f.

2°) **Espace $L^2[\Sigma; \mathcal{L}(H \rightarrow H)]$**

Considérons l'espace de Banach $L^2[\Sigma; \mathcal{L}(H \rightarrow H)]$ des opérateurs linéaires $C(X)$ de H tels que :
Soit \(\mathcal{C} \) le sous-espace vectoriel des "opérateurs étalés" de \(L^2 [\sigma ; \mathcal{L}(H \to H)] \), i.e. le sous-espace vectoriel des opérateurs de la forme :
\[
\mathcal{C}(X) = \sum_{i=1}^{p} C_i \chi_{\Delta_i}(X)
\]

où : \(C_i \) est un élément de \(\mathcal{L}(H \to H) \), pour chaque \(i \),
\(\Delta_i \) est un ensemble \(\sigma \)-mesurable de \(\widehat{\Omega} \), pour chaque \(i \),
\(\Delta_i \cap \Delta_j = \emptyset \) si \(i \neq j \)
\(\chi_{\Delta_i} \) est la fonction caractéristique de \(\Delta_i \).

Introduisons dans \(\mathcal{C} \) le produit scalaire suivant :
\[
\{C | C'\} = \sum_{i=1}^{p} \sum_{k=1}^{p} \int_{\Delta_i \cap \Delta_k} d\Sigma_{C_i,C_k}(X)
\]

Ce produit scalaire structure l'espace \(\mathcal{C} \) en un espace préhilbertien (non séparé). On a :
\[
\| C \|^2 = \{C | C\} = \sum_{i=1}^{p} \int_{\Delta_i} d\Sigma_{C_i,C_i}(X)
\]
\[
\leq \sum_{i=1}^{p} \int_{\Delta_i} \| C_i \|^2 d\sigma(X)
\]
\[
\leq \int_{\Omega} \| \mathcal{C}(X) \|^2 d\sigma(X)
\]

Sur \(\mathcal{C} \), la nouvelle topologie est donc moins fine que celle induite par \(L^2 [\sigma ; \mathcal{L}(H \to H)] \). L'application \(\mathcal{C} \to \| \mathcal{C} \| \) est définie sur \(\mathcal{C} \), à valeur dans \(\mathbb{R}^+ \). Comme elle est uniformément continue, on peut prolonger cette application à tous les éléments de \(L^2 [\sigma ; \mathcal{L}(H \to H)] \), qui est la fermeture de \(\mathcal{C} \).

Soit \(N \) l'ensemble des éléments \(\mathcal{C}(X) \) de \(L^2 [\sigma ; \mathcal{L}(H \to H)] \) tels que \(\| \mathcal{C} \| = 0 \).

On désigne par \(L^2 [\Sigma ; \mathcal{L}(H \to H)] \) le complété de l'espace préhilbertien séparé \(L^2 [\sigma ; \mathcal{L}(H \to H)] / N \).

Remarque

Cette construction est analogue à celle utilisée classiquement pour structurer une \(\mathcal{C}^\ast \)-algèbre en un espace hilbertien à partir d'une forme linéaire positive (cf. J. DIXMIER [11], [2]).

54
3°) Définition de l'intégrale \(g = \int C(X) \, dY(X) \).

a) On définit d'abord l'intégrale pour les opérateurs étages

\[C(X) = \sum_{i=1}^{n} C_i \Lambda_i(X) \quad \text{par} \quad g = \sum_{i=1}^{n} C_i Y(\Lambda_i). \]

A toute combinaison linéaire des \(C \) correspond la même combinaison linéaire des \(g \). De plus :

\[\| g \|^2 = \sum_{i=1}^{n} \int_{\Lambda_i \cap \Delta_j} d \xi C_i \cdot c_j(\xi) = \| C \|^2. \]

b) Considérons les espaces complets \(L^2[\Sigma; L^2(H \to H)] \) et \(T^\#(f; M^2, H) \). L'ensemble \(G \) des opérateurs étages est dense dans \(L^2[\Sigma; L^2(H \to H)] \). L'application \(T : C \to g \) est définie sur \(G \) et à valeurs dans \(T^\#(f; M^2, H) \). Comme cette application est isométrique, on peut la prolonger, et d'une seule façon, en une application isométrique sur \(L^2(\Sigma) \).

Ainsi, à tout élément \(C \in L^2[\Sigma; L^2(H \to H)] \), on peut faire correspondre un élément \(g \in T^\#(f; M^2, H) \) par

\[g = \int C(X) \, dY(X). \]

4°) Isométrie entre \(T^\#(f; M^2, H) \) et \(L^2[\Sigma; L^2(H \to H)] \)

Montrons que l'image par \(T \) de \(L^2[\Sigma; L^2(H \to H)] \) coïncide avec \(T^\#(f; M^2, H) \). Soit \(\varphi \) un élément de \(T^\#(f; M^2, H) \). On peut toujours le considérer comme \(M^2 \)-limite des combinaisons linéaires des éléments de l'ensemble \[\{ A \cup_k f \mid A \in L^2(H \to H); \| A \| < 1 \}. \]

\[\| A \| = \int_{\Sigma} \varphi dY(X). \]

Par suite \(A \cup_k f \) est un élément de l'image de \(L^2[\Sigma; L^2(H \to H)] \) par \(T \). Comme cette image est fermée, elle contient \(\varphi \).

5°) Généralisation

Soit \(\mathcal{H} \) un autre espace de Hilbert. Par le même procédé, on peut :

i) définir l'espace \(L^2[\Sigma; L^2(H \to \mathcal{H})] \);

ii) définir l'intégrale \(\int C(X) \, dY(X) \) pour tout élément \(C \) de cet espace;

iii) montrer l'isomorphisme isométrique entre les espaces.
On verra, à la partie B, les applications de cette représentation spectrale.

III - FONCTIONS 1-QUASI-STATIONNAIRES DANS \mathbb{C}^n

Soit f un élément de $\mathbb{C}((\xi; \mathbb{C}^n))$. Soit $\{\psi_j\}_j$ une base orthonormée de \mathbb{C}^n. Nous désignons par f_j les composantes de f sur les ψ_j.

1°) Théorème caractéristique -

La fonction $t \rightarrow f(t)$ est 1-quasi-stationnaire si et seulement si ses composantes $f_j(t)$ sont des fonctions quasi-stationnaires numériques linéairement comparables.

La démonstration est immédiate.

2°) Tenseur de corrélation -

Les fonctions $h \rightarrow \gamma_{ij}(h) = \mathcal{F}_h f_i(t+\hbar) f_j(t)$, $(i,j = 1, \ldots, n)$ existent et sont continues. Elles forment le tenseur de corrélation. Ce tenseur possède la propriété de symétrie hermitienne : $\gamma_{ij}(-h) = \gamma_{ji}(h)$. La trace de ce tenseur $\gamma(h) = \sum_{i} \gamma_{ii}(h)$ est un invariant scalaire : c'est la fonction d'autocorrélation (globale) de la fonction f.

3°) Tenseur spectral énergétique -

Les résultats du paragraphe A4, III 5° montrent qu'il existe des mesures complexes σ_{ij}, bornées et telles que :

$$\gamma_{ij}(h) = \int_\mathbb{R} e^{-i\xi h} d\sigma_{ij}(\xi).$$

Les mesures σ_{ij} forment le tenseur spectral énergétique Σ (déjà défini d'une façon plus générale au paragraphe II); ce tenseur est hermitien :

$$\sigma_{ij}(X) = \overline{\sigma_{ji}(X)}.$$

La trace $\sigma(X)$ de ce tenseur est un invariant scalaire : c'est la mesure spectrale énergétique (globale) de la fonction f.

Le tenseur spectral énergétique possède la propriété fondamentale suivante :

Soit $C(X) = \{c_{ij}(X)\} (i,j = 1, \ldots, n)$ une matrice telle que $c_{ij} \in L^2(\mathbb{C}_3).$ Alors l'expression

$$\int_\mathbb{R} \sum_{i,j=1}^n c_{ij}(X) c_{ij}(X) d\sigma_{ij}(X).$$
est toujours réelle positive (≥ 0).

4°) Espace $L^r [\sum; \mathcal{L} (\mathbb{C}^n \rightarrow \mathbb{C}^n)]$.

Cet espace a été défini dans le cas général au paragraphe II. Dans le cas particulier où $H = \mathbb{C}^n$, nous pouvons "explicitier" l'expression du produit scalaire dans cet espace :

$$\{ C | C' \} = \int \sum_{i=1}^{n} C_{i}^*(X) C_{i}'(X) d\xi(X)$$

L'espace $L^r [\sum; \mathcal{L} (\mathbb{C}^n \rightarrow \mathbb{C}^n)]$ permet alors de donner une représentation spectrale de l'espace $C^r \{ f; \mathcal{M}, \mathbb{C}^n \}$:

$$q(t) = \int \mathcal{C}(X) \gamma(t; dX).$$

Nous verrons une application de cette représentation spectrale au chapitre B2.
I - APPLICATIONS MULTILINEAIRES BORNEES -

Soient X_1, \ldots, X_p et Z des espaces de Banach.

1°) Définitions (R. GODEMENT [1], N. BOURBAKI [3]) -

i) On dit qu'une application Ω de $X_1 \times \cdots \times X_p$ dans Z est multilinéaire (et, plus précisément, p-linéaire) si, en se donnant à $p-1$ des variables des valeurs fixes, on obtient une fonction linéaire de la variable non fixée.

ii) L'application p-linéaire Ω est dite bornée s'il existe une constante M telle que :

$$||\Omega(x_1, \ldots, x_p)|| \leq M ||x_1|| \cdots ||x_p||$$

quels que soient les vecteurs $x_i \in X_i$, $i=1, \ldots, p$.

On désigne l'ensemble de toutes les applications p-linéaires bornées de $X_1 \times \cdots \times X_p$ dans Z par la notation

$${\mathcal L}(X_1, \ldots, X_p \to Z).$$

Dans le cas où $X_1 = X_2 = \ldots = X_p = X$, on posera :

$${\mathcal L}(X \to Z) = \mathcal{L}\left(\underbrace{X, \ldots, X}_{p \text{ fois}} \to Z\right).$$

(2) Ce chapitre, indispensable pour l'étude des solutions quasi-stationnaires des équations non-linéaires, ne présente qu'un intérêt très limité en soi-même.
Dans tout ce qui suit, nous nous limitons, sauf indication contraire, exclusivement à ce cas. Soit Ω un élément de \(\mathcal{D}(X \rightarrow Z) \). A p éléments (distincts ou non) \(\varphi_1, \ldots, \varphi_p \) de \(Z \), l'opérateur Ω fait correspondre p ! éléments (distincts ou non) de \(Z \); ces p ! éléments seront appelés transformés de p éléments \(\varphi_1, \ldots, \varphi_p \) par l'opérateur Ω.

Enfin, on posera

\[
\mathcal{L}^\infty(X \rightarrow Z) = \bigcup_{p=1}^{\infty} \mathcal{L}^p(X \rightarrow Z),
\]

et un élément de \(\mathcal{L}^\infty(X \rightarrow Z) \) sera appelé un opérateur (ou une application) multilinéaire borné de l'espace \(X \) dans l'espace \(Z \).

2°) Proposition -

a) Tout opérateur linéaire borné \(A \) d'un Banach \(X \) est aussi un opérateur linéaire borné de \(\mathcal{M}^\infty(\varphi; X) \) et

\[
\| A \| = \| A \|.
\]

b) Tout opérateur multilinéaire borné \(\Omega \) d'un Banach \(X \) est un opérateur continu de \(\mathcal{M}^\infty(\varphi; X) \) lorsque \(\Omega \) opère sur des fonctions bornées (bornées en norme dans \(X \) pour tout \(t \)).

La proposition (a) est immédiate. Pour démontrer la proposition (b), supposons que \(\Omega \) est bilinéaire borné. Formons :

\[
F(t) - G(t) = \Omega \left[f_1(t), g_1(t) \right] - \Omega \left[g_1(t), f_1(t) \right] = \Omega \left[f_1(t), g_1(t) - f_1(t) \right] + \Omega \left[f_1(t), g_1(t) - g_1(t) \right].
\]

D'où :

\[
\| F(t) - G(t) \| \leq M \| f_1(t) \| \| g_1(t) - g_1(t) \| + M \| f_1(t) - g_1(t) \| \| g_1(t) \|.
\]

Par suite :

\[
\| F - G \| \leq M C \left(\| f_2 - g_2 \| + \| f_1 - g_1 \| \right),
\]

où \(C \) est le plus grand des deux nombres sup \(\| f_1 (t) \| \) et sup \(\| g_1 (t) \| \).

Dans la suite, nous ne considérerons que des fonctions bornées.

II - FONCTIONS COMPLÈTEMENT QUASI-STATIONNAIRES -

Soit \(H \) un espace de Hilbert. Soient \(f_1, \ldots, f_n \) des fonctions quasi-stationnaires à valeurs dans \(H \).

Considérons l'ensemble \(C(f_1, \ldots, f_n) \) défini de la façon suivante :

C'est le plus petit ensemble de fonctions qui :

1) contiennent les fonctions \(f_1, \ldots, f_n \);
ne puisse contenir une fonction sans contenir toutes ses trans-
latées;

ne puisse contenir deux fonctions sans contenir toutes leurs
combinaisons linéaire;

ne puisse contenir des fonctions sans contenir toutes leurs
transformées par des opérateurs multilinéaires bornés $\Omega \in \mathcal{L}(\mathcal{H})$

1°) Définitions -

i) On dit que la fonction f est une fonction complètement quasi-
stationnaire (ou ∞-quasi-stationnaire) si l'ensemble $\mathcal{G}(f)$
ne contient que des fonctions quasi-stationnaires.

ii) On dit que les fonctions f_1, \ldots, f_n sont ∞-comparables (ou complet-
tement comparables) dans leur ensemble si l'ensemble $\mathcal{G}(f_1, \ldots, f_n)$
ne contient que des fonctions quasi-stationnaires.

L'ensemble des fonctions complètement quasi-stationnaires sera désigné
par $\mathcal{S}(\mathcal{G}; \mathcal{H})$. Evidemment :

$$\mathcal{S}(\mathcal{G}; \mathcal{H}) \subset \mathcal{S}(\mathcal{G}; \mathcal{H}) \subset \mathcal{S}(\mathcal{G}; \mathcal{H}) \subset \mathcal{M}(\mathcal{G}; \mathcal{H})$$

L'ensemble $\mathcal{S}(\mathcal{G}; \mathcal{H})$ sera structuré en un espace métrique à l'aide de
la topologie induite par $\mathcal{M}(\mathcal{G}; \mathcal{H})$.

2°) Convergence dans l'espace métrique $\mathcal{S}(\mathcal{G}; \mathcal{H})$ - Théorème -

Toute suite de Cauchy de fonctions ∞-quasi-stationnaires $\{f_n\}$ converge
vers une fonction ∞-quasi-stationnaire f, ∞-comparable à toute fonction
∞-quasi-stationnaire g ∞-comparable à tous les éléments de la suite $\{f_n\}$.

Démonstration -

Comme l'espace $\mathcal{S}(\mathcal{G}; \mathcal{H})$ est complet, la \mathcal{M}-limite de la suite $\{f_n\}$
existe, et est une fonction quasi-stationnaire f. Considérons un opérateur
multilinéaire borné $\Omega \in \mathcal{L}(\mathcal{H})$, et la fonction :

$$t \rightarrow F(t) = \Omega[f(t), \ldots, f(t)]$$

Comme l'opérateur Ω est \mathcal{M}-continu, cette fonction F peut être consi-
dérée comme la \mathcal{M}-limite de la suite de fonctions

$$t \rightarrow f_n(t) = \Omega[f_n(t), \ldots, f_n(t)]$$

C'est donc une fonction quasi-stationnaire.

Considérons l'ensemble $\mathcal{G}(f)$ défini au paragraphe précédent. On mon-
tre, par récurrence, que tout élément de $\mathcal{G}(f)$ est \mathcal{M}-limite d'un élément
de $\mathcal{S}(f_n)$. Donc $\mathcal{G}(f)$ ne contient que des fonctions quasi-stationnaires;
autrement dit, f est ∞-quasi-stationnaire.
Par le même raisonnement, on démontre que $\mathcal{C}(f, q)$ ne contient que des fonctions quasi-stationnaires; autrement dit, f et q sont ∞-comparables.

3°) Espace $\mathcal{C}(f; \mathcal{N}^2, H)$ engendré par une fonction complètement quasi-stationnaire

Considérons l'ensemble $\mathcal{C}(f)$. Tous les éléments de cet ensemble sont des fonctions ∞-quasi-stationnaires ∞-comparables. En particulier, elles forment un sous-espace vectoriel de l'espace $\mathcal{F}(q; H)$ de Bass. Considérons son complété $\mathcal{C}(\hat{f})$ dans $\mathcal{N}^2(q; H)$. D'après le théorème précédent, cet ensemble ne contient que des fonctions ∞-quasi-stationnaires ∞-comparables dans leur ensemble. On appelle cet ensemble $\mathcal{C}(f)$ l'espace $\mathcal{C}(f; \mathcal{N}^2, H)$ engendré par la fonction ∞-quasi-stationnaire f.

C'est donc le plus petit ensemble de fonctions qui:

i) contienne la fonction f

ii) ne puisse contenir une fonction sans contenir toutes ses traduites;

iii) ne puisse contenir deux fonctions sans contenir toutes leurs combinaisons linéaires;

iv) ne puisse contenir des fonctions sans contenir toutes leurs transformées par un opérateur multilinéaire borné;

v) ne puisse contenir une suite de Cauchy de fonctions sans contenir leur \mathcal{N}^2-limite.

On définira de la même façon l'espace $\mathcal{C}(f_1, \ldots, f_n; \mathcal{N}^2, H)$ engendré par plusieurs fonctions ∞-quasi-stationnaires ∞-comparables f_1, \ldots, f_n.

4°) Fonctions complètement pseudo-aleatoires et complètement presque-périodiques

a) Définitions

Une fonction ∞-quasi-stationnaire f est dite ∞-pseudo-aleatoire (centrée ou décentrée) si l'espace $\mathcal{C}(f; \mathcal{N}^2, H)$ engendré par cette fonction ne contient que des fonctions \mathcal{N}^2-pseudo-aleatoires (centrées ou décentrées).

Elle est dite ∞-presque-périodique si l'espace $\mathcal{C}(f; \mathcal{N}^2, H)$ ne contient que des fonctions \mathcal{N}^2-presque-périodiques.

L'ensemble des fonctions ∞-pseudo-aleatoires et celui des fonctions ∞-presque-périodiques seront désignés respectivement par

$\mathcal{S}A(q; H)$ et $\mathcal{S}P(q; H)$.

b) Exemples

L'ensemble $\mathcal{S}P(q; H)$ n'est pas vide. En effet il contient l'ensemble
des fonctions uniformement-presque-périodiques à valeurs dans \mathbb{H} (fonctions de Bohr-Bochner).

L'ensemble $\mathcal{E}(\mathbb{Q} ; \mathbb{H})$ n'est pas, lui non plus, vide. L'existence des fonctions ∞-pseudo-aléatoires (centrées ou décentrées) sera prouvée au chapitre A8, à l'aide de la théorie des suites équiréparties modulo-un.

5°) Transformations sur les fonctions complètement quasi-stationnaires -

Soient \mathbb{H}_1 et \mathbb{H}_2 deux espaces de Hilbert, de même dimension. Soit Ω un opérateur multilinéaire borné de \mathbb{H}_1 dans $\mathbb{H}_2 : \Omega \in \mathcal{L}(\mathbb{H}_1 \rightarrow \mathbb{H}_2)$.

a) Proposition -

Si f est une fonction ∞-quasi-stationnaire à valeurs dans \mathbb{H}_1, alors Ωf est une fonction ∞-quasi-stationnaire à valeurs dans \mathbb{H}_2.

b) Démonstration -

Puisque \mathbb{H}_1 et \mathbb{H}_2 ont la même dimension, ils sont isométriquement isomorphes (cf. N. DUNFORD et J.T. SCHWARTZ [1]). Soit \mathfrak{I} un isomorphisme isométrique de \mathbb{H}_2 sur \mathbb{H}_1.

Considérons un autre opérateur multilinéaire borné \mathfrak{I}' de \mathbb{H}_2 dans \mathbb{H}_1. Comme f est un élément de $\mathcal{F}(\mathbb{Q} ; \mathbb{H}_1)$, la moyenne (en t) du second membre existe et est continue (en \mathfrak{I}'), il en est de même de celle du premier membre, ce qui signifie que g est quasi-stationnaire à valeurs dans \mathbb{H}_2.

c) Conséquence -

Soit f un élément de $\mathcal{F}(\mathbb{Q} ; \mathbb{H}_1)$. On appelle $\mathcal{C}(f ; \mathcal{F}, \mathbb{H}_1 \rightarrow \mathbb{H}_2)$ le plus petit ensemble de fonctions qui:

i) contienne la fonction $\mathcal{E} f$;

ii) ne puisse contenir une fonction sans contenir toutes ses translations,

iii) ne puisse contenir deux fonctions sans contenir toutes leurs combinaisons linéaires,

iv) ne puisse contenir des fonctions sans contenir toutes leurs transformées par un opérateur multilinéaire borné de \mathbb{H}_1 dans \mathbb{H}_2.

62
v) ne puisse contenir une suite de Cauchy de fonctions sans contenir leur H^0-limite.

Le théorème précédent montre alors que :

$$\mathcal{C}(f; H^0, H_1, \rightarrow H_\infty) \subset \mathcal{S}(\mathcal{Q}; H_\infty).$$

III - FONCTIONS COMPLEMENT QUASI-STATIONNAIRES DANS \mathbb{C}^n -

Dans le cas où H est l'espace \mathbb{C}^n, muni de sa topologie hilbertienne habituelle, l'étude des fonctions ∞-quasi-stationnaires est particulièrement simple.

1°) Cas où $H = \mathbb{C}$ - Théorème caractéristique -

i) Pour qu'une fonction numérique $b \rightarrow f(b)$ soit ∞-quasi-stationnaire, il faut et il suffit que les fonctions

$$t \rightarrow F(t) = f(t_1, \ldots, t_p)$$

soient toutes des fonctions quasi-stationnaires numériques linéairement comparables, que l'on ait l'entier p et les éléments $\hat{h}_i \in \mathcal{Q}$.

ii) Pour que des ∞-fonctions numériques $f_i (i = 1, 2, \ldots, n)$ soient ∞-comparables, il faut et il suffit que leurs produits, d'un nombre quelconque, de leurs translatées soient tous des fonctions quasi-stationnaires numériques linéairement comparables.

La démonstration est immédiate. En effet, dans l'espace à une dimension \mathbb{C}, une application multilinéaire n'est autre qu'une multiplication ordinaire.

2°) Cas où $H = \mathbb{C}^n$ - Théorème caractéristique -

i) Pour qu'une fonction $t \rightarrow f(t)$ à valeurs dans \mathbb{C}^n soit ∞-quasi-stationnaire, il faut et il suffit que ses composantes $t \rightarrow f_i(t)$ sur une base quelconque $\{\psi_i\}$ soient des fonctions numériques ∞-quasi-stationnaires ∞-comparables.

ii) Pour que des fonctions f_1, \ldots, f_n soient des fonctions ∞-quasi-stationnaires ∞-comparables, il faut et il suffit que leurs composantes f_{1i}, \ldots, f_{ni} soient des fonctions ∞-quasi-stationnaires ∞-comparables.

Démonstration -

Soit $\{\psi_i\}$ une base de \mathbb{C}^n, et soit Ω un opérateur bilinéaire de \mathbb{C}^n.

On a :

$$\Omega(f, g) = \sum_{i, j} \sum_{k} f_i \overline{g}_j \Omega_{ij}, \quad \text{avec} \quad \Omega_{ij} = \Omega(\psi_i, \psi_j)$$

Réciproquement, si l'on se donne n^2 éléments Ω_{ij} de H, alors l'application

$$f, g \rightarrow \sum_{i, j} \sum_{k} f_i \overline{g}_j \Omega_{ij}$$
définit un opérateur bilinéaire de \mathbb{C}^n.

Ce résultat se généralise pour un opérateur p-linéaire (p entier positif quelconque). Le théorème énoncé précédemment en découle immédiatement.

3°) Puissance fractionnaire d'une fonction complètement quasi-stationnaire

Théorème - Si f est une fonction ω-quasi-stationnaire numérique réelle, alors $[f]^{\alpha}$ est aussi une fonction ω-quasi-stationnaire numérique réelle, quel que soit le nombre réel positif α.

Plus précisément : $[f]^{\alpha} \in \mathcal{C}(f; \mathbb{R})$.

Démonstration -

Puisque λf et f^α sont ω-quasi-stationnaires si f l'est, on peut toujours se ramener au cas où :

$0 \leq f(t) < 1$.

Ecrivons :

$$[f(t)]^\alpha = \left[1 + f(t) - 1\right] = [1 - g(t)]^\alpha,$$

avec :

$0 \leq g(t) = 1 - f(t) < 1$.

Or :

$$[1 - g(t)]^\alpha = 1 - \alpha g(t) + \ldots + (-1)^n \frac{\alpha(\alpha - 1) \ldots (\alpha - n + 1)}{1 \cdot 2 \ldots n} [g(t)]^n + \ldots$$

Cette série est uniformément convergente sur le groupe \mathcal{G}, car elle admet la série majorante convergente :

$$\mu_n = \frac{\alpha(\alpha - 1) \ldots (\alpha - n + 1)}{1 \cdot 2 \ldots n}.$$

Comme $[g]^n \in \mathcal{C}(f; \mathbb{R})$ pour tout p entier $> \infty$, on en déduit que $f^\alpha \in \mathcal{C}(f; \mathbb{R})$ quel que soit le nombre réel positif α.

IV - OPERATEURS QUASI-STATIONNAIRES

1°) Définition -

Considérons un opérateur $\Omega(\cdot)$ de H dans H, non nécessairement multilinéaire, dépendant du paramètre $t \in \mathcal{G}$.

On dit que $\Omega(\cdot)$ est un opérateur quasi-stationnaire si, quel que soit $x \in H$, la fonction $t \rightarrow \Omega(t)x$ est une fonction quasi-stationnaire.

2°) Fonctions parfaites vis-à-vis d'un opérateur quasi-stationnaire -
Soit $\Omega(t)$ un opérateur quasi-stationnaire. On désigne par $\mathcal{C}_\Omega(f)$ le plus petit ensemble des fonctions qui :

i) contienne la fonction f donnée

ii) ne puisse contenir une fonction sans contenir toutes ses translations

iii) ne puisse contenir deux fonctions sans contenir leurs combinaisons linéaires

iv) ne puisse contenir une fonction sans contenir sa transformée par l'opérateur $\Omega(t)$.

a) Définition -

On dit que la fonction (quasi-stationnaire) f est parfaite vis-à-vis de l'opérateur $\Omega(t)$ si l'ensemble $\mathcal{C}_\Omega(f)$ ne contient que des fonctions 1-quasi-stationnaires.

b) Théorème -

Soient $\{f_n\}$ une suite de Cauchy de fonctions parfaites vis-à-vis d'un opérateur quasi-stationnaire \mathcal{C}_Θ^a-continu $\Omega(t)$. Alors leur \mathcal{C}_Θ^a-limite f est une fonction parfaite vis-à-vis de l'opérateur $\Omega(t)$.

Ce théorème résulte de la \mathcal{C}_Θ^a-continuité de $\Omega(t)$.

c) Espace $\mathcal{T}_\Omega(f; M_s, H)$ -

On appelle $\mathcal{T}_\Omega(f; M_s, H)$ la \mathcal{C}_Θ^a-fermeture de l'ensemble $\mathcal{C}_\Omega(f)$. D'après le théorème précédent, $\mathcal{T}_\Omega(f; M_s, H)$ ne contient que des fonctions parfaites vis-à-vis de $\Omega(t)$. En particulier, c'est un sous-espace vectoriel complet de l'espace $\mathcal{C}_\Theta(f; H)$ de Bass; on peut donc structurer $\mathcal{T}_\Omega(f; M_s, H)$ en un espace hilbertien par le procédé habituel.

d) Exemples -

a) Soit $\omega(t)$ une fonction ∞-quasi-stationnaire à valeurs dans un Hilbert H. L'opérateur $\Omega(t)$ qui, à chaque $\omega \in H$, fait correspondre :

$$q(\omega, t) = \Omega(t)\omega = \tilde{\mathcal{A}}[\omega(t), \ldots, \omega(t), \ldots, \omega]$$

où $\tilde{\mathcal{A}}$ est un opérateur multilinéaire borné, est un opérateur quasi-stationnaire.

Toute fonction ∞-quasi-stationnaire et appartenant à $\mathcal{C}_\Theta(\omega; M_s, H)$ est une fonction parfaite vis-à-vis de l'opérateur quasi-stationnaire $\Omega(t)$.

b) Soit $t, \omega \rightarrow \theta(t, \omega)$ une application de $\mathcal{C}_\Theta \times H$ dans H. On suppose que :

i) $t \rightarrow \theta(t, \omega)$ est uniformément-presque-périodique en t, pour chaque ω fixé.
ii) $\| \theta(t,x) - \theta(t,y) \| \leq \varphi (\| x - y \|)$

où $\varphi(\delta)$ est une fonction continue en δ, s'annulant pour $\delta = 0$.

L'opérateur $\Omega(t)$ défini par $\Omega(t)x = \theta(t,x)$ est évidemment quasi-stationnaire.

En plongeant le groupe \mathbb{G} dans son compactifié de Bohr (cf. N. DUNFORD et J.T. SCHWARTZ[1], [2]), on peut démontrer que : Toute fonction $t \rightarrow \mathfrak{F}(t)$ uniformément-presque-périodique à valeurs dans \mathcal{H}, est parfaite vis-à-vis de l'opérateur $\Omega(t)$.

On en trouvera la démonstration dans W. BOGDANOWICZ [1] (l'auteur se place au cas où \mathbb{G} est le groupe additif des réels).
I - FONCTIONS SCALAIREMENT QUASI-STATIONNAIRES À VALEURS DANS UN BANACH

Soit \(t \mapsto f(t) \) une fonction définie sur le groupe \(G \), à valeurs dans un espace de Banach \(X \), scalairement intégrable (cf. N. BOURBAKI [11]). Le dual topologique de \(X \) sera désigné par \(X^* \).

1°) Définition

On dit que \(f \) est une fonction scalairement quasi-stationnaire si pour tout \(\Phi \in X^* \), la fonction \(t \mapsto \langle f(t) | \Phi \rangle \) est une fonction quasi-stationnaire numérique.

L'ensemble des fonctions scalairement quasi-stationnaires sera désigné par \(S^*(G;X) \).

2°) Comparabilité linéaire

On dit que des fonctions scalairement quasi-stationnaires \(f_i \) \((i = 1, \ldots, n) \) sont linéairement comparables dans leur ensemble si \(\lambda_1 f_1 + \cdots + \lambda_n f_n \) est une fonction scalairement quasi-stationnaire, quels que soient les nombres complexes \(\lambda_i \).

3°) Étude des translations

Proposition - Si \(f \) est une fonction scalairement quasi-stationnaire, alors \(\Phi f \) est aussi scalairement quasi-stationnaire, linéairement comparable à \(f \).

La démonstration est immédiate.

4°) Convergence dans l'espace \(S^*(G;X) \)
Dans ce paragraphe, nous ne considérons que des S_p-fonctions qui sont en même temps des \mathcal{M}_s^*-fonctions.

Théorème -

1) La \mathcal{M}_s^*-limite d'une suite $\{f_n\}$ de S_p-fonctions est une S_p-fonction linéairement comparable à toute S_p-fonction linéairement comparable à $\{f_n\}$.

2) Les \mathcal{M}_s^*-limites f et g de deux suites $\{f_n\}$ et $\{g_n\}$ de S_p-fonctions linéairement comparables, sont linéairement comparables entre elles.

Démonstration -

De $\|f_n - f\| < \varepsilon$, on déduit :

$$\mathcal{M} \left| \left(f_n(t) - f(t) \right) \right|^2 < \varepsilon$$

La suite $\langle f_n | \phi \rangle$ tend donc vers $\langle f | \phi \rangle$ qui est une fonction quasi-stationnaire numérique linéairement comparable à toute fonction quasi-stationnaire numérique linéairement comparable à $\langle f_n | \phi \rangle$ d'après les résultats du chapitre A4. La proposition (i) en découle.

La proposition (ii) se démontre d'une façon analogue.

5°) **Transformations linéaires** -

Soient X et Y deux espaces de Banach. Soit A un opérateur linéaire (non nécessairement borné) de X dans Y. On suppose que :

1) le domaine $D(A)$ est dense dans X

2) le domaine $D(A^*)$ est dense dans Y^* (par exemple, A fermé et Y réflexif).

Proposition -

Si la fonction $t \rightarrow f(t) \in D(A)$ est scalairement quasi-stationnaire, et si $Af \in \mathcal{M}_s^*(\mathcal{G}^*;Y)$, alors $t \rightarrow Af(t)$ est aussi scalairement quasi-stationnaire.

Démonstration -

Comme $D(A)$ est dense dans X, on peut définir son opérateur adjoint A^*. Le domaine de A^* est dense par hypothèse. Soit $\phi \in D(A^*)$; on a :

$$\langle Af(t) | \phi \rangle = \langle f(t) | A^* \phi \rangle$$

Donc $t \rightarrow \langle Af(t) | \phi \rangle$ est une fonction quasi-stationnaire numérique.

Soit ϕ un élément quelconque de Y^*. On a :

$$\phi = \gamma^* \lim_{n \to \infty} \phi_n$$

où $\phi_n \in D(A^*)$.

68
Posons $F(t) = A f(t)$. On a :

$$\langle F(t) | \phi \rangle - F(t) | \phi_n \rangle = \langle F(t) | \phi - \phi_n \rangle$$

D'après l'inégalité de Schwarz :

$$| \langle F(t) | \phi \rangle - \langle F(t) | \phi_n \rangle | \leq \| F(t) \|_Y \| \phi - \phi_n \|_Y$$

Par suite :

$$\| \langle F | \phi \rangle - \langle F | \phi_n \rangle \| \leq \| \phi - \phi_n \| \| F \|$$

La fonction $\langle F | \phi \rangle$ est donc \mathcal{M}^2-limite de $\langle F | \phi_n \rangle$, et est par conséquent une fonction quasi-stationnaire numérique. Ce qui montre que $F = A f$ est une fonction scalairement quasi-stationnaire.

6°) Espace $\mathcal{C}^k(f ; \mathcal{M}^k, X \rightarrow Y)$ -

On suppose que f est une \mathcal{M}^k-fonction scalairement quasi-stationnaire. D'après le théorème précédent, l'espace $\mathcal{C}^k(f ; \mathcal{M}^k, X \rightarrow Y)$, défini au paragraphe Al, II 4°) ne contient que des fonctions scalairement quasi-stationnaires.

II - FONCTIONS FAIBLEMENT QUASI-STATIONNAIRES A VALEURS DANS UN HILBERT -

1°) Proposition -

i) Dans un espace hilbertien H quelconque, toute fonction 1-quasi-stationnaire est une fonction scalairement quasi-stationnaire

$$\mathcal{S}(\mathcal{C}^0 ; H) \subset \mathcal{S}^r(\mathcal{C}^0 ; H).$$

ii) Dans \mathcal{C}^n, toute fonction 1-quasi-stationnaire est une fonction scalairement quasi-stationnaire et réciproquement

$$\mathcal{S}(\mathcal{C}^0 ; \mathcal{C}^n) = \mathcal{S}^r(\mathcal{C}^0 ; \mathcal{C}^n).$$

Démonstration -

i) Soit ξ un élément de H. Considérons A, l'opérateur linéaire borné A, qui à chaque $x \in H$ fait correspondre $A x = \langle x | \phi \rangle$. Si f est 1-quasi-stationnaire, alors Af est quasi-stationnaire et $\langle f | \phi \rangle$ est quasi-stationnaire.

ii) Si f est une fonction scalairement quasi-stationnaire dans \mathcal{C}^n, alors ses composantes $f_i = \langle f | \psi_i \rangle$ sur une base $\{ \psi_i \}$ sont des fonctions quasi-stationnaires numériques linéairement comparables. On utilise ensuite le théorème A5, III 1°).

2°) Transformation des fonctions scalairement quasi-stationnaires -

Théorème -

La transformée d'une fonction scalairement quasi-stationnaire f par un opérateur compact K est une fonction 1-quasi-stationnaire.
Démonstration -

a) Cas des opérateurs de rang fini -

Soit K un opérateur linéaire de rang fini (F. Riesz et Sz. Nagy [1]), i.e. un opérateur linéaire qui transforme l'espace entier H en un sous-espace H^n de dimension finie n. D'après le théorème précédent, Kf est un élément de $\mathfrak{S}(\mathfrak{F}^n; H)$. C'est donc un élément de $\mathfrak{S}(\mathfrak{F}; H)$.

b) Cas général -

On peut toujours approcher uniformément toute transformation compacte K par une suite de transformations de rang fini K_n :

$$\|K - K_n\| < \varepsilon,$$

dès que $n > n_0(\varepsilon)$.

Par suite, la fonction Kf est la \mathfrak{M}^ε-limite de la suite des fonctions K_nf.

Or, on vient de démontrer que K_nf est 1-quasi-stationnaire. Comme l'espace $\mathfrak{S}(\mathfrak{F}; H)$ est complet, on déduit que Kf est un élément de $\mathfrak{S}(\mathfrak{F}; H)$.

3°) Espace $\mathfrak{T}_H(f; \mathfrak{M}^x, H)$ -

On appelle $\mathfrak{T}_H(f; \mathfrak{M}^x, H)$ la variété linéaire \mathfrak{M}^x-fermée engendrée par l'ensemble $\{Kuf | K \in \mathfrak{K}, K \in \mathfrak{K}(H \rightarrow H)\}$, où $\mathfrak{K}(H \rightarrow H)$ désigne l'ensemble des opérateurs compacts de H.

L'espace $\mathfrak{T}_H(f; \mathfrak{M}^x, H)$ ne contient que des fonctions 1-quasi-stationnaires 1-comparables. C'est un sous-espace vectoriel de l'espace $\mathfrak{S}(\mathfrak{F}; H)$ de Bass; on le structure en un Hilbert par la méthode habituelle.

Remarques -

a) La fonction f n'appartient pas à l'espace $\mathfrak{T}_H(f; \mathfrak{M}^x, H)$ si H est de dimension infinie, car l'identité n'est pas un opérateur compact. Cependant, on a le résultat suivant :

Si $f \in \mathfrak{M}^x(\mathfrak{F}; H)$ et si $g \in \mathfrak{T}_H(f; \mathfrak{M}^x, H)$, alors $\mathfrak{M} < f | g >$ existe.

La proposition est évidente si $g = K_nf$ où K_n est un opérateur de rang fini. Le cas général résulte du théorème A3, III ?° sur la \ast-comparabilité.

b) Dans le cas où f est elle-même une fonction 1-quasi-stationnaire, on peut alors prolonger (artificiellement) l'espace $\mathfrak{T}_H(f; \mathfrak{M}^x, H)$ en lui adjoignant la fonction f. On obtient ainsi un espace vectoriel ne contenant que des fonctions 1-quasi-stationnaires.

III - PROBLEMES NON LINEAIRES -

On peut définir et étudier les fonctions ∞-scalairement-quasi-stationnaires comme on l'a fait pour les fonctions ∞-quasi-stationnaires. L'ensemble $\mathfrak{S}_\infty(\mathfrak{F}; H)$ ainsi obtenu possède des propriétés analogues à l'ensemble $\mathfrak{S}(\mathfrak{F}; H)$.
Dans ce chapitre, \(\mathbb{R} \) sera le groupe additif des réels \(\mathbb{R} \), avec
\[S^j_{\eta} = [-\eta, \eta], \]
\(\mathbb{H} \) sera l'espace \(\mathbb{C} \) des nombres complexes, structuré en un
Hilbert avec sa topologie habituelle.

Nous ne considérons, sauf indication contraire, que des fonctions
\(t \rightarrow f(t) \) définies pour \(t > 0 \). Nous poserons \(f(t) = 0 \) pour \(t < 0 \). Enfin,
notre nous nous occuperons presque exclusivement que des fonctions constantes
sur chaque intervalle \([n, n+1[\) , \(n \) entier.

Pour \(t \in \mathbb{R} \), nous désignerons par \(\hat{t} \) le plus grand entier ne dépassant
pas \(t \) et par \(\underline{t} \) la partie fractionnaire de \(t \) : \(t = \hat{t} + \underline{t} \).

I - LEMME FONDAMENTAL RELATIF AUX CORRÉLATIONS MULTIPLES

1°) Corrélations multiples

Considérons \(p \) fonctions \(t \rightarrow f_i(t) \) de la variable réelle \(t \),
\((i = 1, \ldots, p) \) et deux suites
\[\{ \ell_i \} = \{ \ell_1, \ldots, \ell_p \} \]
de nombres réels et de petites barres (–).

Par convention, \(f_i(t + \text{petite barre}) = 1 \).

On appelle corrélations multiples des \(p \) fonctions \(f_i \) les nombres
\[\Gamma_{\{f_i\}} \left(\{ \ell_i \} \right) \]
s'ils existent, définis de la façon suivante :
\[\Gamma_{\{f_i\}} \left(\{ \ell_i \} \right) = \Gamma \left(\ell_1, \ldots, \ell_p \right) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} f_i(t + \ell_i) \overline{f_i(t + \ell_i)} \ dt \]
Dans tout ce qui suit, une suite de nombres réels et de petites barres sera appelée "suite (lacunaire) de nombres", une suite de petites barres sera appelée "suite vide".

Les fonctions \(f_i \) ne sont pas nécessairement toutes différentes. En particulier, si elles sont toutes identiques à une fonction \(f \), on obtient les autocorrelations multiples de la fonction \(f \) (cf. par exemple M. MENDES FRANCE [3]). On remarque que \(\Gamma_f (0) \) n'est autre que la moyenne \(\mathcal{M}_f \) de la fonction \(f \), et que \(\Gamma_f (k) = \int_0^1 f(t) f(t+k) \, dt \) n'est autre que la fonction d'autocorréléation (simple) \(\gamma(k) \) de la fonction \(f \) (cf. chapitre A4).

On note les identités remarquables suivantes :

a) Symétrie hermitienne :
\[
\Gamma\{f_i\},\{g_i\}(k) = \Gamma\{f_i\},\{\bar{g}_i\}(k)
\]

b) Invariance par translation :
\[
\Gamma\{f_i\}(k) = \Gamma\{f_i\}(k + \lambda), \quad \lambda \in \mathbb{R}
\]

2°) Lemme fondamental -

Soient \(t \rightarrow f_i(t) \), \(i = 1, \ldots, p \), des fonctions complexes de la variable réelle \(t \), vérifiant l'équation fonctionnelle \(f_i(t) = f_i(t + 1) \).

Si les corrélations \(\Gamma\{f_i\}(k) \) existent pour toutes les suites \(\{k_i\} \) et \(\{\ell_i\} \) de nombres entiers positifs \(\geq 0 \), alors elles existent pour toutes les suites \(\{k_i\} \) et \(\{\ell_i\} \) de nombres réels quelconques.

Démonstration -

Les identités remarquables du paragraphe précédent nous permettent de nous limiter au cas où la suite \(\{k_i\} \) est formée de nombres positifs, et où la suite \(\{\ell_i\} \) est vide.

Cherchons les conditions d'existence de
\[
\Gamma\{f_i\}(k) = \lim_{T \to \infty} \frac{1}{T} \int_0^T f_i(t+k) \, dt
\]

Nous pouvons nous limiter à un intervalle \(T \) entier (\(T = N \)). Comme \(f_i(t) = f_i(t + 1) \), nous cherchons donc des conditions d'existence de
\[
\lim_{N \to \infty} \frac{1}{N} \int_0^N f_i(t+k) \, dt
\]
Ecrivons :
\[\int_{0}^{N} \frac{1}{n} \sum_{n=0}^{N-1} \left\{ \prod_{i=1}^{n+1} f_i(n+\xi + \xi) \right\} d\xi \]
et dans chaque intégrale, faisons le changement de variable :
\[t = n + \xi \quad (0 \leq \xi < 1) \]

Nous avons donc à étudier :
\[\frac{1}{N} \int_{0}^{t} \sum_{n=0}^{N-1} \left\{ \prod_{i=1}^{n+1} f_i(n+\xi + \xi) \right\} d\xi \]

Or :
\[\xi + \xi + \xi = \left\{ \begin{array}{ll}
\xi + \xi & \text{si } \xi < 1 - \xi \\
\xi + \xi + 1 & \text{si } \xi \geq 1 - \xi
\end{array} \right. \]

Dans chacun des intervalles \([0, 1 - \xi]\) et \([1 - \xi, 1]\), la fonction \(f = n + \xi + \xi\) ne dépend donc pas de \(\xi\).

Supposons que la suite \(\{\xi_i\}\) soit ordonnée de manière que :
\[\xi_1 > \xi_2 > \cdots > \xi_p \]

Partageons l'intervalle \([0, t]\) en des intervalles plus fins par les points d'abscisse
\[1 - \xi_1, 1 - \xi_2, \ldots, 1 - \xi_p \]

La fonction
\[\xi \rightarrow \sum_{n=0}^{N-1} \prod_{i=1}^{n+1} f_i(n+\xi + \xi_i) \]
est constante dans chacun de ces intervalles et y est égale à :
\[\sum_{n=0}^{N-1} \prod_{i=1}^{n+1} f_i(n+\xi + \xi_i) \text{ avec } \xi_i = \left\{ \begin{array}{ll}
0 & \text{si } \xi < 1 - \xi_i \\
1 & \text{si } \xi \geq 1 - \xi_i
\end{array} \right. \]

Par suite, si \(\Gamma(\{\xi_i\})\) existe pour toutes les suites \(\{\xi_i\}\) de nombres entiers positifs \((\geq 0)\), alors \(\Gamma(\{\xi_i\})\) existe pour toutes les suites \(\{\xi_i\}\) de nombres réels, et est donnée par la formule d'interpolation suivante :
\[\Gamma(\xi, \ldots, \xi_p) = \Gamma(\xi_1, \ldots, \xi_p) + \sum_{i=1}^{p} \xi_i \left[\Gamma(1+\xi, \ldots, 1+\xi_i, \ldots, \xi_p) - \Gamma(1+\xi, \ldots, 1+\xi_{i-1}, \ldots, \xi_p) \right] . \]
3°) **Conséquences du lemme fondamental**

Du lemme précédent, on déduit immédiatement les résultats suivants :

a) Si $\gamma_n(h) = \gamma_f(h)$ est définie pour tout h entier positif (>0), alors la fonction f est quasi-stationnaire. Sa fonction de corrélation $\gamma_n(h)$ varie linéairement dans chacun des intervalles $[n, n+1]$, n entier :

$$\gamma(h) = \gamma(h) + \frac{h}{n} [\gamma(h+1) - \gamma(h)].$$

Si, en plus, $\gamma(h) = 0$ pour h assez grand, alors f est pseudo-aléatoire centrée (cf. paragraphe A4, IV).

b) Si la corrélation $\gamma_f(\{k, l\})$ est définie pour toutes les suites de nombres entiers positifs (>0) $\{k\}$ et $\{l\}$, alors f est complètement quasi-stationnaire.

En plus, si $\gamma_f(\{k, l\})$ s'annule pour h assez grand, alors f est complètement pseudo-aléatoire.

c) Si $\gamma_f(\{k\} + \hat{h})$ est définie pour toutes les suites $\{k\}$ et $\{l\}$ de nombres entiers positifs, alors les fonctions f_i sont des fonctions complètement quasi-stationnaires complètement comparables.

En plus, si $\gamma_f(\{k\} + \hat{h}) = 0$ pour h assez grand, alors les f_i sont des fonctions complètement pseudo-aléatoires complètement comparables.

Ces résultats seront très facilement utilisés si nous introduisons la notion de suites équiréparties modulo 1.

II - SUITES ÉQUIRÉPARTIES

(cf. H. WEYL [1], J.W.S. CASSELS [1]).

Soit $\eta = \phi(n) = \{\phi'(n), ..., \phi^p(n)\}$ une application de \mathbb{N} dans \mathbb{R}^p ; à chaque entier n, nous associons la partie décimale \overline{u}_n de la suite $\overline{\phi}(n)$:

$$\overline{u}_n = \overline{\phi}(n).$$

Nous obtenons une suite dénombrable de points appartenant à l'hyper-cube unité K^p ($0 \leq \alpha \leq 1, \alpha \in \mathbb{R}$). Considérons les N premiers points $\overline{u}_1, ..., \overline{u}_N$. Soit Ω un ensemble mesurable arbitraire intérieur au cube K^p ; N des N points $\overline{u}_1, ..., \overline{u}_N$ appartiennent à Ω.

74
1°) Définition -
On dit que la suite $\varphi(n)$ est équirépartie modulo 1 et, plus précisément, sur le tore $(\mathbb{R}/\mathbb{Z})^p$, si pour tout ensemble mesurable Ω, le rapport $\frac{N}{\Omega}$ tend, lorsque $N \to \infty$, vers une limite égale à la mesure de l'ensemble Ω.

2°) Critères de H. Weyl [11] -
Pour démontrer qu'une suite $\varphi(n)$ est équirépartie modulo 1, on dispose de deux critères très simples dus à M. Weyl.

a) Critère A -
La suite $\varphi(n)$ est équirépartie sur le tore $(\mathbb{R}/\mathbb{Z})^p$ si et seulement si, quelle que soit la fonction $\mu(x)$, Riemann-intégrable sur le cube unité K^p, on a :

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N} \mu[\varphi(n)] = \int_{K^p} \mu(x) \, dx.$$

Lorsque $\mu(x) = \exp(2\pi i \langle \lambda, x \rangle)$ où λ est un vecteur entier non nul de \mathbb{R}^p, l'intégrale du second membre est nulle, et aussi la moyenne du premier membre. Ce résultat admet une réciproque qui constitue le deuxième critère de Weyl.

b) Critère B -
La suite $\varphi(n)$ est équirépartie modulo 1 si et seulement si

$$\lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N} \exp(2\pi i \langle \lambda, \varphi(n) \rangle)$$

est nul pour tout vecteur entier non nul λ.

3°) Indépendance des suites équiréparties -
a) Soit $\Phi = \{\varphi^i(n)\}$ un ensemble fini ou infini de suites numériques équiréparties sur \mathbb{R}/\mathbb{Z}, non nécessairement toutes distinctes.

On dit que ces suites sont linéairement indépendantes si la suite numérique

$$\lambda_1 \varphi^1(n) + \ldots + \lambda_p \varphi^p(n)$$

est équirépartie sur \mathbb{R}/\mathbb{Z}, quels que soient les nombres entiers λ_i non tous nuls, et quand is les p suites $\varphi^i(n)$, \ldots, $\varphi^p(n)$ toutes distinctes extraites de l'ensemble Φ.

D'après le deuxième critère de Weyl, les suites numériques équiréparties $\varphi^i(n)$ ($i = 1, \ldots, p$) sont linéairement indépendantes si et seulement si la suite vectorielle p-dimensionnelle

$$\varphi(n) = \{\varphi^1(n), \ldots, \varphi^p(n)\}$$

est équirépartie sur le tore $(\mathbb{R}/\mathbb{Z})^p$.

75
b) Soit $\Psi = \{\psi(n)\}$ un autre ensemble de suites numériques équiréparties sur \mathbb{R}/\mathbb{Z}.

On dit que les suites $\varphi_i(n)$ sont asymptotiquement positivement indépendantes des suites $\psi_j(n)$ si, quel que soit λ^+, μ, et les entiers μ non tous nuls et quelles que soient les p suites $\varphi_1(n), \ldots, \varphi_p(n)$ et les q suites $\psi_1(n), \ldots, \psi_q(n)$ extraites respectivement des ensembles Φ et Ψ, on peut trouver un entier h_0 assez grand, tel que si $h > h_0$, la suite numérique

$$\lambda^+ \varphi_1(n + h) + \cdots + \lambda^+ \varphi_p(n + h) + \mu \psi_1(n) + \cdots + \mu \psi_q(n)$$

soit équirépartie sur \mathbb{R}/\mathbb{Z}.

4°) Équirépartition d'ordre 2 -

Soit $\varphi(n)$ une suite numérique équirépartie modulo-un.

a) Suite doublement équirépartie -

On dit que la suite $\varphi(n)$ est doublement équirépartie si les suites $\varphi(n)$ et $\psi(n) = \varphi(n + h)$ sont linéairement indépendantes, quel que soit l'entier positif h.

b) Suite asymptotiquement doublement équirépartie -

On dit que la suite $\varphi(n)$ est asymptotiquement doublement équirépartie si la suite $\psi(n) = \varphi(n + h)$ est asymptotiquement positivement indépendante de la suite $\varphi(n)$.

Nous verrons, aux prochains paragraphes, que l'existence des fonctions pseudo-aléatoires, est liée à celle des suites doublement équiréparties et à celle des suites asymptotiquement doublement équiréparties.

5°) Équirépartition complète -

Soit $\{\varphi_i(n)\}$ un ensemble fini ou infini de suites numériques équiréparties sur \mathbb{R}/\mathbb{Z}, non nécessairement toutes distinctes.

a) Suites mutuellement complètement équiréparties -

On dit que les suites $\varphi_i(n)$ sont mutuellement complètement équiréparties modulo-un, si les suites $\psi_i(n) = \varphi_i(n + h_i)$ sont linéairement indépendantes, quel que soit le nombre entier positifs h_i ($i = 1, 2, \ldots, \infty$).

En particulier, dans le cas où $\varphi_i(n) = \varphi(n)$ quel que soit i, alors la suite $\varphi(n)$ est dite complètement équirépartie modulo-un, cette notion est introduite par N.M. KOROBOV [1].

b) Suites mutuellement asymptotiquement complètement équiréparties -

On dit que les suites $\varphi_i(n)$ sont mutuellement asymptotiquement complètement équiréparties modulo-un, si les suites $\theta_i(n) = \varphi_i(n + h_i)$ sont asymptotiquement positivement indépendantes des suites $\psi_i(n) = \varphi_i(n + h_i)$ et $\psi_j(n) = \varphi_j(n + h_j)$, quel que soit les entiers positifs h_i ($i = 1, 2, \ldots, \infty$) et h_j ($j = 1, 2, \ldots, \infty$).
En particulier, dans le cas où $\phi_i(n) = \phi(n)$ quel que soit i, alors la suite $\phi(n)$ est dite asymptotiquement complètement équirépartie modulo-un.

Nous verrons, au prochain paragraphe, que l'existence des fonctions complètement pseudo-éloignées est liée à celle des suites complètement équiréparties et à celle des suites asymptotiquement complètement équiréparties. Or la construction des suites complètement équiréparties est particulièrement difficile (cf. les notes de N.M. KOROBOV [1][2] et de L.P. STARTCHENKO [1][2][3]). Par contre, la construction des suites asymptotiquement complètement équiréparties est relativement facile, comme nous le verrons plus loin.

III - THEORÈMES FONDAMENTAUX -

1) Soient $\alpha_i(x)$ des fonctions numériques de la variable réelle x, périodiques (de période 1) et Riemann-intégrables, non nécessairement toutes distinctes.

On appelle moment d'ordre p de la fonction α_i le nombre $m_{i,\alpha}$ défini par :

$$m_{i,\alpha} = \int_0^1 \alpha_i(x)^p \, dx$$

Soient $n \rightarrow \phi_i(n)$, $i = 1, 2, \ldots, \infty$, des fonctions réelles de la variable entière positive n, non nécessairement toutes distinctes. Nous proposons de déterminer la nature des fonctions

$$t \rightarrow \phi_i(t) = \alpha_i \{\phi_i(t)\}$$

Premier théorème fondamental -

a) Si la suite $\phi(n)$ est doublement équirépartie modulo-un, alors la fonction $t \rightarrow \phi_i(t) = \alpha_i \{\phi_i(t)\}$ est pseudo-aléatoire :

i) centrée si $m_i = 0$

ii) décentrée si $m_i \neq 0$

b) Si la suite $\phi(n)$ est complètement équirépartie modulo-un, alors la fonction $t \rightarrow \psi(t) = \alpha_i \{\phi_i(t)\}$ est complètement pseudo-aléatoire :

i) centrée si les moments de α_i sont tous nuls

ii) décentrée si les moments de α_i ne sont pas tous nuls.

c) Si les suites numériques $\phi_i(n)$ sont mutuellement complètement équiréparties modulo-un, alors les fonctions $t \rightarrow f_i(t) = \alpha_i \{\phi_i(t)\}$ sont complètement pseudo-aléatoires (centrées ou non) complètement comparables.

La proposition (a) est classique, et a été utilisée par divers auteurs (cf. surtout J. BASS [1]).

Démonstration - Nous utilisons les conséquences du lemme fondamental.

a) Supposons $m_i = 0$, et montrons que f est pseudo-aléatoire centrée.
On a :

\[\chi(h) = \lim_{N \to \infty} \sum_{n=0}^{N} \alpha \{ \varphi(n+h) \} \overline{\alpha} \{ \varphi(n) \}. \]

La suite bidimensionnelle \(\{ \varphi(n+h), \varphi(n) \} \) étant équirépartie sur le tore \(R/Z \) pour \(h \) assez grand, le premier critère de Weyl montre que :

\[\chi(h) = \int_{K^2} \alpha(x) \overline{\alpha(y)} \, dx \, dy = 0. \]

Le cas où \(m_1 \neq 0 \) se ramène au cas précédent. En effet, posons \(\sigma_0(x) = \alpha(x) - m_1 \), nous obtenons :

\[f(x) - m_1 = \sigma_0 \{ \varphi(\hat{h}) \}, \]

ce qui montre que la fonction \(f \) est pseudo-aléatoire décentrée.

b) Etudions la nature de la fonction

\[t \rightarrow g(t) = \prod_{i=1}^{P} f(t + h_i) \]

Nous envisageons les quatre cas suivants :

i) Cas où les nombres entiers positifs \(h_i \) sont tous distincts.

Pour tout \(h \) entier, formons :

\[\chi(h) = \lim_{N \to \infty} \frac{1}{N} \int_{-T}^{T} \frac{1}{\prod_{i=1}^{P} f(t + h_i) \overline{f}(t + h_i)} \, dt \]

\[= \lim_{N \to \infty} \frac{1}{N} \sum_{n=0}^{N} \int_{-T}^{T} \alpha \{ \varphi(n + h_i) \} \overline{\alpha} \{ \varphi(n + h_i) \}. \]

La suite \(2^P \)-dimensionnelle \(\{ \varphi(n + h_i + h), \varphi(n + h_i) \} \) étant équirépartie sur \((R/Z)^P \) par hypothèse, le premier critère de Weyl montre que :

\[\chi(h) = \int_{K^P} \prod_{i=1}^{P} \alpha(x_i) \overline{\alpha(x_i)} \, dx_i = \prod_{i=1}^{P} \int_{0}^{T} \alpha(x) \, dx_i. \]

Si \(m_1 = 0 \), la fonction \(g \) est donc pseudo-aléatoire centrée.

Le cas où \(m_1 \neq 0 \) se ramène au cas précédent, en remarquant que la fonction

\[t \rightarrow g(t) - (m_1)^P \]

est pseudo-aléatoire centrée; par suite \(g \) est pseudo-aléatoire décentrée.

ii) Cas où les nombres \(h_i \) sont tous identiques -

Etudions la nature de la fonction \(t \rightarrow g(t) = [f(t + h)]^P \),

qui est celle de la fonction \([f(t)]^P\).
Ecrivons \([f(t)]^b = \alpha^p \{\varphi(\hat{\xi})\}\), et nous ramenons à la proposition (a). Donc si \(m_p = 0\), alors \(g\) est pseudo-aléatoire centrée, si \(m_p \neq 0\), \(g\) est pseudo-aléatoire décentrée.

iii) Cas où \(n\) des nombres \(k_i\) sont identiques et où les autres nombres \(k_i\) sont distincts -

On combine les procédés utilisés aux (ii) et (i). On pose:

\[h(t) = g(t) - m_{n}(m_{i})^{b-n}\]

et on montre que la fonction \(h\) est pseudo-aléatoire centrée.

iv) Cas général où \(n\), des nombres \(k_i\) sont identiques à \(k_1\), \(n_2\) des nombres \(k_i\) sont identiques à \(k_2\), ..., \(n_\lambda\) des nombres \(k_i\) sont identiques à \(k_\lambda\) \((n_1 + \cdots + n_\lambda = p)\). On pose:

\[h(t) = g(t) - m_{n_1} \cdots m_{n_\lambda}\]

et on montre que la fonction \(h\) est pseudo-aléatoire centrée.

La proposition (b) est ainsi démontrée.

c) Ajoutons, dans la démonstration précédente, à la fonction \(f\) l'indice \(-1\) et la proposition (c) sera démontrée.

Remarque -

Le premier théorème fondamental admet une réciproque qui s'énonce comme suit :

Si les fonctions \(t \longrightarrow \exp\{2i\pi \varphi(\xi)\}\) et \(t \longrightarrow \exp\{-2i\pi \varphi(\xi)\}\) sont complètement pseudo-aléatoires centrées, complètement comparables entre elles, alors les suites \(\varphi(\xi)\) sont mutuellement complètement équiréparties.

La démonstration est immédiate ; elle se repose sur le deuxième critère d'équirépartition de Weyl et sur la nullité de la moyenne d'une fonction pseudo-aléatoire centrée.

2°) Soit \(x = X(x)\) une fonction numérique de la variable réelle \(x\), périodique (de période 1), Riemann-intégrable, et vérifiant l'hypothèse (HX) suivante :

\[X(\xi) = X(\xi + 1)\]

(HX) \[
\begin{align*}
X(\xi)X(y) &= \sum_{j=1}^{\infty} \lambda_j X(\alpha \xi + \beta y) & \text{(combinaison linéaire finie)}
\end{align*}
\]

où \(\lambda_j\) sont des complexes et où \(\alpha\) et \(\beta\) sont des entiers positifs.
Deuxième théorème fondamental -

a) Si la suite $\varphi(n)$ est asymptotiquement doublement équirépartie modulo-un, alors la fonction $t \rightarrow \chi\{\varphi(t)\}$ est pseudo-aléatoire, centrée si $m_1 = 0$, décentrée si $m_1 \neq 0$.

b) Si la suite $\varphi(n)$ est asymptotiquement complètement équirépartie modulo-un, alors la fonction $t \rightarrow \hat{f}(t) = \chi\{\varphi(t)\}$ est complètement pseudo-aléatoire, centrée si les moments de χ sont tous nuls, décentrée si les moments de χ ne sont pas tous nuls.

c) Si les suites numériques $\varphi_i(n)$ sont mutuellement asymptotiquement complètement équiréparties modulo-un, alors les fonctions $t \rightarrow \hat{f}_i(t) = \chi\{\varphi_i(t)\}$ sont complètement pseudo-aléatoires (centrées ou non) complètement comparables.

La démonstration se fait comme celle du premier théorème fondamental, avec des modifications convenables.

Notation -

Dans tout ce qui suit :

$x \rightarrow \alpha(x)$ désigne une fonction (complexe ou réelle) périodique (de période 1) et intégrable sur chaque période.

Exemple : $\exp 2i\pi x$, $\cos 2\pi x$, $\sin 2\pi x$, $\exp \frac{2i\pi m}{m^2}$

$x \rightarrow \alpha_0(x)$ désigne une fonction dont les moments de tous les ordres sont nuls.

Exemple : $\exp 2i\pi x$

$x \rightarrow \chi(x)$ désigne une fonction vérifiant l'hypothèse ($H\chi$).

Exemple : $\exp \frac{2i\pi m}{m^2}$, où m est un entier > 2

Le cas où $m = 2$ est très important, car nous obtenons ainsi des fonctions réelles.

$x \rightarrow \chi_0(x)$ désigne une fonction vérifiant l'hypothèse ($H\chi$).

Exemple : $\exp 2i\pi x$

IV - UN THÉORÈME D'EXISTENCE PRESQUE SURE -

Soit $n \rightarrow \varphi(n)$ une application de \mathbb{N} dans \mathbb{R}. Posons $\omega_n = \varphi(n)$ et soit $\omega = \{\omega_1, \ldots, \omega_n, \ldots\}$.

L'ensemble U des suites ω peut être identifié au tore $\left(\mathbb{R}^{\mathbb{N}}\right)$ à une infinité dénombrable de dimensions. L'unité de la topologie de Tychonoff, U sera un groupe abélien compact. La mesure de Haar sur U n'est autre que le produit infini des mesures de Lebesgue sur chacune des composantes (cf. MENDES FRANCE [3]).

1°) Théorème -

Pour "presque" toutes les fonctions φ, la suite numérique $\varphi(n)$ est complètement équirépartie modulo-un.
Le mot "presque" signifie sauf peut-être un ensemble de fonctions φ telles que l'ensemble des suites u associées soit de mesure nulle.

Le théorème se démontre à partir du théorème ergodique de Birkhoff relatif aux transformations mesurables, conservant la mesure et ergodiques, et du deuxième critère d'équirépartition de Weyl.

La démonstration se trouve dans M. MENDES FRANCE (3).

2° Corollaire -

"Presque" toutes les fonctions $t \rightarrow \int f(t) = \varphi(t)$ sont complètement pseudo-aléatoires centrées, "presque" toutes les fonctions $t \rightarrow f(t) = \varphi(t)$ sont complètement pseudo-aléatoires décentrées.

Ce corollaire découle immédiatement de la proposition (b) du premier théorème fondamental (paragraphe III).

Ainsi, le théorème ergodique de Birkhoff fournit un théorème d'existence "presque sûre" de fonctions complètement pseudo-aléatoires.

Aux paragraphes suivants, nous allons étudier une classe de fonctions fournissant "sûrement" des fonctions complètement pseudo-aléatoires.

V - NOMBRES NORMAUX -

1° Définition -

Soit q un nombre entier ≥ 2. A part des nombres $\frac{n}{q^n}$ (n et q sont des entiers strictement positifs), on sait que tout nombre réel θ de l'intervalle ouvert $]0,1[$ admet une représentation q-adique unique :

$$\theta = \sum_{k=1}^{\infty} \frac{\theta_k}{q^k},$$

où θ_k est égal à l'un des nombres $0, 1, \ldots, q-1$. Soit $A_k=(S_1, \ldots, S_k)$ un ensemble ordonné de k chiffres égaux à l'un des nombres $0, 1, \ldots, q-1$. Appelons $N(p, A_k)$ le nombre de fois qu'apparaît la suite A_k dans les p premières décimales q-adiques $(\theta_1, \ldots, \theta_p)$ de θ.

Par définition, le nombre θ est dit normal (dans le système de base q) si l'on a l'égalité suivante :

$$\lim_{p \to +\infty} \frac{1}{p} N(p, A_k) = \frac{1}{q^k}$$

pour toute suite A_k de k termes, et pour tout entier $k \geq 1$.

2° Théorème caractéristique de Wall -

Le nombre θ est normal si et seulement si la suite $\varphi(n) = \frac{n}{q^n}$, $n=1, 2, \ldots, \infty$, est équirépartie modulo-un.

On en trouve la démonstration dans D. D. WALL (1) ou dans M. MENDES FRANCE (3).
3°) Application aux fonctions complètement pseudo-aléatoires -

Théorème -

Soit θ un nombre normal. Alors :

- la fonction $t \rightarrow \chi_t\{\mathcal{F}(\mathcal{E})\}$ est complètement pseudo-aléatoire centrée.
- la fonction $t \rightarrow \chi\{\mathcal{F}(\mathcal{E})\}$ est complètement pseudo-aléatoire décentrée.

Démonstration -

D'après le deuxième théorème fondamental du paragraphe III, il suffit de montrer que la suite $\mathcal{Q}(n) = \theta.2^\frac{h}{n}$ est asymptotiquement complètement équirépartie ; autrement dit, il suffit de montrer que les suites

$\mathcal{Q}_i(n) = \varphi(n + \mathcal{E}_i)$ sont asymptotiquement positivement indépendantes des suites $\mathcal{Q}_d(n) = \varphi(n + \mathcal{E}_d)$.

Formons :

$$\Psi(n) = \sum_{i=1}^{\mathcal{E}} \lambda_i \varphi(n + \mathcal{E}_i) + \sum_{j=1}^{\mathcal{E}} \mu_j \varphi(n + \mathcal{E}_j)$$

$$= (\theta^\frac{h}{n} \sum_{i=1}^{\mathcal{E}} \lambda_i \cdot 2^{\mathcal{E}_i} + \sum_{j=1}^{\mathcal{E}} \mu_j \cdot 2^{\mathcal{E}_j}) \cdot 2^{\mathcal{E}}$$

Quand \mathcal{E} est assez grand, la quantité entre les parenthèses est un nombre entier positif. Comme la suite $\{\theta.2^{\mathcal{E}}\}$ est équirépartie modulo-un d'après le théorème de Wall, la suite $\Psi(n)$ est aussi équirépartie.

4°) Cas particulier -

Prenons $\chi(x) = \exp \frac{2i\pi}{\mathcal{E}} \theta x \exp \frac{2i\pi}{\mathcal{E}} \theta$ et $\mathcal{Q}(n) = \theta.2^{\mathcal{E}n+1}$; la fonction $t \rightarrow \exp \frac{2i\pi}{\mathcal{E}} \theta x \theta$ est pseudo-aléatoire centrée et complètement pseudo-aléatoire décentrée. Dans le cas où $\mathcal{E} = 2$, cette fonction est appelée fonction de Rademacher attachée au nombre normal θ. Ses valeurs sont liées à la représentation binaire $\{\theta_{\mathcal{E}}\}$ de θ par la relation suivante :

$$\exp i\pi \theta \cdot 2^{\mathcal{E}} = 1 - \theta$$

Comme, d'après un théorème bien connu d'E. BOREL, presque tous les nombres sont normaux (cf. par exemple M. MENDES FRANCE [3]), notre résultat précise un résultat de N. WIENER [1][2] sur les fonctions pseudo-aléatoires.

La théorie des nombres normaux fournit ainsi un théorème d'existence sûr relatif aux fonctions complètement pseudo-aléatoires. Malheureusement, ces nombres sont très difficiles à construire effectivement. Nous allonsexpo au paragraphe suivant une autre classe de fonctions complètement pseudo-aléatoires plus maniables.
VI - POLYNOMES DE WEYL -

1°) Définition -

a) On appelle polynôme de Weyl un polynôme de la forme

\[\varphi(t) = A_n t^n + A_{n-1} t^{n-1} + \ldots + A_2 t^2 + A_1 t, \]

où l'un au moins des coefficients A_i est irrationnel.

b) On appelle classe d'un polynôme de Weyl l'entier \(\phi \) tel que l'un au moins des coefficients A_\(\phi \) soit irrationnel.

2°) Suite équirépartie associée à un polynôme de Weyl -

Théorème -

Si \(\varphi(t) \) est un polynôme de Weyl, alors la suite \(\varphi(n) \) est équirépartie.

Ce théorème est dû à H. Weyl. Il se démontre par induction et au moyen du deuxième critère d'équirépartition de Weyl. On pourra en trouver la démonstration dans J. Bass [1].

3°) Application aux fonctions pseudo- aléatoires -

Théorème (classique) -

Si \(\varphi \) est un polynôme de Weyl de classe 2, alors la fonction

\(t \rightarrow \varphi(t) \)

est pseudo- aléatoire centrée, la fonction

\(t \rightarrow \varphi(t) \)

est pseudo- aléatoire décentrée.

En effet, soit \(k \) un entier non nul. Le polynôme \(\varphi(t+k) + \lambda \varphi(t) \)
est un polynôme de Weyl de classe 2 si \(\lambda \neq -1 \) et de classe 1 si \(\lambda = -1 \). Par conséquent, les suites \(\varphi(n) \) et \(\varphi(n+k) \) sont linéairement indépendantes. Il suffit, dès lors, d'appliquer la proposition (a) du premier théorème fondamental du paragraphe III.

4°) Indépendance des nombres -

a) Soit \(X = \{x_1, \ldots, x_n\} \) un ensemble de nombres réels.

On dit que les nombres \(x_1, \ldots, x_n \) sont positivement indépendants entre eux si le nombre \(\sum_{i=1}^{n} \lambda_i x_i \) n'est jamais rationnel, quels que soient les entiers strictement positifs \(\lambda_i \) (\(i = 1, 2, \ldots, n \)).

Exemples - Il y a indépendance positive entre les nombres \(x_i \) s'ils sont de la forme \(x_i = \pi_i x_0 \) où \(x_0 \) est un irrationnel et où \(\pi_i \) sont des rationnels positifs, ou si \(x_i \) est irrationnel et si les autres \(x_i \) (\(i \neq 1 \)) sont rationnels (nuls par exemple).

b) Soient deux ensembles \(X = \{x_1, \ldots, x_n\} \) et \(Y = \{y_1, \ldots, y_m\} \) de nombres réels.
On dit que l'ensemble x est positivement indépendant de l'ensemble y si le nombre

$$\sum_{i=1}^{n} \lambda_i \alpha_i + \sum_{j=1}^{m} \lambda_j \gamma_j,$$

n'est jamais rationnel, quels que soient les entiers strictement positifs $\lambda_i (i = 1, \ldots, n)$ et les entiers $\lambda_j (j = 1, \ldots, m)$.

Cette définition exige que les nombres α_i de x soient positivement indépendants entre eux. Réciproquement, si les $\alpha_i (i = 1, \ldots, n)$ sont positivement indépendants entre eux, et si les $\gamma_j (j = 1, \ldots, m)$ sont tous rationnels (nuls par exemple), alors l'ensemble x est positivement indépendant de l'ensemble y.

5°) Application aux fonctions complètement pseudo-aléatoires -

Théorème -

Soit φ un polynôme de Weyl (de classe 2) de la forme :

$$\varphi(t) = A_1 t^{a_1} + \cdots + A_\ell t^{a_\ell} + A_\ell t^{b} + A_1 t.
$$

Supposons que la condition suivante soit réalisée :

Il existe un entier $n_0 \leq \ell$ tel que, pour $t < \ell < \varphi$, l'ensemble des A_j soit positivement indépendant de A_n^n.

Alors :

- la fonction $t \mapsto X \{ \varphi(t) \}$ est complètement pseudo-aléatoire centré.
- la fonction $t \mapsto X \{ \varphi(t) \}$ est complètement pseudo-aléatoire décentré.

Démonstration -

D'après la proposition (b) du deuxième théorème fondamental (paragraphe III), il suffit de démontrer que la suite $\varphi (n)$ est asymptotiquement complètement équirépartie; autrement dit, il suffit de démontrer que les suites $\varphi (n) = \varphi (n + h)$ sont asymptotiquement positivement indépendantes des suites $\varphi (n) = \varphi (n + h)$.

Formons :

$$\psi(t) = \sum_{i=1}^{n} \lambda_i \varphi(t + k_i + h) + \sum_{j=1}^{m} \mu_j \varphi(t + l_j)$$

et montrons que, pour n assez grand (n et m fixés), ψ est un polynôme de Weyl.

Or :

$$\psi(t) = \sum_{k=0}^{\ell} B_k t^k,$$

avec :

$$B_k = \sum_{\ell=h}^{\ell} \frac{\ell!}{(\ell-k)! k!} A_k \left\{ \sum_{i=1}^{n} \lambda_i (k_i + h)^{k} + \sum_{j=1}^{m} \mu_j (l_j)^{k-h} \right\}$$
Quand k est suffisamment grand, le nombre :

$$\sum_{i=1}^{n} \lambda_i (k_i + \frac{1}{2} l_k) + \sum_{j=1}^{m} \mu_j (\frac{1}{2} l_k)$$

est entier strictement positif si $l > k + 1$.

D'après l'hypothèse (H), le nombre B_k est donc irrationnel, ce qui montre que ψ est un polynôme de Weyl de classe k.

6°) Application aux fonctions complètement pseudo-aléatoires complètement comparables -

On peut démontrer, par un raisonnement analogue, le résultat suivant :

Soient $Q_i (t)$ m polynômes de Weyl ($i = 1, ..., m$) de la forme :

$$Q_i (t) = A_i^0 t^0 + \ldots + A_i^\gamma t^\gamma + \ldots + A_i^\gamma t $$

Ces polynômes ne sont pas nécessairement du même degré γ ; autrement dit, certains des coefficients A_i^γ peuvent être nuls.

Supposons que la condition suivante soit réalisée :

Il existe un entier ℓ ($1 \leq \ell < \gamma$) tel que, pour $\gamma \geq \ell$, l'ensemble des A_i^ℓ soit positivement indépendant de l'ensemble des nombres A_i^γ.

Alors, les fonctions $t \rightarrow \chi_0 \{Q_i (\widehat{c})\}$ sont des fonctions complètement pseudo-aléatoires centrées complètement comparables, et les fonctions $t \rightarrow \chi \{Q_i (\widehat{c})\}$ sont des fonctions complètement pseudo-aléatoires décen- trées complètement comparables.

Ce théorème précise et généralise un résultat de VO-KHAC KHOAN [1].
Dans toute cette partie B, X sera un espace de Hilbert H, \mathbb{G} sera le groupe additif \mathbb{R} des réels ($\mathbb{R} = (-\infty, +\infty)$) et les Ω_j seront les intervalles $[-T, +T]$.

Pour faciliter les lecteurs qui ne s'intéressent qu'à cette partie B, on va rappeler quelques résultats obtenus dans la partie A et qui seront utilisés.

I - ESPACES DE BESICOVITCH - MARCINKIEWICZ -

1°) Espaces $M^p_{-\infty, +\infty ; H}$ - Soit H un espace de Hilbert muni d'un produit scalaire $<\cdot, \cdot>$ et d'une norme $\|\cdot\|$.

a) Par définition, l'espace $M^p_{-\infty, +\infty ; H}$ de Besicovitch-Marcinkiewicz est l'espace vectoriel des (classes de) fonctions f définies sur \mathbb{R}, à valeurs dans H et telles que:

$$\| f \|_p = \lim_{T \to +\infty} \sup_{T} \frac{1}{T} \int_{-T}^{T} \| f(t) \|^p dt < \infty \quad (p \text{ réel } > 1)$$

b) Muni de la norme $f \mapsto \| f \|_p$, l'espace $M^p_{-\infty, +\infty ; H}$ est un espace complet (théorème de Marcinkiewicz) invariant par translation:

$$\| U_\alpha f \|_p = \| f \|_p \quad \text{où} \quad U_\alpha f(t) = f(t + \alpha)$$

c) Si $f \in M^p_{-\infty, +\infty ; H}$ et $g \in M^q_{-\infty, +\infty ; H}$, alors

$$< f, g > \in M^{q'}_{-\infty, +\infty, \mathbb{C}}$$

et

$$\| f \|_p \| g \|_q \leq \| f \|_p \| g \|_{q'} \quad (\frac{1}{p} + \frac{1}{q} = \frac{1}{q'})$$

(3) Ce chapitre est rédigé à la suggestion de M. le Professeur J.L. LIONS.
2°) \mathcal{M}_p^ψ-continuité -

a) Une \mathcal{M}_p^ψ-fonction f est dite \mathcal{M}_p^ψ-continue si $\| U_p f - f \| \to 0$ quand $\eta \to 0$.

b) L'ensemble $\mathcal{M}_c^\psi(-\infty, \infty ; H)$ des fonctions \mathcal{M}_p^ψ-continues est un sous-espace vectoriel fermé, invariant par translation de l'espace $\mathcal{M}_p^\psi(-\infty, \infty ; H)$.

c) Si $f \in \mathcal{M}_c^\psi(-\infty, \infty ; H)$ et $g \in \mathcal{M}_c^\psi(-\infty, \infty ; H)$, alors

$$\langle f \mid g \rangle \in \mathcal{M}_c^\psi(-\infty, \infty ; C).$$

II - COMPARABILITÉ PAR DUALITÉ -

1°) \mathcal{M}_p^ψ-régularité -

a) Une \mathcal{M}_p^ψ-fonction f est dite \mathcal{M}_p^ψ-régulière si, quel que soit le nombre réel λ, on a :

$$\lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{+T} \|f(t)^\lambda\| dt = 0$$

b) L'ensemble $\mathcal{M}_c^\psi(-\infty, \infty ; H)$ des fonctions \mathcal{M}_p^ψ-régulières est un sous-espace vectoriel fermé, invariant par translation de l'espace $\mathcal{M}_p^\psi(-\infty, \infty ; H)$.

c) Si $f \in \mathcal{M}_c^\psi(-\infty, \infty ; H)$ et $g \in \mathcal{M}_c^\psi(-\infty, \infty ; H)$, alors

$$\langle f \mid g \rangle \in \mathcal{M}_c^\psi(-\infty, \infty ; C).$$

2°) Fonctions moyennables -

a) Une \mathcal{M}_c^ψ-fonction f est dite moyennable si la limite

$$\lim_{T \to +\infty} \frac{1}{2\pi} \int_{-T}^{+T} f(t) dt$$

existe (et est finie). Cette limite sera appelée moyenne temporelle de la fonction f et sera notée $\mathcal{M}_c f(t)$ ou $\mathcal{M}_c f$.

b) L'ensemble des fonctions moyennables et régulières est un sous-espace vectoriel fermé, invariant par translation de l'espace $\mathcal{M}_c^\psi(-\infty, \infty ; H)$.

3°) Comparabilité par dualité -

a) On dit que les deux éléments f et g de $\mathcal{M}_c^\psi(-\infty, \infty ; H)$ sont ψ-comparables si la fonction numérique $t \to \langle f(t) \mid g(t) \rangle$ est moyennable. La moyenne de cette fonction définit la corrélation mutuelle des fonctions f et g.

$$\gamma_{fg} = \mathcal{M}_c(t) \langle f(t) \mid g(t) \rangle$$
b) Soient deux suites de Cauchy $\{f_n\}$ et $\{g_n\}$ convergeant dans l'espace $\mathcal{M}^2(-\infty, \infty; H)$ respectivement vers deux fonctions f et g. Si f_n et g_n sont \ast-comparables pour chaque n, alors f et g sont comparables et $\gamma_{f_n} \xrightarrow{\ast} \gamma_f$.

4°) Espace $\mathcal{G}(-\infty, \infty; H)$ de Bass -

a) L'espace $\mathcal{G}(-\infty, \infty; H)$ est, par définition, l'ensemble des fonctions f telles que :

$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \|f(t)\|^2 dt$$

existe et est finie.

b) Toute \mathcal{G}-fonction est \mathcal{M}^2-régulière.

c) Muni de la topologie induite par celle de $\mathcal{M}^2(-\infty, \infty; H)$, l'espace $\mathcal{G}(-\infty, \infty; H)$ est un espace métrique, non-vectoriel, complet, invariant par translation.

d) L'ensemble des \mathcal{G}-fonctions \ast-comparables deux à deux forment un sous-espace vectoriel \mathcal{E} de $\mathcal{G}(-\infty, \infty; H)$. La \mathcal{M}^2-fermeture \mathcal{E} de \mathcal{E} est encore un sous-espace vectoriel de $\mathcal{G}(-\infty, \infty; H)$.

e) Tout sous-espace vectoriel fermé de $\mathcal{G}(-\infty, \infty; H)$ peut être structuré en un espace de Hilbert avec le produit scalaire :

$$\langle \gamma(t), g(t) \rangle$$

Ce résultat est très important.

III - FONCTIONS QUASI-STATIONNAIRES -

1°) Propriétés élémentaires -

a) Une \mathcal{M}^2-fonction \mathcal{M}^2-continue f est dite quasi-stationnaire si elle est \ast-comparable à toutes ses translatées.

La moyenne temporelle de $\langle U_h f | f \rangle$ s'appelle fonction de corrélation $\gamma(h)$ de f.

b) L'ensemble $\mathcal{S}(-\infty, \infty; H)$ des fonctions quasi-stationnaires est un sous-espace métrique, non-vectoriel, fermé, invariant par translation de l'espace $\mathcal{M}^2(-\infty, \infty; H)$.

c) On appelle $\mathcal{C}(f; \mathcal{M}^2, H)$ l'enveloppe linéaire \mathcal{M}^2-fermée de l'ensemble $\{ U_h f | h \in \mathbb{R} \}$; on montre que c'est un sous-espace vectoriel fermé de l'espace $\mathcal{G}(-\infty, \infty; H)$ de Bass ; par suite $\mathcal{C}(f; \mathcal{M}^2, H)$ peut être structuré en un espace de Hilbert.

2°) Analyse spectrale énergétique -

a) On montre que la fonction d'autocorrélation $h \mapsto \gamma(h)$ d'une fonction quasi-stationnaire f est la transformée de Fourier d'une mesure bornée.
positive σ, appelée mesure spectrale énergétique de f :

$$\gamma(f) = \int_{-\infty}^{+\infty} e^{ix\hbar} d\sigma(\chi).$$

b) Suivant que σ est une mesure continue ou discrète, on dit que γ est une fonction S-pseudo-élémentaire ou une fonction S-presque-périodique.

3°) Analyse spectrale élémentaire -

a) On montre qu'il existe une mesure (vectorielle) γ, appelée mesure spectrale élémentaire de f telle que :

$$U_\hbar f = \int_{-\infty}^{+\infty} e^{ix\hbar} \gamma(d\chi).$$

b) On définit alors l'intégrale $g = \int_{-\infty}^{+\infty} \gamma(d\chi)$ pour tout $c \in L^2(\sigma)$ et on montre que cette intégrale réalise un isomorphisme isométrique entre $L^2(\sigma)$ et $\mathcal{C}(f; \mathcal{M}_E, H)$.

IV - FONCTIONS 1-QUASI-STATIONAIRES -

Note : $\mathcal{S}(H, \rightarrow H_x)$ désigne l'ensemble des opérateurs linéaires bornés d'un espace hilbertien H dans un espace hilbertien H_x.

1°) Propriétés élémentaires -

a) On dit que la fonction $t \rightarrow f(t)$ est 1-quasi-stationnaire si, quel que soit $\lambda \in \mathcal{S}(H \rightarrow H)$, la fonction $t \rightarrow \lambda f(t)$ est quasi-stationnaire.

b) L'ensemble $\mathcal{S}(\mathbb{R}, \rightarrow H)$ des fonctions 1-quasi-stationnaires est un sous-espace métrique, non vectoriel, fermé, invariant par translation de l'espace $\mathcal{M}_E(-\infty, \rightarrow H)$.

c) Soient H et H_x deux espaces de Hilbert. Si $f \in \mathcal{S}(\mathbb{R}, \rightarrow H)$ et si $A \in \mathcal{S}(H, \rightarrow H_x)$, alors $Af \in \mathcal{S}(\mathbb{R}, \rightarrow H_x)$.

d) On désigne par $\mathcal{Z}(f; \mathcal{M}_E, H, \rightarrow H_x)$ l'enveloppe linéaire \mathcal{M}_E-fermée de l'ensemble $\{A_Uf; \lambda \in \mathbb{R}, A \in \mathcal{S}(H, \rightarrow H_x)\}$. On montre que c'est un sous-ensemble de $\mathcal{S}(\mathbb{R}, \rightarrow H_x)$. En particulier, c'est un sous-espace vectoriel fermé de l'espace $\mathcal{S}(\mathbb{R}, \rightarrow H_x)$ et peut donc être structuré en un espace de Hilbert.

2°) Représentation spectrale -

a) Tenseur spectral énergétique -

Soient A et B deux éléments de $\mathcal{S}(H, \rightarrow H_x)$. Il existe une mesure complexe bornée $\Sigma_{A,B}$ telle que :

$$\mathcal{M}_E(Af(t) + \hbar Bf(t)) = \int_{-\infty}^{+\infty} e^{ix\hbar} d\Sigma_{A,B}(\chi).$$
L'application $\Sigma : A, b \rightarrow \Sigma_{A,b}$ est une application sesquilinéaire hermitienne continue de $\mathcal{L}(H_1 \rightarrow H_2) \times \mathcal{L}(H_1 \rightarrow H_2)$ dans l'espace de Banach des mesures de Radon. Σ sera appelé tenseur spectral énergétique de f.

b) Espace $L^1[\Sigma; \mathcal{L}(H_1 \rightarrow H_2)]$

Considérons l'espace vectoriel (\mathcal{A}) des opérateurs linéaires bornés de H_1 dans H_2, dépendant du paramètre $\lambda \in \mathbb{R}$ et de la forme :

$$C(\lambda) = \sum_{\lambda=1}^{\infty} \lambda^\alpha \in H_1 \rightarrow H_2$$

Posons :

$$\{C | C'\} = \sum_{\lambda=1}^{\infty} \int_{-\infty}^{\infty} e^{i\lambda T} d\lambda$$

et soit \mathcal{J} le noyau de (\mathcal{A}), i.e. l'ensemble des opérateurs $C(\lambda)$ tels que $\{C | C'\} = 0$. Considérons l'espace quotient \mathcal{A}/\mathcal{J}. Structurons cet espace en un espace préhilbertien avec le produit scalaire $\{\}$. L'espace complété de \mathcal{A}/\mathcal{J} suivant cette topologie sera appelé l'espace $L^1[\Sigma; \mathcal{L}(H_1 \rightarrow H_2)]$

c) Représentation spectrale

Soit γ la mesure spectrale élémentaire de f.

On peut définir l'intégrale

$$\gamma = \int_{-\infty}^{\infty} C(\lambda) \gamma(d\lambda)$$

pour tout $C \in L^1[\Sigma; \mathcal{L}(H_1 \rightarrow H_2)]$ et montrer que cette intégrale réalise un isomorphisme isométrique entre $L^1[\Sigma; \mathcal{L}(H_1 \rightarrow H_2)]$ et $C^\#(\mathcal{A}/\mathcal{J}; H_1 \rightarrow H_2)$

V - FONCTIONS SCALAIREMENT QUASI-STATIONNAIRES

1°) Par définition, une fonction $t \rightarrow f(t)$ est dite scalairement quasi-stationnaire si, quel que soit $\phi \in H$, la fonction numérique $t \rightarrow <f(t) | \phi>$ est quasi-stationnaire.

2°) L'ensemble $S^\#(-\infty, \infty; H)$ des fonctions scalairement quasi-stationnaires est invariant par translation.

Evidemment $S^\#(-\infty, \infty; H) \supset S(-\infty, \infty; H)$.

3°) Si f est scalairement quasi-stationnaire, et si A est un opérateur linéaire fermé de domaine dense dans H et tel que $Af \in \mathcal{M}^\#(-\infty, \infty; H)$, alors Af est scalairement quasi-stationnaire.

4°) Soit $f \in S^\#(-\infty, \infty; H_1)$ et K un opérateur compact de H_1 dans H_2. Alors $Kf \in \hat{S}(-\infty, \infty; H_2)$.

On en déduit :

$$S^\#(-\infty, \infty; C^n) = \hat{S}(-\infty, \infty; C^n).$$
VI - FONCTIONS ∞-QUASI-STATIONNAIRES -

Nota - On désigne par $\mathcal{L}(H_1 \rightarrow H_2)$ l'ensemble des opérateurs multilinéaires bornés d'un Hilbert H_1 dans un Hilbert H_2.

1°) Soit $t \mapsto f(t)$ une fonction bornée (uniformément en t). On désigne par $\mathcal{G}(f)$ le plus petit ensemble de fonctions qui :

i) contienne la fonction f,

ii) ne puisse contenir une fonction sans contenir ses translatées,

iii) ne puisse contenir deux fonctions sans contenir leurs combinaisons linéaires,

iv) ne puisse contenir des fonctions sans contenir toutes leurs transformées par des opérateurs multilinéaires bornés $\mathcal{L}(H \rightarrow H)$

On dit que f est ∞-quasi-stationnaire si l'ensemble $\mathcal{G}(f)$ est un sous-ensemble de $\mathcal{S}(-\infty, \infty ; H)$.

2°) L'ensemble $\mathcal{S}(-\infty, \infty ; H)$ des fonctions ∞-quasi-stationnaires est un sous-espace métrique, non vectoriel, fermé, invariant par translation de l'espace $\mathcal{M}(\infty, \infty ; H)$.

On désigne par $\mathcal{C}(f ; \mathcal{M}, H)$ la \mathcal{M}-fermeture de $\mathcal{G}(f)$, et on montre que $\mathcal{C}(f ; \mathcal{M}, H) \subset \mathcal{S}(-\infty, \infty ; H)$. En particulier, c'est un sous-espace vectoriel fermé de l'espace $\mathcal{F}(-\infty, \infty ; H)$ de Bass, et on peut le structurer en un espace hilbertien.

3°) Soient H_1 et H_2 deux espaces de Hilbert de même dimension. Soit $\omega \in \mathcal{S}(H_1 \rightarrow H_2)$. On démontre que si $f \in \mathcal{S}(-\infty, \infty ; H_1)$, alors

$g = \omega f \in \mathcal{S}(-\infty, \infty ; H_2)$.

Soit ν un isomorphisme isométrique de H_1 sur H_2. On pose

$\mathcal{C}(f ; \mathcal{M}, H_1 \rightarrow H_2) = \mathcal{C}(\nu f ; \mathcal{M}, H_2)$.

L'espace $\mathcal{C}(f ; \mathcal{M}, H_1 \rightarrow H_2)$ sera structuré en un espace de Hilbert par le procédé habituel.

VII - OPERATEURS QUASI-STATIONNAIRES -

1°) Définition -

Soit $\omega(t)$ un opérateur de H dans H, dépendant du paramètre t.

On dit que $\omega(t)$ est un opérateur quasi-stationnaire si, quel que soit $x \in H$, la fonction $t \rightarrow \omega(t)x$ est quasi-stationnaire.

2°) Fonctions parfaites vis-à-vis d'un opérateur quasi-stationnaire -

Soit $\omega(t)$ un opérateur (non nécessairement linéaire) quasi-stationnaire \mathcal{M}_x-continu. On désigne par $\mathcal{G}_\omega(f)$ le plus petit ensemble des fonctions qui :
i) contienne la fonction \(f \) donnée,

ii) ne puisse contenir une fonction sans contenir toutes ses translatées,

iii) ne puisse contenir deux fonctions sans contenir toutes leurs combinaisons linéaires,

iv) ne puisse contenir une fonction sans contenir sa transformée par l'opérateur \(\mathcal{Q}(t) \).

On dit que la fonction \(f \) est parfaite vis-à-vis de l'opérateur \(\mathcal{Q}(t) \) si l'ensemble \(\mathcal{C}_\Omega(f) \) ne contient que des fonctions 1-quasi-stationnaires.

3°) Espace \(\mathcal{C}(f; \mathcal{M}, \mathcal{H}) \)-

C'est, par définition, la \(\mathcal{M} \)-fermeture de l'ensemble \(\mathcal{C}_\Omega(f) \). On démontre que \(\mathcal{C}(f; \mathcal{M}, \mathcal{H}) \) ne contient que des fonctions parfaites vis-à-vis de l'opérateur \(\mathcal{Q}(t) \). En particulier, c'est un sous-espace vectoriel complet de l'espace \(\mathcal{S}(\mathbb{R}, \mathcal{H}) \) de Bass.
Study of the \mathcal{M}^ε-derivation

I. \mathcal{M}^ε-DERIVATION (Forte)

1°) Définition et conséquences immédiates

On appelle \mathcal{M}^ε-dérivée (forte) f' d'une \mathcal{M}^ε-fonction f la \mathcal{M}^ε-limite, si elle existe, de la fonction

$$\frac{1}{\varepsilon} \left[U_\varepsilon f - f \right]$$

quand ε tend vers 0.

L'opérateur linéaire ε qui, à chaque fonction \mathcal{M}^ε-dérivable, fait correspondre sa \mathcal{M}^ε-dérivée $f = \varepsilon f$, s'appelle la \mathcal{M}^ε-dérivation.

Toute \mathcal{M}^ε-fonction \mathcal{M}^ε-dérivable est nécessairement \mathcal{M}^ε-continue, la \mathcal{M}^ε-dérivée f' d'une \mathcal{M}^ε-fonction appartient à l'espace $\mathcal{C}(f; \mathcal{M}^\varepsilon, H)$; f' est donc elle-même \mathcal{M}^ε-continue.

2°) Propriétés de la \mathcal{M}^ε-dérivation

Considérons la famille $\{ U(\varepsilon) = U_\varepsilon; -\infty < \varepsilon < \infty \}$. C'est un groupe fortement continu d'opérateurs linéaires contractants ($\| U_\varepsilon \| = 1$) de l'espace $\mathcal{M}^\varepsilon_0(-\infty, \infty; H)$. L'opérateur de \mathcal{M}^ε-dérivation n'est autre que le générateur infinitésimal du groupe $U(\varepsilon)$.

La théorie générale des groupes de contractions (cf. E. Hille et R.S. Phillips [1], R.S. Phillips [2] [3]) fournit les propriétés suivantes de l'opérateur de \mathcal{M}^ε-dérivation ε.
a) Le domaine \(D(\mathcal{V}) \) est dense dans l'espace \(\mathcal{B}^{2}_{\mathbb{C}}(-\infty, \infty; \mathcal{H}) \).

Autrement dit :

Toute fonction \(\mathcal{B}^{2} \)-continue \(f \) est \(\mathcal{B}^{2} \)-limite de fonctions \(\mathcal{B}^{2} \)-dérivables.

Plus précisément, posons

\[
\tilde{f}_{n}(t) = \frac{n}{\pi} \int_{-n}^{n} f(t + \delta) \, d\delta
\]

Alors, on peut montrer que :

i) la fonction \(\tilde{f}_{n} \) est un élément de \(\mathcal{C}(f, \mathcal{B}^{2}, \mathcal{H}) \)

ii) la suite \(\{\tilde{f}_{n}\} \) converge vers la fonction \(f \)

iii) la fonction \(\tilde{f}_{n} \) est \(\mathcal{B}^{2} \)-dérivable; sa \(\mathcal{B}^{2} \)-dérivée \(\tilde{f}'_{n} \) est donnée par :

\[
\tilde{f}'_{n}(t) = \frac{n}{\pi} [f(t + \frac{1}{n}) - f(t - \frac{1}{n})]
\]

Supposons que la fonction \(\tilde{f} \) est quasi-stationnaire. On a :

\[
\mathcal{B}^{2}(t) \langle \tilde{f}'_{n}(t) | f(t) \rangle = \frac{n}{\pi} [\gamma(t) - \gamma(-t)]
\]

en désignant par \(\gamma \) la fonction d'autocorrelation de la fonction \(f \). Or la fonction \(\gamma \) possède la symétrie hermitienne

\[
\gamma(t) = \overline{\gamma(-t)}
\]

Donc :

\[
\mathcal{B}^{2}(t) \langle \tilde{f}'_{n}(t) | f(t) \rangle = 0
\]

Cette propriété sera utilisée constamment dans la suite.

b) L'opérateur de \(\mathcal{B}^{2} \)-dérivation est fermé sur \(D(\mathcal{V}) \).

Autrement dit : Si une suite \(\{\tilde{f}_{n}\} \) de \(\mathcal{B}^{2} \)-fonctions \(\mathcal{B}^{2} \)-dérivables converge vers une fonction \(f \) et si la suite \(\{\tilde{f}'_{n}\} \) des \(\mathcal{B}^{2} \)-dérivées converge vers une fonction \(\tilde{g} \), alors :

i) \(f \) est \(\mathcal{B}^{2} \)-dérivable

ii) \(f' = \tilde{g} \).

c) Le spectre de \(\mathcal{V} \) est l'axe imaginaire (pour la définition du spectre, cf. E. HILLE et R.S. PHILLIPS [1]). Autrement dit : L'opérateur résolvant \(R(\lambda, \mathcal{V}) = (\lambda I - \mathcal{V})^{-1} \) existe et est borné pour tout nombre complexe \(\lambda \) non imaginaire pur (\(\Re \lambda \neq 0 \)).
Par ailleurs, cet opérateur résolvant a pour expression

\[R(\lambda, \varphi) = \int_0^\infty e^{-\lambda \phi} U(\phi) \, d\phi \quad \text{si } \Re \lambda > 0 \]

\[R(\lambda, \varphi) = \int_{-\infty}^0 e^{\lambda \phi} U(\phi) \, d\phi \quad \text{si } \Re \lambda < 0 \]

Cette propriété signifie que l'équation différentielle

\[\lambda \ddot{y}(t) - \dot{y}(t) = f(t) \quad (\Re \lambda \neq 0) \]

possède toujours une (et une seule) \(M^c \)-solution \(M^c \)-dérivable si \(f \) est \(M^c \)-continue, et que \(\dot{y} \) est donnée par :

\[\ddot{y}(t) = \int_0^\infty e^{-\lambda \phi} f(t + \phi) \, d\phi \quad \text{si } \Re \lambda > 0 \]

\[\dot{y}(t) = -\int_0^\infty e^{\lambda \phi} f(t - \phi) \, d\phi \quad \text{si } \Re \lambda < 0 \]

Ce résultat sera généralisé au chapitre B2.

d) On a :

\[\frac{d}{d\kappa} U(h) = U(h) \nabla = \nabla U(h), \text{ lorsque appliqué à } f \in D(\nabla). \]

Comme \(U(h) \) est fortement continu pour tout \(h \), on en tire :

\[U(h) - U(0) = \int_0^h U(\phi) \nabla d\phi, \]

c'est-à-dire :

\[f(t+h) - f(t) = \int_0^h f'(t + \phi) \, d\phi. \]

On en déduit, en particulier

\[\| U(h) f - f \| \leq \| \nabla f \| \times |h| \quad \text{(formule des accroissements finis)} \]

Plus généralement, on a (formule de Taylor) :

\[f(t+h) = \sum_{k=0}^{n} \frac{h^k}{k!} f^{(k)}(t) + \frac{1}{n!} \int_0^h (h-\phi)^n f^{(n+1)}(t+\phi) \, d\phi. \]

Si \(\lim_{n \to \infty} \left(\frac{\| \nabla^n f \|}{n!} \right)^{1/n} = \ell \), alors \(U(h) f \) est développable en série de Taylor, convergente pour \(|h| < \frac{\ell}{2} \). En particulier, si \(\| \nabla^n f \| \leq O(n) \), alors la formule de Stirling montre que l'on peut prendre \(\ell = e \) base des logarithmes népériens.
e) Propriété conservative de la \mathcal{M}_b-dérivation

Théorème - Entre une \mathcal{M}_b-fonction f et sa \mathcal{M}_b-dérivée f', on a toujours:
$$\mathcal{M}_b \langle f(t) \mid f(t) \rangle = 0.$$
On dit que l'opérateur de \mathcal{M}_b-dérivation est conservatif.

Démonstration -

Supposons d'abord que f est une fonction quasi-stationnaire. Formons:
$$\langle f(t+h) - f(t) \mid f(t) \rangle = \langle f(t+h) \mid f(t) \rangle - \|f(t)\|^2.$$
Prenons la moyenne temporelle (en t) des deux membres, nous obtenons:
$$\mathcal{M}_b \langle U_h f - f \mid f \rangle = \mathcal{M}_b \langle U_h f \mid f \rangle - \mathcal{M}_b \|f\|^2.$$
D'où, d'après l'inégalité de Schwarz :
$$\mathcal{M}_b \langle U_h f - f \mid f \rangle = \mathcal{M}_b \langle U_h f \mid f \rangle - \mathcal{M}_b \|f\|^2 \leq 0.$$
Par suite:
$$\mathcal{M}_b \mathcal{R}_e \langle \frac{U_h f - f}{h} \mid f \rangle \leq 0$$
$$> 0 \text{ si } h > 0$$
$$> 0 \text{ si } h < 0$$
Faisons tendre h vers 0, nous obtenons le résultat voulu.

Si f n'est pas quasi-stationnaire, la fonction $\langle U_h f \mid f \rangle$ n'est pas moyennable. Mais, on remarque que f, f' et $U_h f$ appartiennent à l'espace séparable $\mathcal{C}(f; \mathcal{M}_b, H)$. Utilisant la compacité de la boule unité \mathcal{C} (théorème de Bolzano-Weierstrass) et le procédé diagonal, on peut extraire une suite $\{T_n\}$ telle que:
$$\lim_{T_n \to 0} \frac{1}{2T_n} \int_{-T_n}^{T_n} \langle f(t+h) \mid f(t+k) \rangle \, dt$$
existe quelles que soient h et k. On montre ensuite que:
$$\lim_{T_n \to 0} \frac{1}{2T_n} \int_{-T_n}^{T_n} \mathcal{R}_e \langle f'(t) \mid f(t) \rangle \, dt = 0$$
Enfin, on montre que:
$$\lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} \mathcal{R}_e \langle f'(t) \mid f(t) \rangle \, dt$$
existe et que cette limite est nulle.
3°) Relation fonctionnelle entre une fonction et sa \mathcal{M}^2-dérivée -

Théorème - Si f est une fonction \mathcal{M}^2-dérivable et \mathcal{M}^2-régulière, alors la fonction :

$$ t \rightarrow <f'(t)|\varphi(t)> + <f(t)|\varphi'(t)> $$

est toujours moyennable, et sa moyenne est nulle, quelle que soit la fonction \mathcal{M}^2-dérivable φ.

Démonstration -

Supposons d'abord que f et φ sont des fonctions quasi-stationnaires linéairement comparables (cf. chapitre A4). Alors U_f et U_{φ} sont ∞-comparables quels que soient k et ℓ.

De plus :

$$ \mathcal{M}_f \left< f(t+h) \big| \varphi(t) \right> = \mathcal{M}_f \left< f(t) \big| \varphi(t-h) \right> $$

Donc :

$$ \mathcal{M}_f \left\{ \frac{f(t+h)-f(t)}{h} \left| \varphi(t) \right> + \left< f(t) \big| \frac{\varphi(t)-\varphi(t-h)}{h} \right> \right\} = 0 \quad \forall h \in \mathbb{R}. $$

Faisons tendre h vers 0, nous obtenons le théorème.

Dans le cas général, la fonction $t \rightarrow <f(t+h) \big| \varphi(t+k)>$ n'est pas moyennable. Par le procédé diagonal, on extrait une suite ξ_0 telle que

$$ \lim_{\xi_0 \to 0} \frac{1}{2} \int_{-\xi_0}^{\xi_0} <f(t+h) \big| \varphi(t+k)> \, dt $$

existe quels que soient h et k.

Utilisant la \mathcal{M}^2-régularité de f, on montre que :

$$ \lim_{\xi_0 \to 0} \frac{1}{2} \int_{-\xi_0}^{\xi_0} <f(t+h) \big| \varphi(t)> \, dt = \lim_{\xi_0 \to 0} \frac{1}{2} \int_{-\xi_0}^{\xi_0} <f(t) \big| \varphi(t-k)> \, dt, $$

et on continue comme précédemment.

4°) Convolution d'une \mathcal{M}^2-fonction - Dérivabilité du produit de convolution -

On démontre facilement, comme au paragraphe A1, IV, les résultats suivants :

a) La convolue d'une \mathcal{M}^2-fonction \mathcal{M}^2-dérivable f par une mesure de Radon μ est une \mathcal{M}^2-fonction \mathcal{M}^2-dérivable g, et $g' = f * \mu \, d\mu$.

b) La convolue d'une \mathcal{M}^2-fonction f par une \mathcal{L}^1-fonction \mathcal{L}^1-dérivable k est \mathcal{M}^2-dérivable et $g' = f * k'$.

5°) Représentation spectrale de la \mathcal{M}^2-dérivée -

La plupart des résultats précédents se retrouve facilement à l'aide de
la représentation spectrale. Nous nous limitons aux fonctions quasi-stationnaires.

a) Soit \(f \) une fonction quasi-stationnaire, \(\sigma \) sa mesure spectrale énergétique, \(Y \) sa mesure spectrale élémentaire (cf. chapitre A4). L'intégrale

\[
g = \int_{-\infty}^{\infty} C(X) Y(dX)
\]

réalise un isomorphisme isométrique entre \(\mathcal{C}(f; \mathcal{M}_0, H) \) et \(L^2(\sigma) \). Autrement dit :

\[
\mathcal{M} < q_i | q_x > = \int_{-\infty}^{\infty} C_i(X) C_x(X) d\sigma(X) ; \quad q_i \in \mathcal{C}(f; \mathcal{M}_0, H) ; \quad C_i \in L^2(\sigma)
\]

En particulier, si \(X \in L^2(\sigma) \), la \(\mathcal{M} \)-dérivée de \(f \) existe et est représentée par :

\[
f' = \int_{-\infty}^{\infty} iX Y(dX).
\]

On en déduit :

\[
\mathcal{M} < f' | f > = \int_{-\infty}^{\infty} iX d\mathcal{W}(X) = \text{imaginaire pure},
\]

ce qui démontre la propriété conservatrice de la \(\mathcal{M} \)-dérivation.

b) Soit \(\mu \) une mesure de Radon, \(\hat{\mu} \) sa transformée de Fourier. On a :

\[
f \neq \mu = \int_{-\infty}^{\infty} \hat{\mu}(X) Y(dX),
\]

ce qui permet d'établir les théorèmes du paragraphe 4.

c) Soient \(f_i \) (\(i = 1, 2 \)) deux fonctions quasi-stationnaires linéairement comparables, \(\sigma_{12} \) leur mesure spectrale énergétique mutuelle.

Si

\[
g_{12} = \int_{-\infty}^{\infty} C_1(X) Y_2(dX) ; \quad C_i \in L^2(\sigma_i) ; \quad i = 1, 2
\]

alors :

\[
\mathcal{M} < g_1 | g_x > = \int_{-\infty}^{\infty} C_1(X) C_x(X) d\sigma_{12}(X),
\]

ce qui permet d'établir le théorème du paragraphe 3.

II - ESPACES DE WIENER -

Nous allons examiner les propriétés des fonctions \(\ell \) fois \(\mathcal{M} \)-dérivables et indéfiniment \(\mathcal{M} \)-dérivables, qui nous serviront, dans l'étude des solutions faibles d'équations différentielles opérationnelles, comme "fonctions d'essai" (test functions).

1°) Espace \(\mathcal{W}^2(-\infty, \infty) \) -
a) Définition - On désigne par $\mathcal{W}^l(-\infty, \infty; H)$ l'espace vectoriel des H^l-fonctions H^l-dérivables l fois (l entier positif).

b) Théorème d'approximation - L'espace $\mathcal{W}^l(-\infty, \infty; H)$ considéré comme sous-espace vectoriel de $\mathcal{M}^l_{\infty}(-\infty, \infty; H)$ est dense dans $\mathcal{M}^l_{\infty}(-\infty, \infty; H)$.

En effet, l'opérateur de H^l-dérivation \mathcal{V} est un opérateur fermé, à domaine dense dans $\mathcal{M}^l_{\infty}(-\infty, \infty; H)$ et ayant un ensemble résolvant non vide. Par conséquent (cf. N. DUNFORD et J.T. SCHWARTZ [1], chapitre VII), le domaine de l'opérateur \mathcal{V} est dense dans $\mathcal{M}^l_{\infty}(-\infty, \infty; H)$.

c) Propriété de l'espace $\mathcal{W}^l(-\infty, \infty; H)$ -

Théorème - Muni de la norme
$$
\|f\|_{\mathcal{W}^l} = \sum_{\lambda=1}^{l} \|\nabla^\lambda f\|_{\mathcal{M}^l_{\infty}},
$$
l'espace $\mathcal{W}^l(-\infty, \infty; H)$ est un espace complet.

Ce résultat découle immédiatement du fait que l'opérateur de H^l-dérivation est fermé.

2°) Espace $\mathcal{W}(-\infty, \infty; H)$ -

a) Définition - On désigne par $\mathcal{W}(-\infty, \infty; H)$ l'intersection de tous les espaces $\mathcal{W}^l(-\infty, \infty; H)$, pour $l = 1, 2, ...$

b) Théorème d'approximation - L'espace $\mathcal{W}(-\infty, \infty; H)$, considéré comme sous-espace vectoriel de $\mathcal{M}^l_{\infty}(-\infty, \infty; H)$ est dense dans $\mathcal{M}^l_{\infty}(-\infty, \infty; H)$.

Cette proposition découle du fait que l'opérateur de H^l-dérivation est le générateur infinitésimal d'un semi-groupe.

c) Topologie dans $\mathcal{W}(-\infty, \infty; H)$ -

On structure $\mathcal{W}(-\infty, \infty; H)$ en un espace semi-normé en utilisant le système fondamental de semi-normes N_{λ} suivant :

$$
N_{\lambda}(f) = \|\nabla^\lambda f\|, \quad \lambda = 1, 2, ...
$$

Ainsi structuré topologiquement, l'espace $\mathcal{W}(-\infty, \infty; H)$ est localement convexe et métrisable. Comme l'opérateur de H^l-dérivation est fermé, l'espace $\mathcal{W}(-\infty, \infty; H)$ est complet; autrement dit, c'est un espace de Fréchet (cf. N. BOUHARI [3]).

3°) Espace $\mathcal{W}'(-\infty, \infty; H)$ -

a) Définition - On appelle $\mathcal{W}'(-\infty, \infty; H)$ le dual topologique de l'espace $\mathcal{W}(-\infty, \infty; H)$.

Les éléments de $\mathcal{W}'(-\infty, \infty; H)$ seront appelés H^l-fonctions-généralisées, ou H^l-distributions.

b) Topologies sur $\mathcal{W}'(-\infty, \infty; H)$ -
Par définition, la topologie faible sur $W'(-\infty, \infty ; H)$ est la topologie de la convergence simple dans $W(-\infty, \infty ; H)$,
la topologie forte sur $W'(-\infty, \infty ; H)$ est la topologie de la convergence uniforme dans les ensembles bornés de $W(-\infty, \infty ; H)$.

c) Propriétés des topologies (classiques) -

i) Le dual fort $W'(-\infty, \infty ; H)$ est un espace vectoriel localement convexe, à base non dénombrable de voisinages et complet.

Ce n'est pas un espace de Fréchet, car il n'est pas métrisable (s'il était, $W'(-\infty, \infty ; H)$ serait un Banach, cf. J. DIEUDONNE et L. SCHWARTZ [1]).

ii) Le dual faible $W'(-\infty, \infty ; H)$ est un espace vectoriel localement convexe et quasi-complet (toute partie fermée et bornée est complète, cf. N. BOURBAKI [3]).

III - DERIVATION DES \mathcal{M}-DISTRIBUTIONS -

1°) Opérateur de translation -

Soient $f \in W(-\infty, \infty ; H)$ et $\phi \in W'(-\infty, \infty ; H)$. La translatée $U_k f$ de la fonction f par le nombre réel k a été définie par :

$$U_k f(t) = f(t + k).$$

Nous définissons alors la translatée $U_k \phi$ d'une \mathcal{M}-distribution ϕ par le nombre réel k, par la formule :

$$U_k \phi(f) = \phi(U_k f).$$

2°) Définition de la dérivation -

Soit ψ une \mathcal{M}-distribution. Si, quand $k \to 0$,

$$\psi_k = \frac{U_k \phi - \phi}{k}$$

admet une limite forte dans $W'(-\infty, \infty ; H)$, alors la \mathcal{M}-distribution ψ est dite \mathcal{M}-dérivable, et la limite ψ' sera appelée la \mathcal{M}-dérivée de ϕ.

3°) Théorème d'existence -

Toute \mathcal{M}-distribution est \mathcal{M}-dérivable, et par suite, indéfiniment \mathcal{M}-dérivable.

Démonstration -

Comme $W'(-\infty, \infty ; H)$ muni de la topologie faible est quasi-complet, et comme le filtre $\{\psi_k\}$ est à base dénombrable, on montre facilement que $\{\psi_k\}$ converge faiblement dans $W'(-\infty, \infty ; H)$ vers une distribution ϕ' telle que :

$$\phi'(f) + \phi'(f') = 0.$$
Pour montrer que \(\{ \psi_k \} \) converge fortement dans \(W^r(-\infty, \infty; H) \), on utilise la formule des accroissements finis :
\[
\| \frac{U_k f - f}{h} + \nabla f \| \leq \| h \| \| \nabla f \|
\]

4°) Propriété de la \(M^2 \)-dérivation -

La \(M^2 \)-dérivation est une opération linéaire continue dans \(W^r(-\infty, \infty; H) \) muni de la topologie forte.

La démonstration est immédiate.

5°) Dérivation (au sens des \(M^2 \)-distributions) d'une fonction quasi-stationnaire -

a) Soit \(f \) une fonction quasi-stationnaire. Considérons l'ensemble \(\mathcal{C} \) de toutes les \(M^2 \)-fonctions \(\star \)-comparables à l'espace \(\mathcal{C} (f; M^2, H) \). Cet ensemble n'est pas vide (car il contient l'espace \(\mathcal{C} (f; M^2, H) \)), et il est un sous-espace vectoriel, invariant par translation et fermé de l'espace \(M^2 (-\infty, \infty; H) \).

Considérons l'application
\[
\varphi \rightarrow M < \varphi | f > , \quad \varphi \in \mathcal{C} .
\]

C'est une fonctionnelle linéaire continue \(L_0 (\varphi) \) sur \(\mathcal{C} \), de norme égale à \(\| f \| \). Par le théorème de Hahn-Banach, on peut trouver au moins une fonctionnelle linéaire \(L (\varphi) \) définie sur \(M^2 (-\infty, \infty; H) \) telle que :
\[
L (\varphi) = L_0 (\varphi) \quad \text{si} \quad \varphi \in \mathcal{C} \\
\| L \| = \| f \| .
\]

Une telle fonctionnelle linéaire \(L \) sera appelée \(M^2 \)-distribution associée à la fonction quasi-stationnaire \(f \). On la notera \(F \), et on a :
\[
F (\varphi) = M < \varphi | f > \quad \text{si} \quad \varphi \in \mathcal{C} .
\]

b) Soit \(F \) la \(M^2 \)-dérivée de la \(M^2 \)-distribution \(\varphi \). On a :
\[
F (\varphi) + F (\varphi) = 0 \quad \text{si} \quad \varphi \in W^r(-\infty, \infty; H)
\]
et
\[
M < \varphi' | f > + F (\varphi) = 0 \quad \text{si} \quad \varphi \in W^r(-\infty, \infty; H) \cap \mathcal{C}
\]

c) Si \(f \) est \(M^2 \)-dérivable (au sens fort), alors il existe une \(M^2 \)-fonction \(q \) telle que :
\[
M < \varphi | q > = F (\varphi) \quad \text{si} \quad \varphi \in W^r(-\infty, \infty; H) \cap \mathcal{C}
\]
Il suffit de prendre \(q = F' \).
d) Une telle fonction g existe-t-elle toujours dans le cas où f' n'est pas nécessairement \mathcal{M}_c^z-dérivable (au sens fort) ? La question va être examinée au paragraphe suivant.

IV - \mathcal{M}_c^z-DÉRIVÉE FAIBLE D'UNE \mathcal{M}_c^z-FONCTION

1°) Définition

On appelle \mathcal{M}_c^z-dérivée faible d'une \mathcal{M}_c^z-fonction f toute \mathcal{M}_s^z-fonction \mathcal{M}_c^z-continue g, si elle existe, vérifiant la relation

$$\mathbb{M} \left\{ <g|\varphi> + <f|\varphi'> \right\} = 0$$

pour toute \mathcal{M}_s^z-fonction φ \mathcal{M}_c^z-dérivable.

2°) Unicité de la \mathcal{M}_c^z-dérivée faible

La \mathcal{M}_c^z-dérivée faible d'une fonction f, si elle existe, est unique.

La démonstration utilise la densité de $\mathcal{W}^1(-\infty, \infty; \mathbb{H})$ dans l'espace $\mathcal{M}_c^z(-\infty, \infty; \mathbb{H})$.

3°) Propriétés

L'opérateur de \mathcal{M}_c^z-dérivation faible est linéaire (additif et homogène et fermé).

D'autre part, la \mathcal{M}_c^z-dérivée faible d'une \mathcal{M}_c^z-fonction \mathcal{M}_s^z-régulière et \mathcal{M}_s^z-dérivable (au sens fort), est égale à sa \mathcal{M}_c^z-dérivée forte.

4°) Caractérisation des fonctions faiblement-\mathcal{M}_c^z-dérivables

Nous nous limitons au cas des fonctions quasi-stationnaires.

Théorème - Une fonction quasi-stationnaire f est \mathcal{M}_c^z-dérivable faiblement, si et seulement si pour tout $\varphi \in \mathcal{W}^1(-\infty, \infty; \mathbb{H})$, on a :

$$\limsup_{\tau \to \infty} \frac{1}{\tau} \left\langle \int_{-\tau}^{\tau} <f(t)|\varphi'(t)> \, dt \right\rangle \leq C \|\varphi\|$$

où C est une constante indépendante de φ.

Démonstration -

La condition (*) est évidemment nécessaire; en effet, si g est la \mathcal{M}_c^z-dérivée faible de f, il suffit de prendre $C = \|g\|$.

Montrons que cette condition est aussi suffisante. Considérons l'espace $\mathcal{T}(f; \mathcal{M}_c^z, \mathbb{H})$, structuré en un Hilbert. La forme linéaire $\varphi \mapsto \mathbb{M} \langle f | \varphi \rangle$ est continue sur l'espace vectoriel $\mathcal{W}^1(-\infty, \infty; \mathbb{H}) \cap \mathcal{T}(f; \mathcal{M}_c^z, \mathbb{H})$ d'après la condition (*). Comme cet espace est dense dans $\mathcal{T}(f; \mathcal{M}_c^z, \mathbb{H})$, cette forme linéaire se prolonge d'une manière unique en une forme linéaire con-
tine sur \(\mathcal{T}(f; \mathcal{M}^s, H) \). Donc, il existe un élément unique \(g \) de \(\mathcal{T}(f; \mathcal{M}^s, H) \) tel que :

\[
\mathcal{M}_b \varphi |f> = -\mathcal{M}_b \varphi |g>
\]
pour tout \(\varphi \in \mathcal{W}^1(\infty, \infty; H) \cap \mathcal{T}(f; \mathcal{M}^s, H) \).

Soit alors \(\psi \) un élément de \(\mathcal{W}^1(\infty, \infty; H) \). Par le procédé diagonal, on extrait une suite \(\{ \psi_j \} \) telle que :

\[
\lim_{T_j \to \infty} \frac{1}{2T_j} \int_{-T_j}^{T_j} \langle g(t)|\psi(t)\rangle dt = 0
\]
pour tout \(g \in \mathcal{T}(f; \mathcal{M}^s, H) \). On montre alors que :

\[
\lim_{T_j \to \infty} \frac{1}{2T_j} \int_{-T_j}^{T_j} \langle f(t)|\psi(t)\rangle + \langle g(t)|\psi(t)\rangle dt = 0,
\]
et que, par conséquent :

\[
\mathcal{M}_b \{ <f|\psi> + <g|\psi'> \} = 0
\]

5°) Un théorème d'existence -

Une condition suffisante pour qu'une fonction quasi-stationnaire soit faiblement \(\mathcal{M}^s \)-dérivable est que l'ensemble

\[
\mathcal{J}_h = \frac{U_h f - f}{h}
\]
soit borné (en norme) uniformément en \(h \).

En effet, la boule unité de tout espace de Hilbert étant faiblement compacte, on peut extraire une suite \(\{ h_i \} \) telle que \(\{ g_{h_i} \} \) converge faiblement dans \(\mathcal{T}(f; \mathcal{M}^s, H) \) vers une fonction \(g \in \mathcal{T}(f; \mathcal{M}^s, H) \). On a :

\[
\mathcal{M}_b \{ <g_{h_i}|\varphi> + <f|\varphi - \frac{U_{h_i} \varphi}{h_i}> \} = 0
\]
pour tout

\[
\varphi \in \mathcal{T}(f; \mathcal{M}^s, H) \cap \mathcal{W}^1(\infty, \infty; H)
\]

Quand \(h_i \to 0 \), \(\mathcal{M}_b <g_{h_i}|\varphi> \) tend vers \(\mathcal{M}_b <g|\varphi> \) et \(\mathcal{M}_b <f|\varphi - \frac{U_{h_i} \varphi}{h_i}> \) tend vers \(\mathcal{M}_b <f|\varphi'> \), donc

\[
\mathcal{M}_b \{ <g|\varphi> + <f|\varphi'> \} = 0,
\]
ce qui montre que \(g \) est la \(\mathcal{M}^s \)-dérivée faible de \(f \).
Dans ce chapitre, nous ne considérons que des fonctions \(t \rightarrow f(t) \) définies sur la demi-droite des nombres réels positifs \(\mathbb{R}^+ \), et à valeurs dans l'espace \(\mathbb{C}^m \), structuré en un Hilbert avec sa topologie habituelle. Le produit scalaire dans \(\mathbb{C}^m \) sera noté \(\langle \cdot | \cdot \rangle \) et la norme sera notée \(\| \cdot \| \).

Tout sous-espace vectoriel fermé de l'espace \(\mathcal{D}(0, \infty ; \mathbb{C}^m) \) sera structuré en un sous-espace hilbertien avec le produit scalaire :

\[
[y/z] = \mathcal{M}_0 \left(\frac{y(t)}{z(t)} \right) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \langle y(t) | z(t) \rangle \, dt
\]

La norme dans \(\mathcal{M}_0^s(0, \infty ; \mathbb{C}^m) \) sera désignée par \(\| \cdot \| \).

I - SOLUTIONS QUASI-STATIONNAIRES D'UN SYSTÈME DIFFÉRENTIEL LINEAIRE -

Soient \(t \rightarrow f(t) \) une fonction 1-quasi-stationnaire à valeurs dans \(\mathbb{C}^m \):

\[f \in \mathcal{D}(0, \infty ; \mathbb{C}^m) \]

et \(A \) une matrice carrée de \(\mathbb{C}^m \):

\[A \in \mathcal{L}(\mathbb{C}^m \rightarrow \mathbb{C}^m) \]

On suppose que : aucune valeur propre \(\lambda \) de la matrice \(A \) ne soit nulle ni imaginaire pure (\(\Re \lambda \neq 0 \)).

1°) Théorème -

Il existe une fonction 1-quasi-stationnaire et une seule

\[y \in \mathcal{C}^s(f ; \mathcal{M}_0^s, \mathbb{C}^m) \]

possédant une \(\mathcal{M}_0^s \)-dérivée \(y' \in \mathcal{C}(f ; \mathcal{M}_0^s, \mathbb{C}^m) \) et vérifiant le système différentiel suivant :

\[y'(t) + Ay(t) = f(t) \]
Démonstration -

Soit Y la mesure spectrale élémentaire de la fonction 1-quasi-stationnaire f. Cherchons s'il existe une solution de la forme :

\[z = \int_{-\infty}^{\infty} C(X)Y(X). \]

La matrice C(X) doit vérifier l'équation matricielle suivante :

\[iX C(X) + A C(X) = I \]

où I est la matrice unité de \(\mathbb{C}^m \).

La matrice B(X) = \(iX I + A \) est régulière quel que soit X. En effet, si elle ne l'était pas, on aurait :

\[\text{det} B = 0, \]

donc -iX serait une valeur propre de la matrice A, ce qui est contraire à l'hypothèse. Donc la matrice

\[C(X) = (iX I + A)^{-1} \]

existe, quel que soit X.

Chaque élément de cette matrice est de la forme :

\[C_{ij}(X) = \frac{N_{j}(X)}{D(X)}, \]

où D(X) est un polynôme de degré m, ne s'annulant jamais pour X réel,

\[N_j(X) \] est un polynôme de degré \(m-1 \) au plus.

Par suite, \(X \rightarrow C_{ij}(X) \) et \(X \rightarrow XC_{ij}(X) \) sont des fonctions bornées de X, ce qui montre que (cf. chapitre A5) les matrices \(X \rightarrow C(X) \) et \(X \rightarrow XC(X) \) sont des éléments de

\[L^2[\Sigma; \mathbb{C}^m \rightarrow \mathbb{C}^m], \]

où \(\Sigma \) est le tenseur spectral énergétique de f.

Autrement dit :

\[z \in \mathcal{C}^*(f; \mathbb{M}^e, \mathbb{C}^m \rightarrow \mathbb{C}^m) \quad \text{et} \quad z' \in \mathcal{C}^*(f; \mathbb{M}^e, \mathbb{C}^m \rightarrow \mathbb{C}^m). \]

Remarque -

Si f est \(\ell \) fois \(\mathbb{M}^e \)-dérivable, alors z est \(\ell + 1 \) fois \(\mathbb{M}^e \)-dérivable.

\[2^o \text{) Effet de la condition initiale} - \]

Lorsque la fonction f est assez régulière localement, on sait que le système différentiel considéré possède une solution unique, dérivable (dérivée ordinaire) lorsque la condition initiale est donnée.
a) Si A est une matrice quelconque, il se peut que la solution
ne soit jamais λ-quasi-stationnaire, quelle que soit la condition initiale,
même si f est λ-quasi-stationnaire.

b) Si aucune des valeurs propres λ de la matrice A n'est imaginaire
pure, il existe une solution λ-quasi-stationnaire et une seule, comme on
vient de le démontrer.

Deux cas sont à distinguer :

i) Si le spectre de la matrice A est entièrement à gauche de l'axe
des imaginaires, alors pour une fonction-λ-quasi-stationnaire f donnée, il
existe une et une seule condition initiale $\gamma(\omega)$ telle que la solution $\gamma(t)$
correspondante soit λ-quasi-stationnaire. À toute autre condition initiale,
correspond une solution qui augmente très vite quand t tend vers ∞.

ii) Si, quel que soit le vecteur $\gamma \in \mathbb{C}^m$, on a :
$$ \Re \langle A\gamma | \gamma \rangle > \alpha \| \gamma \| ^2 , \quad (\alpha > 0) ,$$
alors toutes les valeurs propres de la matrice A ont leurs parties réelles
positives (la matrice A sera dite fortement monotone, cf. G.J. Minty [1]).

Dans ces conditions, toutes les solutions du système différentiel
considéré sont des fonctions quasi-stationnaires Π^λ-équivalentes.

Dans tout ce qui suit, on supposera que la matrice A soit fortement
monotone.

3°) Opérateur \mathcal{K} -

Soit \mathcal{K} l'opérateur linéaire de l'espace $\mathcal{H}^\lambda(0, \infty ; \mathbb{Z})$ qui, à chaque
fonction λ-quasi-stationnaire f, fait correspondre la solution γ du sys-
tème différentiel considéré :
$$ \gamma = \mathcal{K} f .$$

a) L'opérateur \mathcal{K} est continu -

Sa norme peut-être majorée par la méthode suivante :

Multiplions les deux membres de l'équation différentielle par $\gamma(t)$,
prenons la moyenne temporelle et la partie réelle des deux membres. Remar-
quant que l'opérateur de Π^λ-dérivation est conservatif, on obtient :
$$ \Re [A\gamma | \gamma] = \Re [f | f] \leq \| f \| \cdot \| \gamma \| .$$

La monotonicité forte de la matrice A donne ensuite :
$$ \alpha \| \gamma \| ^2 \leq \| f \| \cdot \| \gamma \| ,$$

ce qui montre que :
$$ \| \mathcal{K} \| \leq \frac{1}{\alpha} .$$

Nous poserons, dans tout ce qui suit $\| \mathcal{K} \| = \frac{1}{\alpha} $.
b) L'opérateur \mathcal{K} n'est pas complètement continu. En effet, s'il était, il transformerait toutes les fonctions quasi-stationnaires en des fonctions S-presque-périodiques.

c) L'opérateur \mathcal{K} n'est, en général, pas auto-adjoint, même si la matrice A est hermitienne. En effet, la matrice $A + iX$ n'est pas hermitienne.

d) L'opérateur \mathcal{K} est strictement monotone (cf. G.J. HINTY [1]) - En effet, on a :

$$\Re \left< \frac{\partial z}{\partial t} | z(t) \right> + \Re \left< A \frac{\partial z}{\partial t} | z(t) \right> = \Re \left< f(t) | z(t) \right>$$

D'où :

$$\Re \left[\frac{\partial z}{\partial t} \right] = M \Re \left< A \frac{\partial z}{\partial t} | z(t) \right> \geq M \alpha \| z(t) \|^2 = \alpha \| z \|^2.$$

Autrement dit :

$$\Re \left[\frac{\partial z}{\partial t} \right] > \alpha \| z \|^2 > 0 \quad \text{si} \quad \| z \| \neq 0.$$

II - SOLUTIONS QUASI-STATIONNAIRES D'UN SYSTÈME DIFFÉRENTIEL NON-LINEAIRE

Considérons le système différentiel non-linéaire suivant :

$$\frac{\partial z(t)}{\partial t} + A \frac{\partial z(t)}{\partial t} + F(t; z(t)) = f(t),$$

où $F(t; \cdot)$ est un opérateur quasi-stationnaire M^c-continu, et f est une fonction M-quasi-stationnaire parfaite vis-à-vis de l'opérateur \mathcal{K} (cf. chapitre A6, paragraphe IV).

Considérons l'espace $\mathcal{S}(f; M^c, C^m)$ engendré par la fonction f (cf. chapitre A6, paragraphe IV), avec sa topologie hilbertienne; cet espace ne contient que des fonctions M-quasi-stationnaires.

Introduisons l'opérateur \mathcal{K} défini précédemment; nous pouvons transformer le système différentiel non-linéaire considéré en une équation opérationnelle non-linéaire à valeurs dans l'espace $\mathcal{S}(f; M^c, C^m)$:

$$\frac{\partial z}{\partial t} + \mathcal{K} f = \mathcal{K} f.$$

Nous allons donner quelques méthodes permettant de résoudre cette équation dans des cas particuliers.

1°) Méthode des approximations successives -

Supposons que l'opérateur \mathcal{K} soit lipschitzien :

$$\| F_g - F_y \| \leq L \| z - y \|.$$

Théorème - Si $\| F \| < 1$, alors l'équation opérationnelle non-linéaire $\mathcal{K} f = \mathcal{K} f$ admet une solution et une seule dans $\mathcal{S}(f; M^c, C^m)$.

(On rappelle que $\| \mathcal{K} \| < \frac{1}{\alpha}$.)

107
Démonstration -

Considérons l'opérateur $\Omega = -K\Phi$ qui transforme l'espace $\mathcal{T}_\mathcal{F}(\xi; \mathcal{M}^\mathfrak{e}, \mathcal{C}^\mathfrak{m})$ dans lui-même. Chaque solution de l'équation opérationnelle (*) est un point fixe de la transformation $\Psi = \Omega \varphi + K\Phi$ et réciproquement. Or l'opérateur Ω est lipschitzien contractant, car :

$$|| \Omega \xi - \Omega \eta || \leq || \mathcal{K} || || F \xi - F \eta || \leq K || \xi - \eta || .$$

La transformation $\Psi = \Omega \varphi + K\Phi$ admet donc un point fixe ξ et un seul, donné par le "schéma des approximations successives" suivant :

$$\xi_n = \Omega \xi_{n-1} + K\Phi .$$

2°) Variante de la méthode précédente -

Supposons que l'on puisse mettre $F(t, \xi)$ sous la forme :

$$F(t, \xi) = G(t; \xi, \xi)$$

où $G(t; \xi, \xi)$ est un opérateur de $\mathcal{C}^\mathfrak{e} \times \mathcal{C}^\mathfrak{m}$ dans $\mathcal{C}^\mathfrak{m}$ vérifiant :

1) $|| G(*; \xi, \xi) - G(*; \eta, \eta) || \leq \ell, || \xi - \eta || + p_e || \xi - \eta ||$

2°) $|| G(*; \xi, \xi) - G(*; \eta, \eta) || \leq \ell, || \xi - \eta ||.$

Théorème -

Si $k \ell < 1$ et $k (\ell_o + p_e) < 1$, alors l'équation opérationnelle (*) admet une solution et une seule dans l'espace $\mathcal{T}_\mathcal{F}(\xi; \mathcal{M}^\mathfrak{e}, \mathcal{C}^\mathfrak{m})$.

Démonstration -

L'équation $\xi = -K G(*; \xi, \xi) + K\Phi$ possède toujours une solution et une seule $\xi \in \mathcal{T}_\mathcal{F}(\xi; \mathcal{M}^\mathfrak{e}, \mathcal{C}^\mathfrak{m})$, quel que soit $\xi \in \mathcal{T}_\mathcal{F}(\xi; \mathcal{M}^\mathfrak{e}, \mathcal{C}^\mathfrak{m})$, d'après la méthode précédente (car $k \ell < 1$). Appelons W l'opérateur qui, à chaque ξ, fait correspondre la solution ξ :

$$W \varphi = -K G(*; \varphi, \varphi)$$

Chaque solution de l'équation opérationnelle (*) est un point fixe de la transformation

$$\Psi = W \varphi + K\Phi$$

et réciproquement.

Or l'opérateur W est lipschitzien contractant, car :

$$|| W \xi - W \eta || \leq || \mathcal{K} || || G(*; \xi, W \xi) - G(*; \eta, W \eta) ||$$

$$\leq k \ell \bigg(|| \xi - \eta || + p_e || W \xi - W \eta || \bigg)$$

D'où

$$|| W \xi - W \eta || \leq \frac{k \ell}{1 - k p_e} || \xi - \eta || .$$

108
La transformation $\psi = \psi_q$ admet donc un point fixe g et un seul, donné par le schéma de l'approximation successive suivant :

$$g_n = -Kg(g; g_{n-1}, g_n) + f.$$

Remarque -

La démonstration montre que l'on peut remplacer la condition (ii), trop restrictive, par la condition suivante :

$ii\;bis) \; \| \psi_{q^*} - \psi_{q} \| \leq \frac{\rho}{1 - \rho} \| \psi_{q^*} - \psi_{q} \| + \frac{\rho}{1 - \rho} \| \psi_{q^*} - \psi_{q} \|.$

3°) **Méthode reposant sur la monotonie (Minty)** -

a) Rappelons un théorème de Minty (cf. G. Minty [2]) -

Si Ω est un opérateur monotone, continu, partout défini d'un espace hilbertien H, alors $(I + \omega)^{-1}$ est partout défini et est continu.

b) De partir de ce théorème, on peut démontrer le théorème suivant :

L'équation opérationnelle (ψ) possède toujours une solution et une seule, dans la classe considérée, si l'opérateur F est partout défini, continu, borné, monotone et satisfait à l'hypothèse suivante :

$$\exists \; R \leq \left| F(t, g(t)) \right| \leq \beta \| g \| \rho,$$

où β est un nombre strictement positif et où ρ est un nombre strictement supérieur à 1.

La démonstration se fait comme dans G. Minty [2].

III - APPLICATIONS -

Considérons le système différentiel suivant :

$$(***) \quad g'(t) + ag(t) + Bg(t) = f(t)$$

où f est une fonction ∞-quasi-stationnaire, à valeurs dans C^m où B est un opérateur de C^m dans C^m (la forme de cet opérateur sera précisée).

1°) **Application de la méthode des approximations successives** -

On suppose que B est un opérateur de la forme :

$$B = B(\bar{z}, \ldots, \bar{z})$$

où $B(\bar{z}, \ldots, \bar{z})$ est un opérateur p-linéaire borné :

$$\| B(\bar{z}, \ldots, \bar{z}) \| \leq \beta \| \bar{z}, \ldots, \bar{z} \|.$$
Théorème -

L'équation différentielle (\(\bullet \bullet \)) possède une solution \(\infty \)-quasi-stationnaire \(z \in C(j; \mathbb{M}, \mathbb{C}) \) si

\[
\| Kf \| < \frac{p^{-1}}{p} \left(\frac{1}{p \kappa \beta} \right)^{P^{-1}}
\]

Démonstration -

Les approximations successives s'écrivent :

\[z_n + K^2 z_{n-1} = Kf \]

D'où :

\[\| z_n \| < \| z_{n-1} \| + \| Kf \|. \]

Cette inégalité de récurrence montre que si

\[
\| Kf \| < \frac{p^{-1}}{p} \left(\frac{1}{p \kappa \beta} \right)^{P^{-1}}
\]

alors, on aura (cf. lemme B du chapitre B6) :

\[\| z_n \| < M < \left(\frac{1}{p \kappa \beta} \right)^{P^{-1}} \]

que soit \(n \).

Utilisons la propriété \(p \)-linéaire de l'opérateur \(B \); nous avons

\[\| B y - B z \| < p \beta M^P \| y - z \|. \]

Par suite :

\[\| B y - B z \| < \ell \| y - z \|. \]

avec

\[\ell \beta = p \kappa \beta M^P < 1. \]

Le théorème est donc démontré.

2°) Application de la deuxième méthode -

Ici, on suppose que \(B \) est un opérateur quadratique dérivant d'un opérateur bilinéaire \(B \) : \(B_2 = B \langle z, z \rangle \) avec :

i) \[\| B \langle y, z \rangle \| < \beta \| y \| \cdot \| z \|. \]

ii) \[B y < B \langle y, z \rangle | z > 0. \]

L'application de la méthode des approximations successives montre que si \(\| f \| < \frac{1}{4 \| K \|^2} \), alors l'équation différentielle \(\bullet \bullet \) possède une solution \(\infty \)-quasi-stationnaire \(z \). Mais cette méthode n'utilise pas l'hypothèse (ii). On va utiliser la deuxième méthode des approximations successives pour démontrer le théorème suivant :
Théorème -

Si $\|f\| < \frac{1}{\lambda^2 \beta}$, alors l'équation différentielle (\ast) admet une solution ∞-quasi-stationnaire $z \in C^0(f; F^\lambda)$.

Démonstration -

On remarque d'abord que si $\|\beta \| \cdot f < 1$, alors l'équation $z + K_\beta(x, z) = Kf$ possède toujours une solution ∞-quasi-stationnaire, et que $\|z\| < \|f\|$ (en utilisant l'hypothèse (ii)). Par suite, les approximations successives

$$
\begin{align*}
&\begin{cases}
z_0 = Kf \\
z_n = K_\beta(z_{n-1}, z_n) = Kf
\end{cases}
\end{align*}
$$

peuvent être itérées indéfiniment si $\|\beta \| \cdot f < 1$.

Considérons l'opérateur W défini par :

$$
W_\beta, K_\beta(x, w_{\beta}) = 0
$$

On a :

$$
W_{\beta, x} - W_{\beta, y} = K_\beta(x, w_{\beta}) - K_\beta(y, w_{\beta})
$$

D'où :

$$
\|z_{n+1} - z_n\| \leq \|z_{n} - z_{n-1}\| \leq \|f\|_{\infty} \cdot \|z\|_{\infty}
$$

Comme $\|\beta \| \cdot f < 1$ par hypothèse, l'approximation converge.

3°) Application de la méthode de Mityn -

Nous supposons dans ce paragraphe que toutes les fonctions sont réelles. On prend

$$
B_\beta = \beta \cdot \gamma \cdot z
$$

où γ et λ sont des nombres réels strictement positifs.

Les approximations successives ne convergent que si f est assez petite. La méthode de Mityn permet de démontrer le théorème suivant :

L'équation différentielle (\ast) possède toujours une solution ∞-quasi-stationnaire unique (que que soit l'ordre de grandeur de f).

En effet :

i) l'opérateur B est partout défini, continu et borné,

ii) il est monotone car :

$$
B_{\beta, x} - B_{\beta, y} = \frac{1}{z} (z, y) \left(\|\gamma \|^{\lambda-1} + \|y\|^{\lambda-1} \right) + \frac{1}{z} (z, y) \left(\|\gamma \|^{\lambda-1} - \|y\|^{\lambda-1} \right)
$$
D'où :

\[\langle B_\beta - B_y \mid z - y \rangle = \varepsilon \| z - y \|^2 \left(\| \beta \|^2 \varepsilon^{\lambda + 1} + \| y \|^{\lambda + 1} \right) + \frac{1}{2} \left(\| \beta \|^2 - \| y \|^2 \right) \left(\| z \|^2 - \| y \|^{\lambda + 1} \right) \]

iii) on a :

\[\langle z \mid B_\beta \rangle = \beta \| z \|^{\lambda + 1} \]

Donc :

\[[z \mid B_\beta] \geq \beta \| z \|^{\lambda + 1} \quad (\text{inégalité de Hölder}). \]

C.Q.F.D.
I - DONNÉES DU PROBLÈME -

1°) Données spatiales : le triplet \(\{V, H, a(u, v)\} \)

a) Soient \(V \) et \(H \) deux espaces de Hilbert. On suppose que \(V \subset H \)
algébriquement et topologiquement et que \(V \) est dense dans \(H \). Le produit
scalaire dans \(H \) sera désigné par \(\langle \cdot, \cdot \rangle \) et la norme par \(\|\cdot\| \). Le produit
scalaire dans \(V \) sera désigné par \(\langle \cdot, \cdot \rangle \) et la norme par \(\|\cdot\| \). La constante
d'immersion de \(V \) dans \(H \) sera désignée par \(\gamma \):

\[
\|v\| \leq \gamma \|v\|, \quad \forall v \in V.
\]

b) Soit \(u, v \rightarrow a(u, v) \) une forme sesqulinéraire :

i) continue sur \(V \times V \), c'est-à-dire :
\[
|a(u, v)| \leq \|u\| \|v\|
\]

ii) coercive, ou plus précisément :
\[
\|a(v, v)\| \geq \alpha \|v\|^2 \quad (\alpha > 0)
\]

2°) Données temporelles -

On donne une fonction \(t \rightarrow f(t) \), définie sur \(\mathbb{R}^+ = (0, \infty) \), à valeurs
dans \(H \), \(1 \)-quasi-stationnaire :

\[
f \in \mathcal{S}(o, \infty; H).
\]

On considérera les espaces \(\mathcal{L}^*(f; \mathcal{M}^s, H) \) et \(\mathcal{L}^*(f; \mathcal{M}^s, V) \) engen-
drés par la fonction \(f \), définis dans la partie A. (4)

Ces espaces sont munis de leur topologie hilbertienne naturelle. Le

(4) Par convention, \(\mathcal{L}^*(f; \mathcal{M}^s, V) \) désigne l'espace \(\mathcal{L}^*(f; \mathcal{M}^s, H \rightarrow V) \).
produit scalaire et la norme dans \(L^2(J;W^1) \) seront désignés respectivement par \([] \) et \(\| \| \). Le produit scalaire et la norme dans \(L^2(f;\mathcal{M}^1,V) \) seront désignés par \([] \) et \(\| \| \).

3°) Objet du chapitre B3 -

Nous allons poser, résoudre et interpréter un problème, appelé "problème B3".

Le théorème d'existence sera démontré par cinq méthodes différentes : méthode de projection, méthode des différences finies, méthode de Galerkin (approximation par projection), méthode de perturbation (régularisation "elliptique"), méthode reposant sur l'analyse spectrale des fonctions 1-quasi-stationnaires.

La méthode des différences finies et celles de Galerkin pourraient être utilisées pour la construction numérique de la solution.

La méthode de perturbation fournit une régularisation "elliptique" de la solution.

Le cinquième méthode reposant sur l'analyse spectrale me semble la plus rapide et la plus intéressante, surtout en ce qui concerne les propriétés statistiques de la solution (fonction de corrélation par exemple). Cependant, à la différence des autres méthodes, elle suppose l'hermiticité de la forme \(a(u,v) \).

II - LE PROBLÈME B3 -

1°) Position du problème -

On cherche une fonction 1-quasi-stationnaire \(u \in L^2(f;\mathcal{M}^1,V) \) et vérifiant la relation

\[
\mathcal{M}_M \left\{ -<u(t)|\Phi'(t)> + a(u(t),\Phi(t)) \right\} = \mathcal{M}_b <f(t)|\Phi(t)>
\]

pour toute fonction \(\Phi \):

i) appartenant à l'espace \(L^2(0,\infty;V) \cap W^1(0,\infty;H) \)

ii) \(\Phi \)-comparable à toutes les translatées de \(f \).

2°) Le problème a un sens -

La donnée de \(a(u,v) \) équivaut à la donnée d'un opérateur \(\mathcal{A} \in \mathcal{L}(V \rightarrow V) \) avec :

\[
a(u,v) = \langle \mathcal{A}u|v \rangle , \quad u \in V , \quad v \in V
\]

D'autre part, soit \(\mathcal{J} \in \mathcal{L}(H \rightarrow V) \) l'opérateur défini par :

\[
\langle h|v \rangle = \langle \mathcal{J}h|v \rangle , \quad h \in H , \quad v \in V.
\]

L'équation (B3) s'écrit :

\[
\mathcal{M}_M \left\{ -<u(t)|\mathcal{J}\Phi'(t)> + <\mathcal{A}u(t)|\Phi(t)> \right\} = \mathcal{M}_b <f(t)|\Phi(t)>
\]
Or u, M_u et J_f sont des éléments de l'espace $Z^\ast(f; M^2, V)$. D'autre part, Φ et $J_{\Phi'}$ sont *-comparables à cet espace. Le problème a bien un sens.

3°) Réduction du problème -

Soit Φ une fonction satisfaisant aux conditions (i) et (ii). Considérons le sous-espace vectoriel E de l'espace de Bass $\mathcal{F}(\mathbb{R}, \mathbb{R}; V)$ engendré par les combinaisons linéaires des éléments de $Z^\ast(f; M^2, V) \cup Z(\Phi; M^2, V)$. La \mathbb{M}-fermeture \overline{E} de E est encore un sous-espace vectoriel de $\mathcal{F}(\mathbb{R}, \mathbb{R}; V)$. Structurons \overline{E} en un espace hilbertien par le procédé habituel. Toute fonction de \overline{E}, et en particulier, les fonctions Φ et Φ', peut se décomposer en somme d'une fonction appartenant à $Z^\ast(f; M^2, V)$ et d'une fonction orthogonale à $Z^\ast(f; M^2, V)$. Par suite, le problème posé est réduit au problème suivant :

On cherche une fonction $u \in Z^\ast(f; M^2, V)$ telle que la relation (B3) soit vérifiée pour toute fonction $\Phi \in Z^\ast(f; M^2, V) \cap W^1(\mathbb{R}, \mathbb{R}; H)$.

Remarque -

Comme $W(\mathbb{R}, \mathbb{R}; H)$ est dense dans $W^1(\mathbb{R}, \mathbb{R}; H)$, si la relation (B3) est vérifiée pour tout $\Phi \in Z^\ast(f; M^2, V) \cap W(\mathbb{R}, \mathbb{R}; H)$ alors elle est vérifiée pour tout $\Phi \in Z^\ast(f; M^2, V) \cap W^1(\mathbb{R}, \mathbb{R}; H)$.

III - THEOREME D'UNICITE -

Dans cette classe de solutions, la solution du problème B3, si elle existe, est unique.

Démonstration -

Soient u_1 et u_2 deux solutions du problème posé. Posons

$$w(t) = u_1(t) - u_2(t)$$

La fonction w vérifie la relation :

$$\mathbb{M}(t) \left\{ \left\langle w(t) \mid \frac{d}{dt} \Phi(t) \right\rangle + a \left(w(t), \Phi(t) \right) \right\} = 0.$$

La fonction w étant \mathbb{M}-continue, on peut l'approcher par une suite de fonctions w_n appartenant à $Z(w; M^2, V)$, \mathbb{M}-dérivables et vérifiant l'égalité :

$$\mathbb{M}(t) \left\langle w(t) \mid w_n(t) \right\rangle = 0$$

Posons :

$$w(t) = w_n(t) + \theta_n(t),$$

où la fonction θ_n tend, dans $\mathbb{M}(\mathbb{R}, \mathbb{R}; V)$ vers 0 quand $n \to \infty$.

115
On a alors, en prenant $\phi = \omega_n$:

$$\mathcal{R} \mathcal{M}_b \left(\omega_n(t), \omega_n(t) \right) \leq \mathcal{R} \mathcal{M}_b \left(\theta_a(t), \omega_n(t) \right).$$

La coercivité et la continuité de la forme $a(u, v)$ montrent alors que

$$\alpha \|(\omega_n)\|^2 \leq C \|\theta_a\| \|\omega_n\|,$$

ce qui montre que :

$$\|\omega\| = 0.$$

Remarque

Dans cette démonstration, la condition initiale n'intervient pas. Autrement dit, deux solutions du problème B3, avec le même second membre et des conditions initiales différentes, sont \mathcal{M}^2-équivalentes.

IV - THEOREME D'EXISTENCE

Nous allons montrer l'existence de la solution du problème B3 par une méthode très classique, dite méthode de projection (cf. par exemple J. L. LIONS [1]).

1°) Considérons l'opérateur linéaire K de S^∞ dans $\mathcal{W}^2(0, \infty)$ défini par :

$$K = -Jv + J_b.$$

C'est une application injective de S^∞ dans $\mathcal{W}^2(f; \mathcal{M}^2, V)$. En effet, si $K\phi = 0$, alors $\|[\phi | K \phi]\| = 0$, et par suite :

$$\mathcal{M}_b \left\{ \phi(t) \phi'(t) + a \left(\phi(t), \phi'(t) \right) \right\} = 0,$$

donc

$$\|\phi\| = 0.$$

2°) Posons $K^* = \mathcal{F}$: K est une application bijective de S^∞ sur \mathcal{F}. Soit K^{-1} la bijection réciproque de K. Montrons que l'opérateur K^{-1} est continu de \mathcal{F} dans S^∞. En effet, posons $K^1 = \mathcal{F}$, ou $\phi = K^{-1} \psi$. D'après la coercivité de la forme $a(u, v)$ et la propriété conservative de la \mathcal{M}^2-dérivation, on a :

$$\alpha \|\phi\|^2 \leq \|[\phi | K^{-1} \phi]\| \leq \|\phi\| \|K^{-1} \phi\|.$$

D'où

$$\|K^{-1} \phi\| \leq \frac{1}{\alpha} \|\phi\|.$$
L'équation (3) est équivalente à :
\[[u | k \phi] = [Jf | \phi], \]
or
\[[u | \psi] = [Jf | k^{-1} \psi] = [Jf | \overline{k^{-1} \psi}], \quad \forall \psi \in \mathcal{F}. \]

4°) La résolution de cette équation est immédiate. En effet, soit \(P \) l'opérateur de projection orthogonale de \(\mathcal{C}^p(j ; \mathbb{R}^2, V) \) sur \(\mathcal{F} \).

Posons : \(Q = k^{-1} P \); \(Q \) est une application linéaire continue de \(\mathcal{C}^p(j ; \mathbb{R}^2, V) \) dans \(\mathcal{C}^p(j ; \mathbb{R}^2, V) \).

Soit \(Q^* \) son adjoint. On vérifie que si l'on pose :
\[\omega = Q^* f, \]
alors \(u \) est une solution du problème (3).

Remarque -
Comme il y a unicité de la solution, \(\mathcal{F} = \mathcal{C}^p(j ; \mathbb{R}^2, V) \) et \(P \) est l'identité. Donc :
\[\omega = (k^{-1})^{-1} Jf. \]

\(V \) - APPROXIMATION PAR LA MÉTHODE DES DIFFÉRENCES FINIES -

1°) Équation aux différences finies associée au problème posé -

On considère l'équation suivante :
\[\mathbb{M} \left\{ \frac{1}{h} \left[u(t) - u(t-h) \right] \phi(t) + a \left(u(t), \phi(t) \right) \right\} = \mathbb{M} \left\{ f(t) \phi(t) \right\}, \]
ou \(h \) est un paramètre (fixé dans cette équation),

où \(t \to u(t) \) est l'inconnue

et où \(\phi \) est un élément de \(\mathcal{C}^p(j ; \mathbb{R}^2, V) \).

Comme le premier membre est une forme linéaire continue sur \(\mathcal{C}^p(j ; \mathbb{R}^2, V) \) et comme
\[\mathbb{R}^d \mathbb{M} \left\{ \left[u(t) - u(t-h) \right] \left| u(t) \right| + a \left(u(t), u(t) \right) \right\} \geq \alpha \| u \| \| u \|^2, \]
cette équation aux différences finies possède toujours une solution et une seule appartenant à \(\mathcal{C}^p(j ; \mathbb{R}^2, V) \).

2°) Majoration -

On a :
\[\alpha \| u \| \| u \|^2 \leq \| f \| \| u \| \].

117
D'où
\[\| u - u_k \| \leq \frac{\varepsilon}{\alpha} \| f \| \]

3°) Utilisant la faible compacité séquentielle de la boule unité de tout banach réflexif, on extrait une sous-suite \(\{ u_{k_n} \} \) tendant faiblement, dans \(\mathcal{H}(f; \mathcal{M}^2, \nu) \) vers une limite \(u \).

On vérifie très facilement que \(u \) est une solution du problème B3.

Comme il y a unicité de la solution, la suite \(\{ u_{k_n} \} \) tend elle-même faiblement vers la fonction \(u \) (on n'a pas à extraire une sous-suite).

4°) Montrons qu'il y a même convergence forte de la suite \(\{ u_{k_n} \} \) vers \(u \) dans \(\mathcal{M}^2(o, \infty; \nu) \). Soit \(\Phi \in \mathcal{H}(f; \mathcal{M}^2, \nu) \cap \mathcal{W}^s(o, \infty; H) \). Posons

\[\mathcal{S}_k = \mathcal{M}\{a(u_k - \Phi, u_k - \Phi)\} \]

D'où :
\[\mathcal{S}_k = \mathcal{M}\{< f | u_k^1 - \Phi > - a(\Phi, u_k - \Phi) - < u_k^1 | \Phi - u > \} \]

Quand \(k \to \infty \), \(\mathcal{S}_k \) tend vers
\[\mathcal{S} = \mathcal{M}\{< f | \Phi > - a(\Phi, \Phi) + < u | \Phi' > \} = \mathcal{M}a(\Phi, \Phi) \]

Ce résultat, démontré pour \(\Phi \in \mathcal{H}(f; \mathcal{M}^2, \nu) \cap \mathcal{W}^s(o, \infty; H) \) est encore valable pour \(\Phi \in \mathcal{H}(f; \mathcal{M}^2, \nu) \) par un raisonnement de densité. Faisons \(\Phi = u \), nous obtenons :
\[\mathcal{M}\{a(u_k - u, u_k - u)\} \to 0 \]

La coercivité de la forme \(a(u, \nu) \) montre alors que :
\[\| u_k - u \| \to 0 \]
autrement dit, \(u_k \) tend fortement, dans \(\mathcal{H}(f; \mathcal{M}^2, \nu) \) vers la solution \(u \).

VI - APPROXIMATION PAR PROJECTION (méthode de Galerkin) -

Supposons que l'espace \(\mathcal{H}(f; \mathcal{M}^2, \nu) \) soit séparable. Le domaine \(D(\nu) \) de l'opérateur de \(\mathcal{M}^2 \)-dérivation étant partout dense, on peut choisir une base \(\{ \psi_i \} \in D(\nu) \) et orthonormée dans \(\mathcal{H}(f; \mathcal{M}^2, \nu) \).

1°) Définition des solutions approchées -

On définit les solutions approchées par :
\[u_m(t) = \sum_{i=1}^{m} \psi_i(t) \]
où l'on impose aux \(\omega_i \), dépendant en fait de \(m \), de vérifier le système algébrique suivant :

\[
\mathcal{M}_b \left\{ <u'_m(t), \psi_i(t)> + a(u_m(t), \psi_i(t)) \right\} = \mathcal{M}_b <f(t), \psi_i(t)>.
\]

2°) Existence des solutions approchées -

Posons :

\[
\begin{align*}
\alpha_{ij} &= \mathcal{M}_b a(\psi_i, \psi_j) \\
\beta_{ij} &= \mathcal{M}_b <\psi_i | \psi_j> \\
\delta_{ij} &= \mathcal{M}_b <f | \psi_j>
\end{align*}
\]

et considérons dans l'espace \(\mathbb{C}^n \) les vecteurs \(\bar{\omega} = \{\omega_j\} \), \(\bar{f} = \{f_j\} \) et la matrice \(C = \{\alpha_{ij} + \beta_{ij}\} \). Nous obtenons l'équation suivante :

\[
C \bar{\omega} = \bar{f}.
\]

Comme \(\mathbb{R}^d \left< \bar{\omega}, \bar{f} > \right| \bar{\omega}^2 \), la matrice \(C \) est inversible, ce qui prouve l'existence des solutions approchées.

3°) Convergence des solutions approchées -

a) On obtient facilement une majoration des solutions approchées

\[
\|u_m\| \leq \frac{T}{\alpha} \|f\|.
\]

b) Utilisant la faible compacité séquentielle de la boule unité de \(\mathcal{C}(J, \mathcal{M}^2, V) \), on extrait, de la suite \(\{u_m\} \) une sous-suite \(\{u_\ell\} \) qui converge faiblement, dans \(\mathcal{C}(J, \mathcal{M}^2, V) \) vers une fonction \(u \).

c) Soit \(\phi \) un élément quelconque de \(\mathcal{C}(J, \mathcal{M}^2, V) \cap \mathcal{W}'(0, \infty ; H) \)

On peut écrire :

\[
\phi = \mathcal{M}^d \lim_{q \to \infty} \phi_q \text{ avec } \phi_q(t) = \sum_{j=1}^{q} \phi_q \psi_j(t)
\]

Pour \(q < p \), on a :

\[
\mathcal{M}_b \left\{ <u'_p | \phi_q> + a(u_p, \phi_q) \right\} = \mathcal{M}_b <f | \phi_q>
\]

Faisons tendre \(p \) vers \(\infty \), on obtient :

\[
\mathcal{M}_b \left\{ <u | \phi'_q> + a(u, \phi_q) \right\} = \mathcal{M}_b <f | \phi_q>
\]

Faisons tendre \(q \) vers \(\infty \), nous obtenons :

\[
\mathcal{M}_b \left\{ <-u(t) | \phi'(t)> + a(u(t), \phi(t)) \right\} = \mathcal{M}_b <f(t) | \phi(t)>
\]
d) Puisqu'il y a unicité de la solution du problème posé, la suite \(\{u_m\} \) tend elle-même faiblement vers la solution \(u \).

e) Soit \(\Phi \in C^#(f; M^s, V) \). On peut montrer que

\[
\mathcal{L}_m = \text{Ré } M_b \left\{ a(u_m - \Phi, u_m - \Phi) \right\}
\]

tend vers

\[
\mathcal{L} = \text{Ré } M_b \left\{ a(u - \Phi, u - \Phi) \right\}
\]

Faisons alors : \(\Phi = u \); nous obtenons \(\|u_m - u\| \to 0 \), ce qui montre que \(\{u_m\} \) tend fortement vers \(u \).

Remarque -

Si \(C^#(f; M^s, V) \) n'est pas séparable, on le remplace par l'espace \(C_b^w(J; M^s, V) \) défini de la façon suivante :

C'est le plus petit ensemble de fonctions qui :

i) contienne la fonction \(Jf \)

ii) ne puisse contenir une fonction sans contenir ses translatées

iii) ne puisse contenir deux fonctions sans contenir leurs combinaisons linéaires

iv) ne puisse contenir une fonction sans contenir sa transformée par l'opérateur \(\mathcal{B} \)

v) ne puisse contenir une suite de Cauchy de fonctions, sans contenir leur \(M^s \)-limite

(cf. chapitre A6, paragraphe IV).

VII - REGULARISATION ELLIPTIQUE -

1°) Le problème elliptique -

Considérons l'équation perturbée suivante :

\[
\mathcal{M}_b \left\{ a(u'(t), \Phi(t)) + A <u'(t)\Phi(t) > + B < u''(t) \Phi(t) > \right\} = \mathcal{M}_b < \xi(t) \Phi(t) >
\]

où \(\xi \) est un paramètre positif.

Par la méthode de projection exposée au paragraphe IV, on va montrer que cette équation admet une solution

\[
u \in C^#(f; M^s, V) \cap W^4(0, \infty; H)
\]

a) Considérons l'espace \(\mathcal{L} = C^#(f; M^s, V) \cap W^4(0, \infty; H) \) muni du produit scalaire :

\[
\langle [f, g] \rangle_{\mathcal{L}} = \langle [f] \rangle + \langle [g'] \rangle
\]
C'est un espace de Hilbert.

b) Pour tout $\phi \in \mathfrak{F}$, la forme linéaire

$$u_{\varepsilon} \rightarrow \mathfrak{F} \begin{bmatrix} a(u_{\varepsilon}, \phi) + \langle u'_{\varepsilon} | \Phi \rangle + \varepsilon < u_{\varepsilon}' | \Phi' > \end{bmatrix}$$

est continue sur \mathfrak{F}.

Il existe donc une application linéaire $\phi \rightarrow k\phi$ de \mathfrak{F} dans \mathfrak{F} telle que :

$$\begin{bmatrix} a(u_{\varepsilon}, \phi) + \langle u'_{\varepsilon} | \Phi \rangle + \varepsilon < u_{\varepsilon}' | \Phi' > \end{bmatrix} = \{ [u_{\varepsilon} | k\phi] \}_{\mathfrak{F}}.$$

Cette application est injective de \mathfrak{F} dans \mathfrak{F}, car si $k\Phi = 0$, alors

$$\alpha \| \phi \|^{2} + \varepsilon \| \Phi' \|^{2} = 0.$$

c) Posons $k^* = K$; K est une application bijective de \mathfrak{F} dans \mathfrak{F}.

On peut montrer que sa bijection réciproque K^{-1} est continue. Par suite, on peut prolonger par continuité K^{-1} en K^{-1}, application linéaire continue de \mathfrak{F} dans \mathfrak{F}.

D'autre part, $\phi \rightarrow [f | \phi]$ est une forme semi-linéaire continue sur \mathfrak{F}, il existe donc un élément f_0 de \mathfrak{F} tel que :

$$[f | \phi] = \{ [f_0 | \phi] \}_{\mathfrak{F}}.$$

d) On vérifie alors qu'une solution de l'équation perturbée est donnée par :

$$u_{\varepsilon} = (K^{-1}P)^{t}f_0,$$

où P est l'opérateur de projection orthogonale (dans \mathfrak{F}) sur \mathfrak{F}.

$2^o)$ Nous allons faire tendre ε vers 0 -

a) D'abord, on remarque l'inégalité de l'énergie suivante

$$\alpha \| u_{\varepsilon} \|^{2} + \varepsilon \| u_{\varepsilon}' \|^{2} \leq \| f \| \cdot \| u_{\varepsilon} \|.$$

D'où, les majorations a priori :

$$\| u_{\varepsilon} \| \leq \frac{\alpha}{\varepsilon} \| f \|,$$

et

$$\sqrt{\varepsilon} \| u_{\varepsilon}' \| \leq \frac{\alpha}{\varepsilon} \| f \|.$$

b) La boule unité de $\mathcal{C}^\#(f ; \mathcal{M}^2, \mathcal{V})$ étant faiblement compacte, on peut extraire une suite $\{ u_{\eta} \}$ telle que :

$$u_{\eta} \rightarrow u \text{ dans } \mathcal{C}^\#(f ; \mathcal{M}^2, \mathcal{V}) \text{ faible}$$

$$\sqrt{\eta} u_{\eta}' \rightarrow \omega \text{ dans } \mathcal{C}^\#(f ; \mathcal{M}^2, \mathcal{V}) \text{ faible}.$$
Comme $M_b\{\gamma\langle u'_p | \phi' \rangle \}$ tend vers 0 quand $\gamma \to 0$, la fonction limite u satisfait à :

$$M_b \{ a(u, \phi) - \langle u | \phi' \rangle \} = M_b \langle f | \phi \rangle ,$$

pour tout $\phi \in C_c^\infty(f; M^2, V) \cap U^1(c, \infty ; H)$.

Par suite, u est solution du problème B3.

c) Comme il y a unicité de la solution de ce problème, la suite $\{u_\varepsilon\}$ tend elle-même faiblement vers u.

d) Montrons que les fonctions u_ε convergent fortement dans $C^\infty(f; M^2, V)$ vers la solution u.

Pour cela, on montre que

$$\mathcal{E}_\varepsilon = \Re M_b \left\{ a(u_\varepsilon - \Phi, u_\varepsilon - \Phi) + \varepsilon \langle u'_\varepsilon | u'_\varepsilon \rangle \right\}$$

tend vers

$$\mathcal{E} = \Re M_b \left\{ a(u - \Phi, u - \Phi) \right\},$$

pour tout $\phi \in C_c^\infty(f; M^2, V)$.

On fait ensuite $\phi = u$, et on utilise la coercivité de la forme $a(u, v)$.

VIII - M^e-DERIVABILITE DE LA SOLUTION -

Considérons l'équation perturbée suivante :

$$M_b \left\{ a(u_\varepsilon(t), \Phi(t)) + \langle u'_\varepsilon(t) | \Phi(t) \rangle + \varepsilon \langle u'_\varepsilon(t) | \Phi'(t) \rangle \right\} = M_b \langle f(t) | \Phi(t) \rangle .$$

Cette équation admet une solution et une seule u_ε appartenant à $C^\infty(f; M^2, V) \cap U^1(c, \infty ; V)$.

Les majorations $\|u_\varepsilon\| < \frac{C}{\varepsilon}$ et $\sqrt{\varepsilon} \|u_\varepsilon\| < \frac{C}{\sqrt{\varepsilon}}$ permettent de montrer que u_ε tend vers la solution u du problème B3.

Mais rien ne prouve que la solution u est M^e-dérivable. Nous allons montrer la M^e-dérivabilité de la solution dans les deux cas suivants.

Pour cela, il suffit d'obtenir une majoration a priori sur la M^e-dérivée de la solution approchée u_ε.

1°) Cas où $f \in U^1(c, \infty ; H)$ -

Posons :

$$v^h_\varepsilon(t) = \frac{1}{h} \left[u_\varepsilon(t + h) - u_\varepsilon(t) \right] \text{ et } g^h_\varepsilon(t) = \frac{1}{h} \left[f(t + h) - f(t) \right] .$$

La fonction v^h_ε vérifie l'équation suivante :

$$M_b \left\{ a(v^h_\varepsilon, \phi) + \langle v^h_\varepsilon | \phi' \rangle + \varepsilon \langle v^h_\varepsilon | \phi' \rangle \right\} = M_b \langle g^h_\varepsilon | \phi \rangle .$$
D'où :

\[\begin{array}{c}
\| u'_e \|_{\infty} < \frac{\varepsilon}{\alpha} \| f' \|_{\infty}.
\end{array} \]

Faisons tendre \(\varepsilon \) vers 0. Comme \(u \in W^1(0, \infty ; V) \), sa \(\mathbb{M}^e \)-dérivée \(u'_e \)
doit vérifier :

\[\| u'_e \|_{\infty} < \frac{\varepsilon}{\alpha} \| f' \|_{\infty}, \]

tenue que la solution \(u \) du problème B3 possède une \(\mathbb{M}^e \)-dérivée,
dans \(\mathbb{M}^e(0, \infty ; V) \) :

\[u \in W^1(0, \infty ; V). \]

2°) Cas où la forme \(a(u, v) \) est hermitienne : \(a(u, v) = \overline{a(v, u)}. \)

Posons :

\[u'_e(t) = \phi_n(t) - \theta_n(t) \]

où

i) \(\phi_n \) est dans \(W^1(0, \infty ; V) \)

ii) \(\theta_n \) tend vers 0 dans \(\mathbb{M}^e(0, \infty ; V) \) quand \(n \to \infty \)

iii) \(\mathbb{R} \mathbb{M} \ll u'_e | \phi_n' \| = 0. \)

Dans l'équation perturbée, faisons : \(\phi(t) = \phi_n(t) \). Nous obtenons :

\[\mathbb{M} \{ a(u_e, \theta_n) + \langle u'_e | u'_e + \theta_n \rangle + \varepsilon \ll u'_e | \phi_n' \| \} = \mathbb{M} \langle f | u'_e + \theta_n \rangle. \]

Prenons la partie réelle des deux membres. Remarquons que :

\[\mathbb{R} \mathbb{M} \ll u'_e | \phi_n' \| = 0 \quad (\text{par construction}) \]

\[\mathbb{R} \mathbb{M} a(u'_e, u'_e) = 0 \quad (\text{hermiticité de } a(u, v)). \]

Par suite :

\[\mathbb{R} \mathbb{M} \{ a(u_e, \theta_n) + \| u'_e \|^2 + \langle u'_e | \theta_n \rangle \} = \mathbb{R} \mathbb{M} \{ \langle f | u'_e \rangle + \langle f | \theta_n \rangle \} \]

D'où :

\[\| u'_e \|_{\infty} \leq \| f \|_{\infty} + \| u'_e \|_{\infty} + \| \theta_n \|_{\infty} \left(\| u_e \|_{\infty} + \| \theta_n \|_{\infty} + \| f \|_{\infty} \right). \]

Faisons tendre \(n \) vers \(\infty \), nous obtenons :

\[\| u'_e \|_{\infty} \leq \| f \|_{\infty}, \]

tenue que la solution \(u \) du problème B3 est \(\mathbb{M}^e \)-dérivable, dans \(\mathbb{M}^e(0, \infty ; V) \) :

\[u \in W^1(0, \infty ; V). \]
Remarque -

Dans le cas où $f \in W^s(\alpha, \infty; H)$, par la méthode des quotients différentiels, on peut montrer très facilement que

$$\| \frac{d}{dt} (U_h u - u) \| \leq \frac{\alpha}{2} \| f \|.$$

Cette majoration montre que u possède une W^s-dérivée faible dans l'espace $W^s(\alpha, \infty; V)$. Mais pour montrer que u est fortement W^s-dérivable, il faut utiliser la méthode de régularisation elliptique, comme nous l'avons fait.

IX - INTERPRÉTATION DU PROBLÈME B3 -

Le triplet $\{V, H, \alpha(\mu, \nu)\}$ définit un opérateur A non borné de H dans H (cf. par exemple J.L. LIONS [1]).

Le problème B3 est une formulation faible de l'équation différentielle opérationnelle suivante, à valeurs dans H :

$$u'(t) + Au(t) = f(t).$$

Voici le sens du mot "faible" :

Soit u la solution du problème B3. En général, $u(t)$ n'appartient pas au domaine $D(A)$, donc $Au(t)$ n'existe pas ; puis u n'est pas nécessairement W^s-dérivable dans $W^s(\alpha, \infty; H)$; ensuite il ne s'agit pas ici de la dérivée ordinaire, mais de la W^s-dérivée ; enfin même si $Au(t)$ et $u'(t)$ existent, l'équation précédente n'est pas nécessairement vérifiée presque partout ; on a simplement :

$$u'(t) + Au(t) = f(t) + \theta(t),$$

où $\theta(t)$ est une fonction équivalente à 0 de l'espace $W^s(\alpha, \infty; H)$.

On pourrait obtenir une interprétation plus précise en utilisant la notion de W^s-distributions et celle de W^s-dérivée au sens des W^s-distributions. Mais, on peut éviter ces notions en introduisant un espace supplémentaire : l'espace V', antidual de l'espace V.

1°) **Propriétés concernant le triplet $\{V, H, V'\}$** -

Nous allons d'abord rappeler les propriétés classiques concernant la dualité (cf. par exemple J.L. LIONS [2]).

a) Par définition, V' est l'espace des formes antilinéaires continues sur V.

Soit $\ell \in H$. Comme $V \subset H$ algébriquement et topologiquement, la forme $\nu(\ell, \nu)$ est antilinéaire continue sur V, elle définit donc un élément L_{ℓ} de V' ; V étant dense dans H, l'application $\ell \mapsto L_{\ell}$ est injective de H dans V' ; on identifie alors L_{ℓ} à ℓ. Donc :

$$V \subset H \subset V' \quad (H \text{ est identifié à son antidual}).$$
b) Si \(w \in V' \) et \(v \in V \), leur produit scalaire dans l'antidualité sera désigné par \(\langle w | v \rangle \).

La norme et le produit scalaire dans \(V' \) seront désignés respectivement par \(\| \cdot \|_{V'} \) et \(\langle \cdot | \cdot \rangle_{V'} \).

On a :

\[
\| w \|_{V'} = \sup_{v \in V} \frac{|\langle w | v \rangle|}{\| v \|}, \quad v \in V.
\]

Avec cette norme, \(V' \) est un espace de Hilbert.

c) Si \(u \in V \), l'application \(u \rightarrow \langle u | v \rangle \) est antilinéaire et continue sur \(V \), elle définit donc un élément \(Au \) de \(V' \) :

\[
\langle u | v \rangle = \langle Au | v \rangle.
\]

On définit ainsi l'opérateur \(A \), avec \(A \in \mathcal{L}(V \rightarrow V') \) et on montre que \(A \) est un isomorphisme de \(V \) sur \(V' \). Soit \(J \) l'isomorphisme réciproque de \(A \). On a :

\[
\langle w_1 | w_2 \rangle_{V'} = \langle Jw_1 | Jw_2 \rangle = \langle w_1 | Jw_2 \rangle ; \quad w_1, w_2 \in V'.
\]

d) Considérons les espaces \(\mathcal{C}^\#(f ; M^g, V) \), \(\mathcal{C}^\#(f ; M^g, H) \) et \(\mathcal{C}^\#(f ; M^g, V') \) engendrés par la fonction quasi-stationnaire \(f \). Alors, il est immédiat que :

i) Si \(\mathcal{M}_b \langle w(t) | v(t) \rangle = 0 \) pour tout \(w \in \mathcal{C}^\#(f ; M^g, V) \),\n
alors \(\| v \| = 0 \).

ii) Si \(\mathcal{M}_b \langle w(t) | v(t) \rangle = 0 \) pour tout \(v \in \mathcal{C}^\#(f ; M^g, V) \),\n
alors \(\| w \| = 0 \).

(On désigne par \(\| \cdot \| \) la norme dans \(\mathcal{C}^\#(f ; M^g, V') \)).

2°) Interprétation du problème B3 -

Considérons la forme \(a(u, v) \) donnée précédemment. Si \(u \in V \), alors \(v \rightarrow a(u, v) \) est une forme antilinéaire continue sur \(V \), donc :

\[
a(u, v) = \langle Au | v \rangle, \quad Au \in V'
\]

ce qui définit un opérateur \(A \in \mathcal{L}(V \rightarrow V') \).

On remarque que l'ensemble des \(u \in V \) tels que \(Au \in H \) est le domaine de l'opérateur non borné \(A \) dans \(H \).

L'équation B3 s'écrit alors :

\[
\mathcal{M}_b \left\{ -\left\langle u(t) | \phi(t) \right\rangle + \left\langle Au(t) | \phi(t) \right\rangle \right\} = \mathcal{M}_b \left\langle f(t) | \phi(t) \right\rangle,
\]

pour tout \(\phi \in \mathcal{C}^\#(f ; M^g, V) \cap \mathcal{W}^\#, (a, \infty ; H) \).

Nous allons d'abord montrer une précision supplémentaire sur la solution \(u \) : \(u \) est faiblement \(M^g \)-dérivable dans l'espace \(M^g(\alpha, \infty ; V') \).
En effet, on a :
\[|\mathcal{M}_t < u(t) | \phi(t) > | \leq \| A u \| \| \phi \| + \| f \| \| \phi \| \]
pour tout \(\phi \in \mathcal{C}(f ; \mathcal{M}^2, V) \cap \mathcal{W}^1(0, \infty ; H) \).

Soit \(\Psi \) un élément de \(\mathcal{C}(f ; \mathcal{M}^2, V') \cap \mathcal{W}^1(0, \infty ; V') \). Posons \(\Phi = J \Psi \).
On a alors :
\[|\mathcal{M}_t < u(t) | J \Psi(t) > | \leq \left(\| A u \| \| \phi \| + \| f \| \| \phi \| \right) \| J \Psi \| \]
or :
\[|\mathcal{M}_t < u(t) | \psi(t) > | \leq \left(\| A u \| \| \phi \| + \| f \| \| \phi \| \right) \| \psi \| \]

D'après un critère de dimension faible (cf. paragraphe B1, IV 4), \(\psi \) est \(\mathcal{M}^2 \)-faiblement-dérivable dans \(\mathcal{W}^1(0, \infty ; V') \). Désignons par \(\psi' \) cette \(\mathcal{M}^2 \)-dérivée faible.

Le problème B5 est donc équivalent au problème suivant :

On cherche une fonction \(u \), définie sur \(\mathbb{R}^+ \), à valeurs dans \(V \),
1-quasi-stationnaire, \(\mathcal{M}^2 \)-faiblement-dérivable dans \(\mathcal{W}^1(0, \infty ; V') \) et
vérifiant l'équation suivante, dans \(\mathcal{W}^1(0, \infty ; V') \):
\[u'(t) + A u(t) = f(t) \]

Cette interprétation donne lieu à la remarque suivante : On a supposé que \(f \in \mathcal{S}(0, \infty ; H) \). Or l'équation précédente suggère qu'il suffit que \(f \in \mathcal{S}(0, \infty ; V') \) pour que tous les résultats obtenus restent encore valables. Effectivement, il en est ainsi. En effet, dans presque toutes les méthodes précédentes, on utilisait le fait que \(\mathcal{M}_t < f(t) | \phi(t) > \) est une forme antilinéaire continue sur \(\mathcal{C}(f ; \mathcal{M}^2, V) \); or cette propriété reste vraie si \(f \in \mathcal{S}(0, \infty ; V') \). En particulier, si l'injection de \(H \) dans \(V \) est compacte, il suffit que \(t \rightarrow f(t) \) soit \(H \)-aléairement quasi-stationnaire à valeurs dans \(H \) :
\[f \in \mathcal{S}(0, \infty ; H) \]

pour que presque tous les résultats précédents restent valables.

Nota – Le résultat du paragraphe VIII 2°) n'est plus valable si \(f \notin \mathcal{S}(0, \infty ; H) \).

X – MÉTHODE REPOSANT SUR L'ANALYSE SPECTRALE –

L'introduction de l'espace \(V' \) permet d'utiliser l'analyse spectrale élémentaire d'une fonction l-quasi-stationnaire; en effet, \(A \) est un opérateur borné de \(V \) dans \(V' \).
Cherchons une solution \(u \) de la forme :

\[
u = \int_{-\infty}^{\infty} C(x)dy(x)\]

où \(Y \) est la mesure spectrale élémentaire de \(f \) et où \(X \to C(X) \) est un élément de \(L^2[\Sigma;\mathcal{L}(V' \to V)] \), \(\Sigma \) étant le tenseur spectral énergétique de \(f \).

L'opérateur \(C \) doit vérifier :

\[
iX \cdot C(X) + A C(X) = I
\]

Or l'inégalité \(\mathcal{A} < \langle (iX + A)Y | Y \rangle \rangle \alpha \| Y \|^2 \), \(\alpha > 0 \), \(Y \in V \), montre que l'opérateur \(iX + A \) est inversible et

\[
\| (iX + A)^{-1} \|_{\mathcal{L}(V' \to V)} \leq \frac{1}{\alpha}.
\]

Posons alors :

\[
C(X) = (iX + A)^{-1};
\]

comme \(\| C(X) \| \) est borné uniformément en \(X \) par \(\frac{1}{\alpha} \), l'opérateur \(C \) est un élément de l'espace \(L^2[\Sigma;\mathcal{L}(V' \to V)] \).

Supposons, en plus, que la forme \(a(u, v) \) soit hermitienne. Alors on montre facilement que l'opérateur \(B(X) = iX(iX + A)^{-1} \in \mathcal{L}(V' \to V) \) est contractant de \(H \) dans \(H \). En effet, si \(y = B(X)x \), alors

\[
(iX + A)y = iXx.
\]

Multiplions les deux membres par \(y \) et prenons la partie imaginaire, nous obtenons :

\[
\|y\|^2 = \text{Im} \langle ix | y \rangle \leq |x||y|.
\]

Ce résultat montre que \(B \in L^2[\Sigma;\mathcal{L}(H \to H)] \).

Conclusion -

Cette méthode montre que si \(f \in \mathcal{S}(o, \infty; H) \) et si \(a(u, v) \) est hermitienne, alors il existe une solution \(u \) du problème \(B \), et

\[
u \in W^1(o, \infty; H) \cap \mathcal{C}(f; \mathcal{M}_{\mathcal{S}}, V).
\]

XI - EXEMPLES -

On trouvera au chapitre B7 un exemple de triplet \(\{V, H, a(u, v)\} \). De tels triplets se trouvent aussi et abondamment dans le livre de J.L. LIONS [1].

127
I - DONNEES DU PROBLEME -

1°) Données spatiales -

a) Le triplet \(\{ \mathcal{V}, H, a(u, v) \} \) ; cf. chapitre B3, paragraphe I 1°. On suppose cependant ici que \(\mathcal{V} \) et \(H \) sont des espaces vectoriels sur le corps des réels.

b) L'opérateur multilinéaire \(B \) - Soit \(B \) un opérateur multilinéaire de \(\mathcal{V} \) dans \(H \). Nous supposerons que \(B \) est borné de \(\mathcal{M}_{(0, \infty)}(\mathcal{V}, \mathcal{V}) \) dans \(\mathcal{M}_{(0, \infty)}(\mathcal{V}, \mathcal{V}) \).

2°) Données temporelles -

On donne une fonction \(t \rightarrow f(t) \), définie sur \(\mathbb{R}^+ = (0, \infty) \), à valeurs dans \(H, \infty \)-quasi-stationnaire :

\[
f(t) \in \mathcal{S}(0, \infty; H)
\]

On considérera les espaces \(\mathcal{C}(f; \mathcal{M}^{\mathcal{S}}, H) \) et \(\mathcal{C}(f; \mathcal{M}^{\mathcal{S}}, \mathcal{V}) \) engendrés par la fonction \(f \), définis au chapitre a6. Ces espaces seront munis de leur topologie hilbertienne habituelle.

II - LE PROBLEME B4 -

1°) Position du problème -
On cherche une fonction ∞-quasi-stationnaire $u \in C(f; M^2, V)$ telle que la relation
\[M_u \left\{ <u(t), \phi'(t)> + a(u(t), \phi(t)) + <B u(t), \phi(t)> \right\} = M_u \left< f(t), \phi'(t) > \right. \]
soit vérifiée pour toute fonction ϕ :

i) appartenant à l'espace $C(0, \infty; V) \cap W^1(0, \infty; H)$

ii) ϕ-comparable à l'espace $C(f; M^2, V)$.

Le problème a évidemment un sens.

2°) Réduction du problème -

La réduction se fait comme au paragraphe B3, II 3°). On se ramène au problème suivant :

On cherche une fonction $u \in C(f; M^2, V)$ vérifiant la relation (24) pour toute fonction $\phi \in C(f; M^2, V) \cap W^1(0, \infty; H)$.

3°) Interprétation -

L'interprétation se fait comme au paragraphe B3, IX. C'est une formulation faible du problème suivant :

On cherche $u \in C(f; M^2, V)$ vérifiant l'équation différentielle opérationnelle non linéaire suivant :

\[u'(t) + A u(t) + B u(t) = f(t) \]

où A est l'opérateur linéaire non borné de H associé à la forme $a(u, v)$.

III - THEOREME D'UNICITE -

Si l'opérateur B est M^2-continu et monotone, la solution du problème posé, si elle existe, est unique.

Démonstration -

Soient u et v deux solutions du problème posé. Posons

\[\omega(t) = u(t) - v(t) \]

Nous obtenons :

\[M_u \left\{ - <\omega|\phi'> + a(\omega, \phi) + <Bu - Bv, \phi> \right\} = 0 \]

La fonction ω étant M^2-continue, on peut l'approcher par une suite de fonction ω_n, M^2-dériverables, appartenant à $C(f; M^2, V)$ et vérifiant l'égalité :

\[M_u \left< \omega(t), \omega_n'(t) > \right. = 0 \]
Posons \(\omega(t) = \omega_n(t) + \theta_n(t) \), où \(\theta_n \) tend, dans \(\mathcal{M}^{\infty}(0, \infty ; V) \) vers 0 quand \(n \to \infty \).

Prenant \(\phi(t) = \omega_n(t) \), nous avons alors (\(B \) étant monotone)

\[
\mathbb{M} a(\omega_n, \omega_n) \leq \left| \mathbb{M} a(\theta_n, \omega_n) \right| + \left| \mathbb{M} <Bu - Bv, \theta_n> \right|
\]

La coercivité de la forme \(a(u, v) \), la continuité de \(a(u, v) \) et celle de \(B \) montrent alors que :

\[
\|\omega_n\| \leq c_\varepsilon \|\theta_n\|,
\]

ci qui montre que :

\[
\|\omega\| = 0.
\]

IV - TRANSFORMATION DE PROBLÈME B4 - THÉORÈMES D'EXISTENCE -

Lorsque l'opérateur \(B \) est identiquement nul, on obtient le problème B3, étudié précédemment. Soit \(\mathcal{J} \) l'opérateur linéaire continu de \(\mathcal{H}^p(f ; \mathcal{M}^{\infty}, V) \) dans \(\mathcal{C}(f ; \mathcal{M}^{\infty}, V) \) qui, à chaque \(f \) fait correspondre la solution \(u = \mathcal{J}f \) du problème B3 :

\[
\|\mathcal{J}\| \leq \alpha = \frac{\alpha}{T}.
\]

Le problème B4 est alors équivalent au problème suivant :

On cherche \(u \in \mathcal{C}(f ; \mathcal{M}^{\infty}, V) \) et vérifiant l'équation opérationnelle non linéaire, à valeurs dans \(\mathcal{C}(f ; \mathcal{M}^{\infty}, V) \), suivante :

\[
u + \mathcal{J}Bu = \mathcal{J}f.
\]

Le problème B4 est par suite complètement analogue au problème traité au chapitre B2, paragraphe II. Nous obtenons par conséquent les résultats suivants :

1°) Premier cas -

On suppose que \(B \) est de la forme :

\[
Bu = \mathcal{B}(u, \ldots, u)
\]

où \(\mathcal{B} \) est un opérateur \(p \)-linéaire borné :

\[
\|\mathcal{B}(u_1, \ldots, u_p)\| \leq \beta \|u_1\| \ldots \|u_p\|
\]

Dans ces conditions, le problème B4 possède une solution si

\[
\|\mathcal{J}f\| < \frac{1}{p} \left(\frac{1}{p \alpha \beta} \right)^{\frac{1}{p-1}}
\]

130
2°) Deuxième cas -
On suppose que B est un opérateur quadratique dérivant d'un opérateur bilinéaire $A : Bu = A(u, v)$ avec :

1) $\|A(u, v)\| \leq \beta (\|u\| \cdot \|v\|)$

ii) $A(u, v) \langle v \rangle \geq 0$ (coéprativité).

Dans ces conditions, le problème B_4 admet une solution si $\|f\| \leq \frac{1}{\beta^2}.$

3°) Troisième cas -
On suppose que B est un opérateur monotone :

$\langle Bu - Bv | u - v \rangle \geq 0.$

Dans ces conditions, le problème B_4 admet une solution unique si satisfait à l'hypothèse supplémentaire suivante :

$\langle Bu | u \rangle \geq \beta \|u\|^{\lambda + 1}$

où β et λ sont des nombres réels strictement positifs (>0).

Nous allons montrer que l'on peut améliorer ce résultat (il suffit de prendre $\beta = 0$), par la méthode de Galerkine.

Remarque -
Si la forme $A(u, v)$ est hermitienne, alors la solution u admet une M^∞-dérivée dans l'espace $W^\infty(0, \infty ; H)$:

$u \in W^\infty(0, \infty ; H)$

V - EXISTENCE PAR LA MÉTHODE DE GALERKINE -
Nous supposons que l'espace $C(\mathcal{F} ; M^\infty, V)$ est séparable. On peut, par ailleurs, enlever facilement cette hypothèse restrictive (cf. la remarque finale du paragraphe B3, VI).

Utilisons la méthode de Galerkine (approximation par projection).

1°) Définition des solutions approchées -
Soit $\{\psi_i\}$ une base de $C(\mathcal{F} ; M^\infty, V)$ \cap $W^\infty(0, \infty ; V).$ Nous définissons la solution approchée par :

$u_m(t) = \sum_{i=1}^{m} \omega_i \psi_i(t),$

où les ω_i, dépendant en fait de m, sont assujettis à vérifier le système algébrique non linéaire suivant :

$\mathcal{M}_m(t) \left\{ \langle u'_m(t) | \psi_i(t) \rangle + a \left(u_m(t), \psi_i(t) \right) + \langle Bu_m(t) | \psi_i(t) \rangle \right\} = \mathcal{M}_m(t) \langle f(t) | \psi_i(t) \rangle$
2°) Existence des solutions approchées -

Ce système algébrique n'est autre qu'une équation opérationnelle algébrique dans \mathbb{R}^m. Or \mathbb{R}^m est un espace de Montel, tout opérateur borné est donc compact. D'après le principe de LERAY-SCHAUDER [1], l'existence d'une solution est prouvée si l'on arrive à obtenir une majoration a priori des u_m.

3°) Majoration a priori -

La majoration a priori s'obtient à partir de l'égalité de l'énergie suivante, déduite de l'équation (†):

$$\mathcal{M}_a \left\{ u'_m(t) | u_m(t) > + a \left(u_m(t), u_m(t) \right) + < B u_m(t) | u_m(t) > \right\} = \mathcal{M} < f(t) | u_m(t) >$$

Utilisant la propriété conservative de la \mathcal{M}_a-dérivation, la propriété coopérative de l'opérateur B et la coercivité de la forme $a(u, v)$, nous obtenons :

$$\alpha \| u_m \|^2 \leq \| f \| \cdot \| u_m \| .$$

D'où :

$$\| u_m \| \leq \frac{\| f \|}{\alpha} .$$

Comme l'opérateur B est borné de $\mathcal{M}_a^2(0, \infty; V)$ dans $\mathcal{M}_a^2(0, \infty; H)$, on obtient :

$$\| B u_m \| \leq C \| u_m \| .$$

4°) Convergence des solutions approchées -

Utilisant la faible compacité séquentielle de la boule unité de tout Banach réflexif, nous pouvons extraire, de la suite $\{ u_m \}$ une sous-suite $\{ u_n \}$ telle que :

$$u_n \rightarrow u \text{ faiblement dans } C \left(\mathcal{M}^2, V \right)$$

$$B u_n \rightarrow B \text{ faiblement dans } C \left(\mathcal{M}^2, H \right).$$

5°) Équation vérifiée par u et B -

Soit ϕ un élément quelconque de $C \left(f; \mathcal{M}_a^2, V \right) \cap W^4(0, \infty; V)$. On peut écrire :

$$\phi = \mathcal{M}_a^2 \lim_{q \rightarrow \infty} \phi_q , \text{ avec } \phi_q(t) = \sum_{j=1}^{q} \phi_j \psi_j(t).$$

Multiplions (†) par ϕ_q, et sommons en j de 1 à q ($q \leq n$), nous obtenons :

$$\mathcal{M}_a \left\{ u'_m \phi_q \right\} + a \left(u_m, \phi_q \right) + < B u_m | \phi_q > \right\} = \mathcal{M} < f | \phi_q > .$$

Faisons tendre m vers ∞, puis q vers ∞, nous obtenons :
(**) \[\mathcal{M} \left\{ <u|\Phi> + \alpha (u, \Phi) + <\mathcal{B}|\Phi> \right\} = \mathcal{M} <f|\Phi>. \]

6°) Solution du problème posé -

Pour démontrer que \(u \) est bien une solution, il nous reste à prouver que :

\[\mathcal{M} <\mathcal{B}|\Phi> = \mathcal{M} <Bu|\Phi>. \]

Nous allons utiliser la monotonicité de l'opérateur \(B \) et une technique due à G.J. Minty [3], utilisée déjà par J.L. Lions et W.A. Strauss [1] [2]. Posons :

\[\mathcal{E}_n = \mathcal{M} a(u_n - \Phi, u_n - \Phi) + \mathcal{M} <\mathcal{B}u_n - \mathcal{B}\Phi|u_n - \Phi>. \]

Comme \(u_n \) est solution de (*), on a :

\[\mathcal{E}_n = \mathcal{M} \left\{ <f|u_n - \Phi> - <\mathcal{B}\Phi|u_n - \Phi> - \alpha (\Phi, u_n - \Phi) - <u_n|\Phi> \right\}. \]

Quand \(n \) tend vers \(\infty \), \(\mathcal{E}_n \) tend vers :

\[\mathcal{E} = \mathcal{M} \left\{ <f|u - \Phi> - <\mathcal{B}\Phi|u - \Phi> - \alpha (\Phi, u - \Phi) + <u|\Phi> \right\}. \]

Or \(u \) vérifie (**). Donc :

\[\mathcal{S} = \mathcal{M} \left\{ a(u - \Phi, u - \Phi) \right\} + \mathcal{M} \left\{ <\mathcal{B}u - \mathcal{B}\Phi|u - \Phi> \right\}. \]

Ce résultat obtenu pour \(\phi \in \mathcal{C}(\mathcal{F}; W^1(V) \cap W^0(\infty; \infty; V) \) est encore valable pour \(\phi \in \mathcal{C}(\mathcal{F}; W^0(V)) \) par un raisonnement de densité.

La monotonicité de l'opérateur \(B \) montre que \(\mathcal{E}_n \) est un nombre positif. La limite \(\mathcal{S} \) ne peut donc être négative. Prenons alors \(\phi(t) = u(t) - x \Phi(t) \). Nous obtenons :

\[\mathcal{S} = \mathcal{M} \left\{ a(x \Phi(t), \Phi(t)) + <\mathcal{B}(u - x \Phi)|\Phi(t)> \right\} > 0. \]

Supposons \(\mathcal{S} > 0 \) et divisons par \(\mathcal{S} \). Alors :

\[\frac{\mathcal{S}}{\mathcal{S}} \mathcal{M} a(\Phi, \Phi) + \mathcal{M} <\mathcal{B}(u - x \Phi)|\Phi> > 0. \]

Faisons tendre \(\mathcal{S} \) vers \(0 \), on obtient :

\[\mathcal{M} <\mathcal{B}u|\Phi> > 0. \]

De même, si \(\mathcal{S} < 0 \), on a :

\[\frac{\mathcal{S}}{\mathcal{S}} \mathcal{M} a(\Phi, \Phi) + \mathcal{M} <\mathcal{B}(u - x \Phi)|\Phi> < 0. \]

Faisons tendre \(\mathcal{S} \) vers \(0 \) :

\[\mathcal{M} <\mathcal{B}u|\Phi> < 0. \]

Donc :

\[\mathcal{M} <\mathcal{B}|\Psi> = \mathcal{M} <Bu|\Psi>. \]
7°) Puisqu'il y a unicité de la solution, tous les points d'accumulation de la suite \(\{u_n\} \) coïncident, donc la suite \(\{u_n\} \) tend elle-même vers la solution \(u \) (on n'a pas à extraire une sous-suite).

VI - REMARQUE IMPORTANTE -

Introduisons l'antidual \(V' \) de \(V \), et reprenons tous les calculs. Nous constatons que la plupart des résultats précédents restent valables en élargissant légèrement les hypothèses.

Plus particulièrement et plus précisément, nous pouvons démontrer par exemple le théorème suivant :

Théorème -

On suppose que :

(a) \(f \in \mathcal{S} \left(0, \infty ; V' \right) \)

(b) l'opérateur \(B \) est de la forme \(B u = \mathcal{B}(u, \ldots, u) \), où \(\mathcal{B} \) est un opérateur \(p \)-linéaire borné de \(\mathcal{M}^p \left(0, \infty ; V \right) \) dans \(\mathcal{M}^p \left(0, \infty ; V \right) \):

\[\| \mathcal{B}(u, \ldots, u_p) \|_p \leq \delta \| u_1 \| \cdots \| u_p \|_p. \]

Dans ces conditions, le problème \(B_4 \) possède une solution si :

\[\| f \|_p \leq \frac{p-1}{p} \alpha \left(\frac{\alpha}{\mathcal{P}_0} \right)^{p-1} \]

Ce théorème sera utilisé au chapitre \(B_7 \) (solution turbulente au sens faible du système de Navier-Stokes).
I - DONNEES DU PROBLEME -

1°) Donnees spatiales -

Soit \mathcal{H} un espace de Hilbert muni d'un produit scalaire $<.,.>$ et d'une norme $\| . \|$. On donne un operateur lineaire A de \mathcal{H} dans \mathcal{H} non necessairement 'borne', auto-adjoint et strictement positif ($A \geq \alpha I$, o\(\alpha > 0 \)).

2°) Donnees temporelles -

On designe par \mathbb{R}^+ la demi-droite des nombres reels positifs, par $\mathcal{C}(0, \infty ; \mathcal{H})$ l'espace des fonctions $t \rightarrow \varphi(t)$, définies sur \mathbb{R}^+, à valeurs dans \mathcal{H}, continues et bornées sur \mathbb{R}^+. L'espace $\mathcal{C}(0, \infty ; \mathcal{H})$ sera muni de la norme $\| \cdot \|_{\mathcal{C}(0, \infty ; \mathcal{H})} = \sup_{t \in \mathbb{R}^+} \| \varphi(t) \|$, $t \in \mathbb{R}^+$.

On donne une fonction $t \rightarrow \mathbf{f}(t)$, définie sur \mathbb{R}^+, à valeurs dans \mathcal{H}, continue, bornée et 1-quasi-stationnaire :

$$\mathbf{f} \in \mathcal{C}(0, \infty ; \mathcal{H}) \cap \mathcal{S}(0, \infty ; \mathcal{H})$$
On cherche une fonction $t \to u(t)$ ayant les propriétés suivantes :

i) $t \to u(t)$ est une application continue et bornée de \mathbb{R}^+ dans H ; autrement dit : $u \in \mathcal{C}(\mathbb{R}^+ ; H)$.

ii) $t \to u(t)$ est différentiable pour $0 < t < \infty$, et l'application $t \to u'(t)$ est continue pour $0 < t < \infty$.

iii) $u(t)$ appartient au domaine $D(A)$ pour $0 < t < \infty$, et l'application $t \to Au(t)$ est continue pour $0 < t < \infty$.

iv) la fonction $t \to u(t)$ est l-quaï-stationnaire ; autrement dit : $u \in \mathcal{C}^1(\mathbb{R}^+ ; H)$.

v) la fonction $t \to u(t)$ vérifie les relations suivantes :

$\left\{ \begin{array}{l} u'(t) + Au(t) = f(t), \text{ pour } 0 < t < \infty \\ u(0) = a \in H \end{array} \right.$

III - Théorème d'unicité -

Dans cette classe de fonctions, la solution du problème posé, si elle existe, est unique.

Démonstration -

Multiplions les deux membres de ($\#$) par $u(t)$:

$\langle u'(t) | u(t) \rangle + \langle Au(t) | u(t) \rangle = \langle f(t) | u(t) \rangle$

La positivité stricte de l'opérateur auto-adjoint A montre alors :

$$\frac{1}{2} \frac{d}{dt} \| u(t) \|^2 + \alpha \| u(t) \|^2 \leq \| f(t) \| \cdot \| u(t) \|$$

ou :

$$\frac{d}{dt} \| u(t) \| + \alpha \| u(t) \| \leq \| f(t) \|$$

De cette inégalité, on déduit :

$$\| u(t) \| \leq \| u(0) \| + \int_0^t \exp(-\alpha(t-s)) \| f(s) \| \, ds ,$$

ce qui montre que si $f(t)$ et $u(0)$ sont nuls, alors $u(t)$ est identiquement nul.
IV - LEMMES FONDAMENTAUX -

1°) L'opérateur $A = - A$ est le générateur infinitésimal d'un semi-groupe d'opérateurs contractants et fortement continus $G(t)$.

2°) Pour tout θ réel > 0, l'opérateur A^θ existe et est borné par $\frac{1}{\theta}$.

3°) Pour tout θ réel positif, l'opérateur $A^\theta G(t)$ est défini dans tout l'espace H, si $t > 0$; de plus cet opérateur est borné, et on a

$$\|A^\theta G(t)\| \leq \left\{ \begin{array}{ll}
\frac{(\frac{\theta}{\theta})^t}{t^\theta} & \text{pour } t \in \mathbb{R}^+
\end{array} \right.$$

$$\leq \frac{\theta}{t} e^{-\alpha t} \text{ pour } t > \frac{\theta}{\alpha}$$

4°) Pour $0 \leq \theta \leq 1$, on a :

$$\|(G(t) - I) A^{-\theta}\| \leq t^\theta$$

Corollaire du lemme 3 -

Si $0 \leq \theta < 1$, alors $\int_0^\infty \|A^\theta G(t)\| dt = K(\theta) < \infty$

Démonstration des lemmes :

1°) L'opérateur auto-adjoint strictement négatif $A = - A$ possède les propriétés suivantes :

i) A est fermé, de domaine $D(A)$ dense dans H,

ii) $\lambda I - A$ est inversible pour $\Re \lambda > - \alpha$,

iii) la norme de l'opérateur résolvant $R(\lambda, A) = (\lambda I - A)^{-1}$ vérifie l'inégalité :

$$\|R(\lambda, A)\| \leq \frac{1}{\Re \lambda + \alpha}, \text{ si } \Re \lambda > - \alpha$$

D'après le théorème de Hille-Yosida (cf. E. HILLE et R.S. PHILLIPS [1]), cet opérateur A est le générateur infinitésimal d'un semi-groupe d'opérateurs contractants et fortement continus $G(t)$:

$$\|G(t)\| \leq e^{-\alpha t}$$

2°) Utilisons la représentation spectrale de A (cf. F. RIESZ et Sz. NAGY [1]) :

$$A = \int_{-\alpha}^\infty \lambda dE_\lambda$$

où $\{E_\lambda\}$ est une décomposition de l'unité.

Par définition même de l'opérateur $A^{-\theta}$, on a :

$$A^{-\theta} = \int_{-\alpha}^\infty \lambda^{-\theta} dE_\lambda$$
Le domaine de cet opérateur est constitué des éléments \(f \) pour lesquels l'intégrale \(\int_{-\infty}^{\infty} |\lambda|^{-\theta} \ d\|E_{\lambda}f\|^2 \) converge. Pour ces fonctions \(f \), on a :
\[
\|A^{-\theta}f\|^2 = \int_{-\infty}^{\infty} |\lambda|^{-2\theta} \ d\|E_{\lambda}f\|^2 \leq \int_{-\infty}^{\infty} |\lambda|^{-2\theta} \ d\|E_{\lambda}f\|^2,
\]
Cette étude montre que :

i) le domaine de \(A^{-\theta} \) est l'espace \(H \)

ii) \(\|A^{-\theta}\| \leq \alpha^{-\theta} \).

3°) Le semi-groupe d'opérateurs \(G(t) \) engendré par \(A = -A \) admet la représentation spectrale suivante :
\[
G(t) = \int_{-\infty}^{\infty} e^{-\lambda t} \ dE_{\lambda}
\]
Par suite :
\[
A^{\theta}G(t) = \int_{-\infty}^{\infty} \lambda^\theta e^{-\lambda t} \ dE_{\lambda}
\]
Or, pour \(t > 0 \), on a :
\[
\sup_{\lambda \geq 0} \lambda^\theta e^{-\lambda t} = \left(\frac{\theta}{t^2} \right)^\theta
\]
D'autre part, pour \(t \) assez grand \((t \geq \theta \alpha) \), on a :
\[
\lambda^\theta e^{-\lambda t} \leq \alpha^\theta e^{-\lambda t} \quad \text{si} \quad \lambda > \alpha
\]
Cette étude montre que :

i) l'opérateur \(A^\theta G(t) \) est défini dans tout espace \(H \), si \(t > 0 \)

ii) on a :
\[
\|A^\theta G(t)\| \leq \left\{ \begin{array}{l}
\left(\frac{\theta}{e} \right)^\theta t^\theta \quad \text{pour} \quad t > 0 \\
\alpha^\theta e^{-\alpha t} \quad \text{pour} \quad t \geq \theta \alpha
\end{array} \right.
\]

4°) D'une façon analogue, si \(0 \leq \theta \leq 1 \), on a :
\[
\|A^\theta (G(t) - I)\| \leq \sup_{\lambda \geq 0} \lambda^{-\theta} \left(1 - e^{-\lambda t} \right) = \sup_{\lambda > e} \sup_{\mu > \theta} \mu^{-\theta} (1 - e^{-\mu})
\]
Or, pour \(\mu > 1 \), on a :
\[
\mu^{-\theta} (1 - e^{-\mu}) \leq \mu^{-\theta} \leq 1
\]
Les lemmes sont donc démontrés.

V - PROPRIÉTÉS DE LA SOLUTION

D'après le lemme 1, et puisque f est continue, les relations (*) ont pour conséquence la relation suivante (cf. par exemple R.S. PHILLIPS [2]) :

\[u(t) = G(t) \alpha + \int_0^t G(t-\delta) f(\delta) d\delta \]

Avant de voir si $u(t)$ donnée par (**) est effectivement la solution du problème posé, examinons les propriétés de $u(t)$ données par cette relation.

1°) D'après le lemme 2 et le corollaire du lemme 3, on a :

\[A^\theta u \in \mathcal{C}(0, \infty; H) \cap \mathcal{C}^1(f; \mathcal{W}^2, H) \]

quel que soit $\theta < 1$.

En particulier, la fonction $t \rightarrow A^\theta u(t)$ est 1-quasi-stationnaire si $\theta < 1$.

2°) Montrer que $t \rightarrow A^\theta u(t)$ est uniformément lipschitzien (d'ordre $\varepsilon < 1 - \theta$) sur \mathbb{R}^+, si $\theta < 1$. En effet :

\[A^\theta u(t+\delta) - A^\theta u(t) = \int_t^{t+\delta} \left(G(\delta) - I \right) A^\theta G(t-\delta) f(\delta) d\delta \]

D'où

\[\| A^\theta u(t+\delta) - A^\theta u(t) \| \leq \| \left(G(\delta) - I \right) A^\theta G(t-\delta) f(\delta) d\delta \| + \| \int_t^{t+\delta} A^\theta G(t-\delta) f(\delta) d\delta \| \]

D'après les lemmes 3 et 4 et le corollaire du lemme 3, nous obtenons :

\[\| A^\theta u(t+\delta) - A^\theta u(t) \| \leq K(\theta) \| f \|_{\mathcal{W}^2} \| \delta \|^{1-\theta} \| H^1 \| \]

VI - EXISTENCE DE LA SOLUTION

Nous allons établir le théorème suivant :

i) si la fonction $t \rightarrow f(t)$ est lipschitzienne d'ordre $\varepsilon > 0$, alors la solution du problème posé existe
ii) si la fonction $t \to f(t)$ est (localement) dérivable et si f' est un élément de $C(0, \infty; H)$, alors f et Au sont des éléments de $C(0, \infty; H)$.

iii) si, plus particulièrement, la fonction $t \to f'(t)$ est uniformément continue, alors les fonctions $t \to u'(t)$ et $t \to Au(t)$ sont 1-quasi-stationnaires.

Démonstration -

i) La fonction $t \to u(t)$ donnée par (**) est effectivement solution du problème posé si $t \to u(t)$ est différentiable, et si, pour chaque $t \in (0, \infty)$, $u(t)$ appartient au domaine $D(A)$ de l'opérateur A. Or on démontre (cf. T. Kato [1] par exemple) qu'il en est ainsi si la fonction $t \to f(t)$ est lipschitzienne d'ordre $\varepsilon > 0$.

ii) Si l'on suppose en plus que la fonction $t \to f(t)$ est (localement) dérivable et que f' est un élément de $C(0, \infty; H)$, alors on a (cf. R.S. Phillips [2]):

$$u'(t) = AG(t)A + \int_0^t G(\sigma)f'(t-\sigma)d\sigma + G(t)f(0).$$

Par suite, u' et Au sont des éléments de l'espace $C(0, \infty; H)$. Mais, même dans ces conditions, les fonctions $t \to u'(t)$ et $t \to Au(t)$ ne sont pas nécessairement 1-quasi-stationnaires, elles ne sont que scalairement quasi-stationnaires.

iii) Supposons maintenant que, plus particulièrement, la fonction $t \to f'(t)$ est uniformément continue. Alors, cette fonction est la M^2-dérivée de la fonction $t \to f(t)$. Par suite, la fonction $t \to u'(t)$ est aussi la M^2-dérivée de la fonction $t \to u(t)$, ce qui montre que u' est 1-quasi-stationnaire. Plus précisément :

$$u' \in C(u; M^2, H) \subset C^*(f; M^2, H).$$

On en déduit que $t \to Au(t)$ est aussi une fonction 1-quasi-stationnaire et que :

$$Au \in C^*(f; M^2, H).$$
Solutions fortes et quasi-stationnaires
de l'équations différentielles operationnelles non linéaires

I - Données du problème -

Les notations sont celles du chapitre B5.

1°) Données spatiales -

Soit H un espace de Hilbert, muni d'un produit scalaire $\langle \cdot, \cdot \rangle$ et d'une norme $\| \cdot \|$.

On donne un opérateur linéaire A de H, auto-adjoint et strictement positif ($A \succ \alpha I$, où $\alpha > 0$).

D'autre part, on donne un opérateur non-linéaire B, non borné en général, dérivant d'un opérateur p-linéaire \mathcal{B} par la formule :

$$ B^k = \mathcal{B}(\hat{h}, \ldots, \hat{h}). $$

L'opérateur B possède la propriété suivante : si \hat{h}_i appartient au domaine $D(\theta_i^A)$ de l'opérateur A^θ_i, $i = 1, 2, \ldots, p$, alors $\mathcal{B}(\hat{h}_1, \ldots, \hat{h}_p)$ est bien défini, avec :

$$ \| \mathcal{B}(\hat{h}_1, \ldots, \hat{h}_p) \| \leq \beta \| A^\theta_1 \hat{h}_1 \| \ldots \| A^\theta_p \hat{h}_p \| $$

où $0 \leq \theta_i \leq \Theta < 1$,

et où β est une constante strictement positive, indépendante des \hat{h}_i.

2°) Données temporelles -
On donne une fonction \(t \rightarrow f(t) \), définie sur \(\mathbb{R}^+ \), à valeurs dans \(H \), bornée, continue et \(\infty \)-quasi-stationnaire :

\[
f = C(o, \infty; H) \cap \mathcal{S}(o, \infty; H)
\]

On considérera l'espace vectoriel \(\mathcal{C}(f; \mathcal{M}^2, H) \) engendré par la fonction \(\infty \)-quasi-stationnaire \(f \), défini au chapitre A6.

L'espace vectoriel \(\mathcal{C}(f; \mathcal{M}^2, H) \cap C(o, \infty; H) \) sera muni de la norme \(\| \varphi \| = \sup_{t \in \mathbb{R}^+} \| \varphi(t) \| \), \(t \in \mathbb{R}^+ \).

Ainsi structuré, cet espace devient un espace de Banach.

II - POSITION DU PROBLÈME -

On cherche une fonction \(t \rightarrow u(t) \) ayant les propriétés suivantes :

i) \(t \rightarrow u(t) \) est une application continue et bornée de \(\mathbb{R}^+ \) dans \(H \); autrement dit :

\(u \in C(o, \infty; H) \)

ii) \(t \rightarrow u(t) \) est différentiable pour \(o < t < \infty \),

iii) pour chaque \(t \in (o, \infty) \), \(u(t) \) appartient au domaine \(\mathcal{D}(A) \)

iv) \(t \rightarrow A^\theta u(t) \) est continu pour \(0 < \theta < 1 \)

v) la fonction \(t \rightarrow u(t) \) est \(\infty \)-quasi-stationnaire; plus précisément :

\(u \in \mathcal{C}(f; \mathcal{M}^2, H) \)

vi) la fonction \(t \rightarrow u(t) \) vérifie les relations suivantes :

\[
\begin{cases}
 u'(t) + A u(t) = B u(t) + f(t), & 0 < t < \infty \\
 u(0) = a \in D(A)
\end{cases}
\]

III - THÉORÈME D'UNICITÉ -

Dans cette classe de fonctions, la solution du problème posé, si elle existe, est unique.

Démonstration -

Soient \(u \) et \(v \) deux solutions du problème. Posons

\(\omega(t) = u(t) - v(t) \)

Nous allons d'abord montrer que \(\omega(t) = 0 \) pour \(t \in [0, t_0] \) où \(t_0 > 0 \) est assez petit, mais non nul.
Pour simplifier le calcul, supposons que $\Theta_i = \Theta$ pour tout i. Posons

$$ M = \sup \left\{ ||A^\Theta u||, ||A^\Theta v|| \right\}. $$

D'après les résultats établis au chapitre B5, et avec les notations de ce chapitre, nous avons :

$$ A^\Theta w(t) = \int_0^t A^\Theta G(t-\lambda) [B\psi(\lambda) - Bu(\lambda)] d\lambda $$

et par suite :

$$ ||A^\Theta w(t)|| \leq \sigma \int_0^t (t-\lambda)^\Theta ||A^\Theta w(\lambda)|| d\lambda, $$

avec :

$$ \sigma = \sigma(M) \leq 1 $$

Prenons $t_0 = \left[\frac{1-\Theta}{2\sigma} \right]^{1-\Theta}$, et posons :

$$ m = \sup_{0 \leq t \leq t_0} ||A^\Theta w(t)|| $$

Nous obtenons :

$$ ||A^\Theta w(t)|| \leq \sigma^\Theta m \int_0^t (t-\lambda)^{-\Theta} d\lambda = \sigma^\Theta m \frac{t^{1-\Theta}}{1-\Theta}, $$

et par suite :

$$ m \leq \frac{m}{2}, $$

ce qui montre que $m = 0$.

Prenons alors t_0 comme instant initial, on montrera, par la même méthode, que $w(t) = 0$ pour $0 \leq t \leq 2 \cdot t_0$, et ainsi de suite. Par conséquent, $w(0) = 0$ pour $0 \leq t \leq n \cdot t_0$, par induction. Faisons tendre n vers ∞, et la proposition est ainsi démontrée.

IV - DEUX LEMMES -

1°) Lemme A -

Si la fonction $t \rightarrow g(t) = A^\Theta f(t)$ est continue, bornée sur \mathbb{R}^+ et est ∞-quasi-stationnaire, alors :

i) $f^H = A^\Theta f \in \mathcal{C}(0, \infty; H) \cap \mathcal{T}(g; M^2, H)$ s'il $\Theta < \infty$

ii) $Bf \in \mathcal{C}(0, \infty; H) \cap \mathcal{T}(g; M^2, H)$

La proposition (i) résulte du fait que l'opérateur A^Θ est un opérateur borné.
Nous définissons un opérateur \mathcal{A} qui est multilinéaire borné. Par suite, la proposition (ii) est démontrée.

2°) Lemme B -

Considérons la suite des nombres positifs $\{\lambda_n\}$ satisfaisant à "l'inégalité de récurrence" suivante:

$$\lambda_{n+1} \leq \lambda_n + (\lambda_n)^p.$$

Si le premier terme λ_0 est borné par $\frac{p-1}{p} \left(\frac{1}{p} \right)^{\frac{1}{p-1}}$, alors tous les termes de la suite sont bornés par un nombre S strictement inférieur à $\left(\frac{1}{p} \right)^{\frac{1}{p-1}}.$

$$\lambda_0 < \frac{p-1}{p} \left(\frac{1}{p} \right)^{\frac{1}{p-1}} \quad \Rightarrow \quad \lambda_n \leq S < \left(\frac{1}{p} \right)^{\frac{1}{p-1}}, \quad \forall n.$$

Démonstration -

Etudions la variation de la fonction

$$\phi (\lambda) = \lambda^p - \lambda + \lambda_0,$$ pour $\lambda > 0.$

On montre d'abord que $\phi (\lambda)$ admet un minimum pour

$$\lambda = \lambda_{\text{min}} = \left(\frac{1}{p} \right)^{\frac{1}{p-1}}.$$

Par conséquent, la fonction ϕ admet des zéros strictement positifs si et seulement si:

$$\phi (\lambda_{\text{min}}) = \left(\frac{1}{p} \right)^{\frac{1}{p-1}} \frac{p-1}{p} \frac{1}{p} + \lambda_0 < 0.$$

Soit S le plus petit zéro positif de ϕ. Evidemment:

$$S < \lambda_{\text{min}}.$$

Or:

$$\lambda_0 - S = -S^p < 0.$$

L'inégalité $\lambda_{n+1} - S \leq (\lambda_n)^p - S^p$ permet de montrer, par récurrence que $\lambda_n - S < 0$, quel que soit n.

V - **Theoreme d'Existence** -

Posons:

$$K = \sup_{\theta} \int_0^\infty \| A^\theta G(t) \| \, dt, \quad 0 \leq \theta \leq \theta < 1.$$

144
Théorème -

Si les conditions suivantes sont réalisées :

i) \(b \mapsto f(b) \) est uniformément lipschitzienne d'ordre \(\xi > 0 \)

ii) \(M_0 = \| A^\theta u \| + K \| f \| < \frac{p-1}{p} \left(\frac{1}{p \kappa p} \right) \), quel que soit \(\theta < 1 \).

Alors, la solution \(t \mapsto u(t) \) du problème posé existe.

Démonstration -

Toute solution du système \((*)\) doit être une solution de l'équation intégrale opérationnelle non linéaire suivante :

\[
(*) \quad u(t) = G(t,a) + \int_0^t G(t,\lambda) f(\lambda) d\lambda + \int_0^t G(t,\lambda) B u(\lambda) d\lambda
\]

Nous allons d'abord construire une solution de \((*)\) par la méthode des approximations successives.

Posons :

\[
\begin{align*}
\mathcal{U}_0(t) &= G(t,a) + \int_0^t G(t,\lambda) f(\lambda) d\lambda \\
\mathcal{U}_{n+1}(t) &= \mathcal{U}_n(t) + \int_0^t G(t,\lambda) B \mathcal{U}_n(\lambda) d\lambda, \quad n = 0, 1, 2, ...
\end{align*}
\]

1°) D'après les résultats du chapitre B5, la fonction \(t \mapsto A^\theta \mathcal{U}_0(t) \) est bornée, continue et \(\infty \)-quasi-stationnaire. Plus précisément

\[
A^\theta \mathcal{U}_0 \in \mathcal{C}(f; M_0^2, H) \cap \mathcal{C}(0; \infty; H) \quad \text{si} \ \theta < 1
\]

D'après le lemme A, \(B \mathcal{U}_0 \) est bien défini et appartient à l'espace :

\[
\mathcal{C}(f; M_0^2, H) \cap \mathcal{C}(0, \infty; H),
\]

de plus

\[
\| B \mathcal{U}_0 \| \leq \beta M_0^p.
\]

Par suite, \(\mathcal{U}_n(t) \) peut donc se construire, et

\[
A^\theta \mathcal{U}_n(t) = A^\theta \mathcal{U}_0(t) + \int_0^t A^\theta G(t,\lambda) B \mathcal{U}_n(\lambda) d\lambda, \quad \theta < 1.
\]

Cette relation montre que la fonction \(t \mapsto A^\theta \mathcal{U}_n(t) \) est continue, bornée, \(\infty \)-quasi-stationnaire; plus précisément :

\[
A^\theta \mathcal{U}_n \in \mathcal{C}(f; M_0^2, H) \cap \mathcal{C}(0, \infty; H)
\]
et
$$\| A^\theta u_i \| \leq M_o + \beta M^p_o$$

Par récurrence, on montrera que, pour \(\Theta < 1 \):

i) tous les \(A^\theta u_n(t) \) existent, quel que soit \(n \)

ii) la fonction \(t \rightarrow A^\theta u_n(t) \) est continue, bornée, \(\infty \)-quasi-stationnaire :

\[A^\theta u_n \in \mathcal{C}(\mathbb{R}^2,\mathcal{M},\mathbb{H}) \cap \mathcal{C}(0,\infty;\mathbb{H}) \]

iii) \(\| A^\theta u_n \| \leq M_n \), les nombres \(M_n \) vérifiant l'inégalité de récurrence suivante :

\[M_n \leq M \left(\frac{1}{pK\beta} \right)^{\frac{1}{p-1}} \]

Or, par hypothèse, \(M_n \leq A^\theta u_n(t) \); on en déduit, d'après le lemme B, que :

\[M_n \leq M \left(\frac{1}{pK\beta} \right)^{\frac{1}{p-1}} \]

2°) Montrons que les fonctions \(t \rightarrow A^\theta u_n(t) \) convergent dans l'espace \(\mathcal{C}(\mathbb{R}^2,\mathcal{M},\mathbb{H}) \cap \mathcal{C}(0,\infty;\mathbb{H}) \).

Posons :

\[w_{n+1}(t) = u_{n+1}(t) - u_n(t) , \]

nous avons :

\[A^\theta w_{n+1}(t) = A^\theta u_{n+1}(t) - A^\theta u_n(t) \]

\[= \int_{\theta_n}^t A^\theta G(t-\lambda) [B\lambda u_n(\lambda) - B\lambda u_{n-1}(\lambda)] d\lambda \]

D'où

\[\| A^\theta w_{n+1} \| \leq K\beta M_{n-1}^p \| A^\theta w_n \| \]

Posons :

\[a_n = \sup_{\theta \in [0,\Theta]} \| A^\theta w_n \| , \quad 0 < \Theta < \Theta < 1 \]

on obtient :

\[a_{n+1} \leq (M)^p \beta \kappa a_n \]

146
Comme $p \beta M^{p-1} < 1$, la série $\{a_n\}$ est convergente, ce qui montre que la série $\|A^\theta u_n(t)\|$ converge uniformément sur \mathbb{R}^+. Par suite, la suite $u_n(t)$ converge fortement dans $C(0, \infty ; H) \cap C(f ; M^2, H)$ vers une limite $u(t)$.

Cette limite $t \rightarrow u(t)$ est donc continue, bornée et ∞-quasi-stationnaire.

3°) Les fonctions $t \rightarrow A^\theta u_n(t)$ convergent fortement dans $C(0, \infty ; H) \cap C(f ; M^2, H)$ vers une fonction qui doit être $t \rightarrow A^\theta u(t)$, à cause de la fermeture de l'opérateur A^θ.

La convergence dans $C(0, \infty ; H)$ du terme non-linéaire $t \rightarrow B u_n(t)$ vers $t \rightarrow B u(t)$ résulte de l'inégalité

$$\|B u - B u\| \leq \beta M^{p-1} \sum_{i=1}^p \|A^\theta u - A^\theta u\|.$$

Dans ces conditions, on vérifie facilement que la fonction $t \rightarrow u(t)$ vérifie l'équation intégrale opérationnelle non linéaire (*).

4°) Il nous reste à démontrer que la fonction $t \rightarrow u(t)$ est la solution du problème posé.

Comme $t \rightarrow f(t) + B u(t)$ est continue, la fonction $t \rightarrow A^\theta u(t)$ est uniformément lipschitzienne d'ordre $\epsilon > 0$, d'après le paragraphe B5, V. Par suite, la fonction $t \rightarrow B u(t)$ est aussi uniformément lipschitzienne.

Or, par hypothèse, la fonction $t \rightarrow f(t)$ est uniformément lipschitzienne. Par suite, la fonction $t \rightarrow f(t) + B u(t)$ est uniformément lipschitzienne.

Ce résultat suffit pour prouver que (cf. chapitre B5) :

i) la fonction $t \rightarrow A u(t)$ existe et est continue pour $0 < t < \infty$

ii) la fonction $t \rightarrow u'(t)$ existe et est continue pour $0 < t < \infty$

iii) le fonction $t \rightarrow u(t)$ vérifie les relations (*).

5°) Remarque -

Les fonctions $t \rightarrow B u(t)$ et $t \rightarrow A^\theta u(t)$, $\theta < 1$, sont des fonctions ∞-quasi-stationnaires. Mais rien ne prouve que les fonctions $t \rightarrow A u(t)$ et $t \rightarrow u'(t)$ le sont.
I - INTRODUCTION -

L'écoulement non permanent d'un fluide visqueux et incompressible à l'intérieur d'un domaine Ω de l'espace \mathbb{R}^3 est régi par le système d'équations aux dérivées partielles non linéaires suivant (système de Navier-Stokes) :

$$
\begin{align*}
\frac{\partial \mathbf{u}}{\partial t} - \nabla \cdot \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} + \frac{1}{\rho} \nabla p &= \mathbf{f} \\
\text{div } \mathbf{u} &= 0
\end{align*}
$$

où :

- $t \in \mathbb{R}^+$ désigne le temps,
- $\mathbf{x} = \{x_i, i = 1, 2, 3\} \in \Omega$ représente les coordonnées spatiales,
- $\mathbf{u}(t, \mathbf{x}) = \{u_i(t, \mathbf{x})\}$ désigne le vecteur vitesse,
- $p(t, \mathbf{x})$ est la pression,
- $\rho > 0$ est la masse spécifique du fluide (donnée),
- $\chi > 0$ est le coefficient cinétique de viscosité (donné),
- $\mathbf{f}(t, \mathbf{x}) = \{f_i(t, \mathbf{x})\}$ désigne la force massique extérieure (donnée).

Le vecteur vitesse $\mathbf{u}(t, \mathbf{x})$ vérifie en outre les conditions suivantes

Condition initiale : $\mathbf{u}(0, \mathbf{x}) = \mathbf{u}_0(\mathbf{x})$ donné.
Condition aux limites :
$$\mathcal{U}(t, \vec{x})|_{\partial \Omega} = \vec{z}(t, \vec{x})$$ donné, \(\partial \Omega\) désignant le bord de \(\Omega\) (le vecteur \(\vec{z}(t, \vec{x})\) est supposé à flux conservatif ; autrement dit \(\iint_{\partial \Omega} \vec{z} \cdot d\vec{S} = 0\), \(d\vec{S}\) désignant l'élément de surface orienté du bord \(\partial \Omega\).

On désire chercher une solution "turbulente" du problème. D'après J. BASS [44], [51], [61], une fonction \(\mathcal{U}(t, \vec{x})\) est dite "solution turbulente" du système de Navier-Stokes si :

1°) Elle vérifie le système de Navier-Stokes (au sens classique),

2°) Sa moyenne temporelle existe :

$$\mathcal{M}_0 \mathcal{U}(t, \vec{x}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \mathcal{U}(t, \vec{x}) \, dt = \overline{m}(\vec{x}).$$

3°) Son tenseur de corrélation spatio-temporelle (défini par les moyennes temporelles) :

$$\gamma_{ij}(\vec{h}, \vec{x}, \vec{z}) = \mathcal{M}_0 \left[u_i(t+\vec{h}, \vec{x}+\vec{z}) - m_i(\vec{x}+\vec{z}) \right] \left[u_j(t, \vec{x}) - m_j(\vec{x}) \right]$$

i) existe pour tout triplet \(\{ \vec{h}; \vec{x}, \vec{z} \}\)

ii) est continu pour tout \(\vec{h}\) (\(\vec{x}\) et \(\vec{z}\) fixés)

iii) tend vers 0 quand \(h \to \infty\) (\(\vec{x}\) et \(\vec{z}\) fixés)

iv) \(\gamma_{ii}(0; \vec{x}, \vec{z}, \vec{z}) \neq 0\).

En ce qui concerne le comportement des corrélations en fonction de \(\vec{z}\), on ne peut rien introduire de net dans l'hypothèse. On doit cependant s'attendre à ce que, si le domaine \(\Omega\) n'est pas borné, \(\gamma_{ij}\) tend vers 0 quand \(|\vec{z}| \to \infty\) dans une direction admissible. Cette condition est d'une nature tout à fait différente de la condition fondamentale (iii) et devra être vérifiée après coup.

Nous considérerons le système de Navier-Stokes comme une équation différentielle opérationnelle à valeurs dans un espace de Hilbert, et nous donnerons une autre définition de "solutions turbulentes" qui généralise et précise celle de J. BASS.

Nous allons d'abord introduire des espaces fonctionnels qui nous seront utiles. Toutes les fonctions utilisées sont réelles.

II - ESPACES DE SOBOLEV -

(cf. S.L. SOBOLEV [1], [2], O.A. LADYZHENSKAYA [1], J.L. LIONS [1], E. GAGLIARDO [1], [2], L. NIRENBERG [1, 2], N. DUNFORD et J.T. SCHWARTZ [2]).

1°) Définitions -

a) Espaces $W_p^l(\Omega)$ -

Soit un ouvert Ω quelconque de \mathbb{R}^n. On désigne par $W_p^l(\Omega)$, (l entier > 0, $p > 1$), l'espace des (classes de) fonctions définies dans Ω, dont les dérivées (au sens des distributions) d'ordre ξ^l sont de puissance sommable. On le munit de la norme usuelle :

$$\|\varphi\|_{l,p} = \left\{ \int_\Omega \left(\sum_{|\xi| \leq \ell} |D^\xi \varphi(x)|^p \, dx \right)^{1/p} \right\}$$

avec

$$D^\alpha = \frac{\partial^{|\alpha|}}{\partial x_1^{\alpha_1} \cdots \partial x_n^{\alpha_n}} ; \quad |\alpha| = \alpha_1 + \cdots + \alpha_n$$

On pose

$$W_0^0(\Omega) = L^p(\Omega)$$

$$W_0^l(\Omega) = H^l(\Omega)$$

Pour désigner l'espace $W_0^0(\Omega)$, on utilise de préférence la notation $H^0(\Omega)$, à la notation $L^p(\Omega)$.

b) Espace $\mathcal{D}_p^l(\Omega)$ -

Soit $\mathcal{D}(\Omega)$ l'espace des fonctions indéfiniment différentiables à support compact dans Ω.

On désigne par $\mathcal{D}_p^l(\Omega)$ la fermeture de $\mathcal{D}(\Omega)$ dans $W_0^l(\Omega)$.

Les fonctions de $\mathcal{D}_p^l(\Omega)$ sont "nulles" au bord de Ω (pour le sens précis à donner à cette assertion, cf. J. DENY et J.L. LIONS [1]).

2°) Propriétés -

L'espace $W_p^l(\Omega)$ est un espace de Banach séparable, et l'espace $W_p^l(\Omega)$ est un sous-espace fermé de $W_0^l(\Omega)$.

L'espace $H^l(\Omega)$ est un espace de Hilbert.

3°) Théorème de Sobolev sur l'immersion -

Soit $1 < p < q < \infty$, et soit l un entier > 0, avec

$$\frac{1}{q} > \frac{1}{p} - \frac{l}{n}$$
Alors, pour tout entier $\nu \geq \ell$, on a :

$$W^{(\nu)}(\Omega) \subset W^{(\nu-\ell)}(\Omega) \quad \text{si l'ouvert } \Omega \text{ est "suffisamment régulier"}$$

$$W^{(\nu)}_{\ell}(\Omega) \subset W^{(\nu-\ell)}_{\ell}(\Omega) \quad \text{pour un ouvert } \Omega \text{ quelconque.}$$

Les inclusions précédentes sont algébriques et topologiques ; en ce qui concerne la régularité de Ω, cf. les auteurs cités.

Cas particulier -

Prenons $p = 2$, $\ell = 1$, $n = 3$ (bidimensionnel). Alors

$$H^0(\Omega) \subset W^{(\nu-1)}_{\ell}(\Omega)$$

D'où, plus particulièrement :

$$H^1(\Omega) \subset L^2(\Omega), \quad \text{et } H^2(\Omega) \subset W^4_{\ell}(\Omega)$$

4°) Cas des fonctions vectorielles -

Si X est l'un des espaces fonctionnels précédemment définis, on pose :

$$X = X^\nu.$$

Les deux espaces fonctionnels les plus utilisés sont

$$H^0(\Omega) \equiv L^2(\Omega) \quad \text{et} \quad H^1(\Omega) \quad \text{(espaces de l'énergie).}$$

Le produit scalaire dans $H^0(\Omega)$ sera noté par $\langle \cdot | \cdot \rangle$ et la norme par $\| \cdot \|$

$$\langle u | v \rangle = \int_{\Omega} \overline{u}(x) \cdot \overline{v}(x) \, dx$$

(où $\overline{u} \cdot \overline{v}$ est le produit scalaire ordinaire dans \mathbb{R}^n) et

$$\|u\|^2 = \langle u | u \rangle.$$

Le produit scalaire dans $H^1(\Omega)$ sera noté par $\langle \langle \cdot | \cdot \rangle \|$ et la norme par $\|\|$. Ainsi

$$\langle \langle u | v \rangle \rangle = \int_{\Omega} \left\{ \overline{u}(x) \cdot \overline{v}(x) + \sum_{i=1}^{n} \overline{\nabla u_i}(x) \cdot \overline{\nabla v_i}(x) \right\} \, dx$$

et

$$\|u\| = \langle \langle u | u \rangle \rangle.$$

Remarque -

Pour u, v dans $H^1(\Omega)$, posons :

$$\langle \langle u | v \rangle \rangle = \int_{\Omega} \sum_{i=1}^{n} \left\{ \overline{\nabla u_i}(x) \cdot \overline{\nabla v_i}(x) \right\} \, dx$$

et

$$\|u\| = \langle \langle u | u \rangle \rangle^{1/2}.$$
Nous définissons ainsi une norme sur $H^1(\Omega)$, mais qui n'est pas nécessairement équivalente à $\|u\|$ Cependant, si Ω est un ouvert d'épaisseur bornée dans une direction, les normes $\|u\|$ et $(\langle u \rangle)$ sont équivalentes (cf. J.L. Lions [1], O.A. Ladyzhenskaya [1]).

III - DECOMPOSITION DE L'ESPACE $H^0(\Omega)$ -

1°) Définitions -

a) On désigne par $\Sigma(\Omega)$ l'espace des vecteurs solénoïdaux indéfiniment différentiables à support compact dans Ω.

$$\left\{ \bar{\mathbf{u}}(\mathbf{x}) \in \mathcal{D}(\Omega) \text{ et } \operatorname{div} \bar{\mathbf{u}} = 0 \right\}$$

b) On désigne par $\Sigma^0(\Omega)$ l'adhérence de $\Sigma(\Omega)$ dans l'espace $H^0(\Omega)$.

c) On désigne par $\mathcal{J}(\Omega)$ le sous-espace des vecteurs irrotationnels de $H^0(\Omega)$. Autrement dit, $\mathcal{J}(\Omega)$ est l'ensemble des vecteurs de la forme $\operatorname{grad} \varphi$, où φ est une fonction univalente dans Ω, localement de carré sommable et ayant des dérivées premières dans $H^0(\Omega)$.

2°) Théorème de H. Weyl [1] -

Les variétés $\mathcal{J}(\Omega)$ et $\Sigma^0(\Omega)$ sont orthogonales et complémentaires dans $H^0(\Omega)$:

$$H^0(\Omega) = \mathcal{J}(\Omega) \oplus \Sigma^0(\Omega).$$

On pourra trouver la démonstration de ce théorème soit dans H. Weyl [1], soit dans O.A. Ladyzhenskaya [1].

On désignera par P l'opérateur qui projette orthogonalement $H^0(\Omega)$ sur $\mathcal{J}(\Omega)$.

IV - PROLONGEMENT DE L'OPÉRATEUR DU LAPLACE -

1°) Etude du laplacien Δ -

Considérons l'opérateur de Laplace Δ défini sur $\Sigma(\Omega)$. D'après la formule de Stokes-Ostrogradski, on a :

$$\int_{\Omega} \Delta \mathbf{u}(\mathbf{x}) \cdot \mathbf{v}(\mathbf{x}) \, d\mathbf{x} = -\int_{\Omega} \sum_{i=1}^{3} \left(\operatorname{grad} u_i \cdot \operatorname{grad} v_i \right) \, d\mathbf{x}$$

Dans l'espace $\Sigma^0(\Omega)$, l'opérateur Δ est donc (compte tenu des conditions aux limites) :

i) symétrique : $\langle \Delta u \mid v \rangle = \langle u \mid \Delta v \rangle$

ii) négatif au sens large : $\langle \Delta u \mid u \rangle \leq 0$

Le domaine $\mathcal{D}(\Delta)$ de l'opérateur Δ étant dense dans $\Sigma^0(\Omega)$, on peut définir son adjoint Δ^*. Nous avons $\Delta \subset \Delta^*$, et Δ n'est pas un opérateur auto-adjoint.
2°) Prolongement du laplacien Δ -

Dans $\Sigma^0(\Omega)$, l'opérateur $T = I - \Delta$, défini sur $\Sigma(\Omega)$ est :

i) symétrique

ii) borné inférieurement par 1, car :

$$\langle Tu|u \rangle = |u|^2 + \frac{2}{L} \sum_{i=1}^d |\text{grad} \ u_i|^2 \geq |u|^2$$

L'opérateur T n'est pas auto-adjoint ($T \subset T^*$). Introduisons dans le domaine $\Sigma(\Omega)$ de T le nouveau produit scalaire $\langle u|v \rangle = \langle Tu|v \rangle$. L'espace $\Sigma(\Omega)$ devient un espace préhilbertien avec ce nouveau produit scalaire. Son complété n'est autre que l'espace $\Sigma^1(\Omega)$. Le théorème de Friedrichs-Von Neumann (cf. N. DUNFORD et J.T. SCHWARTZ [2]) montre alors que :

L'opérateur T admet un prolongement auto-adjoint T^\dagger, borné supérieurement par 1. Le domaine $\mathcal{D}(T^\dagger)$ de T^\dagger est l'intersection de $\mathcal{D}(T^*)$ et de $\Sigma^1(\Omega)$.

Plus précisément (cf. M.G. KREIN [1]), on a :

$$\mathcal{D}(T^\dagger) = \Sigma^1(\Omega) \text{ et } |T^\dagger u| = \|u\|$$

Nous désignerons par A le prolongement auto-adjoint de $-\nabla \Delta$. Autrement dit, nous posons :

$$A = \nabla(T - I).$$

3°) Interprétation -

Soit Ω un domaine (ensemble ouvert connexe) borné de \mathbb{R}^3.

Considérons le problème suivant ("problème linéaire permanent") :

$$\begin{cases}
-\nabla \Delta \vec{u} + \frac{1}{\rho} \text{grad} \ \rho = \vec{f} \\
\text{div} \ \vec{u} = 0 \\
\vec{u} \big|_{\partial \Omega} = 0
\end{cases}\quad (*)$$

On démontre que (cf. O.A. Ladyzhenskaya [1], L. CATTABRIGA [1]) :

à chaque fonction $\vec{f} \in \Sigma^0(\Omega)$ correspond une solution unique $u \in \Sigma^0(\Omega)$ donnée par

$$u_i(x) = \int \frac{G_{ij}(x,y) \vec{f}_j(y)}{\rho}$$

où $G_{ij}(y)$ est le tenseur de Green-Odqvist (cf. F.K.G. ODQVIST [1]).

Posons $u = K\vec{f}$, ce qui définit une application de $\Sigma^0(\Omega)$ dans $\Sigma^0(\Omega)$. Cette application est injective, car si $u = 0$, alors \vec{f} sera un vecteur
irrotationnel, donc \(J = 0 \), car \(J(\Omega) \) et \(\Sigma^0(\Omega) \) sont disjoints (décomposition orthogonale de \(H^0(\Omega) \)). Soit \(\mathcal{G} \) l'ensemble des solutions de (\(\ast \)) : \(\mathcal{G} = K \Sigma^0(\Omega) \). L'opérateur \(K \) applique bijectivement \(\Sigma^0(\Omega) \) dans \(\mathcal{G} \). Soit \(K^{-1} \) la bijection réciproque de \(K \). Le domaine de définition de \(K^{-1} \) est \(\mathcal{G} \).

On démontre que (cf. O.A. LADYZHEISKAYA [1], C. FOIAS [1]) :

1) l'opérateur \(K^{-1} \) est fermé et symétrique. Comme son "range" est l'espace entier \(\Sigma^0(\Omega) \), cet opérateur est donc auto-adjoint.

2) l'opérateur auto-adjoint \(K^{-1} \) n'est autre que l'opérateur \(A \) défini précédemment (paragraphe IV 2°).

En résumé, dans \(\Sigma^0(\Omega) \), \(\ast \) est équivalent à l'équation opérationnelle suivante :

\[
A \mathbf{u} = f
\]

4°) Étude des puissances fractionnaires de \(A \).

Dans tout ce qui suit, on suppose que \(\Omega \) est un domaine borné ayant un bord \(\partial \Omega \) "assez régulier" (par exemple \(\partial \Omega \) est de classe \(C^3 \), c'est-à-dire \(\partial \Omega \) est une variété 3 fois différentiable ; \(\Omega \) étant d'un seul côté de \(\partial \Omega \).

D'après M.G. KREIN [1], on a :

\[
D(A^{\frac{1}{2}}) \subset \dot{H}^1(\Omega).
\]

Utilisant la théorie des potentiels hydrodynamiques de F.K.G. ODQVIST, on montre (cf. O.A. LADYZHEISKAYA [1], L. CATTABRIGA [1], C. FOIAS [1]) :

\[
D(A) \subset H^2(\Omega)
\]

Le théorème de Sobolev sur l'immersion donne alors :

\[
D(A^{\frac{1}{2}}) \subset L_6(\Omega)
\]

\[
D(A) \subset \mathcal{W}_6^1(\Omega)
\]

Utilisant la théorie de l'interpolation (cf. J.L. LIONS [2], [3]), on peut alors démontrer les résultats suivants :

\[
\begin{cases}
D(A^\rho) \subset L_6^{\frac{3}{3-4\rho}} \quad (0 \leq \rho \leq \frac{1}{2}) \\
D(A^{\frac{1}{2}+\rho}) \subset \mathcal{W}_6^{1,4}\frac{3}{3-4\rho} \quad (0 \leq \rho \leq \frac{1}{2})
\end{cases}
\]

La démonstration se trouve, par exemple, dans C. FOIAS [1].

V - ÉTUDE D'UN OPÉRATEUR NON LINEAIRE

Considérons dans \(\Sigma^0(\Omega) \) l'opérateur bilinéaire suivant :

\[
\mathcal{B}(\mathbf{u}, \mathbf{v}) = \mathcal{H}[\mathbf{u} \cdot \text{grad} \mathbf{v}]
\]

154
 où P désigne l'opérateur qui projette $H^0(\Omega)$ sur $\Sigma^0(\Omega)$.

1°) Première propriété -

Soient θ et φ deux nombres tels que :

$$\frac{1}{4} \leq \theta \leq \frac{1}{2} ; \quad \frac{3}{4} \leq \varphi \leq 1 ; \quad \theta + \varphi = \frac{5}{4}.$$

Si $u \in D(A^\theta)$ et $v \in D(A^\varphi)$, alors $P(u, v) \in \Sigma^0(\Omega)$ est bien défini, et

$$|P(u, v)| \leq \beta |A^{\theta} u| |A^{\varphi} v|.$$

Démonstration -

Utilisant l'inégalité de Hölder $\left(\frac{1}{p} + \frac{1}{q} = 1 \right)$, nous obtenons :

$$|P(u, v)| \leq \|u\|_{L^p} \cdot \|\text{grad } v\|_{L^q}$$

$$\leq \beta |A^{\frac{\theta - 1}{2}} u| |A^{\frac{\varphi - 3}{4}} v|.$$

Il suffit, ensuite, de poser

$$\theta = \frac{3(p - 1)}{2p} \quad \text{et} \quad \varphi = \frac{5q - 3}{4q}.$$

2°) Deuxième propriété -

L'opérateur $A^{1/4} P_0 (u, v)$ peut être prolongé dans $D(A^{1/2})$ et

$$|A^{1/4} P_0 (u, v)| \leq \gamma |A^{1/2} u| |A^{1/2} v|.$$

Démonstration -

Pour u et v appartenant à $D(A)$, posons :

$$y = A^{1/2} P_0 (u, v) \quad \text{ou} \quad P_0 (u, v) = A^{1/2} y.$$

Multiplions les deux membres par y :

$$<A^{1/2} y | y> = <P_0 (u, v) | y>$$

ou :

$$|A^{1/2} y|^2 \leq \int_{\Omega} |(\Omega(x) \cdot \text{grad } d) \tilde{v}(x) \cdot \tilde{y}(x)| \, dx.$$

D'après l'inégalité de Hölder :

$$|A^{1/2} y|^2 \leq \|u\|_{L^2} \cdot \|\text{grad } v\|_{L^2} \cdot \|y\|_{L^2}$$

$$\leq \gamma |A^{1/2} u| \cdot |A^{1/2} v| \cdot |A^{1/2} y|.$$
(d'après les propriétés des puissances fractionnaires de A).

Par suite :

$$|A^{1/4}u| = |A^{-1/4}B(u, v)| \leq \gamma |A^{1/4}u| |A^{1/4}v|, \quad u, v \in D(A).$$

Comme $D(A)$ est dense dans H^0, et par conséquent dans $D(A^{1/2})$, l'opérateur $A^{-1/4}B(u, v)$ peut donc être prolongé par continuité pour tout couple $\{u \in D(A^{1/2}), v \in D(A^{1/2})\}$, et la relation précédente est valable pour un tel couple.

VI - APPLICATION AU SYSTEME DE NAVIER-STOKES

Considérons le problème envisagé au paragraphe I : Ω étant un domaine borné de classe C^3, on cherche $\bar{u}(t, \bar{x})$ vérifiant :

$$\begin{cases}
\frac{\partial \bar{u}}{\partial t} - \nabla \Delta \bar{u} + (\bar{u} \cdot \nabla) \bar{u} + \nabla p = f \\
\text{div} \bar{u} = 0 \\
\bar{u}(0, \bar{x}) = \bar{a}(\bar{x})
\end{cases}$$

dans Ω.

sur $\Omega : \bar{u}(t, \bar{x}) = \bar{a}(t, \bar{x})$ avec $\int_{\partial \Omega} \bar{u} \cdot d\bar{x} = 0$.

1°) Cas où $\bar{a}(t, \bar{x}) = 0$

Nous envisageons les deux problèmes suivants :

a) Problème fort -

On donne une fonction $t \rightarrow f(t)$, définie sur R^+, à valeurs dans $L^\infty(\Omega)$, bornée, continue et ∞-pseudo-aléatoire, et un élément a de $D(A)$.

On cherche une fonction $t \rightarrow u(t)$, définie sur R^+, à valeurs dans $L^\infty(\Omega)$, continue, bornée, ∞-pseudo-aléatoire, et vérifiant dans $L^\infty(\Omega)$ et sur R^+ l'équation différentielle opérationnelle non linéaire suivante :

$$\begin{cases}
\frac{du}{dt} + Au + Bu = f \\
u(0) = a \in D(A)
\end{cases}, \quad \text{avec } Bu = B(u, u)
$$

où $\frac{du}{dt}$ désigne la dérivée ordinaire de u.

Une telle fonction $u(t)$ sera appelée solution turbulente du système de Navier-Stokes (cette définition précise et généralise, dans un certain sens, celle de J. BASS).
Théorème -

Si les conditions suivantes sont réalisées :

i) \(t \rightarrow f(t) \) est uniformément lipschitzienne d'ordre \(\alpha > 0 \)

ii) \(A^{\alpha} a + K |f(t)| < \frac{1}{\alpha^\beta} \), quel que soit \(\theta < \frac{3}{4} \) (où \(\beta \) est la constante figurée au paragraphe V 1°), et où

\[K = \sup_{\theta \leq \beta} \int_{\theta}^{\infty} |A^{\alpha} e^{-At}| \, dt. \]

Alors, la solution \(u \) du problème posé existe.

En effet, ce problème est un cas particulier du problème traité au chapitre B6.

b) Problème faible -

Le problème faible que nous allons poser est analogue à celui du chapitre B4.

\(H \) sera l'espace \(L^p(\Omega) \), muni de sa topologie habituelle; \(V \) sera l'espace \(L^q(\Omega) = D(\Sigma^{\alpha} \mathbb{H}), \) muni du produit scalaire

\[\langle u, v \rangle = \langle A^{\alpha} u, A^{\alpha} v \rangle. \]

Au chapitre B4, nous avons supposé que \(B \) est un opérateur borné de \(\mathcal{M}_0(\sigma, \infty; \mathbb{H}) \) dans \(\mathcal{M}_0(\sigma, \infty; H). \) Ici, l'opérateur \(B \) ne vérifie pas cette hypothèse; cependant, l'opérateur \(A^{\alpha/2} B \) peut être prolongé dans \(\Sigma^\alpha(\Omega) \) en un opérateur borné de \(\Sigma^\alpha(\Omega) \) dans \(\Sigma^\alpha(\Omega) \):

\[|A^{\alpha/2} Bu| \leq \delta \| u \|, \| u \|. \]

Ceci étant, posons le problème suivant :

On donne une fonction \(t \rightarrow f(t) \), définie sur \(\mathbb{R}^+ \), à valeurs dans \(\Sigma^\alpha(\Omega) \), \(\alpha \)-pseudo-aléatoire.

On cherche une fonction \(t \rightarrow u(t) \), définie sur \(\mathbb{R}^+ \), à valeurs dans \(\Sigma^\alpha(\Omega) \), \(\alpha \)-pseudo-aléatoire, appartenant à \(\mathcal{C} [f; \mathcal{M}_0^\infty, \Sigma^\alpha(\Omega)] \) et vérifiant l'équation suivante :

\[\mathcal{M}_0 \left\{ -u(t) |\phi(t)| + \|u(t)\| |\phi(t)| + |A^{\alpha/2} Bu(t) |A^{\alpha/2} \phi(t)| \right\} = \mathcal{M}_0 \left\{ f(t) |\phi(t)| \right\} \]

pour toute fonction \(\phi \) appartenant à \(\mathcal{C} [f; \mathcal{M}_0^\infty, \Sigma^\alpha(\Omega)] \cap \mathcal{W}^\infty [0, \infty; \Sigma^\alpha(\Omega)]. \)

Une telle fonction \(u(t) \) sera appelée solution faible turbulente du système de Navier-Stokes.
Cette solution faible n'est définie qu'à une fonction W^∞-nulle près. Mais ses propriétés statistiques (moyenne temporelle, corrélation) sont bien définies.

Nous ignorons si, dans le cas général, le problème ainsi posé possède une solution et si cette solution est unique. Cependant, si δ est assez petit, on peut montrer l'existence et l'unicité de la solution du problème. Plus précisément, en procédant comme au chapitre B2 (cf. aussi la remarque finale du chapitre B4), nous obtenons le résultat suivant :

Théorème

Si $|\delta(t)| < \frac{1}{4k^2\delta}$, alors il existe une solution et une seule du problème telle que $|u(t)| < \frac{1}{2k^2\delta}$ (où k est la norme de l'opérateur A^{-1}, et où δ est la constante figurée au début de ce sous-paragraphe).

2°) *Indications sommaires dans le cas où $\overline{\alpha}(t, \overline{\alpha}) \neq 0$*

On suppose, pour ne pas alourdir le raisonnement, que la force massique F n'existe pas.

On se ramène au cas précédent, en procédant de la manière suivante :

$\overline{\alpha}(t, \overline{\alpha})$ étant donné sur Ω, il existe toujours $\overline{\omega}(t, \overline{\alpha})$ défini dans Ω, de divergence nulle, et telle que :

$$\lim_{\Omega} \overline{\omega}(t, \overline{\alpha}) = \overline{\alpha}(t, \overline{\alpha}).$$

Si $\overline{\alpha}(t, \overline{\alpha})$ est "assez régulière" en α, alors $\overline{\omega}(t, \overline{\alpha})$ est aussi "assez régulière" en α (pour ce problème de trace, cf. O.A. LADYZHENSKAYA [1]). Si $\overline{\alpha}(t, \overline{\alpha})$ est une fonction pseudo-aléatoire en t, alors $\overline{\omega}(t, \overline{\alpha})$ est en général aussi pseudo-aléatoire en t. Supposons $\overline{\alpha}(t, \overline{\alpha})$ donnée telle que $\overline{\omega}(t, \overline{\alpha})$ soit une fonction définie sur \mathbb{R}^+, à valeurs dans $\mathcal{D}(A)$, co-pseudo-aléatoire, et dérivable en t.

Posons :

$$\overline{\omega}(t, \overline{\alpha}) = \overline{\omega}(t, \overline{\alpha}) - \overline{\omega}(t, \overline{\alpha})$$

et

$$\overline{\alpha}(\overline{\alpha}) = \overline{\alpha}(\overline{\alpha}) - \overline{\omega}(0, \overline{\alpha})$$

Ainsi, $\overline{\alpha}(t, \overline{\alpha})$ vérifie le système suivant :
L'équation différentielle opérationnelle non linéaire associée est la suivante :

\[
\begin{align*}
\bar{v} - \nabla \Delta \bar{v} + (\bar{v} \cdot \text{grad}) \bar{v} + (\bar{w} \cdot \text{grad}) \bar{w} + (\bar{w} \cdot \text{grad}) \bar{v} + (\bar{w} \cdot \text{grad}) \bar{w} &= \bar{f} + \nabla \Delta \bar{w} - (\bar{w} \cdot \text{grad}) \bar{w} - \frac{\partial \bar{w}}{\partial t} \\
div \bar{v} &= 0 \\
\bar{v}(0, \bar{x}) &= \bar{b}(\bar{x}) \\
\bar{v}(t, \bar{x}) |_{\partial \Omega} &= 0
\end{align*}
\]

en posant :

\[
\begin{align*}
g &= -A\bar{w} - \bar{w}' - P \left[(\bar{w} \cdot \text{grad}) \bar{w} \right] \\
B\bar{v} &= B(\bar{v}, \bar{v}) \\
C\bar{v} &= B(\bar{w}, \bar{v}) + B(\bar{v}, \bar{w})
\end{align*}
\]

où \(B\) est l'opérateur bilinéaire défini au paragraphe IV.

On obtient le résultat suivant (en raisonnant comme au chapitre B6) :

Théorème -

Si la fonction \(t \rightarrow \bar{w}(t)\) est "assez régulière" et "assez petite", et \(\infty\)-pseudo-aléatoire, alors il existe une solution \(t \rightarrow \bar{v}(t)\) de (**) \(\infty\)-pseudo-aléatoire, "assez petite" et "assez régulière".

L'expression "assez régulière" veut dire : \(\bar{w}\) est telle que \(g\) soit lipschitzienne. L'expression "assez petite" veut dire : \(\bar{w}\) est telle que les approximations successives convergent.

La démonstration est analogue à celle du chapitre B6 (pour les modifications nécessaires, cf. chapitre B2). Il faut cependant remplacer le lemme B par le lemme suivant :

Considérons la "suite de récurrence" suivante :

\[
\Delta_{n+1} \leq \Delta_0 + \Delta_n^2 + \lambda \Delta_n
\]

Si \(\lambda < 1\) et si \(\Delta_0 < \left(\frac{1-\lambda}{2}\right)^2\), alors \(\Delta_n \leq S\) pour tout \(n\) (où \(S\) est un nombre strictement inférieur à \(\frac{1-\lambda}{2}\)).
VII - CONCLUSION -

Les théories habituelles de la turbulence sont essentiellement probabilistes. Elles renoncent à expliquer la complication du mouvement turbulent, et se contentent d'affirmer que l'agitation turbulente est de nature statistique. Par ailleurs, il est généralement admis que le mouvement turbulent obéit aux équations de l'hydrodynamique, c'est-à-dire, dans le cas des fluides visqueux incompressibles, aux équations de Navier-Stokes. On sait (cf. par exemple L. AGOSTINI et J. BASS [11]) qu'il est presque impossible, à l'aide de ces deux bases de départ, de construire une théorie cohérente de la turbulence.

Les théories de la turbulence sont donc presque toujours semi-empiriques, des hypothèses extérieures de caractère physique servant à combler les lacunes de la théorie. Seule la théorie statistique de E. HOPF [23] échappe, par sa nature même, à l'empirisme. Mais elle est délicate à employer, de sorte qu'elle n'a pas encore fourni de résultats positifs.

Dans ce chapitre B7, nous avons fait un essai pour "expliquer" la turbulence, en excluant toute hypothèse statistique.

La turbulence de la vitesse d'une fluides serait ainsi due soit à "l'irrégularité" de la force massique extérieure, soit à "l'irrégularité" des conditions aux limites.

En général, la force massique extérieure dérive d'un potentiel, et par suite sera considérée comme nulle, car seule la composante non-irrotationnelle intervient dans l'étude de la vitesse. Cependant, il ne serait pas absurde de supposer que cette composante non-irrotationnelle, nulle en moyenne, possède des agitations irrégulières dans le temps, agitations qui seraient la cause de la turbulence.

D'autre part, si les parois réelles sont fixes, les parois fictives, celles qui interviennent effectivement (je veux dire : Mathématiquement) dans les conditions aux limites, sont très probablement variables (couches limites turbulentes). Elles varient très irrégulièrement dans le temps et rendent irrégulières les variations de la vitesse.

Voyons maintenant dans quelle mesure les solutions fortes et faibles définies au paragraphe VI 1°) peuvent être considérées comme des solutions turbulentes du système de Navier-Stokes.

Examinons d'abord les solutions fortes. Elles possèdent, entre autres, les propriétés suivantes :

1) \[\int_{\Omega} |\vec{u}(t, x)|^2 dx < \infty \]

2) \[\vec{u}(t, x) = 0 \text{ sur la frontière } \partial \Omega \]

3) \[\lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} \int_{\Omega} u_i(x + \xi, t + \tau) u_j(x, t) dx \]

\[\exists \text{ pour tout couple } (\xi, \tau), n'est pas nulle pour le couple } (0, \infty), \text{ et tend vers } \infty \text{ quand } \xi \to \infty. \]
La propriété (i) montre que l'énergie totale (dans tout l'espace) est finie à chaque instant t.

La propriété (iii) implique, sous certaines conditions de régularité, l'existence du tenseur de corrélation

$$
\gamma_{ij}(\bar{h}; \alpha, \bar{\xi}) = \lim_{T \to \infty} \frac{1}{T} \int_0^T \nu_i(x, \bar{\xi}; t, \bar{h}) u_j(\alpha, t) dt
$$

pour (presque) tout triplet $(\bar{h}; \alpha, \bar{\xi})$, la nullité de ce tenseur pour le triplet $(\alpha; \alpha, \bar{\xi})$. La positivité de $\gamma_{ij}(0; \alpha, \bar{\xi})$ montre que l'énergie moyenne (dans le temps) est finie et que l'énergie totale (dans le temps) est infinie.

De plus (ii) implique que $\gamma_{ij}(\bar{h}; \alpha, \bar{\xi})$ tend vers 0 quand, \bar{h} et α restant fixés, le point $y = x + \xi$ tend vers un point de la frontière $\partial \Omega$.

Examinons maintenant les solutions faibles. Nous obtenons les conclusions suivantes :

a) Bien que la solution faible ne soit définie qu'à une N^2-fonction nulle près, ses propriétés statistiques (moyenne temporelle et corrélation) sont parfaitement définies.

b) Deux solutions faibles qui correspondent à une même condition aux limites et à une même force massique extérieure, et à deux conditions initiales différentes, sont équivalentes. Autrement dit, la condition initiale n'intervient pas dans les propriétés asymptotiques (moyenne et corrélation) de la solution.

c) Une solution forte est évidemment équivalente à une solution faible. Réciproquement, l'unicité de "la" solution faible et l'existence de la solution forte (quand les données sont assez petites), nous montre que, en ajoutant à "la" solution faible une fonction N^2-nulle judicieusement choisie, on obtient une solution forte.

Ces résultats montrent l'intérêt et l'utilisation des solutions faibles.

Conclusion finale -

L'explication du phénomène de la turbulence est très difficile, et nous ne prétendons évidemment pas le faire ici. Nous désirons simplement donner une contribution à l'étude de ce problème si compliqué. Ce chapitre Π n'est pas complet en soi-même. Ce n'est que le début d'un travail qui a besoin d'une étude théorique complémentaire plus poussée, et d'une vérification expérimentale.
INDEX DES PRINCIPALES NOTATIONS

I - NOTATIONS GENERALES -

1°) \(\mathbb{N} \) : l'ensemble des entiers naturels (ou entiers positifs)
\(\mathbb{Z} \) : l'ensemble des entiers rationnels (ou entiers relatifs)
\(\mathbb{R} \) : l'ensemble des nombres réels
\(\mathbb{R}^+ \) : l'ensemble des nombres réels positifs
\(\mathbb{C} \) : l'ensemble des nombres complexes
\(\mathbb{R}/\mathbb{Z} \) : l'ensemble des nombres réels modulo 1

2°) \(\mathfrak{g} \) : groupe abélien topologique localement compact (\(\mathfrak{g} \subset \mathfrak{g} \))
\(\mathfrak{g}^* \) : groupe dual de \(\mathfrak{g} \) (groupe des caractères) (\(\chi \in \mathfrak{g}^* \))
\(\Omega \) : ouvert relativement compact, mesurable de \(\mathfrak{g} \)
\(\mathcal{V}(\Omega) \) : mesure de Haar de \(\Omega \)

3°) \(X, Y, Z \) : espaces de Banach
\(H, L^2, V \) : espaces de Hilbert
\(E' \) ou \(E^* \) : dual topologique d'un espace vectoriel topologique \(E \)
\(x, y, z \) : éléments d'un Banach ou d'un Hilbert
\(x, y, z \) : éléments de \(C^n \) ou de \(\mathbb{R}^n \) (sauf au chapitre B2)

4°) \(\mathcal{L}(X \rightarrow Z) \) : l'ensemble des opérateurs linéaires bornés de \(X \) dans \(Z \)
$\mathcal{L}(X_1,\ldots,X_n\rightarrow Z)$: l'ensemble des opérateurs n-linéaires bornés de X_1,\ldots,X_n dans Z

$\mathcal{L}_c(X\rightarrow Z)$: l'ensemble des opérateurs n-linéaires bornés de X dans Z

$\mathcal{L}_m(X\rightarrow Z)$: l'ensemble des opérateurs multilinéaires bornés de X dans Z

$\mathcal{L}_c(X\rightarrow Z)$: l'ensemble des opérateurs linéaires compacts de X dans Z

5°) $\hat{\mathcal{F}}_n$: partie entière de \mathcal{F}_n

$\overline{\mathcal{F}}_n$: partie fractionnaire de \mathcal{F}_n

II - PRODUIT SCALAIRE - NORME -

1°) $\|x\|$: norme dans un Banach X (ou dans un Hilbert H)

$\|\varphi\|$* : norme dans son dual X^*

$\langle \varphi, \varphi \rangle$: produit scalaire dans H

$\langle x, \varphi \rangle$: dualité entre X et X^*

$\|\tilde{\varphi}\|$: norme dans C^n (sauf au chapitre B2)

$\overline{\varphi}, \overline{\varphi}$: produit scalaire dans C^n (sauf au chapitre B2)

$\|f\|$: norme dans M^p ($\mathcal{F}_p;X$)

2°) Dans la partie B, on utilise trois espaces de Hilbert V, H et V' ($V \subset H \subset V'$; V' antidual de V), et on emploie les notations suivantes :

$||\|$: norme dans H

$\langle ||, || \rangle$: produit scalaire dans H

$||\|$: norme dans V

$\langle ||, || \rangle$: produit scalaire dans V

$||\|$* : norme dans V'

$\langle ||, || \rangle$: produit scalaire dans V'

$||f||$: norme dans M^p ($\mathcal{F}_p;H$)

$[||, ||]$: produit scalaire dans un sous-espace vectoriel de l'espace \mathcal{F} ($\mathcal{F}_p;H$)

$||f||$: norme dans M^p ($\mathcal{F}_p;V$)

$[||, ||]$: produit scalaire dans un sous-espace vectoriel de l'espace \mathcal{F} ($\mathcal{F}_p;V$)

163
IIIL ESPACES FONCTIONNELS

Il s'agit d'espaces fonctionnels des (classes de) fonctions définies sur un groupe abélien localement compact \(G \) et à valeurs dans un espace de Banach \(X \), ou de Hilbert \(H \).

1°) \(L^p(G;X) \): espace de Lebesgue des fonctions de \(p \) puissance sommable

\(G(G;X) \): espace des fonctions continues et bornées sur \(G \)

2°) \(M^p(G;X) \): espace de Besicovitch-Marcinkiewicz des fonctions bornées en moyenne asymptotique d'ordre \(p \)

\(M^p_c(G;X) \): espace des fonctions continues en moyenne asymptotique

\(M^p_k(G;X) \): espace des fonctions \(M^p \)-régulières

\(M^p_k(G;X) \): espace des fonctions \(M^p \)-constantes

\(M^p_k(G;X) \): espace des fonctions \(M^p \)-ergodiques

\(M^p_k(G;X) \): espace des fonctions \(M^p \)-totale-ment-ergodiques

\(F^p(G;X) \): espace des fonctions \(M^p \)-faiblement-presque-périodiques

\(T^p(G;X) \): espace des fonctions \(M^p \)-presque-périodiques

\(A^p(G;X) \): espace des fonctions \(M^p \)-pseudo-aléatoires

3°) \(\mathcal{D}^p(G;X) \): espace des fonctions de \(p \) puissance moyennable

\(\mathcal{G}(G;H) \): espace des fonctions de carré moyennable (espace de Bass)

\(\mathcal{S}(G;H) \): espace des fonctions quasi-stationnaires

\(\mathcal{S}^p(G;H) \): espace des fonctions \(\mathcal{S} \)-presque-périodiques

\(\mathcal{S}^p(G;H) \): espace des fonctions \(\mathcal{S} \)-pseudo-aléatoires

\(\mathcal{S}(G;H) \): espace des fonctions \(\mathcal{S} \)-quasi-stationnaires

\(\mathcal{S}^p(G;H) \): espace des fonctions \(\mathcal{S} \)-presque-périodiques

\(\mathcal{S}^p(G;H) \): espace des fonctions \(\mathcal{S} \)-pseudo-aléatoires

\(\mathcal{S}(G;H) \): espace des fonctions complètement quasi-stationnaires

\(\mathcal{S}^p(G;H) \): espace des fonctions complètement presque-périodiques

\(\mathcal{S}^p(G;H) \): espace des fonctions complètement pseudo-aléatoires
$S_{\nu}(\varphi;H)$: espace des fonctions scalairement quasi-stationnaires

$S_{\mu}(\varphi;H)$: espace des fonctions complètement scalairement quasi-stationnaires

4°) $\mathcal{W}^{\nu}(\varphi;H)$: espace des fonctions \mathcal{M}^{ν}-déerviables

$\mathcal{W}^{\mu}(\varphi;H)$: espace des fonctions ℓ fois \mathcal{M}^{ν}-déerviables

$\mathcal{W}(\varphi;H)$: espace des fonctions idéfiniment \mathcal{M}^{ν}-déerviables (espace de Wiener)

$\mathcal{W}'(\varphi;H)$: espace des \mathcal{M}^{ν}-distributions [dual de $\mathcal{W}(\varphi;H)$].

Note - Les espaces dans 3°) ne sont pas des espaces vectoriels. Tous les autres espaces sont vectoriels.

IV - OPERATIONS DANS LES ESPACES DE BESICOVITCH -

1°) \mathcal{M}_{μ} : opérateur de moyenne approchée

\mathcal{M} : opérateur de moyenne

$\overline{\mathcal{M}}$: opérateur de moyenne supérieure

\mathcal{M}_{μ} : opérateur de moyenne approchée au sens de Bohr

\mathcal{M} : opérateur de \mathcal{M}-moyenne

$\overline{\mathcal{M}}$: opérateur de \mathcal{M}-dérviation

$U(\mathcal{M}) = U_{\mathcal{M}}$: opérateur de translation (par $-\mathcal{M}$)

\mathcal{M} : opérateur de convolution (sens classique)

\mathbb{B} : opérateur de convolution par une fonction uniformément presque-périodique (sens de Bohr)

2°) $\mathcal{T}(f;\mathcal{M},x)$: enveloppe convexe \mathcal{M}^p-fermée de l'ensemble $\{U_{\mathcal{M}}f | h \in \mathcal{M}\}$

$\mathcal{T}(f;\mathcal{M},x)$: enveloppe linéaire \mathcal{M}^p-fermée de l'ensemble $\{U_{\mathcal{M}}f | h \in \mathcal{M}\}$

$\mathcal{C}(f;\mathcal{M},x,\gamma)$: enveloppe linéaire \mathcal{M}^p-fermée de $\{A_{\mathcal{M}}f | h \in \mathcal{M}; A \in \mathcal{L}_{\mathcal{M}}(x,\gamma)\}$

$\mathcal{C}(f;\mathcal{M},x,\gamma)$: enveloppe linéaire \mathcal{M}^p-fermée de $\{A_{\mathcal{M}}f | h \in \mathcal{M}; A \in \mathcal{L}_{\mathcal{M}}(x,\gamma)\}$

$\mathcal{C}(f;\mathcal{M},x,\gamma)$: enveloppe opérationnelle multilinéaire de $\{U_{\mathcal{M}}f\}$

(cf. chapitre A6).
3°) γ, Γ : fonctions de corrélation

γ, Σ : tenseur de corrélation

σ : mesure spectrale énergétique

σ_{λ}, Σ : tenseur spectral énergétique

γ : mesure spectrale élémentaire

V - ESPACES DE SOBOLEV -

Ω : ouvert de \mathbb{R}^n

1°) $W_p^0(\Omega)$: espace des (classes de) fonctions numériques dont les dérivées d'ordre ℓ sont de p^ℓ puissance sommable dans Ω

$D(\Omega)$: espace des fonctions indéfiniment différentiables à support compact dans Ω

$D'(\Omega)$: dual topologique de $D(\Omega)$

$W_p^{\ell}(\Omega)$: fermeture de $D(\Omega)$ dans $W_p^{0}(\Omega)$

$H^0(\Omega) = W_p^{\ell}(\Omega)$; $H^0(\Omega) = W_p^{\ell}(\Omega)$

$L_p(\Omega) = W_p^{0}(\Omega)$; $L_p(\Omega) = W_p^{0}(\Omega)$

2°) $\mathcal{D}(\Omega) = \mathcal{D}(\Omega) \times \mathcal{D}(\Omega) \times \mathcal{D}(\Omega)$

$\mathcal{W}_p^{\ell}(\Omega) = W_p^{\ell}(\Omega) \times W_p^{\ell}(\Omega) \times W_p^{\ell}(\Omega)$, etc...

$J(\Omega)$: sous-espace des vecteurs irrotationnels de $H^0(\Omega)$

$\Sigma(\Omega)$: sous-espace des vecteurs solénoïdaux de $\mathcal{D}(\Omega)$

$\Sigma^0(\Omega)$: fermeture de $\Sigma(\Omega)$ dans $H^0(\Omega)$

$H^0(\Omega) = J(\Omega) + \Sigma^0(\Omega)$
BIBLIOGRAPHIE

— PARTIE A —

AMERIO (L.) —

[1] Funzioni debolmente quasi-periodiche

BASS (J.) —

[1] Suites uniformément denses, moyennes trigonométriques, fonctions pseudo-aléatoires
Bull. Soc. Math. Fr. 87 (1959), 1-64.

[2] Les fonctions pseudo-aléatoires
Mémorial des Sciences Math. fasc. 153 (1962)

[3] Espaces de Besicovitch, fonctions presque-périodiques, fonctions pseudo-aléatoires

- t. 245 (1957), p. 1217 et 2457
- t. 247 (1958), p. 1083
- t. 249 (1959), p. 1456
- t. 250 (1960), p. 266 et 2051
- t. 252 (1961), p. 3392
- t. 254 (1962), p. 3072
- t. 255 (1962), p. 2352 et 3346
- t. 256 (1963), p. 1432

BERtrandias (J.P.) —

[1] Espaces de fonctions bornées et continues en moyenne asymptotique

- t. 245 (1957), p. 2457, avec J. BASS
- t. 248 (1959), p. 513
- t. 253 (1961), p. 2829
- t. 255 (1962), p. 2226
- t. 256 (1963), p. 1659
[3] Suites pseudo-aléatoires et critères d'équirépartition modulo-un
Compositio Mathematica 16 (1964), 25-28

BOCHNER (S.) et VON NEUMANN (J.) -
[1] Almost periodic functions of groups, II

BOGDANOWICZ (W.) -
[1] On the existence of almost periodic solutions for systems of
ordinary nonlinear differential equations in Banach spaces

BOURBAKI (N.) -
t. II (1955).

CASSELS (J.W.S.) -
[1] An introduction to diophantine approximation

DIXMIER (J.) -
Gauthier-Villars (1957).
[2] Les C^\ast-algèbres et leurs représentations
Gauthier-Villars (1964).

DOOB (J.L.) -

DUNFORD (N.) et SCHWARTZ (J.T.) -

EBERLEIN (W.F.) -
[1] Abstract ergodic theorems and weak almost periodic functions
[2] The spectrum of weakly almost periodic functions
GODEMENT (R.) —

HEWITT (E.) et ROSS (K.A.) —

HILLE (E.) et PHILLIPS (R.S.) —
[1] Functional analysis and Semigroups

JACOBS (K.) —
[1] Neuere methoden und ergebnisse der ergodentheorie
Springer-Verlag (1960).

KOROBOV (N.M.) —
[1] Sur certains problèmes d'équirépartition (en russe)
[2] De l'équirépartition complète et des nombres conjointement normaux (en russe)

LOOMIS (L.H.) —
[1] An introduction to abstract harmonic analysis
D. Van Nostrand Co (1953).

LUMMER et PHILLIPS (R.S.) —
[1] Dissipative operators in a Banach space

MARCINKIEWICZ (J.) —
[1] Une remarque sur les espaces de M. Besicovitch

MENDES FRANCE (M.) —
[3] Nombres normaux et fonctions pseudo-aléatoires
[4] Dimension de Hausdorff — Application aux nombres normaux

RIESZ (F.) et NAGY (Sz) —
[1] Leçons d'analyse fonctionnelle
STAKTCHENKO (L.P.) -

[1] De la construction de suites simultanément normales avec une suite donnée (en russe)

[2] Rectification à l'article précédent

[3] Construction d'une suite complètement équirépartie (en russe)

VO-KHAC (KHOAN) -

[1] Comptes Rendus de l'Académie des Sciences :
- t. 255 (1962), p. 3346 (avec J. BASS)
- t. 256 (1963), p. 4580 et 4822
- t. 257 (1965), p. 5800

[2] Etude des fonctions quasi-stationnaires et leur application aux équations différentielles opérationnelles

VON NEUMANN (J.) -

WALL (D.D.) -

University of California, Berkeley, California.

WEIL (A.) -

[1] L'intégration dans les groupes topologiques et ses applications
Paris, Hermann, 1940.

WEYL (H.) -

[1] Über die Gleichverteilung von Zahlen modulo Eins

WIENER (N.) -

[1] Generalized harmonic analysis

[2] The spectrum of an array and its application to the study of the translation properties of a simple class of arithmetic functions
BASS (J.) -

[4] Solutions turbulentes de certaines équations aux dérivées partielles

Sur l'existence des solutions turbulentes des équations de l'hydro-
dynamique

[5] On the mathematical structure of turbulence

[6] Contribution à l'étude de certaines fonctions susceptibles de représ-
senter la vitesse d'un fluide turbulent

[7] Principes d'une théorie non probabiliste de la turbulence
Colloques Int. CNRS, Marseille Août-Septembre 1961.

BASS (J.) et AGOSTINI (L.) -

[1] Les théories de la turbulence

BOURBAKI (N.) -

générale

[3] Espaces vectoriels topologiques

CATTABRIGA (L.) -

[1] Su un problema al contorno relativo al sistema di equazioni di Stokes

DIEUDONNÉ (J.) et SCHWARTZ (L.) -

[1] La dualité dans les espaces \(F \) et \(G' \)
DUNFORD (N.) et SCHWARTZ (J.T.) -

FOIAS (C.) -

GAGLIARDO (E.) -

GELFAND (I.) -

HILLE (E.) et PHILLIPS (R.S.) -

HOPF (E.) -

KATO (T.) -

KATO (T.) et FUJITA (H.) -

KISELEV (A.A.) et LADYZHENSKAYA (O.A.) -

KREIN (M.G.) -
KREIN (S.G.) -

[1] Les équations différentielles dans un espace de Banach et leur application à l'hydrodynamique (en russe)
Uspechi Mat. Nauk, XII, 73 (1957), 208-211.

LADYŽHENSKAYA (O.A.) -

LERAY (J.) -

[1] Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique
J. Math. pures appl. série 9, t. 12 (1933), 1-82.

[2] Essai sur les mouvements plans d'un liquide visqueux que limitent des parois

[3] Sur le mouvement d'un liquide visqueux emplissant l'espace
Acta Mat. 63 (1934), 193-248.

LERAY (J.) et SCHaudER (J.) -

[1] Topologie et équations fonctionnelles

LIONS (J.L.) -

[1] Équations différentielles opérationnelles et problèmes aux limites

[2] Équations différentielles opérationnelles dans les espaces de Hilbert
Cours du C.I.M.E., Lac de Como, Varemma (Été 1965).

[3] Sur certains théorèmes d'interpolation

[4] Sur les espaces d'interpolation; dualité
Math. Scand. 9 (1961), 147-177.

[5] Quelques résultats d'existence dans des équations aux dérivées partielles non linéaires

Rend. Sem. Mat. Univ. Padova, 30 (1960), 16-23

LIONS (J.L.) et STRAUSS (W.A.) -

[1] Sur certains problèmes hyperboliques non linéaires
Some non-linear evolutions equations

LUMER et PHILLIPS (R.S.) -
[1] Dissipative operators in a Banach space

MINTY (G.J.) -
[1] Two theorems on non-linear functional equations in Hilbert space
monotonicity methods
U.S. Army Math. Research Center (à paraître).

MIRENBERG (L.) -
[1] Estimates and existence of solutions of elliptic equations

ODQVIST (F.K.G.) -
[1] Über die Randwertaufgaben der Hydrodynamik zäher Flüssigkeiten

PHILLIPS (R.S.) -
[1] Semi-groups of contractions operators
[2] Perturbation theory for semi-groups of linear operators
Trans. Amer. Math. Soc. 74 (1953), 199-221.

PRODI (G.) -
[1] Un teorema di unicita per le equazioni di Navier-Stokes
[2] Qualche risultato riguardo alle equazioni di Navier-Stokes nel
caso bidimensionale. Problema delle soluzioni periodiche
[3] Teoremi di tipo locale per il sistema di Navier-Stokes et stabili-
bilità delle soluzioni stationarie

ProuSE (G.) -
[1] Soluzioni quasi periodiche dell’ equazioni di Navier-Stokes

RIESZ (F.) et NAGY (Sz) -
[1] Leçons d’analyse fonctionnelle
SOBOLEV (S.L.) -

[1] Sur un théorème d'analyse fonctionnelle (en russe)

SOBOLEVSKI (P.E.) -

[1] Sur les équations non stationnaires de l'hydrodynamique d'un
fluide visqueux (en russe)

WEYL (H.) -

[1] The method of orthogonal projection in potential theory

YUDOVIC (V.I.) -

[1] Mouvements périodiques d'un fluide visqueux incompressible