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GEOMETRIE ELEMENTAIRE.

Théorie €lémentaire deés contaets des cercles , des sphéres;
des. cylindres et des cones.;.

Par- M. J. B. DurraNDE , professeur»de: mathématiques:
spéciales et de physique au collége royal de Cahors..

"N a souvent reproché & la gé()métrié élé@entaiie , telle que Tons:
cultivée Euclide et Apollonius, chez les anciens, Viéte et Fermat,
chez les modernes , dene “poﬁvoir s'élever a cette généralité qui coor~
donne entre elles et rattache & un principe commun toutes les parties:
d’une méme théorie. On V'a jugé A peu prés incapable de- cette-
élégante et féconde simplicité qui’ accompagne si souvent lés autress
méthodes; eton.I'a mise, en particulier, beaucoup au-dessous.de"
cette géométrie nouvelle que I'on doit au génie créateur de l'illustre:
Monge ; et qui a offert.4 ses nombreux. disciplés un si vaste champ,
dé- belles- découvertes: - o ‘ '
Tom. X1, n°1, &ﬁ"‘/‘ﬂl"li@fi 1820,. - F &

i)



a THEORIE DES CONTACTS

" Mais', sans préténdre faire ici le’ procés & des méthodes: dont je°
me plais a reconnaitre toute la supériorité ; saps prétendre non plus
assimiler 'ancienne géométrie & cette autre geométne qui , née des
méditations de notre Descartes , a regu de si grands developpemens
entre les mains de Lagrange et de ce méme Monge , dont la des-
tinde semble avoir été d’associer son* nbm' ¥ toutes les grandes
découvertes qui ont signalé la derniére moitié du XVIIL® siécle ;
je n’en demeure pas moins persuadé que la géométrie d’Euclide,
maniée d’'une mani¢re convenable , peut, quelque bornge qu’elle
puisse paraitre, au premier abord , dans' ses moyens d'investigation ,-
aller aussi loin qW’aucune autre méthode quon tenterait de lui
substitier ; et qu'elle peut’ notamment égaler la géométrie analitigue ,
par la généralité et l’elegance de ses resultats, et c’est principale-
ment 3 faire partager au lecteur ma conviction sur ce pomt que
je consacre l'essai que lon va lire. _

Je prendrai pour exemple deux problémes gni n’ont pas acquis
moins de célébrité par le rang éminent des géometires qui en ont
fait tour-a-four le sujet de leurs recherches ; que par le nomibre et
la variété des procédés qui leur ont été suceessivement appliqués ;
mais quvi néanmoins n’ont été que trés-récemment résolus , de
manitre 4 ne plus laisser d’espoir d'une solution plus heureuse,
par M. Gergonne, qui semble s’étre frayé, dans la géométrie ana-
litique , une route enticrement nouvelle (*). On sent assez que je
veux parler des problémes ou il s’agit de décrive un cercle qui en
touche trois autres sur un plan ou une sphire qui en touche
quatre autres dans l'espace. Apollonius avait traité le premier
de ces deux proﬁlémes , dans un ouvrage qui ne nous est point
parvenu. Adrien’ Romain , géomeire Belge , tenta de réparer cette
perte ; mais il eut recours i des intersections de sections coniques,
tandis que le probleme est de nature i étre résolu Par les élé—

(*) Voyez les Mémoires de l'académie de Turin, pour 1814, ou les Annales
de Matl"fématiques , tom. 1V, pag. 349, ek tom. VII, -pag- 289
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mens , comme en effet Vitte le fit peu aprés. La solution de
Viéte, qui consiste & ramener successivement le probléme 3 ung
suitec d’autres plus simples n’est point extrémement compliqude ;
mais elle est fort longue et tout-a-fait dépourvue d’élégance , ap
point qu'il n’est pas du tout facile d’en garder le souvcnir. Fermat
résolut ensuite 'autre probléme ; mais il y .a peu d’invention dans
sa solution , exactement calquée sur celle de Victe, et con=
séque}nment sujette aux mémes reproches. Postérieurement, ces
mémes problémes ont été de nouveau attaqués par un grand nombre
de géomeétres, parmi lesquels je distinguerai seulement Descartes,
qui tenta le premier de les résoudre par l'analise algébrique , et
ne recueillit de cet essai que des formules excessivement .compli~
quées ; Newton, qui y est revenu 3 plusieurs reprises et par des
procédés divers, tant dans ses Principes que dans son Arithmétique
universelle ; et enfin les éléeves les plus distingués de Monge , qui
y ont appliqué les méthodes de leur maitre. Mais, indépendamment
de leur élégant laconisme qui permet d’en réduire UVénoncé &
queclques mots , ce qui distingue éminemment les constructions de
M. Gergonne, ce quileur ‘assure une incontestable supériorité , c’est
que, tandis que jusqu’ici on wn’était généralement parvenu i résoudre
ces problémes qu’en les ramenant successivement a d’autres , de plus
en plus faciles ; ce qui, en définitif , rendait la eonstruction totale
assez compliquée. M. Gergonne , au contraire , arrive directement
au but, et par des procédés qui., avec de trés-légéres modifications ,
se plient sans effort & la résolution de ces mémes problémes aux-
quels on avait coutume de ramener ceux-la. Il fait plus encore,
et résout , par les mémes procédés, le probleéme ou il s’agit de
décrire un cercle qui en touche trois autres sur une sphére ; pro-
bléme que , jusqu’a présent, personne n’avait méme songé i aborder.

Dans le dessein ou je suis de venger l'ancienne géométrie du
reproche d’impuissance dont ces mémes problémes. ont semblé offrir
un nouveau motif , je ne puis donc rien faire de plus convenable
que de lutter avec elle seule contre ce.que la géoméirie. analitique:
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offre peut-étre de plus élégant , et de montrer que, par de sim}ﬂéb
comparaisons de triangles , on peut factlement étre condait A ces
mémes constructions auxquelles ML Gergonne est parvenu par- une
voie tout-a-fait différente. ‘

Mais , comme les détails dans lesquels je vais entrer se Tient &
1a théorie des poéles et polaires, & celle des centres axes et plans
de similitude , a celle des centres axes et plans radicaux; théories
qui n'ont guére é1é démontrées jusqu’ici que par les méthodes de
Monge ; je ‘commencerai par en établir les principaux points 4 a Paide
de T'ancienne géométrie. Je ne ferai ainsi, au surplus, qu atteindre
plus complétement le but que j’ai en vue; puisque, tandis que,
dans les applications de ce genre ,'les consxderauons aedmtes de
la doctrine de Monge sont souvent inapplicables , on verra qu ‘au
contraire les démonstrations élémentaires , par lesquelles je me
propose de les remplacer, me refusent jamais le service, et s'ap-
pliquent sans distinetion & tous les cas. Je pense d'ailleurs ne point
faire une chose -tout-a-fait mmqie ; en mettant 4 la portée des
hommes méme qui nont -en-géométrie que.les motions les plus
élémentaires , des théories dont chaque jour voit étendre les appli-

cations , et auxquelles leur extréme fécondité mdritera sans doute
bicntét une place dtsunguée dans tous les ouvrages destmes al'en-
seignement des- prmupes de cette belle science.

Ua point pouvant’ étre-considérd indistinctement comme un cercle
cu une spheére dont le rayon est nul | , une droite comme un cercle
dent le rayon est infini, ou comme un ‘cone dont lang,le géné-
rateur est nul, .ou, et enﬁn » comme un cylindre dont le rayon
est nul; et un plan comme ° une. sphere ou un cylmdre dont le
rayon est infini , ou comme un c6ne dont Iangle géncrateur est
droit; il s'ensuit que tout ce que nous allons dire des cercles’; des
sphéreé, des cénes et des cylindres est aussi applicable, avec’ des
modifications convenables , aux points, droites et plans ; mais , pour
atteindre plus rapidement notre but , et écarter des discussions
beaucoup plus longues que_difficiles , nous abandonnerons a 'la saga=
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cité du lecteur I'examen de ces cas particaliers , sur lesque’lé, au
surplus , nous pourrons revenir dans une autre occasion.

Par le méme motif , lorsque nous parlerons de plusieurs-cercles.,
de plusieurs sphéres , de plusieurs cdnes ou de plusieurs “cylindres ,
nous supposcrons qu’ils ne-sont niégaux ni concentriques ; il sera aisé
de voir ensuite ce qui arriverait s’il en était autrement,

Enhin, il faudra toujours suppeser les objets"dans le -cas le plus
général ; c’est-d-dire, que les points dent nous parlerons ne seront
jamais ni au centre des cercles et des sphéres , ni sur l'axe des
cénes ou -des cylindres, ni & la circonférence des cercles, ni i la
surface des sphéres, cylindres et cones ; et des suppositions ana=
logues devront avoir lieu pour les droites et les plans.

SECTION PREMIERE,
Proprietés des cercles sur un plan.

5 L

Des pbles et polaires.

1. Nous appellerons, & Tavenir, péles conjugués d'un cercle
deux points en ligne droite avec son centre , et du méme coté de
ce centre , tels que le rayon du cercle sera moyen proportionnel entre
leurs distances 2 son centre (*).

2. I suit de cette definition, 1.° qu’il n’est aucun point du plan
d'un cercle qui me puisse étre pris pour péle , et auquel il ne

*) 11 est presque superflu de prévenir qu'ici le mot péle a une toute autre
acception que celle qu’on lui donne , lorsquil est question des cercles d’une
sphére ; nous en aurions employé une autre , sans larépugnance , bien ou mal
fondée , que I'on montre généralement pour les mots nouveauz.
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réponde un péle conjugud, dent il est lui-méme le conjuguéd; 2.°
que de ces deux points I'un.est toujours.intérienr et llautre: extérieur
an cercle , de telle sorte que , :plus l'un &'¢loigne du .centre,
plus I'autre s’en approche ; 37° que le sommet d'un angle circons-
crit au cercle et le milieu de sa corde de contact sont deux pdles
conjugués 'un a Pautre. :

3. Lorsque par 'un quelconque de deux .péles conjuguds . par
rapport 4 un cercle , on menera une .perpendiculaire indéfinie &
la droite qui-contient ces deux points, mous dirons -de .cette droite
quelle -est la.droite polaire ou simplement :la polaire de l'autre
peint qu’d l'inverse nous appellerons le.péle de cette droite.

4. Il suit de ces définitions , »1.° qu'il n’est , sur le plan d’'un
cercle , aucun point qui ‘n’ait sa polaire, ni aucune droite quij
n’ait son péle; 2.° que le pole est extérieur ou intérieur au cercle,
suivant que la polairé lui est sécante ou ne le rencontre pas; 3.°~
que le sommet de Pangle circonscrit est le poéle de la corde de
contact , dont le milieu est a son tour le péle de la paralitle a
cette droite menée par le sommet de l'angle.

5. THEOREME. Le pble d'une droite est la commune section
des cordes de contact de tous les .angles circonscrits qui ont leur
sommet sur cette droile ; et réciproquement la polaire d'un point:
est le lieu géométrique .des sommets des angles circonscrits dont
les cordes de contact passent par .ce point.

Démonstration. Soit PQ (.fig. 1, .2 ) une droite fixe passant
par le centre C d'un cercle ; soit S le sommet d'un angle quel-
couque .circonscrit .4 ee cercle , le touchant :en A, B; soit P Pin-
tersection de la corde de contact .AB avec la.dreite PQ et soit Q
le pied de la perpendiculairc abaissée du point § sar la méme
droite..

Soient menés le rayon CA et la droite CS coupant perpendi-
culairement AB en son milieu M. Les_ triangles réctangles GQs ,
CMP seront semblables , et il en sera.\de méme des triangles rec~
tangles CAS, AMC ; on .aura.donc les deux proportions
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CP:CS::CM: CQ.,
CS:CA :: CA:CM ;
d'ol on conclura, par maltiplication et réduction
—CP:CA:CQ ;-

les points P, Q. sont donc (1) deux pbles conjuguds; P est done
le pole de SQ (3); ce qui démontre le théoréme. énoncé (*).

6. Ce théoréme revient 4 dire', en d’autres termes , que l'infer<
section de deux droives. est le péle de la droite qui passe par
les poles de ces deuz-ld. 11 offre ainsi un moyen commode- de
déterminer le pole par la polaire et réciproquement.

7..8i, en effet, le pole est donné , on nienera deux cordes quel~
conques qui y concourent, et les sommets des- angles circonscrits
qui auront ces cordes pour cordes de contact seront deux points de
la polaire cherchée Si, au contraire, c’est la polaire qui est donnée,,
on fera de deux quelconques de ses points les sommets de deux
angles circonscrits , dont les cordes de contact se couperont au péle
demandé (**).

§. IL

Des centres et axes de similitude.

8. Nous' dirons’, & l'avenir, qu'un angle est circonscrit & deux

(*) La démonstralion de Monge n’est applicable qu'au seul cas ot ld polaire’
st exteérieure au ‘cercle.

(**) Ces -constrictions ont , sut toutes autres qu'on leur substituerait , I'avan+
tage de n'exiger , a la rigueur, que le simple usage de la regle.
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cercles ; lorsque ses co6tés seront des tangentes communes a ces.
deux cercles , ayant l'upe et l'autre les déux cercles dau méme.
c6té, ou l'une et lautre ces deux cercles de différens cétés ;3
Pangle circonscrit sera dit extérieur dansle premier cas, etintérieur
dans le second. Dans [’un et l'autre cas, le sommet de I’angle circonscrit
est évidemment en-ligne droite avec les centres dés deux cercles.

9. Nous appellerons, a lavenir, centre de similitude de deur
cercles , un point de la. droite qui -joint leurs centres dont les dis~
tances 4 ces deux centres scront respectivement proportionnelles aux

rayons des deux cercles. Clest, en dautres termes, un point
a la fois semblablement placé par rapport aux deux cercles , ce
qui justifie sa” dénomination introduite par Monge: -

10. Deux cercles tracés sur-un méme plan ont toujours deux
centres de similitude ; Pun situé sur la-droite méme qui joint leurs
centres , et l'autre situé sur- le prolengement: de- cette droite , du
c6té du plus petit des deux cercles. Pour distinguer ces deux-points
I'in de lautre, nous les désigncrons respectivement sous.les déno-
minations -de- centre: de similitude inierne et de: centre de- simili=
tude externe.

11. Il est aigé - de voir que, 1‘0rs§ue les deux. cercles sont exté=.
riturs 'un & Pautre, leurs centres-de similitude interne et externe
De. sont respectivement. autre chose (8) que les.sommets des angles
circonscrits ,'tant intérieurs qu’extérieurs ; de sorte qu’alors la déter-
mination. de. ces deux poi‘nts se trouve ramenée a celle-de la tan-.
gente commune a.deux cercles. Nous.verrons bientét comment on
peut les déterminer dans les autres cas. -

12. THEOREME, Les, centres de similitude externes.de - trois
cercles , tracés sur un méme plan , el Drzs successivement deux @
déux, sont tous Irois silads sur une mémé ligne droite ; et chacun
deux ,se,ir_ouve,en,llg{wd_rozte avec deux des.centres de similitude
interne des mémes cercles 5 de telle sorte que ces six poinls,
sont. les. inlersections. de. quatre droites . formant un. guadrilatire

complet.
Démonstration,
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Démonstration. Seient. G, C/, C/ (fig. 3) les centres des trois
cercles.,. dont les rayons soient fespectivement R, R, R ; soient
E, I respectivement les centres- de similitude externe et interne
des deux cercles dont les centres sont C/, C/;- soient' B/, I/ ceux
des deux cercles dont les centres sont C/, C; soit mende par le
—point G une- parallele indéfinie & CC”’, coup'an’t EE’en Met II’'
en N.. ’
Désigmons- par E/ l'intersection de EE’ et CC’; en verta de
la définition des centres dé similitude (g) et & cause des paral-
léles, nous aurons

CE:C'E' ou R :R”::CE”:C/M’ ,

C/E :C’E" ou. R":R/ ::C”M:C’ E”

d'ol nous conclurons, ‘par multiplication et rédaction ,
R: R :: CE/:CE/"

Le point'E”, intersection dé EE’ et CC/, est donc (g) le centre:
de similitude externe. des deux' cercles' dont les centres sont C, C/ ;-
les trois centres: de similitude externes'E, E’ , E// sont donc situés :
sur une méme ligne droite; ce -qui- démomtre la: premiéfe partie-
du théoré¢me.

Désignons, en-second lieu, par E” I'intersection de II’ et CC/y:
en vertu de la définition' des centres-de: similitude (9) et i cause-
des -paralleles , nous -aurons-

CV:C ou R :R*::CE/:C/N: ,.
C1:C'1 on R":R ::C'N:CE”

dodr nous - conclurons,, . par.multiplication et réduction ; ,
Tom. XI. 22
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"R R"*CE"'C’E”

Le point E”, considéré comme intersection de TI/ et CC/, est done
encore le centre de similitude externe des deux cercles dont les
centres sont G, C/; deux quelconques I, 1’ des centres de simi-
litude internes sont donc en ligne droite avec I'un E// des centres
de similitude externes ; ce qui démontre la seconde partie du
théoréme (*).

13. A lavenir, nous appellerons axe de similitude de trois
cércles, toute -droite qui contiendra trois de leurs centres de simi-
litude. Cette droite sera dite axe de similitude externe , lorsqﬁ’elle

contiendra les trois centres de similitude externe ; elle sera dite,

au contraire, axe de similitude interne , lorsqu’elle contiendra un
seul de ces centres , avec deux centres de similitude internes.
Il est aisé de voir que chacun de ces axes est semblablement

placé par rapport aux trois cercles : ce qui justifie leur dénomination.

Notre théoréme peut, entre autres applications , servir &

déterminer les centres de similitude de. deux cercles , dans les cas
que nous avons exceptés (11). Pour y parvenir, on décrira arbi-
trairement un troisitme 3 la fois extérieur aux deux cercles donnés;
on déterminera (11) ses centres de similitude, tant internes qu'ex-
ternes , avec chacun d’enx ; alors , 1.° en joignant par une droite deux
-centres de similitude de méme dénomination, cette droite coupera
la droite qui joint leurs centres au centre de similitude externe;
2.° en joignant , au contraire , par ung droite deux centres de
sumilitude de dénominations. contraires, cette droite , par son inter-
scction avec celle qui joint les centres des deux cereles , fera con-
naitre le centre de similitude interne (*).

(* La démonstration de Monge n'est applxcable quwan seul cas.ol les trois
cercles sont extérieurs led uns aux autres.
(**) On peut aussi déterminer, dans tous les’ cas, les deux centres de simie

litude de deux, cercles ; en -observant que.,..si l'on fait,.de deux diamitres
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15. Sachant ainsi déterminer, dans teus les cas, les centres de

similitude , tant internes qu’externes de deux cercles ; on pourra aussi,

dans tous les cas , déterminer les quatre axes de similitude de trois
cercles donnés.

§. ILL
Des centres et azxes radicauz.

16. Nous appellerons d Vavenir ¢enire radical de deux cercles,
un point de la droite qui joint leurs centres tel que la différence
des quarrés de ses distances i ces deux centres est égale a la
différence des quarrés des rayons des deux cercles respectivement,

17. Il suit de cette définition, 1.° que deux cercles, tracés sur
un méme plan, ont tdujours un centre et n’ont jamais qu’un seul
centre radical; 2.° que, suivant gue le quarré de la distance des
centres est plus grand que la différence des quarrés des rayons,
égal a cette différence ou plus petit qu’elle, le centre radical est
sur le prolongement de la droite qui joint les ecentres , du c6té du
plus petit des deux cereles; au centre méme de ce cercle ou entre
les deux eentres; mais toujours, dans ce dernier cas, plas prés du
eentre du plus petit cercle que de celui du plus grand.

18, Nous appellerons a Vavenir , avee M. Gaultier de Tours ,,
axe radical de deux cercles , la perpendiculaire indéfinie menée
dans leur plan, & la droite qui joint leurs centres , par leur centre
radical.

10. il est aisé de voir que , lorsque deux cercles se touchent
ou se coupent, leur axe radical m'est autre chose que leur tan—

paralleles quelconques, les deux bases d’un trapéze , le point. de concours des
deux cétés non paralleles sera le centre de similitude externe, tandis que Iin—
tersection des deux diagonales sera le centre de similitude interne. C’est une consé-
quence toute naturelle de la doctrine des points et lignes homologues doctrine peuat-
étre trop négligée aujourd’hui, etsur laquelle on trouye d’amples développemers
dans les Elémens de géométrie de CAMUS.
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gente ou leur corde commune. Nous verrons bieniét -comment on
peut facilement déterminer cette -dreite dans les autres- cas.

20, THEOREME. Les tangentes menées & -deux cercles de -tous
les points et des seuls points de leur axe radical.., termindes &
deurs points de contact , sont égales .entre .elles.

Démonstration. Soit P ( fig. 4, 5) un point- duquel soient me=
nées A deux cercles , dent les centres sont C, C/ des tangentes
dont les points de contact respectits soient T, T/ ; du méme
point P soit .abdissée sur CC’ une perpendiculaire dant le pied soi_t
0. Soient menés les rayons CT, C/T/, ainsi que les droites PC,
PC/, On aura ' l

CF' ou FO'+OC =FT'4CT" ,
EF ou FOHOT=FT+OT 5
d’odt, en retranchant et réduisant,
OC =00 =(PT —PT" )+(CT"—CT") .

Or, 1° 5i P est un point de Taxe radical , O sera le centre
radical, et on aura (16)

0C =00 =TI —01" 3

motre équation deviendra donc, en réduisant , transposant et ex-
grayant la racine quarrée, '

PT=PT’ ;

€’est-3-dire que les tangentes partant du point P seront égales.
2. Réciproquement, siles tangentes PT, PT/ sont égales, notre
équation deviendra simplement
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— ——- g —

OC' —0OC" =CT" —0T""

Je point ‘O sera donc (16) le centre radical ; et par conséquent (18)
le point P sera un des points de I'axe radical. '

21, THEOREME. Les axes radicaux de trois cercles tracés sur
un méme plan ., et considérés successivement deux @ deux , se
-coupent tous lrol's au méme poini.

Démonsiraiion. Soient C, G/, C/ les trois cercles, X, X/, X/,
respeclivement , les axes radicaux de C/, C” , deC”, C., de CC/,
et soit O le point de concours des deux premiers. La tangenie
menée de ce point & C sera (20) égale aux tangentes menées du
méme point aux cercles C', C”; ces deux derniers seront donc
égales entre elles ; leur point de concours ‘O sera donc (a0) un point

de X; d'ou il suit que X, X/, X’ passent par ce point O *).

22, Nous appellerons , & P'avenir, centre radical de trois cercles,
le point de concours des axes radicaux de .ces trois cercles , pri§
«deux i deux.

23. Notre théoréme (21) fournit un moyen fort simple de dé-
terminer P'axe radical de deux cercles, dans les cas que nous avons
exceptés (19). Il consiste 3 décrire arbitrairement un troisitme cercle
qui coupe a la fois les .deux premiers ; ses cordes communes avec
eux seront deux des axes radicaux des trois cercles (rg) ; leur
peint de concours sera donc leur centre radical , et par consé~
quent l'un des points de l'axe radical des deux cercles dont il
s'agit; menant donc, par ce point, une perpendiculaire & la droite
qui joint leurs centres , cette perpendiculaire sera l'axe radical
.cherché,

(*) La démonstration de Monge n’est applicable qu’au seul cas o, nom
seulement les trois cercles se coupent deux i deux , mais encore ou ils se cou-
pent de itelle sorte qu'une portion de leur plan leur est commune 3 tous trois.

Voor ymr 1632 - Wi,
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On pourra, au lieu de terminer ainsi la construction , chercher;
au moyen d’un nouveau cercle arbitraire, un second point de I'axe
radical , qui ainsi se trouvera complétement detexmme. .
24. Sachant ainsi déterminer, dans tous les cas, l'axe radical de
dcux cercles , on pourra aussi, dans tous les cas, construire facl-

lement le centre radical de trois  cercles donnés.
SECTION 11
Propriétes des sphéres dans l'espaces

§ L

Des pdles droites et plans polaires.

25. Nous appellerons & Vavenir pdles conjugués d'une splhére les
poles conjuguds communs i toutes les sections circulaires faites &
cette sphére par des plans passant par l'un quelconque de ses
diametres (1).

26. Lorsque , par 'un quelconque de deux péles conjugés d’une
sphére, on conduira un plan indéfini, perpendiculaire 2 la droite
qui joint ces deux pdles , nous dirons que ce plan est le plan
polaz'}'e de l'autre point , que nous appellerons , & linverse, /e
pble dé ce plan. ‘

27. Enfin , nous appellerons polaires conjuguées d’une sphére
deux drmtes qui , passant par deux péles conjugués de cette sphére,
seront 4 la fois perpendiculaires entre elles et i la droite qui joint
ees deux pdles.

28. THEORIJJME Le péle d'un plan est la commune section
des plans des lignes de .contact de tous les cdnes circonscrits: & .
la sphére qui ont leur' sommet sur ce plan; et réciproquement le
plan polaire dun point est le lieu géométrique des sommets de
tous les cénes circonscrits dont les plans des lignes de contact
passent par cc poini.
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Démonstration. Soient C le centre de la sphere, S le somme
d’'un céne circonscrit , P un quelconque des points du plan de la
ligne de centact, et Q le point de la droite CP ou elle est coupée
par le plan conduit par S, perpendiculairement & cette droite. En
concevant un plan par C, S, P, on-se trouvera exactement dans
le cas des figures 1, 2; on démontrera donc, comme nous I’avons
fait (5), qne les points P, Q sont deux poles conjugués, et que,
conséquemment, le point P est (26) le pole du plan conduit par
Q, perpendiculairement a CP.

29. THEOREME. La polaire conjuguée dune droite est la
commune section des plans des lignes de contact de tous les cones
circonscrits @ la sphére qui ont leurs sommets sur celte droite ;
et, réciproquement , le licu géoméirique des sommels de tous les
cdnes circonscrits & la sphére , dont les plans des lignes de contact
se coupent suivani une droite , est lapolaire conjugude de cette droite.

Démonstration. Une droite D étant située d’une maniére quel-
conque par rapport & une sphére, concevons que, par cette droite,
on fasse passer arbitrairement deux plans P, P/, dont les poles
solent respectivement p, p/; il est aisé de voir (5) que la droite
d , passant par ces deux derniers points, sera (27) la polaite con=-
juguée de D; or, le plan de la ligne de contact de tout céne cir-
conscrit a la sphére, dont le sommet sera sur Pun ou lautre des
deux plans PP, P/, passera (28) par p,ou p/ respectivement, et
réciproquement ; d’ou il suit que le plan de la ligne de contact de
tyout‘ cone circonscrit dont le sommet sera A lintersection D de
ces deux plans, passera a4 la fois par p et p/, et conséquemment
par la polaire conjugude d de D et réciproquement.

30. Il est aisé de voir (27) que , lorsqu’un angle diédre est
circonscrit & une sphére , son arédte et la sécante qui joint les points
de contact de ses faces avec la sphire sont deux polaires conjuguées
Vune & lautre, par rapport i cette sphére. Or, de ld résulte évi-
demment (28) le théoréme suivant.

31. THEOREME. Les draites qui joignent les deux points de
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contact avec la sphére des faces dé tous les angles diédres cir=-
conscrits qui ont leur aréte sur un plan fiae quelivnque., se coupent:
foutes au pble de ce plan et réciprognement , si lés droites qui
joignent- les deux points de contact avec la sphire dés faces dune-
suite danglcs diédres circonscrits passent: toutes: par un méme
point fize, les arétes de ces angles diédres seront toules situées.
sur.le plan polaire Jeé ce point.

§ II:
Des centres , axes et plans dé similitude..

33, Deux spheres; extériéures- 'une & lautre , étant données
dans l'espace, on- peut toujours concevoir. deux. cénes qui soient:
3 la fois circonscrits & 'un et & Pautre. L’axe commun de ces:
déux cones passera par lés centres des deux sphéres; mais, tandis
que le sommet:de 'un sera sur la droite méme qui joint ces deux.
centres , 'axe de Pautre sera sur le prolongement de cette droite,.
an-deld: du- centre de la plus petite.. Pour distinguer ces deux
cénes -I'un de l'avtre , nous dirons. que le-premier est circomserit
intérieurement -, et que : autre. est- circonscrit - extérieurement aux.
deux sphéres. II est clair- que les seetions de- ces- cones par des
plans passant par lés deux centres-seront- (8) des angles eirconserits
aux cercles résultant-de la-section -des- deux spheéres par le méme.
plan.
~ 33. Nous appellerons: angle diddre-ciFconscrit &: déux sphéres, .
extérieures .I'une a l’autre, tout angle diédre dont les faces seront,
Pune -et Vautre , des plans.tangens communs a.ces. deux sphéres..
1L est .aisé.de voir que-ces. angles .diédres sont en méme - temps
circonscrits .4 .l'un- ou & lautre. des deux cénes. cireonscrits- a.ces ,
mémes..sphéresy et que .conséquemment leur aréte passe coastain=
ment, par le sommet de l'un on de I'autre. céne; ces arétes cou-
pent do-ncg, .constamment la.droite qui passe par les centres., et. se

trouvent
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trouvent conséquemment avec clle dans un méme plan , que I'on
congoit devoir diviser I'angle di¢dre en deux parties égales; mais,
tandis que laréte des angles dié¢dres circonscrits & 'un des cones
coupe la droite méme qui joint les centres , I'aréte de ceux qui
sont circonscrits a l'autre cénc coupe le prolongement de cette
droite au-deld du centre de la plus petite des deux sphéres. Nous
dirons, cn conséquence , des angles dicdres de la premiére série,
qu’ils sont circonscrits intérieurement , et de ceux de la seconde
qu'ils sont ¢irunscrits extérieurement aux deux spheres.

34. Nous appcllerons a Vavenir centres de similitude de deux
sphéres les centres de similitude communs & tous les systémes de
deux cercles résultant des sections de ces sphéres par des plans
queicongues passant par la droite qui joint leurs centres. Le centre
de similitude des deux sphéres sera dit interne ou externe, suivant
gw'il sera tel par rapport aux sections circulaires dont il vient
d’étre question. C’est, dans tous les cas, un point semblablement
situé par rapport aux deux spheres.

35. Lorsque deux sphéres sont extérieures 1’'une a l'autre, leurs
centres de similitude interne et externe ne sont autre chose que
les sommets respectifs des cénes circonscrits intérieurement et ex~
téricurement : ce sont aussi les points eommuns de concours des
arétes des angles diddres circonscrits intérieurement et extérieurement.

36. THEOREME. Les centres de similitude externes deirois sphé-
res , prises successivement deux & deux , sont tous trois silués sur une
méme ligne droite; et chacun d'eux se irouve en ligne droite avec deux
des centres de similitude internes ; de telle sorte que ces siz points sont
les Intersections de quaire droites formant un quadrilaiére complet
dont le plar est celui méme qui contient les centres des trois sphéres.

Démonsiration. Cela est évident (12), puisque ces six points ne sont
autre chose (34) que les centres de similitude des cercles résuitant de la
section des trois sphéres par un plan passant par leurs centres.

37. A Vavenir, nous appellerons axe de similitude de trois sphires

toute droite qui contiendra tsois de leurs centres de similitude. Cetig
Tomn. XI. 3
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droite sera dite axe de similitude externe , lorsqu’elle contiendra
les trois centres de similitude externes ; elle sera dite , au contraire,
axe de similitude interne 5 lorsqu’elle contiendra un seul de ces
centres avec deux des centres de similitude internes. Ge sont évi-
demment des droites homologues & la fois par rappert aux trois
sphéres, ce qui justifie leur dénomination.

38. Lorsque trois sphéres sont extérieures les unes aux autres,
on peut toujours, de deux manieres, leur conduire un plan tan-
gent; car ce plan peut laisser les trois sphéres d’un méme coté et
pourra étre appeléde , pour cette raison, plan tangent commun
externe , ou bien il pourra avoir deux des sphéres d’'un méme
coté et la troisiéme de l'autre, et sera dit plan tangent commun
interne ; 4 chaque plan tangent commun il en répondra un autre
symétrique avec lui par rapport au plan qui contient les centres , et
ces deux plans formeront un angle di¢dre circonscrit. 1l y aura doncun
seul angle diédre circonscrit externe et trois angles diddres circonscrits
intérnes ; et leurs arétes ne seront autre chose que ce que nous avons
appelé axes de similitude externe et interne des trois sphéres.

39. THEOREME. Les centres de similitude externes de Guatre
sphéres , prises successivement deux & deux , sont sur un méme
plan , aux intersections de quaire droites , formant un quadri-
latére complet; en outre, en prenant trois de ces centres , appar-
tenant & une méme droite , et conséquemment relatifs aux trois
mémes sphéres prises successivement deux @ deux , ils se trouveront
aussi , avec les irois centres de similitude internes , relatifs & la
quatriéme sphére , comparée tour & {four aux irois premiéres
situés dans un méme plan , aux intersections de quatre droites for-
mant également un quadrilatére complet ; enfin, si lon considére
deux centres de similitude externes dont un appartient & deux
quelconques des quatre sphéres et Uautre aux deux sphéres res-
tantes , ces deux points se trouperont , avec les quaire centres de
similiiude internes , auires que ceux qui appartiennent aux deux
mémes combinaisons de deux sphéres ,-situés dans un méme plan , aux
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tntersections de quatre droites formant encore un quadrilatére complet.
Démonstration. Soient S, S/, §”, 8/ les quatre spheres dont.
il s’agt; désignons respectivement par (S75/), (SeS’) les centres de simi-
litude interne et externe des deux sphéres S, 8/, et soient adoptées des
notations analogues pour toutes nos sphéres , prises deux a deux.

D’abord , d’aprés ce que nous venons de dire (36), les quatre
séries de points

(SeS’y , (S%eS') , (S8”eS) , ] S , 8 ,8
(S%€S") , (S7eSMY, (8"eS') , correspondant s, S, S,

respectivement  J )
(S¢S, (SeS) , (SeS”), aux sphires s”, 8,8 ;

(87eS) 5 (Se8) , (SeS'™), ] (s, 8,8,

seront sur quatre droites; or, ces points ne sont qu'au nombre
de six; ils seront donc aux intersections de ces quatre droites,
qui conséquemment appartiendront 3 un méme plan ; ces six points
seront donc anssi dans ce plan ; ce qui démontre la premiere
partie du théoréme.

En outre , d’apres cette méme proposition (36) , les quatre
séries de points

(Ses”) , (887 , (§7eS) s ,8 ,8 ;

s,

(SeSY) , (SiS#)y , (848, correspondant S ,S , S,
) ) respectivement <
(87¢Sy , (S878"7) , (S87iS), aux spheres S, S, 8",

(S7eS) , (S8, (SiS™) , | s7, 8 , s,

seront en lignes droites; or, ces points ne sont qu'au nombre de
six seulement ; ils sont donc aux intersections de ces quatre droites,
formant conséquemment un quadrilatére complet; ces six points sont donc
dans un méme plan ; ce qui démontre la seconde partie du théor¢me.

Enfin, et toujours d’aprés la méme proposition (36) , les quatre
séries de points
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(8eSY) , (8287) , (S/iS) S , 8,8,

(SeS) , (SiS) , (84iS) correspondant S , 8 , 8,
respectivement {

(S//US///), (SZ'S//) , (SZ'S///) S , 87, s,

aux sphéres

(S7eS"ry, (8iS), (8/S!") S, §n, S,

seront en lignes droites; or, ces points ne sont qu’au nombre de six seule-

\

ment ; ils sont donc aux intersections de quatre droites, formant consé-
quemment un quadrilatére complet ; ces six points sont donc dans un
méme plan ; ce qui démontre la troisiéme partie du théoréme.

40. A Tavenir , nous appellerons plan de similitude de quatre
sphéres tout plan qui contiendra six des douze centres de simili-
tude de ces quatre spheres prises deux & deux, sans que ces six
points appartiennent aux trois mémes spheéres. Ce plan de sinvi-
litude sera dit externe, sil contient les six centres de similitude
externes : il sera dit inzerne , au contraire , s’il contient deux centres
de similitude externes seulement, avec quatre centres de similituce
internes ; enfin , il sera dit mizze, s'il contient trois centres de chaque
sorte. Quatre sphéres ont donc, généralement parlant, un plan de
similitude externe , trois plans de similitude internes, et quatre
plans de similitudé mixtes. 1l est aisé de voir, au surplus, que
chacun de ces huit plans est & la fois homologue par rapport aux
quatre sphéres, ce qui justifie leur dénomination,

§. TIL

Des plans , axes et centres radicaux.

41. Nous appellerons a I'avenir centre radical de deux spléres
le centre radical commvn de tous les systtmes de deux cercles
résultant de la section de ces sphires par des plans passant par la
droite qui joint leurs ¢entres, C’est conséquemment (16) un point
de la droite qui passe par les centres dont la différence des quarrés
des distances i ces centres est égale & la différence des quarrds
des rayons des deux spheéres,
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42. Nous appellerons & Vaveniv plan radical de deuwr sphéres e
pian indéfini, mené perpendiculairement a la droite qui jeint leurs
centres , par leur centre radical ; c’est évidemmment (18) le liev géo-
métrique des axes radicaux de tous les sysi¢mes de deux cercles
résultant de la section des deux sphéres par des plans passant par
leurs centres; d'ou il suit (19) gque, lorsque les deux spheéres se
touchent ou se coupent , leur plan radical n’est autre chese que
leur plan tangent commun, dans le premier cas, et celui de leur
commuie section dans le second.

43. THEOREME. Les tangentes mendes & deux sphéres de tous
bes points et des seuls points de leur plan radical sont égalcs entre
elles ,ou , en d'autres termes , les cones circonscrits de méme som-
met , dont le sommet commun est svur le plan radical , et qui se
terminent & leurs lignes de contact respectives , ont toujours e ont
seuls leurs arétes égales de part et d'autre.

Démonstration. Soient G, C/ les centres des deux sphéres , P
un point quelconque de l'espace , pris pour sommet commun de
deux cénes circonscrits , et O le pied de la perpendiculaire abaissée
de ce point sur la droite quijoint les centres. Par les trois points
P, G, €/, soit conduit un plan; tout sera dans ce plan , comme
dans les Gigures 4 et 5; PG, PC’ seront les axes des deux cones,
ct PT, PT/ en seront les arétes; donc (20), suivant que P sera
ou ne sera pas sur l'axe radical des deux cercles, les droites PT,
PT/ seront égales ou inégales, et réciproquement; or, suivant que
P sera ou ne sera pas sur l'axe radical des deux cercles, ce méme
point seva ou ne sera pas sur le plan radical des deux sphéres;
notre théoréme se trouve donc ainsi démontré.

44. Nous appellerons & Vavenir centre radical de trois sphéres,
le centre radical des trois cercles résultant de leur section par le
plan passant par leurs centres ; et nous appellerons awe radical
des trois mémes sphéres , la perpendiculaire indéfinie mende par
Jeur centre radical au plan qui contient leurs centres.

45. THEOREME. Les plans radicauz de trois sphéres o prises,
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successivement deux ¢ deux , se coupcnt lous irois suivant une
méme droite , perpendiculaire au plan qui contient leurs centres ,
laquelle n’est autre chose que laze radical des trois sphéres.

Démonstration. Si, par les centres des trois sphéres, on congoit
un plan, les intersections avec les trois spheres seront trois grands
cercles, et scs intersections avec les plans radicaux ne seront autre
chose (42) que les axes radicaux de ces trois cercles ; ces axes pas-
seront donc tous trois (21) par un méme point qui sera le centre
radical de ces trois cercles; en menant donc, par ce point, l'axe
radical des trois sphéres, cet axe se trouvera & la fois dans les
trois plans ;" qui conséquemment se couperont suivant cette droite.

46. THEOREME. Les tangentes menées o trois sphéres de tous
les points et des seuls pornts de leur axc radical sont égales entre
elles , ou , en d’autres termes , les cénes circonscrits de méme
sommet , dont le sommet commun est sur laxe radical , et qui se
terminent & leurs lignes de contact respectives , ont toujours et
ont seuls leurs arétes de méme longuenrs

Démonstration. Soient: S, &, 8§ les trois sphéres, R, R/, R"
les plans radicaux respectifs de &/, €7 de 87,8, de S, &, se
coupant dans Faxe radical X; pour que les tangentes menées d’un
méme point P &S/, 8 soient de méme longreur que la tangente
menée de ce point &S ; il sera nécessaire et il suffira (43) que ce
point ‘P -soit a la fois sur les- deux plans 1/, R#; il devra done
éire sur leur commmne section, c'est~a-dire (45) sur l'axe radical
des trois spheres. : .

4. THEOREME. Les siz plans radicaux de quatre sphéres ,
prises successivement: deux & deux , et conséguemment les quatre
axes radicaux de ces mémes. sphéres , prises successivement irois
@ trois se coupent en. un .méme poini..

Démonstration. Soient S, S/, &7 , 8/ les quatre sphéres dont
il sagit,. et solent X, X/, X/, X" les axes radicaux respectifs
de S/, S, S , de S# , S///’ S, de S///, S, S/’ de S’ S, S//;
soient de. plus R/, R#, R”/., respectivement Jes plans radicaux
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de S, 8 ,de §, 8 ,de S, 87 Les deux plans B/, RY se
couperont (45) suivant Vaxe X/ ; pour les mémes raisons, les deux
plans R/, R/ se couperont suivant 'axe X/, ct les deux plans
R/, R# suivant laxe X/, Les trois axes X/ X/ X/ se cou-
peront denc suivant les intersections, deux a deux, des trois plans
R, R7, B/ c’est-a-dire , au méme point; il en devra donc étre de
méme des trois axes X, X/, X/ ; le premier de ceux-ci passera
donc par le point de concours des trois autres, et conséquemment
ils se couperont tous quatre aux mémes points,

48. il suit de la que quatre sphéres étant quelconques dans
Vespace , il existe toujours (46) un point et un seul point duquel me=
nant des tangentes & ces quatre sphéres , ces tangentes , terminées
a leurs points de contact , sont de méme longueur ; ou ce qui
revient au méme, un point tel que les cénes circonscrits qui y
auront leur sommet commun , et qui se termineront & leurs lignes
de contat, auront toutes leurs arétes de méme longueur, Nous appel~
lerons & lavenir ce point le centre radical des quatre sphéres.

SECTION IIIL

Propriétés des cones et des cylindres.

s L

Des droites et plans polaires.

3%

2]

49. Soit un angle diédre circonscrit arbitrairement 3 un céne qui
avra eonségnemment son sommet sur laréte de cet angle ; l'angle
diédre touchera le cdne suivant deux droites , formant un angle
qui sera coupé perpendiculairement en deux parties égales par le
plan qui sera conduit par 'axe du céne et par l'aréte de Tangle
diedre. Cela posé, si 'on coupe le cone par un plan quelconque
perpendiculaire & son axe, ce plan coupera I'ardte de I'angle ditdre
et la droite divisant I'angle de contact en deux parties égales en

deux points qui seront des péles conjugués du cercle résultant de
la section du céne par le méme plan.
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En effet, le plan de la section circulaire coupera l'angle ditdre
suivant un angle circonscrit dont le sommet sera un des points dont
il s’agit; ce méme plan coupera langle de contact suivant la corde
de contact de cet angle circonscrit; et l'autre point sera le milien
de cette corde; or, ce sont précisément la (2) les caracteres de
deux pobles conjuguds.

50. On voit donc qu’en prenant sur les diverses sections circu=
laires du céne une suite de poles situés sur une méme droite passant
par son sommet , leurs conjugués seront aussi sur ume droite
passant par ce méme point. A l'avenir, nous désignerons le systeme
de deux pareilles droiies sous la dénomination de polaires conju-
guées du céne.

S51. Il suit de cette définition (2), 1.° qu’il n’y a aucune droite
passant par le sommet d'un céne qui ne puisse étre prise pour
polaire de ce cone et a laquelleil ne réponde une polaire conjuguée
dont elle est elle-méme la conjuguée; 2.° que de ces deux droites,
Pune est toujours intérieure et lautre extérieure au céne; 3.° que
Paréte de l'angle diédre circonscrit au céne et la droite qui divise
son angle de contact en deux parties égales , sont deux - polaires
conjuguées de ce céne. 4 ,

52. Lorsque , par l'une quelconque des deux polaires conjuguées
d'un céne, on conduira un plan indéfini , perpendiculaire a celui
qui les contient, nous dirons de ce plan qu’il est le plan polaire
de l'autre droite, que nous appellerons, & linverse, la droite po-
laire , ou simplement la polaire de ce plan.

53. H suit de ces définitions (4), 1.° qu'il n'est aucune droite
menée par le semmet d’'un céne qui n’ait son plan polaire, ni aucun
plan, passant. par ce méme sommet qui n’ait sa droite polaire ; 2.®
que la polaire est extérieure ou .intérieure au céne , suivant que le
plan polaire lui est sécant ou ne le rencontre pas; 3.° que laréte de
Pangle diédre circonscrit est la polaire du plan de Pangle de contact;
comme la droite qui divise cct angle en deux parties égales est,
2 linverse, la polaire du plan conduit, par Varéte de 'angle diédre,
perpendiculairement
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perpendiculairement & celui qui contient cette aréte et I'axe du cone.
54. THEOREME. La polaite d'un plan passant par le sommet
d'un cone est la commune section des plans des angles de contact
de tous les angles diédres circonscrits @ ce cone, qui ont leur aréte
sur ce plan ; et réciproquement , le plan polaire d’'une droite passant
par le sommet d'un cdne, est le lieu gloméirique des arétes des
angles diédres circonscrits & ce cdne , dont les plans des angles de
contact passent par cette droite.

Démonstration. Concevons , en effet, par 'un quelconque C des
points de 'axe du céne un plan perpendiculaire 3 cet axe , cou-
pant l'aréte de l'angle diédre circonscrit en un point S , ses lignes
de contact en A, B, la polaire en P, et en Q lintersection du
plan qui contient 'axe et cette polaire avec le plan perpendicu-
laire 3 ce dernier, conduit par laréte de l'angle diddre ; on se
trouvera exactement dans le cas des figures 1, 2 ; doit on con-
clura (5) que SQ est la polaire du point P; et que conséquem-
ment (50, 52) le plan dont SQ est lintersection avec celui de
la figure, est le plan polaire de la . droite dont P est I'intersection
avec ce méme plan.

55. Ce théoréme revient, au surplus , & dire que Iintersection
de deux plans qui passent par le sommet d’un céne est la polaire du
plan qui passe par les polaires de ces deux-la, et réciproquement.

56. En considérant le cylindre comme un céne dont le sommet
est infiniment éloigné, on est conduit & appeler polaires conjuguées
d’un cylindre deux droites situées dans un méme plan avec l’axe
du cylindre , et paralleles & sa direction, telles que le rayon de
ce cylindre est moyen proportionnel entre les distances de ces deux
droites a cet axe. On appelle aussi plan polaire d'une droite ,
parallele & I'axe d’un cylindre un plan perpendiculaire & celui qui
contient cette droite et cet axe, passant par la polaire conjuguée
de cette méme droite. A l'aide de ces définitions , on peut (54)
établir le théoréme suivant :

57. THEOREME, La polaire d'un plan paralldle & 'axe dun

Tom. XI. 4
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eylindre est la commaune section des plans des lignes de contact
de tous les angles diédres circonscrits au cylindre dont les arétes
sont sur ce plan ; et réciproquement’, le plan polaire d'une droite
paralléle & l'axe d'un cylindre est le liew géoméirique des aréics
des angles diédres circonscrits au cylindre , dont les plans des
lignes de contact passent par ceite droite. '

§. 1L
Des azes et plans de similitude.

58. Nous dirons, & lavenir, qu’un angle diédre est circonscrit
3 deux cones de méme sommet, lorsque ses faces seront des plans
tangens communs a ces ‘deux cénes, ayant , l'un et Pautre , les
deux coénes du mémec c6té, ou l'un et Pautre les deux cénes de
différens cétés; Pangle ditdre circonscrit sera dit extéricur , dans le
' premier cas, et intéricur dans le second. Dans I'un et l'autre cas,
Varéte de I’angle diédre passe évidemment parle sommet commun
des deux cénes, et se trouve dans le méme plan avec leurs axes.
. 9. LEMME. 8i deux sphéres, variables de grandeur et de
situation , sont continuellement inscrites & deux cdnes de méme
sommet , leurs cenires de similitude , tant interne qu'externe , ne
sortiront pas de deux droites fixes, passant par le sommet commun
des deux cdnes, et situées dans le méme plan avec leurs azes.
- Démonstration. Soit S le sommet commun des deux coénes. Soient
A, B les deux spheres dans leur premier état; E, I leurs centres
de similitude externe et internc respectivemnent. Soient A/, B/, ces
sphéres dans leur second état ; E/, 1/ leurs centres de similitude
externe et inferne , respectivement. Soient enfin e , 7 les centres
de similitude externe et interne des deux spheres A7, B. 1l est clair
que S sera (35) le centre commun de similitude externe soit des
sphéres A, A/, soit des sphéres B, B
Cela posé, en considérant d’abord les trois spﬁéres A, A’ B,
on verra (36) que trois points ¢ , ., S sont en ligne droite, et
qu’il en est de méme .des wois points 7; I, S:
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En considérant ensuite les trois spheres B, B/, A’ , on verra
pareillement (36) que les trois points E/, ¢, S sont en ligne droite,
et qu'il en est de méme des trois points I, 7, S.

La droite qui contient les irois points ¢ , E, S et celle qui
eontient les trois points E/, ¢ , S, ayant ainsi deux points com-
muns e, S; elles doivent ne faire qu’une seule et méme droite;
et conséquemment les deux points E, E/ doivent étre en ligne
droite avec le point S. N

Parcillement , la droite qui contient les trois points 7, I, S, et
celle qui contient les trois points I/, 7, S, ayant ainsi deux points
communs Z, S; elles doivent se confondre en une seule et méme
droite ; et conséquemment les deux poixits I, ¥ doivent étre en
ligne droite avec le point S.

La proposition se trouve donc ainsi complétement démontrée.

60. Nous appellerons & Vavenir aae de similitude de deux cénes
de mémes sommets, la droite qui contient les centres de similitude
de méme dénomination de tous les systtmes de deux spheres res-
pectivement inscrites a ces deux cénes. Ces axes de similitude seront
dits Znternes ou exziternes , suivant qu’ils contiendront les centres
de similitude internes ou les centres de similitude externes des
systémes de sphéres dont il s’agit. Ce sont deux droites passant par
le sommet commun des deux cénes , situdes dans le méme plan
avec leurs axes, et dont la direction ne dépend uniquement que
de la grandeur et de la situation respective de ces deux cénes (*).

61. 1l est aisé de voir que, lorsque les deux cdnes sont extérieurs
Yun & lautre, leurs axes de similitude, interne et externe, ne sont
autre chose (58) que les arétes des angles ditdres, tant intérieur
qu’extérieur , circonscrits & ces deux cones.

62. THEOREME. Les axes de similitude externes de trofs cones
de méme sommet , pris successivement deux & deux , sont lous 17015

(*) La dénomination d’axe de similitude est impropre , attendu qu’il n’y a de cones
semblables que des cdénes €gaux ; aussi ne Pemployens-nous que par anzlogie.
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dans un méme.plan ; et chacun d'eux est dans un méme plan avec
deux des azes de similitude internes ; de telle sorte que ces siw
droites sont les iniersections de quatre plans Jormant un angle
tétraédre complet.

Démonstration. Soit O le sommet commun des trois cénes }
auxquels soient respectivement et arbitrairement inscrites trois spheres
S, 8, §”. Soient E, E/, E/ | respectivement , les centres de simi-
litude externes de S/, 8, de S#, S, de S, S/ ;et soient I, T’ les
centres de similitude internes de S/, 87, de S, S respective-
ment ; OE, OE/, OE” seront (60) les axes de similitude externes
des trois cénes pris deux 4 deux, et OI, Ol seront deux de leurs
axes de similitude internes.

Or (36), les points E, E/, E/ étant en ligne droite, il s’en-
suit que les axes OE, OE’, OE” sont dans un méme plan. De
plus, E/# étant (36) en ligne droite avec I , I’ ; il sensuit que
Faxe OE/ est dans un méme plan avec les axes OI, OV, ce qui
démontre complétement le théoréme.

63. Nous appellerons a Vavenir plan de similitude de trois cones
de méme sommet, tout plan qui contiendra trois de leurs axes de
similitude. Ce plan de similitude sera dit externe’, s'il contient les
trois axes de similitude externes; il sera dit inferne, au contrairc 5
s'il contient un seul axe de similitude externe -avec deux axes de
similitude internes. Trois c6nes ‘de méme sommet ont donc quatre
plans de similitude , dont un seul externe et trois internes.

64, En considérant des eylindres dont les axes sont paralléles
comme des cOnes dont le sommet commun est infiniment éloign¢ ,
on est conduit 3 appeler axe de similitude de -deux cylindres, dont
les axes sont paralltles , un paralléle 2 la direction commune de
ces axes, tellement situde dans leur plan que ses distances aux
axes des deux cylindres sont preportionnelles 3 leurs rayons res-
pectifs. L’axe de similitude est d’ailleurs dit inZerne ou externe,
suivant qu’il se trouve situé entre les axes des deux cylindres, ou
au-deld de lintervalle qui les sépare. Lorsquc les deux cylindres
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sont extérieurs 'un & l'autre , ces' deux droites ne sont autre chose
que les arétes des angles diédres circonscrits intérieurement et
extérieurement a ces ‘deux eylindres. -

De tout cela, iL est aisé de déduire le théordme suivant. ,

65. THEOREME. Les axes de similitude externes de irois
cylindres , dont les azes sont paralléles, pris successivement deuz
@ deux , sont tous trois dans un méme plan; et chacun d'eux est
dans un méme plan avec deux des axes -de similitude internes ;
de telle sorte que ces siz droites sont aux intersections de quatre
plans formant un prisme iétraédre complet. ‘

66. On comprend aisément, d’aprds cela, ce que nous voudrons
dire & l'avenir, lorsque nous parlerons des plans de szmzlzluda,
tant internes qu’externes, de trois cylindres ayant leurs axes pa=
ralltles ; et on voit en méme temps que ces plans sont au nombre
de quatre , dont trois internes et un seul externe,

§. IIL
Des axes et plans radiceuws.

67. LEMME. Si deux sphéres sont respectivement inscrites &
deuzx cénes de méme sommet , de telle sorte .que . les arétes des
deux cénes, terminées & leurs: lignes de contact avec les sphéres,
soient dgales de part et dautre ; qud,que soit le systéme des deuw
sphéres , elles auront toujours le méme plan radical , passant par
le sommet commun des deuzx cones.

Démonstration. Soit S (fig. 6 ) le sommet commun_des deux
cones; et concevons que le plan de la figure soit, celyi de leurs
axes. Soxent A, A’ les points ot ce plan coupe les lignes de contact
des sphéres , dont mous supposons les centres en C, C/. A cause
des tangentes égales SA., SA’, le point S est (20) un des points
de l'axe radical des cercles resultant de la section des deux sphéres;
et par conséquent la perpendiculaire SO sur .CC/ est Paxe radical
de ces deux cercles,
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H reste présentement A faire voir que pourvu qu’on ait cong=
tamment SA=S8A’, quels que soient dailleurs les deux cercles,

Yaxe radical SO demeurera invariable. Or, c’est une chose facile

; i 1 ; d les oo, ¢
a apercevoir. En effet, quels que soient ces deux cercles ==, =
seront constans ; et il en sera donc de méme du rapport de ces

deux fractions , lequel, i cause de SA==SA’, se réduit simplement 3
SC

so’
ment parallele 3 elle-méme ; elle sera donc aussi constamment
perpendiculaire 3 la droite fixe SC qui sera ainsi I'axe radical
commun & tous les systtmes de deux cercles qui pourront étre
décrits sous les conditions prescrites.

Donc aussi le plan perpendiculaire a celui de la figure , conduit
par la droite fixe SO sera le plan radical commun & tous les sys-
témes de deux sphéres inscrites respectivement aux deux cdnes,
de telle sorte que leurs lignes de contact soient a la méme distance
du sommet commun S; ce qui démontre la proposition annoncée.

68. A lavenir , nous appellerons plar radical de deuz cones de
méme sommet le plan radical commun i tous les systémes de spheres
inscrites aux deux cones de telle sorte que leurs lignes de contact
avec [es deux cénes soient 3 une méme distance quelconque de
deur sommet comwuiun. Lintersection de ce plan avec ecelui des
axes sera ce que nous- app@lerons ’aze radical des deux cnes.
Il est aisé de voir que, lorsque les deux cones se touchent ou se
coupent , leur plan radical n’est autre chose que leur plan tangent
commun ou éelui de leurs communes sections.

69. THEOREME. Si, par le sommet commun de deux cénes ,
on méne arbitrairement une droite dans leur plan radical ; et que
par cette droite on conduise des plans tangens aux deuz cénes ,
les lignes de contact de ces plans feront des angles égauzx avee
la droite dont il s’agit; et réciproquemeni , si les lignes de contact
de deux plans respectivement tangens & deuwx cdnes de méme som-

ce dernier rapport étant donc constant ; CC' sera constam-
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met font des angles égaux avec Uintersection de ces deux plans ,
cetle intersection sera siluée sur le plan redical des deux
cdnes.

Démonstration. Soit C le sommet commun des deux cénes, et
soit P un autre point quelconque , extérieur & l'un et a lautre.
Par CP soient conduits respectivement des plans tangens aux deux
cbnes; soient inscrits & ces mémes cénes deux spheres telles que
les distances de lcurs lignes de contact au sommet commun soient
égales 4 CP ; ces lignes de contact couperont celles des plans tan-
geﬁs; soit A Pune des intersections sur I’un des cones , et A’Pune
~des intersections sur l'autre céne ; on aura par construction CA
=CA/=CP ; et les droitess PA , PA’ seront des tangentes aux
deux spheres. ' .

Cela posé, suivant que ces tangentes PA, PA’ seront égales ou
inégales, le point P sera ou ne sera pas (42) dans le plan radical
des deux sphéres, qui est aussi celui des deux codnes et récipro-
quement; et conséquemment CP sera ou ne sera pas sur cé plan ;
mais, suivant que les mémes circonstances auront ou n’auront pids
licu, les triangles isoctles ACP , A/CP auront leurs bases égales
ou inégales et réciproquement; donc enfin , suivant que CP sera
ou ne sera pas sur I'axe radical des deux cones, les angles PCA,
PCA’ seront égaux oun inégaux et réciproquement.

9o. THEOREME. Les plans radicauxw des srois cSnes de méums
sommet , pris successivement deux & deux , se soupent fows trois
suivant une méme droite, '

Démonstration. Soient C, C/, C/ les trois cones , X, X/, X#,
respectivement , les plans radicaux de G/, G#, de C7, G, de C, ¢/,
et soit O Dintersection des deux premiers. Si par cette droite O
on mene respectivement des plans tangens aux trois cénes ; ces
plans détermineront sur eux trois lignes de contact T, T/, T/ ;
et par ce qui vient d’étre dit (69), I'angle de O avec T sera égal
aux angles de la méme droite avec T, T/ ; ces deux derniers
seront donc aussi égaux entre eux ; O est donc aussi sur X% ;



32 THEORIE DES CONTACTS
et par conséquent X, X/, X/ se coupent suivant une méme droite,
comme l'annonce le théoréme.

71. Nous appellerons & V'avenir axe radical de trois cdnes de méme

sommet, la commune section des plans radicaux de ces trois cones
pris successivement deux & deux.

72. En considérant les cylindres dont les axes sont paralléles
comme des cnes qui ont un méme sommet infiniment éloigné ,
on est conduit a appeler axe radical des deux cylindres , une
parallele & leurs axes situés dans le plan de ces axes, de telle
mani¢re que la différence des quarrés des distances de cette droite
aux axes des deux cylindres est égale & la différence des quarrés
de leurs rayons. On appellera pareillement plan radical des -deux
mémes cylindres le plan perpendiculaire & celui de leurs axes con-
duit par leur axe radical. Si les cylindres se touchent ou se coupent,
leur axe radical n’est autre chose que leur plan tangent commun,
ou celui de leurs communes sections.

~Au moyen de ces définitions , et de ce qui a été établi (69, 70),
nous aurons les deux théordmes suivans ;

73. THEOREME. Les lignes de . contact avec deuw cylindres,
dont les axes sont paralléles , de deux plans tangens qui partent
dune méme droite paralléle & ces axes, tracée comme I'on voudra
sur le plan radical des deux cylindres , sont également distantes
de cette droite; et réciproquement , si les lignes de contact des
plans tangens aux deux cylindres sont dgalement distantes de
l intersection de ces plans , cetie intersection sera sur le plan radical
des deux cylindres. .

74. THEOREME. Les plans radicauz de trois eylindres, dont

les axzes sont paralléles , pris successivement deux & deux , se
coupent tous trois suivant une méme droite,

75. Nous appellerons & l'avenir axe radical de irois cylindres,
dont les axes sont paralléles, la commune section des plans radi-
caux de ces trois cylindres, pris successivement deux i deux.

SECTION
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SECTIQN 1V,
Propriétés des cercles sur la- sphére.

§ L
Des pdles et arcs polaires.

76. Nous appellerons & Davenir péles conjugucs d’'un cercle de:
la spheére les deux points de sa surface ol elle est rencontrée par
deux polaires conjugudes d’un céne qui , ayant son sommet au
centre de la sphére, passera par ce cercle, Si, par I'un.quelconque
de ces deux péles, on conduit un arc de grand cercle , perpen-
diculaire & celui qui les contient tous deux ; nous dirons que Pautre
point est le pdle de cet arc, que nous appellerons, a linversc,.
Yarc polaire de ce point.

77. THEOREME. Le pble dun arc de grand cercle est Ik
commune - section des arcs de grands cercles joignant les pornts
de contact de tous les angles sphériques circonscrits qui ont leur
sommet sur cet arc; et réciproquement , larc polaire d'un point
est le lieu géométrique des sommets des angles sphériques eircons
crits , de maniére queles arcs de grands cercles qui joignent leurs
points de contacts , passent par ce point.

Démonstration. Cest une suite évidente de ce qui a été dit ci-
dessus (54).

78. En supposant le rayon de la sphire infini, on . retombe
sur le théoréme démontré (5)..

Tom. XI.". 55
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& IL

Des centres et axes de similitude.

b}

~9. Nous appellerons 4 Vavenir centre de similitude de deux
cercles de la sphere, le point de sa sarface ou elle sera rencontrée
par I'un des axes de similitude de deux cones qui, ayant leur
sommet commun au centre de la sphére, passeraient par ces deux
cercles. Ce centre de similitude sera dit interne ou externe, sui-
vant que l'axe de similitude des deux cones, sur lequel il se trou-
vera situé , sera lui-méme interne ou externe. Si les deux cercles
sont 1'un hors de l'autre , leurs deux centres de similitude ne' seront
autre chose que les sommets des deux angles sphériques circonserits
_tant intérieurement gu’extérieuremem aux .deux cercles,

80. Comme deux grands cercles d’une sphere se coupent tonjours
en deux points opposés, il s’ensuit que deux cercles d’'une spheére
ont toujours , & proprement parler , deux centres de similitude
internes et deux cemntres de similitude externes , mais, pour plus de
simplicité , nous n’en considérerons qu'un seul de chaque sorte.

81. THEOREME. Les centres de similitude externes de trois cercles
d'une méme sphére, pris successivement deux & deux, sont tous
irois situés sur un méme arc de grand cercle 5 et chacun deux
se Irouve aussi sur un méme arc de grand cercle avec deux des
centres de similitude internes ; de telle sorte que ces six points

sont les intersections de quatre arcs de grands cercles formant un
guadrilatére sphérique complet.

Démonstration. Ge théoréme est une suite évidente de ce qui a
été dit ci-dessus (62).

82. Nous appellerons & Vavenir axe de similitude de trois cercles
d'une sphére , tout arc de grand cercle qui contiendra trois de
leurs centres de similitude ; cet axe de similitude sera dit exterae,
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¢'il contient les trois centres de similitude externes; jl sera dit
interne , au contraire , il contient un de ces centres , avec deux
des centres de similitude internes. Trois cercles d’une sphére ong
done quatre axes de similitude : un externe et trois internes,

83, Au moyen de notre théoréme (81), et de ce qui a été ob-
servé (79) , rien ne sera plus aisé que d’assigner les centres de
similitude tant internes qu'externes de deux cercles d'une sphere ,
-dans toutes les situations o ces cercles pourront se trouver l'un
par rapport & l'autre. On pourra donc aussi , sans plus de difficulté,
construire les quatre axes de similitude de trois cercles quelconques
d’'une sphére, et cela par un procédé tout-d-fait analogue a. celui
qui a été indiqué (14, 15).

84. Si Ton suppose que le rayon de la sphére devient infini,
©n retombe sur le théoréme déja démontré (12),

§. ML
Des centres el axes radicauz,

B5. Nous appellerons & Vavenir centre radical de deux cercles
«d’une sphére , le point ol sa surface est rencontrée par l'axe ro-
dical de deux cdénes qui , ayant leur sommet commun au cenire
de cette sphére, passeraient par ces deux cercles. L’aze radical
des deux mémes cercles sera l'arc de grand cercle perpendiculaire
a celui qui joint leurs pdles, condnit par leur centre radical ; c’est
¢videmment (68) l'intersection de la surface de la sphére avec le
plan radical des deux céues. Il est dailleurs facile de voir que ,
Jorsque les deux cercles se touchent ou se coupent, leur axe ra-
dical n’est autre chose que V'arc de grand cercle qui les touche
tous deux ou qui.passe par leurs intersections.

86. THEOQREME, Les arcs de grends cercles tangens & deu%
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cercles d'une sphére , menés de tous les poinis et des seuls poinis:
de leur axe radical ; et terminés & leurs points de contact., sont
de méme. longueur.

Démonstration. Clest: une suite évidente de ee qui.a é1é der-»
montré ci-dessus. (6g).

87. THEOREME. Les. axes radicaux de trois cercles de la
sphére , pris successivemeni deux & deux , se coupent lous. trois
au méme. point.

Démonstration. Clest. une. suite évndente de ce qui a été démontré
ci-dessus (70).

88. Nous appellerons a V'avenir. centre. radical de trois cercles.
d’une sphére, le point de concours des axes radicaux de ces trois
cercles pris successivement deux i deux. On congoit que ces. trois
cercles doivent aussi se couper. en un.point.opposé de la sphire ;
de maniére qua proprement. parler , les trois mémes cercles d’une
sphére ont- deux centres. radicaux situés aux deux extrémités d’un.
méme diamétre, de cette sphére.

89. Au moyen de notre théoréme (87), et dé ce qui-a- été ob—
servé (85), rien ne sera plus aisé que d’assigner l'axe radical de
deux cercles de la sphére, quelle que puisse étre d’ailleurs leur.
situation respective. On pourra donc aussi, sans.plus de difficulté,
construire le centre radical de trois cercles de la sphére, de quel-.
que maniére d'ailleurs que ces cercles puissent étre posés-l'un par
rapport 4 lautre; et cela par.des procédés tout-a-fait analogues 2
ceux qui ont été indiqués (23, 24

9o. Si l'on suppose le rayon de la sphére infini, lés théorémes

gue nous venons d’énoncer (86, 87) deviénpent précisément ceux .
qui ont été démontrés ci-dessus (20, 21)..

SECTION
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SECTION V.

Théorémes et problémes sur les contacts,

§. L

Contacts des cercles , et eercle tangent & trois autres sur un plan,

o1. Nous appellerons & Tavenir polaires de similitude de deux
cercles , deux droites ayant pour pole commun , par rapport i
ces deux cercles, l'un de leurs centres de similitude ; ces polaires
seront dites d’ailleurs Znternes ou” externes , suivant ciue le centre
de similitude qui cn sera le péle commun sera lui-méme interne
ou externe.

92. Chacun des deux centres de similitude de deux cercles
étant (g) un point & la fois semblablement situé par rapport a ces .
deux cercles ; et les polaires des points homologues étant évidem<
ment des droites homologues; il s'ensuit que les polaires de simi-
litude , soit internes soit externes , de deux cercles sont des droites
semblablement situées par rapport a ‘ces deux cercles ; c'est-3—
dire , des droites dont les distances aux centres des deux cercles
sont respectivement proportionnelles a leurs rayons. C’est d’ailleurs
une chose que l'on parviendrait aisément 4 établir d’une maniére
directe.

93. THEOREME. Dans tout systéme de deuxz cercles, les po-
laires de similitude internes sont également distantes des polaires
de similitude externes , de telle sorte qu’il existe une méme per-
pendiculaire & la droite qui joint les centres également distans
des unes et des autres.

Démonstration. Soient ¢, ¢/ ( fig. 7, 8) les centres de deux

Tom. X1, n° 11, 1. aoidt 1820, 6
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cercles dont les centres de similitude , interne et externe , soient
respectivement I, E, et dont les polaires de similitude coupent la
droite qui joint les centres; savoir :_les internes en 7, i, et les
externes en e , ¢. D’aprés la situation de ces différens points,

nous aurons (1), en désignant par‘ R , R’ les rayons des deux
cercles

¢i:R::R:c1, c’z":R’r::B’:c’I,
B:ce::cE:R; "Bl .¢le'::c'E: R
&’91“1 , en multipliant par ordre , et réduisant,
ci:ce::cE:cl ; i iclel s c’lj.‘..: ¢l ;
de la on tire
ci—ce:cB—cl:.:ci:cE ; §'ii4-cle . ’Etc'l: el i ¢/B
<'est - & = dire ;
el:Bl::ci:cEy | € :El::¢/i’:¢E ;
mais on a aussi (1, Q)
¢:R:: R : 1,
R : c’I".: i R,
cdl: R ;. c-I R ;
R :cE:: R c/E;

d'od, en multipliant par ordre et réduisant,
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ct:cE:: ¢t :¢/E ;
la comparaison de cette proportion avec les deux précédentes donne
el :El:: ¢t/ :El ;

donc e/=e¢/i/ ; d'olt on peut conclure encore e’=¢/i, Donc , si O est
le milieu de /7’ , ce sera aussi le milieu de e¢/ ; et par conséquent la
perpendiculaire conduite par O, a la droite qui joint les centres,
sera a la fois également distante et des deux polaires de simiiitude
internes et des deux polaires de similitude externes.

94. T HEOREME. La perpendiculaire & la droite qui jointles
centres de deux cercles , qui est & la fois également distante de
leurs polaires de similitude internes et de leurs polaires de simi-
litude externes , n'est autre chose que l'axe rzdz’cal de ces devx
cercles.

Démonstration. On a, par ce qui précdde,

R*=ce .cE=ce(cc/cE) ,

Ri=¢le . cE=ce/(cE—cc’) ;

donc

—R’=cc!(ce-}-c'e’)+c’'E . ce—cE . c’e’

mais, parce que les points ¢, ¢/ sont homologues dans les deux

cercles 5 et que le point E est homologue par rapport & tous
deux , on doit avoir

cE:c/E::ce:cle
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cE .ce/=c/E . ce ;
donc, on aura simplement,
R*—Rrr=cc/(ce4-c'e’)
mais , & cause de Oe=O0¢’, on a

cet-c'e/=(0e+tce)—(0e/—c’e’) ,
ou
ce4-c’e’! =0c—0¢ ;
on a dailleurs

cc/=0c+40¢’ ;
donc enfin

R*—R"*=0c}0¢)(0c—0c’) =0c"—0c" ;
donc enfin (18) la perpendiculaire menée par le point O 2 la droite
qui joint les centres est P'axe radical des deux cercles.

95. Voila donc une maniere fort simple de construire I'axe ra-
dical de deux cercles , lorsqu’on connait déja leurs polaires de
similitude , soit internes, soit externes.

96. THEOREME. Laze radical de deux cercles est placé, par
rapport & tout cercle qui les touche tous deux , de la méme ma-
nidre que le sont, par rapport & ces deux cercles, leurs polaires
de similitude 5 savoir : leurs polaires de similitude externes , si
le troisiéme cercle touche les deux autres de la méme maniére,
et lcurs polaires de similitude internes, si, au contraire , ce troi-
siéme cercle touche les deux autres d'une maniére différente. D'ou
il suit que laxc radical de deux cercles est une droite sembla-
blement placée par rapport a tous les cercles qui les touchent
tous deux; pourvu que chaque cercle soil toujours touché de la méme
maniére par tous ceuz-la.
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Démonstration. Soit C le centre d’'un cercle touchant de¢ la méme
maniére ( fig. 9, 10, 11, 12 ) et d'une mani¢re différente ( fig.
13, 14), en £, ¢/ deux autres cercles dont les centres sont ¢, ¢/,
et dont le centre de similitude externe est K (6ig. 9,10, 11, 12),
ou dont le centre de similitude interne est I (fig. 13, 14 ).
Les points #, #/ étant (g) des centres de similitude, de méme
dénomination ( fig. 9, 10, 11, 12 ) et de dénomination contraire
( fig. 13, 14); ces points doivent sec trouver , avec le point B
(fg. 9, To, 11, =) et avec le point I ( fig. 13, 14), sur
une méme ligne droite , qui n’est autre (13) que laxe de simi-
litude externe ( fig. 10, 11, 12 ) ou 'un des axes de similitude
internes (fig. 9, 13, 14 ) de nos trois cercles; et qui doit con=-
séquemment (13) étre semblablement placée par rapport & ces trois
cercles ; donc, le péle P de cette droite, par rapport au cercle
touchant, doit étre placéd , 4 l'dgard de ce cercle , de la méme
mani¢re que le sont les poles p , p/ de la méme droite , par rapport
aux cercles touchés, relativement & ces derniers. D’un autre cété,
le péle P est (20) un point de Il'axe radical des deux cercles
touchés; et les points p , p/ sont respectivement (7) des points
des polaires de similitude de ces deux cercles. Or , lorsque , par
des points homologues de plusieurs figures semblables , on méne
des droites qui font des angles égaux avec des droites homologues
de ces figures, les droites, ainsi mendes sont elles-mémes homo-
logues ; pnis donc que l’'axe radical et les deux polaires, comme
droites paralléles, font des angles égaux avec la droite ##/, homo-
logue & la fois par rapport & nos trois cercles, et qu'ils passent
respectivement par les points homologues P, », p/, il sensuit
gne l'axe radical des deux cercles touchés est situé , par rapport
au cercle touchant, de la méme maniére que le sont, par rapport
aux deux autres, leurs polaires de similitude respectives.
97. Nous appellerons & lavenir pdle de similitude d’un cercle ,
dans le systéme de trois cercles, le péle de 1'un quelconque des
axes de similitude de ces trois cercles , pris par rapport 3 ce cercle.
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Chacun des cercles du systtme a donc ainsi quatre podles de simi-

litude ; savoir ; un eaterne, un interne et deux miztes.

08. Il est aisé de voir que ’un quelconque de ces péles, pour 'un
quelconque des trois cercles , est toujours (7) lintersection de
deux polaires- de similitude obtenues pour ce cercle , en le com=-
parant tour & tour aux deux autres. Ces polaires sont au nombre
de quatre ; paralltles deux i deux, et formant ainsi un parallé~
logramme , dont les sommets sont les quatre péles dont il sagit. Le
pole de similitude externe est l'intersection des deux polaires de
‘similitude externes ; le podle de similitude interne est lintersection
des deux polaires de similitude internes; enfin , chacun des poles
de similitude mixtes est l'intersection d’'une polaire de similitude
externe et d'une polaire de similitude interne.

00. Pour pouvoir désigner et différencier commodément entre

eux ces divers péles , nous adopterons les notations suivantes :
soient ¢, ¢/, ¢/’ les trois cercles;

1.> Nous aurons, pour ¢ comparé & ¢/, une polaire de simi-
litude externe , que nnus désigqerons par (c., ¢/) et une polaire
de similitude interne que nous désignerons par (c; , ¢/). Nous
aurons de méme , pour ¢ comparé & ¢/, une polaire de similitade
externe , que mnous désignerons par (¢, , ¢”/), et une polaire de sie
militude interne que nous désignerons par (¢;, ¢/).

2.° Nous aurons, 'pour ¢’ comparé a ¢, une polaire de simi=
litude externe, que nous désignerons par (¢/,, ¢/#), et une polaire
de similitude interne , que nous désignerons par (¢/;, ¢/). Nous
aurons de méme , pour ¢/ comparé & ¢, une polaire de similitude
externe , que nous désignerons par (¢/,, ¢), et une polaire de si=
militude interne , que nous désignerons par (¢/;,¢).

3.° Nous aurons enfin, pour ¢/ comparé 4 ¢, une polaire de
similitude externe, que nous désignerons par (c";,,c), et une po-
laire de similitude interne, que nous désignerons par (¢”;, ¢). Nous
aurons de méme , pour ¢/ comparé a ¢’, une polaire de similitude
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externe , que nous désigunerons par (¢/,, ¢/) , et une polaire de
similitude interne, que nous désignerons par (¢//;, ).

On voit, d’aprés ces notations , que , par excmple , les quatre
polaires pour ¢ seront

(CC » c’) 9 (0‘) L"/) ’ (ci , C/) , (ci , c//) :

et il en sera de méme pour les deux autres cercles.

Pour designer un pdle de similitude, ou Vintersection de deux
polaires de similitude, relatives & un méme cercle, nous sépare-
rons par une virgule les symboles qui désigneront ces deux po-
laires , en renfermant le tout entre deux crochets; ainsi , par

exemple, les quatre podles de similitude relatifs & ¢ seront désignée
comme il suit,

[("'c s €) 5 (e, )],
[le;s ¢) s (e, c”)] )
[(";e ’ c’) ’ (c 3 c”)] )

[(ci b) c/) 9 (ce H C”)] .

et il en sera de méme des autres.

Nous continuevons enfin & désigner par E, E/, E/, les centres
de similitude externes, et par I, I/, 1/ les centres de similitude
internes respectivement relatifs & ¢/ et ¢/, ¢/ et c, c et et
nous désignerons les axes de similitude par les trois lettres qui
représentent les centres qui s’y trouvent situds, écrites de suite et
renfermées entre deux parenthéses , en cette manitre (EE/E”),
(EV1vy , (IEAY) , (IVE/),
~ Rien ne sera plus aisé, d’'aprés cela, que de former le tableau
des poles de similitudes qui , pour chaque cercle, répondent 3 chacun
de ces axes : voici ce tableau,
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EEE) s [(ce, ), (cer 6], [ees ), (e )] 5 [(7e10) 5 (s )]s
EV) 5enleir €) 5 (i e)], [(er ), (s, 0015 (€74 €) 5 (e )]
AEY) swf(er, e, (eere”)], (e €)5 (i e)], e €) 5 (67 )]
(AVE") 5ellees €), (e, 6], [(¢5 €7) 5 (¢%er €)1, [ €), (6735 )]-

100. THEOREME. Dans le systéme de trois cercles, les pbles
de similitude relatifs & chaque axe de similitude sont des points
semblablement placés par ravport a& ces trois cercles.

Démonstration. Nous avons déja vu (13) que chacun des axes
de similitude du systtme de trois cercles est une droite a la fois
semblablement située par rapport a ces trois cercles ; et comme
il est d’ailleurs évident que les poles des droites homologues, sont des
points homologues , la proposition se trouve aiusi démontrée.

101. On peut, en général, concevoir huit cercles qui touchent
3 la fois les trois mémes cercles donnés. Pour rendre la chose
évidente , prenons un cas fort simple ; concevons que ces trois
cercles, de méme rayon, aient leurs centres situés aux trois scm-
mets d’un triangle équilatéral, et soient extérieurs les uns anx
autres. 1.° On pourra concevoir deux cercles dont 'un les touche
tous. trois extérieurement, tandis que l'autre les enveloppera tous
trois ; cela ne se pourra que d’une maniére unique ; et , dans
Yun ct dans lautre cas, les trois cercles se trouveront touchés de
la méme maniére par le quatrieme. 2.° On peurra concevoir deux
cercles , dont l’'un touche deux des cercles donnés extérieurement
et enveloppe le troisiéme ; tandis qu'au contraire , l'autre enveloppera
les deux premiers, et touchera le troisidéme extérieurement ; mais
ici, chaque cas pourra arriver de trois maniéres différentes , ce

quien fera six, dans chacun desquels deux cercles seront touchés
de
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de la méme  manitre, et le troisitme d’une manidre différente ;
on aura donc, en effet, huit cercles tangens i la fois aux trois
cercles donnés.

Mais il faut remarquer que ce nombre de huit pourrait se trouver
réduit , dans' certains cas, d’aprés la grandeur et la situation res-
pective des cercles donnés. Il pourrait méme se faire qu’aucun
cercle ne put les toucher tous trois; et c’est, par exemple, ce
-qui arriverait si, ces trois cercles étant inégaux, le plus petit se
trouvait intérieur au moyen, et celui-ci au plus grand.

102. THEOREME. Le centre radical de trois cercles est si-
tué, par rapport & un quatriéme cercle qui les touche tous trois,
de la méme maniére que le sont , par rapport & ces cercles’, leurs
poles de similitude respectifs 5 savorr : les pbdles relatifs & laxe
de similitude externe , si les trois cercles sont touchés de la méme
maniére par le quatriéme ; et les pbles relatifs & l'un des axes de
similitude internes , si Pun des cercles n’est pas tauché de la méme
mantére que les deux autres ; pourvu que , dansce dernier cas, on
choisisse celui des ames de similitude qui - contient le centre de
similitude externe des deux cercles touchés de la méme manitre
~ par le quatriéme cercle.

Démonstration. Soient ¢ , ¢!, ¢/ les trois cercles touchds , C
le cercle touchant , X/, X/ les axes radicaux de ¢ et ¢/, de ¢ et
¢’ , respectivement; soient de Plus a’, 2/’ les polaires de ¢ rela—
tives & la nature du contact , ‘sotent enfin p le péle de ¢ et P
le-centre radical des trois cercles; de maniére que p soit Pinter-
séction de 27/, 2/ et P .celle de X/, X”. Draprés ce qui a été
démiontré (g6) z/, X sont des lignes homologues de ¢ et C; et
il en est de méme de 2/, X#; donc le point P, intersection de
X’ et X/, est placé, par rapport 3 C, de la méme maniére que
Vest ;- par rapport 3 ¢, le point p d'intersection de 2/, 2/ ; eton
démontrerait la méme. chose des péles de ¢/, ¢/ -

103. Non seulement le centre radical P et le péle » de ¢ qui
convient & la situation de G, sont deux points semblablement si~

Tom. XI. 7,
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tués par rapport aux deux cercles G , ¢ ; mais ils sont de plus
semblablement situés par rapport 4 la droite qui joint les centres
de ces deux cercles, laquelle est une droite homologue dans I'un
et dans l'autre. Cela est évident , puisque- les deux droites qui,
par leur intersection, déterminent le premier de ces points, sont
respectivement paralléles & lears homologues , dont lintersection
détermine le dernier ; de manitre que les droites homologues ,
dans les deux systémes, font des angles égaux, soit avec la droite
qui joint les centres , soitavec la tangente commune ; droites homo-
logues communes des deux cercles.

- 104. T HEOREME. La droite qui joint le centre radical de
trois cercles @ l'un quelconque des quatre pbles de similitude de
lun quelconque de ces trois cercles contient aussi les points de
contact de ce cercle avec deux des huit cercles qui louchent & la
Jois les trois cercles dont il s'agit ; savoir : avec les deux cercles
qui les touchent tous irois de la méme maniére , si le pdle est
lintersection des deux polaires de similitude externes ; avec les
deux cercles qui touchent celui-ld autrement que les deux autres,
si le pble est lintersection des deux polaires de sithilitude in-
ternes; et enfin avec deux cercles qui touckent celui-ld de la méme
manigre que lun des deux autres , et le troisiéme d'une maniére
différente , si le pile est lintersection d'une polaire de similitude
interne avec une polaire de similitude externe.

Démonstmtian. Soient ¢, ¢/, ¢/ les centres des trois cercles dont
il s'agit , P leur centre radical , C le centre d’un cercle qui les
tqucl{xe tous trois d'une maniére quelconque; 2, #, 2/ ses points
de contact respectifs avec eux, et enfin p, p/, p/ leurs poles de
similitude respectifs , déterminés conformément 2 la maniére dont
ils sont touchés par le cercle dont le centre est C.
~ Si nous menons la droite Cc; qui contient le point £, ainsi que
les droites /P , 1p ; parce que P, p sont semblablement placés
(103) par rapport aux droites homologues G, 7, les angles C/P
et ctp devront étre égaux ; puis donc que #C et f¢ ne forment
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gu'une seule ligne droite , il en devra étre de méme de /P et ip;
c’est-a-dire,, que le point # sera en ligne droite avec les points P,
p- On prouvera, par un raisonnement semblable, que les points
t/ , ¢ sont respectivement sur Pp/, Pp/.

105. Les deux. polaires de similitude , dont I'intersection déter-
mine le point p, ont leurs polaires respectivement paralléles et cor~
respondantes , relatives & ¢/, ¢/, lesquelles, prolongées s'il est né-
cessaire , concourent en un certain point ¢ ; de sorte que les deux
points p, g sont des sommets opposés d’un parallélogramme , formé
par ces quatre polaires. Mais les axes radicaux X/, X7, dont le
point P est lintersection, sont respectivement paralltles aux e6tés
de ce parallélogramme, et ne sont autre chose (94) que les droites
qui joignent les milieux de ses c6tés opposés; le point P, inter-
section de ces deux droites, est donc le centre de ce méme parallélo-
gramme , et est par conséquent sur une méme-ligne droite avec
les points p, ¢ ; puis donc que le point 7 est en ligne droite avec
les points P, p, il sera également en ligne droite avec les points p, ¢.

106. PROBLEME. Décrire , sur un plan, un cercle qui touche
2 la fois trois cercles donnés?

Solution. Déterminez ,. pour 'un quelconque des cercles donnéds,
ses polaires de similitude avec les deux autres ; ayant soin de prendre
la polaire externe pour les cercles qui doivent étre touchés de la
mémg maniére , et linterne pour ceux qui doivent étre touchés
d’'une maniére différente par le cercle cherché. Ces polaires se cou-
peront en un certain point ; et les polaires homologues relatives
aux deux autres cercles, et respectivement parall¢les & celles-13,
se couperont en un second point. En joignant ces deux points par
une droite, cette droite coupera le premier des trois cercles donnés
aux points ol il devra éitre touché par deux cercles dont chacun:
touchera a4 la fois les trois cercles de la maniére que vous vous
serez proposée. En faisant les mémes opérations relativement & chacun
dcs deux autres cercles , on déterminera pareillement leurs points
de contact avec les deux cercles cherchés ; de sorte que le pro-
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bléme se trouvera réduit a celui ol il s’agit de faire passer un cercle
par trois points donnés. '

On pourra méme se contenter de chercher les-points de contact

des cercles cherchés avec deux des cercles donnéds seulement ;

attendu qu’en menant des. rayons a4 ces points, ils détermineront,
par leur concours, les centres des cercles cherchés.
Pour chacune des quatre maniéres dont on voudra que le cercle

cherché touche les trois cercles donnés, on trouvera deux cercles

qui résoudront le probléme ; ce qui fera huit solutions en
tout.:

Cette solution est exactement celle qui a été donnée par M.
Gergonne , dans les Mémoires de Turin.

Autrement. On peut aussi se borner 4 chercher , pour chacun
des trois cercles donnés, le péle de similitude qui convient 2 la
maniére dont on veut qu’ils soient touchés par le cercle cherché ,
ainsi- que le centre radical des trois cercles. En joignant ce dernier
point & chacun des trois autres par des droites, ces droites , par
leurs intersections respectives avec les cercles donnés;, détermine~
ront sur ces cercles les points ou ils devront étre touchés par les
deux cercles remplissant'les conditions du probléme particulicr qu'on
se sera proposé.

‘Cette nouvelle solution est celle que M. Gergonne a donnée en
Yendroit cité des Annales de mathématiques ; elles résultent évi-
demment , l'une et l'autre , de ce qui a été dit ci-dessus (104
et 105).

107. Si quelques-unes des droites qui doivent déterminer , sur
les cercles donnés, leurs points de contact avec le cercle cherché,
an lieu de couper ces cercles, leur étaient simplement tangentes,
ou méme ne les rencontraient pas , le nombre des solutions du
probléme s’en trouverait d'autant diminué, et pourrait méme, dans
certains cas , devenir tout-a-fait nnl.

108. Les points et les droites n’étant que des cercles dont le
rayon est nul ou infini, on sent quil suffira de faire subir quel-
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ques légéreé‘ modifications & ces solutions pour en déduire celles
des dix problémes d'Apollonius., résolus pour la premitre fois par
Viéte.

§ IL.

Contacts des sphéres, et sphire tangente & quatre autres dans
Pespace.

109. Nous appellerons & Vavenir plans polaires de similitude de
deux sphéres, deux plans ayant pour péle commun, par rapport
3 ces deux sphéres, Pun de leurs centres de ‘similitude ; ce sont,
en d'autres termes , les lieux géométriques des polaires de  simili-
tude de tous les systtmes de deux' cercles résultant de la section
des’ deux spheres par des plans passant par la droite qui joint
leurs centres.

110, On voit par 14 ; et par ce quj a été dit (9r ; 92), qua
dé'u'x ‘,‘sph\éres ont toujours. deux systemes. de "deux plans <polaires
de similitude ; savoir, des externes et des internes; et que les uns
comme les autres sont semblablement situés par rapport aux deux

- sphéres. On ‘peut aussi de ld , et de ce-qui a été dit (93, 94),"
donclure le théoréme suivant :

111. THEOREME. Dans tout sysibme de deux sphéres , les
plans polaires de similitude internes sont également distans des
plans polaires de similitude externes ; de telle sorte qu'il existe un
méme plan , perpendiculaire & la droite qui joint les centres égalke-
ment distans des uns et des autres; et ce plan n’est auire chose
gye le plan radical des deux sphéres.

112. THEOREME. Le plan radical de deux sphéres est placé ,
par rapport & toute sphére qui les touche toutes deux , de la méme
mantére que le sont, par rapport & ces deux sphéres , leurs plans
polaires de similitude; savoir , leurs plans polaires de similituda
externes , si la iroisiéme sphére touche les deux autres de la
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m'éme maniére , et leurs plans polaires de similitude internes
St , au conlraire , celle troisiéme sphire touche les deux autres
d'une maniére différente. D'ow il suit que le plan radical de deus
sphéres ¢st un plan semblablement situé par rapport & toutes les
sphéres qui les touchent toutes deux ; pourvu que chaque sphére
soit touchée de la méme maniére par toutes celles-ld. '
Démonsiration. Si, par les centres des trois sphéres , on fait
passer un plan , ce plan sera évidemment semblablement placé
par rapport aux trois sphéres, et il en sera de méme des cercles
résultant de la section. De plus, lintersection de ce plan avec le
plan radical des deux sphéres touchédes, axe radical des sections
circulaires de ces sphéres, se trouvera située , par rapport a la sec~
tion circulaire de la sphére touchante (g6), de la méme maniére
que le seront les Intersections du méme plan avec les plans
polaires de similitudé¢ des sphéres touchées, lesquelles intersections
ne sont autre chose que les polaires de similitude des sections
~ ¢irculaires de ces sphéres. Ces polaires de similitude et I'axe ra-
“dical seront donc treis droites paralléles semblablement situées dans
des sections homologues des trois sphéres ; les plans polaires d.g
similitude et le plan radical , qui sont trois plans paralléles,'pasf
sant par ces droites , - sont donc des plans homologues par rapport
aux trois sphéres. _ ' ’

- 113. Nous appellerons & Vavenir polaire de similitude d'une
sphére, dans le systtme de trois sphéres, la polaire conjuguée
de l'un quelconque des axes de similitude de ces trois spheres,
prise par rapport & cette sphére. Chacune des sphéres du systeme
a donc quatre polaires de similitude; savoir : une exlerne , - une
interne et deux mixtes.

114 Il est aisé de voir que l'une quelconque de ces polaires,
pour lune quelconque des trois spheéres , est toujours a Pinter-
section de deux plans polaires de similitude obtenus, pour cette
sphére , en la comparant tour & tour aux deux autres. Ges plans
polaires sont au nombre de quatre, paralléles deux & deux, et
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formant ainsi un prisme tétraédre indéfini, dont les quatre arétes
sont les quatre polaires dont il s’agit, La polaire de similitude ex-
terne est l'intersection des deux plans polaires de similitude externe.
La polaire de similitude interne est intersection des deux plans
polaires de similitude internes ; enfin, les deux polaires de simi-
litude mixtes sont lintersection d’'un plan polaire de similitude ex-
terne avec un plan polaire de similitude interne.

t15. Dans le systéme de irois sphéres, les polaires de simili~
tude relatives & chaque aze de similitude sont des droites sembla-
blement situées par rapport @& ces trois sphéres.

Démonstration. Nous avons déja va (37) que chacun des axes
de similitude du systtme de trois sphéres est une droite 4 la fois
semblablement situde par rapport & ces trois sphéres; et, comme
il est d’ailleurs évident que les polaires des droites homolegues
sont elles-mémes des droites homologues, la proposition se trouve
ainsi démontrée. ;

116, Des considérations analogues 4 celles que nous avons ddve-
loppées ci-dessus (10r1) prouvent que les sphéres, en nombre in-
fini, qui peuvent toucher i la fois les trois mémes sphéres données,
peuvent se trouver dans huit cas distincts. Dans les deux premiers,
les trois sphéres se trouveront touchées de la méme maniére : dans
les six autres , deux sphéres se trouveront touchées de la méme
maniére, ct la troisiéme d’une manidre différente.

117. THEOREME. L'axe radical de trois sphires est placé , par
rapport @ toute sphére qui les touche toutes trois, de la méme maniére
gue le sont , par rapport & ces trois sphéres , leurs polaires de simi-
litude respectives ; savoir : les polaires relatives 8 Caxe de simi-
litude externe , si les trois sphéres. sont touchées de la méme
maniére par la quatriéme ; et les polaires relatives & lun des
axes de similitude internes , si Pune des sphéres n'est pas touchée
de la méme maniére que les deux autres ; pourvu que , dans ce
dernier cas , on choisisse celui des axes de similitude qui contient
le centre de similitude externe des deux sphéres touchées de la
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méme maniére par la guatriéme sphére. D'ow il suit que l'axe ra-
dical de trois sphéres est une droite semblablement située par rapport
& toutes les sphéres qui les touchent toutes irois ; pourvu que

chacune des trois sphéres soit constamment touchée de la méme
maniére par toutes celles-1d.

Démonstration. Soient s, s/, s/ les trois sphéres touchédes, §
la sphére touchante, z, #, ¢/ les points de contact respectifs,
x, 2/, x" les polaires de similitude que V'on considére sur les trois
spheres touchées, X Vaxe radical de ces trois sphéres.

Les points 2, #, ¢/ étant (34) des centres de similitude , le plan
‘que Von conduira par ces trois points sera (30) un plan A la fois
semblablement sit‘qé par rapport aux quatre sphéres s, s, s, S;
les cercles ¢, ¢/, ¢/, G quil déterminera sur elles en seront done
"des sections homologues ; les péles p, p/, p”, P des plans de ces
quatre cercles seront danc des points homologues des quatre spﬁéres 5
or, il est aisé de voir (29) que p, p/, p” sont respectivement si-
tués sur z, 2/, 2/, et (46) que P est sur X ; ces quatre droites,
paralléles entre elles, passent donc par des points homologues’ de

quatre sphéres par rapport 3 un plan homologue commun ; elles
sont donc elles-mémes des lignes homologuesde ces quatre sphéres.

Si I'on conduit trois plans par la droite X et par chacune de
ses homologues z, 2/, 2/ ; il est évident que ces plans contien-
dront les points #, #/, #/ homologues & la fois par rapport 4 la
sphére S et a chacune des sphéres s, s/, s/ ; ees mémes plans
détermineront sur ces trois sphéres des sections circulaires , econte-
nant respectivement les points #, #,#/; or, comme ces plans sont
invariables quelle que soit la sphere touchante , il en résulte ce
théoréme, déj2 démontré par M. Dupin, mais d’une maniére différente.

118. THEOREME. Toutes les sphéres qui touchent & la fois
Jes trois mémes sphéres données ont leurs points de contact avec
chacune de ces a’erméres sur une méme section circulaire dont le
plan, perpendiculaire ‘& celui dés centres passe par Uaxe radical
des trois sphéres et par Pune des polaires de similitude de celle

d’entre
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d’entre elles dont il s’agit , pourvu que toutes ces sphires touchent cons-
tamment chacune des Irois anires de la méme maniire, cf que
la polaire soit choisie conformément a la nature du contact.

11g. Soient respectivement ¢ , ¢/, ¢/, Q les points ou le plan
conduit par 2, #/, ¢/ coupe les droites z, 2/, a” , X ; il est
clair que ces points seront des points homologues de quatre sphéres,
et on voit de plus que Qg, Qg’, Qg” contiendront respective-
ment les points 2, ¢/, 7, leéquels sont en méme temps les points
de contact du cercle G dont il a été tout-a-I'heure question, avec
les cercles ¢ , ¢/ , ¢”. On démontrera facilement que ces points
7,9, ¢, Q, homologues par rapport aux quatre cercles ¢, ¢/,
¢’ , G sont, savoir; les trois premiers , les poles de similitude
des trois premiers de ces cercles, et le dernier leur centre radical

120. Il ne sera pas plus difficile de démontrer que les centres
de toutes les sphéres d'une méme série , tangentes & la fois aux
_trois mémes sphéres , sont dans un plan mené perpendiculairement
a l'un des axes de similitude des trois sphéres dont il s’agit, par
leur axe radical (*). Nous n’insistons pas sur toutes ces choses,.
parce que nous n’en ferons aucun usage pour I'vbjet que nous avons
principalement en vue.

121. Nous appellerons i I’avenir pdle de similitude d’une sphére,
dans le systtme de quatre sphéres, le pole de I'un quelconque des
plans de similitude de ces quatre sphéres , pris par rapport 3
celle-13. Chacune des sphéres du systéme a donc (40) huit poles
de similitude , savoir; un externe, un interne et six miztes.

122, Il est aisé de voir (28) que l'un quelconque de ees poles,
pour l'une quelconque des quatre sphéres, est toujours l'intersec—

¢*) Et, comme ces centres sont aussi sur le céne qui, ayant pour sommet
le centre de l'une des sphéres touchées , passerait par le petit cercle de cette
sphére qui contient ses points de contact avec les sphéres touchantes ; il s’ensuit
que le lieu de ces mémes centres est une section conique.

fom. XI. 8
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tion de trois plans polaires de similitude obtenus pour cette sphére;
en la comparant tour & tour aux trois autres. Ces plans polaires
sont au nombre de six, paralléles deux 2 deux, et forment ainsi
un parallélipipede dont les sommets sont les huit poles dont il
s’agit. Le pole de similitude externe est l'intersection des trois plans
polaires de similitude externes; le pole de similitude interne est
Yintersection des trois plans polaires de similitude internes ; et les
poles de similitude mixtes sont lintersection de deux plans po-
laires de similitude externes avec un interne , ou de deux internes
avec un externe.

123. Nous pourrions ici différencier entre eux ces différens
‘poles , en employant des notations analogues a celles dont nous
avons fait usage (99 et suivant); mais , comme cela ne saurait
offrir de difficulté , nous nous dispenserons de nous y arréter.

124. THEOREME. Dans le systéme de quaire sphéres , les
pbles de similitude relatifs & chaque plan de similitude sont des
points semblablement situés par rapport & ces quatre sphéres.

Démonstration. Nous avons déja vu (40) que chacun des plans
de similitude du systtme de quatre. sphéres est un plan i la fois
semblablement situé par rapport & ces quatre sphéres ; et ,
comme il est d’ailleurs évident que les poles des plans homologues
sont des points homologues , la proposition se trouve ainsi dé-
montrée,

125, On peut, en général, concevoir seize sphéres qui touchent
a la fois les quatre mémes sphéres donnédes dans Vespace. Pour
‘rendre la chose évidente, prenons un cas fort simple ; concevons
que ces quatre sphéres, de méme rayon , aient leurs centres situés
aux quatre sommets d’un tétraddre régulier, et soient extéricures
les unes aux autres. 1.° On pourra concevoir deux sphéres, dont
I'une les touchent toutes quatre extérieurement , tandis que l'autre
les enveloppera toutes trois; cela ne se pourra que d’'une maniére
unique ; et, dans l'un et lautre cas, les quatre spheéres se troue
veront touchées de la méme manidre par le cinqui¢me. 2.° On
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pourra concevoir deux sphéres dont l'une touche extéricarcment
trois des sphéres donndes et enveloppe la quatrieme, tandis que
l'autre, au contraire , enveloppera les trois premicres et touchera
la quatritme extérieurement; ruais ici chaque cas pourra arriver
de quatre manicres différentes ; ce qui en fera huit, dans chacun
desquels trois sphéres scront touchdes de la méme maniére, et ia
quatri¢me d’une maniére différente. 3.° Enfin, on pourra encore
concevoir une sphére qui touche extérieurement deux quelconques
des quatre spheéres données et enveloppe les deux autres; et six
sphéres pourront éire dans ce cas, ol deux des sphéres données
seront touchdes d'une méme manitre , et les deux autres d’'une
manicre différente de celle-la. On aura donc , en effet , seizs
spheres tangentes & la fois aux quatre sphéres données.

Mais il faut remarquer que ce nombre de seize pourrait se
trouver réduit, dans certains cas, d’aprés la grandeur et la situa~
tion respective des sphéres donndes. Il pourrait méme se faire
qu’aucune sphére ne pﬁt les toucher toutes quatre ; et c’est, par
excmple , ce qui arriverait si , leurs rayons étant tous inégaux,
elles se trcuvaient, de la plus petite a la plus grande , intérieures
les unes aux autres,

126. THEOREME. Le centre radical de quatre sphires est
situé par rapport & une cinguiéme sphére , qui les touche toutes
quatre , de la méme maniére que le sont, par rapport & ces sphéres,
leurs péles de similitude respectifs , savoir ; les pdles relatifs au
plarn de similitude externe , si les quatre sphéres sont touchées de
la méme maniére par la cinquiéme; les pdles relatifs & [l'un des
plans de similitude miztes , si trois de ces sphéres sont touchées
de la méme maniére, et lz quairiéme d'une maniére différente par
la cingquitme ; et enfin les poles relatifs & l'un des plans de si-
militude internes , si deuz des sphéres sont touchées dune méme
maniére , et les deux auires d'une maniére différente par la cin-
quiéme ; pourvu que dens le second cas on choisisse le plan de
similitude qui contient Paxe de similitude externe des trois sphéres
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gui doivent étre touchées de la méme manitre ; et que dans le
dernier , on choisisse le plan de similitude qui contient les centres
de similitude externes des deux couples de sphéres qui doivent
étre touckées d'une méme maniére par la cinquicme.

Démonstration. Soient s, s/, s/, s/ les (uatre sphéres tou-
chées, S la sphére touchante; X/, X/, X/ les plans radicaux de
sets/,de s ets”,des’ et s///, respectivement ; soient, de plus, 2/,
z,/ 2/ les plans polaires de s, relatifs 3 la nature du contact ,
respectivement paralléles aux plans radicaux X/, X7, X/ et
soient enfin p le péle de s et I le centre radical des quatre
sphéres , de maniére que p soit I'intersection des trois plans 2/,
', 2", et P celle des trois plans X/, X#, X ; d’aprés ce que
nous avons dit ci-dessus (112) 2/, X’ sont des plans semblablement
situés par rapport & s et S; et il en est de méme de 27, X/ et
de 2/, X/ ; donc le point P, intersection de X/, X~ , X,
est placé par rapport & S de la méme maniére que lest, par
rapport 4 s, le point p d’intersection de &/, 2/, 2/ ; et on dé~-
montrerait la méme chose des poles de s/, s/, s/,

127. Non seulement le centre radical P et le pole p de s qui
convient & la situation de S, sont deux points semblablement situés
par rapport aux sphéres S, s;mais ils sont de plus semblablement situés
par rapport a la droite qui joint les centres de ces deux sphercs
et méme par rapport a tout plan passant par cette droite s les—
quels droite et plan sont 4 la fois homologues dans I'une et l'autre
sphéres. Cela est évident, puisque les trois plans qui, par leur
intersection , déterminent le premier de ces points, sont respecti-
vement paralléles & leurs homologues , dont lintersection déter-
mine le dernier; de mani¢re que les plans homologues dans les
deux systtmes font des angles égaux soit avec un plan quelconque
passant par les centres, soit avec le plan tangent commun , plans
homologues communs anx denx sphéres.

128. THEOREME. La droite qui joint le centre radical de
quatre sphéres & lun quelconque des huit poles de similitude de
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Pune gquelcongue de ces quatre sphires , contient tovjours les points
de contact de cette sphére avec deux des seize sphéres qui touchent
a8 la fois les quatre sphéres dont il s'agit , savoir ; avec les deux
sphéres qui les touchen! toutes quaire de la méme maniére, si le
pile répond au plan de similitude externe , avec deux des huit
sphéres qui touchent trois des sphéres données d'une méme
maniére , et la quatriéme d'une maniére différente , si le pdle est
relatif & I'un des quatre plans de similitude mixztes; et enfin avec
deux des siz sphéres qui, touchant deux des sphéres données d'une
méme maniére, touchent les deux autres d'une maniére différente ,
si le pole est relatif @ lun des trois plans de similitude internes.

Démonstration. Soient ¢ , ¢/ , ¢/ 4 ¢/ les centres des quatre
spheres dont il s’agit, P leur centre radical , C le centre d’une
sphére qui les touche toutes quatre , d'une maniére quelconque,
2, ¢, ¢, 1 les points de contact respectifs avec elles, et enfin
ps p ,»" , p/ leurs péles de similitude respectifs , déterminés
eonformément a la manicre dont elles sont touchées par la sphére
dont le centre est C.

Si, par les points ¢, G, p, en congoit un plan ; ce plan con-
ticndra le point 7, en ligne droite avec ¢ et C ; et, d’aprés ce qui
vient d’éire dit (127), il devra aussi contenir le point P; menant
donc pt, Pt, ces droites se trouveront dans un méme plan, ala
fois homologues par rapport aux deux sphéres; mais le point 7 est
aussi un point homologue commun & ces deux sphéres; donc pzy
Pz en doivent étre des lignes homclogues ; mais il en est de méme
des rayons ¢z, Cz; donc les angles ¢zp, C/P doivent étre égaux ;
puis donc que les trois points ¢, 2, C sont en ligne droite , il doit
en étre de méme des trois points p, 7z, P. On prouvera, par un
raisonnement tout semblable, que les points ¢, ¢/, #/// sont res-
pectivement sur /P, 7P, #/P,

129. Les trois plans polaires de similitude, dont lintersection
détermine le point p, ont leurs plans polaires respectivement paral-
leles ev correspondars, relatifs & ¢, ¢/, ¢/, lésquels , prolongés,
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s'il est nécessaire , concourent en un certain point ¢; de sorte que
les deux points p, ¢ sont des sommets opposés d’un parallélipipeéde,
formé par ces six plans polaires, Mais les plans radicaux X/, X7,
X/, dont le point P est l'intersection, sont respectivement paral-
léles aux faces de ce parallélipipéde , et ne sont autre chose (111)
que des plans conduits par les milicux de ses arétes paralleles ;
le point P, intersection de ces trois plans, est donc le centre de
ce parallélipipéde, et doit par conséquent étre en ligne droite avec
les poiats p, ¢ ; puis donc que le point Z est en ligne droite avec
les points P, p; il le sera également avec les points p , ¢.

130. PROBLEME. Construire une sphére qui. en touche quatre
autres , données dans l'espace ?

Solution. Détermincz , pour l'une quelconque des sphéres don-
nées , ses plans polaires de similitude avec les trois autres; ayant
soin de prendre le plan polaire externe , pour les sphéres qui
doivent étre touchées de la méme maniére , et l'interne pour celles
qui doivent é&tre touchées d’'une maniére différente par la sphere
cherchée. Ces plans polaires se couperont en un certain point; et
les plans polaires homologues , relatifs aux trois autres sphéres
el respectivement paralléles & ceux-la, se couperont en un second
point. En joignant ces deux points par une droite , cette droite per-
cera la premiére des quatre sphéres données aux points ou elle
devra étre touchée par deux spheéres, dont chacune touchera & Ia
fois les quatre spheéres données de la maniere qu’on se sera proposée.
En faisant les mémes opérations relativement & chacune des trois
autres sphéres, on déterminera pareillement leurs points de con-
tact avec les deux sphéres cherchédes ; de sorte que le probléme se
trouvera réduit a celui ou il s’agitde faire passer une sphére par quatre
points donnés.

On pourra méme se contenter de chercher les points de contact
des spheres cherchées avec deux des spheres données seulement ;
attendu qu’en menant des rayons & ces points , ils détermineront,
par leur concours, Jes centres des spheres cherchées.
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Pour chacune des huit maniéres dont on voudra que les sphéres
données soient touchées par la spheére cherchée, on trouvera decux
sphéres qui résoudront le probleme ; ce qui fera seize solutions
en tout.

Cette solution est exactement celle qui a été donnde par M,
Gergonne , dans les Mémoires de Turin.

Autrement. On peut aussi se borner a chercher, pour chacune
des quatre sphires données, le pole de similitude qui convient i
la mani¢re dont on veut qu'elles soient touchées par la sphere
cherchée, ainsi que le centre radical des quatre sphéres. En joignant
ce dernier point & chacun des quatre autres par des droites , ces
droites , par leurs intersections respectives avec les sphéres données,
détermineront sur ces sphéres les points ou ils devront étre touchés
par les deux sphéres remplissant les conditions du probléme par-
ticulier qu'on se sera proposé.

Cetie nouvelle solution est celle que M. Gergonne a donnée en
Pendroit déja cité des Annales de maihématiques ; elles résultent
évidemment, Pune et Vautre , de ce qui a été dit ci-dessus
(128, 129).

131, Si quelqu’unes des droites qui doivent déterminer, sur les
sphires donndes, leurs points de contact avec la sphére cherchée,
au lieu de percer ces spheres , leur étaient simplement tangentes,
oo méme ne les rencontraient pas , le nombre des solutions du
probléeme s'en trouverait d’autant réduit, et pourrait méme , dans
gertains cas, devenir tout-a-fait nul,

132. Les points et les plans nétant que des sphéres dont le
rayon est nul ou infini, on sent quil suffira de faire quelques
legéres modifications & ces solutions , pour en déduire celles des
quinze problémes résolus pour la premieére fois par Fermat.
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§. IIL

Contacts des cbnes et cylindres , et cbne et cylindre tangens &
trois auires.

133. Nous appellerons a Vavenir plans polaires de similitude de deux
-cénes de méme sommet, deux plans ayant pour polaire comwmune,
par rapport a ces deux cones, l'un de leurs axes de similitude ;
ces plans polaires seront dits internes ou externes, suivant que

P’axe de similitude qui ensera la polaire sera-lui-méme interae ou
externe,

134 Nous appellerons a Vavenir polaires de similitude d’un edne
dans le systéme de trois coéves du méme sommet, la polaire de
I'un quelconque des plans de similitude de ces trois cénes, prise
par rapport & ce cone. Chacun des cénes du systeme a donc ainsi .
quatre polaires de similitude; savoir : une esferne , une interne
et deux mixtes. »

135, Il est aisé de voir que 'une quelconque de ees polaires,
pour I'un quelconque des trois coénes, est toujours (54) Vinter-
section de deux plans polaires de similitude obtenus pour ce céne,
en le comparant tour A tour aux deux autres. Ces plans polaires
sont au nombre de quatre formant un angle tétraddre dont les arétes
sont les quatre polaires dont il sagit. La polaire de similitude ex-
terne est l'intersection des deux plans polaires de similitude externes;
la polaire de similitude interne est l'intersection des deux plans po=
laires de similitude internes ; enfin, chacune des deux polaires de
similitude mixtes est lintersection d’un plan polaire de similitude
externe avec un plan poléire de similitude interne. On peut, pour
désigner ces diverses polaires et les différencier entre elles , employer

des
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des notations analogues A celles dont nous avons fait usage ci-
dessus (9g).

136. Par des considérations tout-a-fait avalogues A celles' qui
nous ont guidés (1or), on se convaincra facilement que trois cénes
qui ont un sommet commun peunvent, en général, étre touchés
a la fols pat huit autres cénes de méme sommet qu’eux ; deux d’entre
eux touchent les trois cénes de la méme maniére , tandis que
les six autres touchent, deux 4 deux , deux des trois cénes d’une
méme maniere , et le troisiéme d'une manieére diff¢rente.

137. THEOREME. Le plan qui contient l'axe radical de Irois
cones de méme sommet et l'une quelconque des quatre polqire.s" de
similitude de l'un quelconque de ces trois cones contient aussi les
lignes de contact de ce cone avec deux des huit cones de méme
sormmet qut touchent & la jfor's les trois cnes dont il s’agit ; savoir :
avec les deux cones qui les touchent tous trois de la méme ma-
nidre , st la polaire est DUintersection des deuzx plans polaires de
similitude externcs ; avec les deux cdnes qui touchent celui-lé au-
tremet que les deux autres, si la polaire est I'intersection des
deux plans polaires de similitude internes ; et enfin avec deuz cénes
qui touchent celui-1d de la méme maniére que l'un des deuz autres,
et 1. troisiéme dune manidre différente , si la polaire est linter-
section dun plan polaire de simililude exzierne avec un plan
polaire de similitude interne.

Démonstration. Soit G un céne tangentd trois autres ¢, ¢/, ¢/,
de méme sommet O, et les touchant d’une maniére déterminée
quelcongre.

Concevons des sphéres S, s, s/, s/ respectivement inscrites 2
ces cones , de telle sorte que leurs lignes de contact avec eux
solent & une méme distance quelconque du sommet commun O.
Il est clair que la sphére S touchera les trois autres s, s/, s/ de
Ja méme manitre que le e6ne C touche les cénes ¢, ¢/, ¢/, et
que ses points de contact avec elles seront sur les lignes de con-
tact respectives de ce cone avec les trois autres,

Tom. XI. 9
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" 11 est d'abord évident (68, 70) que l'axe radical des trois sphéres
sera aussi celui des trois cOnes.

Soient & , &/,

k'’ les centres de similitude des trois sphéres s,
s/, s

, déterminés conformément 4 la nature du contact; ces trois
points seront en ligne droite (36); Ok, O, Ok seront (60) les
axes de similitude des trois cénes ¢, ¢/, ¢//; et conséquemment
(62) ces trois droites seront dans un méme plan.

1l suit de la que la polaire de similitude de T'une quelconque
des sphéres touchées et celle du céne correspondant perceront le
plan de sa ligne de contact avec ce cOne au méme point, et seront
60nséqu'emment dans un méme plan. En effet , considérons , par
exemple , la sphere s, inscrite au céne e. La polaire de s est
(29) Vintersection de deux plans dont les poles sont &/, K e
Ta polaire de ¢ est l'intersection de deux autres pians‘dont les droi-
i\eé polaires sont Oz’ , ‘Oz ; mais le plan de la ligne de contact
de s avec ¢ a le point O pour péle; dou il suit que le pole du
plan 2/Oz/ relatif alasphére s doit étre 4 la fois sur ces cinq plans,
et doit conséquemment étre un point du plan de la ligne de contact
appartenant 4 la fois 4 la Polaire de la sphére et A celle du cone qui
ainsi se coupenten ce point et sont conséquemmentdans un méme plan,
~ Mais I'axe radical des trois cOnés et des trois sphéres est aussi
dans un méme plan avec la polaire de similitude du céne ¢, puisque
ces deux droites concourent au point O ; et, comme d’ailleurs la
polaire de similitude de s, qui, comme nous venons de le voir,
a un point sur ce plan, est parailéle & Faxe radical, il s’ensuit
que cet axe et les deux polaires sont dans un méme plan passant
par le point O.
© Or, il a été démontré (117) que , lorsqu'une sphére en touche
trois autres, le plan-qui contient I'axe radical de celles-ci et la
polaire de ‘similitude de l'une d’elles contient aussi son point de
contact avec la sphére touchapte; on pourra donc dire aussi que
ce point de contact est sur le plah qui passe par l'axe radical et
par la polaire de similitude du céne; ét, puisque I3 ligne de contact
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du coéne touckant et du coéne touché passe par ce point de contact
et passe de plas par le sommet commun , comme le plan dont il
s’agit, cette ligne de contact sera aussi dans ce plan,

138. PROBLEME. Construire un cdne qui touche 2 la fois trois
cones donnés du méme sommet?

Solution. Déterminez , pour I'un quelconque des cénes donnés ,
ses plans polaires de similitude avec les deux autres, ayant soin
de prendre le plan polaire externe pour les cones qui doivent étre
touchés de la méme mani¢re, et le plan polaire interne pour ceux
qui doivent étre touchés d'une maniére différente par le céne
cherché. Ces plans polaires se couperont suivant une certaine droite
qui sera une des polaires du céne dont il s’agit. Déterminez aussi
Paxe radical des trois cénes. Alors, en faisant passer un plan par
cctte dernicre droite et par la polaire, ce plan coupera le premier
des trois cénes donnds suivant ses lignes de contact avec deux cénes
de mdéme sommet , dont chacun touchera & la fois les trois cénes
donnés de la maniére que vous vous serez proposée. En exécutant
donc les mémes opérations pour chacun des deux autres cénes,
le probléme se trouvera ramené a faire passer un céne par trois
droites données concourant en un point.

On pourra méme se contenter de chercher les lignes de contact
des cénes cherchés avec deux des cones donnés ; attendu qu'en
conduisant des pluns par ces droites et par les axes des cones
anxquels elles appartiennent , leur intersection sera 'axe du cone
cherché. :

Pour chacune des quatre mani¢res dont on voudra que le
céne cherché touche les trois cOnes donnés , on trouvera deux
cénes qui résoudront le probleéme, ce qui fera huit solutions en
tout.

Cette solution est exactement celle qui a été donnée par M.
Gergonne , en l'endroit des Annales de mathématiques déja cité,

139. Si quelques-uns des plans qui doivent déterminer, sur les
cdnes donnés , leurs lignes de contact avec le céne cherché , au
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licu de couper ces cones, leur étaient simplement tangens , ou
méme n'avaient avec eux d'autres -points communs que leurs som=
mmets ; le nombre des solutions du probléme s’en trouverait d’au-
tant diminué, et pourrait méme, dans certains cas , devenir tout=-
a-fait nul,

140, Les droites et les plans n’étant autre chose que des cénes
dont langle générateur est nul ou droit, on sent qu’il suffira de
faire subir quelques légéres modifications 2 la-solution que nous
venons de donner , pour en déduire celles de dix problémes
relatifs_au coéne tout-a-fait analogues & ceux d’Apollonius pour
le cercle.

141. En considérant le cylindre comme un céne dont le sommet
est infiniment éloigné , on est conduit & appeler plans polaires de
similitude de deux cylindres, dont les axes sont paralléles, deux
plans ayant pour polaire commune, par rapport & ces cylindres,
Pun de leurs axes de similitude ; ces plans polaires seront dits
Internes ou externes , suivant que l'axe de similitude qui en sera
-1a polaire sera lui-méme internc ou externe.

142. On appellera de méwme polaire de simil'tzde d’un cylindre,
dans le systéme de trois cylindres , ayant leurs axes paralléles, la
polaire de 'un quelconque des plans de similitude de ces trois cylindres
prise par rapport & celui-la. Chacun des cylindres du systéme aura
ainsi quatre polaires de similitude ; savoir : une exzerne , intersection
des deux plans polaires externes , une interne , intersection des
plans polaires internes , et deux mizfes , intersection d’'un plan
polaire externe avee un plan polaire interne.

142. On voit aussi (136) que les trois mémes cylindres ayant
leurs axes paraliéles peuvent toujours étre touchés a la fois par huit
autres dont les axes seront paralléles aux leurs , et sur la nature
du contact desquels il y aura les mémes observations & faire que
sur les diverses sortes de contact d'un céne avec trois autres de

méme sommet que lui. Tout cela biea entendu, on aura (137) la
théoréme . suivant.
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143. THEOREME. Le plan qui conticnt l'axe radical de trois cy~
lindrcs dont les ares sont paralélles et l'une quelconque des quatre
polaires de similitude de l'un quelconque de ces cylindres , contient
aussi les lignes de contact de ce cylindre avec deux des huit cy=
lindres qui touchent & la fois les irois cylindres dont il sagit;
savoir : avec les deux ‘cylindres qui les touchent itous trois de la
méme maniére, si la polaire est Uintersection des deux plans po-
laire de similitude externes ; avec les deux cylindres qui touchent
celui-1d antrement que les deux aulres, si la polaire est Pinter-
section des deux plans polaires de similitude internes ; et enfin avec
les deux cylindres qui touchent celui-ld de la méme maniére que
Pun des deux autres et le troisiéme d'une maniére différente , si
la polaire est lintersection de deux plans polaires de dénomina-
tions différentes.
“ 144, PROBLEME. Construire un cylindre qui touche , & la
Jois trois cylindres donnés , dout les axes sont paralléles ?
Solution. La solution de ce probléme se déduit tout naturellement
du théoréme qui vient d’étre énoncé de la méme maniére que la
solution de celui dont nous nous sommes occupés (138) se déduit
du théoréme énoneé (137). On peut aussi couper les trois cylindres
donnés par un plan perpendiculaire & la direction commune de leurs
axes; ddcrire (106) sur ce plan , un cercle qui touche a la fois
les cercles résultant des cylindres donnés, ct considérer ce cercle
comme la section par le méme plan d'un quatriéme cylindre qui
résoudra le probléme proposé.
145, On peut , au surplus, faire ici des remarques tout-a-fait
analogues a celles que nous avons faites (139, 140).

§. IV.

Coniact des cercles sur la sphére , et cercle dune sphére tangens
@ lrois aulres.

346. En considérant le sommet commun des cénes dont il a été
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question ( 133 et suiv. ) comme le centre d’'une sphére de rayon quel-
eonque , on est conduit a appeler polaire de similitude de deux
cercles d'une sphére , deux arcs de grands cercles ayant pour pole
commun, par rapport & ces deux cercles, I'un de leurs centres de
similitude» Ces polaires seront dites exlernes ou internes suivant
la dénomination dua centre de similitude auquel elles seront
relatives. ‘

147. On appellera pareillement pble de similitude d’un cercle, dans
le systéme de trois cercles tracés sur la sphére, le pole de l'un
quelconque des axes de similitude de ces trois cercles, pris par
rapport & ce cercle. Chacun des cercles du systéme aura ainsi quatre
poles de similitude; savoir : un exferne, intersection des deux polaires
de similitude externes; un interne, intersection des deux polaires
de similitude internes, et deux mizses , intersection de deux polaires
de dénominations différentes.

148. On voit aussi ( 136 ) que les trois mémes cercles d’une sphére
pourront & la fois étre touchés par huit cercles différens , sur
la nature da contact desquels il y aura & faire des observations
analogues A celles que nous avons déji faites sur le contact d’un
cOne avec trois autres de mémes sommets, ou encore { 101 ) sur
le contact d’'un cercle avec trois autres sur un plan. Ces choses ainsj
entendues, on aura (137 ) le théordme suivant.

149. THEOREME. L'arc de grand cercle qui joint le centre ra-
dical de trois cercles dune sphire & I'un quelconque des quatre péles
de similitude de I'un quelconque de ces trois cercles , contient aussi
les points de contact de ce cercle avec deux des huit cercles qui
touchent & la fois les trois cercles dont il Sagit; savoir i avec
les deux cercles qui les touchent lous trois de la méme maniére,
si le pdle est Uintersection des deuz polaires de similitude externes,
avec les deux cercles qui touchent celui-lé autrement que les deuz
autres , si le pdle est Pintersection des deux polaires.de similitude
internes 5 et enfin avec les deux cercles qui touchent celui-ld de la
méme maniére que lun des deux autres , et le iroisitme d'une
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maniére différente , si le pdle est l'intersection de deuz polaires
de dénomination différente.

150. PROBLEME. Décrire un cercle qui en touche & lu fois
trois autres donnés sur une sphére ?

Solution. La solution de ce probléme se déduit évidemment du
théoréme qui vient d’étre énoncé, de la méme mani¢re que nous
ayons déduit du théoréme énoncé (137) celle du problé¢me pro-
posé (138); et il y a encore lieu ici & des remarques analogues
a celles que nous avons faites (139 et 140) (*).

151. Si l'on suppose le rayon de la sphére infini , on retombe
sur le cas ou il s’agit de décrire un cercle qui en touche 2 la fois
trois autres tracés sur un méme plan, et notre construction devient
alors, en effet , exactement la seconde des deux que nous avons
indiquées (106) pour la résolution de ce dernier probléme.

(*) On pourrait déduire une autre solution de ce probleme de celle d’un:
probleme beaucoup plus général que nous avons donnée ala page 27 du tome
VIL.e des Annales.
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QUESTIONS PROPOSEES.

Problémes de Geéomelrie.

L QUEL est le -point du plan de quatre cercles dont les polaires,

relatives A ces cercles , se coupent toutes quatre au méme point ?
et quel est ce dernier point ?

IL. Quelle est, sur le plan de quatre cercles, la droite dont les
poles relatifs & ces cercles sont tous quatre sur une méme ligne
droite ? et quelle est cette derni¢re droite?

1II. Quel est le lieu des points du plan de trois cercles dont les
polaires relatives 4 ces cercles se coupent toutes trois au méme
point? et quel est le lieu de lintersection de ces polaires ?

IV. A quelle courbe sont tangentes les droites tracdes sur le
plan de trois cercles, de maniére que les péles de chacune d’elles,
‘relatifs 3 ces cercles, soient tous trois sur une méme ligne droite?

et & quelle autre courbe est constamment tangente la droite qui
contient les poles ? :




Ton X1, slan.11,pag.s7369.
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GEOMETRIE DES COURBES.
Rapport a l'academie royale des sciences;
Par M. Cauvchy ;

Sur un mémoire relatif aux proprietés projeclives des
sections coniques ;

Par M, PoNcELET, capitaine du génie.

- -

LE secrétaire perpétuel de Pacadémie, pour les sciences mathématiques,
certifie que ce qui suit est extrait du procés-verbal de la séance
du lundi 5 juin 1820,

L’académie nous a chargés, MM. Arago , Poisson et moi, de
lui rendre compte d’un mémoire de M. Poncelet sur les propriétés
projectives des sections coniques. L’auteur appelle ainsi les pro-
priétés relatives aux cordes communes , aux points de concours des
tangentes communes, et beaucoup d’autres semblables qui , éiant
indépendaates des dimensions aitribuées aux courbes que l'on con-
sidére et de leurs parametres , subsistent lorsqu’on projette ces
courbes sur de nouveaux plans, 3 I'aide de droites qui concourent
vers un maéme point; c'est-d-dire, en d’autres termes, lorsqu'on
met ces courbes en perspective ; ce qui a également lieu pourle

Tom. X1, n.° I, 5.°% septembre 1820, 10
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cas olt, le point de concours s’éloignant & linfini, les projections
deviennent orthogonales. Nous allons d’abord indiquer les moyens
que Vauteur emploie pour établir les propriétés dont il s’agit.
Lorsque plusieurs courbes , qui composent une seule classe ou
famille , possédent en commun diverses propriétés , une des mé-
thodes les plus expéditives pour la démonstration de ces, mémes
propriétés consiste a les établir d’abord pour les courbes les plus
simples de la classe dont il est question, et i les étendre ensuite
aux autres coarbes de la méme classe, par la comparaison de celles-
ci avec les premicres. Celte méthode peut méme scrvir a la
recherche des propriétés d'une courbe donnée. Veut-on con-
naitre , par exemple, celle d’'une ellipse ? on commencera par
supposer les deux axes égaux; ce qui réduira cette ellipse 2 une
circonférence de cercle. On remarquera que la surface du cercle
est égale au quarré du rayon multiplié par le nowmbre qui exprime

le rapport de la circonférence au diamétre ; que deux rayons qui

se coupent i angles droits sont paralléles aux tangentes menées
par leurs extrémités ; que ces mémes rayons comprennent entre
eux une surface constante ; que la somme de leurs quarrés est
égale 4 la somme des quarrés de leurs projections sur un diamétre
qhelconque ; que les tangentes des angles aigus qu'ils forment avec
un méme diamétre , étant multipliées 'une par l'autre , donnent
I'unité pour produit ; enfin , que la perpendiculaire élevée sur un
diamétre est moyenne proportionnelle entre les deux segmens ad-
jacens. . Si maintenant on considére une ellipse dont les deux axes
soient inégaux, on décrira sur le grand axe de cette ellipse, pris
pour dia.méire ». une circonférence de cercle,, dont 'ordonnéde , comp-
tée perpendiculairement au grand axe , aura un rapport constant
avec celle de lellipse. Cela posé, si I'on appelle diamétres con-
jugués de Vellipse ceux dont les projections sur le grand axe
coincident avec les projections de deux diamétres du cercle qui se
coupent 4 angles droits, on conclura immédiatement des remarques
taites A I'dgard du cercle que la surface de- Iellipse est égale au
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produit des deux demi-axes par le nombre qui exprime le rapport
de la circonférence au diamétre; que, dans la méme courbe, les
tangentes menées aux extrémités de deux diametres conjugués , sent
paralléles & ces diamcires ; que deux demi- diametres conjugués
comprennent entre eux une surfrce constante ; que les sommes
des quairés de leurs projections sur le grand axe et sur le petit
axe sont respectivement dgales aux quarrés des demi - axes , et
que , par suite, la somme des quarrés des denx demi-diamctres
équivaut a la somme des quarrés des deux demi-axes ; enfin , que
le rapport de ces deux derniers. quarrés mesure & la [ois le pro-
duit des tangentes des angles aigus formés ayec le grand axe par
deux diametres conjugués et le rapport du quarré d’une ordonnée
aux segmens correspondans de ce méme grand axe. Au reste, pour
obtenir le cercle auxiliaire dont nous venons d'indiquer I'usage, il
suffit de chercher dans I'espace un cercle dont ’ellipse donnée soit
la projection orthogonale , et de rabatire ensuite le plan de ce
cercle sur celui de lellipse, aprés avoir fait tourner le premier
autour da diamétre paralléle au second (*). Plus généralement, on
peut considérer une ellipse , une hyperbole ou une parabole comme
la perspective ou projection centrale d’un cercle quelconque, et
déduire , des propriétés de ce cercle, celles de la projection. Tel
est , en effet, le moyen employé par M. Poncelet pour déterminer
les propriétés projectives des sections coniques. Il appelle centre de
projection le point ol se trouve placé dans la perspective I'eil du
spectateur. Ce point est le sommet d’une surface conique du second
degré qui a pour base la courbe proposée. 1l est bon de rappeler;

(* Il paraitra peut-étre plus simple, et il reviendra d'ailleurs au méme, de
chercher dans I'espace un plan sur lequel la projection ortogonale de Iellipse
soit un cercle; et il n’y aura pas d’ailleurs besoin de rabattement. On peut con-
sulter, sur ce sujet, un mémoire de M, FERIOT, inséré ala page 240 du ILS
yolume de ce recueil. J. D. Ge
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3 ce sujet, que, si l'on coupe une surface conique quelconque par
deux plans paralléles, les deux sections seront toujours semblables
entre clles. Il y a plus, si, d'un centre de projection pris & vo-
lonté dans l'espace , on mene des rayons vecteurs aux différens
points d’'un systéme composé de points , de lignes ou de surfaces
quelconques, et que I'on fasse croitre ou dccroitre & la fois tous
les rayons vecteurs dans un rapport donné, on obtiendra un se-
cond systéme de points, lignes ou surfaces, semblable au premier
et semblablement placé , en sorte que les droites et les plans menés
dans les deux systémes, par des points correspondans, seront tou-
jours paralléles. Le centre commun, vers lequel convergent tous les
rayons vecteurs ; est ce qu'on peut appeler le cenire de similitude
des deux systémes. Pour deux cercles, tracés sur un méme plan,
ce centre de similitude ne peut &tre que le point de concours des
tangentes communes, extérieures ou intérieures. M. Poncelet ex-
pose ses diverses propriétés , dont un grand nombre dérivent immé-
diatement de la définition méme que nous venons d’en donner.
Outre la considération des projections centrales , M. Poncelet
emploie encore , dans son mémoire , ce qu’il appelle le principe
de la continuité. L'admission de ce principe en géomeétrie consiste
A supposer que, dans le cas ol une figure composée d'un systeéme
de lignes droites ou courbes conserve constamment certaines pro-
priétés, tandis que les dimensions absolues ou relatives de ses diverses
parties varient d’une maniére quelconque, entre certaines limites ,
ces mémes propriétés subsistent nécessairement lorsqu’on fait sortir
les dimensions dont il s'agit des limites entre lesquelles on les sup-
posait d’abord renfermdes; et que, si quelques parties de la figure
disparaissent dans la seconde hypothése, celles qui restent jouissent
encore , les unes A 'dgard des autres, des propriétés qu’elles avaient
dans la figure primitive (*). Ge principe n’est, 4 proprement parler,

(* Le mémoire qui précéde ceci offre, en particulier, des exemples remar-
quables en faveur de ce principe; on y a vu que le point de concours des tan<
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qu’une forte mductlon a Taide de laquelle on étend des théorémes
établis , d’abord a la faveur de certdines restrictions , aux cas od
ces mémes restncnons n’existent p]us. Etant appliqué aux courbes
du secand degré, il a condunt I'auteur 4 des résultats exacts. Néan~
moms, nous pensons qu’il ne saurait étre admxs genéra}ement et
apphque‘ mdxgtmctement a toutes sortes de qqestlons en géométrie;
ni méme en analise (*): En lui accordant trbp de confiance , on
pourrait, tomber quelque fois dans des erreurs manifestes. On sait ,
par exemple , que, dans la détermination des mtegmles définies , et
par suite , dans D’évaluation des lonf’ueurs , des surfaces et des
volumes , on rencontre un grand nombre de formules qui ne sont
_vraies qu’autant. que les valeurs des quantités qu elles renferment
restent comprises entre certaines limites. \

Au reste, nous dlstmguerons soxgneusement les considérations de
M. Poncelet sur la continuité de celles qui ont pour objet les
‘propriétés des lignes auxquelles il donne le nom de cordes idéales
‘des sections coniques. Comme ces propriétés nous paraissent mériter

gentes communes 3 deux cercles , soit extérieures, soit intérieures , ne cesse pas
d’exister , lorsque ces tangentes cessent d’étre possibles ; et qu'il en est de méme
de la corde commune & deux ' cercles, lorsque ces cercles cessent de se
couper,

(“) Clest aussi , 4 ce qu’ll paralt » lopinion de M, Durrande 3 et c'est ce
qui I'a déterminé i abandonner les démonstrations , trés-élégantes d'ailleurs ’
que Monge avait données de la théorie des poles , de celle des centres de
similitude et"de celle des axzes radicaux,”démonstrations qui' né sont applicables
qu’d’ certains cas. Il faut donc employer le. principe de M. Poncelet, ainsi
que le. tour de démonstration introdujt par Monge , A peu prés comme on
employait le calcul différentiel lorsqu'on n'en voyait pas bien encore la méta=
physique; Cest-a-dire, uniquement comme instrumens de découiverte ; maxs ce
Wen seront pas moins des instrumens trés-précieux ; car , le plus souvent , en
mathématiques , découvrir est tout; et ce ne sont pas d’ordinaire les démons-
trations qui embarrassent beaucoup.

_J. D. G,



74 PROPRIETES PROJECTIVES
d’étre remarquées , et quelles fournissent 2 l'auteur un troisieme
moyen de résoudre les questions relatives aux courbes du second
degré, mnous allons donner i ce sujet quelques développemens.
Si , aprés avoir mené , par le centre d’une hyperbole , un dia-
dtre 24 qui rencontre les deux branches , on fait passer, par les
points de rencontre des tangentes A I'hyperbole et par le centre ,
une paralléle 3 cestangentes; puis que l'on cherche & déterminer ,
par Panalise , les coordonnées des points o cette paralléle rencontre
la courbe et les distances respectives de ces points au centre , on
trouvera, pour P'une et P'autre distances, en faisant abstraction du
signe , une expression imaginaire de la forme By/ =i ; et par con-
séquent , pour la distance entre les deux points , une autre expression
de la forme 2By/ . Le cocflicient de /=7, dans cette derniére,
ou la longueur 2B, qui est une quantité réelle , peut sc construire
géométriquement ; et , comme la considération de cetie longueur
peut é&tre utile dans la recherche des propriétés de V'hyperbole.,
on lui a donné-un nom, en disant que 2B représente le diamétre
conjugué au diamétre 24. On sait qu’étant douné le diamétre 28, avec
sa direction , on peut facilement en déduire le diamctre 2.4 ; en
coupant les asymptotes par une sécante parallele 4 'la direction
donnée, la ligne mende du centre au milieu de la sécante indi-
quera la direction du diamétre 24 ; et le rapport de cette derniére

ligne 2 la moitié de la sécante sera précisément égal au rapport
A
7 -

Supposons maintenant que I'on, cherche, par I'analise, les points
d’intersection ;, non plus dun diamétre , mais d’'une droite quel-
conque avec ‘une- courbe du second degré , et la distance de ces
deux points, ou » en d’autres termes, la corde qui les unit; lors-
que la droite ne rencontrera plus la courbe, Ia distance donnée par
Tanalise deviendra imaginaire, et sera de la forme 2Cy/ i ; tandis
que le po'mt milieu de la corde conservera des coordonnées réelles.
1l devient alors utile de substituer 4 la corde imaginaire , qui n’existe
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pas, une corde fictive 2C , comptée sur la droite preposie, et
dont le milieu coincide avec le point dont nous venons de
parler.

C’est & cette corde fictive qu'on pourrait appliquer la dénomi~
nation de corde idéale , par laquelle M. Poncelet désigne tantét la
droite indéfinie que l'on considére, et tantdt la corde imaginaire in-
terceptée par la courbe , puisqu’il appelle centre de la corde idéale
le point réel que Panalise indique comme étant le milieu de la
corde imaginaire. Le sens dans lequel I'auteur emploie le mot idéale
se trouverait ainsi modifié de telle manidre que les longueurs idéales
resteraient des longueurs réelles et constructibles en géométrie. Ainsi,
par exemple, dans une hyperbole , dont le grand axe rencontre
la courbe, lalongueir idéale du diamétre, perpendiculaire au grand
axe, serait le petit axe lui-méme. Si, en adoptant cettc maniére
de s'exprimer , on construit, pour une section conique quelconque}
toutes les cordes iddales paralléles & une direction donnée ; les ex-
trémités de toutes ces cordes se trouveront sur une nouvelle section
conique , que l'auteur appelle supplémentaire de la premiére, re-
lativemant a la direction dont il sagit.

Cela posé, il est facile de voir que deux sections coniques sup-
plémentaires I'une de Pautre , relativement 2 une direction donnée,
sont nécessaicement ou deux paraboles ou une hyperbole et une
ellipse. Dans le premier cas, les deux paroboles ont le méme
paramétre , avec une tangente commune , parallele 3 la direction
donnée , et un diamétre commun passant par le point de contact.
Dans le second cas, les deux courbes peuvent aisément se déduire
Iune de l'autre , d’aprés la condition a laquelle.elles se trouvent
assujetties d’avoir en commun deux diamétres conjugués, dont I'un
est parallele & la droite donnée, tandis que l’autre rencontre i la
fois les deux courbes qui se touchent ainsi par ses extrémités,
Dans le ménie cas, toutes les fois que lellipse se réduit 3 un
cercle, I'hyperbole devient équilatére, et a pour axe transverse le
diametre du cercle. Enfin, I'on prouve. zisément que , si deux
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courbes sont supplémentaires I'une de l'autre, relativement 3 une
direction donnée , indiquéde par une certaine droite , leurs projections
sur un plan paralléle & cette droite jouiront de la méme propriété.
" En vertu de ce qui précéde , si Ion donne une section conique
quelconque , avec un centre et un plan de projection, il deviendra
facile de déterminer, pour la section conique projetée, 1.° I'angle
formé par deux diamétres conjugués, dont l'un serait paralléle au
plan de la section conique proposée; 2.° le rapport de ces mémes
diamétres. En effet,’ si 'on congoit d’abord que la section conique
projetée soit une hyperb‘ole , un plan quelconque , parallele au plan
de projection , coupera le céne qui a pour base la courbe proposée,
et pour’ sommet le centre de projection suivant des hyperboles
seinblables et comprises entre des asymptotes paralltles. Par suite,
si le plan coupant passe par le sommet du céne , la section se trou-
véra réduite 3 deux arétes paralléles aux asymptotes dent il s'agit.
Comme d’ailleursle méme plan coupera évidemment ta courbe donnée
suivant une certaine corde terminée i ces deux arétes, il en ré-
sultet, 1.0 que ll’aﬁgle cherché sera équivalent & celui que forme
la corde en question avec la droite qui joint son milieu et le sommet
da céne; 2.° que le rapport cherché sera celui qui existe entre
la l'ofxgueur de cette droite et celle de la demi-corde. Lorsque la
courbe projetée dera une ellipse, fe "plan mené par le sommet du
cone 'parallelement' au plan de projection ne’ rencontrera plus la
courbe proposée ; mais sa trace sur le plan de cette dernidre sera
toﬁjout"s une droite réelle , & laquelle correspondra une certaine
corde idéale de la courbe donnée. Dans la méme hypothése , on
app,li:q.ugra les raisonnemens que nous avons employés ci-dessus ;
non plus a la courbe propdsée, mais A la section conique supplé-
mentairé’ de cette' courbe , relativement i la corde idéale dont nous
venons de parler; et I'on en conclura, 1.° que I'angle cherché est
équivalent a celui que forme la corde idéale avec la droite qui joint
le “niilieu de cette corde ét-le centre de projection ; 2.° que le
rapport cherché est celui qui existe entre la longueur de ectte droite
et
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et la demi-corde. Lorsque la courbe projetée se réduit 3 un cercle,
tous ses diamétres conjugués sont égaux et se coupent i angles
droits. Par conséquent, dans ce cas particulier , la droite mende
du centre de projection au milieu de la corde idéale de la courbe
donnée doit étre perpendiculaire sur cette corde et dgale A sa
moitié.

La question que nous venons de résoudre n'a pas été traitée
directement par M. Poncelet ; mais la solution que nous avons dé-
duite des principes qu’il a établis fournit le moyen de simplifier et
de généraliser, tout 2 la fois, celles de plusieurs autres problémes
dont nous parlerons ci-aprés.

Considérons 4 présent deux sections coniques tracées sur un
méme pian. Il peut arriver ou qu'elles se coupent en quatre points
ou qu’elles se coupent en deux points ou qu’elles ne se conpent
pas. Si 'on cherche , par l'analise , les abscisses des points d'inter-
section , on trouvera que ces abscisses sont les racines d’une équa-
tion du quatrieme degré a coefficiens réels , et que cette méme
équation a quatre racines réelles dans le premier cas, deux racines
réelles et deux racines imaginaires conjuguées dans le second, enfin,
quatre racines imaginaires conjuguées deux 4 deux dans le troisiéme.
De plus, comme, en combinant les équations des deux courbes,
on peut en déduire une troisitme équation du second degré , qui
_ne renferme I'ordonnée qu'au premier degré seulement, il en ré-
sulte que I'analise indique seulement quatre points d’intersection,
et que , pour chacun de ces points, on peut exprimer I'ordonnée
en fonctions ratiennelle et réelle de Dabscisse. Par suite, si I'on
trouve , pour un point d’intersection , une abscisse réelle , ’ordonnée
le sera également; et, si I’analise fournit, pour deux de ces points,
deux abscisses  imaginaires conjuguées, les ordonnées correspondantes
seront elles-mémes imaginaires et conjuguées. Considérons, en par-
ticulier , deux points de cette derni¢re espéce. Comme , pour trans-
former les coordonnées de I'une en celle de l'autre, il suffira de
“remplacer -1/ par —{/ =, il est clair que toutes les équa=

Zom. XI. 1
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tions et quantites diverses ui , étant rutionnclles par rapport i
ces ordonnées, ne devront pas étre altérées par leur échange mu-
tuel, seront ndécessairement des équations réelles et des quantités
réelles. Par exemple , I'équation de la droite qui passe par les
deux points sera réelle , ainsi que le quarrd de leur distance mu-
tuclle, on, en d'autres termes, de la corde qui les unit, etil en
scra de méme des coordonnées du milieu de cette corde. Toutefols,
comme , par hypothése ,” les deux points ne sont pas réels , le
quarré de la corde en question ne pourra étre qu’une quantité né-
gative , dont la racine, abstraction faite du signe, sera une expres-
sion imaginaire de la forme 2Cy/ . '
Pour déterminer le coefficient réel 2C , dans cette expression ,
il-suffira évidemment de chercher la corde idéale qu’on obtient en
considérant la droite réelle’ qui passe par les deux points imagi-
naires comme sécante idéale de I’'une ou de I’autre des deux courbes
proposées. Par conséquent, la longueur 2€ sera celle d'une corde idéale
réellement commune i ces deux courbes. Cela posé, si 'on passe
successivement en revue les trois hypothéses que l'on peut faire
sur le nombre des points ‘réels communs aux deux courbes pro-
posées , on trouvera que ces deux courbes ont, en général, ou
six cordes communes, passant par quatre points réels, ou deux
cordes communes , dont une idéale, ou deux eordes idéales comi-
munes. Toutefois , pour deux hyperboles semblables , ou du moins
comprises entre des asymptotes paralleles , ainsi que pour des
ellipses semblables et semblablement placées , une seule corde com-
mune naturelle ou idéale subsiste , tandis qu’une autre s éloigne
3 linfini. C’est ce qui a lieu, en particulier, pour deux circon-
férences de cercles (*). De plus, il peut arriver que deux cordes

(™ La corde commune idéale . de deux cercles extérieurs.l'un 3 P'autre , ou ,en
dautres termes , leur axe .radical .n’est .autre chose que la corde commune
naturelle des hyperboles supplémentaires de ‘ces deux cercles, relatives & une
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communes viennent & se confondre, et alors, si ces cordes ne sont
pas idéales , les deux courbes se toucheront évidemment en deux
points réels, Ajoutons que, si 'on projette deux sections coniques,
situées dans un méme plan sur un nouveau plan, parallele 3 une
corde idézle qui leur soit commune , la projection de cette corde
sera elle-méme une corde idéale commune aux projections des
deux sections coniques. Par suite, si les deux courbes proposdes
c¢iaient dissemblables entre elles, auquel cas elles avalent nécessai-
rement plusieurs cordes réelles ou idéales communes; pour rendre
leurs projections semblables et semblablement placées, il faudra faire
cn sorte qu'unc des cordes communes s'¢loigne a linfini. Un rem-
plira cette condition en plagant le centre de projection par-tout ol
Pon voudra, pamivu qu’ensuite on prenne le plan de projection
parallele & celul qui passera par ce centre et par l'une des cordes
communpes aux deux courbes données.

Dans ce qui précéde , nous avons déduit de Vanalise Ia notion
des cordes idcales des sections coniques; mais on peut arriver au
méme but par des considérations géométriques.

Par exemple , lorsqu’une ellipse ou une hyperhole se trouve cou-
pée en deux points réels par une sécante queleonque , le milieu
de la corde interceptée coincide avec le point ok la sécante est
rencontrée par le diamétre conjugué & sa direction , et la corde
elle-méme est équivalente an double produit du rapport entre le
diamétre paralléle et le diamétre conjugué, par une moyenne pro-
portionnelle entre les distances du peint que l'on considére aux

perdendiculaire quelcomgue % Ja drc'te qui joint leurs cemtres. Om peur dire
pareillement que le point de concours idéal des tamgentes communes & deux
cercles intérienrs Pun & autre , ouw, en d auitres termes , leur cemire de simi-—
litade , soit interne, scit externe, m'est autre chose gue le point de concours

paturek des tangentes communes aux mémes byperboles.
J. D. G,
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extrémités da diametre conjugué. Si l'on' détérmine , d'aprés les
mémes conditions , la corde et son milieu, dans le cas o la sé-
cante devient idéale, on obtiendra ce que nous avons nommé la
corde idéale relative & cette sécante (¥),

Considérons encore deux cercles non concentriques et situés dans
an méme plan. Si, par ces cercles , on fait passer deux sphcres
qui’ se- coupent, le plan d'intersection des deux spheres rencontrera:
le plan’ des deux. cercles suivant une certaine  droite ; et cette
dioite’, 'si les deux cercles se coupent, passera par les deux points
qni leur sont communs. Si , au contraire , les deux cercles ne se
coupent pas, cette droite sera précisément la sécante idéale’, dont
la direction coincide avec celle de la corde idéale commune, et le
poi‘nt:d’ihtérs’ectioﬁ de cette sécante avec la droite' des centres sera
le milieu de la méme corde. La construction précédente, en don-
nant un moyen facile de fixer la diréction de la corde idéale com-
mune 3 deux cercles , sert en méme temps a faire connaitre ses
principales propriétés. Par exemple , si d’un-point pris sur cette

(") Tout ceci revient 4 dire que la coexistence de deux sections coniques sur
un méme plan donne généralement naissance 2 six droiles délerminées de
grandeur et de situation , lesquelles , lorsque ces courbes se coupent, deviennent ,
en tout ou en partie , des cordes communes & ces deux courbes; or, §'il est
une définition de ces droites qui convienne également A tous les cas , ne
faudrait-il pas l'adopter de préférence 3 une autre définition sujette 2 des
éxceptioys nombreuses , pour lesquelles il faut recourir 4 des conceptions in-
génie/nsii; si 'on veut, mais qui tendent i faire perdre a la géométrie une
partie avantages et de la supériorité qu'on lui a toujours accordé "sur toutes’
les hutres sciences ? Dans le cas de deux cercles, par exemple , ne vaut-il pas
mieux nir Paxe radical , le lieu des pbints pour lesquels les tangentes aux
deux cercles sont de méme longueur, que de dire que c’est la corde commune
A ces deux cercles? Nous en dirons autant des tangentes idéales -aux sections

coniques dont' M. Poncelet parait s'étre également occupé, et qui. peuvent offrir
up pareil champ de spéculation.

J. D. G,
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sécante , on méne une suite de tangentes aux deux sphires, elles
seront évidemment égales aux tangentes menées par ce. méme point
3 leur cercle d'intersection : il en résulte immédiatement, que les
quatre tangentes menées % deux cercles par un point pris sur la
direction de la corde commune sont égales entre elles (*). Celte
propriété était déja connue des géometres. On avait remarqué la
dreite & Taquelle elle appartient; et M. Gaultier, auteur d’un mé-
moire inséré dans le XVL® cahier du Journal de Vécole polytech-
hz'que, a particulirement considéré les droites de cette .espéce ,
auxquelles il a donné le nom d'ezes radicauz.

Aprés avoir entretenu I'académie des méthodes employées par M.
Poncelet ," nous allons présenter une indication sommaire des appli=
cations qu’il en a faites. Son mémoire est divisé en trois paragraphes:
le premier est relatif aux cordes idéales des sections coniques, et
renferme leur définition. ainsi que leurs propriétés géndrales , dé-
duites de considérations purement géométriques. L’auteur y remarque
également que le point de concours des tangentes menées i une
section conique, par les extrémités d’une méme corde, ou ce qu’on

(*) Cela nous paralt résulter d’'une maniére presque intuitive des propriétés
des tangentes et sécantes parlant d’un méme point, sans qu'il soit nécessaire
de recourir aux sphéres ; mais , quand les cercles ne se coupent pas , les
sphéres ne se coupent pas non plus , et il faut alors prendre pour définition
de l'axe radical la propriété méme qu'on lui avait découverte dans le premier
cas , ou loute autre équivalente.

Au surplus, & considérer les choses sous un point de vue purement anali=
tique , lexistence d’un axe radical pour deux cercles résulte tout simplement
de ce que la diftérence des équations de deux cercles est une équation du
premier dcgré;'et Pexistence d’un centre radical pour trois cercles résulte
de ce qu'en prenant les différences de leurs équations deux a deux , on obtient

trois équations du premier degré dont chacune esi ¢videmment comportée par
les deus autres.

J. D. G.
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appelle communément le pdle de cette corde est un point réel,
lors méme que les tangentes deviennent imaginaires. 11 montre la
relation qui existe constamment entre ce péle et le milien de la
corde , et s'en sert pour construire le péle idéal correspondant a
une corde idéale donnée.

Dans le second paragraphe , M. Poncelet s’accupe des cordes
idéales , considérées dans le cas particulier de la circonférence du
cércle , et démontre plusieurs propositions relatives, soit aux cordes
réelles ou idéales , soit aux poles de ces mémes cordes, soit aux
centres de similitude et aux cordes communes de deux ou plusieurs
cercles situés sur un méme plan. On pourrait déduire un grand
tombre de ces propositions des proprietés que possédent deusx points
choisis sur une droite et sur son prolongement de maniére que
leurs distances aux extrémités de la droite soient entre elles dans
le méme rapport. Parmi ces propriétés , 'une des plus remar-
_quables consiste en ce que la circonférence décrite sur la droite
comme diamétre coupe orthogonalement tautes celles qui passent par
les deux points en question. On doit distinguer , dans le méme pa-
ragraphe , une solution trés-élégante du probléme dans lequel on
demande de tracer un cercle tangent A trois autrés.

. Dans le troisitme paragraphe , Pauteur établit les principes de
projection centrale ou perspective 3 Vaide desqde‘]s on peut étendre
les. théorémes vérifids pour le cas du cercle & des sections coniques
quelconques. Par exemple , voulant démontrer que les propriétés
projectives du systéme de deux cercles, situés dans un méme plan,
subsistent pour le systéme de deux sections conmiques, il a seule-
ment a faire voir que le premier systéme peut étre considéré , en
géne’ralf, comme la projection du second. Il recherche , & ce sujet,
tous. les points de lespace suseeptibles de projeter deux scetions
eoniques suivant deux cercles, et prouve que tous ces points appar-
tiennent & des circonférences décrites avec des rayons perpendicu~
laires sur les milieux des cordes idéales. communes aux deux courbes
données , et respectivement égaux aux moitiés de ces cordes. Auw
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reste, on est conduit directement au méme résultat par la solution
du probleme que nous avons tiaite plus haut. On pourrait méme,
en sappuyant sur cette solution, determiner tous les points de Ies-
pace susceptibles de projeter deux courbes Quelconques du second
degré , suivant deux autres courbes du méme degré , mais semblables
entre elles, pour lesquelles le diametre, paralléle au plan des deux
premieres courbes , formerait, avec son conjogué, un angle donnd,
et serait 4 ce méme conjujué daus un rapport donné. On trouverait que
ces points sont situes sur des circonferences de cercles decrites par
des rayons vecteurs qui, aboutissant aux milicux des cordes natu-
relles ou ideales communes aux deux courbes proposées,—foruwlit
avec ces mémes cordes l’angle donné, et sont & leurs moitiés dans
le rappert donné. Plusieurs autres questions du méme genre, traitées
par l'auteur , dans ce troisiéme paragraphe, se résolvent d’aprés
les mémes principes.

Draprés le compte que nous venons de rendre du mémoire de
M. Poncelet, on voit qu’il suppose dans son auteur un esprit fa-
miliaricé avec les conceptions de la géométrie et fécond en ressources,
dans. la recherche des propriétés des courbes , ainsi que dans la
solution des problémes qui s’y rapportent.

Nous pensons , en conséquence, {que ce mémoire est digne de
I'approbation de I'académie ; et nous proposerions de l'insérer dano
le recueil des savans étrangers, si I'auteur ne le duetinait 3 fau'e
partie d’un ouvrage qu'il se propose de publier sur cette matiére.

Signés PoissoN ; ARAGo; CAUCHY, rapporieur.
L’académie approuve le rapport et en adopte les conclusions.
Certifi¢ conforme A Ioriginal :
Le Secrétaire perpétuel, Chevalier des Ordresroyaus
de St-Michel et de la Légion d'honneur ,

Signé DELAMBRE.
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ANALISE TRANSCENDANTE.

Sur le deéveloppement des puissances des cosinus en
cosinus darcs multiples ;

Par M. Prana , professeun d'astronomie 3 Tuniversité de
Turin.

D.ms le troisitme volume de son Calcul intégral ( 2. édit.,
Pag: 605 et suiv.), M. Lacroix a exposé les difficultés que: présente
le développement d’une puissance quelconque du cosinus d’un arc
en série procédant suivant les cosinus- des multiples de cet arc;
développement quon avait cru exact pour toutes les valeurs de
lexposant, jusqu’a lépoque ot M. Poisson , dans le 2.° volume
de la' Correspondance sur Ulécole -polytechnique ; signala lerreur
od lon était ‘demeurd jusqu'alors sur ce sujet.

Il m’a paru que ce point de doctrine pourrait &tre facilement
dclaircit de la manidre suivante.

En pesant
u=Cos.z~{/ =1Sin.z
p=Cos.z—y/ =iSin.z ,
on a
utv=2Co0s.7 ,
d'od

(o)™
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(u+y)"'= 2%.Cos. iy N !
donc ,"en ‘développa.nt le binome , on aura
a™.Cos."z=u"} '—?—u’"‘".uw}- -?— ’f;!— AR T )

o

en remarquant que w=1, et que
©"=Cos.nz-4y/ =;Sin.nz ;

et faisant , pour abréger ,
m, m me—r o
A= Cossma- - Gﬂs.(wﬁab-:m%;w Cos(meml)zde ... ;

m me-l

B=S8inmz 4 4? Sin.(m=—2)z-} T Sin(m-f)at=.. 5
on aura

- 2".Cos."r=A+By/ =1 . (1)

Si, au lieu de développer (z-4»)™, on’développe®son équivalent

(vu)™, au lieu de léquation (1), on aura la suivante

2m.Cos."x=d~By —x . (2)
&om. XI. 1z
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Les équations €1, 2) ne sauraient s'accorder qu'autant qu’on
aura généralement B=io. Or, il est ais¢ de prouver qu’effective-
ment cette fonction est toujours nulle, 3 I'exception d’un cas que
la démonstration méme met en dvidence. En effet , si Von subs-

litue les exponentiels aux sinus , l'on voit d’'un coup-d'wil que
Ion a

mx \J =1 —ma\| =1

e -—2x\_1m 2x\/=T.m
B= — L Vv ;) -t (14e v Y.
2\/—1 2\/:_;
Mais nous avons
< 5T AV jmry — j— e
v *=Cos.227 /= Sin.az,
ou bien
22\ mg . I
e- V= =2C0s.* gmet 29/ =3510.2C05.2 ;
partant, nous aurons
»
MCos™x. moe\J—1 —_—
B="2 2 (Cos.z—y/ =3Sin.z)"™
2‘/—1
m m —mx\l:j;
2"Cos ™z, : —
> ¢ (COS-x'*-‘/——xSln.a‘)m .
® zv:-;:
T

11 suit de la que, en vertu des deux équations

e mey—;
e V=i =Cos.mz+y/ =;Singnz
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(Cos.z ¥ y/ =1Sinw)"=Cos.maZy/ —:Sinmz ;

on a

2MmCos.mzx

B= = (Cos.ma--y/ =} Sm.mx)(Cos.ma:——V —:Sin.mz)

2mCos.™,

Do ——

WS

2 (Cos.ma—y/ =3Sin.mz)Cos.maz—} v =18in.mz) ;

¢’est - & = dire B=o0 , quel que soit I'exposant m, entier ou frac~

tionnaire.
. Cette conclusion cesse pourtant d’étre vraie , lorsque z=w,

.ear alors on a
Sin(m=—=2n)x=Sin.(m—2n)w=S8in.nm» ;

n élant un nombre entier positif quelconque ; donc , en revenang
sur nos pas, la premiere transforméde sera

mu\L_I -—ma\L_x

B=°%____ V= (1) (i)™ ;

puisque

8-—2’V—[ =¢’+2N-—l =COS.2'——§:v :ISin.I¢= I .

Ainrsi nous aurons

B=2"Sinamw ,

ce qui donnera ces deux équations
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2",Cos.mMa==A'4-2"/ =iSinmw ;
2".Cos.ae=A/==2™/ =1 Sinmw ;

A’ étant ce que devient 4 lorsque l'on y fait z=s.

Lorsque m -est un nombre entier , positif ou négatif , l’on a
Sin.ma=o0, et par conséquent ces deux valeurs de 2™Cos."# coin-
cident; mais , dans le cas ot m est fractionnaire , il faut considérer
les seconds membres de deux équations précédentes comme donnant
deux des racines de I’équation

I
ym—2Cos.x=0 ;

Jaquelle revient 3
y%-l—z:o :

Il est d'ailleurs facile de voir qu'il n’y a en cela aucune contra—
diction; car, dans le cas de ==, on a

A= Cos.mw.( + +T~ n_l_-_!‘_'_;rtz_z;::ng-:f +....)

ou bien

A'=(141MCos.m=z=2",Cos.mw ;

ainsi , les deux équations précédentes donnent
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2™,Cos. .= 2™.(Cos.ma+/ =iSinm=) ,
2.mCos."z==2."(Cos.mw-—1/ =;Sinm=) :

Donc, en remplagant 7 par la fraction ’7;, il viéndra

V/ (Cos.m? =Cos. ’-;: i‘/—_x Siﬂ‘p—; =y (=7

¢e qui est un résuliat exact, lorsque p et g sont des nombres
entiers, comme nous le supposons.

M. Deflers avait aussi reconnu que la fonction désignée par B
doit étre nulle, en général; mais la démonstration que nous en don-
nons ici nous parait directe et plus simple ( voyez le volume cité,
pag. 621 ).
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ASTRONOMIE.

Observation faite & STBasBoURG de [l'éclipse de soleil
du 7 de septembre 1820 ;

Par M. HERRENSCHNEIDER , professeur de physique 3 la
faculté¢ des sciemces.

(o Vi Vo Vo Sa Vi Vo "a Tl ¥

Lettre de M. le Professeur K r amr

Au Bédacteur des Annales ;

MONSIEUR ET TRES-EHER CONFRERE ,

L’EKTRAIT ci-joint a pour auteur M. le professeur Herrenschneider,
mon collégue. Comme nous n’avons encore ici ni instrumens ni
méme de local, il faut bien user de moyens étrangers pour par-
venir & notre but. L'observation de I'éclipse a éte faite en présence
d’un assez grand nombre de personnes plus ou moins illustres; et
en voici le récit officiel; tel-qu't-a parudans te Couwrrier du dé-
partement du Bas-Rhin, le dimanche 1o septembre 1820.

« L’éclipse de soleil du jeudi 5 septembre dernier [ut observée
» par le professeur Herrenschneider , dans le jardin attenant a sa
» demeure , rue St-Thomas , n.° 16, avec une lunette achiomatique
» de quatre pieds de longueur grossissant 115 fois. Il se servit
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» pour observer le temps, d'une bonne montre 4 secondes , réglde
» sur l'horloge de la cathédrale (*). 1l lui manquait un instrument
pour connaitre exactement le temps par le moyen des hauteurs
correspondantes. Le disque solaire , observé dans la matinée et
pendant Uéclipse , avec la méme lunette , était entiérement pur
et sans tache. Le commencement de Iéclipse eut lieu a 1.5710 ™15%,
Il arriva par un contact subit et fut exactement observé..Le
soleil ayant pris, par le mouvement progressif de la- lane, la
forme de croissant, dont la largeur diminuait de plus en plus;
» ses deux extrémités, qui en formaient les somimets , étaient arron-
» dies et présentaient une courbure assez distincte. A mesure que
» la lune avancgait, les deux boats arrondis dn croissant solaire se
» rapprochaient de plus en plus. Ayant atteint la- distance de 12/,
» 2 peu prés , on vit se former subitement entre eux une
ligne circulaire lumineuse , qui n’augmentait pas en largeur
et qu'on doit probablement attribuer 2 linflexion qu’éprouvait la

» lumiére solaire , en rasant le bord de la lune. Enfin, la réunion
» subséquente de ces deux bouts indiqua le moment du commen-
» cement de I'apparence annulaire de I'éclipse qui arriva & 2.437 .mos.
'» L’apparence annulaire augmenta alors visiblement. Aprés la for=
» mation compléte et régulire de 'annean , au moment du milieu
'» de Véclipse , sa plus grande largeur fut estimée & % doigts et la
» moindre & : doigt. Le disque lunaire interrompant ensuite
» de nouveau I'apparence annulaire , la ligne lumineuse circulaire
» reparut également entre les deux bouts arrondis du croissant
» solaire, qui commencait 3 se former en sens opposé. La rupture

g ¥ ¥ ¥ v

©

(* On ne nous dit pas sur quoi I'horloge ‘de la cathédrale était réglée, ni
comment on parvint a régler une montre & secondes sur une horloge publique.
N’y a-t-il donc pas-de méridienne solaire 4 Strasbourg ? La montre a secondes a
du moins pu faire & peu prés connaitre le temps relatif,

d. D. G,
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de lanneau arriva & 24394’ ; mais la ligne lumineuse ne dis-
parut qu’au moment ou les deux bouts du croissant s’étaient
séparés de 12/ & peu prés. Depuis cette époque , I'éclipse alla en
décroissant , et sa fin arriva a 3.258.m48.° (*).

» L’observation’ de .cette éclipse constate le résultat des calculs
de M. le professeur Kramp, doyen de la faculté des sciences ,
qui avaient prouvé que léclipse serait annulaire pour la ville
de Strasbourg; ce qui était doutcux , d’aprés les calculs d’autres
astronomes. La durée annulaire de ce phénoméne a été pour
Strasbourg de 2."4.°, etla durée totale de I’éclipse de 2.#48.m33.s.

» Des nuages assez épais s'¢taient amoncelés devant le soleil avant
le commencement de l’éclipse ; mais des intervalles entiérement
lucides ont permis d’en.ebserver I'instant avec une grande préci~
sion. Lies nuages disparurent vers le milieu de sa durée. Quel-
ques nuages se formeérent de nouyeau vers sa fin ; mais sans nuire

. & l'observation.

» Le vent a varié entre N.E et E. Il soufflait avec un frais
sensible. T

» Le barométre n’a pas discontinué de monter pendant tout le

» temps de observation. L’hygrométre de Saussure indiguait le méme
» degré d'humidité que le jour précédent.

¥y ¥ ¥ ¥

» Le thermometre 4 mercure, exposé au soleil, montrait , au
commencement de Déclipse , une température de x14°;(R), aa
milien 13> et & la fin 15;. Un second thermométre correspon-
dant, suspendu i c6té du premier, et dont la boule était noircie ,
indiquait aux mémes dpoques 15°;, 14°; et 18°;.

(*) Si les ecalculs donnés par M. Kramp, a la page 345 du VIIL® volume

de ce recueil , sont exacts, I'horloge de la cathédrale de Strasbourg aurait
été en avance d’environ 1."45°. Si l'on admet, au contraire, ceux qu’a donné

M. B. Valz a la page 125 du IX.¢ volume , lavance n'aurait été que d’en-
viron 6 secondes seulement.

J. D. G.
« L’affaiblissement
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» L’affaiblissement de la clarté du jour était trés-sensible. Celle

» qu'on apercut au plus fort de P'éclipse ressemblait au clair d’une
» pleine lune. Elle était pale et les couléurs des objets paraissaient
» ternes et sombres. Néanmoins, les étoiles ne parurent point , i
» D’exception de la plantte de Vénus, qui.fut visible prés de

» ['horizon, »

Trente mille observatcurs au moins ont vu cette éclipse : tous
ent été témoins de son apparence annulaire, ainsi que des rapports
entre les largeurs des deux bords.

L’endroit de I'écrit précédent « ce qui était douteux, d’aprés les
» calculs d’autres astronomes » , regarde sur-tout M. Litrow, di~
recteur de Pobservatoire de Vienne. Il vient de publier un petit
livee sous ce titre : Ezposé de la grande éclipse de soleil du 7
septembre 1320 , suivi de deux cartes ( Pesth, 1820 ). Les deux
carles sout complétement fausses d’'un bout a I'autre. Strasbourg s’y
trouve kors de la limite - qui sépare les endroits de la terre ol
Véclipse doit paraitre annulaire; tandis que, d’aprés mes calculs,
entiérement conformes aux observations , il devrait &tre dedans. 11
y a grandc apparence qu’il faut porter le méme jugement des autres
endroits marqués sur la carte.

Nous avons été extrémement attentifs sur la prétendue athmos-
phére lunaire : nous n’aveps rien trouvé qui lindiquat. Il faudra
en revenir i ce que dit NL Biot ( Astron. phys. , tom. 11, pag. 413 ).
« Ces circonstances physiques s’opposent 3 ce que la lune, dans
» son état actuel, puisse éitre habitée par des ‘étres animés, sem=-
» blables 3 ceux qui peuplent la surface de la terre: car ils ne
pourraient y respirer, mi par.conséquent y vivre. Tout doit étre
solide & la surface de cet astre, et il y régne sans doute un

froid excessif. »

¥y ¥ ¥

Agréez , etc.

Strasbourg , le 12 septembre 18z0.
Tom. XI. 13
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Observation de la méme éclipse & MONTPELLIER ;

Par M. GERGONNE.

Assls , depuis trois ans, sur les débris d’un observatoire ruiné ,
qui pourtant, durant un siécle, n’avait pas ‘été sans quelque éclat
et sans quelque utilité ; habitant un appartement au nord dans le quar-
tier le plus bas d’une ville batie sur un terrain trés-inégal ; il m’aurait
été impossible non seulement d'observer, mais méme de voir Téclipse
si je n'étais sorti de chez moi. Un de mes amis voulut bien mettre
2 ma disposition une petite terrasse d’olt Yon pouvait suivre le
soleil depuis g heures et demie du matin jusqu’a son coucher; mais
ol je ne pouvais établir mes pendules , que d’ailleurs je naurais
pas eu le temps de régler. Je vis donc bien qu'il faudrait absolu-
ment renoncer au luxe des secondes, ne pouvant employer la qu'une
montre ordinaire que je perte depuis 25 ans et qui marche assez
bien. Je fis transporter sur cette terrasse un petit quart de cercle
garni d’un niveau & bulle d’air et d’'une lunette achromatique d’un
pled de longueur , et donnant les minutes.

Quelques jours auparavant , javais calculé les circonstances de
l’éclxpse , en poussant I'approximation aux secondes de degrés et de
temps , et les rejetant ensuite du résultat final. Voici ’annonce que
javais adressée au journal du département.

° Commencement deé Péclipse A environ 58° i droite de l'ex-

trémité supérieure du diamétre vertical du soleil, & . . .. 1.* o
2. Croissant horizontal , & . . . . . e e ie e ee s 2k28"

3.° Plus grande phase de gqd°ig's 57’ 5 A X TR
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4.° Tin de l'éclipsc, 4 environ 77.°a gauche de Vextrémité supd-

ricure du diamétre vertical du soleil, a .. ... ... .. 3.k52m™

¢, Pour savoir & peu prés a quoi m’en tenir , j'avais eu le matin
la précaution de régler ma montre au lever du soleil, annoncé pour
chaque jour , dans l'annuaire du département. Mais , dés g heures
et demie, je prenais des hauteurs correspondantes qui devaient m’ap-
prendre , & moins d'une minute prés, la différence entre le midi de
ma montre et le midi vrai de Montpellier. Mes résultats , corrigés
de cette différence, ont été tels qu’il suit:

1.° Commencement de Péclipse , 3 . . v o oo v v vt oo 12"

2.° La forme arrondie des cornes du croissant , effet naturel de
Iirradiation , de la diffraction et peut-&tre aussi de I'imperfection des
lunettes , m’a permis d'observe: assez exactement I'époque ol les
d:ux courbures étalent tangentes au fil horizontal de la lunette;
je ai fixé & v v v v it it iie e s .. 2230

-

3.° L’époque de la plus grande phase a suivi de trés-prds; mais,
ma lunette n’ayant point de micrométre , et distrait d’ailleurs par
les mille questions des curieux qui m’entouraient et a4 qui méme
souvent il fallait abandonner linstrument, je n’ai pu en fixer I'ins-
tant préeis, ni la quantité que j'zi jugé fort approchante de 10
doigts , mais plutét au-dessus qu'au-dessous.

4.° Plus libre des questionneurs 2 la fin de ’éclipse, je crois
Pavoir observée assez exactement , ¢t pouvoir la fixer a . . 3.:54%

Ainsi, d’apres cela, mon calcul se serait trouvé en erreur d’en-
viron 2 minutes en moins , tant sur I'époque de la situation hori-
zontale du croissant que sur celle de la fin du phénoméne.

Je m’étais bien promis d’observer 'époque de I'arrivée du bord de
la lane & chacune des taches que pourrait offrir le disque solaire ;
mais je n’y en ai apergu aucune.

Un vent assez fort régnait dés neunf heures du matin; il a paru
augmenter un peu & I’époque de la plus grande phase ; il était S. O.

Aucun nuage n’a contrarié I'observation ; il en était passé quelques-
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uns devant le soleil vers les 11 heures ; mais d’une telle transpa-
rence qu'ils laissaient apercevoir nettement les bords de son disque.
Vers le milieu d= I’éclipse tout le public a vu la plané¢te d¢ Vénus;
mais cela est d’autant moins surprenant’ que le lendemain on l'a
également remarquée dans le milieu du jour. |
Je sens fort bien combien peu des observations faites de la maniére’
que je viens de dire peuvent étre profitables 4 une astronomie per-
fectionnée comme elle I'est aujourd'hui; mais cest tout ce qu’il €tait
possible de faire sans observatoire et sans instrumens.

et
m———————e

QUESTIONS PROPOSEES.

Probléme d Arithmeétique.

ON a derit de suite, et sans aucune séparation , les nombes de
Ia suite naturélle, en cette maniére

1234567891011 uv1314151 6171‘81920212223......

En considérint simplement cette suite comme une suite de chiffres
posés les uns 3 coté des autres ; on propose d’assigner le chiffre
P 3 prop 8

qui en occupera le 2.™® rang , quel que soit 2, sans étre obligé
d'écrire ceux qui le précident?
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ANALISE TRANSCENDANTE.

Essai d'une nouvelle methode servant @& intégrer
rigoureusement , lorsque cela est possible , loute
équaiion differentielle & deux variables ;

Par M. le professeur Kramp, correspondant de l'académie
- royale des sciences , doyen de la faculté des sciences de
Strasbourg , chevalier de 1Ocdre royal de la Légion

d’honneur,

s i TV, . e e s 0

1. ON sait que toute dquation différenticlle 2 deux variables a
pour inlégrale compléte une équation , entre les mémes variables et
des constantes arbitraires, en nombre égal & celui qui désigne I'ordre
de léquaticn proposée ; constantes qui peuvent se trouver impliquées
avec les variables de toutes les maniéres diverses admises dans I’ana-
lise comme moyens de combinaison. Mais , quoiqu’on démontre
trés-rigoureusement que; quelle que puisse étre la forme de I'équa-
tion différentielle , elle a toujours une intégrale, on est bien loin
encore de savoir assigner cette intégrale dans tous les cas.

2. Le probléme inverse , c’est-a -dire, celui ot étant donné
Pintégrale compléte, avec toutes ses constantes arbitraires, on pro-
pose de redescendre 2 son équation différentielle, délivrce de toutes
ces constantes, se montre incomparablement plus traitable. Il ne
s'agit en effet, pour le résoudre, que de différentier I'équation
proposée autant de fois consécutivement qu’il y a de constantes

Tom. XI, n.° 1V, 1.* octobre 1820, 14
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distinctes & faire disparaitre , et d’¢liminer ensuite ces constantes
entre la proposée et ses différentielles successives. L'ordre , le degré
et la forme de I'équation différenticlle résultante dépendront évidem-
ment du nombre des constantes que renfermait la proposée, et de
la mani¢re dont elles s’y trouvaient combinées avec les variables et
les quanutés communes,

3. Que si, ensuite , on rencontre une autre équation différen-
tielle , de méme forme que celle & laquelle on sera parvenu ,
on sera fondé & supposer que l'intégrale de cette dernitre doit aussi
étre de méme forme que celle de la premiére ; et, par un procédé
analogue & la méthode des coefficiens indéterminés , on pourra essayer
de remonter a celle-ci. Voild donc un nouveau champ de recher—
ches qui s'ouvre devant nous , et dans lequel nous allons tenter
de nous engager.

4. En ne considérant , en premier lieu, que les équations du
premier ordre, qui ne comportent qu'une seule constante arbitraire ,
et supposant qu’elles admettent une intégrale algébrique , cette inté-
grale ne pourra étre que de la forme

o= (P4 Qy4By* 4. )+(P/+Q/y+ Ry 4. )
(P4 Q' y =Ry e e

ol ¢ est la constante arbitraire, et od P, P!, P/ ... Q,¢,0,..
R, R/, R”,.... peuvent -étre supposées des fonctions rationnelles
et entitres de z; puisque, dans le cas ol quelques-unes de ces
fonctions. se trouveraient affectées de dénominateurs , on pourrait tou-
jours préalablement les faire disparaitre,

5. Si de plus 'équation différenticlle n’est que du premier degré
seulement, la constante ne devra également entrer qu’au premier
degré dans son intégrale; c'est-u-dire ,que cette intégrale sera sim=
plemeni de la forme
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0=(P+Qy+Ry*+.)HPAQy+Ry +.c .

Nous nous occuperons uniquement, dans le présent mémoire, des
équations différentielles dont l'intégrale donne la valeurde y en x
au premier degré seulement, et ou conséquemment cette variable
est une fonction rationnelle fractionnaire de la constante ¢ ; c’est—
a-dire , que nous ne considérerons , de I’équation précédente , que le
cas trés—parlticulier

o=(P+Qn)+(F'+Q)e .
6. La différentielle de cetie équation est
0=(dP+ydQ+Qdy) 4-(AP4-yd Q'+ Qdy)c ;
éliminant donc ¢ entre l'une et l'autre , il viendra
(P4Qy)dP4ydQ+Qdy)=(P/+Qy)dP+ydQ+Qdy) ;

ou, en développant et réduisant

PQ'| dy4PAP/ | +PAQ | y+QiQ | y=o .
—p@| —Par | —pag —Q1dQ
o |
—Q/dP

Nous sommes donc fondés & considérer toute équation différentielle
de la forme

¥ LAX+Xy+Xy=o ,
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ou ¥V, X, X/, X", sont des fonctions rationnnelles et entiers de
& , sans y, comme devant avoir une intégrale de la forme

o= (P~+Qy)+(P'+-Q'r)c

ol ¢ est la constante et o P, P/, Q, @/ sont également des fonc~
tions rationnelles et entiéres de z sans y;et, si nous nous pro-

posons de remonter & cette intégrale, ces quatre derni¢res fonctions
seront les incennues du probléme.

7. En exprimant que les deux équations différentielles sont iden-
tiquement les mémes, ce qui est permis , puisque nous avons admis
des ceefficiens & tous les termes, nous aurons

PQ—QP'=V
PP/ —PdP=Xdz ,

252 1 PAQ/—P/dQ+4QdP/~QdP=Xdz ,

| QIQ—QaQ=X"dz .

8. On peut simplifier la troisiéme dquation, en lui ajoutant et
lui retranchant successivement la différentielle de la premiére qui est

PAQ/—P/dQ—QdP/+Q'dP=dV ,

on a alors pour résoudre le probléme les quatre équations
PAP'~PdP=Xdz ,

QUQ—QiQ=X"a ,



DES EQUATIONS. 101
QdP'—QdP= (X' dz—dV) ,
PAQ/—PdQ= (X dz+dF) .

9. Prenant successivement; 1.° la somme des produits respectifs
des premicre et troisitme équations par 4= et —P; 2.° la somme
des produits respectifs des deuxiéme et quatriéme par —Pet ~+Q;
3.° la somme des produits respectifs des premiére et troisi¢éme par
@/ et —P/; 4.° enfin la somme des produits respectifs des deu-
xi¢me et quatritme par—P/ et 4@’ , et remplagant chaque fois
PP'—QP/(7) par sa valeur ¥, il viendra

2VdP=PdV 42 XQ—~X'PYz , ...
2V dQ= QdV—(2X/P—X'Q\ds,-
aVdP/ = PdV4-(2 XQ'—X'P)\dz ,

2VdQ) = QdV =2 X/P'—=X'Q)dz .

Nous avons donc décomposé notre probléme & quatre inconnues
en deux problémes & deux inconnues , puisque les deux premitres
¢quations ne renferment plus que P et @ ; etles deux derniéres
P/ et (. Pour mieux dire, nous I'avons réduit a un seul probléme
4 deux inconnues, puisque les deux derniéres équations ne différent
uniquement des deux premiéres qu’'en ce que P’ et (/y ont pris
la place de P et () respectivement. Nous sommes donc fondés 2
en conclure que st P et P’/ ne sont pas racines d’'une méme équa-
tion du second degré, ils ne différeront au moins que par des cons-
tantes ; et on peut en dire autant de @ ct (.

10. En prenant successivement la somme et la différence , d’abord
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des deux premiéres équations , puis ensuite des: deux dernidres, il
viendra /

2Vd(P+4Q)=(P+ Q¥ —X/(P—Q)dz+2(XQ-—X"P)z ,
2V d(P—Q)=(P—QdV—X/(P+Q)da+2(XQ-FX""P)dz ,
2FA(PI4Q)=(P'4-Q/)d B’-—-X’(P/—-_»Qédx-}-z(XQ’-—X”P’)dx ,

2P A(PI— Q)= (Pm Q) — X (Pl Qe 2(X Q4 X PP

Posant donc

P+4@Q =§p , 3 [ P=p4q ,
pee=s, | | o=y,
} dour ¢
Pz, ——
P/—‘Q,=29l H J ! Q/’_'\:pr_q/ H

ces équations deviendront
2V dp =p [AV +(X—X")dz}—g (X+X'+-X)dz ,
aVdg =q [AV—(X—X")ds]-+p(X—X'+X")dz

2P dp/=p [V -HX— X\ 5] — g/ (X4 X XY

-

aVdg/ = g/ [Vl X XY AT/ (X— X' XV)da
11, En posantﬂimc, poiyr abréger,
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AV —(X—X" dz=R'dz , X—=X'4-X'=wm§/ ,

ses équations deviendront
dp dp’ -
2V -E; =Bp—-Sq » 2VE; =Bp’—Sq/ ’
Y & Ry —8int
27—5;_-Rq-—5’ y 2V = =Rlg'=§p .

12. Au moyen de ces derniéres, il: est facile, par la. différen~
tiation , d’en obtenir d’autres dont chacune ne renferme qu’une
seule des inconnues du probléme. .Si, en.éffet, ou élimine d’abord
entre les deux dquations de la premiére colonne et la différentielle
de la premie d deux inconnues: ier degré

premicre g et — , commedeux in ues:au premier degré,
puis qu’entre ces deux mémes équations et la différentielle de la
. .. d R
derniére on élimine p et —éB , comme deux autres inconnues au
X

premier degré; et si 'on opére d'une maniére semblable sur les
.équations de la seconde colonne, il viendra

s 2 gy § TS _gpy )}
RdS —SdR

+{ +5(an—sso} p=o ;
S AV —VdS!

g &9 d¢
s IL 2w {2 T s mrr)| L

R/d8'=S'dR/

+§ N% +S(BR’-—SS/\} #=o,

SAV==1d8

X

d2p! dp’
4rs 22 +2V§2 _9(R+Rf)2 i
BRdS—SdR

+{2V +S\RR/—SS/)§ p'=o0,
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V’S/ + Vi ‘E’.f_;_(l.s.._s/(}g+ﬁf)%_§%

+§27 B "5';‘3 id +sr\zm'—ssz)§ =0 ;

de 'sorte qu'en’ posant, pour abréger ,
2(SdV =P dS)<SR+4-R)dz=Tdx
2(§/dV -V dS)y~S(RA-R/Yda=T'dx ;.
2V(RdS—SdR)4S(RR —S8")dz=Udw ;
2P(§/dS'—~RIGR))+S/(RR/—SS')dz=U/dx ;
Jes quatre équations & résoudre seront

4V’S‘ + VT-—-+Up—o ;

4V’S’-——~+zVT’ +U’q—o s
47’8 + VT = ~ +Up/=0 ,
4V’S’ + VT' +U’ =0 :

13. Au moyen de ces quatre équations, on déterminera p, ¢,
P, g, dou on conclura (10) P, Q, Pz Q’ qui (5), substitués

dans la formule

0=
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o= (P+4-Qy)+P'+Qy)c ,

donneront lintégrale de I'éguation
dy '
VL XA Xy X =0

14. On dira peut-étre que nous ne faisons que déplacer la
difficulté et méme dune maniére désavantageuse ; puisque mnous
ne faisons que rawener intégration d’'une seule équation du pre~
mier ordre & celle de deux équations du second ; mais observons
que ccs dernieres sont linéaires , €t méme de la forme la plus
simple ; et nous verrons bientét d’ailleurs que , lorsque l'on sait
que lintégrale de la proposée doit étre algébrique et raiionnelle , on
peut assigner assez facilement l'intégrale de ces derniéres.

15. On pourrait encore objecter que Iintégration de chacune de
ces équations introduisant deux constantes , on se trouvera avoir
bien plus de constantes que ne le comporte la nature du probléme ;
mais 1l faut se rappeler, 1.° que les valeurs de p, ¢, p/, ¢/ doi-
vent vérifier les quatre équations du premier ordre que nous avons
d’abord obtenues (11); 2.° que celles de P, Q, P/, ' doivent
vérifier I’équation PQ/—QP/=}; 3.° enfin la valeur de y, déduite
de lintégrale , qui devra vérifier I'équation différentielle proposée ;
ce qui nous fournira les conditions nécessaires pour déterminer les
constantes superflues.

16. Appliquons ces divers procédés i un exemple ; et soit I'équa=

N e

tion diflérentielle proposée a intégrer
dy
¥(1—2°) - +4a+(+a)y =0 ;

nous aurons
dom. XI. x5
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V=g—a’ y X=4z, X1=l+x' » -Xl,,"-"O <

De |2 nous conclurons successivement

ar
—_— =135, | X—X'=4x ,

dx

pr _%.r/_..+(X—X/')=I+4x-—-3.z’ ,
! X

t

Ri= —3—’:— _(X—X//) = x-—4x—- 3z* ’

S = X+X+4X'=1442+2*,

! e X XV = X! = 1 = fx -2

dR !

—— prou— — e S —6
e +-4—62 , dx 4—bx ,
as . ds

L mhter , o =—htoz,
da x

a et o3 P
S = =14 428 el 22732
ar
Al e (X 221223 =32t ,
as .
V.a__c+4z+2w’-—4w —2gt
X

a8
Vo= ~4x+2:ﬂ:’+,4x3—2x‘ s

R %;— =t44182— 422~ 623 ,
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d8 N )
B — =—f+182+42*—06a* ,
S —dd% =-}+4+1 oz—202*—6a° ;

g Kol =—;~4+xox+zox’—6x3 ‘
dx ’

ar ds
¥ 9 TV 3 mr—de b —at

ds dR ‘
R % —S - =8x(1+?x) N

ds! dAa’ :
R/ i —§ - =8z{1—22) ;

RR/'=1—2224qgzt ,
S§=1—142"+ 2t
BR/—S$§'=—8a"(1—a") ,

RY+R =2—6z*,

S(B4R)=2482—f2* — 242'—62* ,
S/(B+R)=2—-8x—42*}242°~—62* -
S (RR/—SS/ = —82*(1—a) (144 +2%) ;

‘ S’(BR’-—SS’;=—8£‘(1—x’)(x—-q’,z-]-w“ y

103,
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T=a(($ G =¥ T )= SRR =—istata)es)
=2 (s: < -r 39N (BB =t 4z (a—a)1—a") ,
U_:zV(R S )+S(RR’—SS’) 823 (1—a")" ;

nV(B’——- -S’——)-}-S’(RR’-—SS’) 8a7(1—2)" ;
substituant donc dans nos equahons du second ordre ,en p et ¢,
_efle; deviendront -

N dz ’ ‘ h
fao2 (Te=22)2(14-f2c4-22) Ex-% —le=(t-‘-x=)2(z+x) %E +8x2(1==x3)2p=0 ,

M‘(x—x=)=(x--4x+x=) +8x’(x—x=)=(z-x) = +8x=(:-x3)2q-—o ’

ou, en simplifiant,

(x+4.t+x‘) 2(2+x) -—-+2p....o )

2

(x -4x+x’) +2(2—-x) +2q 0.

Les équations qui dévront donner p et ¢/ seront danc -
o d‘p’ ' dp’
(1that27) 7= —2(2-t-2) ‘-;,-; +2p/=0 ,

(1—=4x+4-2* ) +z(2-—z‘) —— +2 ¢9'=0 .
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Il suffira donc d'obtenir I'intégraic des deux premicres pour avoir <
celle des deux dernicres.
17. Essayons de faire

p=A+Ba+Cx*+-Da*+Ex*4-...... v,

A,B, C, ....... étant des coefficiens numériques inconnus, nous
aurons )

% =B+4202+43Da*+4ES+ . .. ..,

2

‘%5: = 2C+6Dz412Ez*420F 24 ... ;

substituant dans la premidre équation, elle deviendra, en ordonnant ;

o=A | 43Dx46D | x4 D | 234 3E | xé-f 6F | aSfuet.
2B +6E ~+16E +3oF | 448G
+ C ~+10F 415G 421H

exprimant donc que cette équation est identique , nous aurons .

A== 2B4 C=0 , - r C=2B—=A,
D=0 , D=o ,
D4-E=o , E=o ,
D+416E410F=0 , ) dod { F=—o ,
E4-10F4- 5G=o0 , G=o ,
2F+1GG+ 7H=o0 , H=o ,
cr e taees > ,/ L.

~

Substituant dans la valeur hypothétique de p, elle deviendra
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p=d+Bat(2B-d)a*=A(1—a"1+ Bi(i}23) ;

ou A et B sont les deux constantes arbi{ralre& que comporte I'in-

téﬂrale.
L'équation en g4 teaitée de la méme maniére, donnera

g=A'(1—2)+B'2(1—21) ,
" " “i 2 N L 2 N

oud A’ et B/ seront les deux constantes.
18. On tirera de & « | .«

d

p
T -5;—:-‘:&‘4‘ ¥y s\ +4x) ——2‘4/‘1_‘_‘3/(]-’_ ‘l:‘) o

] 2o

dzc'

en s¢ rappelant qu’ici

. » - -

oV =2zm-23}"; R =r1rd4-4fa—3at , § =1+4x—'—x' 5
I N T f
R=1=—f2—32* , §=1—4a+2*,

3

Y

et substituant (11) dans les équations du premier ordre en p et ¢,
il viendra, en reduisaut;

(A—/f’)‘('f:-x’;)—(B—}-;B/)x( 1=2z)=0 ,

[

(d— /)1 BA-B) a1 F23)=0 .-
Ces relations devant subsister quel que soit z, mnous ferons suc-

cessivement z=0, 4=1; et les deux équanons donneront égale~
ment A'=4, B/'=—DB; de sorte que nous aurons

p=A(1—a)+Bx(1+22) ,



DES.EQUATIONS.

7= A(1—4") ~Ba(1737)
nous aurons. donc aussi

p'=A'(1—2)+-Bz(1422) ,

¢/ =A'(1=2*)—B'2(1—22) ;

A’ , B’ étant deux nouvelles constantes. .
19. Nous conclurons ensuite de la

P=p-4q =24(1—a*)+4Bz* ,
Q=p—g =28z ,
Plopbgmadf (e 4B
Q'=p'—q’=2B'z% .

En nous rappelant quici F'=2(1—a"), et substituant ces valeurs
. N TN >
dans I'équation ' )

PQ—QP/=V,
elle deviendra, toutes réductions ~faites ,
4{(AB'—BA) =1

équation de relation entre nos quatre constantes,
20. En subtivuant les valeurs de P, @, P/, {’, dans I'équation

o=(P+Qy)+(P+Qy)c ,

elle deviendra, en divisant par 2,
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o= {[A(1~z")faBr]+Bay }+{ [4(1—a* 2B a1+ Blay jes

ou encore

o= {(d4A')(1—")+2(B+Bc)z*} +(B+Ble)zy ;

ou enfin

AL4-Ac . =) —
o= %m(l——.‘t V22 5+zy-o ;

d’ou lon voit qu’il n'y a plus proprement qu’une seule constante
A4-A'c ., . . .
Bime en la représentant par € l’équation deviendra simplement

o= {22 C(1—2*)}+zy ;
d’od
- 2x24-C(1—x1)
x

3

qui est en effet I'intégrale de I'dquation différentielle proposée, comme

il est facile de s'en convaincre, parla differentiation et I'élimination
de la constante C. (¥)

(*) On peut faire , contre cette méthode , 'objection trés grave, & ce qu’il nous
parait , que le procédé employé ‘pour mtegrer les équations du second ordre
en p et g, pouvait tout aussi bien , et sans tant de circuil, étre immédiate-
ment apphqué & Iéquation proposée du premuer ordre seulement en y; mais
peut-étre tout ceci n’est-il encore qu'un proyviseire? peut-é&tre M.Kramp, étendant sa
théorie , comme il parait en avoir le dessein , aux équations des ordies supérievrs ,
nous enseignera-t il dans quelque mémoire subséquent, & intégrer genéralement et
rigoureusement les équations de la forme

dy dy _
G‘ d?+H-d—x +k-—o ’

21.
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a1. Pans un prochain mémoire , nous nous occuperons soit des
équations différentielles qui admettent une intégrale de la forme

o=(P+Qy+Ry")+c(P'+Qy+Ry*) ;
soit de celle dont intégrale a la forme

0=(P4-Qy)He(PrQly)+c(Pr+Q1y)

dans le cas ot G, H, K sont des fonclions rationnelles et entiéres en x seule-
ment 3 ou tout au moins Aen ramener l'intégration & celle de quelque autre équation
plus simple , dit-elle étre méme d’un ocrdre plus élevé, Lintégrale de cette derniere
équation doit étre de la forme

Ly4aM-4-bN=0 ,

o L, M, N sont aussi des fonctions entiéres et rationnelles de 2 seulement, in~
connus du probléme , et olt @ et & sont les deux constantes arbitraires. Il s’agirait donc
d’exprimer que le résultat de I'élimination de ces constantes entre cette équation et
ses premitre et seconde différentielles , est identique avec la proposée , et de
tirer des trois conditions résultantes les valeurs de L, M, N, ou du moins_
des équations différentielles, d’un ordre quelconque, faciles & intégrer , et dont
chacune ne renfermat qu'une seule de ces incomnues,

J. D. &

Tom. XI. 16
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b e e e e ]

QUESTIONS RESOLUES.

Solution de la plupart des problémes de geoméirie
proposés & la page 356 du X.* volume de ce recueil ;

Par M. Vecrin, licencié e&s sciences,
R T e e

LES constructions du plus grand nombre des problémes que nous
allons résoudre étant faciles & justifier , nous nous contenterons ,
pour abréger , d’en indiquer la solution sans la démontrer. Pour
le méme motif, nous nous dispenserons de mentionner le nombre

des solutions de chacun d’eux et les circonstances qui peuvent le
rendre impossible.

"PROBLEME 1. Dup poini. donné comme centre, décrire un
cercle qui passe par un auire point donné P
Solution. Prenez pour rayon la distance entre ces deux points.

PROBLEME 11. Dun point donné comme centre, décrire un
cercle qui touche une droite donnée P

~Solution. Prenez pour rayon la longueur de la perpendiculaire
abaissée du point donné sur la droite donnée.

PROBLEME 111. Dun point donné comme centre , décrire un
cercle qui touche un cercle donné ?
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Solution. Prenez pour rayon la distance du point donné % I'une

des extrémités de celui des diamétres du cercle donné dont la
direction passe par ce point.

PROBLEME 1V. Décrire un cercle d'un rayon donné qui,
ayant svn cenire sur une droite donnée , passe par un point
donné ?

Solution. Prenez pour centre 'une quelconque des intersectinns
de la droite dounde avec un cercle qui ait pour centre le pont
donné et un rayon é€gal au rayon donné.

PROBLEME V. Décrire un cercle dun rayon donné qui,
ayant son cenire sur une circonférence donnéc , passe par un
voint donné?

Solution. Prenez pour centre 'une quelconque des intersections
du cercle donné avec un autre cercle ayant pour centre le point
donné et son rayon égal au rayon donné,

PROBLEME V1. Décrire un cercle d'un rayon donné qui;
ayant son cenire sur une droite domnée , touche une auire droite
donnée ?

Solution. Prenez pour centre le point ou la premiére des deux
droites donndes est coupée par l'une des deux paralleles menées
3 la seconde & une distance égale au rayon donné.

PROBLEME VII. Décrire un cercle d'un rayon donné qui
ayant son centre sur une circonférence donnée, toucke une droite
donnée ?

Solution. Prenez pour centre 'un des points ot la circonférence
donnée est coupée par 'une des deux paralléles mendes 2 la droite
donnée 4 une distance égale au rayon donné,

PROBLEME WIIl. Décrire un cercle d'un royon donné
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qui , ayant son cenire sur une droite donnde , Zouche un cercle
donné?

Solution. Prenez pour centre I'un des points ofi la droite donnée
est coupée par un cercle concentrique au cercle donné, ayant un

rayon égal 4 la somme ou 3 la différence du sien et du rayon
donné,

PROBLEME IX. Décrire un cercle dun rayon donné qui,
ayant son centre sur une circonférence. donnée , touché un cercle
donné? '

Solution. Prenez pour centre 'un des points ol la circonférence
donnée ‘est coupée par un cercle concentrique au cercle donné
ayant un rayon égal’ 2 la somme ou 2 la différence du sien et du
rayon donné.

PROBLEME X. Décrire un cercle d'un rayon donné , qui
passe par deuz points donnés?

Solution. Prenez pour centre l'un des points d’intersection de
deux cercles ayant pour centres les points donnés et pour rayon
commun le rayon donné.

PROBLEME XI. Décrire un cercle d'un rayon donné , qui
passe par un point donné et touche une droite donnée?

Solution. Prenez pour centre 'un des points ol un cercle décrit
du poiht donné comme centre, avec le rayon donné, est coupé
par l'une ou l'autrc des deux paralleles mendes & la droite donnée
a une distance dgale & ce méme rayon.

PBOBLEME XII. Décrire un cercle d'up rayon donné, qui

touche deux droites données?
Solution. Prenez pour centre l’'une quelconque des intersections
des deux parallcles menées 4 une des. droites données, A une dis~
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tance égale au rayon donné , avec une des paralléles mendes 2
Pautre droite 3 la méme distance.

PROBLEME XIII. Décrire un cercle d'un rayon donné qui ,
passant par un, point donné , touche un cercle donné?

Solution. Prenez pour centre I'un des deux points ou la cir-
conférence décrite du point donné comme centre, avec le rayon
donné , est coupée par un cercle concentrique au cercle donné ,
ayant un rayon égal 3 la somme ou i la différence du sien et
du rayon donné,

PROBLEME XIV. Décrire un cercle d'un rayon donné , qui
Zouche une droite et un cercle donné?

Solution. Prenez pour centre I'an des points ot 'une des deux
paralléles menédes A la droite donnée 4 une distance égale au rayon
donné , est coupée par un cercle concentrique au cercle donné,
ayant un rayon égal 3 la somme ou i la différence du sien et
de ce méme rayon donné.

'PROBLEME XV. Décrire wn cercle dun rayon donné , qui
toucke & la fois deux cercles donnés?

Solution. Prenez pour centre l'un des points d’intersection de
deux cercles concentriques aux cercles donnéds , ayant des rayons
respectifs égaux 4 la somme ou 2 la différence des leurs et du
rayon donné.

PROBLEME XVI. Décrire un cercle qui , dyant son centre
sur une droite donnée, passe par deuzx points donnés?

Solution. Prencz pour centre le point ou la droite donnée est
coupée par la perpendiculaire élevée sur le milieu de la droite qui
joint les deux points donnés. Ne considérant alors qu’un seul des
points donnés , le probléme se trouvera ainsi ramené au L°%
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PROBLEME XVII. Décrire un cercle qui , ayant son cenire
sur une circonférence donnée, passe par deuz points donnés?

Solution. Prenez pour centre I'un des points ol la circonférence
donnéde est coupée par la perpendiculaire élevée sur le milien de
Ia droite qui joint les deux points donnds. Ne considérant alors
quun seul des points donnés, le probléme se trouvera aiusi ra-
mené au IL®

PROBLEME XVIIl. Décrire un cercle qui, ayant son centre
sur une droite donnée, passe par un point donné et touche une
autre droite donnée ?

Solution. Abaissez , du point donné, sur la premiére des deux
droites , une perpendiculaire que vous prolongercz au.deld d'une
quantité égale 2 elle-méme ; vous obliendrez ainsi un’ nouveau
point du cercle cherché ; de sorte que le probleme se trouvera

téduit & décrire un cercle qui , passant par deux points Connés, touche
une droite donnée ; probléme que I'on sait resoudre.

PROBLEME XIX. Décrire un cercle qui’, oyant son cenire sur
une circonférence donnée, passe par un point donné ei toucke une
droite donnée ?

Ce probléeme ne parait point résoluble par les élémens.

PROBLEME XX. Décrire un cercle gur , ayant son cenire
sur une droite donnée , touche deux autres droites données?

Solution. Prenez pour centre le point ol la premiére des droites
donnédes est coupée par l'une des droites qui divisent en deux
parties égales les quatre angles formés par les deux autres droites
" données. Ne considérant alors qu'une seule de ces deux droites,
le probléme se trouvera ainsi ramené an ILe

PROBLEME XXI. Décrire un cercle qui , eyant son cenire
sur une circonférence donnée , touche devx droites données ?
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Solution. Prenez pour centre I'un des points od la circonférence

donnée est coupde par l'une des droites qui divisent en deux

parties égales les quatre angles formés par les deux droites données.

Ne considérant alors qu'une seule de ces droites, le probléme se
trouvera ramené au II.c

PROBLEME XXII Décrire un cercle qui, ayant son ccnire
sur une droite donnée, passe par un poins donné et touche un
cercle donné ?

Solution. Abaissez du point donné, sur la droite donnée, une
perpendiculaire que vous prolongerez au-dela d’une quantié égale
2 elle-méme ; vous obtiendrez ainsi un nouveau point du cercle
cherché ; de maniére que le probléme se trouvera réduit & décrire
un cercle qui, passant par deux points donnés, touche un cercle
donné ; probléme que l'on sait résoudre.

PROBLEME XXI1I1. Décrire un cercle qui , ayant son cenire

sur une circonférence donnée , passe par un point donné et toucke
un cercle donné?

Ce probléme ne parait point résoluble par les élémens.

PROBLEME XX1V. Décrire un cercle qui, ayant son centre
sur une droile donnée, touche une drotte et un cercle donnés ?

Solution. Par le point d’intersection de deux droites , menez-
en une troisitme , faisant avec la premiére , d’un autre c6té, le
méme angle que fait la seconde avec clle; vous aurez ainsi une
nouvelle tangente au cercle cherché; de sorte que votre probléme
se trouvera ramené i décrire un cercle qui touche deux droites
donndes et un cercle donné; probléme qu’on sait résoudre.

PROBLEME XXV. Décrire un cercle qui , ayant son centre
sur une circonférence donnée , touche une droite et un cercle
donnés ?
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Ce probléme ne parait pas résoluble par les élémens ; mais on
peut du moins le ramener facilement au XIX.* Si, en effet, on
décrit un cercle qui, ayant son centre sur la circonférence donnée , .
passe par le centre du cercle donné et touche une des deux pa-
ralleles menédes 3 la droite donnée & une distance égale au rayon
de ce cercle; son centre sera celui du cerele cherché ; de sorte
qu'en ne considérant plus que la droite donnée, ce probléme sera
ramené au IL*

PROBLEME XXVI. Décrire un cercle qui , ayant son centre
sur une droite donnée , touche deux cercles donnés?

Solution. Dua centre de l'un quelconque des deux cercles donnés,
abaissez , sur la droite donnée , une perpendiculaire , que vous
prolongerez au-deld de cette droite, d’une quantité égale a elle-
méme ; de son extrémité comme eentre , et avec le rayon de ce
méme cercle, décrivez-en un nouveau ; le cercle cherché devra
aussi lui étre tangent; vous aurcz donc a décrire un eercle qui
touche trois cercles donnés ; probléme qu’on sait résoudre.

|

PROBLEME XXH. Décrire un cercle qui , ayant son ceniré
sur une circonférence donnée , touche deux cercles donnés ?

Ce probléme ne parait point résoluble par les élémens ; mais
on peut du moins le ramener facilement au XXIIL® Si, en
effet , on décrit un eercle concentriqgie & I'un des deux - cercles
donnés , dont le rayon soit la somme ou la différence des leurs;
en décrivant un cercle qui , ayant son centre sur la circonférence
donnée , touche ce dernier cercle et passe yarle centre de l'autre}
son- ceutre sera celui du cerele cherché; de sorte qu’en ne con-

sidérant plus qu'un seul des cercles donnés , le probléme se trou-
vera ramené au IIL®

Remarques. 1. On voit, par ce qui préctde, que des vingt-sept
problémes



RESOLUES. 121
problémes proposés, il n’y en a que quatre seulement dont la
solution puisse offrir quelque embarras; et encore deux de ceux-
la se raménent - ils facilement aux” déux autres ; de sorte que
toute la difficulté consiste uniquement dans les probléemes XIX

et XXIII (*).

IT. Les points et les droites n’étant que des cercles dont les
rayons sont respectivement nuls et infinis ; il s’ensuit que le
XXVIL® probléme comprend implicitement les onze qui le précedent;
que le XV.* comprend les cing qui le précedent ; qu'il en_est
de méme du 1X:®, et qu'enfin le IIL® comprend implicitement les
deux premiers ; de sorte qu'il n'y a propr.ment que quatre pro-
blemes en tout. Mais le dernier parait n’étre résoluble que dans
des cas particuliers.

™ N est ais¢ de voir que ces deux problémes reviennent i déterminer
Tes intersections d’'un cercle donné avec une section conique ' qui n'est pas
tracée et dont on 2 seulement les €lémens; et il ne paraft pas, en effet,
que ce probleme puisse étre résolu par un nombre limité d’opérations exécutées

avec la régle et le compas seulement,
J. D, G

Tom. X1. 37
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Démonstration du. théoréme de géomélrie énonce & la

page 100 du X volume de ce recueil

et dun
‘autre .théoréme analogue ;

Par M. J. B. DurraspE , professeur de mathématiques
spéciales et de physique au collége royal de Cahors.

TH EOBI‘L‘ME. Le liew des milieux des cordes menées & une

sectwn conique queh‘onque par Pun. quelconque des points de son
plan .est_une .aulre section aonlque , semblable & la premitre et

semblablement située , passant par le centre de celle-ci et par le
point donné.

Démonstration. Soient pris le diamétre passant par le point donné
pour axe des z et la parallele menée par le méme pointa son

conjugud pour axe des y; l'équation de la courbe sera de celte
forme

y: =ax‘+2bx+e.

Celle d’une droite menéde d’une manidre quelconque par le point
donné sera de la forme

y=mx ,
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ol m est indéterminé. En la combinant avec celle de la courbe ,
pour éliminer ¥, on trouvera yue les abscisses des deux extrémités
de la corde interceptée sont données par I'équation

(e=—m*)z*+43bx+tc=o .

Mais I'abscisse du milien d’une droite est la demi-somme des abs«
cisses de ses extrémités; et il est connu d’ailleurs que, dans une
équation du second degré, dont le premier terme est dégagé de
son coeflicient, le coeflicient du second terme, pris avec un signe
contraire , est la somme des racines de I'équation; d’ou il suit que
Pabscisse du milicu de la corde sera donnée par I’équation

ou (a—m*)z+-b=0 ;

mettant donc pour l'arbitraire 7, dans cette derniére , la valeur
Y. tirde de I'équation de la corde , on obtiendra, toutes réductions
x

faites, pour I'équation de la courbe cherchée
y‘:a.x’+5x R

ce qui démontre la proposition annoncée.

On peut facilement démontrer d’une maniére analogue cet autre
théoréme :

THEOREME. Le licu des milieux’des cordes menées & une surface
guelconque du second ordre, par un quelconque des poinis de I'es-
pace , est une autre surface du second ordre, semblable a la premiére
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et semblablement située , passant par le cenire de celle-ci ¢t par le
point donné.

Démonsiration. Pac le ceéntre de la surface et parle point donngd
faisons passer un plan diamétral quelconque, que nous prendrons
pour plan des zy , en prenant pour axe des z la paralléle au con~
jugué de ce plan diamétral. Par le méme pcint, tragons, sur le
plandes zy, des paralltles a deux diamétres conjugués quelconques
de la seetion de la surface .par ce plan, et prenons ces paralléles
pour axes des # et des y; I’équation de la surface sera de la forme

2 =az*-by*tz20'at-2bly+c .

Une droite menée d'une manitre quelconque par le point donné aura
des équations de cette forme

r=mz , y=nz,

ol :m et n sont indéterminds. En les combinant avec celle de la
surface , pour en eliminer #, y , on trouvera que les valeurs de
z qui répondent aux deux extrémités de la corde interceptée sont
données par I’équation

(am*-bn* == 1) 2*A=2(a/m=-b/n)zf-c =0 ;

done, pour les mémes raisons que ci-dessus, la valeur de z qui
répond au milieu de cette corde sera donnée par I’équation

a'm4-b'n
P

s 0% (e i)z Ham i) =0 ;
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mettant done, pour les deux arbitraires m, », dans cette der—

(BN x y ST ! M

niere , leurs valeurs— , "= tirées des équations de la corde, on
z

obtiendra, toutes réductions faites, pour I'équation de la surface
cherchée ,

Z=ax*+by*4a'z+-ty |

ce qui démontre Ja proposition annoncée.

Nous aurions pu facilement, au surplus, par des considérations
purement géoméiriques , déduire le second théoréme du premier ;
mais nous ne voyons pas trop ce qu’on peut gagner & remplauer
quclques lignes de calcul par un grand nombre de mots.

Réflexions sur le probléme d’analise proposé & la
page 131 du X.° volume des Annales ;

Par un ABONNE.
(FerconNE.

Au Rédacteur des Annales;

MONSIEUR ,

Dans la quatriéme livraison du tome X.e de votre estimable
recueil , vous avez proposé de déterminer la condition ou les conditions
de rationnalité des racines de I'équation du troisicme -degré
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oz’ ba*+A-cx-t-d=o ,

et j'avais eu le dessein de m’'occuper de ce probléme- mais ,
en y réfléchissant sérieusement, il m’a semblé qu’il n’était pas ré-
solubl® , ou que du moins, il I'était, ce ne pourrait étre que d'une
- maniére peu commode pour les besoins de l'analise. Or, comme
lorsqu’'un probléme est proposé, c’est également remplir le but que
d’en donner la solution ou de montrer que cette solution ne peut
&tre obtenue, j'ai pensé que -vous ne dédaigneriez pas d’accueillir
Tes réflexions auxquelles j'ai été conduit par un examen' attentif de
‘ce prob_léme. l

Lorsquon cherche 3 quel caractire on peut reconnaitre que
Péquation du second degrd

anid-byo=o ,
a ses deux racines égales, on arrive pour résultat 3 I'dquation
b*—4ac=o0-

Comme cette équation existe uniquement entre les coefficiens de la
proposée, qu’elle établit une relation nécessaire entre ces coefficiens,
et quen un mot tout y est déterminé ; on peut , par analogie, se-

demander aussi, & quel caractére on reconnaitra que ’équation du
troisitme degré

ex*pbi*cxdd=o ,

a deux racities égales ; et cétte seconde question conduit #'Péquation’
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(be—gad*—4(b*—3ac)(c*~3bd)=0 ,

absolument de méme nature que la précédente. On congoit méme
que la question pourrait étre indéfiniment étendue aux degrés su-
périeurs , et qu'elle conduirait, poﬁr chacun d’eux, & des résultats
analogues.

Mais lorsqu’on dit que , pour que les racines de 1’équation du
second degré

az*+bx~+c=o ,

soient rationnelles , il faut que la fonction Z*—4ac des coefficiens
soit un quarré, on n’établit point proprement une relation entre
ces coefficiens qui demeurent encore indéterminés ‘, sous certaines
restrictions seulement ; en sorte que cejte condition revient & pouvoir
résoudre rationnellement I’équation

$#—(b*—4ac)=o :

ol # est un nombre rationnel tout-a-fait indéterminé.

Lors donc qu’on propose la méme question pour le troisieme
degré , l'analogie conduit & prévoir que , pour que les racines
de T'équation soient rationnelles , il wnest pas nécessaire qu’il
existe entre ses coefficiens senlement une relation qui puisse dé~-
terminer 'un quelconque d’entre eux en fonction des autres; mais
qu’il suffit pour cela qu’une certaine fonction de ses coefliciens soit
d’'une forme particuliére, sans que pourtant cette forme leur ote
leur indétermination , c’est - 2 - dire , qu'il faut que cette fonction soit
de la méme forme qu'une fonction donnée d’une indéterminée # ou
peut-étre méme de plusieurs ; mais quelle est cette fonction , et
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de quelle forme doit-elle étre ? Ce n'est guére encore ici qu'a
Yanalogie quon peut avoir recours, Voyons donc ce qu'elle nous

apErend.

8i dans I'équation de conditien
#2e—(b*—fac)=o0 ,
on change # en 24y, ce qui est permis; elle deviendra

4ary*—(b*—4ac)=o ;

or, cette équation n’est autre que celle i ‘laquelle on pamfient en
faisapt'disparaitré le second terme de la proposée ; dire donc que,
pour que les racines de celle-ci solent rationnelles il faut que 5*—4ac
soit un quarré, c'est. dire, en d’autres termes, qu'il faut que celles
de l'autre le soient aussi; ce qu'on appelle donc proprement la con-
dition de rationnalité des racines des équations du second degré se
réduit seulement & dire que , pour que les racines d'une équation com-
plete du second degré soient rationnelles, il est nécessaire et il suffit
que les racines de’ l’équatibn privée. de son second terme jouissent
‘de la méme propriété ; ce qui est d'ailleurs évident, puisque la relation
entre les inconnues des deux équations n’est que du premier degré
seulement, |

En nous laissant donc guider par I’analogie , nous serons conduits
A dire que, pour que les racines d’une équation compléte du troisieme
degré soient rationnelles, il est nécessaire et il suffit que les racines
de I'équation privée de son second terme soient elles-mémes rafion-
nelles , ce qui n’est pas moins évident ;' mais, tandis que , dans le
second degré , cette condition- permet une vérification facile, il n’en
est plus de méme dans le troisi¢me ; et c’est 2 tel point quil est
raisonnablement permis de douter si la chose vaut la” peine d'exé-

cutex
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cuter le caleul de la transformation , et s'il ne vaudrait pas au moins
autant faire immédiatement Pessai sur la proposée elle-méme.

Que si l'on insistait, et si on demandait la condition de ration-
nalité d'une dquation du troisiéme dégré sans second terme , cela
reviendrait & faire la méme question pour celle du second ; et de

méme que, pour que l’équation
P~+p=o,

ait ses racines rationnelles , il est nécessaire et il suffit de trouver pour
z une valeur qui rende la fonction #* égale & —p ; pour que
I’équation

Bypt+g=0 ;

ait ses racines rationnelles, il sera nécessaire etil suffira de trouver
pour ¢ deux valeurs au moins qui rendent la fonction 2(2*~+-p)
égale 3 —g. Voila je crois toute la réponse qu’on peut raisonnable~
ment faire & la question proposée, pour le troisicme degré; ctje
ne pense pas qu’on en ait de plus satisfaisantes 3 se promettre pour
les degrés plus élevés. On pourra bien, a la vérité , indiquer certaines
relations entre les coefficiens qui rendent les racines rationnelles,
et on aura ainsi des conditions suffisantes ; mais je doute que I'on
parvienne jamais a prouver que ces conditions sont nécessaires. (*)

Voici, au surplus, de quelle maniére j’avois attaqué la question

*) Quelqu’un nous avait bien adressé une solution du probléme ; mais, outre
H

que les principes ne nous en ont pas paru assez solidement €tablis; on n’a pas
démontré que les conditions que Fon assignait, suffisantes, a la vérité , étaient
également nécessaires ; et il est méme douteux qu'elles le soient.

J. D. G.

Tom., XI. 18
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et quelle sorte de difficulté j’ai rencontrée. J'avais pris simplenient
1 équation ‘

2’4-patg=o ,

attendu qu'il est tovjours facile de passer de celle-lx & I'autre. On
sait que les racines de cette équag\on sont de la forme

a=yA+VE, s=eyateyB, s=p)d+eyB;

s, p étant les racines cubiques imaginaires de Yunité et 4, B~
lgs racines de l’équation

'
[}

27a3*42792x—p*=o ,

qui, dans le cas dont il sagit, doit, comme Von sait , aveir ses.
racines imaginaires, ce qui exige qulen ait

)
279*+4p* <o .

E*équation aux quarrés des différences, qui est
y’+6pyf+9ﬁ’y+(z79’+4p’)=o :

prouve de plus que cette-quantité doit étre égale ¥ un quarré négatif.
Représentant donc par 187 la racine de ce quarre nous aurons

299 4-4p’ =—3a4s
&l
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4P /3
p Tr7 ==

ainsi pour que les racines de la proposée soient toutes trois réelles, ib
est d’abord nécessaire que

i

(5+5)

s0it un quarré parfait; mais cette condition ne saurait sgffire.
Au moyen de cette transformation les quantités 4, B deviennent

T

— q —_—
_._;’_ +v=3, T

¢ 2

mais doivent-elles étre des cubes parfhits? il parait bien que oui;
mais ce n’est pas tout que de le soupgonner, et on pourrait fort
bien objecter que peut-étre, en développant leurs racines én séries,
ce qui donnerait évidemment pour les tréis valeurs de x de$ termes
rationnels , les séries résultantes pourraient Bien étre de la classe
de celles qu'on sait sommer rationnellement, ler$ méme que A et B
ne sont pas des cubes parfaits.

Admettons pourtant, bien que nous ne l'ayotid pas démoitré ,
que la condition de rationnalité des racinés de la proposée exige
que A et B soient des cubes parfaits, et voyons de quoi dépend
cette nouvelle condition. On sait par la théorie de l'extraction des
racines des quantités en partie ratiofinellés et en partie radicales,
Mque , pour qu'une fonction de la forme G-/ H soit exattement
le cube d’une autre fonction de la forme g+y'% , il faat dabord
que G*—H soient un cube parfait, condition qui, 2 la vérité,
est toujours remplie pour A et B ; mais on sait aussi que cetté
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condition nédcessaire west pas suffisante , et quil faut en outre
qu’une certaine equation du troisitme degré admette tout au moins
une racine rationnelle, Nou@s voild donc ainsi entrainés, en suivant
la voie méme la plus directe, dans un certle vicieux inévitable ,
lequel consiste & avoir besoin , pour nous assuier de la rationnalité
des racines d’une équation du troisiéme degré , de résoudre le méme
probléme pour une autre équation du méme degré. Cest la ou
sont venus constamment ahouiir les diverses sortes de tentatives que
jai faites , en assez grand nombre , dans la vue d’amener le
probléme 4 une heureuse issue; et voild aussi ce qui m’a conduit
a le considérer comme un probléme tout-a-fait désespéré.
Agréez, etc,
Lyon, le 23 juillet 1820.

o

n

—

QUESTIONS PROPOSEES.

Théorémes de Géometrie.

4

L SL, considérant successivement deux & deux trois cercles tracés
sur un méme plan, on détermine , pour chaque systtme de deux
cercles , les centres de similitude, tant interne qu’externe ; et que,
dans chaque systéme , on fasse de la distance entre ces deux centies
le diamétre d’un nouveau cercle ; les trois cercles pbtenus par cetie
construction passeront par les deux mémes points , et auront ainsi
une corde commune.

1I. Si, considérant successivement deux 3 deux quatre sphéres
sitndes d’une maniére quelconque dans I'espace, on détermine, pour
chaque systéme de deux sphires, les centies de similitude , tant
interne qu’externe ; et que, dans chaque systtnie , on fasse de
la distance entre ces deux centres le diamétre d’une nouvelle sphére ;
les six sphéres obtenues par cette construction passeront parles deux
mémes points, et auront ainsi une corde commune,
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ASTRONOMIE.

Description d'un nouveau reticule;

Par M. Beniamin Vavrz,

[a Za 2o Vi Y Vo o VL L )

LA diversité , assez grande , des réticules proposés jusqu’a ce
jour peut faire penser que les besoins de I'astronomie ne sont pzs
encore entitrement satisfaits sur ce point, Cette réflexion doit donc
encourager a présenter de mnouvelles dispositions , jusqu'a ce qu'il
ne reste plus rien A désirer pour la commodité et I'exactitude des
observations. Sans aspirer & atteindre le but, maischerchanta
en approcher, s'il est possible, je hasarderai donc de proposer une
nouvelle construction qui me parait offrir quelques avantages.

Le réticule rhomboide , on plutét rhombe (*), dont les astronomcs
se servent depuis long-temps, bien préférable i celui de Cassini,
auquel il a succédé, n’est pas cependant exempt d’inconvéniens. On
rencontre d’abord bien des difficultés & le construire exactement ;

(» Lalande attribue linvention de ce réticule 4 Bradley, dont il porte le
nom , quoique , d’aprés son compatriote Robert Smith ( Cours complet doptique ,
Liv. I, chap. VIII, n° 278 ), il ne fut I'inventeur que d’un réticule simple-
ment angulaire, qu'on trouve encore dans les vieux instrumens anglais, et qui,
dans les observations orthogonales , laissait perdre un cinquiéme du champ. L&

réticule de 45° en perd encore environ un tiers,

Tom. XI, n.*V, 1,°F novembre 1820, 19
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aussi en trouve-t-on souvent de fort défectueux ; ensuite, la véri-
fication en est pénible et délicate; enfin, I'évaluation de ses parties
n’est pas fort aisée 4 obtenir. En effet, on est obligé, pour cela,
de faire parcourir la diagonale par une étoile, afin de connaitre sa
valeur , ndcessaire pour toutes les observations , orthogonales ou non ;
“mais, est-il facile et peut-on étre bien assuré de faire exactement
éclore , pour ainsi dire, une étoile, dans le sommet précis d'un
angle , et de la voir disparaitre par le sommet de l'angle opposé?
C’est une chose & peu prés impossible a exécuter, sur-tout si la
lunette n‘est pas montée parallactiquement. La difficulté est rendue
encore bien plus insurmontable par les diagonales , qui partagent
bien ou mal ces angles, et obstruent le point mathématique d'in-
tersection. On pourrait éluder cette difficulté , un peu plus labo-
rieusement , & la vérité , en faisant d’abord traverser deux étoiles
voisines d'un méme c6té par rapport au centre du réticule, et une
seconde fois de différens cotés. En effet , soient @, & les routes
interceptées des deux astres, dans la premitre observation; la diffé-
rence de déclinaison sera ‘b—a ; et, lorsque les étoiles aurent de
nouveau traversé le réticule , I'une d’un c6té et I'autre de lautre,
4 Yopposé, on obtiendra deux autres intervalles @/, #’. La grande
diagonale sera évidemment a’+4/4b—a.

Le réticule carré et celui formé de deux triangles équilatéraux
accolés , proposé le dernier, ne paraissent proprement que des mo-
difications tendant & simplifier la construction ou la vérification de
celui attribué i Bradley. M. Monteiro~da-Rocha , & Coimbre , avait
aussi proposé un autre réticule rhombe , dont les angles aigus étaient
de 45°, et les cotés prolongés jusqu’au bord du diaphragme. Malgré-
Vavantage que présentait la suppression des diagonales, dont il
devenait inutile de connaitre la valeur, il ne parait pas que cette
disposition ait été fort employée; apparemment par ce que le cal-
cul de linclinaison nécessitait les observations d'une méme étoile
aux quatre fils, que les réductions en étaient assez longues, et
enfin qu'une partie du champ w'était plus propre & ce nouveau genre
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d'observation. Dailleurs, les fils se croisant, on est oLﬂgé de les
choisir fort deliés, afin qu’ils s'écartent le moins possible d’'un méme
plan; ce qui ne permet pas d’observer les occultations derri¢re leur
épaisseur, et e dispense pas d’un éclairage toujours fort incommeode.

Le réticule circulaire , perfectionné par M. Kohler , et rendu
annulaive, est, sans contredit le plus simple et le plus commode
de tous; sa construction , s’cffectvant sur le tour, est rigoureusc-
ment exacte , et n'a conséquemmment besoin d’aucune vérification §
mais ces avantages décidés ne sont-ils pas compensés par quelques
inconvéniens ? Dabord il faut connaitre le diamétre de Panneau;
et comme pour lobtenir, on ne peut étre assuré de faire passer
une étoile précisément par le centre que rien n’indique 3 on est
obligé, pour ne pas emprunter des catalogues des données sujettes
a diverses réductions, d'observer les passages 4 travers I'anneau de
deux dtoiles voisines, et dans deux stations différentes de la lunett-s
A Tlaide de ces huit occultations et d'un calcul assez prolixe , on
parvient & déterminer le diamétre, ce qu'il faudra répéter chaque
fois que l'on fera mouvoir le systéme des deux oculaires ; le réticule
étant supposé placé entre eux dans un chercheur.

Lorsqu’'un des astres viendra & passer auprés du céentre, non
seulement on ne saura pas si c'est au-dessus ou au-dessous, mais
encore on ne pourra déduire I'apothéme avec justesse; la différence
de déclinaison sera donc peu stre. Si, au contraire , la route de
Vastre , trop éloignée du centre , forme un angle fort aigu avec
la circonférence de I'anneau, étoile paraitra dormir et on ne pourra
saisir exactement les instans ou elle semble s’éteindre et éclore en-
suite, par des degrés insensibles. Cette erreur , qui variera suivant
la fatigue de I'il, séra d’autant plus influente qu’elle s’appliquera
sur une corde plus courte. Il y aura donc une partie assez majeure
du champ rendue inutile pour les observations. Le principal avantage
de ce réticule consiste en ce qu'il est toujours bien placé, et qu'il
n'a pas besoin d’¢tre monté parallactiquement ; mais aussi on ne
peut alors s'assurer si I'un ou l'autre des deux astres ne passe
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pas trop prés ou trop loin du centre. On est donc expesé 4 faire
souvent des observations qui ne pourront ensuite servir utilement.
On pourrait peut-étre rémédier & une partie de ces inconvéniens
en ajoutant un second anneau plus petit en dedans du grand, ce
qui permettrait d’observer plus prés du centre ; et un rayon , dont
la pointe déliée répondrait & ee point, prouverait, en interceptant
Pétoile , si le passage a en lien au-dessus ou au-dessous du centre.
Il pourrait méme servir a diriger la route d'une étoile de fagon a
la faire passer par ce point, cc qui donnerait le diamédtre direc-
tement,

‘Comme ces ingénicux instrumens sont principalement employds
pour l'observation des cométes, il parait convenable de les placer
dans un chercheur ou lunette de nuit, afin d’avoir plus de clartd
et sur-tout un plus grand champ , ce qui oblige d’employer de
préférence la combinaison achromatique d’oculaires de Campani, quj
donne un champ plus élendu que celle de Ramsden ; mais le foyer
se trouvant , dans cette construction, entre les oculaires, mobiles tous
deux et ensemble, la valeur des parties du réticule variera, non
seulement suivant la vue de l'observateur, mais encore suivant le
degré de clarté ou les ouvertures de l'objectif qui changent le
foyer moyen, Les chercheurs ayant de grandes ouvertures a leurs
objectifs , qui ne sont cependant pas achromatiques , les aberrations
focales sont trés-grandes , et ‘d’autant plus sensibles & V'eil que
Yastre est plus lumineux. Pour les diminuer, on retrécit, dans ce
cas , les ouvertures; mais alors la distance focale moyenne en est
alongde 5 il faudra donc trop souvent une houvelle évaluation des
parties du réticule qu’on trouvera bien fastidieuse , quelquefois méme
assez difficile , et entrainant toujours la perte d’un temps précieux.

Les inconvéniens que je viens de signaler m’ont engagé a chercher
une nouvelle construction de réticule , exempte, s'il est possible ;.
de la plupart de ces défauts, au risque peut-étre d’en créer de
nouveaux. Voici de quelle maniére jai essayé d'y parvenir, du
moins pour les observations orthogonales. Dans les autres cas, l'ine
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«clinaison s'obtient avec facilité et bien simplement, On peut wéime
appliquer aux observations circompolaires ce nouveau réticule, dont
la. construction s'exécute ainsi.

‘Des deux extréwités du diametre AB (fig. 1), et avecla méme
ouverture de compas qui a servi & décrire la circonférence ACBD ,
sur le diaphragme d’un chercheur, déterminez les deux arcs AC,
BD, de 60° chacun. Par leurs extrémités, tirez les paralieles AD ,
CB, et le réticule se trouvera déerit. On pourrait le construire,
ainsi qu'on le fait pour le rhombe, en évidant la plaque du dia-
phragme et n'y laissant subsister que les trois lames tracées; mais,
comme ce travail ne peut éire exécuté que par un artiste habile,
_qui censerve aux lames une largeur bien égale, en les taillant én .
biseau exact, ce qu'on rencontre rarement loin des capitales ; on
pourray substituer des fils métalliques qui, formés a la filiére, seront
nécessairement d’un diamétre bien égal. lls dgvront avoir assez d’épais-
seur pour éclipser l'astre pendant quelqugs secondes; et, comme
ils ne se croisent pas, il nly aura pas_de superposition qui em-
péche de les placer rigoureusement dans un méme plan, sur une
des faces du diaphragme. Le fil équatorial ne servant qu’a placer
le réticule dansle sens du mouvement diurne, et nullement pour
les observations , pourra se mettre sur la face opposée. Je I'avais
&’abord disposé perpendiculairement au fil diagonal, comme on le
voit en EF (fig. 1) ; mais jai trouvé ensuite plus convenable de
le rendre perpendiculaire aux £ls paralléles ( fig. 2); la partie du
champ, ainsi hors d’usage , se rédunisant 2 bien peu de chose.

Voyons d’abord les formules pour les observations orthogonales;
L’angle aux sommets A et B est de 3o° , et par conséquent
Col.30°=y/3=1,732. Soit ¢ l'intervalle de temps entre les deux
premiers fils, réduit en arc de grand cercle , pour le premier astre;
soit  la méme quantité pour Je second , et soit dD la diftérency
en déclinaison; on aura '

dD=1,732(+iTH) (1
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Les observations aux deux derniers fils donneraient le méme ré-
sultat , sans qu'il fit besoin de connaitre la valeur des parties du
réticule ; mais il convient d’observer aux trois fils , parce quon.
obtient ainsi une vérification avantageuse. La différence des temps
des passages & 'un ou i lautre des deux hls paralléles fera con=
naitre la différence des ascensions droites ; mais; lorsque la déeli-
naison sera forte , il faudra prendre la différence des milieux des
passages aux deux fils paralleles, dés' que les intervalles de temps
compris entre eux ne séront plus égaux.

Si le réticule n’est pas monté parallactiquement , et qu’on n’ait
pas le temps de le diriger sur le mouvement diurne , il suffira
d’observer le passage de 1'un..des astres aux deux fls paralltles,
pour calculer linclinaison’; I'intervalle des fils étant connu, ou déter-
miné ensuite par plusieurs ‘étoiles observées, si I’on veut, dans une seule
station, bien plus facilement que les diagonales ordinaires. Soit
donc a ‘cette’ différence FR'.(fig. 3), & I'arc CR intercepté , réduit
au grand cercle dans I'oBservation ‘oblique , J Vinclinaison qu'on
connaitra par

Cos.J:»% : (2)

Désignons actuellement par 7 intervalle de témps entré les deux
premie‘;s ou lés deux derniers fils, pour le premier astre, et +” pour
le second. dP étant la différence de la correction des passages a
Pun des fils paralleles , et D la déclinaison connue , nous ob-
tiendrons , dans le trxangle AQR,

Sin Sin.AQR

AR=QR. 5 AR QAR

=278in.(60+J),
et dans le triangle rectangle APR,

=ARSin PAR=278inJSin.(60°+J) ;
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AP=PRCot PAR=PRCot.J ,
Nous avens par conscquent
dP =2+ )Sin.JSin.(60°+J) , 3)
dD=15dP.Cos. DCot.J . %)

Dans le cas ol l'on voudrait ne pas employer les lignes trigo-
nornétriques , ou qu'on se trouverait obligé de se passer de leurs
tables pour les calculs, on pourrait recourir aux formules sui-

a - —]7) 2
vantes, danslesquelles m:-b— =Cos.J et n= Y i—m = —b—: -]
m %

=Tang.J.

daD SR ‘ ‘
AD'= —rs ==m( ks #) (1,73am oy T Jmm (ke o)) (1,732 k), ()
ap=ap Y= =papy 6)

Les observations aux trois fils procureront deux résultats et une
vérification commode.

Lorsque les astres se trouveront dans les régions circompolaires ;
on ne se servira plus que des fils paralléles; et les deux obser-
valions qu'on y fera, pour chacun des astres, suffiront pour cal-
culer la différence d’ascension droite et la déclinaison incennue.

Pour le prouver , soit P (fig. 4) le péle de la sphére céleste
ABC larc du parallele intercepté entre les deux fils du réiicule ,
AGQ l'arc de grand cercle correspondant ; nous trouverons

Sin.: AC=S8inPCSin.; APC ,

ou Sin. ; a==Cos.D8in, 2 ;
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et aussi Sin.; a=Cos.D/Sin. 2 s/
d’od enfin

’

Cos.D’=Cos.D.

Sin. 25 ¢
¢

Lorsque le réticule sera dirigé surle mouvement diurne , on obtien-
dra ainsi la déclinaison inconnue : la différence d’aseension droite se
déduira de la différence des milicux des péssages aux deux fils.
Dans les autres positions du réticule , on remarquera que la va-
leur précédente de la déclinaison inconnue, indépendante de lin-
tervalle des fils, ne sera pas sensiblement altérée par I'inclinaison,
tant que les arcs de grands cercles interceptés seront a peu prés
égaux , ce qu'on pourra obtenir avec facilité, en dirigeant approxi-
mativement les fils paralléles vers le péle. En effct, les arcs
AB, CD (fig. 5) étant paralléles; si I'on suppose deux autres
fils AF, BG, qui leur soient .pérpendidulaires, Varc FG qo’ils in-
tercepteront , sera égal & I'arc CD , compris entre les véritables fils,
On. aura donc aussi, pour caleuler la ‘déclinaison , Ia méme for-
mule que ci-dessus (7), puisque Vintervalle des fils n’y entré pour
rien. Quant i la correction du passage au fil, le triangle sphérique
BPD, formé au péle et aux deux points auxquels les paralleles
"des astres rencontrent un méme fil , nous donnera

€ot.PDSin.PB—~Cos.PBCos.BPD

Sin.BPD = CoTPED
ou
- © ==dDTangJ*
15dP = (Tang. D/ ~Tang.D)Cos.DTang.J'Cot.1// = :—C—(’;%g—v ’

ou encore

15dP= EdDTang.(r— 1 5}
Cos,D .

®)
L’angle
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L’angle J’ désigne bien la véritable inclinaison du paralléle, an

point ol il rencontre le fil, mats non celle du grand cercle ou l'in-

clinaison moyenne que nous avons employée précédemment. Leur

différence, avec une déclinaison considérablc, est 3 bien peu prés

égale & l'angle au péle correspondant 4 la mioitié de Vintervalle de
temps 7. On aurait plus exactement ( fig. 4)

Tang.A=Sin.DTang.2'7 , J=J—A .

Les arcs de grands cercles interceptés ne sont cependant pas
rigoureusement égaux. La formule (7), employée pour-calculer les
observations obliques, ne donnera donc qu’une approximation com=
mode ; mais, comme il sera facile de diriger les fls paralleles 2
peu prés vers le pole, on obtiendra presque toujours une exactitude
suffisante, sur-tout pour les régions polaires ou il est bien difficile
d’obtenir des observations méme passables. Toutefois on pourrait
ddsirer des formules p]ﬁs rigoureusés. Cherchons-en done de telles,
au risque de les avoir un peu plus compliquées. Les triangles

sphériques APG; BPD (fig. 5) nous fourniront

) Sin.PCSin.APC , Sin.PDSin.BPD
Sm.AC—W » Slﬂ.BD-—W .

Substituant les arcs aux sinus trés-petits, et les valeurs des angles

au pole trouvés ci-dessus (8), on aura

AC dDCos,D¥ _ —dDCos.D’
ST Cos DCos.(J4-4) - Cos.lj_C:)—s-.(J—A) i
done
dDSin.JSinACos. D/
AC—BD= —— 0% =¢Cos.D/ .

Cos.DCos.(J4A)Cos.(J—A)

Enfin, dans le triangle rectiligne rectangle CDR on a
Tom. XI. 20
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CD"=DR'+CR" ,
ou
br=a-(y m—qus.D/)’=5’~2qus.D’aTangJ+q’Cos:’D’ .
Substituant pour 2’ sa valeur, assez approchée'IS'ﬂCos,D’, et, plus

exactement 2Cos D/Sin.52#Cot,1//, deduite de l'équation Sin.;d/'=

Cos.D’Sin.;f#/ , transposant, et faisant pour abréger
p=(152—g* , S=agTangJ=gy/ Fimas

pCos.2 DV/4-25Gos.D/=5* ,

on aura enfin

~

S —
Cos.De=— > + —;— Vop4Sa . ™

<

(™ On pourrait parvenir moins directement a4 d'auties formules, en pro-
jetant les données sur un plan tangent 4 la sphére au lieu qu'occupent les
astres quon observe , ou passant méme par les co-tangentes des déchinaisons.
Soit donc alors P/ (fig. 6) le point ot I'axe de la sphere rencontre le plan,
st faisons

FG=a , FAP'=J', AB=b, FC=y , APB=24,

GP=x , FCP=z, CD=¥ , GD=y', CP/D=2d’.
Nous aurons

AP'=Cot.D , b=2Co0s.DSin. %! = , Sin.A=Sin,DSin. %t 7 ,

CP/s=Cot D', ¥&'==2Co0s.D Sin.1L+, Sin.4'=Sin.D/Sin.~’ =,
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On pourrait objecter contre I'emploi de tous les réticules, en

général , que les observations ne domnent que les-arcs dont les droites

interceptées entre les fils sont les tangentes, et qu'on leur applique ce-

pendant le calcul comme si ¢’était ces tangentes méme Examinons cette

cause d’erreur, et cherchons 4 en apprécier la fdible influence. I’ex=
pression de la tangente, en fonction de I'arc étant

y>=Cot.2DV/—(a}-x)2 , T==J+A ,
/2:00!.2D"—-x2 x-Fa:Cot.DSin..p 'y
Y ’
(M/)z_l_a::;—bh .

-Substitudnt , dans cette derniére équation , pour ¥, 5’ leurs valeurs y il-viendra

2|/ [COLD/m7] [Cot.*D’d-(x-'f-a)3I+2GOt-’D/—$**(W+¢)a+ﬂ:=5'I’ ;
ou ,. en transposant et quarrant, A
4§ Cov.sD/==[x>§(x}a)?1Cot.2D/dx? (x4a)? }==[2Cot. 2D/ w2 (x4-a)*}a2m=p/2]3
=4 Cot.éD'—-[x2+(x+a)2+a=—b’2}Cot.2D’+(a;2+ax+ $o2Y,
eu, en réduisant ,
(Frma)CotsDm=(arpana § biymsaloka=; bs(farrfanibs) .
En. posant , pour abréger ,

2x-}a
/ o e
Tang.2’/= Ve

on tire de 13 .

)2 B/ fxiY-fax-b> =i} (2x4-a)2
Cot.D/=1} =3 S -1 |
&

- X7/ _——_'——./"—
=3) \/x-}-Tang.?{-x = o ?

et par suite
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Tang.A=A+§43+%A5+m; ; .
soit » une fraction quelconque , nous aurons

Tangpd=pd+-;p* A+

. - Cos.f
Sin.D/'= Smis (10)

T faudrait, dans Pexpression de Tang.a’, substituer pour &’ sa valeur, dé-
duite de la déclinaison D’ , connue approximativement ; mais il sera plus con-
yenable de chercher 3 dégager cette quantité ménie; parce que se trouvant fonc-
tion de Cos.D’, sa déclinaison , considérable dans ce cas-ci , s'obtiendra , par
ce moyen , avec plus d’exactitude. Reprenons pour cela I'équation

R (b2ema?)Cote2D/i= L b/(fc2}-Laox§-b/3) ,
ou bien
b/ammp2=(f234-fax4-b'2)Sin.2 A’

sela donne

 VoFim(oFa) S | y
b= Cos. Af : ( I I)

‘Ayant , par supposition , une trés-forte déclinaison , on pourra , sans appréhension ,
faire Sin.D/'=1, dans I'expression de Sin.A’; mais il serait plus exact d’employér
la déclinaison connue & peu prés. Enfin, nons aurons, pour la correction du

passage aw fil

. Co'.DSinJ7 _, Sin, (Jle=z)
— s — TN T
Sinz=—gip— SinPdP= —co— o (12)
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et pTang.d=pA+tipdiH.. ;
Yerreur sera donc

2 (p—p?) A

Différentiant cette expression , pour obtenir la valeur de p qui répond
. 1 . -
au maximum , nous trouverons p:-‘7—.§- ; substituant donc nous

ebtiendrens, pour la plus grande erreur exprimée en seconde,

2 A3 2.A"38in 21" 3413
oV3 'Sin1?~ gF3 T (o)t

Pour un arc de 1°, qui donne 4=3600", le maximum de I’erreur
est 0o/,14 ; pour 2°, ce sera 17,13 , différence bien insensi~
ble , dans ces sortes d’observations ; ce qu’il convenait de
prouver , pour éloigner tout scrupule sur I'emploi des réticules,
dans le vaste champ des chercheurs.

Les angles soutendus par des lignes égales , dans le milieu et sur
les bords du champ , ne sont pas rigoureusement égaux. Pour
trouver jusqu'ot peut s’étendre leur différence ;soient 4, 4’ deux
arcs paralléles, répondant a des intervalles égaux du réticule , mais
dont le premier se trouve dans le milien du champ et le second
vers les bords, et soit dD la distance de I'un & 'autre ; on trouvera

A'=ACos.dD = A(1—28in.*;dD)

d'ou
AdD"a
A— A= 2 4Sin}D=14Sin2dD=14dDSin 1= =
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supposant A et dD de 1° chacun, nous aurons A=—A'=0", 55.
Pour 2°, ce sera 4,4, erreurs encore a négliger, mais quiil
fallait vérifier, pour se rassurer entiérement.

Cette derniére correction est la méme que celle que, donnerait
la différence de déclinaison des deux astres, lorsque I'un d’eux
serait dans I’dquateur ; mais elle deviendrait d’autant plus forte
que la déclinaison serait plus considérable; on aurait en effet

_ A'Cos. D’ ,Cos.D:_*:dDSin.D

A= Cos.D — Cos.D ?
d' ol
=~ 'dD ,
d—A’:“"A‘ Tang.D

=+ A'Tang.dDTang.D .

-  Sina#

Pour de faibles déclinaisons les différentielles infinitésimales ne
sont plus suffisamment exactes, et il faut recourir aux différentielles
finies .qui donneront

A—A’=i4’Tang.DSin.dDi§ A’Sin.2dD .

Si Pon fait D=0 ou —dD, on retembecra effeciivement sur la for=
mule de cerrection précéderite.




CONCOURS DT PARIS, 1.7

GEOMETRIE ELEMENTAIRE.

Solution des problémes praposés au Concours general
des éléves de mathématiques spéciales de Paris,
le 10 de juillet 1820 ;

Par M. TreviL , professeur de mathématiques au collége
royal de Versailles , et & Iécole royale militaire de
Saint-Cyr.

P ROBLEME 1. Un cercle étant donné , dans un plan horizonto#,
on demande,

1.° De faire voir que, si l'on coupe un céne droit, dont ce
cercle soit la base, par une suite de plans paralléles et verii-
couz , les sections résultantes seront des hyperboles qul auront
leurs asymptotes paralléles ?

2.° De trouver sur la verticale élevée par le centre du cercle le
point o il faut placer le sommet pour que les hyperboles dont
il sagit soient équilatéres ?

Solution. Soient S (fig. 7) le sommet du cone; O un quel-
conque des points de son axe, par lequel soit conduit un plan
horizontal ; GH un diamétre de cette section, perpendiculaire au
plan coupant, MN la trace du plan coupant sur cette méme section
circulaire; P l'intersection de MN et GH ; AB la trace du plan
coupant sur le plan du triangle GSH ; A et B les intersections de
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cette trace avec SG et SH; C le pied de la perpendiculaire abais<
sée de S sar AB; « langle générateur du cdne ; et enfin 26 la
longueur AB,

Soit pris le plan coupant pour celui des coordonnées rectangulaires;
AB étant l'axe des # et le point A l'origine; et les # positives étant
comptées de A vers P. Soient, en conséquence AP=ux et PM=y .

Les triangles rectangles APG , BPH donnent

PG=APTang..=2sTang.« ,

PH=BPTang.«=(2a¢--2)Tang.« ;
mais on a
MP' ou #*=PG.PH ;
done
y*=(2az~42*)Tang. s ;
telle est donc I'équation de la courbe, que 'on reconnait étre une
hyperbole.~

Si l'on veut,transporter l'origine en C, il faudra changer z en
z—a , et I'équation deviendra

y*=(2*—a*)Tang.?« ;
équation d’une hyperbole rapportée a ses diamétres principaux , et
dans laquelle le demi-second axe a pour longueur aTang.«.

Donc, d'aprés les théories connues , I'équation commune aux
deux asymptotes de la courbe est

y=TaTang.« ;

ces asymptotes font donc , pour toutes les sections paralleles 3
celle
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celle que nous avons considérées , un angle constant avec l’axe
transverse de la courbe ; puis donc que cct axe transversc est cons-
tamment parall¢ele & lui-méme , et qu’il en est de méme du plan
qui contient cet axe et lasymptote, il en résulte que les asymp-
totes des diverses ssections doivent étre paralleles chacune a cha-
cune (*).

Pour répondre 3 la seconde partie du probléme, on supposera
égauxles deux demi-diamétres principaux ; ce qui donneraaTang.«=a,
ou Tang.we=1, ou «=45° , comme on pouvait bien s’y attendre.
Ainsi, pour construire le céne droit dans lequel les sections paral-
leles & Paxc sont des hyperboles équilatéres , il ne s’agit que de
prendre sa hauteur égale au rayon de sa base (**).

(*) 1 est connu que toutes les sections paralléles faites , non seulement
dans un céne droit, mais méme dans un cdne oblique ou dans une surface
conique quelconque , sont des courbes semblables et semblablement situdes
tant entre elles que par rapport au -sommet de la surface, qui en est un
point homologue commun.

On voit par la que , si le plan parallele & ceux des sections, conduit pry
le sommet , passe dans lintériear de la surface conique , auquel cas il la
coupe suivant des droiles, les sections seront des courbes & asymptotes recti-
lignes dout les asymptotes seront respectivement paralléles & ces droites, et
par suite paralleles chacune & chacune d’une section & lautre ; ainsi la propo-
sition est vraie pour des sections paralléles faites sous une inclinaison quel~
conque , dans une surface conique quelconque.

Dans le cas particulier du probléme proposé , les asymptotes des diverses
sections sont toutes paralléles aux droites déterminées dans le cone par un
plan conduit par son axe, parallélement & ceux des sections , et les projections
orthogonales de ces droites sur les plans des diverses sections sont les asymp-
totes méme de ces sections. Ainsi, non seulement ces asymptoles sont paral-
leles, mais elles sont toutes situées sur les deux faces d’un méme angle diedre
circonscrit au cdne, et dont I'aréte est horizontale.

J. D. G,

(**) Plas généralement, si, sur une base circulaire donnée, on voulait construire

un cdne oblique tel que les asymptotes des sections hyperboliques faites dans

Tom. XI. 21
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PROBLEME 11. On donne le centre et le rayon d'une sphére ;
et on propose de démontrer qu'un plan quelconque perpendiculaire
au rayon coupe, suivant un cercle , tout céne qui a son sommetd

lextrémité de ce rayon et pour base un quelconque des cercles
de la sphére ?

Solution. Pour résoudre cette question nous allons d’abord dé-
montrer que $I, ayant coupé un céne oblique a base circulaire
par un plan perpendiculaire @ celui de sa base , passant par le
cenire de cette base et par le sommet du cone, on fait dans ce
¢bne une section perpendiculaire & ce plan , de itclle sorie que cette
‘section fasse avec les deux arétes déterminées par le plan passant
par laze , les mémes angles que fait le plan de la base avec ces
mémes arétes , mais en sens inverse; la section sera circulaire.

Soit S ( fig. 8)le sommet d'un cdne oblique & base circulaire ,
et soit A/SB/ l'angle résultant de sa section par le plan conduit
perpendiculairement & celui de sa base, et passant & la fois par
le centre de cette base et par le sommet du cone. Soit faite dans
ce cone , pe!:pendicula'lrement 4 ce plan, une scction AMBN, cou-
.pant, suivant AB , le plan de l'angle A/SB/, de telle sorte que
Tangle SAB soit égal & celui que fait SB avec la base du céne,
“et que par conséquent 'angle SBA soit égal a Pangle que fait SA

avec cette méme base. Il s'agit de démontrer que cette section est
circulaire.

ce cbne , par une suite de plans paralleles & un plan fixe donné, fissent entre
elles un angle égal & un angle donné ; il ne sagirait que de mener, dans
la base donnée , une corde quelconque , parallele an plan donné ; de con-
duire , par cette corde , uu plan paralléle & ce meme plan; de construire,
dans ce dernier plan, et sur cette méme corde un arc capable de l'angle donné
et d’¢tablir le sommet du céne en l'un quelconque des points de cet arc. On

voit quil reste, dans cette construction, beaucoup d’arbitraire qu’on peut mettre
& profit pour satisfaire 4 des conditions données.

J. D. G.
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Pour cela, par I'un gnelconque M de ses points; eoneevons une
section A’MB/N. paralléle & la base du céne, dont les intersections
respectives avec le plan de I'angle A/SB/ et le plan AMBN soient
A’B’ et MN, se coupant en P sur AB ; cette section sera circu-
laire et perpendiculaire , comme AMBN au plan A’SB/; d’ou il
résulte que MN sera perpendiculaire a ce plan, et conséquemment
ad AB et A’B’. De plus , les angles PBA’ et PA’/B seront respec-
tivement égaux aux angles PB/A et PAB/; les triangles A’PB et
APB’ seront donc semblables et donneront, par conséquent,

PA:PB/::PA’:PB,
d'otx
PA’PB'=PAPB ;
mais, par la prepriété du cercle,

PM'=PA’PB/ ;
donc aussi

PM'=PA.PB ;

donc enfin la section AMBN est un cercle, dont AB est. un
diamétre (%),

(*) Cette propriété du cdne oblique, A base circulaire , peut encore étre dé-
montrée comme il suit. Concevons toujours , par la droite qui joint le sommet
au centie de la base, un plan perpendiculaire au plan de cette base, lequel
déterminera deux droites sur la surface du cone. Concevons que, par la droite
qui divise Pangle de ces deux-la en deux parties égales, on conduise un second
plan, perpendiculaire & celui de cet angle ; ce dernier plan, comme le pre-
mier, divisera lu surface conique , considérée comme indéfinie, en deux parties
exaclement symélriques et méme superposables ; dov il suit que si, par une
droite mende, dans ce second plan , perpendiculairement au premier, on fait
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Cela -posé , soient G, le centre d'une sphére (fig. 9 ) et CS
P'un quelconque de ses rayons. Faisons de S le sommet d’un céne
ayant pour base I'un quelconque des cercles de la sphére ; par CS
et par le pole de ce cercle soit conduit un plan qui déterminera
sur la sphére un grand cercle GSH, coupant le cone suivant les
droites SA’, SB’. Soit GH le diamétre de ce cercle perpendiculaire
a CS, coupant SA/ et SB’ respectivement en B et A. A’B/ sera
un diametre de la base du cone, et le plan de notre grand cercle
sera un plan perpendiculaire 4 celui de cette base passant par son
centre et par le sommet du coéne.

L’angle SA’/B’ ayaunt pour mesure la moitié de l’arc SGB/, c’est-
a-dire ,la moitié de SG4-GB/, et P'angle SAB ayant pour mesure
la moitié de SH+GB’; a cause de SH=SG, ces deux angles seront
égaux, d’ou il suit qu’il en sera de méme de SB/A’ et SBA.

Donc , d'aprés ce qui a été démontré ci-dessus , si par GH
on conduit un plan perpendiculaire & CS , ce plan coupera le
céne suivant un cercle dont AB sera un diamétre ; toutes les
sections du coéne par des plans paralléles & celui-la, c’est-d-dires
perpendiculaires 3 CS seront donc également circulaires.

-

au céne deux sections formant, en sens inverse , des angles égaux avec ce méme
plan, ces seclions seront des courbes égales ; mais , si Pune d’elles est paral-
lele a la base du céne, elle sera circulaire ; donc alors Pautre le sera avssi.
On voit par 12 (fig. 8) que la droite qui divise Pangle A’SB/ en deux parties
égales doit faire des angles égaux, en sens inverse avee AB et A/B/

; J. D. G.
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Solutions analitiques des mémes problémes ;

Par M. GERGONNE.

LES solutions qu’on vient de lire ne laissent sans doute rien a
désirer du cé6té de la rigueur et de la briévetd; mais,comme les
probl¢mes auxquels elles se rapportent ont été proposés & des éleves
de mathématiques spéciales (*) , on peut présumer qu’il était dans

(*) Pendant combien de temps encore conservera-t-on cetle dénominalion
ridicule de mathématiques spéciales ? Quand bien méme on voudrait entendre
par 13 que le cours ainsi nommé est desting aux éléves qui se consacrent spé-
cialement a l'élude des mathématiques , outre que ellipse serait par trop forte,
cette ellipse serait un véritable mensonge ; atlendu que les éléeves qui, dans
nos écoles, suivent les cours de mathématiques dites spéciales, suivent en méme
temps des cours de physique et des cours quon appelle, on ne sait trop
pourquoi, cours de philosophie.

Ceci _nous rappelle d’avoir un jour entendu un jeune homme que l'on inter-
rogeait sur la division logique , répondre que, par exemple , les mathématiques
se divisent en mathématiques élémentaires , mathématiques spéciales et mathé-
matiques transcendantes,

Que l'on toléere dans le monde des locutions vicieuses , a la bonne heure : mais ,
puisqu’enfin c’est par le langage que les idées s'introduisent et se classent dans notre
esprit , on devrait du moins metire toutes sortes de soin a rendre correcte
la langue qu'on parle dans les écoles.

Cette langue est vicieuse sous un grand nombre d’autres rapports. Par exemple ,
ces expressions : faire sa médecine ,son histoire naturelle, ses mathématiques,
etc., nous sembleraient tout-a-fait sauvages , et cependant on dit : faire som
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Iintention de ceux qui en ont fait choix qu’elles fussent résolues
.analitiquement. Si donc je m’étais trouvé au nombre des zoncurrens,
je me serais cru tenu en conscience de les traiter ainsi ; et voici
de quelle maniére j'aurais procédé.

Premiére question. Soit pris pour plan des xy le plan du cercle
donné comme base du céne droit dont il sagit; et soit pris son
centre pour origine; son axe sera ainsi dans I'axe des z. Supposons
en outre que son sommet soit du coté des z positif. Si r est le
rayon de sa base, I'équation de cette base sera

xa_‘_y: =r*.

Si, de plus, on appelle £ sa hauteur, les équations d’une droite
menée d’une manitre quelconque par son sommet seront de la
forme

a=M(z—k) ; y=N(z—Fk) ;

M et N étant deux indétermindes.
Cette droite percera le plan des zy en un point dont les équa-
tions seront -

x=—kM , y=—kN ,

si donc l'on veut que cette méme droite soit menée sur la sur-

droit , sa rhétorique , sa philosophie , etc., a pen prés comme on dirait,
Jaire sa barbe ou ses ongles. Lexpression faire sa philosophie ne pourrait
signifier quelque chose qu’autant qu'on la considérerait comme I'équivalent de
celle-ci : se faire une philosophie & soi ; or, rien n’est moins propre & atteindre
ce but que lescours de nos écoles , o on nous donne une philophie toste
Jaite ; et souvent encore quelle philosophie !
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face du céne, il faudra que ces valeurs de x et y salisfassent a
Iéquation de sa base ; c’est-a-dire, qu'on devra avoir

]‘a(M1+N:>=r: .

Telle est donc la relation qui doit exister entre J/ et N, pour
que la droite dont les équations sont

2=M(z-Fk) , y=N(z—*%) ,

soit sur le céne. Eliminant donc M , N entre ces trois derniéres
éqnations , I’équation résultante

W@y =r(a—iy

sera celle de la surface convexe de ce céne,

Supposons présentement que le plan des yz, qui est seulement
assujetti & passer par 'axe du céne, ait été choisi paralléle A celui
des sections verticales dont il est question dans I’énoncé du probléme;
alors, pour avoir les courbes déterminées par ces sections , il ne
s'agira que de considérer # dans I'équation du céne comme une
constanle arbitraire , exprimant la distance variable du plan coupant
4 laxe du céne. Si, en outre, on transporte l'origine au sommet,
ce qui se réduit & changer z—% en z , I'équation pourra étre
mise sous cette forme

2 L3 kx»l’ ’]‘xz
st (F Jr=a ()

équation que 'on reconnait pour étre celle d’'une hyperbole dont

. kx .
le demi-axe transverse est — et dont le demi-second axe est z.
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Les projections des asymptotes sur le plan des yz auront done
pour équation commune

r

y=Er—-z;
c’est-d-dire , que ces projections ne seront autre chose que les inter-
sections du cone avec le méme plan ; ces asymptotes seront donc
toutes paralleles , et situdes sur les deux faces d’'un angle dic¢dre
circonscrit au céne.

Si P’on veut que les hyperboles soient équilatéres, il faudra qu’on ait

r . . A
Z=1ou k=r, c’est-a-dire, qu’il faudra prendre la hautcur du céne

égale au rayon de sa base.

Deuxiéme question. Soit pris le centre de la sphére pour origine
des coordonndes rectangulaires , le rayon donné, que mnous repré-
senterons par r , se confondant avec I'axe des z positifs ; P'équa-
tion de cette sphére sera

2 yrizt=r2 . (1)

Supposons que la base du céne, considérée comme un plan in-
défini, ait pour équation

cz=patgytk (2)

le concours des équations (1, 2) exprimera le périmdtre de cette
base.

Les équations d’une droite menée d'une.maniére quelconque par
le sommet du céne seront de la forme

a=M(z—r) , y=N(z—r) ; 3)

~

od M et N sont deux indétermindes. Cette droite percera le

plan
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plan (2) en un point dont on aura les coordonnées en combinant
entre clles les équaiions (2, 3). On trouvera ainsi pour ces

eoordonnées
k=r ‘ k—r
a=M —— =N —————
M i—pH—gN ° r=N —m—n

= k—(pM-4-¢gN)r
T 1—pM—gN

Si donc on veut que la droite (3) soit sur le céne, il faudra que
ce point soit sur la sphére, c'est-i-dire, qu’on devra avoir

k—r 2 k—r 2 (k—(pM+qN)r .,
{M' I-PM—qN} +{N' l—pM—qN§ == § =

ou bien, en réduisant,
(&—-r)(M’+N')—2r(pM+qN)+(l:+r)=:o : )]

Telle est donc la relation qui doit exister entre M et N pour que
la droite (3) soit sur la spheére. Eliminant donc’ ces deux indé-
te’rmm-ees de cette équation (4), au moyen des équations (3)’
I'équation résultante

(k=1 (@ Fym2r(patbgy et (k) z—ri=0 ;  (5)

sera celle du cdne , considéré comme surface indéfinie.

Si donc on veut savoir suivant quelle courbe ce cOne est coupéd
par le plan des 2y , il suffira de supposer z=o dans l'équation
précédente qui deviendra ainsi

Tom. XI. 22
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(k—r)@*ty*)t2r( patgy)+rtr=0 , (6)

équation que I'on reconnait appartenir & un cercle. Et comme toutes
les sections faites & un méme céne par des plans paralleles sont
des courbes semblables , il en résulte plus généralement que, sZ
un céne a son sommet au cenire dune sphére et pour base
un quelconque des cercles de cette sphire , toute section du
¢bne par un plan perpendiculaire au rayon qui va & son ‘som=
thet sera uné section circulaire; cest le théoréme qu’il sagissait
de démeontrer ; il revient a dire que, pour un spectatesr qui @
Pail en un point de la surface d'une sphére, et pour un tableau
perpendiculaire au rayon mené & ce point, la perspective de tout
cerclé de la sphére est tlle-méme un cercle ; cest le principe de
la projection de Ptolemdée. ’

L’équation (4) peut étre. mise sous cette forme

rrr \?*- ) gr: z_ . (I_jl_-p’-l-q’)r_‘—k‘ .
(HE)H ()= S0

d’ot Pon” voit que les équations du centre du cercle sont

__pm ___

et qu’en désignant par R son rayon, on a

v (1 z 2) 72 [y 3
A=V ERIE ®

Il est aisé de voir que les équations du rayon perpendiculaire 2
la base du céne sont
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x:--pz N y:-—-qz 3 (10)

et que la longueur de la perpendiculaire abaissée du centre de I,
sphére sur le plan de cette base est

_
Vb

d'oit 1l suit que le rayon de la base du céne sera

V (tprtg)e—ie
V 1tpitg?

En conséquence, si 'on représente parp I'arc de grand cercle qui
joint le pole de cette base a sa circonférence , on aura

, V' (Fprtgr—ic c k
ST Warr 0 e Y

Cela posé, considérons, sur la sphire, un autre cercle servant
de base & un cbéne de méme sommet que le premier ; et supposons
que Téquation du plan de ce cercle soit

z=p'at-q'y+k’ . (12)

La section de ce nouveau céne par le plan des xy sera encore un
cercle ; les équations de son centre seront
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— " - qr> y e
xb«-,_k/—r N .y_——kl_r ,' (13)

en désignant par R’/ son rayon,-on aura

R/=L\{(I+P";tz")ir2-—kh : (14)

Les équations du ravon mené au poéle du cercle-base seront
Z==wmp/z y=—q'z ; (15)

; o s e A \
et en appelant y l'arc de grand cercle qui joint son pole a sa
cicconférence , on aura '

V GHprg e —R _
Sin.p)/= , Cos.y/=
BV~

K
r ‘/ 14-p'ag3

(16)

En conséquence, si I'on représente par D la distance des centres
des sections des deux cones par le plan des xy et par § l'arc de
grand cercle qui joint les poles de leurs bases, on trouvera

p pl 2 q ql 2}
2 e 4 —— — —— —
Dr=r %( k=—r k'-—-r) + ( k—r k’—-r) ’

1-+pp4-99/
R Y D

Cos y= Ve

On aura d'aprés cela
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(pp'~ggyr2—=ki’
2 A D2=2r2,
B +R D 2r (li-n—l‘)(k/—r) ’

(1+pp/+qql)r2-—-kz
VG g

Cos.p—Cos.pCos.p'=

2RR/ = 28/} (rp g 2rim—he 1} (1pl g =i |
(k—r) (/=) ’

Vi(pr g r—k { (1-p/* g/ yr*——k'?} ]
7 (g7 ()

Sin.Sin,p/ =

donc enfin

R24-R'2—D2 . Cos.d==Cos.pCos.p
2RR/ - Sin,pSin.g

— (1-4pp'+g9")r2=—kk
- ‘/{ (1p2fg?)r2—kz} { Qp/=q'r2—k=} ’

or , la premiere de ces deux expressions est celle du cosinus
de langle sous lequel se coupent les perspectives des deux
cercles de la sphére , et la seconde est celle du cosinus de
langle sous lequel ces deux cercles se coupent eux-mémes ;
donc , dans la projection de Ptolémée , les perspectives de
deux cercles quelcongques de la sphere sont deux cercles qui se
coupent eux - mémes sous le méme angle que ces deuz-ld. Gette
intéressante remsrque, qui ajoute un si grand prix au systtme de
projection de Piolémée, est due, je crois, & M. Puissant.

Si done les deux cercles de la sphere sont tangens 'un a Pautre ;
leurs perspectives le seront également ; ce qui est d’ailleurs évident.
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Si done on propesait de décrire un cercle qui en touchét trois autres
donnés sur une sphére, il suffirait pour résoudre le probleme de
construire , pour un méme plan, les projections circulaires de ceg
trois cercles, suivant la méthode de Ptolémée ; de décrire , dans
ce plan, un cercle tangent a ces trois-la, et de chercher ensuite
quel est le cercle de la sphére dont ce dernier est la projection;
Ce cercle de la sphére toucherait les trois autres , et serait consé-
quemment le cercle cherché. Il serait curieux de voir & quoi re-
viendrait finalement cette solution ; mais c¢’est un soin qu’il convient
de laisser 3 M. Durrande , qui sest déja occupé avec tant de suc-
cés de ces sortes de probléemes (¥).

*) Nous saisirons , avec empreésement, cette occasion de réparer une
omission qui nous est échappée , en préparant le mémoire de M. Durrande
qui se trouve au commencement de ce volume ; omission qui rend incompleéte
la démonstration du théoréme du n.° 2r ( pag. 13 ). La démonstration que
Pon donne en cet endroit ne convient en effet qu'au cas ot , comme dans
la figure 10, le point de coucours des axes radicaux n’est intérieur 2 aucun
des trois cercles ; mais elle ne saurait s'appliquer au cas ot , comme dans
la fizme 11, ces trois cercles ont une partie commune. Voici comment on
peut raisonner dans ce cas.

Soient C, C7, C” les trois cercles, AB la corde commune de C/ et C”,
A/B? celle de G et -C”, coupant la premiére.en O, et enfin A” et B/ les
intersections des -deux cercles G et C'. Si .la deoite menée par B” et O ne
passe pas par le point A”, elle coupera le cercle C en quelque point X et
le cercle C’ en quelque autre point X’ , et lon devra avoir , par les pro-
priétés des cordes qui se coupent dans un méme cercle

OA .OB =0A”.O0¥/ ,
OA.OB/'=0X.0B" ,

0X".0B”=0A.0B ;



QUESTIONS PROPOSEES. 163

QUESTIONS PROPOSEES.

Probléme de Geometrie.

DE méme qu’un cercle etant donné sur un plan , on sait trouver
son centre et son rayon; on sait aussi , lorsqu’une section conique

est donnée, trouver son centre , si elle en a un, ses sommets,

\

d’ol1 on conclura, en multipliant et réduisant,
OX/'=0X ;

les deux points X, X’/ doivent donc se confondre entre eux, et conséquem=
ment avec le point' A”; la droite menée par B/ et A” doit donc passer par
le point O ; les trois axes radicaux se coupent donc au méme point.

Cette démonstration s’appliquerait également au cas de la figure 10 ; mais

elle ne saurait convenir &4 ceux ou lout ou partie des cercles seraient exté-

rieurs les uns aux autres, et il faut alors recourir & celle de la page 13.
Toutes ces remarques avaient été faites par M. Durrande ; mais la précipi-
tation avec laquelle nous avons arrangé son meémoire nous les a faites i regret
négliger, )
Il y a exactement les mémes observations i faire sur la démonstration du
théoréme du n.° 47 (pag. 22), que Von complétera d'ume maniére tout-d-

fait analogue.
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ses foyers , son paraméitre et les autres ¢lémens ‘qui la  déter=
minent.

Mais, tandis qu’on sait aussi trouver le centre et le rayon d'un
cercle ‘dont un arc seulement est donné , personne encore n'a
.enseigné A trouver les divers élémens d'une section conique
dont on _connait seulement un arc qui ne contient‘ aucun ‘de ses
sommets,

C’est ce probléme que I'on recommande ici & latiention des
géométres,



Tom, XI, plan.III, pag. 135165
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e ]

COMBINAISONS.

Solution de quelques problébzes dependant de la théorie
des combinaisons;

Par M, ***,

G‘ ERGONNE.

s gy A e s e Wy W " e

J E me propose de traiter ici quelques problémes de combinaison
dont je n’ai encore rencontré la solution nulle part. Indépendam~-
ment de l'attrait que présentent toujours ces sortes de problémes
et de I'utile exercice qu’ils donnent 4 Pesprit ; en sait qu'ils se’
rattachent 2 diverses théories intéressantes , et notamment 2 celle

des probabilités,

PROBLEME 1. D¢ combien de manidres peut-on faire n parts,
avec m clhoses toutes différentes les unes des autres , avec la faculté
de faire les parts si inégales gu'on voudra ; mais sous la con-
dition d'admettre au moins une chose dans chaque part ; cest-0-
dire , de ne point faire de parts nulles, et demployer la totalité
des choses , dans chaque systéme de répartition ?

Solution. Ayons d'abord égard au rang qu'occupent les parts,
dans pbaque systtme de répartition ; c’est - & - dire, considérons
d’abord comme systémes de répartitions différens ceux-la mémes ol
les mémes parts sont disposées dans un autre ordre; il nous sera
facile ensuite de voir ce que doivent devenir nos formules, lorsqu’on
ne veut plus tenir compte de cette différence. -

Tom. XI, n.° V1, 1.5° déccmbre 1820. 23
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Si d’abord on ne veut faire qu'une part unique , on sera contraint de
la composer des m choses, & Guine-de pouria que d’une manidfe;
de sorte que le nombre des maniéres de faire une part sera domc
simplement 1. -

S’agit-il de faire deur parts? on pourra prendre successivement,
pour la premidre 1, 2, 3, ... m—1, choses, ct tout le reste pour
la seconde ; mais; en général , on pourra composer la premiére
part de % choses d’'un nombre de manidres exprimé par

m m—1 m—2 m=—k-}-1

— S— g e ——

I 2 3 k ?

geeras

et puisqu’alors la seconde part se trouve tout-i-fait déterminde,
il s’ensuit/que, suivant quon voudra faire la premicre partde 1,
243, we.m—2, m=—1 choses, le nombre des systémes de répar-
tition possibles sera

Pour 1 chose. « « ¢« o a0 v ..

m
-
I

me==1

m
20 00 060000 0 =
I

2

m me=1 me=2

4
3..0...!.‘-.-—"'—'—-“,
1 2 3
l-.ll:l.‘.l‘.....
N - m M=y
Mew= . ¢ o s ¢ o 0o 06 ™~ Py
b 4 2
. m
T==T1 o« ¢« 4 ¢ ¢ 6 ¢ ¢ ¢ o o o —

Le nombre total des modes de répartition en deux parts sera donc
la somme des ces termes, que l'on reconnait de suite étre
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(rmsmans

Il est clair d'ailleurs. que ces divers systtmes de répartition ne
différeront deux & deux que par le rang des deux mémes parts |
dont la premitre dans I'un sera la secomde dans Vautre.

S'agit-il de faire frois parts? si l'on veut composer la premiére
de % choses, cela se pourra d'un nombre de maniéres expriménpar

m =Y M2 me=k4-1
1 2 3 k ?

il restera ensuite & répartir en deux parts les m~—# choses restanites ;
ce qui, d’aprés ee qui précéde , pourra se faire d’un nombre de
maniéres exprimé par

am—t__5

ainsi le nombre total -des systémes de répartition ol la premiére

part sera composée de A choses sera donc

m  me1 m=k-4-1 .
—_— P (2" ~k—2) ;

I 2

faisant donc successivement, dans cette formule , k=1, 2, 3, ...,
m—2, m—1 , on aura, pour le nombre des systémes de répartition

relatif 3 chaque nombre de choses adopté & la premiére part ,

savoir :

Pour 1 chose . & . ...... -?—-(2"‘"——2) >

b A ! (2m— 1_2) ,

m
2 o s s 0 s @ 0 e 0 g
I

2
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M Me=] MN~=2
R e (M3 m2)

2 3
@ ¢ 6 4 s 0 0 s o 8 8 06 06 008 09 8 v a0 )

m me1
m-2....-....-T 2(2’—2)‘,

m
m—-l.....-........-;(2—2),

4 la vérité, il estimpossible d’admetire -1 choses & Ia premicre
part, lorsqu’il en faut faire trois; mais aussi le facteur 2—2 réduit
4 zéro le nombre des systémes de répartition qui convientd ce cas.

Le nombre total des modes de répartition possibles en trois parts
sera donc la somme de tous ces nombres ; mais cette somme se dé=-
compose dans les deux séries que voici

2 oamei f B0 omaa g BT T2 omes M2
r 2 +1 T2 +l Pabarent +.....+I A 2-}-‘2,
m m m—1 m me=1 me=2 m me=1  m
”2(T+T'T+T'_§;—' = b =TI D),

la somme de la premitre est dvidemment
(241)P—m2Pm g =31,
et celle de la seconde
—2[ (14 1) —2] = =224 ;

réunissant donc ces deux sommes, nous aurons pour le nombre total
des systemes de répartition de nos m choses en trois parts
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3n—3.2m43 .

On congoit d’ailleurs que ces systémes ne différeront. six a six que
par les rangs que les trois mémes parts y occuperont.

S'agit - il de former ghatre parts? en se déterminant 3 former la
premiére de % choses, on pourra choisir cetie part d’un nombre
de maniéres exprimé par

m me=1 me=2 Mekf-1

— -

I a3 3 [

il restera ensuite X faire trois parts des m—# choses restantes, ce

qui , d’aprés ce qui précéde , pourra se¢ faire d'un nombre de ma-
nitres exprimé par

3mm' 3, am 3

d’ott il suit que le nombre total des modes de répartition ol la
premiére part comprend % choses, est

m m—1 me2 m-:"" (3m-k..-3.2”"'"+3) H

X 2 3

faisant donc successivement , dans cette formule , k=1,2, 3 ,.um—2,
m-—1, on trouvera, pour le nombre des systtmes de répartition
relatif & chaque nombre de choses adopté 2 la premitre part, savoir:

Pour 1 chose. . , . .. ?(3’""'-—3.2""4-3) ;

m  Mes=]

R R Saren (3mn3-3.2m~24-3) ,
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3.1, T I TR 3 ameg 3)

.y - "
% e"w ¢ 454 4 o 8 8 0 0o 8 o 0 s o g

9« a & 8 8’

2T e

AR ot T e e e e —-@(y_g ,,»,+3) ,

, s v
m_x.............{'-(3_3.2+3).
} LT -
A la +drité, lorsqu’on da\itur‘éparlir m «choses ent quatre parts , la
premicére part n’en saurait admettre m—1, ni méme m—2; mas
aygsi arriye-t~jl queley facteurs . 3%—3.234=3 et 34=3 2+3 , qui
répondent aux deux degpiers €ag; sont nuls d’qux-~mémes.
Le nombre total des systémes possibles de répartition de nos m
choses en quatre parts sera donc ]a,sommq de toutes ces formules,
laquelle se résout évidemment en ces trois suites

B igmey I gmee t T _.__ET_"_?gy,n;n; i
. + + 2 3 +"‘+ I 2 3 +I 3’
m MmeX -1
‘—3(—;.2’"”"‘/ nﬂmﬂj'z\— "’“’{%Mz_m-s’l' %'.'Em L‘Q +" '2) ’
t -
Lo ¢ m m—l’ m—z —
3 _ni_m ) m  me=1
+ 3. .‘:“L I’ - = -!- I l' Ql senre

lesque]fes neuvent qnsm].,e, et‘x‘eal;espect;,vampna,rgnxplanees par les ex-
pressions suivantes

R R Ca i e S L I ED
—3[(2—]—-1)’”—2’"—111: -—‘3.3’"+3.2’"+3 ’
314 1) "= 1=t ‘ —'1—:3.2'"-—6 .
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En conséquence , le nombre total des systémes de decomgosmons
"

en qudtre parts séra
frf 3G gy
bien entendu que ces systémes ne différeront, 24 3 24, que par

les rangs respectifs des quatre mémes parts.
Un raissonnement tout-3-fait semblable prouvera que le nombre

total des systémes de décomposition en cing pidrts est la somme

des nombres
+ (fF) —fr—r =5 4 —r,
—i[B4—3r—i]= —hfrh43n T 44,
+6[(241)"—=2"—1]= +6.3"—6.2"—6 ,
— [yt —1]= —42" 8
c’est-a-dire , que le nombre de ces systdmes est
5m—5.4m4 10.3’"—-:0.2"'+% .

On trouvera pareillement que , pour le cas de la répartition enm
six parts, le nombre des systemes est

6"—6.5"4-15.4"—~20.3"415.2"~6 ; *

et ainsi de suite.
Rapprochons présentement les uns des autres ces divers résultats,

Nous voyons que , suivant le nombre des parts que I'on veut faire ,
le nombre des sysiémves de répartition possibles est, savoir ;
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~ 2

] * '
Pom"lecascl’uma['nu'tuuique........:2-2--4‘I

d329-.0~l¢00000:-0c50-.2—2,
¥

de 3 Qe s & 8 o @ o s o s 0 s 8 & e 3m'—"3.2m+3 ?
de 4 ® @ ¢ s s o e s LRI 4m—4'3m+6'2m—4 ’
de5.......5"5/m4103"—102"45,

de 6 ... 6"=6.5"415.4"—20.3mF15.2m~6 ,

or, la loi de ces résultats est manifeste, et 'on ne peut conclure
de suite, comme il serait d’ailleurs facile de s’en assurer par une
induction rigoureuse, que I'don peut distribuer en # parts m choses
toutes différentes les unes des autres, de manidie & ce qu’aucunc
part ne soit nulle, d’'un viombre de maniéres expiimé par

n’"-—--’f (r—1)"4 = -’-z-:-'- (n—2am ——2 -rr«t ?-——3 (n=3)"4 ... .

pourvu toutefois que l'on admette comme systtmes différens ceux-
1A méme ou les mémes parts ne sont simplement que transposées.
Avant d'aller plus loin, observons que, comme il est impossible
de faire n parts effectives avec un nombre de choses infeiieur 2
n; et que comme , .dun autre cdté, les diverses manieres de faire
n parts avec n choses ne sont que les diverses maniéres de per-

muter ces ghoses entre elles; il s’ensuit qu'on doit avoir

Nl TR n —
-,)._. %_.;_L ’L_?,(n_3)+.... n=o0,

ﬂ‘..—-
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n New=i n neel Ne~zy
i~ ”—1)’4' — - —2)— = —— - ——(@=3)}.tn=o,

. - B . -
A I I I L e R T,

n n==y, n  ne=l 7i=—2 '
Tl — \fl‘- I)n—"+ -c . -—-—\n-n)"“—; T (n—o)"““-}-...‘l‘n.—.o s

n*- -—-(n-x'"—l—l-’:—t(n -2)" ~Iz

=3)" . tr=1.23..n.

Nous croyons devoir consigner ici ces diverses relations, qui d’ail-
leurs se vérifient parfaitement, dans les cas particuliers , parce que
souvent elles peuvent étre utilement employées , comme moyens
de réduction (*). Elles peuvent aussi, dans certains cas, faciliter
des éliminations,

Que, par exemple , il faille tirer la valeur de z des quatre
équations

R S SATE JACEY.
»
3t-3u+3%4-342 =8

(") Elles sont du genrc de celle donnée par M. Sarrus, i la page a22 du
précédent volume, et on peut , comme par rapport a celle-la , se demander
si elles auraient lieu encore dans le cas ol » serait fractionnaire ou négatif. On
peut , au surplus, de leur combinaison, en déduire une infinité d’autres. Si,
par exemple , on en prend la somme, on aura

n  ne=l n—2

el [y R B

Y (el § n-—z 2 n——s

[(p=2)tmm1]—...... T2*=123.....02 .
J. D. G.
Tom. XI. 24
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- ntf—l—é’u%’?ﬁ“x;gc :
4 ut v z2=D

-,

en remarquant que-, ‘d'aprés ce qui précéde

Il

4 =43 6.2 —4=0 ;
434622 —4=0 ,
4343348234 =0 |
fp =43 4-6.20mf=1.2.3.4 ,

on voit qué, pour parvenir au but, il ne s’agit .que de :prendre
la somme des -produits respectifs ‘de ces quatre équations par ~t-1,

~—4, 46, —4; ce qui donne sur-le-champ ,
1,2.3.44%= A—4B4-6C—4D .

Tout ce que nous venons de dire est, comme nous l'avons ob-
servé , relatif au cas ol l'on admet, comme autant de différens
systémes de répartilion, ceux~la méme qui peuvent ne différer les
uns des ‘autres que par les rangs que les mémés’ parts y occupent;
‘mais si, au contraire-, on me veut admettre , comme systémes
'dlfférens,que ‘ceux-1a seulement qui ne sont pas, en totalité, composés
des mémes parts, on considérera que , ‘dans le cas de » parts,:par
exemple, un seul systéme, pris au hasard, peut, par la simple
“permutation des 'parts dont il est formé, en fourhir ‘un nombre

1.23.4...n , lé'squels ne doivent plﬁs "eompter ici que pour une
part unique ; d’ou_il suit que dans le cas de » parts , le nombre

des systémes de répartition F¢ellement différens ne “doit plus étre
sxmplement que
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n : R D=, N pe=1 peez 7 Nemy
Pl — (newB)f . —— (2 2 e s g (M T My

1 0203; veesnnn 72

. . - . - - x
ainsi, ce sera dans le cas de ume part. . s il .0 -

dcn.;:....:..?.....'.....’..:'...2:-3-2,'
de3.:‘.'..':..;....:‘...;......i'-"—?%'fgﬁ,
de 4o ittt e e 4%—4?:?;22’”-"—45
o B eeein L EIEIns

_ 6MemG. 5MI 15,4 M 0.3 4 1 5,216
de 64 - e & & ¢ ¢ o o o 0 O ;
1.2.3.4.5.6

et ainsi des autres; d’ou Pon voit que ces sortes de fonctions n’ont

que Papparence fractionnaire.

Si I'on demande, par excmple , de combien de maniéres dix
fruits, tous d’espéces différentes , peuvent étre répartis entre quatre
personnes , on trouvera, pour le nombre cherché,

4'°—4.3'°+6~.2‘°—4=818520 ;

mais , si 'on demandait simplement de combien de maniéres on peut
faire quatre parts avec ces dix fruits, sans aucun égard aux per-
sonnes i qui ces parts devraient étre destinées , la_réponse serait

818520 _
5.2.3.4 -

34105 .
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PROBLEME 11. De combien de maniéres peut-on fairen parits,
avec m choses -toutes différentes les unes des autres , lorsqu’on a
la faculté de faire tant de parts nulles quon veut , sous la con—
dition ¢ependant d’employer toutes les m choses dans chague mode
de répartition ?

Solution. La solution de ce probléme est trés-facile & déduire
de cclle dn probléme qui vient d’étre résolu , ainsi qu'on va le
voir ; mais il s’en faut que les résultats quon en obtient soient
aussi simples que ceux que nous avons obtenus du premier.

D’abord , si I'on ne veut faire quzze seule part , on ne pourra
faire de parts nulles ; tout se passcra donc comme dans le premier
probléme , et 'on aura, pour le nombre des modes de répartition , ;.

Si l'on veut faire dewx parts, on ne pourra faire qu'une seule
part nulle, et d’une seule manidre seulement, et conséquemment
le nombre des systémes qu'avait donné le précédent probléme pour
ce cas devra simplement étre augmenié d’une unité; il sera donc,
dans le cas actuel,

2M s m
—_— = —

Si T'on veut faire Zrois parts , on pourra faire une ou deux parts
nulles. On pourra faire une part nulle d’autant de manitres qu’il
y en a de faire, avec m, choses, deux parts dont aucune ne soit
nulle ; et, quant i deux parts nulles, on ne pourra les faire que
d’'une maniére unique, puisqu’on sera contraint de tout mettre dans
la troisitme. Le nombre total des systtmes de répartition en. trois
parts sera donc

3Me32Md3 oMemz

L2
1.2.3 2 ?
ou bien, par ce qui précéde,
3m—3.2m+3+2’" 3m43
1.2.3 T2 T 143
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Si 'on veut faire guatre parts, on en pourra [aire une , deux
ou trois nulles. On en pourra faire une nulle d’autant de maniéres
quil y en a de' [aire, avec m choses, trois parts dont aucune ne
soit nulle. On en pourra faire deux nulles d'autant de maniéres
quil y en a de faire, avec m choses, deux parts dont aucune
ne soit nulle. Enfin, on n'en pourra faire trois nulles que d’une

maniére unique. En conséquence , le nombre des systémes de quatre
parts sera ici

4 3G 2 M) BN, a3 2™
1.2.3.4 1.2.3 2

ou, d’aprés ce qui préctde,

frmfu3mg-6.2Memff P43 fmf 6278
1.2.3.4 1.23 1234

En poursuivant le méme raisonnement , on trouvera qu'ici le
nombre des syst¢mes de cinq parts est

5Mame’. [P =103 emr0.2m4-5 | fm4-6.2m4-8  5Mf10.3Mf-20.2m4-45
1.23.4.5 T TTR3s T 12345 i

que le nombre des systémes de six parts est

6" 4-15.4M4-40,3™4-135.2M}-264 .
1,263:445.6 :

et ainsi de suite.

Comme ces résultats se présentent sous une forme peu symé-
triques, il vaudra peut-étre mieux se rappeler simplement , dans la
pratique, que , pour obtenir la solution du probléme proposé, il faut
prendre la somme d'autant de termes de la suite , trés~réguliére;
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C o |
T b

amea
. : ’
1 oﬂ' .
3Mu3. a3

123 4

4m.-.ﬁ,3m+6_ 2Mam fy
o 3 '2;_3‘ 4 -9

LS NAE S 1e.3"'—:-! o.2m}-5
1 .:.3.4.5 ’

6'"—-6 5715, Mewm20.3m4-15.2M=—6
adse v -

-
o w - - - " -
® 0 88 505 8o st 0 oy

quiil y a de parts 3 faire. ,
Si, par exemple, il s'agit, comme ci-dessus, de répartic dix

fruits .de, natpre- différentes en_qupteg.pars, on, ayrs

-

410—4 3lo+5 110—4 =3 \
=34105
Yy 4‘
310321043
a9
T > 53947 *
210y
—— = 511
1.3
X k!
—— X
£ T >3-

de- sorte- que- ke nombre ‘des systdmes de-répartition sera 53g47:
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'Mais ceci suppose qu’on ne ticnt aucun compte de la maniére
‘dont les parts sont disposées; or, il y a des cas ol il est néces-
saire ‘d’aveir égard A leur disposition; et tel est , en particulicr,
“celui ou il s'agirait de répartir les dix fruits entre quatre personnes;
car le syst¢me de répartition ot , par exemple, telle:personne aurait
tout, ne pourrait étre 'assimilé i celui ol cette méme personne n’aurait
“rien, Voyons'donc eomment on pourra avoir égard a cette circonstance.
§'il ‘n’est question que d'wne part unique, on’'ne pourra, datis
ce cas, comme dans le précédent , la faire que d’wnemaniére.

§’il s’agit de déuz parts, en les faisant d’abord toutes deux effec-
tives , comme dans le Probléme I, le nombre des systémes'de répar-
tition sera 2®—2. En faisant ensuite une part nille, elle pourra
étre indifféremment la premidre ou la seconde , ce qui fournira
encore deux systtmes; de sorte-que leur nombre total sera sim-
plement 2.

S’agit-il de faire frofs parts , on pourra d’abord les rendre toutes
¢ffectives d’'un nombre de maniéres exprimé par

3m=3.2my3 .

En choisissant ensuite une part déterminée -pour -étre ‘nulle , on
pourra former les deux autres d’'un nombre-de manhidres exprimé
par 2™—2; mais, comme la part nulle pourra occuper trois places
différentes ; il en résultera encore un nombre ‘de systéme de répar-
titions ‘exprimé *par

32m—06 ,

Enfin, il ¥ aura encore'trois systémes possibles ol deux partsseront
pulles. Réunissant donc tous ces résultats , on trouvera que le
nombre total des systémes de répartition en trois parts est simplement 3™,

¥n poursuivant le méme raisonnement, on trouvera 4™ pourle
nombre des systémes de 'répartition en quatre parts, 5™ pour le
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nombre des systémes de répartition en cingq parts , et ainsi de svite;
d’ol on sera conduit & conclure qu'en général, le nowbre des
systémes possibles de répartitions de m choses en n parts est nm
c’est, au surplus , une conclusion qu'il serait facile d’établir sur
un raisonnement rigoureux.

Ainsi par exemple , s’il est question de la répartition des dix
fruits d’espéces diverses entre quatre personnes différentes; elle pour~
ra avoir lieu d'un nombre de maniéres exprimées par 4'°=1048576.

PROBLEME 111. De combien de maniéres différentes peut-on
. faire n parts, avec m choses toutes dgales entre elles avec la faculié
de faire les parts aussi inégales gwon voudra; mais, sous la
condition de ne point faire de parts nulles, et d'employer la tota-
Uité des choses , dans chaque systéme de répartition ?

Solution. Ce probléme semblerait , au premier abord, devoir étre
incomparablement plus simple que le premier. Nons 'avons cepen-
dant trouvé beaucoup plus compliqué , peut-étre par suite de la
maniére dont nous l'avons attaqué. En conséquence nous nous bor-
nerons a en traiter les cas les plos simples.

Si d'abord on ne doit faire qu'wre part , il est clair quil
faudra tout employer ; et qu’ainsi cela ne pourra s’exécuter que
d’une maniére unique. -

Veut-on faire deux parts ? en s'imposant la condition de placer
constamment la plus petite des deux parts a2 la gauche de la plus
grande , lorsqu’elles seront inégales , tous les systtmes possibles
de répartition pourront étre compris dans le tableau suivant:

PN ) (m""l):

2e0inen. . (m=2),

3........l(m——3) ;

- - - -
s e ¢ @ v w s s 0 st s 9

3
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et ce tableau devra étre prolongé jusqu'a ce que , dans la pre-
mlére colonne, on soit, parvenu a la moitié de m, si m est pair ,
ou au nombre immédiatement inférieur A cette moitié , c’est-ia-dire ,
a I(m—1), si m est impair,

Il en résulte immédiatement que le nombre des systtmes de
répartition sera,

- . m
SlmestAdeIaformezlz..........-;— ;
. m—1
Si m est de la forme 241 , .00 ... —

du moins si 'on n’a aucun égard i l'ordre des parts dans chaque
systtme de répartition. Dans le premier cas, il y aura un seul
systtme ou les deux parts seront égales; dans le second, les deux
parts seront constamment inégales.

Si donc on voulait avoir égard i la disposition des parts dans
chaque systtme, il faudrait doubler chacun des deux nombres que
nous venons d’obtenir, en retranchant une unité au double du pre-
mier , & raison des deux parts égales ; ce qui donnerait également
m—1 pour le nombre des systtmes quel que fut 7 ; commeil est
d’ailleurs évident.

Supposons présentement qu'il soit question de faire #rois parts?
en s'imposant la condition de disposer constamment les parts, dans
chaque systéme, par ordre de grandeur, de gauche & droite, de
la plus petite & la plus grande, et de ranger dans une méme colonne
tous les systémes dans lesquels la premiére part est la méme; on
obtiendra le tableau de répartition que voici:

lgl,m_z2’3:”7_4393)”2-"6474:’3"8 oo

1,2, m=3|2,3,m=5[3,4,m—7|4,5, m—9g [

1,3, m—=4|2, 4, m6|3,5, m=8l4,6, m—i0].
Zom. XI. 25
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et il ne s'agira; pour parvenir au but, que de compter le nombre
des systémes de répartition enregistrés dans ce tableau; ce & quoi
on parviendra & laide des observations suivantes, )

La premiére colonne , en y supprimant le 1 initial, indique
toutes les maniéres de faire deux parts avec m—1 choses égales ;
et commme suivant que /2 est pair ou impair, z—1 est an con=
traire impair ou pair , il sensuit , daprés ce qui a ¢té dit plus
haut , que le nombre des lignes de cette premicre colonne est

. . 172
Simestpair........00uieiei—,
2
. . . : m-—IL
Sim estimpair. . « o v v i et e .. .
N 2

La seconde colonne, eny supprimant le 2 initial , est lc tableau
de toutes les manié¢res de faire denx parts avec m—=2 chicses, dans
lequel on aurait supprimé la premiere ligne ; et , comme m—2 est
pair eu impair, dans les mémes circonstances que m, il sensuit
que le nombre des lignes de cette seconde colonre est

. . 2 me—/
Si m est pair —I OW .4 . ee e
2 2
m=—3 m—5

Si m est impair —— —1 ou .. .....
2

2

La troisieme colonne, en y supprimant le 3 initial, offre le
tableau de toutes les maniéres de faire deux parts avec m—3 choses ,
dans lequel on anrait supprimé les deux premidres lignes ; en
observant donc que, suivant que m est pair ou impair, m—3 est
au contraire impair ou pair, on trouvera que le nombre des lignes
de cette troisitme colonne est

. . me—d -
Sim est pair —— = 0U ... om—
2 2
. . . Mme=3 72
Si m est impair —2 01 ... oas —
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Par un raisonnement tout-a-fait semblable , on prouvera que le
nombre des lignes de la quatriéme colonne est

m—i

Si m est pair

m—>5

Si m est impair

que le norabre des lignes de la cinqui¢me est

Sim

m

m—6
est pair =——=—j ou
2

—5

—3 ou

—3 ou

Si m est impair m— —4 ou
2

et ainsi de suite,

. .

.

~e

me—=14 .

m=—13

-

183

Il résulte de 13 que le nombre total des lignes de tout le ta<
bleau, c’est-a-dire, le nombre cherché, est

Si m est pair  =:{(m—2)+4(m—4)+(m—8 4 (m—10)+m=—14)+..} ,

Sim estimpair =:{(m—1)+(m~5)+(m—7)+(m—11)+(m=—13)+...} &

Pour étre en état de sommer ces suites , il faut au moins

pouvoir assigner le dernier terme de chacune d’elles. Occupons-

nous d’abord de la premiére ;

de l'une de ces trois formes 6% , 642, 6444.

m y étant pair ne peut étre que

Dans le premier cas, il est évident que la derniére colonne n’aura

qu'une ligne qui sera

a2k, 2k, 2k,

ou

m
3

’

m
3

L]

la série aura donc 5 termes dont le dernier sera l'unité ou %;

cette série sera donc
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H{ (mmm2 ) (1110 ) A (1128 - (112 = 1 O) A (12 mm 1 )b it 2}
laquelle se décompose en ces deux.ci:
2 (meme2)H(m— 8)4+(m—14)-H(m=20)+ ¢ 0. 1044},
H (=) (m—10)4-(m—16)4-(m—22)4-. . . .o} 842} 7

c’est-d-dire, en deux progressions par différences , ayant 6 pour
. . m
raison commune , et ayant chacune - termes ; on aura donc;

pour la réunion de leurs sommes de termes

.
?

T m {md2 P2 ma
Lzt
2 6 2 2 12

S~

et ce sera 13 le nombre des solutions du probleéme.
Si m, toujours pair, est de la forme 64~42 ,1a derniére colonue
aura deux lignes qui seront

Meme2 Mme—2 m=$-4
2k , 2k s 2k+2 , ol 3 3

ou

ok , 2k41 , 2441, m;z , mg-x , m;“ ,

me=—=2

la série aura donc 3 termes, dont le dernier sera 2 ou %; cette

série sera donc
3{ (m—2)Hm—4)+(m—8)~(m—10)+(m—1 {464 ],
laguelle se décompose en ces deux-ci
H(m—2)H(m— 8)+(m—14)t(mm—z20)dr . 1.5 1246}
i{ (D g (m—10)4(m = 16)4-(m=22)4 .00 s 1044}
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cest-h-dire, en deux progressions par différences dont la raison

m=-2
commune est 6 , et dont le nombre des termes est —5~ » pour

I'un et Pautre. Réunissant donc les sommes de ces deux séries ,
nous aurons

1 m—a{n}:{jq_ m }_(m—z)(m-{-z) _ mimf

- H
2 6 2 2 12 12

et c’est 13, dans ce cas, la solution du probléme.
Le nombre m, toujours pair, est-il enfin de la forme 6/-+4-4;
la derniére colonne du tablean n’aura qu'une seule ligne qui sera

me1 me=1  m--2

2k+1 , 2k41 , 2k42, ou 3> "3 2 T3 3

. M= . ’ L s
la série aura donc —5— termes , dont le dernier sera l'unité ou :;

cetle série sera donc

2 {(m—2) e (= 8)-4-( = 1) (=1 {) s 6+21,
laquelle se décompose en ces deux-ci

H(m—a)t(m— 8)H(m—1f)Hmmao)d 1 .t 4 By ;

H(m— ) (m—10)Hm—16)t-(m—22)F . . . . 1246} ;
c’est-a-dire, en deux progressions par différences dont la raison
commune est 6 , et dont le nombre des termes est ”—12;2 , pour

“ me—»i . .
la premidre, et —— , pour la seconde. Réunissant donc les sommes

6
de ces deux séries, nous aurons

(m md2 | md2 me=i (n==2)(m=}=2) mie=/
= e + 6 i: — 0

*l2 6 2 12 1a

qul sera, pour ce cas, le nombre cherché.
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Supposons présehtement que m soit impair, il sera de l'une de
ces trois formes Gk-41, 64k+43, 6k+45.

" Dans le premier cas , la derniére colonne du tableau n’aura
qu'une seule ligne , qui sera

M=t me—1 mf-2

2k, 2k , 2k41 , ou ’ 3 3

3

—t . .
termes , et son dernier terme sera l'unité

p o m
la série aura donc

ou > ; cette série sera donc
(1) (m—5)4(m—7)Hm—1 1)+ (m—13) 4 e 6421,
laquelle se décompose en ces deux-ci :
Hm—1)+(m— )+ (m—13)+(m—19)+ . . . . +6},
H(m—8)H(m—11)H(m—17)H(m—234. . . .42},

c’est-d-dire , en deux progressions par différences, ayant, l'une
, m—1x . . .
et 'autre , — termes, et dont la raison commune est 6; on

aura donc, pour la réunion de leurs sommes de termes

(m==1)(m=1) _ mE—I

L v —_
2 b 2 2 12 12,0

1 m-1§m+5+m—;3§ _

et ce sera la le nombre des solutions da probléme.

Si m , toujours impair , est de la forme 6k-3 , la derniére
colonne n'aura qu’une ligne, qui sera

2k41 , 2k41 , 2k41, ou % , f-;-

wl| 3

’ ]

. m
Ia série aura donc =~ lermes , dont le dernier sera l'unité ou :;

r_ !
cette série sera donc
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25 (1 obe ) () (=1 1) (1 B i gd a )

laguelle se décompose en cesdeux-ci:

()= e me1gE L L Bl
H(m=—b)(memt 1) (m—17)4(m—23)4. . . . .Fr10+4};

c’est-3-dire, en deux progressions par différences dont 6 est la

. m-}3
raison commune et dont le nombre des termes est —5— » pour la

. m—3 .
premidre , et ~g» pour la seconde ; leurs sommes de termes réunies

dorneront donc

I2

. §mt3 mr m—3 m—1 ) __ m>43 .
3 'i WAG“— N o + 6 ?

2

et ce sera la le nombre des solutions du probléme.
Si enfin m , toujours impair , est de la forme 6k-5, le dernier
tablean aura deux lignes qui seront

2k-d1, 2k-1, 2k43,

w

w
-

(2
.y

ou

2k1, 2k42, 2k42,

w
-

w
-

(3

' . M2, .
le nombre des termes de la série sera donc —— et son dernier

terme sera 2 ou -; cette série sera donc
31 (=14 (m—5)4-(m—7) (= 1 V)13 )4 v0s 644} ;

laquelle se décompose en ces deux-ci:
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H(m—1)4-(m— 7+ (m—13)+(m—19)+ . : . 41044},
5{(’”—5)4-(”2—-1l)+(m—17)+(m——23)+ v oo F12-46};

¢'est-a-dire , en deux progressions dont la raison commune est6 ,

m-4-1 . =5
et dont le nombre des termes est —}-,pour la premiére , et ——

pour 13 seconde ; on aura donc, pour la réunion des sommes de
leurs termes

gmtt m43 | ome=5 meer) _ (me=1)(m-1) _ mr=—1
?3 6 " -+ 6 - %‘: =
2 2

I2 o 12 i
et ce sera 13 le nombre des solutions du probléme.

En résumant présentement ces divers résultats, et observant que
les formes 6443 , 6k~44 , 6k-5 rentrent respectivement dans
les formes 64—3, 6k—2, 6k—1; nous pourrons dire que le nombre
des maniéres de faire #rois parts effectives avec m choses , toutes
égales entre elles, est ‘

8i m est de la forme 6% ,:.......-’-n-’-

12 !

- N2y
Si m est de la forme 641 ;........

iz

Mm2emey
N

Si m est de la forme 6k+2, ........ —

Si m est de la forme 6AK3 , 7. ... . B0

On peut désirer de connaitre combien il y a de systémes dans
lesquels plusieurs parts sont égales et combien il y a de parts
égales dans chacun de ceux-la. Pour cela, remarquons que , d’abord

~les trois parts ne sauraient étre égales qu'autant que m est de l'une
ou l'autre des deux formes 6k, 6413, et cela ne saurait arriver
qu’une seule fois.

Mais ,
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Mais , quelle que soit la forme de =, H y aura toujours des
systtmes , en nombre plus ou moins grand, dans lesquels deux
seulement des trois parts seront égales; c’est d’abord ce qui arrive
constamment dans la premiére ligne de chaque colonne du tableau ;
et ce sont alors les deux premiéres parts, c’est-d-dire, les deux
plus petites qui sont dans ce cas. En outre, de deux en deux

colonnes , & commencer par la premiére ou par la seconde , suivant
derniére ligne a aussi deux parts

que m est impair ou pair, la
deux derni¢res ou les deux plus

égales ; mais ce sont ici les

fortes.
En conséquence, et d’aprés ce qui précéde , 1.° si m est de
la forme 64, le nombre des systtmes 3 deux parts égales sera

m \ mo _m=—f
(T"'I}"'(’é_ D=
2.2 S8i m est de la forme 6%-r1 , le nombre des systémes

deux parts égales sera

B

3.° Si m est de la forme 6k-+2 , le nombre des systémes ¥

deux parts égales sera

f-1d

4.2 Sim est de la forme 6k+3 , le nombre des systtmes

deux parts égales sera

(Em-—-x)-{-f(%{—-l): m:3 .

5.2 8i m est de la forme 6k+4 , le nombre des systémes
deux parts égales sera '

Tem. X1. 26

B
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Mme=1 MY N3
(=)=

6.° Si enfin m est de la forme 6%~45 , le nombre des systémes
i deux parts égales scra.

T me—2  Mem2 - __m~I
3 +7( 3 +‘)'7 2 °

Ainsi , ea résumé , le nombre des systtmes 3 deux parts égales
sera,

Si m est de la forme 6% m—t

Si m est de la forme 6+t , .. ... ...

Si m est de la forme Bhkt2 , . v oo ..

-3
Si m est de la forme 64+3 ,...... =

LY ’

2

En retranchant ces nombres de ceux qui expriment le nombre
ttal des parts, et retranchant en outre une unité, dans le premier
et le dernier cas, & raison du systéme unique dans lequel les trois

parts sont égales, on trouvera, pour le nombre des systémes dans
lesquels les trois parts sont inégales - ‘

m? Mo m2—6m-j-12
m étant de la forme 6% e — 4-—1= '
12 2 12
. 2 e —— 2—6 5
m &tant de la forme 6k+1 . ... ——1 - =12 mt R
- . 12 2 12
m étant de la forme 6k+2 ... .. m—4 —_— = m3_6m+81
- 12 2 12
m étant de la forme 64+3 , e .m’+3_...'f:_3...1 — m—bm+g ;.

I2 2 . 12
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Dans tout ce qni précéde, nous avons tacitement supposé que
Pon n’avait aucun égard a Pordre des parts ; mais, si on convenait
de considérer comme systémes de répartition distincts ceux-13 mémes
qui ne différeraient les uns des autres que par la disposition res-
pective des mémes parts , voici' comment, dans cette nouvelle hy-
pothése , on parviendrait & assiguer le nombre total des systcmes
de répartition.

Soit, en général , N, le nombre des systémes & trois parts égales,
dans la premiére hypothése; nombre que nous avons vu n’étre jamais
supérieur 4 l'unité et éire souvent nul ; soient en outre N, le
nombre dus systémes a deux parts égales et N, les nombre de ceux
dans lesquels les trois parts sont inégales.

Dans la nouvelle hypothése , les systémes & trois parts égales
n’étant susceptibles d’aucune permutation, NV, restera toujours IV,.

Dans les systtmes & deux parts égales, la part seule de son es-
ptce pouvant occuper successivement le premier, le second ou le
troisiéme rang N, deviendra ici 3N,. ’

Enfin, dans les systémes a trois parts inégales, les parts étant
susceptibles de toutes les sortes de permutations , &N, devra de-
venir 6N ,. '

Ainsi, le nombre total des systdmes de répartition qui d’abord
était simplement N,+4N,=+N,, deviendra ici

N.+3N,+6N, ;

mettant donc successivement pour N, , N, , N, , dans cette dernidre
formule les nombres qui conviennent & chaque cas, nous trouve-
rons que , dans tous les cas, le nombre cherché est également
Mo =2 y e . y o .
—— == ce quon justifierait d’ailleurs par un raisonnement
direct.

De la méme manitre que nous avons déduit le cas de trois parts
de celui de deux, on déduirait pareillement celui des quatre parts
de celui de trois, celui de cinq de celui de quatre, et ainsi de
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suifc; mais le nombre des formes du nombre m qu'il deviendrait
nécessaire de discuter croitrait rapidement, 3 mesure que le nombre
des parts & former deviendrait plus grand.

PROBLEME 1V. De combien de manidres différentes peut-on
Saire n parts , avec m choses toules égales enire elles , avec la
Saculté de faire tant de parts nulles qu'on voudra ; mais sous la
condition néanmoins d'employer toutes les m choses dans chagque
répartition ?

Solution. La solution de ce probléme se déduit de celle du
Probléme III, de la méme maniére que nous avons déduit celle
du Probléme II de celle du Probléeme I.

N’ayons d’abord aucun égard 2 la disposition des parts entre
elles, dans un méme systtme de répartition. Si 'on ne veut faire
qu'une seule part, on ne pourra faire de parts nulles ; et consé-
quemment le nombre des sysi¢émes de répartition sera encore égal
a Tlunité.

Si l'on veut faire deux parts, on ne pourra faire qu’unc‘ part
nulle , et d’'une maniére seulement; le nombre des systémes de
répartition sera donc , d’aprés le précédent probléme,

Simestdelaformezlzf,.........—7-’-1-—}—1.7."1::-2

Si m est de la forme 2441 ,....... m“_'l-{--x=m+I
2 2

Il y aura toujours un systtme unique & deux parts égales , dans
le premier cas, et point dans le second.

Si donc on veut avoir égard 4 l'ordre des parts, on remarqguera
que deux parts sont, en général , susceptibles de deux dispositioﬁs
différentes , mais que cependant , dans le premier cas, les deux
parts égales ne sont point susceptibles de permutations. En con-
séquence , on trouvera que, quel que soit 7z, le nombre des sys=
témes de répartition, dans ce cas , est constamment m-}-1.
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Si T'on veut faire trois parts, on pourra taire une ou deux parts

nulles seulement. On pourra faire une part nulle d’autant de ma-

niéres qu’il y en a dq faire , avee m choscs égales , deux parts

dont aucune ne soit nulle. On pourra faire deux parts nulles d’une

maniére unique. En conséquence , et d’aprés le précédent probléme,
le nombre des systémes possibles de répartition sera

m246m-1a .

. i m2 m _
Pour la forme paire. . .. 6% ; — + — = - ,
. . 2 e — 2 5
Pour la forme impaire ... . 6kt 1 , 2 ’+m I+I=m +6m4- ,
12 2 12
: = m ma6m+8
Pour la forme paire. ... 6k+2 , 2 4+ ~ Ji1= R
- 12 2 12
3 . 243 — 216 -
Pour la forme impaire. . . . 6413 ’m_':' +m I+I=m-l;2m+9'
1 2

Ici le nombre des systémes & trois parts égales sera teujours
1, pour les deux formes extrémes, et zéro pour les deux autres:
Quant au nombre des systtmes & deux parts égales, il se trouvera
d’abord , pour toutes les formes, augmenté d’une unité, A raison
du systéme a deux parts nulles; mais, dans les formes paires ,il
se trouvera cncore augmenté d’une unité, i raison du systéme ol
deux parts sont égales a la moitié de m et la troisiéme nulle. Le
nombre des systemes 3 deux parts égales se trouvera donc ainsi,

dans le cas actuel,

Pour la forme 6k ,.......—:ﬁ-l-z:—m— N
2 2
M1 m--1
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. — Mm=p=2
Pour la forme 6hba 5 . .. .. .. T 2= T2,
m—3 me==1

Pour la forme 64F3 , ... ... .= +1=— "

Retranchant donc ces nombres de ceux que nous avions trouvés
pour le nombre total des systemes de répartition, et retranchant
en outre une unité pour les deux formes-extrémes, a ‘raison des
trois parts égales , nous aurons pour le nombre des syst¢mes ou
les trois parts sont inégales,
m2-4-6m-f-12
— —

12

Pour la forme 65;

o . *4-6m-4-5 —
Peur la forme 6Z4+1 , 7. mAtmys mhbr e

e o —_— >

12 2 12
" Pour la forme 6%+2 y o v e e m4bmt8_ mba2 _ m—d ,
- 12 2 ia

12 2 12

Pour la forme 64+3 , . ... myomty m—r w3

- En rapprochant ces résultats de ceux auxquels nous a -conduit
le troisiéme probléme , on est conduit & en conclure que le nombre
des mani¢res de faire trois parts avec m choses égales , lorsqu’on
admet des parts nulles, mais qu'on rejette les systémes dans les-
quels plusieurs parts sont égales, est égal au nombre des maniéres
de faire trois parts avec les mémes choses lersqu’au contraire Yon
admet les systémes dans lesquels des parts sont égales , mais en
rejetant, ceux ol des parts sont nulles ;" d’ot l'on peut encore
conclure que, dans latotalité des systémes de répartition, il y en a
autant ou les parts ne sont pas toutes effectives qu’il y en a
ou elles ne sont pas toutes inégales.

Veut-on présentement avoir égard & la disposition des parts les
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unes par rapport aux autres ; en procédant comme nous l'avons
fait dans le précédent probléme, on trouvera

(m~+2)(m-+7)

Pour m pair, . .... —

(m+41)(m+8)

Pour 2 impair, . . ..
2

On poursuivrait sur le. méme plan, s'il était question de former

un plus grand nombre de parts.

“

QUESTIONS RESOLUES.

Démonstration du théoréme d'analise transcendante ,
énoncé & la page 388 du X.° volume des Annales;

Par M. FrepEric Sarrus ,
Et par un ancien ELive de l'école polytechnique,

M. sanrus attaque la question d’'une manidre tout-3-fait synthétique.
Il remarque d'abord que I'on a, par les théories connues,
z

. .z
Sin. z =28in,— Cos. — ,
2 2

.z .z z
Sin, — =28in.— Cos. — ,
-~

4 4
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.z . =z z
Sm.—4— =2Sin. r Cos.—8- ,
- - [ ] ® - - - . ] . . . . L] ,
. z . z z

. Sll’l. m_zsm. Y COS. ;;_—; H

. z . oz z
Sin. ——=28in. - Cos. — 3
21" 2
@od; en multipliant et réduisant ,

.z z z z z
Sin.z=2"Sin.— Cos, —~ Cos. — Cos. = ..... Cos.— .
an 2 4 8 on

. .z
Mais comme , & mesure que » augmente , Sin, — tend sans cesse 3
2
¢ z
.z . . .
devenir —3; il s’ensuit que, dans le méme cas, 2"Sin. — tend sans
2 2

cesse 3 se confondre avec l'arc z; de sorte qu’en faisant » infini,
on a rigoureusement

. z z z z z
Sin.z=2zCos.— Cos.— Cos.— Cos.—Coss — .. .v..;
2 4 8 16 32

formule dont le second membre a une infinité de facteurs tendant

sans cesse vers 'unité , quel que soit l'arc z, ce qui en garantit la
convergence.

En prenant les différentielles logarithmiques des deux membres,
om tire de 12 , en transposant,

X X z I z I z
- = Cot.z4 < Tang. ;-+-Z- Tang. 7 -+ -8-—Tang. Y +... (D
Si
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. ' ’ . . »
Si 'on pose ensuite .z‘_‘-—z- , = ¢étant la demi-circonférence dont le

. 14 w . -
rayon est l'unité , en ebservant que Cot. —~ =0 et divisant par

2, on aura

Il

1 X » 1 L 1 =
— = —Tang — ~4~ — Tang. — 4 =Tang. — ~.....; 11

> = 7 Tang 7+ 5 Tang. 7+ 5Tang. fofveesy (1)
qui est précisément la formule 3 démontrer.

M. Sarrus observe que ces deux séries , l'une et l'autre trés—
réguiiéres , convergent rapidement toutes deux vers des progressions
décroissantes par quotiens ayant our raison ; de sorte qu’en pre-

quo 5 qu en pre=
nant pour ~ un trés-grand nombre , la derniére , par exemple,
pourra étre sensiblement remplacée par cette formule finie

2

&271

TFang. .

ant1

I b ¢ = 1 o I L)
:—: ZwTang. Z + -é Tang. ‘8—+..-+;’7 Tang. ;‘,“' +

L’anonyme, au contraire , parvient & son but par un procédé
tout-a-fait analitique, et conséquemmeut inverse de celui.de M.
Sarrus. Il cherche généralement quelle fonction finie peut étre équi-
valente & la série infinie

X x 1 x 1 x o
' 7 Tang. -Z -+ 3 Tang. ——8—+ ETang. I—é--}-..... >

ol # désigne un arc quelconque. Posant donc cette série égale 3
une certaine variable y , multipliant par dz et intégrant, il obtient

Sydz=C— { Log.Cos. —Z——{-Log.Cos. — HLog Cos. —=+um. ;

ou bien
dom, XI, #1
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dz==C~L 0.( . = Cos. = = ,.,’f..,',;,) ;
Ty 0g{ Cos 7 C:cm 5 Cos.— 5 Cos o 3
observant ensuite que

x x x Sin.x
oS, — e 08: ™™ se0er00 =
C 5 Cos = C o .

X

G.os.4

x ?
2Cos. —
2

il en conclut que

Sin.
Jydz=C—Log: T = =‘C-—ng‘Si«n.z+LogeCos.§—-Log.x 5

.2Cps, —
2

d'od, en différentiant et divisant par dz,
X E © 1 1 x
y= — — — Tang. = —=Cot.g= — — — Cot. — 3
& 2 2 x 2 2
ce qui donne, en remettant pour y sa valeur et transposant,

= 2R ; 2 1 x 1 2
= Tang.-—4—+—8-Tang.-—é—+ ;—éTangT i 3

1
“_C 'Y
a ot 2 4

als

= L . - .
formule qui est générale quel que soit I'arc .
. . ad * 1
Si ensuite on suppose ==, on tombe précisément sur la for-

mule proposée a démontrer,
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Solution du probléme danalise indélerminée propose
a la page 388 du X.* volume de ce recueil ;

Par MM. Frepiric Sarrus, AucusTE OLLivE et FauqQuier,
capitaine au corps royal du génie, ancien éleve de
Iécole polytechnique.

- . -’

P ROBLEME. Par combien de systimes de valeurs entidres et
positives de x et y peui-on rendre la fonction ;x——_:_;' égale & un

nombre entier positif N==a"b®c¥d?....., danslequel a,b,c,d, ...}
sont des nombres premiers inégauz différens de lunité?
Solution. On a vu (tom. X, pag. 385) qu’en prenant

z=pr(ptq) ;  y=¢r(p+9) ;

on avait

2y
— r,-
oty 17

de sorte que si l'on ne voulait qu'une solution, fout se réduiraie
4 décomposer le nombre N en trois facteurs ; ce qui est toujours
possible ; sauf a prendre, s'il est nécessaire , un ou deux de ces
facteuré, ou méme tous les trois, égaux & lunité.

Soit N=m3ghk ; g et % pouvant indifféremment étre ou n’étre
pas divisibles par m ; soit quon pose
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ou bien
p=g, gq=k, dou r=mk;

on trouve également
a=mgh(g+h) ,  y=mlkig+h) ;

c'est d-dire que, toutes les fois que I'on prendra pour p et ¢ des
facteurs de N non premiers entre eux, on n’obtiendra pas pour =
et y des valeurs différentes de celles qu'on aurait eu si Pon elt
substitué a4 ces deux nombres les quotiens de leur division par leur
plus grand commun diviseur.

- Ainsi, demander combien 1l peut y avoir de différens systémes
de valeurs entiéres et positives de & et y qui rendent la fonction

X ) . .. ’
nT):—- égale & un nombre entier positif donné N=a"cv......0% ,
Ty

c'est demander , en d’autres termes, de combien de maniéres on
peut extraire du-nombre a®fc¥........0% deux facteurs entiers ct
positifs premiers entre eux; et c’est aussi & cela que le probléeme
a également été réduit par les trois géomeétres qui 'ont traité. M.
Sarrus ne nous a donné la sienne que verbalement, il y a déja assez
long-temps ; MM. Fauquier et Ollive nous ont transmis les leurs
presque consécutivement. La marche du raisonnement est a peu prés
le méme .dans toutes ; et si nous adoptons ici de préférence la
maniére dele présenter de MM. Sarrus et Ollive , c’est uniquement
parce qu'elle nous parait un peu plus rapide.

Mais , avani d’entrer en matiére , il est d'abord nécessaire
d’établic ici une distinction. Lo;*squ’on demande simplement de
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tronver deux nombres tels, qu'en divisant leur prodnit par leur
somme , le quaticnt soit ¢égal a un nombre donné ; il est clair
que, dire -que ces deux nombres sont G et H, ou bien dire que
ces deux nombres sont H et G, c'est dire une seule et méme

chuse ; tandis que si, au contraire , on considérait I'équa‘ion

X . )
x———iy =N comme celle d'une certaine courbe, les deux systémes.
de valeurs

.’&’=G y x=H b

y= ’ y'.:G ’

appartiendraient 3 des points essentiellement différens. Quoiqu’il
semble plus naturel d’envisager le présent probléme sous le pre—
mier point de yue que sous le second; c’est pourtant sous ce dernier
que nous l’envisagerons d’abord , sauf & modifier ensuite la formule
finale de maniére & la rendre propre a l'autre cas.

Et, comme, en permutant entre eux les deux nombres p et
g, on ne fait que permuter également entre eux les deux nom-
bres # et y; nous envisagerons d’abord ces deux mémes nombres
p et g comme non permutables; et comme ils doivent étre pre-
miers entre cux , et ne peuvent conséquemment étre égaux que
dans le seul cas ou ils sont I'un et lautre égaux a l'unité; il en
résulte que, ce seul cas excepté, il y aura deux fois plus de so-
lutions daus la seconde hypothése que dans la premiére. Si donc,
dans cette seconde hypotheése, le nombre total des solutions est 2241 ;
dans la premiére , ce nombre se réduira simplement & z--1.

Ces choses ainsi entendnes , concevons que l'on prenne d’abord
p ot ¢ égaux entre ecux et a I'unité; cela ne se pourra que d’une
manj¢re unique. Nous pourrons ensuite introduire successivement,
d’abord dans p et non dans ¢, puis dans ¢ et non dans p, tous
les facteurs a, jusqu'au nombre « inclusivement; ce qui fera déji
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naitre un nembre 2441 de solutions dans lesquelles aucun des
facteurs b, ¢, d,...... 0, n'aura éié employé , ct dans lesquelles
Yun ou lautre des deux nombres p , ¢ sera constamment égal 2
Punité, ‘

Soient prises les valeurs de p et ¢ répondant 2 une quelconque
de ces solutions, et concevons qu’on y introduise successivement,
d'abord dans p» et non dans ¢, punis dans ¢ et non dans p, tous
les facteurs & jusqu’au nombre g inclusivement ; on en verra naitre ,
y compris le systeéme de valeurs qu’on aura choisi, 281 solutions 3
et, attendu que chacun des 2s-~1 premiers systémes en fournirait
un pareil nombre , il s’ensuit que le nombre total des systémes de
valeurs de p et ¢ dans lesquels aucun des facteurs ¢ , d,.....0
n’est employé est (24-4-1)(28-1).

En prenant un quelconque de ces systémes , on pourra, ou le
laisser tel qu'il est, ou bien y introduire successiverrent , d’abord
dans p et non dans ¢, puis dans ¢ et non dans p, tous les fac~
teurs ¢ jusqu’au nombre y inclusivement ; ce seul sysi¢tme en fera donc
naitre un nombre d’autres exprimé par 2y-41; et, comme on en
pourrait dire autant de chacun de ceux dont il fait partie , il
s'ensuit que le nombre total des systémes de valeurs de p et ¢ dans
lesquels aucun des facteurs 4, ... 0 n’est employé, est (2a-41)(28-}1)
(24-1).

En poursuivant donc ce raisonnement jusqu’aprés lintroduction
des facteurs o , on verra que le nombre des solutions dont le
probléme est susceptible, du moins en considérant p et ¢, et par
suite # et ¥ comme non permutable entre eux, est

Cet1)(2e+1)(2r 1) oo oo o (2at1) «

Que si , au contraire , on ne veat établir aucune distinc-
tion entre z et ¥, ni conséquemment entre p et g ; c’est-a-dire,
si, revenant au premier des deux points de vue sous lesquels
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la question pent édtre envisagée , on demande simplement de com-
bien de maniéres on peut trouver deux nombres tels qu'en di-
visant leur produit par leur somme , le quolient soit a*38.7 .., .,,0%;
la réponse & cctte question sera

s [(ed1)(2et1)(2v+1) oo v (20 1)Fa]

M. Fauquier termine en observant, 1.° que, si 'on a N=g%,;
le nombre des solutions du probleme sera «-r1; 2.° que’, si Ion
a N=abc.......0, n étant le nombre des facteurs, le nombre

. 341
des solutions du probléme sera + .
2

Nous terminerons nous-mémes par une application numérigue. $i
I'on veut savoir combien il y a de systimes de deux nombres dong
le produit divisé par la somme donne pour quotient 360=2°.3%5;
on aura «=3 , g==2, »=1 ; de sorte que le nombre demandé sexa

2(7.5341)=2¢ =53 ;
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QUESTIONS PROPOSEES.

Problémes de Combinaisons.

.
I DE combien de maniéres peut-on choisir 2z lettres parmi =
lettres desquelles il s’en trouve un nombre « égales A @, un nombre
# égales 3 5, un nombre 4 égales & ¢, et ainsi de suite; ou, en
d’autres termes , combien le monome &%4fc¥........., dans ]equel’
r}pdyt. ... ...=m admet-il de diviseurs distincts de # dimensions.?

IL. De combien de mani¢res peut-on faire 7z parts avec m
lettres , parmi lesquelles il s'en trouve un nombre ‘« egales a a,
un nombre g égales & 5, un nombre 5 égales 3 ¢, et ainsi de
suite ; soit qu'on ait ou qu'on n’ait pas égard & I'ordre des parts,
dans chaque systdme de répartition; et soit qun admette ou qu'on
exclue les parts nulles; mais sous la condition d’employer la totalité
des m lettres dans chaque systéme de répartition ?
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L

GEOMETRIE DES COURBES.

Recherches sur la determination d'une hyperbole
équilatére , au moyen de quatre conditions données ;

Par MM. BriaNcHON , capitaine dartillerie , professeur
de mathématiques a I'école d'artillerie de la garde
royale , et PoNcELET , capitaine du génie , employé
a Detz.

Cl’H EOREME 1.Dans tout triangleinscrit dune kyperbole équilatére,
le point de concours des trois hauteurs est situé sur la courbe.
Démonsiration. On sait que , pour tout hexagone ABCDEF
( fig. 1) inscrit & une section conique, les trois points de concours
H, I, K, des cotés opposés sont en ligne droite (*). Si donc,
la courbe ayant des branches infinies, on suppose que I'hexagone
ait deux de ses sommets, comme E, I, sitoés a l'infini, le point
1, concours des deux cétés opposés EF, BC, se trouvera & lin-
fini; ce qui revient a dire que BC et HK seront paralléles.
Maintenant, la courbe étant une hyperbole, il est clair que les
deux cotés DE, FA, adjacens & EF qui est a4 Pinfini, seront
respectivement parallcles aux deux asymptotes , et, partant, seront

) Voyez, pour les démonsirations géométrique et algébrique de cette pro-

priété, les pages 78 et 381 du IV.¢ volume du présent recueil.
J. D. G.

Tom. X1, n.° FII, 1. janeier 1821, 28
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rectangulaires, pour le cas de 'hyperbole équilatire, qui est celui
dont il s’agit ici.

Les deux derniers sommets E, F de lhexagone inscrit 4 cette
courbe étant ainsi portés a l'infini , les quatre autres resteront ar-
bitraires. Soient donc pris i volonté les trois premiers A, B, G
(6ig. 2), et soit marqué le quatrieme D tel que les deux cotés
AB, CD, respectivement opposés a4 DE , FA , solent rectangulaires
entre cux. Il résulte de ceci que AH est perpendiculaire sur DK.
D’ailleurs AK est perpendiculaire sur DI, par la propriété des
asymptotes; donc le point A est le croisement des trois hauteurs
du triangle DHK ; donc AD est perpendiculaire sur HK, et consé-
quemment aussi sur BC, parallele & HK. Mais , par construction,
CD est perpendiculaire sur AB; donc le point D est le croisement
des trois hauteurs du triangle ABC. Or, le triangle ABG a été
inscrit & volonté & la courbe ; donc généralement « dans tout triangle
» ABC, inscrit a4 une hyperbole équilatére , le point de croiscment
» D des trois hauteurs est un point de la courbe » ; ce gu’il fallait
démontrer.

Si l'un A des angles du triangle inscrit varie de grandcur, en
tendant vers langle droit, le point D se déplacera sur la courbe
en sapprochant continucllement du sommet A ; ‘ce qui revient &
dire que la sécante AD , perpendiculaire sur BC , tendra sans
cesse 3 toucher la courbe en A , et qu’enfin elle sera tangente
quand I'angle A sera droit. Donc.

THEOREME II. Dans tout triangle rectangle inscrit & une
hyperbole équilatére , la perpendiculaire abaissée du sommet de
Pangle droit sur lhypotliénuse cst tangente @ la courbe.

11 suit de 13 que, si I'angle droit occille sur son sommet , Ihrpothé-
nuse se déplacera parallclement & clle-méme ct & la vormale mende
a ce. sommet; ce- qui- est-un cas-particulicr du- beaun théorcme dé-
montré par M. Frégier dans le présent recucil (*),

™ Vo;ggz torm. VI, pag. 229 et 321 , et tom. VII, pog. 95. J. D. G,
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Au moyen de ce qui précéde, si on conmaissait deux points A,
B (fig. 3) de la courbe , et la tangente AP en I'un A de ces
points , on pourrait en construire un troisitme G en cette maniére
du point B abaissez une perpendiculaire BC sur la tangente donnée,
elle ira couper au point cherche C la perpendiculaire AC 4 AB.
On sait donc résoudre ces trois problémes :
Décrire une hyperbole équilatére dont on a trois points et la

tangente en lun d'eux ?
Décrire une hyperbole équilatére dont on a deux points et les

tangentes en ces points?
Décrire une hyperbole équilatire dont on a deux points , la
tangente en lun de ces points et une auire tangente quelcongue ? (
En effet, par la construction qui vient d’étre indiquée , on ob-
tiendra un nouveau point de la courbe; aprés quoi, pour achever,
on aura recours aux solutions connues de ces questions: (*)
Décrire une section conique dont on a quatre points et la tan-

gente en lun deux?
Décrire une section conique-dont on a trois points et les -

gentes en deux de ces points?
Décrire une section conigue dont on a trois poinis , une dangente
guelconque el la tangente en l'un de ces points? Y
II résulte encore du. théoréme I que , lorsqu'on connait trois
points A, B, C ( fig. 2 ) d’une hyperbole équilatére , on en a
un quatrigme D qui est le croisement des trois hauteurs du triangle
ABCG; en sorte qu’on sait aussi résoudre ces deux problémes :
Décrire une hyperbole équilatire dont on a quatre points ?
Décrire une hyperbole équilatére dont on a trois poinis et une

langente ?
Car, au moyen de la construction indiquée , on obtiendra un

(*) Mémoire sur les lignes du second ordre, etc., par C. J. BRIANGHON ,
Paris , 1817.
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nouveau point de la courbe ; aprés quoi , pour achever , on aura
recours aux solulions connues de ces questions: (¥)

Décrire une section conique dont on a cing points?

Décrire une section conique dont on a qualre points et une
tangenlt’ ?

THEOREME 1. Si deux pomls , situés sur le plan dune by
perbole équilatére , sont les milieux ou les pbles respectifs de deux
cordes ou de deux droites quelconques également siluées sur ce
plan ; et que, par chacun d'eux , on méne une paralléle & la corde
ou & la polaire qui correspond & lautre, le cercle qui passera
par ces deur points ¢t par celui ot se coupent les paralléles passera
aussiy par le centre de la courbe. .

Démonstration. Soient , en premier lien, CE, CF (fig. 4) les
directions indéfinies des deux cordes en question, I, K leurs milieux

.respectifs , O le centre de T'hyperhole équilattre et EF Pune de
ses asymptotes, rencontrant en E, F les deux cordes CI, CK pro-.
longdes ; les droites OK , OI seront les diamétres de la courbe,
conjugués i la direction de ces eordes,

Cela p'osé, puisque Tangle des kasymptotes est droit et que le
point K est le milieu de la partic interceptée par ces asymptoles
sur la direction de CF , la distance KO=KF et par conséquent

I'angle KFO=KOF. Par la méme raison, T'angle IEO=IOE ; mais,
A cause du triangle CEF, I'angle C est supplément de la somme
des angles B, F, est par conséquent supplément de celle des an.
gles KOF, IOE donc il est égal 3 l'angle 10K , formé de I'autre
c6té de IK par les diamétres IK, m D’ailleurs, on prouverait,
de la méme manitre que, st le point O était supposé du coté da
sommet de I'angle G, l'angle 10K , formé par ces mémes dia-
métres , serait égal au supplément de Pangle C; donc il est sur
la circonférence du cercle -qui passe par les points K, I et par

" Méme ouvrage;
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celui L ol se coupent les paralleles KL, i, menides par cha un
d’eux 3 la corde qui passe par l'autre : cest-i-dire que,
1.* « Si par chacun des points miiieux de dcux cordes quel-
conques d’une hyperbole ¢quilatére, on méne nne parallile 2 la
» corde qui correspond a l'autre , le cercle qui passcra par ces deux
points et par celui ol se coupent les parallcles passera aussi par
» le centre de la courbe. »

En sccond licu, soient PG, PH ( fig. 5 ) deux dreites quel-
conques , situées sur le plan d'une hyperlole équilatere, R, Q
leurs poles respectifs, par rapport 4 cette conrbe. Concevons, par
le point Q, la parallele QC 4 la polaire PH de ce point ; la corde
correspondante sera évidemment partagée en deux parties égales en
Q ; car, d’aprés la théorie généralement connue des péles, « le
» diamétre d’une section conique qui renferme les milieux de toutes
» les cordes paralléles & une méme droite , située sur le plan de
» la courbe, passe aussi par le pdle de cette droite ».

Par la méme raison, si par le point R, péle de la droite PG,
on méne la parallele CR A cette droite, rencontrant la premicre au
point G, la corde qui lui cerrespond, dans Ihyperbole équilatére ,
sera divisée en] deux parties égales en R; ainsi, les points R, Q
seront les milieux des droites ou cordes indéfinies RC, QC, qui
passent respectivement par ces points, et sont paralleles aux deux
droites PG, PH.

Il suit- de la et de ce qui précéde que

2. « La circonférence qui passe par deux points quelconques
» B, Q, situés sur le plan d’une hyperbole équilatére , et par le
» point L ol se coupent les paralltles menées par chacun d’eux

» a la polaire PG ou PH de l'autre passe aussi par le centre de
» la courbe »,

2

1l est d’ailleurs évident que les mémes choses auraient encore
lien si, 3 la place de l'une des deux droites et de son péle, on
substituait une corde et son point milieu; ce qui compléte la dé=-
monstration du théoréme époncé,
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§’il arrivait, dans le cas ol l'on considére deux dioites PG,
PH et leurs poles R, Q, que chacun de ces derniers fat situé
sur la droite qui correspond 4 l'autre ; c’est-a-dire, si le point Q
se trouvait sur PG et le point R sur PH , les parall¢les RL,
QL se confondraient évidemment avec ces droites ; donc la cir-
conférence qui renferme le centre de I'hyperbole équilatére corres-
pondante “passerait alors par le point P ou se rencontrent ces mémes
droites ; mais, d’aprés la théoric des péles, ce point a évidemment
_pour polaire la droite qui passe par les points Q, R'; de sorte
que ces trois points sont tels que chacun d’eux est le péle de la
droite qui contient les deux autres ; on peut donc énoncer la
proposition suivante : ‘

THEOREME 1V. Lorsque trois points situés sur le plan d une
hyperbole équilaiére sont iels ejue chacun d'eux est le péle de la
droite qui contient les deux autres , le cercle qui passe par ces
trois points passe aussi par le centre de la courbe.

Quatre tangentes AB, BC, CD , DE (fig. 6) & une méme
section conique , forment, par leur pénétration mutuelle, un qua-
drilatére complet TABCSD, dont les trois diagonales AC, BD,
ST sont, comme lon sait, telles que « chacune d’elles est la po-
» laire de Dintersection des deux autres » ; de sorte que , si la courbe
est une hyperbole équilatére, la circonférence qui passera par les
trois points P, Q , R, intersection des diagonales , passera aussi,
d’aprés ce qui précéde , par le centre de la courbe ; d’ofi résulte
ce nouveau théoréme:

THEOREME V. Si l'on méne guatre tangentes quelconques &
une hyperbole équilatére , le centre de la courbe sera situé sur la
circonférence qui. passe par. les irois points dintersection des
diagonales du quadrilatére complet formé par ces langentes.

Ou, ce qui revient au méme, .

Le¢s centres de toutes les lzypmi&oles équilatéres tangentes &
quatre droites quelconques , tracées sur un plan , sont situés sur
la circonférence d'un cercle unique qui passe par les trois poinis’
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d'intersection des disgonales du quadrilatire complet formé par
ces droites. ‘

D’un autre cété, il résulte d’un théoréme découvert par Newton
( Principes mathématiques, etc., livre 1, Lemme XXV, Corol-
laire 3 ) que’

« Dans tout quadrilatére circonscrit & une conique quelconque,
» les trois points milieux des diagonales sont sur une droite unique
» qui passe par le centre de la courbe »,

Ou, ce qui revient encore au méme ,

« Les centres de toutes les sections coniques tangentes & quatre
» droites quelconques, tracées sur un méme plan, sont situés sur
» la droite unique qui passe par les trois points milieux des dia-
gonales du quadrilatere complet formé par ces droites »,
Donc, dans le cas de T'hyperbole équilatére, le centre de Ia
courbe se trouve 4 la fois sur la droite unique dont il s’agit et
sur la circonférence du cercle qui passe par les trois points P,
Q, R, ou se croisent les diagonales ; en sorte qu'on peut aussi

résoudre ce nouveau probléme:

Décrire une hyperbole équilatére dont om a quatre tangentes ?

Ln effet, ayant déterminé , au moyen de ce qui précéde, le
centre de la courbe (et il y en a évidemment deux , en général,
qui résolvent la question), on le joindra par une droite avec l'un
guelconque P des points d’intersection des diagonales, laquelle ira
rencentrer la diagonale opposée BD, polaire de P en un point X
qui , d'aprés la théorie des poles, sera nécessairement le milicu de
la corde correspondante, et par conséquent aussi le milieu de la
partie interceptée par les asymptotes sur cette diagonale ; portant
donc, & partir du point X, deux’ distances égales a” OX, sur la
direction dc la droite indéfinie BDX , leurs extrémités appartiendront
aux deux asymptotes de la courbe , qui ainsi sera patfaitement
déterminée de grandeur et de situation: car le point qui divisera
en deux parties égales la distance interceptée par les asymptotes
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“sur I'une quelconque des quatre tangentes données sera le point de
contact de celte tangente. . ‘

Supposons maintcnant que ABCD soit un quadrilatére inscrit &
une _section conique quelconque ; les points de concours S, T de
ses cHtés opposés et le point d’intersection Q de ses deux diagonales
simples seront encore, d’aprés la théorie des poéles, trois points tels
que « chaewn d'cntre eux sera le péle de la droite qui passe par
» les deux autres » ; donc , si la courbe est une hyperbole équi-
Jatére , son centre se trouvera situé, d’sprés le Théoréme IV dé-
montré ci-dessus, sur la circonférence du cercle qui passe par les
trois points Q, S, T, et par conséquent:

THEOREME V1. Dans lout quadrilatére simple , inscrit a une
hyperbole équilatére quelcongue , le cercle passant par les deux
points de concours des cdtés opposés et par le point d’intersection
des diagonales passe aussi par le centre de la courbe.

Il suit de 13 que, guand quatre points A, B, C, D sont dunnds
sur un plan, on connait aussi la circonférence qui passe par le
centre de I'hyperbole équilatére passant par ces quatre points (*);
d’ailleurs le Théoréme IIl indique d’autres circonférences qui ren-
ferment également ce centre ; donc il est entiérement déterming
de position sur le plan des quatre points donnds, et il en est
par conséquent de méme des asymptotes de la courbe; car, silon
prend le milieu K de 'une quelconque CD des distances qui sé-
parent deux & deux les points donnés , puisque 'on porte, & partir
de K, sur la direction infinie de CD, deux longueurs égalesa la
distance de ce méme point au ceptre de la courbe ; leurs extré-
mités appariiendront aux asymptotes de cette courbe. Voild donc

(* On peut remarquer qu'a quatre mémes points donnés sur un plan corres-
pondent toujo’urs trois quadrilatéres simples diflérens , mais qui tous redonnent
les mémes points Q, S,.T ; en sorte que la circonférence en question est
vnique,

une
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une nouvelle solution , trés-directe et trés-simple , du probléme
déja résolu plus haut, dans lequel il s'agit de décrire une hyperbole
équilatére passant par quaire points donnés sur un plan.

On peut tirer du Théoréme III d’autres conséquences également
remargquables.

Que A, B, C (fig. 7) soient trois points quelconques, appar-
tenant 3 une hyperbole équilatére ; si I'on divise les cotés CA, CB
du triangle ABC, formé par ces points, en deux parties égales,
aux nouveaux points I, K, et que, par ces derniers, on mene lcg
paralléeles IL, KL aux cétés CB , CA, elles viendront se couper
cn un point L qui, daprés le théoréme cité , appartiendra an
cercle qui, passant par 1, K , passe en outre par le centre de
Phyperbole équilatére ; mais le point L se confond évidemment avec
le milieu du troisitme c6té AB du triangle ABC; donc

THEOREME VH. Dans tout triangle inscrit & une hyperbole
équilatére , le cercle qui passe par les trois points milieux des
cotés passe aussi par le cenire de la courbe.

Ou, ce qui revient au wéme,

Les centres de toutes les hyperboles éguilatéres circonscrites &
un méme triangle quelconque sont sur la circonférence d'un cercle
qui renferme les lrois points milieux des cOtés de ce triangle.

On peut conclure de la et de ce qui précéde que, quand un
quadrilatére quelconque ABCD ( fig. 6 ) est inscrit & une hyperbole
équilatére , le centre de la courbe doit se trouver, & la fois, sur
les circonférences de huit cercles différens. ‘

En effet, si Pon trace les diagonales AC , BD de ce quadrila-
tére , on obtiendra quatre triangles inscrits & la courbe, dont les
points milieux G, H, I, K, Lm, M , qui sont aussi ceux des
diagonales et des cotds du quadrilatére détermineront un égal
nombre de circonférences , passant par le centre de cette courbe;
d’ailleurs, ce centre devra aussi se trouver sur la circonférence qui
renferme les trois points Q , S, T, ou se coupent les diagonales
et les cotés opposés du quadrilatére ( Théoréme VI ) ; et il en

Tom. XI. 29
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sera de méme encore de chacune des trois circonférences qui;
passant par les points milieux de deux cotés opposés ou des deux
diagonales de ce quadrilatdre , renfermerait aussi le point od le
coupent les deux paralléles mendes par chacun d’eux ( ThéorémeIl1)
au c6lé ou a la diagonale qui renferme l'autre.

Le point ou se coupent les huit circonférences dont il vient
d’étre question est nécessairement unique ; car , s’il était possible

quil y en efit un second , toutes les circonférences devraient y
b

passer a la fois, comme par le premier; or, toutes ces circonfé-

rences , excepté celle qui renferme les points Q, 8, T, et pourvu
qu'on ne combine pas entre elles celles qui passent par les milieux

des deux coOtés opposés ou des diagonales du quadrilatére , sont

évidemment telles que , prises deux & deux, elles ont pour inter-

section commune l'un des poirits milieux de ces cotés et de ces

diagonales; donec il faudrait que tous ces points milieux fussent

‘confondus en un seul, ce qui cst absurde ; donc enfin le centre

de I'hyperbole équilatére qui passe par quatre points donnés sur
un plan est unique.

Si 'on fait attention 3 la maniére particuliére dont se trouve
déterminé le point dont il s'agit, relativement aux cétés et dia-
gonales du quadrilatgre ABCD, il sera permis d’en déduire la cen-
séquence géndrale qui suit :

THEOREME VIII. Quatre points élant pris & volonié sur un
plan 4 il “existe un autre point , et un seul point, tel quen le
joignant par des droités avec les milieux des siz distances qui
séparent les guaire prémiers deux & deur , langle formé par
dévz Guelcongies de ces droites est égal ¢ celui des deux
disténices qui leur corréspondenit , ou én est le supplément. Ce point
usniique ‘est, en outre, le céntre de Uhyperbole équilatére passant
par ‘les guatre points dont il sdgit.

“Ce théoréme souffre pourtant une “exception qu'il edt ‘ridcessaire
de signaler : c'ést lorsque T'un 'D (fig. 7 ) des quatre ‘points ‘que
Ton ‘considére est le croisement des haufeurs du riangle ABC
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formé par les trois autres; car alors ( Théoréme 1), il y a une
infinité d’hyperboles équilatéres passant par les quatre points A ,
B, C, D; et par conséquent la position du centre de la courbe
ne saurait étre unique; elle est nécessairement indéterminde. Or,
il résulte de la que les huit circonférences de cercles dont il vient
d’étre question, et qui renferment simultanément le centre; doivent
se confondre en un seul et méme cercle ; ce qui donne lieu a la
proposition suivante qui offre un nouveau principe a la géométrie
élémentaire :

THEOREME IX. Le cercle qui passe par les pieds des per-
pendiculaires abaissées des sommets d'un triangle quelconque sur
les cotés qui leur sont opposés , passe aussi par les milieux de
ces drois cbtés , ainsi que par les milieux des distances qui  sé-
parent les sommets du point de croisement des perpendiculaires.

Démonstration. Soient P, Q, R les pieds des perpendiculaircs
abaissées des sommets du triangle ABC sur les cotés opposés ; et
soient K, I, L les points milieux de ces cétés.

Les triangles rectangles CBQ et ABR étant semblables , on aura |

BC:BQ::AB:BR ;
d’'ott , a cause que K et L sont les points milieux de BC et AB,
BK.BR=BL.BQ ;

c’est-a-dire que les quatre points K, R, L, Q appartiennent i
une méme circonférence.

On prouverait semblablement que les quatre points K, R, I,P
sont sur un cercle, aussi bien que les quatre points P, 1, Q, L.

Cela posé, s’il était possible que les trois cercles en question ne
fussent pas un seul et méme cercle’, il faudrait que les directions
des cordes qui leur sont deux & deux communes concourussent en
un point unique ; or, ces cordes sont précisément les c6tés du triangle
ABC, lesquels ne sauraient concourir en un méme point ; ‘donc
il est dgalement impnssible de supposer que les trois cercles diffe-
rent entre eux; donc ils se confondent en un seul et méme cercle.

(
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Soient maintenant C/, A/, B/ les points milieux des distances
DC, DA, DB qui séparent le point de creisement D des hauteurs
du triangle ABC de chacun de ses sommets respectifs. Les triahgles
rectangles CDR et CQB étant semblables , on aura

CD:CR::CB:CQ ;

d’olr, & cause que les points C’ et K sont les milieux des distances

CD et CB,
CC’.CQ=CR.CK ;

c’est-3 dire que le cercle qui passe par K, R, Q passe aussi par C”.

On prouverait de la méme maniére que ce cerele passe par les
deux autres points A/, B’; donc il passe a la fois par les neuf
points P, Q, R, 1,K, L,A’, B/, C/; ce gu'il fallait démontrer.

Les théorémes qui précédent suvbsistent, en tout ou en partie ,
et avec des modifications convenables, dans les diverses circonstances
particulieres que peut présenter le systéme des trois ou quatre points
que l'on considére , et quon suppose appartenir & une hyperbole
équilatére. :

Par exemple, si I'un A des sommets du triangle ABC s’éloigne
2 l'infini des deux autres, et que, par conséquent, les cétés CA,
AB deviennent paralléles , comme I'exprime la figure 8; le pied R
de la perpendiculaire AR s'écartera & I'infini sur BC ; et il en sera
de méme des milieux I, L des cétés AC, AB du triangle et des
points A/, B/, C/; par conséquent, une portion toute entiére du
cercle qui passe par ces points sera elle-méme passée a linfini,
c’est-d-dire qu’elle se sera confondue avec la droite qui contient tous
les points & l'infini du plan de la figure.

Il suit de la que l'autre partie de ce cercle sera, de son coté .
devenue une ligne droite ; et c’est ce qui a lieu en effet; car, si
- des sommets B, C on aba/isse des perpendiculaires sur les cotés
epposés du triangle , leurs pieds respectifs R, Q seront en ligne
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drmte avec le milieu K du c6té BC. Daos le cas' particnlier qui
nous occupe donc, la suite des centres des hypcrboles équilatéres.
appartenant aux points A, B, C doit se trouver sur la droite
indéfinie PKQ , comme cela a lieu en effet.

Dans la méme hypothése , ot le point A sé¢loigne 3 l'infini et
ot les cotés CA, BA deviennent par conséquent paralléles, le
point de croisement D des trois hauteurs du triangle ABC étant
aussi passé a l'infini, il est, dans ce cas particulier , bien évident
que c'est, ‘avec les trois autres , un quatriéme point de l’hyper-
bole equllatere.

Il y a ici une remarque essentielle 3 faire ; c’est que, bien que
par quatre pomts donnés a volonté sur un plan , on puisse toujours

faire passer une hyperbole équilatére ; cependant, quand deux de

A

ces points doivent é&tre situés a linfini , il n’est pas possible de
se les donner arbitrairement, par le systéme de deux droites quel-
conques concourant respectivement en ces points ; il faut néces-
sairement que les droites dont il sagit soient perpendiculaires entre
elles , puisqu’elles doivent étre paralléeles aux asymptotes de la
courbe.

Si le sommet A du tnang]e ABC (fig. 7), au lieu de s'écarter
indéfiniment des deux autres B, C, se rapprochait, au contraire,
de I'un d’eux C, jusqu'a ce que le ¢6té AC devint infiniment petit
ou nul, en conservant toujours sa direction primitive ; les points
L, K se trouveraient eux-mémes rapprochés i une distance infi-
niment petite 'un de l'autre, sur une parallele 3 AC, passant par
le milieu du c6té AB ou CB; quant au point milieu I du cété
AC , il serait confondu avec le sommet A.

Soit donc AP ( tig. 9 ) la direction indéfinie de la droite qui
renferme les deux points ou sommets confondus en un seul au
point A, etsoit B le troisicne point ou le troisiéme sommet que
; divisons le double ¢6té BA en deux parties
égales au point L par la pafalléle LK a AP, le cercle qui passera
par A et touchera la paralléle KL en L réprésentera évidemment

'on considére
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celui qui, dans le cas géndral, passe par les milieux des cétés du
triangle ABC; par conséquent, il renfermera la suile des centres
des hyperboles équilatéres qui passent par les points A, B et tou-
chent la droite AP en A. Du reste, il serait facile de reconnaitre-
ce que sont devenues les autres propriétés du cercle dont il s'agit,
et d’en déduire divers théorémes analogues & ceux exposés dans ce
qui précéde, et qui n’en seraient que des cas particuliers,

Ainsi, le moyen que nous avons indiqué ci-dessus, pour trouver
le centre et finalement les asymptotes d’une hyperbole équilatére
assujettie a passer par quatre points donunés sur un plan, s’applique
trés-bien au cas particulier ol I'on suppose ces points , en tout
ou en partie , réunis deux a deux en un seul, sur des droites
ou tangentes dont la direction est assignée, ainsi que le point dec
contact ; comme il s’applique aussi trés-bien & celui ol un ou deux
de ces mémes points passent A l'infini sur des droites dont la di-
rection est également assignde.

Mnis, quand I'on ne se donne que trois points de 'hyperbole
équilatére , avec une tangente quelconque, il n’est plus possible
de déterminer de la méme manitre le centre de la courhe ; car
‘alors on ‘n’obtient qu’un seul cercle, dont la circonférence renferme

ce centre ; il faut donc avoir recoars au procddé indiqué plus haut;,
au moyen duquel on peut obtenir directement un quatriéme point
de

la courbe ; ce qui raméne le probléme & celui ou il s'agit de
“décrire une section conigque dont on a quatre poinis et une tangenite.

Enfin, quand on sc donne deux points et deux tangentes quel-
‘conques de ’hyperbole équilatére,, ou seulement un point et trois
tangentes quelconques, les deux procédés dont il s’agit sont éga-
lement en défaut. Néanmoins , dans le premier de ces deux ecas,
‘on trouve encore un cercle dont.la circonférence renferme le centre
‘de la conrbe ; ce qui donne liew & ce nouveau théoréeme:

THEOREME X. Les centres de joutes les hyperboles équila=
‘teres tangenies & deva droftes et passant par deux points donnés sur
un plan sony situés sur une circonfirence de cercle unique.
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Dans le méme cas, on parvient a déterminer, d'une maniére
trés-simple , un systéme de deux droites dont I'intersection avec le
cercle en question donne encore la position des centres des quatre
hyperboles équilatéres qui résolvent le probléme ; mais la démons-
tration de ces diverses propositions exige 'emploi des principes qui
sont, jusqu’d un certain point , étrangers a l’objet actuel de cet
article.

On a vu, dans ce qui précede , le réle qu'on peut faire jouer
aux différens lieux des centres des sections coniques assujetties a
certaines conditions , pour fixer entiérement la position du centre
de la courbe, et par conséquent celle de cette courbe elle-méme,
quand le nombre de ces conditions ne . laisse plus rien d’arbitraire
ni d'indétermind. 11 se présente, & ce sujet, une question fort in-
‘téressante , et qui nous semble n’avoir pas encore été résolue d’une
maniére compléte , et dans toute sa généralité ; en voici I'énancé :

Déterminer quelle est la nature de la courbe qui renferme les
centres de toutes les sections coniques assujetties @ quatre conditions
telles que de passer par des points ou de toucher des droites données
sur un plan?

Aux divers cas particuliers dont il a déjh été question dans le
présent article, et dont le plus remarquable est, sans contredit, celui
qui résulte du théoréme cité de Newton sur le quadrilatére cir-
conscrit a une section conique, nous ajouterons les suivans qui,
si nous ne nous trompons, n‘ont pas encore ¢été démontrés ou
résolus : ’

Les centres de toutes les sections coniques assujetiies & passer
par quatre points donnés sur un plan sont situés sur une autre
section conigue passant par les points ou se coupent les deux dia-
gonales et les cotés opposés du quadrilatére correspondant aux
guatre points donnés.

Les centres de toutes les sections conigues assujetties & toucher
deux droites et & passer par deux poinls donnés sur un plan sont
silués sur une auire section conique passant par le point d'inter-
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section des deux droites , par le milicu de la distance qui sépare
entre eux les deux poinis et par le milieu de la partie interceptée
par ces droites sur la direction indéfinie de celle qui renferme les
deux mémes points (*).

L

(" Nous croyons devoir rappeler au lecteur qua la page 261 du- VIIILe
volume de ce recueil , M. Costc a résolu , pour la parabole , les questions
analogues & celles qui font Pobjet du présent mémoire , qui forme ainsi, avec
le sien, un complément nécessaire 4 louvrage de M. Brianchon sur les lignes
du second ordre.

Quel que soit le mérite de ces diverses recherches ; on ne doit pas ddses-
pérer toutefois de parvenir un jour A les faire dépendre comme cas particulier
d’'un probleme unique : celui ot il s’agit de décrire une conique qui en toache
cing autres données sur un plan; probleme que nous avons proposé ( Tom.
VIII, pag. 284 ) et qui est peut-étre susceptible d’une construction élégante
et d'un facile énoncé. Cest ainsi que mnous sommes parvenus 3 faire dériver
la solution des dix problémes de Viéte et des quinze problemes de Fermat sus
les contacts des cercles et des spheres de celle du plus difficile d’entre eux
{ Voyez tom. IV, pag. 349 , tom. VII, pag. 289, et tom. XI, pag. 1 ).

: J. D. G,

GEOMETRIE
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GEOMETRIE APPLIQUEE.

Sur le trace des voiites en anses de panters;

Par un ABONNE.

[o Via Wio VL, VE Vo Vo Vi VR ¥

Au Rédacteur des Annales;
MONSIEUR ,

ON vient de construire un pont qui traverse le Taro , sur la route
de Parme % Plaisance. Il est composé de 20 arches en anses de

paniers 2 5 centres , égales et de niveau, de 24 métres de dia-
rodtre et 6 metres de montée chacune. Les piles ont 4; métres
d’épaisseur; de sorte qu’il a, ﬂy compris les culées, plus de 6oo
metres de longueur ; et c'est peut-étre le plus long qui existe en
magonnerie en Europe. Quoique ce pont me semble trés-beau, il
n’a cependant pas été exempt de critiques. L'une de ces critiques
sest portée sur le tracé des arches : on a prétendu qu’elles man-
quent de grice. Sans décider si ce reproche est fondé ou non,
il me semble que , pour l'apprécier équitablement , il faudrait
d’abord se former le type d'une arche parfaite , ce qui n’a point
encore été fait que je sache, et comparer ensuite l'arche donnée
a ce type.

Je crois que le terme de comparaison, le type ou l'arche mo-
déle devrait remplir les conditions suivantes ; sayoir : 1.° que les

Tom. XI. 3o
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deux demi-anses soient parfaitement égales; 2.° que les naissances
soient de niveau et perpendiculaires au diamétre ; 3.° que chaque
demi-anse soit une courbe continue , dont la courbure soit uni-
formément diminuée , de la naissance i la clef ; c’est-3-dire , de
telle sorte qu’'en prenant sur la courbe deux portions quelconques
de méme amplitude et qu'on leur meéne des normales par leurs
extrémités, ces normales et les arcs quelles intercepteront forment
des seccteurs semblables (*).

Les deux premiéres conditions sont généralement observées. Quant
a la troisieme , il 0’y a que la spirale logarithmique qui puisse y
satisfaire ; cette courbe a seule la propriété de donner des secteurs
semblables pour des arcs de méme amplitude ; c’est-d-dire , pour
des arcs dont les normales extrémes font entre elles des angles égaux.
La demi-anse de panier qui pourrait servir de type serait donc
un arc de spirale logarithmigue dont l'amplitude serait de go°;

c’est-3-dire , dont les normales , mendes par ses extrémités , seraient

. R

(*) Serait-il déraisonnable de penser que , dans tout ceci, il y a inévita-
blement un pea d'arbitraire ; que Phabitude y joue un assez grand réle, et qu’il
et est 4 peu prés comme des modes, dout les plus bisarres méme finissent
pac troaver grice pour ce qu'elles.semblaient d’abord avoir de plus choquant?
Aujourd’hui, par exemple, on semble ne pas mal s'accommoder d'arches sur-
baissées formées d'un seul arc de cercle, et danslesquelles conséquemment les
tangenles aux naissances sont loin d’étre verticales, Quant 4 la troisime con-
dition , peut-étre suffirait-il que la courbure de la demi-anse , toujours convexe,
né varidt pas d’un point 2 l'autre ®une maniére trop sensible, ce qui éxclurait
les anses de paniers & un petit nombre de centres; mais nous he voyons pas
pourquoi, suivant le plus ou le moins d'ouverture qu'on -voudrait doymer aux
arches , on n’adopterail pas tantél des quarts d’ellipses , tautét des demi-cycloides
alongées, tantdt des de’velbppantes de cercles , tantét des quarts de développées
d'ellipses ; et en général toutes courbes assujetties 2 une loi continue. Que si
Fon trouvait plus commode Pemploi des arcs de cercles , nous pensons qu'on
ne sé trouverait pas trés-mal, dans certains cas, de la développante d’un quirt
de polygone régulier d'un nombre de cdiés pairement pair,

J. D. G,
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perpendiculaires entre elles , et formeraient, 'une la demi-base et
Pautre la montée de l'anse de panier,
~ Soit AHKB un arc de spirale logarithmique ( fig. 10-). Sil’on
‘prend sur son périmetre les arcs AH , HK, KB de méme am-
plitude , et que l'on en tire les cordes ; I'on peut déduire de la
génération de la courbe que ces cordes formeront une progression
géométrique , de maniere que HK sera moyenne proportionnelle
entre AH et KB ; et de plus, les angles AHK , HKB seront
égaux ; d'ou il suit que, si P'on divise ces angles en deux parties
égales , par les droites HM et KM, ces deux droites seront égales .
de sorte que les points H et K seront sur une circonférence de
cercle ayant le point M pour centre et ayant pour rayon MH=MK.
En outre, si , sur AH et KB comme bases , on construit des
triangles isoceéles HLA et KNB, semblables a HMK ; les points
A et H, ainsi que les points K et B, se trouveront aussi sur
deux circonférences de cercles ayant les points L et N pour centres
et pour rayons respectifs LA=LH et NK=NB. Ainsi, les points
A, H, K, B se trouveront placés , en méme temps , sur la spirale
et sur trois arcs de cercles semblables , qui se raccorderont en H
et K, et dont les cordes et par conséquent les rayons LA, MH,
NK seront en progression géométrique. On voit de plus que si, au
lieu de diviser P'arc de spirale AB , formant la demi-anse , en trois
parties de méme amplitude, on l'etit divisé en quatre ou en un
plus grand nombre, il y aurait eu un plus grand nombre de points
placés sur le périmétre de cette courbe; et que par conséquent la
courbe formée par les arcs de cercles approchera d’autant plus de
la spirale que ces arcs seront en plus grand nombre.

Comme 'on n’a pas de moyen facile pour décrire la spirale d’un
mouvement continu; on ne peut gucre employer cette courbe pour
former l'anse du panier ; et I'on est obligé de lui substituer une
courbe discontinue , formée par des arcs de cercles qui se raccordent
par leurs extrémités. L’anse de panier qui aura le plus de grice
sera conséquemment celle qui aura un plus grand nou.bre de points
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placés sur la spirale. Pour remplir cette condition, soit »~ le nom-
bre des centres de la demi-anse ; on prendra chacun des arcs de
cercle d'un nombre de degré exprimé par 2, et on fera croitre
leurs rayons en progression géométrique.

La question est donc réduite & trouver les rayons de ces arcs,
lorsque la demi-base et la montée sont donnédes. Cette question a
éué proposée ( Annales, tom. 1V, pag. g2 ), et résolue analitique-
ment par MM. Argand et Bérard ( méme volume , pag. 256 et
suiv. J. 1l faut, en général, résoudre par approximation I’équation
qui donne la raison de la progression formée par les rayons con-
sécutils ; mais , dans le cas ol la demi-anse ne doit avoir que trois
centres, et c’est le cas des arches du pont du Taro , on peut trouver
les rayons de la maniére suivante.

Au lieu de supposer que la courbe AHKB est un arc de spirale,
je suppose qu'elle soit formée de trois arcs de cercle AH, HK,
KB, de 30° chacun. Nous avons vu que la corde HK doit étre
moyenne proportionnelle entre les cordes AH et KB. Supposons
ces derniéres prolongdes jusqu'a leur rencontre en D, et soient
AC et CB la demi-base et la montée; les deux angles DAC et
DBC seront chacun de 75°; portant donc DA sur DB de D en
F et tirant AF , cette derniére droite sera paralléle 3 la corde
HK. Par le point F, soit élevée 23 DB la perpendiculaire indéfinie
FD/, et soit G le milieu de FB. Je divise la longueur FD en
un nombre arbitraire de parties égales ou inégales F1, 12, 2D,
et du point G comme centre, avec les rayous Gi, G2 , GD,
je décris des arcs coupant la perpendiculaire indéfinie FD/, aux
points 1/, 2/, D/, Je porte respectivement les ordonnées F1/, F2/,
FD/ sur des paralléles mendes & FA par les points 1, 2, D, de
1 en 1”7, de 2 en 2/ et de D en D”. Par les points ¥, 17/, 2/,
D/7, je fais passer une courbe auxiliaire F1//2/7/D/ , et cette courbe
coupe la droite AD au point H. Menant donc par ce point la
paraliele HK a AF , terminée en K 4 DB, ceute paralléle sera
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la corde intermédiaire, moycnne propoitonnelie entre A H et KB ;
et le prohbléme amené & ce point scra censé 1ésolu.

Cette construction est facile a justifier. Il est clair , en effet
par la nature de la courbe auxiliaire, que si, du point G comme
centre et avec GK pour rayon , on décrit le demi-cercle KK/O,
on aura KH=FK’; mais FK’ est moyenne proportionnelle entre
FK et FO, c'est-a-dire, entre AH, et KB; d’olt il suit que KH
est aussi moyenne proportionnelle entre ces deux droites.

Agréez , etc.
Parme , le 20 octobre 1820.

QUESTIONS RESOLUES.

Solution du premier des cing problémes de géomeétrie
proposés & la page 160 du X.° volume de ce recueil ;

Par M. M....s.

Ty s g s T s s s A e U W e W

Propreme. Décrminer raire dun quadrilatére rectiligne

circonscrit au cercle , en fonction de ses quatre cdtés?

I

Dans tout quadrilatére rectiligne circonscrit & un cercle , la
somme de deux cOtés opposés est égale @ la somme des deux
aulres.

Soit ( fig. 11) ABCDA un quadrilatére rectiligne , dont les cétés
AB, BC, CD, DA, touchent respectivement un cercle aux points
@, b, ¢, d; il sagit de prouver que AB4CD=BC+DA,

On sait, en effet, quon a
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Aa=Ad ,
Ba=B?j ,
Ce=Cs ,
De=Dd ,

d’od on conclut, en ajoutant et réduisant, AB4-CD=BC-+DA ,

comme nous l’avions annoncé.
° II-

Si, dans un quadrilatére rectiligne , la somme de deux cbtés
opposés est égale & la somme des deux autres , un cercle pourra
toujours lui étre inscrit.

Soit (fig. 12 ) ABCDA un. quadnlatére rectiligne dans lequel on
a AB+4-CD= BC+DA il sagit de prouver qu'un cercle peut
toujours lui étre mscnt.

Comme on peut lou)oursf dcrire un cercle qui touche trois des
c6tés du quadrilatére , tout se réduit a prouver que ce cercle
touchera aussi son quatriéme cété.

 Supposons donc qu'on ait décrit un cercle qui touche respecti- -
vement les cétés AB, BC, CD en @, &, c; il sagit de prouver
que ce cercle touchera aussi le quatriéme c6té DA.

Sil'on nie cette proposition , il faudra admetire que, parle point
D on peut mener au cercle une tangente différente de DG et DA »
touchant ce cercle en quelque point & , et coupant AB ou son

prolongament en quelque point E; alors le- quadrilattre EBCDE

. . = .
se trouvaat inscrit au cercle, on devra avoir (I)

EB+CD=BC+DE ;

mais on a par hypothése
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AB+4-CD=BC+-AD ;

Retranchant donc la premiére de ces deux équations de la seconde ;
il viendra , en réduisant ,

AE=AD--DE ou AE4-ED=AD;

résultat absurde qui prouve que la tangente DE ne saurait différer
de DA, que par conséquent le cercle tangent aux trois cétés AB,
BG, CD du quadrilatére dont il sagit doit aussi toucher le qua-
trieme DA | et qﬁ’ainsi, de cela sculement que la somme de deux
cOtés opposés d’'un quadrilatére rectiligne est égale 2 la somme
des deux autres, le quadrilatére est circonscriptible au cercle.

I1L

De ¢e qm vierit d’8tie dit, il Fésulte évideminehit qae, lorsqu ‘oi
propose de construire un quadnlatere dont les €bté s soiént donnés
et qui soit mrcong’crlphf)}e dt ‘terclé, od prdbose un prcﬁ)léme im-
possible ou indéterminé ; xmpossxble, §i 18" sorhnde de déax cotés
opposés m'est pas égale 3 la somme deés deux autrés : mdetermmé
si, au contraire , cette velation a lieu. Donc aussi demander Iaire
d’un tel quadrilatére c’est proposer un probléme impossible, s'il
n’est pas indéterminé,

- i

V.

Par des raisenncmens tout-h-fait semblables, on parviendra fa-
cileruent & s’assurer que proposer de déterminer laire d’'un qua-
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drilatére sphérique circonscriptible & un petit cercle de la sphére, en
fonction de ses quatre cétés, c’est également proposer un probléme
indéterminé , toutes les fois quil m'est pas impossible,

Berlin, le 24 octobre 1820.

QUESTIONS PROPOSEES.

Problémes de Geomeéltrie. -

I. QUEL est le lieu des centres de toutes les sections coniques qui
" passent par m points et touchent z droites données sur un plan,
avec la condition m~-n=47?

II. Quel est le lieu des centres de toutes les hyperboles équi-
latéres qui passent par m points et touchent z droites données sur
un plan, avee la condition m—+t+n=3?

IIL Quel est le lieu des foyers de toutes les paraboles qui pas-
sent par m points et touchent n droites données sur un plan ,
avec la condition m4-n=3?
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RECHERCHES DE DIOPTRIQUE.  aag
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OPTIQUE.

Recherches de dioptrique , renfermant la solution du
dernier des deux problémes proposés ¢ la page
288 du X.* volume de ce recueil ;

-~

Par M. GERGONNE.

LE but que nous nous proposons ici est d’examiner comment
s'opére la vision et sous quelle apparence se présentent les objets
lumineux ou éclairés, lorsque ces objets se trouvent plongés dans
un milieu homogeéne d’unc densité constante, et que I'eil qui les
contemple se trouve dans un autre milieu homogéne , également
d’une densité constante , contign a celui-1a ct séparé de lui par un
plan indéfini. C'est exactement le cas ol nous sommes lorsque nous
regardons les poissons dans l'eau, et cest aussi cclui ou ils se
trouvent , ainsi que les plongeurs, lorsqu’ils nous regardent. Nous
aurons occasion , chemin faisant, de traiter, comme cas trés-
particulier , le dernier des deux problé¢mes proposés a la page 288
du X.® volume de ce recueil.

Bien que la question que nous abordons ici soit une des plus
simples de toutes celles que la dioptrique peut avoir en vue, elle
ne laisse pas que d’éire assez compliquée. Elle a déja été som-
mairement traitée par M. Lenthéric , professeur au collége royal
de Montpellier, dans une thése qu’il a soutenue pour le doctorat,
a la faculté des scicnces, en mai 1820; et npous n’avons d’autre

Tom. X1, n.* VIII, 1.°" féprier 1821, 31
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but ici que de développer davantage et de simplifier en méme
temps , s'il est possible , les rdsultats obtenus par cet estimable
professeur.

Pour fixer les idées et éviter en méme temps les circonlocutions
nous supposerons constamment que les deux milienx dont il s'agit
sont I'air ct l'cau ; que ; par conséquent, le plan indéfini qui les
sépare est un plan horizontal ; et que le milieu inférieur est celui
des deux qui réfracte le plus ¢nergiquement la lumiére; mais on
sent fort bien que nos formules et nos méthodes n’en seront pas
moins facilement applicables a toute autre hypothése qu'on voudra
faire sur la mature -des deux milieux. Nous aurons d'ailleurs %
examiner successivement le cas ol lobjet est dans I'eau et Deeil
dans lair et cclui ot c’est, au contraire, I'ccil qai est dans l'eau,
tandis que I'objet est dans.lair, nous verrons que ces deux cas,
bien que peu “différens en apparence , sont cependant bien loin
d’offrir des résultats analogues.

Soit donc un point lumineux plongé dans I'rau ; ce point dardera
dans tous les sens des rayons de lumitre dont la direction sera
rectiligne et constante tant qu’ils demeureront dans ce fluide; mais
une fois que ceux qui seront dirigés de manitre A pouvoir en sertir
auront atteint la surface de leau , ils continueront leur marche
dans l'air suivant une direction ‘encore rectiligne , mais différente
lde‘la premiére et plus ¢loignée qu’elle de la direction verticale (*).

Si un il se trouve situé d’une maniére qucleonque dans lair,
plusieurs des rayons qui y auront pénétré viendront le frapper.

(") Je nwadopte ici 'hypothése de I'émission que pour plus de simplicité. Je
n’ignore pas que les belles recherches de M. Fresnel semblent présentement
faire pencher la balance en faveur de 'hypothése des ondulations. Je sais aussi
que la lumiére parvenue a la surface de I'ean ne pénétre pas toute dans lair,
et qu'une partie y ventre en se réfldchissanl i cette surface; mais c’est la une
circonstance dont il est permis ici de faire abstraction.
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Par leffet de T'habitude cet cil croira le point lumineux placé
dans- la direction suivant laquelle il en aura recu la sensation, ey
précisément a l'endroit d’ou les rayons du faisceau entré dans la
prunclle divergeraient, s'ils n’avaient point été rompus a la surface
de leau.

Si, par le point lumineux , on eongoit un plan vertical quel-
conque, ce plan contiendra un certain nombre de rayons émanés.
du point dont il s’agit; or, les circonstances étant absolument les
mémes de part et d’autre de ce plan, les rayons 3 leur entrée
dans lair, tout en prenant une nouvelle direction ,ne s'écarteront
ni A droite ni & gauche de ce méme plan, et ne pourront con-
séquemment parvenir a I'cil qu’autant qu’il y sera lui-méme situé ;
c’est donc aussi dans ce plan que l'image sera apergue.

On voit donc que si, par Peil et par le point lumineux, on
congoit un plan vertical , c’est dans ce plan uniquement que se
passera tout lec phénoméne de la vision; d’ou il résulte encore que
si, au liea d’un point unique , on a un objet visible d'une cer-
taine étendue ; pourvu que les diverses parties de cet objet se trouvent
comprises dans un méme plan vertical avec I’eil , son image se
trouvera aussi loule entiére comprise dans le méme plan. Dans
ce cas particulier, le probléme, au lieu d’appartenir a la géométrie
4 trois dimensions, n'est donc qu’un simple probléme de géométrie
plane. En conséquence , c’est par lui que nous croyons devoir
commencer , d’autant que le probléme général peut ensuite s’en

déduire avec facilité.

1. Supposons donc ( fig. 1 ) que le plan de la figure soit le
plan vertical conduit par l'eeil et par le point lumineux. Soit CX
Pintersection de ce plan avec la surface supérieure du liquide; soit
P le point lumineux et soit CY une verticale conduite par ce point.
Considérons deux rayons infiniment voisins PI, Pl/ , atteignant la
surface de ’eau en 1, V/; en entrant dans I'air, ils prendront les
directions nouvelles IL , I'L/. Soit p le point de concours de ces
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nouvelles directions ; il est clair quun ceil placé vers LI/ sera
dans le méme cas que si, I'eau n’existant pas, le point lumineux,
au lieu d’étre en P, se trouvait en p ; c’est-d-dire, en d’autres
termes , que le point p sera le lieu apparent ou I'image du point P.

2. Or, il est visible que le point p est un de ceux de la courbe
3 -laquelle tous les rayons réfractés sont tangens , c’est-i-dire , de
la courbe enveloppe de tous ces rayons; et que de plus le rayon
réfracté IL est tangent & cette courbe en p; si donc (fig. 2) MN
est la courbe enveloppe de tous les rayons réfractés relatifs au
point P; en quelque point O que I'il se trouve dans l’air , en
menant par ce point O une tangente Op & cette courbe, son point
de contact p sera le lieu de Iimage, c’est-i-dire , le lieu apparent
du point P, pour un il situé en O. La courbe MpN est ce qu’on
appelle la Caustiqgue relative au point P. |

3. L’objet principal de la recherche qui nous occupe doit donc
étre la détermination de la nature de cette courbe, Pour parvenir
a ce but (fig. 3 ), soient prises respectivement I’horizontale CX
ct la verticale CY pour axes des # et des y; désignons par k 'en-
foncement CP du point P au-dessous du niveau de l'eau; et con-
sidérons un rayon quelconque émané du point P, ayant PI pour
direction dans l'eau et IL pour direction hors de Peau. Désignons
par z la distance variable CI de Vorigine C au point d'incidence
I; et, par ce point I, menons la verticale indéfinie GH ; langle
GIP=IPG sera ce qu'on appelle 'angle d'incidence et I'angle HIL
sera ce qu'on appelle V'angle de réfraction.

4. Or , suivant les premiers principes de la dioptrique , pour
les deux mémes milieux, le rapport du sinus d’incidence au sinus
de réfraction doit étre constant, et tout a-fait indépendant de la
direction du rayon incident. Supposant donc que le sinus d’inci-
dence dans P'eau soit constamment au sinus de réfraction dans
Pair dans le rapport de ¢ & p, nous aurons
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Sin.IPC 2
SinLIH = ¢ °

d'olr
CosLI1X=Sin.LIH= lq'lsm.ch ;
mais on a

) CI z

done
pz . ‘/ 22 ( P2y 2) 22
CosXIL= ——— Sin X1, = V= (pi—g0="
q‘/k1+zz ? g qvk,_*_z: H
d’ou

Tang XIL = V k= (pi—gnz= 3
Pz

de sorte qu’en posant, pour abréger ;

d'ou

nous aurons
gy
Tang XIL=Y F—ms:

nz

En conséquence , I'dquation du rayon réfracté IL , clest-i-dire;
I'équation générale de tous les rayons réfractés relatifs au point
P sera

Ve

= (o) 5

y’:—"
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équation - dans laquelle z est un parameétre tout-a-fait indéterminé.
5. Suivant donc les principes du calcul différenticl , I’dquation de

Ienveloppe de tous les rayons réfractés , c¢’est-a-dire, I'équation de

la caustique, sera (*) le rdsultat de I'élimination de z entre cette

derniére équation et sa différentielle , prise uniquement par rapport

a cette lettre. Cette différentielle est, toutes réductions faites ,

krx—m*z’=o0.

Pour dliminer facilement z entre elle et I'équation primitive du
rayon réfractd, nous les résoudrons par rapport a x et y , ainsi
que nous l'avons déja fait dans une circonstance analogue ( tom. V,
pag. 288 ). Cette derniére donne immédiatement la valeur de x;
et , en la substituant dans l'autre , on obtient

m2z3 k2e—=m2z2 h
== I ) y:-—_______( n:i z ) 5
d’ou résulte
mx \X1 m2z2 ny \I ’ m3z?
3 o —— [ 3 om— I v ——
k £ E ) ka2 ?

ajoutant donc ces deux équaticns membre & membre, nous aurons
pour celle de la caustique cherchée

me sy N
(F)+ (="

6. Or, il est connu (tom. V, pag. 288 ) que I'équation d'une
ellipse étant

™ Voyez la page 361 du III:e volume de ce recueil.
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x 2 y 2 -
(5 )+(5 )=
I’équation de sa développée est

by \Z
(bz__az) +<bz_az =1;

denc notre caustique n’est autre que la développée d'une ellipse
dont les demi-diamétres principaux sont donnés par les deux

équations
b

D2emmg2

a m
——— ey —
k

b2—q2

— Py

n
! k

d'olt, on ayant égard & la relation n*=i1-m?®, trouvée ci-dessus
(4), on tre

a=mk , b=nk ;
de sorte que l'équation de cette ellipse est
x 2 J; 2—
Ga)+(5)=r-
On a, en outre,

—

ry ‘/b*—a3=k .

=

5
e

. Ainsi, toutes les fois qu'un point lumineux est plongé dans
I'eau , ceux d’entre les rayons qui en émanent qui sont compris
dans un méme plan vertical quelconque passant par ce point, donnent
naissance , aprés leur sortic du liquide, 4 une caustique qui n’est
autre chose que la développée d'une ellipse qui a son centre ¥ la
surface du liquide, et son grand axe vertical. L’ua des foyers de
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cette ellipse est le point Jumineux lui-méme ; et ses dimensions,
proportionnelles 4 ’enfoncement de ce point , ne dépendent que
du rapport du sinus d’incidence au sinus de réfraction ; de teile
sorte que les ellipses qui répondent & divers points, et par suite
leurs développées, sont des courbes semblables. Gn aurait des con-
séquences analogues pour deux autres milieux transparens, solides
ou fluides ; il n’y aurait absolument de changé que le rapport des
dimensions des ellipses (¥) ; pourvu toutefois que le point lumineux
fit toujours dans celui des deux milieux qui jouirait du pouvoir
réfringent le plus énergique. On congoit, au surplus , qu'il n’y a
que celle des deux moitiés de la développée de lellipse qui ap-
particnt & ce milien qui puisse étre utile au probléeme ; de sorte
que c'est seulement cette demi-développée qui doit étre considérée
comme la caustigue.

(* Dans le passage de l'eau dans I'air  on a , A tres-peu prés, p=4,

7 . n
¢g=3, dott n=%, m= -\-/3——, ou sensiblement m=2%, Cela donne — =1, cest-

a-dire que laxe vertical de lellipse est & son axe horizontal environ dans
le rapport de 3 & 2.
§'il*s'agit du passage du verre dans lair, on aura, i trés-peu prés p=3,

; n
¢g=2, dolt n=1%, m= y—‘-; , ou sensiblement m=2%. Cela donne — =1, C'est-
m

2
A-dire que Paxe vertical de Dellipse est & son axe horizontal environ dans le
rapport de 4 a 3. '

Sil s'agit enfin du passage du verre dans l'eau, on aura, 3 Irés-peu prés,

17 ~ .
=9, ¢=8, dott n=3%, m=—\é—7- , ou sensiblement m=—23%. Cela donne
n . 92 ’ ) M 7 M ’ M H
i c’est-a-dire que I'axe vertical de lellipse est 2 son axe horizontal

environ dans le rapport de g a 4.

En général, Pellipse est d’autant plus alongée que les pouvoirs réfringens des
deux milieux sont moins différens.

8.
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8. De ce qui précéde, et de la figure connue dela développée
de D'cliipse , il est facile de déduire diverses conséquences, dont
les plus remarquables sont les suivantes :
1.° Tant que l'eil du spectateur pe sort pas de la verticale qui
passe par le point lumineux, l'image de ce point ne sort pas non
plus de cette verticale , sur laquelle I'ceil peut d’ailleurs se mou-
voir sans qiue cette image paraisse aucunement changer de place.
Elle parait toujours d'ailleurs plus rapprochée de la surface de I'eau
que Vobjet lui-méme , et d’une quantité constamment proportionnelle
a I'enfoncement de cet objet (*).
2.° Si I'eil se meut sur la surface méme de I'eau, a mesure
quil séloignera de la verticale menée par le point lumineux,
Iimage de ce point s'éloignera aussi de cette méme verticale et
dans le méme sens , en se rapprochant peu & peu de la surface
de l'eau. Lorsque l'ceil se trouvera distant de la verticale de la

* Si Peeil est dans Pair , suivant que l'objet sera dans 'eau ou dans le
verre, son image se trouvera rapprochée d'un guart ou d’un tiers du plan
horizontal qui sépare les deux milieux. Si Vil est dans I'eau et l'objet dans
le verre , ce rapprochement sera seulement d’un neu¢iéme.

Lorsque M. Lenthéric soutint , & la faculté des sciences de Montpellier , la
thése dont il a été question ci-dessus, un des juges lui objecta que la réfrac-
tion étant nulle dans le sens normal, Pobjet doit éire vu a sa veéritable place
lorsque I'ceil se trouve verticalement au-dessus. Cela pourrait étre vrai, si
Pouverture de la prunelle était un point mathématique ; mais cette ouverture
est la plus grande des deux bases d’un tronc de cone formé par ceux d’entre
les rayons lumineux qui, étant sortis de I'eau , parviennent a P'eeil. Ce tronc
de cdéne a sa plus petite base a la surface de l'eau, et celte derniére est,
A son tour, la base d’un cdne entier , ayant son sommet au point lumineux ,
et comprenant les mémes rayons dans P’eau. Or, c’est au sommet du ebne , dont
le tronc pose sur I'ceil , que Pimage doit étre apercue ; c¢t, comme ce cone est
plus obtus que celui qui a son sommet & lobjet, il s'ensuit que l'image doit
étre plus voisine de P'eil que ne lest eet oljet,

om. XI, 32
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oo ko . , 1o
quantité —, l'image se confondra avec lui ; c'est -a-dire que
n .

k
ceite image sera aussi & la surface de I'eau et & la distance —

de la verticale qui passe par l'objet. Passé ce terme, I'ccil aura
beau s'écarter davantage, il verra toujours l'objet a la méme place
a la surface de l'eau (*).

3.° Dans toute situation intermédiaire de l'eeil, I'image paraitra
tonjours hors de la verticale du méme c6té que Jui, et plus élevée
que l'objet. Si, en partant d’une situation donnée, cet il s'éleve
verticalement, il verra 'image s’enfoncer par degrés , en se rap-
prochant de la verticale; ce sera le coqtraire si I'ceil descend ver=
ticalement. Si, partant de la méme siwation, l'cil se meut hori-
zonlalement , en s’écartant de la verticale, I'image s’en écartera
dans le méme sens et se rapprochera peu & peu de la surface de
Peau. On reconnaitra enfin que I'eil , mu obliquement, dans une
direction rectiligne , parcourt une tangente & la caustique , lorsque,
malgré son mouvement, I'image lui semblera immobile. Cette cir-
constance pourrait méme offrir un moyen de déterminer la caustique
d’une manicre expérimentale, et d’en conclure ensuite le rapport
du sinus d'incidence au sinus de Téfraction.

9. De ce que les caustiques relatives a différens points sont sem-
blables, et semblablement situées par rapport a la ligne de niveau,
résulte un procédé graphique assez simple pour déterminer le lieu
de limage de tant de points visibles qu’on voudra. Soit toujours
CX (fig. 4) le niveau supérieur de l’eau, et soit O/ le lieu fixe

(") L'l édtant dans Pair , suivant gque l'objet sera dans 'eau ou dans le
. k . ]
verre , la distance - sera les trois quarts ou les deux tiers de I'enfoncement

de lobjet. Si I'eil est dans Teau et I'objet dans le verre , cette distance sera
s huit neuviémes de l'enfoncement de cet objets
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de T'eil ; sur la verticale CP, conduite par O/, on prendra arbi-
trairement un point P, pour lequel on tracera avec soin la caus-
tique MNM’, que nous appellerons la caustique normale. On fera
bien d’ailleurs de prendre le point P le plus bas possible , afin
d’avoir une caustique de plus grande dimension. Cette caustique,
ainsi tracée , une fois pour toutes , rien ne seraplus aisé que d’assigner
Pimage d'un point donné\quelconque, pour un cil placé en O/,

Soit, en effet, P/ le point dont il s’agit; en menant PP/, son
point d’intersection S avec CX sera évidemment le centre de simi-
litude des caustiques relatives aux poihts P, P/. On menera PO/
et SO/ qu'on fera couper en O par une paralléle PO a P/O’. On
menera par O, A la caustique normale, la tangente Op la tou-
chant en p. On menera enfin Sp quon fera couper en p’/ par une
paralléle O’p/ & Op; et alors, de méme que p est 'image de P,
pour un cel placé en O; p/ sera I'image de P/, pour un cil placé
en O/, et conséquemment le point demandé,

10. En renversant cette construction, on pourra déterminer, pour
une situation donnée de I'eil , en quel lieu doit se trouver un point
lumineux, pour que son image soit vue en un point donné.

Soit toujours O/ le lieu de I'eil, ct soit p/ I'image donnée d’'un
point dont il faut assigner la situation. On menera p/0/ et , paral-
lelement & cette droite, une tangente pO & la caustique normale.
p étant le point de contact de cette tangente, on menera pp’ cou-
pant CX en S, et SO/ coupant pO en O. On menera enfin OP,
et ensuite SP, coupée en P/ par une parallele O’P/ 3 OP. Ilest
clair qu’alors P étant , pour I'eil placé en O, le lieu de I'objet
dont I'image esten p; P/ sera pareillement, pour un ceil placé
en O/, le lieu de I'objet dont l'image est vue en p’; c'est-a~dire,
que P/ sera le point cherché.

11. Sachant ainsi, pour une situation donnée de I'eil, assigner
soit le lieu de I'image d'un point donné quelconque, soit le lieu
d'un point dont l'image est donnée; rien ne sera plus aisé que
de tracer par points, soit l'image d’une ligne droite ou courbe
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plane quelconque située, avec I'eil , dans un plan vertical , soit
la ligne dont une ligne donnée droite ou courbe plane située dans
un méme plan vertical est I'image.

S'il sagit d’un dessin tant soit peu compliqué, ce qu'il y aura
de mieux & faire, sera de tracer a l'avance, soit les images d'une
suite de droites verticales et horizontales équidistantes , soit les
courbes ayant pour images dcs droites verticales et horizontales
équidistantes. On achévera ensuite le dessin propesé , de la méme
maniére que l'on trace les anamorphoses.

12. Essayons présentement de traduire ces diverses constructions
en analise ; c’est-a-dire, de déterminer les coordonnées de p/ par
celles de P/, et réciproquement. Appelons z/y/les premiéres , X/,
Y7 les derniéres ; tout se réduira évidemment & trouver deux équa-
tions de relation entre ces quatre variables et les constantes du
probléme.

13. Appelons % la longueur arbitraire CP, et % la hauteur CO/
de il au-dessus du niveau de l'eau. Tout étant d’ailleurs dans
la figure 5, comme dans la figure 4, abaissons du point O la
perpendiculaire OT sur CS et da point P/ la perpendiculaire P/C/
sur la méme droite ; en menant OC, O’C/, TP, CP/, les triangles
rectangles C/CO’ et CTO seront semblables ; et il en sera de méme
des triangles rectangles P/C’C et PCT; on aura donc

P/C/:C/C::PC: CT ,

P/C/: CO’:: PC:TO ;
c’est-a-dire ;

Y':X::k:CT ,

Y; %k ::k:TO ;
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en conséquence , les équations du point O seront, en ayant (gard
aux signes

-

kX kh
x::—Fa—f7 ) ==’"'35 . (I)

Désignons , en outre, par z//, ¥/ les coordonnées du point p
de contact de la tangente Op menée par le point O a la caustique
relative au point P; en abaissant des points p, p/ les perpendicu-
laires pg, p’q’ sur CS, nous aurons

Cq:Cyq
. CP: CP/:: .
Pq7:P'9 s
c'est-a~dire ;

a : (Xle=a!) ,

12D GFF
y’ iy

d'olt, en ayant édgard aux signes,

. /Y YY)
£/ e X/ = e Tk y/ = i (2)

il ne s’agit donc plus que de chasser de ces dernidres formules

z//, y/, en exprimant qu’elles sont les coordonndes d’une tan-

gente mende par le point O a la caustique relative au point P.
14. D’abord , parce que le point p est sur cette caustique, on

aura
mx// :_ nyl/ ;_— “
( k>+<—k—>‘——1, (3)

d'ot, en différentiant ;
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dy" ny Tl
— T g — '
G EZ ma’

en conséquence , I'équation de la tangente en p sera
/ yll
r—y+ 2 @) I =

n’x”( y__y//)s_'_may//(x_x//)-" =0 ;

ou

puis donc que cette tangente doit passer par le point O , on
aura

4 3
n2az’ (,.%— +y//)3_m:y// < % '_.x// =0 ’
on ‘
n2z! (" Y'4-kk) my! (& Y~k X} =0 . 4

Il faudrait donc se servir des équations (3, 4) pour chasser z/;
y/! des équations (2); mais il revient au méme , et il est incom-
parablement plus simple de se servir de ces dernidres qui donnent
k(x/—X") Kyt

V] o g —

Yy Y '

P —T

pour chasser 2/, y/ des deux autres. Cela donne; en supprimant
les accens , désormais superflus, ~

gmcx;X) §s+ {_1; }%:, , -

]

n*(x—=X)(y=r)}+m*z’y=o0 . €1))
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Ainsi, en prenant l'axe des x & la surface de I'cau et prenant
pour axe des y la verticale passant par I'cil , on tourra, u l'aide
de ces équations , déterminer , soit au moyen des coordonnées X,
Y d’un point les coordonnées x, y de son image, soit au moyen
des coordonnées x, y de cette image , les coordonnées X, ¥ du
point auquel elle apparticents
15. Il scrait assez difficile de tirer de ces équations les valeurs
des coordonnées x, ¥ de I'image d'un point en fonction des coor-
données X, ¥ de ce point; mais le probléme inverse , c’est-i-dire ,
celui de la détermination des coordonnées X, XY d’un point en
fonction des coordonnées x , ¥ de son image est, au contraire ,
trés-facile 3 résoudre. En éliminant , en effet, z==X entre les deux
équations ci-dessus , il vient

-

i%ggi"k[n(ff»]’}m ’

aprés quoi l'on tire de I’équation (II) et de celle-ci

ma2 a2 \3
X=z+ a4 ;:7;) ’ {m)
mx 2)3%
=ny§1+ prm— %. . (IV)
e

16. Qu’'on ait présentement une ligne droite ou courbe plane ,
située avec l'wil dans un méme plan vertical , et donnée par
I’équation

F(X,Y)=o,
I'équation de son image s'obtiendra en mettant pour X, ¥ dans

celle-ci leurs valeurs donndes par les équations (III, 1V). Que si,
au contraire , on donne 1’équation
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f(, y)=o0,

d’une ligne droite ou courbe plane , située dans un méme plan vertical
avec l'ceil , et qu’on demande de quelle autre ligne elle est I'image ;
il faudra, pour résoudre le probléme, combiner ’équation de cette
ligne soit avec les équations (I, II) soit avec les équations (111, 1V)
pour en éliminer x, y 3 Véquation résultante en ‘X, Y sera celle
de la ligne cherchée ; d’olt 'on voit qu’en général ce second pro-
bléme sera plus difficile 3 résoudre que le premier.

17. Pour seules applications de ce procédé , nous chercherons
I'équation de I'image d’une droite verticale et celle de Fimage d'une

droite horizontale. Soit une droite verticale donnée par I'équation-
.X—":‘-g 3
Péquation de son image sera évidemment

x 3

x+-§,—y( =g

y—h
pu bien

n(z—g)(y— Ry 4miaiy=o . (*)

Soit qu'on y fasse y=o0 ou y=-—— o, on a également =g , ce
qui nous annonce que la droite et son image se confondent éga-
lement et & la surface de I'eau et & une profondeur infinie dans

(™ Il est trés-digne de remarque que cette courbe ( tom. V , pag. 292 ) est
en méme temps celle sur laquelle se trouveraient les images d’'un point lumi-
nevx situé hors de l'eau, sur-le prolongement de la verticale dont il s’agit , st
la surface du liquide devenait la surface antérieure d'une glace dtamée , d’une
épaisseur quelconque, ‘

“le
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le liquide; de sorte que cette droite est elle-méme asymptote de
son image.

Cherchons sous quel angle I'image dévie de la droite verticale
3 la surface de l'eau , et quel en est le plus grand écartement,
En différentiant I'équation de cette image, on en tire

dy n2(y==h)3-4-3m2xy
dx ——n12x3+3n=(x—g)(7—h)‘ )

dy
dx
fait la verticale avec son image ; puis donc qu’'on a alors =g ;

y==0, en désignant cet angle par ¢, on aura

A la surface de l'eau, devient la co-tangente de l'angle que

ng3

Tang.o.._. Serral

mais, si 'on désigne par ¢« l'angle que fait avec la verticale le
rayon visuel mené de I'ceil au point our la droite et son image percent
la surface de l’eau, on aura

Tango £ —

|0y

done

m2
Tang.é= — Tang?s ;
n

ainsi, la tangente de l'angle ¢, toujours moindre que le cube de
la tangente de l'angle ., et pouvant croitre indéfiniment comme
celle-ci, est constamment proportionnelle a son cube.

Pour savoir présentement en quel point la tangente & I'image de
notre verticale lui est paralltle, et connaltre ainsi le meximum de

Jom, XI. 33
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son écartement, il suffit d’égaler A zéro le dénominateur de la valeur de
dy .
7o 3 ¢e qui donne
m’x’+3n’(x—g)( y—r)'=o ;

équation qu'il faudra combiner avec I'équation

m*ziy-tn(z—g)y—h) =0

de limage, pour avoir les coordonnées du point cherché. -
On tire immédiatement de tes équations , en transposant et
divisant

y—h oo __ "
y="5" d’ol yE=—

ainsi, quels que soient les deux milicux et quelle que soit la dis-
tance de l'eeil 2 la verticale dont il s’agit, cest toujours i une
profondeur moitié de la hauteur de I'eil au-dessus de la surface
du liquide que le plus grand écartement ‘a lieus

En substituant cette valeur de y dans Ja premitre des deux
équations , clle devient

4m* @ 2nih(2—g)=o ,
équation qui n'a évidemment qu'une seule racine réelle’ quon
pourrait facilement obtenir par les formules connues.
18. Supposons, en second liew, qu'il soit question d'une droite
horizontale donnée par I'équation

Y=—-F,

T'équation de son image sera évidemment
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][+;2y§ 14 n(;":h) ! %2’ ,
ou bien -
nbk(y—h) s =ny*{miz'+n*(y —£)*}? .
ou encore

ey 4 ()= -

d’olr 'on voit que cette courbe est symétrique par rapport i Ia
verticale qui passe par I'ceil , ainsi que cela doit étre. De plus,
comme DPéquation est satisfaite en posant simultanément z=" o
et y=o, il s’ensuit que la courbe a pour asymptote ’horizontale
qui détermine la surface supérienre du liquide; et c’était encore la
un résultat facile & déduire de nos constructions graphiques.

19. On pourrait aussi rechercher si le liquide dans lequel les
objets sont supposés plongés amplifie ou réduit leurs dimensions
apparentes et s'il donne naissance aux franges colorées ; mais la
complication de nos formules nous avertit assez que nous ne pour—
rions aborder ces questions sans dépasser de beaucoup les bornes
que nous devons mous preserire ici. Nous nous contenterons donc
d’observer , relativement a la premiére de ces deux questions, qu’il
résulte de ce qui a été dit (8) que, si I'ceil se trouve sur le pro-
longement d’une verticale plongée dans l'eau et divisée en parties
égales , 1l la verra aussi divisée en parties égales, mais plus pe-
tites; d’ot I'on voit que , par l'effet du milieu , les dimensions
verticales des objets placés directement au-dessous de I'eeil paraissent
plus petites; et il est aisé de déduire de nos constructions que, dans
les mémes circonstances , il en doeit étre de méme de leurs dimen-.
sions horizontales. Ainsi, leffet du milieu sur des objets qui ne
s’écartent pas trop de la verticale passant par I'ceil doit étre de
les faire paraitre a la fois plus petits et plus rapprochés.
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20. Changeons présentement les roles ; supposons que le point
lumineux est dans l'air, tandis que I'eil est, au contraire, plongé
dans Pedu, Soit toujours ( fig. 6) le plan de la figure un plan
vertical passant par l'objet et par I'wil, soit CX Ulintersection de
ce plan avec la surface de I'eau ; prenons cette droite pour axe des
x. Soit P l'objet; et prenons pour axe des y la verticale CY con-
duite par P. Soit PI un rayon incident quelconque et Soit IL le
‘méme rayon réfracté. Par le point d'incidence I soit mence la
verticale indéfinie GH. Soient CP=Fk, CI=z; et soit toujours le
rapport du sinus d’incidence dans T'air au sinus de réfraction dans
Veau celui de p & ¢ ; nous aurons '

Sin.HIP _ Sin.CPI z P
SinGIL ~ SinGIL — SinGlLykdzr g *
d’our
. Vi
Gll= —=—=;
Sin.GIL Wik
donc

R - \jpzkz+(pz_qz)zz -i__ .
Sin XIL= V= , Cos.XlL._p‘/m,

et par suite

Tang XIL = YIFFT—=17

qz
En posant, pour abréger,
’Z.:._q:--—x-q_,—m!’ 1_:”,.
P P 2
dol
mifni=1 ;

nous aurons



DE DIOPTRIQUE. 24g

TangXIL= Y E;f»?? .

-

En conséquence , I'équation du rayon réfracté ou, pour mieux dire ;

Péquation générale de tous les rayons réfractés relatifs au point P
Sera

P — ‘/"f:;"‘. = (a—2) 5

équation dans laquelle z est un paramtre tout-3-fait indéterminé,

21. Il faudrait donc, pour en conclure I'équation de la caustique
relative au point P, éliminer z entre cette équation et sa différen-
tielle , prise uniquement par rapport 4 z; mais cette équation ne
différant de sa correspondante (4) , relative 4 la premiére hypothése ,
qu'en ce que et n s’y trouvent respectivement changés en my/ =
et —n; nous obtiendrons immédiatement la caustique cherchée, en
faisant un pareil changement dans I'équation (5) de la caustique qui
répond au premior cas, laquelle deviendra ainsi

F oy i m® \i_
(k N\ )T

21, Or, il résulte de ce qui a été dit (6) que I'équation d’une
hyperbole étant
(Z \’_(3 -
\2)7\%)=h
I'équation de sa développée doit étre

( by \;__( ax \:_
bgar) " \btar)

donc, notre caustique n'est autre que la développée d'une hypers




250 RECHERCHES
bole dont les demi-diametres principaux sont donnéds par les deux
équations

a

5z+az

m b n
Tk’ b4er kO
d’ol, en ayant égard A la relation m*4n*=1, trouvée ci-dessus
(20), on tire

a=mk , b=nk ;

de sorte que l’dquation de cette hyperbole est
(-G
nk mk

& n )
—;—=;\/bﬂn+a—— .

On a, en outre ;

22, Ainsi, toutes les fois qu’'un point lumineux est hors de
Peau, ceux d’entre les rayons qui en émanent qui sont compris
dans un méme plan vertical quelconque passant par ce point,
donnent naissance , aprés avoir pénétré dans le liquide, 3 une caus-
tique qui n'est autre chose que la développée d’une hyperbole qui
a son centre & la surface du liquide et son axe transverse vertical.
L’un des foyers de cette hyperbole est le point lumineux lui-méme;
‘et ses dimensions, proportionnelles & I'élévation de ce point au-
dessus du niveau de I'eau, ne dépendent que du rapport du sinus
d’incidence au sinus de réfraction ; de telle sorte que les hyper-
boles qui répondent 3 divers points, et par suite leurs développées,
sont des courbes semblables. On aurait des conséquences analogues
pour deux autres milieux transparens, solides ou fluides; il n’y
© aurait absolument de changé que le rapport des dimensions des
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hyperboles (*); pourvu toutefois que le point lumincux fut tou-
jours dans celui des deux milicux qui jouirait du pouvoir refringent
le moins énergique, On congoit, au surplus, qu’il n'y a que celle
des deux moitiés de la développée de I'hyperbole qui appartient
a ce milieu qui puisse étre utile au probléme ; de sorte que cest
seulement cette demi-développée qui doit étre considérée comme
la caustique. ]

23. La développée de l’hyperbole a, comme elle, des branches
infinies ; mais, a-t-elle aussi comme elle des asymptotes ? Si l'on
voulait s'en tenir au raisonnement employé par la presque totalité
des auteurs de géoméirie analitique pourla recherche de ces sortes
de lignes dans I’hyperbole , on serait d'abord tenté de le croire,
On tire, en effet, de I'équation de cette développée

2

y—_.—x,j -+( ;

or, pourrait-on dire, 3 mesure que x deviendra plus grand’, le
facteur radical du second membre tendra sans cesse 3 devenir I'unité;

(") Dans le passage de Vair dans 'eau, on trouve , & trés-peu prés, m=1;
n__ .
n=3%, dolt — =3%; clest-a.dire que 'axe transverse de Ihyperbole est & son
3 m 8

axe horizontal sensiblement dans le rapport de g & 8.
Sl s'agit da passage de lair dans le verre, on aura, A trés-peu pres,
n .
ot — =% ; clest-d-dire gue Paxe transverse de I'liyperbole est
m
% son axe horizontal sensiblement dans le rapport de 8 & g.

Si enfin, il est question du passage de l'eau dans le verre, on aura, &

— 3 — T $]
m_;,n_--,-,d

n .
trés-peu prés, m=3, n=5, — =2 ; clest-a-dire que I'axe transverse de
m -
T’hyperbole sera sensiblement double de son axe horizontal.
En général , l'axe transverse sera d’autant plus grand par rapport a l'autre ’

que les pouvoirs refringens seront moins différens.
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donc aussi, & mesure que z deviendra plus grand , cette équation
tendra sans cesse.d se réduire 2

m
y=Xx—z;

et le deviendra, en effet, lorsque x deviendra indéfini; d’our il pa=
raitrait naturel de conclure que la courbe a deux asymptotes passant
par lorigine ; et comme l'équation des asymptotes de I'hyperbole
est A

y==x % z
il s’ensuivrait que les asymptotes de la développée sont respective~
ment perpendiculaires 3 celles de la courbe.

24. La vérité est pourtant que la développée de I'hyperbole n’a
point d’asymptotes. Pour nous en eonvaincre , cherchons I'équation
de la tangente & cette courbe par Yun de ses points; en diffé-
rentiant son équation, on obtient

 ee————

dy  m ny

———

dx n ma
d’ot il suit que l'dquation de la tangente 3 la courbe par un point
(2’ , y/) pris sur son périmédtre est

m 3 !
ymy'= 2P T ()

Si I'on veut connaitre & quelle distance de Porigine cette tan-

gente coupe 'axe des ¥, il suffira de faire x=o. dans son équa-
tion, ce qui donnera, pour la distance demandée

m 3 ’
.y ) 4
: n e, IR

:ou encore
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1 ma’

— X T3
y=y'— - T)’\/H’Fy’ ;

Mais , d’aprés la situation du point (2/,%/), on a

’ mal \ i ny! \Z
3 _— 3 - I ~
k k ?

donc , en substituant ,

n

y:y/.__]_:_ {( nl:'l )‘;‘_I ;‘3/721‘23'/ )

ou, en développant et réduisant,

3 Je2qt
y=p

quantité qui devient infinie en méme temps que #/. On voit donc
qud mesure que le point de contact s’éloigne du point de rebrous-
sement de la courbe , la tangenle coupe I'axe qui passe par ce
point & des distances de plus en plus grandes du centre de la
courbe ; d'ou il suit que les tangentes i I’infini, loin de passer
par ce cenlre, en passent, au contraire, a une distance infinie.

Tout ce qu’on peut donc conclure de notre premier raisonnement
(23), c’est qu'a mesure que les branches de la développée s’éten-
dent, elles tendent sans cesse a devenir perpendiculaires aux asymp-
totes , avec lesquelles elles forment constamment un angle obtus
du c6té du centre. C'est ainsi que les branches de la parabole for—

Tom. XI. 34
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ment constamment un angle obtus avec la direcirice du c¢6té du
sommet (*) ’

25. De tout ce qui précéd:e , il résulte diverses conséquences,
dont les plus remarquables sont les suivantes :

1.° Tant que I'ceil, plongé ‘dans Yéau, ne sort pas de la ver=~
ticale qui passe par le point lumineux , situé hors de I'ean, I'image
de ce point ne sort pas non plus de ceite verticale, sur laquelle
I'eil peut. d'ailleurs se mouvoir, sans que cette image paraisse au-
cuncment se déplacer. Elle parait d’ailleurs plus élevée au-dessus
de la surface de l'eau que I'objet lui-méme , et d’une quantité cons=
tamment: proportionnelle & DI'élévation de cet objet (**).

2.° Si il se meut sur la surface méme de 1’eau, a2 mesure
quil s'éloignera de la verticale menée _par le point lumineux ,
Timage de ce point s’éloignéra aussi de cette verticale , mais en
sens inverse, et en s'éloignant de plus en plus de la surface de
I'eau.

3.° Dans toute situation intermédiaire de I'eil , I'image paraitra
toujours hors de-la verticile du c6té opposé, et plus élevée que
Vobjet. Si, en partant d'une situation donnée, cet il senfonce
verticalement dans le liquide , il verra 'image descendre peu i peu,
en se rapprochant de la verticale ; ce sera le contraire , si Peil
s’éleve vers la surface de 1’eau. Si, partant de la méme situation,
T'eil se meut horizontalement , en s’écartant de la verticale, I'image

(™) On voit, par cette discussion, que c’est avec beaucoup de raison que
M. Yexaminateur Reynaud rejette, comme vicieuse , la maniére ordinaire de
déterminer les asymptotes de I'hyperbole.

(**) Si Peil est dans leau el l'objet dans Pair , cette élévation sera d’un
tiers en sus. Si Uil est dans le verre , suivant que V'objet sera dans Pair

ou dans leau , ce surcroit d’élévation sera d'une moitié ou d'un huititme
en sus
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s'en écartera en sens inverse , en sélevant de plus en plus. On
reconnaitra enfin que l'wil ; mu obliquement, dans une direction

rectiligne , parcourt une tangente a la caustique , lorsque , malgré son
mouvement, 'image lui semblera immobile.

26. Ici, comme dans le cas od I’eil est dans I'air et I'objet dans
I'eau , on peut, avee une caustique normale , construite avec sein,
et une fois pour toutes, déterminer, par un tracé graphique , et pour
une situation donnée de I'eil , soit le lieu de I'image d’un point
donné , soit le lieu d’un point dont I'image est donnée, Il suffira,
pour savoir comment doivent & exécuter ces constructions , d’appli-
quer & la figure 7 ce qui a été dit (9, 10).

27. On pourra donc aussi (11) construire graphiquement par
points, soit I'image d’une ligne droite ou courbe plane donnée,
située dans un méme plan vertical avec I'eeil, soit la ligne dont
une ligne droite ou courbe plane donnée, située dans un méme
plan vertical avec I'eeil, est I'image.

28. En appliquant & la figure 8 les raisonnemens et calculs
que nous avons faits (12, 13, 14, 15), on trouvera qu’en pre-
nant l'axe des z sur la surface de I'eau, faisant passer vertica-
lement I'axe des y par l'eil et désignant par 2 la hauteur de
Ia surface du liquide au-dessus de lui , si X, ¥ désiguent les
coordonnées d’un point lumineux , et #, y celles de son image,

on aura
m2 x £
x=e= o (5m)
Y=n {1[—_—"2” g
T Lren d

formules dont on fera les mémes usages que de leurs corress
pondantes (15).
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29. Si l'on demande, par exemple , l'image d’une droite ver=
ticale donnée par I'équation

X=g,
I'équation de cette image sera

m? x )3_.
= ;x(y-i—h =&

ou bien

n*(x—g)(y+r)—m?>zty=o0

Soit qu’on fasse , dans cette équation, y=o0 ou y=<}c ; on a
également z=g, ce qui nous annonce que la droite et son image
se confondent également soit i la surface de T'eau , soit & uné€
hauteur infinie au-dessus du liquide, de telle sorte que la droite
est elle-méme asymptote de son image.

Cherchons sous quel angle l'image dévie de la droite verticale
a la surface de l'ean, et quel en est le plus grand écartement,
En. différentiant cette équation, on en tire

[dy _  »2yh)3—3m2xzy
dz  mimie3n:(x—g)(y+h)* ’

\ N d .
a la surface de Peau, —d{; devient la co-tangente de Pl'angle que

" 13 ‘ . . - .
fait la droite avec son image ; mais , én ce point , on a z=g,
y=o0; donc, en désignant cet angle par ¢, on aufa
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ng3 m2
Tang= — = — Tang.% ;

n3p3 ns

en posant — =Tang.: ; formule qui donnera les mémes conséqu ences

que son analogue (17).

Le point ou le plus grand écartement aura lieu sera donnd
par le systéme des deux équations

n(e—g)y+2) =mzy ,
3wy Iy =mia
d'ot l'on tire, par division,

comme nous V'avons trouvé (17) pour le premier cas; la valeur
correspondante de x sera donnée par I’équation du troisitme degré

4m*z’—gn*l*(3—g)=o0 ;

équation qui peut avoir ses {trois racines réelles , mais dont
deux doivent éire étrangéres a la question.

3o0. S'agit-il, au contraire , de I'image d’'une droite horizontale;
donnée par I'équation
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Y=k,

Téquation de cette image sera

.

) mx )z
k=nygl~[n(7+h) % ’

ou bien

n‘/r’(y—l—ﬁ)‘?:y.‘{n’(y+lz)*—-—m’x‘ } 3 ;

A} T

s=x Ttybh) i (L) ()

équation d'une courbe symétrique par rapport & la verticale qui
passe par l'eil, ainsi que cela doit étre.

31. En raisonnant comme nous l'avons fait (23), on trouverait
- facilement que cette courbe a deux asympiotes , exprimdes par

ou encore

Léquation

z= = (y+h) 3

mais ; puisque nous nous sommes convaincus que cette manicre de
raisonner est fautive , substituons-lui , comme nous l'avons fait
alors, un raisonnement plus rigoureux. Par la différentiation , on
tire de l'équation de la courbe '

df mV‘:(ny)
2_y—— )

3
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d'olr il suit que I'équation de la tangente , en un point ( 2/, y’

/—+ 72)

ayl=—h ¢ k )}
3y \ny’

oo~

)

AY
J:

.’L‘-—-x*) L]

Y=y

Si, pour savoir & quelle distance de Dorigine cette tangente coupe
Paxe des g, on fait, dans son équation, 2=o , il viendra , en

VI_ ( ny’ )I;
=2 Gr)

transposant,

—y/+_

En mettant, dans cette formule , pour 2/ sa valeur

a=t =D = (5 )

eile deviendra

( k
I

ny!
P %;h(ny )';

y=y'—y'+h).

==yl ( Y+ 1) ( ) —

( ny ) 29 =k
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Or, & mesure que ¥/ deviendra plus grand tendra sans cesse

2y/—h
3y’
!

. 2 '} A 7 .
vers la fraction 75 et, comme d’un autre coté —‘Z- augmentera

sans cesse, la fraction qui multiplie y/4-/% , dans le second terme
de la valeur de y, tendra sans cesse 3 devenir 'unité ; donc, cette
valeur de y tendra sans ‘cesse & se réduire a

y=y'=(y/+hy=—"h ;

donc™ , elle deviendra telle, en effet , lorsque 4/ sera infinie.

Ainsi , la courbe a réellement des asymptotes , donndes par
'équation

x=i%(y+iz) ou y+71=j—r3-x;

d’ou on voit que ces asymptotes passent par I'ceil du spectateur
et qu’elles sont leés mémes pour les images de toutes les droites
paralleles & la surface de l’eau , puisque % n'entre pas dans leur
équation. De plus, langle que font avec V’horizontale les asymp-
totes des hyperboles dont les développées sont les caustiques des

. . . n .
différens points visibles ayant pour tangente + —, il en faut con-
. m

clure que les asymptotes dont il sagit ici sont perpendiculaires
a celles-la (*). '

™ Il se présente ici une sorte de paradoxe qu'il est nécessaire d’expliquers
L’équation '

32,
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32. On pourrait encore se faire ici des questions analogues
) . » ' . °
celles que nous avons indiquées (19) ; mais, pour les mémes rajsons

:’i"f.
r=_1 m(?"’*"ﬁ) ’

des asymptotes de la courbe image d'ume droite horizontale n’étant autre

ehose que ce que devient I'équation

z=t = (y+7) 7/1-—(_”’; )

de l'image elle-méme , lorsqu'on y fait k=—o , il parait s’ensuivre que ces asymp=
toles sont l'image d’une droite situde a la surface de l'eau. D’un autre cété,
une telle droite, se trouvant dans le méme milieu avec I'ceil , ne semblerait
avoir d’autre image qu'elle-méme ; enfin, il serait absurde de dire que lI'image
de la ligne de niveau est un augle qui a son sommet & DPeil , puisqu’alors
il s'ensuivrait que I'image de la partie de cette ligne , comprise dans langle,
se trouverait abaissée, ce qui ne saurait élre.
Toutes ces diflicultds s’évanouissent en recourant i léquation non résolue de
Iimage d’'une droite horizontale. Nous avons trouvé, pour cetle équation,

n’f&z(},_i__/l/(i:__yz{ﬂziy._i_ﬁ)z_mzxz}3 ,
et, lorsqne k=0, elle se réduit a
y{n(y+hy—mz* =0 ;

elle se de’com&nc}se donc alors en ces deux ci

Tom. XI.
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que nous avons données alors , nous ne mnous y arréterons pas, et

nous nous bornerons seulement 3 observer que , tandis que , lors-

que l'eil est dans l'air , l'effet de la présence de I'eau est de di-
minuer & la fois la grandeur et la distance des objets p1°“8é5
dans ce fluide, il arrive précisément le contraire lorsque ces objets
sont dans l'air, tandis que I'eeil est dans leau.

33. Nous terminerons par traiter briévement nos deux problemes
dans toute leur généralité, c'est-a-dire, en ewbrassant 4 la fois les

trois dimensions de l'espace; et d'abord occupons-nous de leur ré-
solution graphique.

~

34. Soit conduite par D'eil une verticale , ct par cette verticale
soit conduit un plan vertical quelconque sur lequel soit tracée

la caustique répondant a4 un quelconque des points de cette
droite.

Cela. posé, veut-on I'image p d’un point P quelconque de l;éc-

pace, ou le point P dont un point donné quelconque p de l’es-
pace est I'image ; par l'ceil et par le point donné on conduu'a un
p}an verhgal qu/on nnag\nera ‘tourner ensuite autour de son ml:er-
section .avee. le. premier , jusqu’d. ce. qu’il se confonde avec lui ,.
en entrainant d'ailleurs le point donné: dans: le mouvement. On
appliquera alors. les méthodes données (9, 10, 26) A la recherche

y=o, = =(y+1) ,

~

dont la premiere a lien dans toute l'étendue de la valeur de x, tandis que
la seconde n’a lieu que jusqd’au niveau de leaun. La partie d'une droite située
a la surface de l'eau interceptée entre les asymptotes sera done vue asa véri-
table place, tandis ;]ue ses prolongemens , de part et d’autre , seront vus 2
la fois & leur véritable place et sur ces mémes asymptotes.
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du point inconnu qui, entrainé de nouveau avec le plan mobile,
se trouvera i sa véritable place , lorsque ce plan aura lui-méme
reprls sa situation pnmmve.

35. Au moyen de ce qui précdde , on pourra donc tracer par
points, soit I'image d’une ligne droite ou courbe plane ou i double
courbure ou méme d'une surface courbe donnée et situde d’une
maniére quelconque dans Vespace , soit la ligne ou surface dont
une ligne droite ou courbe plane ou A double courbure ou méme
une surface courbe donnée et située d’'une maniére quelconque
dans I'espace est I'image ; on pourra donc , en particulier, résoudre
graphiquement la derniére des deux questlons proposées & la page
288 du X.® volume de ce recueil.

36. Dans le cas particulier ol c’est une surface qui est donnée,
si c’est une surface de révolution dont I'axe soit vertical et passe
par Dceil , il est évident que la surface cherchée sera exactement
“dans le méme cas, 1l suffira donc de deduire la génératrice de
‘Tune de celle de I'autre, ce qui ramienera la question a un pro-
bléme de géométrie plane.

37. Occupnns-nous présentement de la réselution’ algébrique des
_mémes problémes. Prenons la verticale qui passe par I'eeil pour
Paxe des z; par son pied , faisons passer sur la surface de Ieau
_deux droites fixes quelconques, perpendiculaires entre_ elles , que
nous prendrons pour axesdes z et des y ; soient P un point quelconque
et p son image; soient désignées par X, ¥, Z les coordonnées
du premier et par z, y, z celles du second ; ces deux points
seront avec I'ceil dans un méme plan vertical. Prenons lintersec-
tion de ce plan avec la surface du liquide pour axe des r; soient
pour ce plan Z, R les. coordonnées de P , et soient z, r celles
de p; soit enfin désignée-par %, soit la hauteur de T'eeil au-dessus
‘de la surface du liquide, soit son enfoncement au-dessous ; nous
aurons (15, 28) - '
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m2 r 3
R=r+ —
= n? z zoEh ’

Z:’nz{xi[ - ],F;

n(z5=h)

les signes supérieurs ou inférieurs devant &tre pris; suivant que
Peeil est au-dessus ou au-dessous de la surface du liquide. Mais
on a évidemment

X4-Y:=R, xa_l_yz:r: , Xy=Yzx ;

Rz R
X= — , =-—‘—y-

r r
il viendra donc, en substituant,

m?  Z(x24-y?)
X=x§ I — 2 ,

- n2 (z‘_—':h)3

Y=4)1+ 2.2. fﬁ”ﬁﬂ
=¥ — T GEhe y

Z=nz) 1+ 2 e v Sl E
— nr (zzph2y

38. 81 donc une surface courbe est donnde par I'équation
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F(X,Y, Z)=o0;

en'y mettant pour X, ¥, Z les valeurs que nous venons d’ob-
tenir , 'équation résultante en x , y , z sera celle de I'image de’
cette surface. A l'inverse, I'équation

f(z, ¥, z)=o0,

étant donnée comme celle de l'image d’une surface inconnue ,
pour avoir I'équation de cette surface, il suffira d’éliminer z, y ,
z entre cetle équation et les valeurs de X, ¥, Z en =,
¥,

39. Puisque , donner ou chercher une ligne droite ou courbe
plane ou 4 double courbure , c’est donner ou chercher les deux
surfaces dont elle est I’intersection; il sera toujours facile d’obtenir, par
ce qui précéde , soit les deuw équations de I'mage d'une ligne
dont les deux équations sont données , soit les deux équations
d’une ligne dont I'image est donnée par ses deux équations. -

fo. Nous avons vu ( 17 3 18 , 29 , 30) que l'image d’une droite ,
soit verticale , soit horizontale , située avec I'eil dans un méme plan
vertical , est généralement une ligne courbe; or, une ligne courbe
ne saurait étre un cas particulier d’une ligne droite; puis donc
qu'une droite verticale ou horizontale n’est qu'un cas particulier
d’une droite inclinée, on en peut conclure qua plus forte raison
Pimage d'une droite- situde d’une maniére quelconque dans un

i3

méme plan vertical avec Dl'eeil , est généralement une ligne
courbe. J
$1ais une droite située dans un méme plan vertical avec 1 cejl

n'est qu’un cas parhcuher d’une droite située d’une maniére quel-
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conque dans Pespace ; donc pour la méme raison que ci- dessus,
limage d’une ligne droite, de quelque maniére qu’elle soit située,
tant par rapport & I'eeil que par rapport 2 la surface qui sépare
les deux milieux, est généralement une ligne courbe (*).

Nous terminerons en .observant qu’il y a une différence  trés-
marquée entre la maniére dont nous voyons les poissens et celle
dont ils nous voient. Lorsqu'en effet nous regardons ce qui se
passe dans une eau claire, et point trés-profonde , nous pouvons
-apercevoir , autour de la verticale qui passe par notre ceil , tous
les objets qui ne sont pas trop loin de nous et leurs images ne
sont que peu déformées; en un mot, notre situation par rapport
4 ces objets différe peu de ce qu'elle serait si le liquide n’existait:
pas. Pour les poissons, au contraire , les images des objets situés.
hors de l'eau se trouvent toutes renfermées dans lintéricur d'un

coéne droit ayant son sommetd l'ceil et son axe vertical, et dont
Pangle générateur est d’environ 48°.22/ Les poissons se trouvent donc
dans le méme cas vque s'ils étaient placés au fond d’un fossé creusé.
en entonnoir. En outre, pour peu qu'un objet soit voisin de la
surface du llqmde éloigné de laxe'du cbne 4 son image , d'ailleurs
tres-applatle, se trouve _ presque sur la surface du céne et 3 une
immense distance de son sommet , de sorte qu elle doit presque
échapper i la vue et paraitre extrémement déformée. Les poissons
ne peuvent donc voir d’'une maniére bien  distincte que les objets

(*) Cest donc une erreur de supposer , comme paraissent le faire la
plupart des physiciens, que , lorsqu'on plonge” en partie et obliquement dans
Yeau un béton rectiligne , la partie plongée se présente & P'ceil sous un aspect
rectiligne , différant seulement en direction de la parlie siluée hors de 'eau ;
La Fontaine a donc été fondé a dire:

Quand l'eau courbe un biton, ma raison le redresse ;
et il se serait exprimé d'une maniére moins exacle , il edt dit : quand l'eau
brise , etc.
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peu élevés au - dessus de l'eau et peu distans de la verticale
passant par leur ceil (¥).

(*) Un des juges de M. Lentheric s'est cru fondé & infirmer ces conclusions
.par la cousidération que l'ceil des poissons n’est pas conformé comme le nétre ;,
mais puisque , dans ce que nous avons dit sur la maniére dont nous voyons
les poissons , nous n’avons supposé autre chose , sinon que motre ceil était
eonformé pour voir dans lair ; il s’ensuit que , pourvu que I'ceil des poissons
soit fait pour voir dans l’eau? ces conclusions doiven; éire admises,
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QUESTIONS PROPOSEES.
Problémes de Geéomeélrie transcendante.

L QUELLE est la courbe plane qui jouit de cette propriété que,
si un angle d'une grandeur donnée et invariable se meut sur son
plan de manitre & lui étre toujours circonscrit , ses cotés formeront
avec la sécante passant par leurs points de contact un triangle cons-

tamment semblable & un triangle donné?

IL. Quelle est la surface qui jouit de cette propriété que , si
un angle triedre donné et invariable, mobile dans T'espace, lui est
toujours circonscrit, ses faces formeront avec le plan mené par leurs
points de contact un tétraédre scmblable & un tétracdre donné?
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ANALISE TRANSCENDANTE.

Meémoire sur lintégration des equations lin€aires;

Par M. Henxrt GERNER ScHMIDTEN,

[a Sla Vi Vi V. Vo Yo Ve Yo -]

L’INTtGRATTON d’une équation différentielle ne consiste , 3 proprement
parler , qu'a trouver la fonction la plus générale qui satisfasse i
Iéquation proposée ; et des cas particuliers peuvent seuls donner nais-
sance i des questions relatives 4 I'évaluation de cette fonction. Pour
résoudre ce dernier probléme , il faut, en eflet, absolument con-
natire la valeur arithmétique de chacune des quantités dont se
compose la fonction dont il s’agit; et alors il faut avoir autant de
méthodes d’évaluation différentes qu’il peut y avoir de relations diffé-
rentes entre ces mémes quantités.

Dc 13 nait I'impossibilité de donner des méthodes d’évaluation
qui soient propres & des équations générales , ainsi que celle de
parcourir 'infinie variéié des équations particuliéres qui peuvent s’y
trouver implicitement comprises ; d’ou il parait naturel de conclure
que l'unique moyen d'avancer cette partie de Danalise et de sur-
monter les difficultés qu’elle présente, est de trouver des méthodes
propres a développer la méme fonction sous plusieurs formes
différentes , parmi lesquelles on puisse choisir celle qui conviendra
le mieux & chaque cas particulier. Ces [onctions doivent d’ailleurs
étre aussi simples que la nature des équations qui leur donnent
naissance peut le comporter ; et les séries qu'elles forment doiverit

Tom. XI, n.° IX, 1.°* mars 1821. 36
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en outre offrir une loi facile 3 saisir. La méthode qu'offre la
série de Taylor (jusqu’ici la seule géncrale que nous ayons ) n’étant
d’ailleurs applicable qu'a des cas trés-particuliers ; comme il est
naturel que les intégrales se compliquent, de plus en plus , &
mesure qué les équations sont plus générales : on se trouve fondé 2
considérer I'intégratinn des équations non linéaires comme surpassant ,
généralement parlant, les forces de Panalise.

Soit , en effet, y une fonction d’un certain nombre de vanables
indépendautes , donnée par l'éguation différentielle

o.y=Ff.y ;

9.y étant ume fonction qui contient les cnefﬁcien§ différentiels ou
aux différences- de l'ordre le plus élevé qui soient dans I’équation
érﬂposéé , et [y étant une autre fonétion quelconque des variables
indépendantes des. cocfliciens differentiels ou aux différences; on
aura Uéguation intégrale

;—,sxgn;ﬁant la fonction .inverse de ¢ ; et X étant la fonction la
p'us générale qui satisfasse & l’équaﬁon 2. X=o0.

Au moyen de cette relation implicite , on trouvera fatilément la
vileur explicite de y, par des substitutions successives ; ce sera

y=X4— X+ ~f(X+ % [(XAervnrnn

Maintenant , il se peut que chaque substitution rapproche cette
série de la véritable valeur de y; ‘mais il se peut aussi qu’elle Pen
€loigne ; et alors on devra donner une autre forme d la série j ce
qui est toujours possible d’autant de maniéres differentes qu'’il ¥
en aura de partager I'équation emre les deux termes o. yetf.y,
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‘On  voit gependant- que la valeur de ¥ restera; en général ,
trés-compliquée , a moins que ¢.y ct £.9 nc soient lindaires: par
rapport a y, ce qui embrasse déja une classe d’équation  trées-
étendue et trés-importante : celle des dguations linéaires.
. On a, dans ce cas, '

I I I b § I T
y=Xt St 2 f(-a I‘X>+ . f(—; f( EfX)>+..... :

et je me propose d’en exposer les principales conséquences, en
commengant par la partie la plus simple, qui sert .en méme
temps de base au reste.

§. L

Des éguations différcntielles & deux variables.

Le résultat le plus général qu’on ait obtenu sur.ces équations;
est lc théoréme de Lagrange , au moyen duquel on sait ramener
I'équation la plus générale a une autre qui ne renferme pas de
terme indépendant de la fonction inconnue. De plus, on intégre
sans difficulté , par des fonctions exponentielles ou algébriques les
équations de la forme

da™ daxn—1 xh—~2

dn 1 dn~ d
_y+ y+5 EARTE +gé;—+/zy=

dl{y- (]n-—xy i dn-—-zy

dan x dx"“ x2 dxn—3

dy h
S APPRURS S-S A TIPS
x

xh—1 dx

et par des intégrales définies celles de la forme

(00 i Ox) dx" +(a‘+5 x)d 7 o— +(‘7:+5 x)d He=2 +'"+<{’"+le$) O3

mais les méthodes qu'a donné Euler pour intégrer les équations ,
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par l'introduction d'uné nouvelle variable , ne s’emploient avec succes
qué lorsque les intégrales en sont dejd données par des séries ; et
Ton n’a pas ‘de moyen direct de trouver la forme de la scrie qui’
satisfait 3 une équation proposée.

Drailleurs , on voit facilement qu'en général il doit étre impossible
d’intégrer une équation sous forme finie , puisqu’il n’y a qu'une
suite infinie qui puisse embrasser, dans sa généralité, toutes les
sortes de transcendantes que Vintégrale peut comporter , et dont
un pelit nombre seulement a- été introduit dans le. langage.
anahuque.

Si 'on savait transformer lequatlon proposée en une différentielle
compléte , on la ramenerait ainsi & une autre d’un ordre moins
élevé ; et , en continuant de la méme manitre, on parviendrait
enfin & Pexpression générale de la fonclion inconnue, I s’agirait
donc de mettre I’équation proposéé

dny

dn—1 y d"‘—ﬁy
dx® P

il inad +""+M”"'

dans laquelle P, @Q,......M, N sont des fonctions de &, sous
la forme

b d’<X" d. / X, d .
de Xn—1 do ("”' _)E:E; X. dx< 'J’))---;))-—

X, X,, X;,.....X, étant des fonctions de z qu’il faut déter-
miner en eﬂ'eclu:mt les différentiations , et comparant ensuite les
coefficiens A ceux de lequatlon proposée.. Cette méthode conduit
4 un systéme de n équations simullanées , et toutes non lindaires ,
3 lexception de celle-ci

C o aXx dx, . 1X
P= L et . -
X.dx X,dx Xydx

et par conséquent beaucoup .plus difficiles 4 résoudre que ’l'équaf
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tion proposée. Ces opérations ont quelque analogie avec celles que
Pon fait, avec tout aussi peu de succés, sur les équations algé~
brijues des degrés supérieurs, a une seule inconnue , dans le dessein
de les résoudre. Cependant on est parvenu, par des considérations
particuliéres, & présenter, sous forme finie, les racines des quatre
premiers degrés de celles-ci 5 mais il faut observer que cela ne
s'exécute qu’au moyen de transcendantes particulicres pour chaque
degré, auxquelles, a raison du fréquent usage qu'on en fait, on
a cru devoir affecter des symboles particuliers , qui leur donnent,
du moins , quant aux notations, lapparence de fonctions finies.
Ainsi, par exemple, la racine quarrée est déji une transcendante
4 I'égard de la racine de Iéquation du premier degré; de sarte
que l'on ne doit chercher, par aucunc analogie , & présenter I'in="
tégrale de I'équation du second ordre sous forme finie, au moyen
des fonctions exponentielles qui représentent , en général, celle du
premier ordre. En' effet , si I'on compare les quantités X, , X,
avec £, Q, dans I’équation du second ordre, on aura

dX, dX, d. dX, - 4dX, JdX,
P—‘= ~ a1 Q: — + — - 3
X,dx X, dx dx X,dx Xde X,dx

en posant donc

ax,
Xdx

:z'

ec qui donne
—— g Pzt =
dx +" Q b]

si I’on fait ensuite

il viendra
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& o p Y Lo
- +P — +Q)’r_'-o ) gx)

cest-3-dire I'dquation proposée. En faisant, au contraire ,

X,
X,dx =Z%>
on aurait
dz dP
& ~PerE= -
d'olt, en posant,
_ Y
- ydx ’
on conclurait
dzy dy dpP
——P — — — — Ps 2
dx2 dx + Q dx y=o ( )

Ainsi Uon fait dépendre I'équation (1) de (=) ; mais ce résultat n’est
que trés-particulier, et ne donne pas lieu & d’autres tranlormations ,
attendu que le méme procédé, appliqgné & (2), reconduit a (1).

On pourrait encore former des équations par les quantités donndes
X,, X,, X; .e., comme on forme des équations algébriques au
moyen de leurs racines ; mais ces recherches ne conduisent qu'a des
cas particuliers et peu utiles. Cependant , il nous sera facile de
découvrir les cas les plus généraux ou la détermination des quantités
X, X, , X, s, dépend seulement d’opérations algébriques. 11
nous suffit pour cela de considérer I'equation du troisiéme ordre ,

pour laquelle on aura , en employant les notations de Lagrange,
les relations suivantes :



LINEAIRES. a%5

Xx
o X;X'.> (X X/) sz',)/ |
¢= X;( X X + X2\ X, g
= (%5 ( x Y
=% )
I faut donc, par exemple, quon ait
X’ X,l T c
5(—:- =65 dou X,=5,X,"°

on aura de méme

X,=85,X";

Z,, ¢y, b,y €y e btant des constantes, On doit encore avoir
X (X Xy )l__ C4 X2X,l>’
X\ X/ T XX

X, 04(”2““)_""(";"‘1) Xty
.X/[ 1—04 X;

l’équalion

qui revient a

— -

¢, étant une nouvelle constante. ‘Posant done

c4(ra=—1)=(c3—1) _

—aJ

1""'54
on ausa

X,{X",:/z, et Xx=(g+(3~+1):r)a—_'ﬁ,

forme qii devient exponentielle, lorsque y=—r,
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Cette forme est seulement deduite de la considération des deux
coefficiens ; mais on trouvera facilement que, pour un ordre quel-
conque , la relation entre les quantites Xy X,y X5 ooy que
nous avons établie, réduira chaque coeflicient & une quantité algé-
brique , multipliee ou non par une puissance de la variable indé-
pendante telle que Veaposant est toujours —m , celui de la diffé-
rentielle correspondante étant n—m. La détermination des quantités
inconnues dependra, en tous cas, d’une équation du degré n;et,
si Pon sait résoudre celle-ci, on a I'integrale de I'équation

dn), a dn— Ty L dn=- 2y

dat x dan—1 ' xa dan-2

+ot 2 =X,

eu de celle-ci

dny dn=1y

@ g +15 2 L Fotay=

comme on le sait depuis long-temps.

On voit ainsi que l'introduction des quantités X, , X, , X; ,uu;
auxquelles, par analogie, on pourrait donner le nom de racines,
ne facilite l'intégration que dans des cas particuliers, et qu'il faut
modifier le procédé pour obtenir des résultats généraux. En obser-
vant que la determination d’'un nombre 7z de ces quantités que nous
appellerons pour un moment racines , conduit 4 une équation de
Yordre m ; on pourrait partager I'équation proposée en deux parties,
A chacune desquelles on donnerait la forme de différentielle par-
faite , par le moyen d'équations des deux ordres m et n—m. En
effet, soit I'équation proposée

all dll— 1 y

dx,, dx“" z

+ Qs ook My=N

on lul donnera la forme
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X,,, d» kx ~y dw ( % ff: jw \Jf;;!';:zy>) }>

g (kS 20).),

“~“n~m Allbm-

et faisant, pour abréger, le second membre =f(y), on aura l'in-

tégrale géndrale.

y=a,ta, 240, , 2+ . coii Fay,, 2"

(~ n-m nem X,
+aJ)}I d"xn~m+am_‘l'/:ll— -}-{—: dammtr g
n-m Xm- ' ‘ n
-a, ff Xuf(y)da"

y Opay > Guez e @y 6tant des constantes ; de' sorte' que, si'l'on

a
n
représente “par  la partic indépendante de¢ y , on aura

r=tf S5 f S o
ES 5SS STz S oS o)

Comme on peut choisir 722 & son gré, on peut trouver un grand
nombre de formes différentes , par le seul changement de cette
quantité; et Pon trouverait une infinité de formes différentes , en
partageant autrement l’équation proposée. Par exemple , si I'on savait
la partager en deux du méme ordre, dont chacune fut facilement
intégrable , on lui donnerait la forme

Tom. XI. 37
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X d. X, d. d.
X" dx ( ll—l dx (“" E -Xi (X }’))"">>
X d. Z,, d. - d. Z, d.
=N+._Z-,: dx Ly i dw (.m_(i—< Z, dx ly)) >)

et Yon en trouverait 'intégrale compléte de deux maniéres. Ces re-
cherches n’ont, comme l'on voit, aucune difficultd; et c’est pour
cette raison que jo ne m’arréte pas i discuter les formules géné-
rales, dont l'usage sentendra beaucoup micux par des exemplés
particul ers. -

Quoique lon’ ait), dahs ce qui précéde, une mdthode ‘générale
et directe pour trouver , d'une infinité de maniéres différentes,
lintégrale d’une équation proposée; on trouve encore de grandes
difficultés relativement & P’évaluation de cette intégrale , sur- tout
lorsque l'équation est d’un ‘ordre un peu élevé. .

“Foutefois - cette. méthode embrasse sous un seul point de vue
toutes. celles qui ont été données jusqu’ici, et résout., d’une ma-
niére satisfaisante , un grand nombre d’équations qu'on ne saurait
Intégrer sans son secours , ou»,du'"x:noins dont on n’obtiendrait I'in-
tégration que par des !étonnemen‘svplus on moins. heureux. Au
surplus , aprés avair présenté les intégrales sous la forme de séries,
on .peut tenter d’employer la méthode d'Euler, pour les ramener
a des.intégrales définies , mais ces recherches étant de leur na-
ture trés - pa:ticulieres , ce ne saurait étre ici le lieu de s’en
occuper.

Je vais maintenant appliquer ces principes généraux a ]’équation A
du premier ordre , dont la forme est

4
’é";"‘"P[}’:Q ?

d’ou l'on formera celle-ci:
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X

d. ~
% @ Kn=¢

~e

en comparant; on aura

ax, )
o =P

dont’ l’intégrale est
X,=a-+/PX dx

i

c’est-a-dire ,
X, =a(14~/Pdzx+ [P [Pdz*~4/PfP[Pd2’*4=:...0...) ;

a étant une constante arbitraire; et , aprés avoir trouvé X, , on aura
c + 1 fX Qd
= — o — x
Yy X, X, 1 H

¢ étant une nouvelle constanteggmais l'intégrale n'en contient pour-
tant qu’une , attendu que @ disparait dans le second terme.

Telle est donc l'intégrale compléte la plus simple de I’équation
du premicr ordre, et 'on voit qu’elle se présente nécessairement
sous la forme d'une série infinie , & moins que l'on n’adopte quel-
que nouveau symbole pour représenter la valeur de X,. On trouve,
en effet,

X, =a

d Pdx)2 Pdx)3
PRSLL LTS,

t 1 12 1.2.3

ce qui revient
JSPdx
ae ’

suivant le signe qu'on a adopté pour la fonction exponentielle,
qui est la transcendante la plus simple qui , en général , puisse-
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représenter l'intégrale de I’équation du premier ordre. Malgré cette
forme , qu'on a employée avec beaucoup de succés , on trouve
encore des difficultés trés-grandes , et méme insurmontables , 2
évaluer les intégrales de cet ordre; et si U'on observe combien ces
fonctions , que V'on connait sous le nom de guadratures, sont li-
mitées vis-a-vis des intégrales des ordres. supérieurs, I'on doit sat-
tendre 4 d’autant moins de succés pour l’évaluation de ces derniéres.
formes. Aussi, je ne m’occuperai presque pas des équations supé-
rieures au second ordre qui me conduiraient & des résultats satis-
faisans que dans des cas trés-particuliers ; et d’ailleurs les applications
les plus importantes de lanalise-ne conduisent, en général , qu'a
des équations du premier ow tout au plus du second ordre.
L’intggrale générale de I'équation du second ordre doit étre re=
gardde comme unme transcemdante irréductible , qui ne #abaisse aux
quadratures que dans des cas trés-particuliers ; mais ici je me pro-
pose seulement de dévelepper quelques-unes des formes générales
les plus remarquables qu’on peut lui donner; et alors les cas ol
elles sont susceptibles de simplification se montrent facilement.
Soit I’équation

dzy +P +Q y=nR;

on. peut lui donner la forme

'sz';% X, —'(X y))—

Mais nous avons déji observé que, dans ce cas, la détermination
des racines X, , X, méne & une équation de la forme

dy
=i "+(Q"“ y=os

ou 3 une autre qui est ce que devient la proposée , dans le cas
' de



LINEAIRES, 281
de R=o. Nous avons donc trés-peu gagné , et par conséquem,
nous mettrons de préférence I'équation sous cette forme

1

X, d;: ) E—Qy »

qui donne

Pd
X,=e‘f * ’

et ensuite

d
y=ao+”./_5{i f/%fXdeZ‘"fs;‘fXxQJ’dx’ ¥

a, et g, étant des constantes! arbitraires. En posant done

\dx ‘ 4 .
ao+af 3{——;:/' < ﬁX,dx =
il viendra
y.—U-—-f fX QUd.T"‘l- ""—'/X Qf j.X QUdzb—" esterne

On trouve une forme qui est quelquefois plussimple en posant
P’équation

a&, ‘
= i Xy)+X,y=R ,

d'olt, en comparant,

dX, P X,
X 2 7 et xga =
ou
Pax P dp
X,:c/‘ y X, =Q—=— -
4 adx

En intégrant, on aura

Tom. XI. 37 3is.
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X,y =a,4-a,a-}/*X,Rda*—/*X, X{yda" ;
d’ou, en posant

a,4-a, 24/ X, Rda*=U
on tirera

y= 3('_ (U—/X,Udz' 4L X, X, Udst—f X, fX, +X,Udz5-...)

Si les fonctions P, Q sont soumises ala seule condition de rendre
X, égale a une constante ¢*, on trouve facilement

y=—§:{8in\(ux+ﬁ)+5in.o "ﬂ—:ﬁ; ﬁn.cxxlﬂdx”}

« et g étant de nouvelles constantes arbitraires.

On pourrait encoreparvenic 3 un grand nombre d'autres for-
maules; mais, ces recherches n’ayant aucune difficulté, d’aprés ce
qui précéde, je ne donnerai plus qu’un seul exemple , dontI'em-
ploi devient néeessaire dans des cas particuliers, comme je le ferai
voir ensuite. En mettant I'equation proposée sous la forme

dy dy _ d2y dy
o TP o trer=rdes (S e g;'i‘%)’) ’

et supposant dailleurs que chacun des deux membres s'intégre
facilement, on fera

Xz dx ( X: (X‘y))"r"'zz (z A (‘"7'))

d’olr
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@ e X, d
=z +3J % ek ) < i

) 4 Xx X;S do
+x ?c:fz, w7 = (Z 0)‘*’“

représentant ensuite par U la partie indépendante de 5, on aura

y=Ut o f = (3 (z U))dx

On verra facilement que les grandes difficultés attachées & cette
méthode tiennent principalement aux signes d’intégration, lorsque
les fonctions X, , X, , X, ,.... sont un peu générales ; mais on
trouvera , en méme temps, qu’il doit nécessairement y avoir de
ces signes dans l'intégrale compléte , qui ne saurait sans cela con-
tenir des coustantes arbitraires. Donc, §'il y avait des questions ou
Yon n’etit besoin que d'une intégrale particuliére, on parviendrai¢
bien plus aisément a Pexpression de la fonctien inconnue , en met-
tant 1’équation sous la forme

R ¥ d. dy
Y=9 T a:(Xx 3;),

Pg
X,=ef * ;

dens laguelle

en ciaployant alors les notations de Lagrange , on aurait

= ’Q"""' ( (Q/>+QX1/X(QX/X( D))"

1l scrait facile aussi de présenter un grand nombre de formes
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pour les intégrales des équations supérieures; mais les raisons que
j’ai données plus haut me les font passer sous silence ; et je vais
m'occuper de quelques exemples particuliers qui sont plus propres
2 montrer l'usage et Iesprit de la méthode.

Nous avons vu quelles sont les équations les plus générales qui
s'intégrent immédiatement , sous forme finie, par des fonctions ex—
ponentielles ou par des puissances; je vais faire voir maintenant
quelle est P'équation la plus générale dont Tintégrale se développe
par une ou plusieurs séries de puissances ascendantes ou descendantes
de la variable indépendante. - .

Pour cela, il faut que l'équation soit réductible i la forme

—rp

L el TR
z Az (

o,y

( x“xy)’)’.....)’)’ '

b - P “ Pt I
=uz 43z ﬁ"(xﬁ” o '((.71:'s p'(x" Y )Y s
d’olt l'on trouvera facilement

—y — -1 — ~j-2 e a t §
Y =ctu® f'l-cfl"' ¥ B o7 +°'"+51
axb"-ﬂ

\-'- (b+“n+l)-m.(b+u"+n)

-y g

d x‘l““fﬁ...fx‘.*-d"-_ﬁ"(xp"_p"* e (xﬁly)’ we)/)da® ;

par des substitutions successives, on aura n-f1 séries, dont cha-
cune, divisée par une certaine puissance, procéde seulement sui~
vant les puissances ascendantes de z*. Pour abréger, et attendu que’
toutes ont la méme forme, je n’en développe qu'une seule , savoir ;

—ty J‘(,B,,—n.—-n-}-l)(ﬁn- g = ep=n—42). (Br=—az;)
Cu¥.
a g ! + (“,""'“|+"-n+ 1)(‘";1 EH "'"“[+‘-.”+2)'0u‘ *



LINEAIRES, 285

2 { At ) (A t—a ) () e

- (o~ 2e =@ =11 )ers 28{0, =~ =5 =111 ) o0 *

En commengant I'intégration par rapport au second membre de
Iéquation , on obtiendrait 71 séries semblables , qui procederaient

suilvant les puissances descendantes de a®. On trouvera d’ailleurs

facilement que I'équation revient a celle-ci :

A;-+Bxt dn—ly

dn
(00+Boxs) (_1;;_7’; -+

x dan—x
-} At B,z dimry cere A——-—"+B"xiy=ax” 3
x2  dan—a an ?

Ag s A3 A, 500004, B,,B,, B,...... B, étant des constantes.
Pour le cas ol n==2, on a présenté l'intégrale de cette équation
par un procédé qu’il ne serait pas difficile d’étendre 3 celle-ci;
mais encore , dans ce cas , la méthode directe a des avantages ,
comme je le ferai voir par un exemple. Soit I'équation trés-simple

dey o« dy 3
— — et Yy =
dx2+x dx ez Y=z
on aura
' O+2 ) ;
. a, 1= T - — . yu dag? »
r=a—int Temerem U P
d’ou

Y gl_ pz¥+2 + pz2?+4 _
y=a Gttt o §

=+

aox:-agl— Bxy—[—z + ﬁ:xz‘y+4 _
G213 | 2 @r A to-aGrts-— )
Tom. XI. 38

J —cy,
[
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+ 5x3+z { L ﬁxy_'- 2
(42) (et 44 (4434«

/S’x’y"‘ 4 2
- — b
D ErF40) (Ot rtato) 3+2r+a+5)

ce qu'on trouverait aussi par la méthode des coefficiens indéter= )
minés; mais, dans le cas ol «=1, on n'y reussirait pas; car alors
il s’introduit des quantités infinies dans la serie , ce qui annonce
un changement de forme ( Calcul des fonctions, lecon XVIIL) ;
il s’agit donc de savoir quelle est la forme de la valeur de y qui
répond & ce cas; or, on trouve alors

x3\+2 1 - yt-1
y=a,—a,Log.z+ i(——a*-{.z)z-‘ﬁj/’?ﬁ yda® ,

c’est-a-dire ,

Y42 2 g 2944, 3,376
y={(a,}a.Log x) % — 22 i LA B }
GE2)2 T 12n(rta2x 1,22.32(y42)8
A g
27 210542 | 31225 (427 {
) z:1$3+7. % . g7 ﬁ’m"y“'" §
(r+2) Otr+4)? Gt @G4r+6:

)

Ay A, .00 dtant des constantes qui se détermineat par 'équation
< - ¢

+7r
An-i-x:n Apt2,

n

d'on

2

»4n=n2 n+1 H

¢e qui denne.
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A=2, A4,=6, Ad,=11,;, A4,=3,.....;

Cette équation se recommande particuli¢rement & vaison de I'appli-
cation 4 la physique qu’elle peut offrir. Si, en effet, on y suppose
y=o0, $=0, on obtient celle qui détermine la figure d'une large
goutte de mercure abandonnée a elle-méme sur un disque de verre
horizontal ( Yoyez le Supplément @ la théorie de l'action capillaire) ,
et a laquelle M. Laplace satisfait par une intégrale définie , sans
constante arbitraire , qui revient a la derniére des séries que nous
venons de présenter. L’on voit que la difficulté consiste seulement &
trouver la forme que prend lintégrale cherchée; car , aprés cela,
les coefliciens se déterminent aisement par la méthode des diffé-
rences, comme M. Lacroix I'a présenté ( Traité des différences et
des séries, pag. 216 et suiv. ).

Je wn’ajouterai plus qu'un seul exemple qui suffira pour éclaircir
les principes , qui n’ont d’ailleurs aucune difficulté ; et 'on verra
qu'éen général les équations , qui ne sont pas trop compliquées, ont
déja des intégrales trés-prolixes; c’est pourquoi je me bornerai seu-

)

lement & faire voir les formes que celles-ci doivent avoir , et &
indiquer la marche qu’il faut suivre pour déterminer les coefliciens.

Soit donec I'équation

dzy dy __ /7
'E,_x: o -(-1-; —(56’3"—[—08”}3/' 14

on aura
y:ao-i—ale_mﬂ- fe_m jeux( beﬁx-}— cevx)ydx’ »
d'od
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56‘ﬁx bre2Bx m
4+ 8 0 s 00 008 s b 14 max sece
o B(B+=) + B 2B(B4e)(264=) + -+ mot”

g
cev* 3 L. V beetTENT + . fam= ‘01411,1‘9 [(m~1 )ﬁ+?]x+....

Yort® | et | v(v+e) , Gt BTyt
—a e + +
7’ o ¢ +7.27\y+u)(27+“) 88 ¢ v 0 0 s s s e o s 06 21 800 o0
—-I-b’"""c"Am,,.e[(m‘”)/s"' "y,
+.....ll.. . s o
+£m‘4meem?x+ Teres
( )
beﬁx 5zgzﬁt
I +....n-.-.--v.----'-ooa.....
+ B\f—a) + B.2B(Lmmc)(2f—2)
ce¥* {1 1 bretBr1x
ae'“ e s e 100 s s et o s e e .
Fa, { +7(7-“) +lﬁ<ﬁ—-u) +7(7-—¢) (B9 (BFr—=) ?
ra,,z‘yx =
y.zy(y_“)(gy-u)’l-'......'...'...'..“...‘... 1

ot il faut remarquer que chacun des termes de la derniére séiie
se deduit de son correspondant dans la premiere, par le simple
changement du signe de « Quant aux coefliciens A4, , , Amy1 s e Am m»
ils se détermuincent , en geueral , au moyen de |equation

4"1 "+ 4”’5""'!
L —n, (1) 3 b @ Lr—n) (a1 ) 7]

Am+‘:"+ 1=

dont Pinte'rat’on entraine deji des calculs assez Jongs. On pourrait
maintenant tenter de ramener les series obtenues A une forme finie,




LINEAIRES. 389
par des intdgrales définies; mais ces recherches, comme je I'obser—
verai , sont d'une nature trés-particuliere ; d'autant plus que la
me hode d’Euler exige tonjours que les constantes satisfassent A
certaines conditions arithmétiques , au défaut desquelles elles ne sont
-pas applicables.

Il faut observer que Vintégrale précédente devient incompléte
lsisque w=o0: car-alors les deux serics sout identiques, et I'inté-
greie doit par conséquent chénger de forme. En effet, on trouve

pour ce cas

y=a,+a. x4 [/ (b +ce¥*)ydz?

ce qui introduit nécessairement des puissances de la variable indé-
pevdante. Le cas de s=o0 ou de =0 annonce aussi un changement
de forme ; car alors I’équation proposée prend la forme trés-simple

{  m —m
dfe 7"&((1(" )xv\} =ce(y+m)xy ;
da?

\
ce qui réduit 1’intégrale 4 des séries & simple entrée.

Mais un autre cas donne lieu & des calculs trés-compliqués ;
savoir: celui de g+y=o0 ou y=—ps, pour lequel il ’introduit dans
Pintégrale des puissances de la variable indépendante , dont les coefli-
ciens ne sc déterm-nent que par des équations aux différences finieg
3 trois variables. En effet, pour ce cas qui se présente aussi sous

1a forme,

y=a,ta.e" b fe**Sin.(sx+p)yda? ,

Ia premiére des sérics que nous avons trouvées devient, abstraction
q ,

faite du multiplicateur «,,

Xl b2 Bx

eveiet B g2 mhs
BEtm p.zﬁ\,5+w)(2/3+u)+ T+ am o0

1~
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-
ce— Bx 2ber
-+ +

B(Bta)  a(fi—al)

+nu+5:m~ xc(AzM,x,o"i"‘A;m,; t x)e’(m“' 1)8%

oo 2%
S Bap(B—a)(2p—a)

s S T
+6m5m(Azm,m,o+Azm,m, 1 &+ "+Azm,m,m~7m)
+5m”5m+'(‘4:m,m+:,o‘l‘AzIn,m+t,xx+'--+Azm,m+:,m-:)e-zﬁx
e T
+01mA=m’:m,°e—- 218

N A T S
H—b"”c(AzmH,,’o+Azm+l’l‘,x‘e(“"“«"‘+. e e e .
e T T S S T
+M+t5m(-4:m+ 1 ,m,o+Azm+ ,m, $+-.-+A;m+ 1, mm®)ef

+bm5m+ ' (A 2Mm=fa tm4=t ,0+Azm+ 1,1 ,1 $+---~+Azm+ 1ym4-t ,mxm)e.—ﬁx'!'“‘:‘
+ - . - . . . . [ . - - - . . . - . [ - LY . . . -

:“'bczm(dzm-l-:,zm,o'l“f’zm-[- tytm ‘.z‘)e(""”mx-i- e s & e & & » & @

+0""+¥A3m+:,zm+x,oe'(2m+‘)ﬁx+ T e e e e e

®1
L]
.
.
.
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On trouvera que I'équation aux différences finies ; d’ou dépend'
la détermination des coefliciens, devient assez compliquée, quoiqu'elle
ne soit p:s difficile a former ; et que les difficultés de son inté-
gratian , qui’ tienvent sans doute & la nature du probléme, consistent
principalement dans I'extréme longueur des calculs. C'est pourquoi
je me dispense dentrer ici dans le détail de ces opérations, q‘ui
n’offriraient d’ailleurs aucun principe ou artifice de calcul digne d’étre
remarquds , et qui ne pourraient conséquemment mériter de l'intérét
que par les applications.
Les principes que j'ai exposés au commencement de ce mémoire,
et que je viens d’appliquer al'intégration des équations différentielles,

conduisent aussi 4 celle des équations aux différences finies , ainsi
que je vais présentement le faire voir.

§. 1L
Des équations aux différences finies & deuz variables.

Les équations aux différences finies &- aenx variables peuvent
ére envisagées sous deux points de vue , dont I'un répond pro-
prement au nmom qu’on. leur donne,. tandis' que l'autre les repré~
sente comme exprimant les relations entre. des valeurs successives
d’'une méme variable. Cest sous ce dernier point de vuoe que La-
grange ( Calcul des fonctions, legon X VI ) les'a considéréesi comme
érant. dfune natare tout-k-fait.différente de celle des: dquations diffés
rentielles. Aussi oette forme conduit-elle aux résultats les .plus gé-
nérgux et les plus wutiles. qu'on, puisse obtenir. €ependant:,:ik e
sera peut-8tre pas inutile d’exposer ceux qu’offre laspremicre formes

soit- pour choisir , dans. des cas particuliess , celui,gui. convient le
" micux A Lobjet qu'on.a en vue, soit pour. réunir:sous. un! pomtds

vue unique des. méthodes qui , au premier aspect , ' pourraiens
sembler différentes.



292 EQUATIONS

" Dans ce cas, on -peut envisager la différence et lintégrale finie
comme des fenctions lindaires de la différentielle et de [!'intégrale
qui y répond ; et cette relation a donné lieu & une infinite de
formes créées par l'analogie, et puis rigoureusement vérifies par
des considérations générales, Mais , comme ces recherches sortent
de mon sﬁjet, je me permets seulement d’exposer ici une liaison
entre la diﬁ(érgl}tielle et la differcnce , qui correspond parfaitement
3 celle qui existe entre les fonctions expouentielles et les puissances ,
indépendamment des expressions en séries,

En effet, si I'on -observe que l'équation

.

dn(enxy) — n. dy n(n=—1) dzy
Tdan ¢ {}’+ 1.2 dx +_T.;;— dx2 ....; i

par la supposition de n= o, se change dans celle-ci:

1 d"(e""‘y) . 1 “d2y 1 diy
nten®  dg" = +'<_ o2 dacl+ 1.2.3 -(-1;3—+"“

qui revient &
1 d"(e""r)

nhenx’

"3'+Ay ;

on trouve que la génération de cette derniére quantité a beaucoup d’ana-
logie avec celle de', e"f—-( +z)u, n étant =&g.

Comme les intégrations aux différences finies sont , en général
beaucoup plus difficiles & effectuer que celles aux différentielles ;
on verra que la méthode générale exposée au commencement de
ce mémoire s’applique , avec d’autant moins de succés , aux équa-
tions qui nous occupent présentement , que la considération des
valeurs successives, qui réduit l'intdgration a des éliminations, offre
des résultats plus. simples et plas généraux. c’est pourquoi ]e ne
traiterai que brievement de cette espéce d’équations.

Soit done l'équation
Aﬂx
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Ayt PA ™yt QA™ g+ oMy =N ;

on en aurait I'intégrale compleéte, si 'on pouvait trouver » quan-
titds X', X/, X, .w. A®™, qui satisfissent & I'équation

A(X(n)A(X(n—— 1 )A(..A(X/_}’)..))) :—; X,(”).X,("‘ 1 )"._X//n__ I_X/'l N ;

Xm étant =(1-4A)"X, suivant les notations adoptées. Mais on
s'assurera facilement que la comparaison entre les coefficiens res—
pectils de Am™='y  Am=2y .. conduiraient , en général, A des
équ-lions trés compliquées, et par conséquent , qu’il faut laisser
un ot fusieurs cocfliciens indélerminés suivant le méme procédé
que wous avons employé plus haut. )

Liéjuation . sreniier ordre s'intégre, en général , sans difficulté.
Seit , en efiet,

Ay+P,y=Q. ;
en faisant

AXP)=XQ. ;
on aura, pour déterminer X/ » I’équation

x
1—P,

]

AX'=(AX'+X)P,, ou X, =

d'olt l'on tire, en prenant les logarithmes et intégrant;

x /=e—2Log.(1-Px) ;

ce qui revient A
A=—1
X'=[1=P,_,] ;

suivant la notation de Vaudermonde.
Maintenant , on trouve aisément

Tom. IX, 39
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N1
y= - - 2.Q.[1—P, ]
[I Px—l] [I'—Px:.i'
« étant une fonction dont la différence =o.
L’équation du second ordre ne s’intégre que sous la forme d’une
série infinie; et, pour les raisons que j'ai développées plus haut
je me bornerai 3 un seul exemple. Il faut d’ailleurs observer que

cette équation s’integre d’une maniére trés-élégante par les frac-
tions continues.

Seit donc la proposde
Ay+P,Ay+Qy=E, ;

en fera
A(X A_y)

—~—+Q.y=18,,

ce qui donnera X
AX x=1
X =P, o X'=[1—P,]

.
2

et 'on aura

z

Faisant dong la partic indépepdante de y égale & Z, pn trouvera

y=2Z == X’ 2X,Q.Z4% ——EX’ Q.= —ﬂ- EX Q. E e
Un exemple trés-simple est
Ary=(a—1)Ay+cby

on a, pour ce cas,

/s

, e
y—o+Zua" " B E —

et, en supposant « et g constagtes,
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chn c2bax
-+
(b==a)(b=—1) (b2=a)(b2==1)(b~a) (b=—1)

y=s §x+ + . }

i

B

aa*—1 g cb* c2hox

!+a(ab—l)(b-—-l) +a"'(l;aa-l)(l')‘—l)(ba—x)(b;—x) +u-.§ -

a=—1
Cctte intégrale change de forme lorsque b=a,e=10u b=1; et,
dans ce dernier cas , on s’assurera aisément qu’elle se réduit 3
la forme finie, comme toote équation linéaire a coefficiens constans,

1 faut encore jeter un coup-d'ceeil "sur les équations qui ren=-
ferment & la fois des differences et des différentielles par rapport
3 la méme variable. ‘

§. IIL

Des éguations auzx différences mélées & deux variables.

L’équation aux différences mélées de Il'ordre z renfermant en
général (n=-1)*~41 termes, je ne considére ici que celle du pre-
mier ordre, dont lintégration comporte encore de grandes diffi-
cultés. Il est d’ailleurs facile de s’assurer que lintégration d’une
équation quelconque , & coefliciens constans, dépend seulement
d’opérations algébriques.

Soit donc l’équation du premier ordre

Y & =S ;
A ae +P-Ay+QAE' +B,‘y—5n ’

il faut ticher de la rendre en différences ou en différentielles
complétes ; mais on verra qu'en général cela est impossible ; car
la forme la plus générale quon puisse lui donner est

d,
A (Mx ‘dx”> ,
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par laquelle on ne saurait satisfaire a trois conditions. En effet;
en comparant , on trouve

A de
dNn-I-l — A. A(Mx x) = x dx
Ny do £ Mx+le+l Myt Ny ®*

On tire des deux premiéres

Pd !
.,-Na-m--j ’9 M,N,= [I'—'Q....Tj. ’

, pour satisfaire & la derniére relation, il faut mettre I'dquation
sous la forme

v
A{M ) § =M, N, (P, +(Q-—1)P,.-. Byly »

d’ott on tire, en représentant par 7, le coefficient de y dans
le second membre,

«dx

. ¢ 1 dx : 1 dx
y= TV:+-}J: "“+'_"" EzMx+le+xSn:|"E 17,_,;2-7’,}',

¢ étant une constante , et « une fonction telle que Az=o0. Si ensuite
on représente par Z la partie indépendante de y, on aura, en.
- sous-entendant les indices,

—Z4 L f"ETZd"""‘ / Lz T f' L STZdz v

On trouve facilement une seconde forme générale , en mettant
I'équation proposée sous la forme d’une différenticlle compléte ;
mais , dans tous les cas , la succession alternative des signes f et
= soumet ces formules générales & des difficultés qui font ressortir

les avantages des travaux de MM. ont et Poisson sur le méme
sujet. ‘
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Aprds avoir développé les principales conséquences des principes

généraux , relativement aux équations & deux variables, il me reste
maintenant a traiter des équations aux différences partielles.

§ 1V.
Des équatz'ofzs lindaires auz différences partielles.

Parmi le petit nombre des résultats généraux auxquels on est
parvenu , relativement & l'intégration des équations linéaires , il faut
principalement remarquer celui qui raméne l'intégration d’une équa-
tion quelconque a ne dépendre que de celle d’une équation quine
contient pas de terme indépendant de la fonction inconnue. Cependant,
on ne sait que rarement intégrer immédiatement, sous forme finie,
une équation a plusieurs variables , pas méme dans les cas analogues
4 ceux ou lon intégre les équations & deux variables , par des
fonctions connues, comme , par exemple , lorsque les coefficiens
sont constans. L’introduction de mnouvelles variables conduit quel-
quefois & des résultats satisfaisans , qui sont pourtant trés-particuliers,
et exigent le plus souvent que l'intégrale soit donnée en série in-
finie , seule forme A laquelle toute intégrale soit réductible. On
sait que la série de Taylor donne le moyen d’intégrer les équations,
soit & deux, soit & plusieurs variables ; mais nous avons vu qu’cn
général elle est inapplicable a celles-la, et- 3 plus forte raison 2
celles-ci. C'est pourquoi on a formé des séries qui procédent suivant
des différentielles ascendantes , forme beaucoup plus avantageuse et
toujours possible , & ’exception de quelques cas particuliers, ana-
logues a4 ceux ou la série de Taylor se trouve en défaut; mais,
quelque élégans que soient les résultats obtenus par cette méthode,
on peut se demander si elle conduit toujours aux formes les plus
simples des intégrales, qui se développent, comme on sait, d’une
infinité de maniéres différentes. Il est donc important d’avoir une
méthode générale et directe pour cet objet, et c’est une telle mé-
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thode que je me propose d’exposcr suivant les ‘principes établis
au commencement de ce mémoire ; mais il faut commencer par
la discussion du cas ou. I'équation sintdgre immeédiatement sous
forme finie,, ou du moins par celui o son intégrale se ramene a
celle d’une équation du premier ordre; et I'on verra ainsi pour-
quoi on ne peut obtenir cet avantage que dans des cas particuliers.
Supposons , pour abréger, qu'une équatton de lordre m, 2 n
variables indépendantes , conticnne les variables indépendantes dans
tous ses termes ; elle renfermera , en généfal , un nombre de coeffi-
ciens exprimé par

’ m-f1 mif2 m-3 m<-n

» — ~ —

1 2 3 n ?

et il 's’agira de lui donner telle forme que Pon parvienne i I'in-
tégrale compléte par lintégration de m équations du premier ordre ;
mais chacune de ces équations ne 1enfermant, en général, que 2
coefficiens , il n'est pas possible d’introduire , de cette manicre ,

plus de mnr quantités indéterminées dans I'équation proposée ; et,
3 moins quon n’ait

m1 m42 m-}3 m-n .
mn> — - S »~ + —_2,
o7 I 2 3 n

il devient impossible d7’y satisfaire , en général. En effet,

si on
fait , pour abréger, '

dz

+Pm dz +..--+Pm,"2=D[Pm,n7 z] ’

\

Prs 3 Pm,y yeus Py, étant des fonctions quelconques des variables
indépendantes ; on formera I'équation

D[Pm,u ? D[Pm—l,n H D[""‘D[Pl,"’ Z].....]]]:O 4
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qui renferme mn quantités mdetermxmes. Dans tous. les cas par-
ticuliers out elles satisfont aux coeffitiens de I'équation proposée ,
on sait ramener celle-ci 3 des équations du premier ordre. Il est
d’ailleurs facile de voir qu’un terme indépendant de z ne changerait
en rien ce procédé. Mais I'équation a dcux variables est la seule
qu'on puisse toujours mettre sous cetle forme , quoique la déter-
mination des quantités P, , Pn_, ,,... méne, en général i des
équations plus difficiles a traiter que la proposée elle-méme , ainsi

que nous Vavons déja vu; mais I'équation générale du second ordre
n

a déj n -n%l conditiens de trop ; et plus les ordres sont élevés,
et plus aussi le nombre des conditions surpasse celui des quantitég
& déterminer. Pour satisfaire i toutes les conditions, on mtrodmt
souvent avec succés de nouvelles variables , par rapport auxquelles
on obtient alors des intégrales définies on indéfinies ; mais, le plus
souvent, ces recherches conduisent a des équations plus difficiles
que celles qu'on sétait d’abord proposées. 1l faut d'ailleurs ob-
server que , pour le cas des coefliciens constans , les quantités .
P,,, Ppey, i e prennent les mémes propriétés que de simples
facteurs , comme 1’a fait voir M. Brisson.

Maintenant , aprés avoir observé combien sont particuliers les cas
oll une équation s’intégre immédiatement sous forme finie , je vais
reprendre le principe général , pour exposer les principales modifi=
cations qu’il doit subir pour devenir applicable aux équations par-
tielles, et, en particulier , 4 celles qui ne renferment que deux
variables indépendantes. Il s’agit seulement de partager 1'équation
de la manitre la plus avantageuse , .et pour cela, ce qui paraitls
plus simple est de détenminer autant de coefficiens que possiblé ,
par des équations du premier ordre , comme nous wenons de
Pexposer, et puis de transporter les termes indéterminés de Pautre
e6té, ce qui donne a l'égyation proposée la forme

D[Pm,n ’ D[Pznqx,n) D["\'?D’[Px’n ? Z] 'n-._-]]]:fz ?
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fz étant une fonction quelconque linéaire de z, ct le premier
membre étant du premier ordre par rapport a

D[Pm" 1,n)Y D[“"‘D[P:,u ) z]""']] .

On trouve facilement celle-ci, en fonction de fz, avec une fonction
arbitraire de n—1 variables ; et, en continuant ainsi,, on parvient
3 la valeur de z en fonction de fz, avec m fonctions arbitraires.
Soit alors

— , $
Z= .N+ ¢'\Z) )
on trouvera

z=N-+4o(N)+o*(N 4.0l

Il est facile de voir que les quantités Prny Proypyeeseeee se
déterminent d’une infinité de maniéres différéntes, et, par consé-
quent , donnent lieu & autant de formes différentes ; mais il est
impossible de donner des régles générales pour le partage de I'équa-
tien , et chaque cas particulier indique, sans difficulté, le partile
plus avantageux que I’on puisse tirer du principe général. Cependant,
il existe, dans tous les ordres, une classe d’équations qui donne
lieu & des considérations trop étendues pour ne pas les exposer ici.

Soit donc I’dquation

fz=o¢z ;

fz et ¢z étant des fonctions quelconques linéaires de z , telles seu—
lement que les coefficiens différentiels et les variables indépendantes
qui sont contenues dans la premiére ne doivent pas se trouver dans
la seconde. Alors on trouvera facilement qu'il est toujours possible
de satisfaire a l'équation par une série de la forme

AB, A A, B, A, By
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A A, , 4, ;.. éant sevlement fonctions des variables indé-
pendantes renfermées dans {z, et B,, B, , B, ,.... des fonctions
des variables indépendantes renfermées dans ¢z ; mais on voit, en
méme temps, que cette forme ne peut étre générale que lorsque
fz ou ¢z mne contient qu'une seule variable indépendante ; car l'in-
tégrale générale doif contenir des fonctions arbilraires de toutes
les variables indépendantes moins une , ce qui n'est possible ici que
dans le cas que nous avons indiqué. C’est pourquoi je suppose que
fz ne contient qu’une seule variable independante, et alors linté-
grale peut étre générale , comme on s'en assurera facilement par
le principe des substitutions successives ; mais aussi je ferai voir
quon peut satisfaire & l'équation proposée de beaucoup d’autres
maniéres. En effet, pour déterminer les quantités 4,, A, , A5,
B, B,, B, ,...,on na que la condition

A 0B 44,08} et AnBukeni= B.fA 4B £ 4 4 o A Bk .

Or , pour avoir lintégrale compléte, il faut avoir m fonctions
arbitraires , m étant l'ordre de Iéquation proposée ; il faut donc
absolument qu'un nombre m des quantités B, , B, ,... soient in-
détermindes , A4, , 4, ,.... étant senlement fonctions d’une variable ,
ce qui est impossible , & moins qu’on n’ait '

fA‘———O ’ fAz?—-o ,......-:..fAm'-_—'O 3

)

conditions qui introduisent m counstantes arbitraires , assujetties seu—
lement 4 ne pas rendre égales entre elles deux des quantités A, ,
A, .. 1l sagit donc seulement de satisfaire aux équations

A[¢B1=Brn_‘-‘ fAm+] ) AZ¢B2 =]}m+2f/4m+‘ ) *ssteaice
ce & quoi on parvient facilement en supposant

Bm+l=¢Bl ’ Bm+z=¢Bz 9 Bm+;=PB3 [ EEERERE I
Tom. XI. 4o
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et fAm+:=‘4: y fdny,=4. , f/!m—i-;:A; 9';":-"

les relations entre 4, , 4, , A4, , ... étant des équations ordinaires
de l'ordre m, pour lesquelles il s’agit seulement d’avoir une in-

.

, . I . . .
tégrale particuliére ; désignant donc par n la fonction inverse de f,

on aura ainsi

1
'Am“l-l-: TAI ’

et I'intégrale compléte

2= A BA-A, Byt enevo.dAnB,,

¢B, . ';‘ A.}oB,. -E—/]z+....+tpb’m.~;- A,
+ ¢2BL';: Ax+¢sz '% A;+--.-...

+0'B, .o At

1 , . 1 .
@ et = étant la méme chose que oo et -f--}-,,-et ainsi  des

autres.

Par le théoréme de Parseval’, on peut encore ramener chacune
des sédries

AIBI+¢BI . %AI+¢’B!'%BI+"-OO ’

I I
Asz+¢Bz ) AZ+¢2Bz'fTBz+-'--- )

. . . . . . . . 0

3 ne dépendre que de celles—ci:
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At At At

B, 4eB.4o*BF.ioiin.,

dont la dernitre conduit & une équation & z—1 variables indé-

pendantes , la proposee en renfermant 2 ; mais les imaginaires que

cette methode ntioduit 11 1endent peu susceptible d’application.
On peut encore satisfaite a la forme

ABAA,B,4A4,B,Feu.......

de beaucoup d’autres m-mitres ;"ainsi , si l'on ne veut pas de
fonctions arbitraires , la- maniére la plus simple de satisfaire a
Pequation

BLA+4B 4, Fi=A,0B, A4, 0B ,F ..

sera de faire

BfA,=A,0B, , B,f4,=A, B, ..

or , ces €quations étant toutes semblables , il suffira de considérer
celle-ci :

BPfAr=dr¢Br » < v »

2 laqnelle on satisfera de la mani¢re la plus générale, en posant

LI SR 4
I

B.=c.0B: , f4,= - 4, ,

¢, #tant une constante arbitraire ; et l'on trouvera , en intégrant
ces équations ,

B,=I(), dA=II).
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Soient donc ¥, , ¢, , ... des constantes arbitraires, et €y, C,yin
des fonctions quelconq‘ues de celles-ci; on peut faire

2= C.T () TLe)HC, D6 ) T(e ) 5

ou , si I'on veut,
2=8CI'(c).XI(c) ou JSTe)I)elc)de ,

¢(c) étant une fonction arbitraire de o,

1l est sans doute superflu de faire voir la variété infinie qu’on
pourrait donner aux intégrales de I’équation proposée, en laissant
indéterminées deux ou un plus grand nombre de quantités A,,
B, ,.uqct en comparant de différentes maniéres les autres termes
de la série,

Il faut encore observer qu’il n’est pas nécessaire que les fonctions
fz et @z contiennent sculement des différentielles pour que les
méthodes précédentes soient applicables ; elles le sont encore , lorsque
ces fonctions contiennent des différentielles négatives , c’est-a-dire ,.
des intégrales ; mais ce cas donne licu & des observations qui ne
s’expnsent pas d’une maniére assez claire lorsqu’on demeure dans
les généralités, ainsi que je le fais ici; et, comme elles se pré-
sentent d’ailleurs d’elles-mémes assez facilement, je n’en parlerai
qu’en traitant, en particulier, des équations A trois variables; et
alors je ferai voir l'usage des facteurs pour ramener une équation
A cette forme, lorsque cela est possible. Je parlerai aussi , plus
bas, du cas oir les coefficiens sont des fonctions queleonques de
la somme des variables indépendantes. Je ne ferai ici qu'une seule
observation sur l’équation & coefliciens constans. Llle consiste en
ce que si l'on pose I'équation

fz=M ,

fz étant une fonction linéaire quelconque de z, a coefficiens cons=
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tans, et J une fonction quelconque des variables indépendantes;
en représentant par N la fonction la plus générale qui satisfasse

a I'équation
fN=o0 ;

on aura, par les principes qui ont été sufﬁsamment développés
par M. Servois ,

z=N+-:,—-M ,

» qui a la forme d’un polynome , pourra étre développée par
toutes les méthodes connues pour le développement des fonctions
purement a]gebnques ; et l'on parviendra ainsi directement d’aprés
ces principes, a tous les résultats de M. Frangais, -

Je vais présentement m’occuper de léquatxon 3 deux varxables
indépendantes , et, en particulier, de celle du second ordre, afin
d’éclaircir mieux les considérations génerales que je viens d’exposer.
En général , toutes les équations du premier ordre se raménent
a des équations ordinaires, et il serait ainsi inutile d’y appliquer
immédiatement le principe des substitutions successives , quoiqu’il
devienne nécessaire pour intégrer celle-ci.

Soit donc I'équation

d2z d2z dz
o t-— +y 3?3; Fiz=e

dxdy dyl

“«, 8, v, 3, s, 6 &ant des fonctions quelconques de & et y;
il s'ugit de lui donner la forme

du du
e P s u=1
= + 3 +Q »

em swpposant
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dz

_ dz ‘
= 'é'; +Pl_d;"+le .

Pour cela, en trouvera les conditions

dPn

—P4D,, #=PP,, 2 4P S PQAPLQ,

_:’Q_L_ . dQ:

s=0Q+Q, ; = Q. -

Or, comme’, en généfal , il est impossille de safisfaire & toutes
ces conditions ’, il est nécessaire d8 mettre l'equation sous unc
dutre 'forme oo

Fawsons , par exfémp{e R

by o0 ds B
e ‘%1;; :xzy‘ "'Fw )-i-- -}-gz_..e+»z 3
;
on 'pourpa toujoyrs déterminer 1. de maniére que toutes ces condi-
tions seient remplies, Apres avoir integie les deux equations du
premier ordre , on aura un resultat

z=U+4fz ,

o . . .
U renfermant deux fongtions arbitraires, et fz étant une fonction

linea re qui contient des signes d'integration par rappoit a z et y;

on aura, en congequence >
\ h 2

e=U+tU+CU4BU+. ... ;

mais on tombe souvent sur des difficultds insurmontables, sur tout
lorsque Dintégrition des equatons du premier ordre conduit & des
equations non lin€aires ; c’est pourquoi je considere encore equa~
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tion génédrale du second oidre sous un autre point de vue. Par la
methode que M. Laplace a mdlquee » O sait ramener toule cqua-
tion du second ordre & l'une des formes suivantes :

-

daz !
= A
e g s @)
d°z + . (B)
d.7::z IF da +q dy TZ==5 5 .

ot p, ¢, r, s sont des fonctions quelconques de z et ¥ qui se
deduisent des variables independantes de I'equation proposee par
I'intégration de deux équations du premier ordre.

Je commence par la premiere ; et, en faisant

Jpdy Jyd dp
e =n, e qy:mn,pq{—i;-r:p,

je lui donne la forme

dnz)
A )
y -

=m .

- =mns—mnezg

b -

On voit que cette équation s'intégre imniédiatement sous forme
finie lorsque ¥=o0. En supposant respectivement ¥ et @ fonetjons

arbitraires de x et y, et faisant )

' 4 I ? 1 T X
,;"'l"‘;./‘; d}"‘l";{f‘;ﬁnsdydx=7‘,
on trouvera
T Y b
e=T+ = f z ﬁmdydx ,

c’est-a-dire ,
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Y
z=T+— f - /r;andydx
<4 -}jf—:;- :f”:‘)‘y/::; %andy’dx’+..: (»)

1l est facile de trouver, pour cette intégrale, une infinité d’autres
formes plus ou moins simples ; mais je n’en présenterai qu'une
seule, qui est quelquefois préférable a celle-ci.

En faisant

— r x y
m=e -/ pdy , n:‘.:cf? dy , U=v¥4- m«pdx—*—ﬁf%dxdy ,

¢ et ¢ étant des fonctions arbitraires de y et de # respectivement,
on aura

d v dz
el W ey 9 dn2)
dy - n dy '’

d'ou

£V £ q d=aU)
=U— fn f o 5 dady (=)

La forme la plus simple qui intégre P'équation (B) s'obtient de la
maniére suivante : faisant

—/pdx _J 5y ¢ 1
n=e , s m=¢ F , U= ;-i-;;fsmdy ’

¢ étant fonction arbitraire de 2 on aura

1 dz

1 dmz d = —

— — n dx
m dy S=-n dx ?

d'on
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= / Z (2 )y
4 X /’”"( ( ( U’)))dy —

les dérivations se rapportant 2 x. Cette forme, quoiqu’elle con-
tieane sealement une fonction arbitraire n’en est pas moins générale ,
corme l'on sait; et il était facile de trouver une autre forme qui
en cootint deux. Pour cela, il fallait commencer lintégration par
rappert a .

Mawmtcnant , aprés avoir présenté des formes générales , pour
I'inté;ration des equations 2 trois variables, il peut étre intéressant
de discuer les cas les pins dtendus qui soient susceptibles de sim-
plificarion. Les meéthodes dout on se sert pour cet effet consistent
a introduire de nouvelles ‘variables , par rapport auxquelles on
obtient des intégrales , définies on indéfinies ; et les plus générales.
sont celle de Parceval et celle qux condult a lintégrale compléte
par une somme indéfinie d'intégrales particulitres. Cependant, ces
méthodes en laissent toujours & désirer d’autres , dans le cas ol
il est possible d’en avoir; aussi connait-on, pour certains cas par-
ticuliers, plusieurs autres méthodes fort élégantes.

Prenons I'équation

\

5;5}+de +r 5 dy - Hrz=o ;

.

P, g, r étant des fonctions quelconques de x4y ; alors on trou-
vera facilement , pour la forme (1), et en observant qu'en général

[ Medy =e="%f MU'y ,

qu’une valeur z=ue' satisfait & I'équation proposée , de méme que
Tom. XI. 41
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£=wtY | u et o tant des fonctions indétermindes de z-{y. Faisant;
pour abréger, z4y=¢, et observant que

du du du do  do do

E;—dy—ﬁ:’ dx dy de

en aura, pour déterminer z et @, les équations & deux variables
du du
Sy (4 p+9) W +(@ptru=o ,

e 5 ;Hgtnr=o -
En faisant
u=F(,1), ox=f(v,2),
¢t représentant par T, T, des fonctions arbitraires de #, on aura
z=/[c*TF(v, t)_dt-i-fe"'Tlf(w ,0)de .

Si la quantité¢ s, de la forme générale, édtait une fonction quel-
conque de ¢, on trouverait aisément que la série qui la renferme se
ramenerait & l'intégrale de I'équation

dv‘ +(p+q) — +rz-_s ;

sans constantes arbitraires. Il fant observer que ces -principes s’ap=

pliquent & une équation d’'un ordre quelconque , entre un nombre
quelconque de variables.

Soit I'équation

d2z _ dz " dz
dxdj—P _d;+£ “dy +iaz , (&)
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v, », w étant des fonctions quelconques de ¥, et ¢ une foncton
quelconque de z. Quoiqu’elle n’ait pas la forme fz=:oz, que nous
avons traitée plus haut, il est facile de la lui donner par des
facteurs. En effet, on a, par la formule (2),

dz o d(nz)
‘é_d; =m mn dy Yo

m et n étant des fonctions de y; et, par l'introduetion des fonc-
tions arbitraires et par les substitutions successives, on en trouve
facilement I'iatégrale compléte

==t f 2 byt St 12/;-—< / = = (agdy?

o fodz+/ f(de’.nf —"%- d(mn) s

séries qui se raménent & la forme finie, par le théoréme de Par-
seval et lintégration des deux équations du premier ordre & deux
variables.

On peut encore intégrer I’équation proposée par une infinité d'in-
tégrales particulieres , comme nous I'avons dit plus haut. En effet,
si I'on fait

z=XY , on aura Yg——an d(rnY) ,
d’otlt »

- dx /Y . .
Xia= =5 a2 )= 2 aeY) s

de 13 on conclura facilement, en substituant les valeurs dem et 2,

cv+w +
_X::g":fgdx Y= fc-—y )’ /cfédx-}- dy¢ c)dc .

?
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On ne peut, que dans un cas particulier, savoir , lorsque o==1}
appliquer & (4) la méthode par.laquelle nous avons reduit (@) a
une equation du second ordre a4 deux variables.

Pour donner un exemple de lintégration par d'autres mérthodes,
il faut nécessairement choisir unc équation moins générale. Je vais
employer les principes donnés pax‘/Egler, pour intégrer les équations
a deux variables et par lesquels on peut aussi intégrer quelques
équations partielles, sans les reduire auparavant a des équations
ordinaires du second ordre. Soit donc Lequation

«, B,y 6tant des constantes , et £ une fonction de z. Alors on a
2=V gday”f yPemY (yr¥/dy
+/ 8 yldary " yreny y X b ey (yrdyydy?
B
¥

tods +(u+7)(:-;/+ﬁ) ¢+2ﬁf£f§¢’dx’+....

+y°‘¢+

Maintenant il faut observer qu’entre les limites o et 1, on a
p”" ,. 3 ‘ - aense “ 1
J‘(I_tn)—"—tyig'i‘l/_" I dt= 7('}/.4-72) (y=-in) .
v+p)(rtp=+n)(y+ptin)

en supposant que les constantes sont telles que l'intégrale ne de-
vienne pas infinie entre ces limites, et que les mémes conditions
sont remplies dans le présent probléme. En faisant

u=0-41PyPfs0d x4 12Py>Bf ¢ [10d 2.,

on aura, entre ces limites,

L
S(1=2" ) ¥rde

G/([_uﬁ) ST ek T g
o o -
+( +?z(‘;—7 B)yzﬁ/f»/wdxz'*'"“
en supposant
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! ume VY 847 =18y s

= Sy w0 ¢dz ,

ou ¢ est la fonction dérivée de . pour trouver la valeur de la
premiére serie , on fera

v=3.4,7" ;

d’ou 'on conclura

o i (vm) (ytmt-p) a1
%y §y Ty e IR f St

et , en observant que

A yR edw__

= 128y et Ry s
et faisant de plus
A o
-~ ——=F
./(I—tﬁ)__—;:ty*_m T "

on aura

S.Bmymf( L _tﬁ)—' i%‘yt?-l-nh :eir’a_'}’l?fidx:E.Amg }'m‘l' mﬁf—"::’-ﬁrm+%dx+w}
et en faisant

2Baym=T()t  ¢=TI(z) ,
on aura ensuite

o=ty B a5 oy s

Vintégrale étant prise entre Z=o0 et /=I.
Prenons encore 1'équation
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d2z dz dz
il e

2, #; v; o &tant des fonctions quelconques , les deux premicres
de z et les deux derniéres de y. Alors, en faisant

nz::ejc%—qy R n::ffgdx’

on aura

=Y S G EEN

Par le théortme de Parseval, et i)ar la méthode générale exposée

plus haut, on réduit cette série a l'intégrale d’une équation ordi-

naire du second ordre; mais, dans un cas assez étendu , elle se

réduit a2 la forme finie, par la méthode qu'a indiqué M. Laplace
( Journal polytechnique , cahier VIII).
En effet, lorsque ==n*, on a

== ST GEEN)

et, si 'on donne a la série

e S v ;(i i ( (‘ o))+

la forme
i fndz+4) ,

c'est-3-dire d’une fonction arbirraire de fndx--« ; em observant
que, entre a=—® et a=-4 o, on a

fe"“zszydu= 1.3(24==1)

V=, /e"”zuw"“du=o s

on trouvera facilement que lintégrale de l'¢équation
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dz n3 dz dz
— - 2y 3 ~
Freialieall i LA

ok 7 est une fonction quelconque de 2, devient
z=8-fA"Ldyjé‘“’f(fndx+24Vf.‘1l) de ;

I'intégrale étant prise entre a=-—= o et «=-} cr.

Dans ce qui précede, je crois en avoir dit assez pour éclaircir
le principe duquel je suis parti ; et il me parait superflu d'y ajouter
plus d’exemples et de développemens, sur-tout pour les ordres
supérieurs , qui doivent naturellement avoir des intégrales trés-
compliquées ; & moins que les équations ne soient trés-particuliéres;
les raisons que j'ai déduites plus haut me dispensent également de
traiter des équations aux différences finies & plusieurs variables. H
est d’ailleurs impossible de donner des régles pour les cas parti-
culiers qui admettent des simplifications dans les méthodes géné-
rales ; mais ces simplifications se présentent d’elles-mémes sans
difficulté. Depuis long-temps on se sert du principe des substi«
tutions successives , comme d’une méthode d’approximation , fondée
sur des valeurs particuliéres des quantités qui entrent dans I'équa-
tion proposée ; et on I'a employée, faute de méthodes plus rigou-
reuses ; c’est pourquoi je me suis sur-tout atiaché & I'exposer sous
un point de vue qui doit la faire considérer comme la seule mé-
thode générale qui existe pour lintégration des équations ; j'ai tiché
ensuite d’en déduire les principa]és conséquences , indépendamment
de la nature particuliére des fonctions quon a introduites dans
la langue analitique, par des motifs le plus souvent étrangers a
cette branche de l'analise ; et , conformément aux idées de M.

Lacroix ( Cale. diff. et intég., tom, 11 , pag. 576 ), jai indiqué
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les classes qui ont des propriétés communes , et qui jouissent de
Pavantage de se ramener & d’autres plus simples. Jai, plus d'une

fois, observé que, dans certains cas, on parvient plus brievement

au but par des considérations particulicres ; mais il n’en est pas

pour cela moins nécessaire , suivant la remarque de l'illustre La-
gronge , de généraliser et -de réduire les théories , 3 mesure que la
science s'étend et senrichit de procédés nouveaux.

e cionin
——

QUESTIONS PROPOSEES.

Probléme d'analise indéterminée.

QJurL est le plus petit nombre zon premier qui rende la formule
2"—a2 divisible par#n?
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GECMETRIE ELEMENTAIRE.

Construction géométrique dun cercle qui en touche
trois autres donnés sur un plan ou sur une sphére,
d'urn cone droit qui en touche trois aulres de méme
sommet , el dune sphére qui en ltouche qGualre
autres dans [lespace ; ‘

Par M. PoxcerLer , capitaine au corps royal du génie,
ancien ¢leve de l'école polytechnique. (%)

[o i S, W, U, VL W Vo 0 ¥

J ’APPELLE points homologues directs ou inverses, relativement i
dcux cercles tracés sur un méme plan, et a 'un quelconque de
leurs centres de similitnde , deux points de leurs circonférences
qui, étant situés a la fois sur une droite passant par le centre de
similitude dont il s'agit , apparticnnent a deux arcs dont la cour-
bure est dirvigée dans le méme sens ou en sens coniraire, par
rapport 4 ce centre de similitude. D'ou il suit que les rayons menés

(*) Les constructions dont il va &tre question sont celles qui ont €€ annoncées
2 la page 82 de ce volume. Nous avons pensé qu'elles pourraient offrir un
rapprochement curicux avec ceiles de M. Durraude , insérées également dans
le préseat volume ; el, a notre priere , lantear a bien voulu nous les

communiquer.

J. D. G.
Tom. XI, n.° X, 1.%* avril 1821, 42
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3 deux points homologues sont ou ne sont pas paralleles, suivant
que ces points sont directement ou inversement homologues. -

En conséquence de ces définitions , deux arcs, deux cordes ,
deux tangentes, elc., appartenant respectivement & deux cercles,
seront directement ou inversement homologues , suivant que leurs
extrémitds ou points de contacts seront des points de I'une ou de
Vautre espéce.

On voit, d’aprés cela, que, pour un point, un arc, une corde ,
une tangente, etc., donné sur l'un des cercles, il ne correspond
jamais sur Pautre qu'un seual point, un seul arc , une seule corde,
une seule tangente, etc., duquel on puisse dire qu’il est son homo-
logue dc I'une ou de 'autre espéce , du moins relativement an méme
centre de similitade,

H est facile de voir , au surplus, que les cordes et tangentes
homologues sont ou ne sont pas paralléles , suivant qu’elles sont
directement ou inversement homologues; ou, en d’autres termes,
que les cordes et tangentes directement homologues concourent sur
la corde i l'infini commune aux deux cercles, tandis qu'au con-
traire les cordes et tangentes inversement homologues concourent
sur la corde & distance finie commune 3 ces deux mémes cercles,
C’est-a-dire , sur leur axe radical; ce qui présente un moyen fort
simple de construire cet 'axe par de simples intersections de lignes
droites.

Toutes ces définitions et toutes ces remarques peuvent étre fa-
cilement étendues , avec les modifications convenables , A deux
cercles tracés sur une sphére , 3 deux cdnes droits de méme som-
met, & deux cylindres droits dont les axes sont paralleles et enfin
a deux sphéres. On pent méme les étendre 4 deux courbes planes
ou & double courbure et & deux surfaces courbes , soumises ou non
3 la loi de continuité, pourvu qu’elles aient un centre de similitude.

Les choses ainsi entendues, voici comment on construira un cercle
qui en touche trois autres, donnés sur un méme plan.

goient‘C , C/, C” les trois cercles donnés , et soit d’abord
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déterminé celui des quatre axes de similitude de ces trois cercles
qui répond a Pespéce de contact qu'on se propose d’obtenir ; cet
axe contiendra trois des six centres de similitude , les seuls dont
il sera question dans ce qui va suivre.

Soit pris arbitrairement un point M sur la circonférence de
C (*); soit M’ le point inversement homologue 3 M sur C’/; soit
M’ le point inversement homologue & M’ sur C/ ;-et soit enfin
N le point inversement homologue & M/’ sur C.

S'il arrive que M et N se confondent , M, M/, M” seront les
points de contact du cercle cherché avec les trois cercles donnés ;
de telle sorte que, par le simple tracé de trois droites, on aura
réduit le probléme A faire passer un cercle par trois points donnés.

Si les points M, N ne se confondent pas, en les joignant par
une droite , cette droite ira couper I'axe de similitude en un point P
qui sera invariablement le méme, quel que soit le point de départ
M; et la polaire de ce point P, par rapport au cercle C, cou-
pera ce méme cercle 3 ses points de contact avec les deux cercles
cherchés.

On pourrait, par un semblable procédé , déierminer les points
de contact de ces deux mémes cercles avec les cercles C/ , C/;
mais il est clair que , si 'on détermine sur ces derniers les cordes
respectivement homologues & celle qu'on aura déterminée sur C,
elles joueront , par rapport & eux, le méme réle que celle-ci par
rapport & €, et de plus concourront avec elle en un point qui,
comme on le sait deja, et comme il résulte d’ailleurs de ce qui
précéde , sera le centre radical des trois cercles domnés , ou le
point d’intersection unique de leurs trois cordes communes deux &
deux.

La méme opération, répétée pour chacun des quatre axes de

(*) Pour plus d’exactitude pratique , il convient de choisir pour C le plus
grand des trois cercles donnés.
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similitude, donnerail les cordes et les points de contact qui appar=
tiencent aux huii circonférences tangentes aux proposés; mais , si
I'on remarque que la polaire du centre radical, par rappor: alun
quelconque des cercles proposés, rencontire les guatre axes de si-
militude en des points qui sont précisément les poles des quatre
cordes de contact qui apparticnnent & ce cercle, il sera beaucoup
plus simple, uae fois quon aura ohtenn, par la construction qui
précede , le centre radical ct les premitres cordes de contact, de
s’en servir pour délerminer simultandment les systémes des trois
avtces. Ces diverszs constractions n’exigent d'ailleurs que l'emploi
d’une simple régle, quand on aura la convaissance préalable des
centres dg similitude, ou seulement celle des cantres des cercles donnés.
Si, au lieu de sarréter , dans la construction ci- dessus, au qua-
tricme point N , trouvé sur G, on continuait, de la méme maniére,
3 chercher son homologue inverse N/ sur C/, puis T'homologue
inverse N/ de celui-ci sur CG”, puis enlin 'homologue inverse de
ce dernier sur C; cc dernier point serait, dans tous les cas, le
point M de départ lui-méme ; les six dreites tracées d’apres les
conditions qui précédent , et qui se trouveraient dirigées deux a
deux vers les trois centres de similitude que l'on considére , for-
meraient donc naturellement un hexagone fermé, dont les sommets
opposés appartiendraient deux a deux 4 un méme cercle, et dont
les trois diagonales varieraient de position en méme temps que le
point de départ ou premier sommet , en pivolant respectivement
autour de points fixes , placés sur l'axe de similitude correspon-
dant; ce qui offre le moyen de construire simultanément et d’une
maniére symétrique les trois cordes , et par suite les six points de
contact appartenant aux deux cercles tangens relatifs 3 cet axe de
similitude. Il est en outre bien digne de remarque que les six
sommets de I'un quelconque des hexagones ainsi construits sont, &
la fois, sur une méme circonférence de cercle ayant l'axe de si-
militude correspondant pour corde commune avec les deux cercles
tangens au proposé qui appartiennent a cet axe, ‘
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Les constructions qui precedent ont Vavantage d'¢ire fort simples,
puisqu’etles wexigent que le tracé de lignes droites et quelles
dispensent de construire les cordes communes ou les axes radicaux
qui appariieonent aux trols cercles proposés , combinds ceuz a
deux. On peut méme évitér emploi direct des axes de similitude
au moyen du procédé qui suit:

Ayant choisi, & volomé,“trois centres de similitude , situds en
ligne droite, et appartenant aux trois cercles dounés combirés deux
a deux; prencz sur 'un d’eux G une corde quelconque; cherchez
son homologue inverse par rapport & C/, puis 'omologue inverse
dc celie ¢ci par rapport a C#” , et ainsi de suite, en procédant
censtamment dans le méme ordre. Aprés la sixicme opératicn,
vous retomberez évidemment sur la premitre corde. Vous n’aurez
donc, en tout, que seize lignes droites & tracer, y compris les
deux cordes de chaque cercle , lesquelles se rencontreront en un
point qui appartiendra a la corde de contact cherchée relative a
ce cercle. Cela posé, tracez les deux nouvelles cordes qui réunis-
scnt deux A deux celles des extrémités des premilres qui ne pro-
viennent pas de la méme combinaison , et qui sont par conséquent
indépendantes entre elles; ces deux cordes , ainsi obtenues dans
chaque cercle , se rencontreront en un second point, appartenant
3 la corde de contact cherchée , laquelle sera ainsi parfaitement
dcterminée, pour chacun des cercles proposés.

Les constructions et propositions qui précédent subsistent , d'une
mani¢re analogue , pour trois et quatre spheéres, données avolonté
dans P’espace , pour ftrois cénes qui ont un méme sommet , et enfin
pour trois cercles quelconques tracés sur une méme sphére. On
s’en convaincra d’une maniére tout-d-fait simple , dans ce dernier
cas, en considérant 'un des quatre systémes de trois surfaces coni~
ques qui renferment deux & deux les cercles proposés, et examinant
ce qui se passe dans le plan d’une section quelconque renfermant
la droite ou axe qui joint les trois sommets correspondans; car,
en supposant ensuile que ce plan se meuve autour de l'axe dont
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il s'agit , jusqu’a devenir tangent 4 la fois aux trois surfaces co-
niques , il coupera évidemment, dans cette double position , la
sphére donnée suivant un cercle tangent i la fois aux trois proposés;
ce qui peut servir, en méme temps , & justifier ce qui a été dit
ci-dessus relativement au cas particulier ol les trois cercles donnés
sont tracés sur un méme plan.

. On peut remarquer que les propositions relatives au systéme de
trois cercles tracds sur un plan , sont tout-h-fait analogues i eelles
que j'ai énoncées dans le tom. VIIL® des Annales ( pag. 14t ),
relativement aux polygones inscrits & une conique, dont les cétés
sont assujettis & pivoter autour de points fixes situés en ligne droite;
et, en effet, il devient trés-facile de passer des unes aux autres,
en invoquant le principe de la continuité. C’est un rapprochement

que je n’ai pas manqué de faire, dans le mémoire dont M. Cauchy
a rendu compte a l'institut.
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FONCTIONS CIRCULAIRES,

-—

TRIGONOMETRIE.

Eaxposilion des principes fondamentaux de la théorie
des fonctions circulaires ;

Par M. Frepgric Sarrus , docteur &s sciences.

(o Yo Via Vig Vi Vo Vo Vo Vo V1

ON sait que toute la théorie des fonctions circulaires est renfermée
dans les quatre formules qui donnent les sinus et cosinus de la
somme et de la différence de deux arcs en fonction des sinus et
cosinus de ces arcs eux-m&mes. Mais, si ces formules se demon-
trent avec assez de ‘facilitdé , tant que les arcs dont il sagit sont
moindres que le quart de cercle, il n'en est plus de méme lors-
qu'on suppose ces arcs d’'une grandeur quelconque., Peut-étre méme
est-il permis de douter que les efforts qui ont été faits dans ces
derniers temps pour remplir cette lacune des élémens aient com-
pletement atteint le but louable que leurs auteurs s'en étaient
promis; et c'est ce qui nous eonhardit & revenir de nouveau sur
cette doctrine fondamentale , pour la présenter d’'une maniére qui
nous parait a la fois trés-simple, trés-générale et trés-rigoureuse.

Soient x, ¥ deux arcs tout-a-fait arbitraires, et pouvant méme
excéder une ou plusieurs circonféreuces ; par les mémes considé-
rations qui, dans la gdométrie analitiqne , donnent la distance d’un
point a lorigine et la distance entre deux points, on aura, d'aprés
la définition des cordes , sinus et cosinus, et en prenant le rayon
poeur unité,
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Sin.2z-}-Cos.2x=1 ,

Sin.*y+4Cos*y=1 ,
(Sin.z—Sin.y)*~~(Cos.z—Cos.y)*=Cord.*(z—y) :

En développant le premier membre de la derniére de ces trois
équations , et ayant égard aux deux premicres, il viendra

2—=2(Sin.zSin.y~}Cos.zCos y) = Cord.*(z—y) ; (A)
qui, en posant y==0, d’ot Sin.y==0, Cos.y=1, donne
2=2Co0s.z=Cord.*z ,
d’ol, en changeant z en z—y;
2—3Cos.(z—y)=Cord.*(z—y) ; (B)

éliminant donc Cord.*{#=—y) entre les équations (A, B), il vien-
dra, en réduisant,

Cos.(x—y) = Cos.2Cos.y+4Sin.zSin.y , )

En changeant, dans cette derniére équaton, y en z—y , elle
deviendia
Cos.y =Cos.zCos (#—y)+Sin.aSin.(a—y) ;

ou, en mettant pour Cos.(z—y) sa valeur ()
Cos.y
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Cos.y= Cos,stos.y—-I—Sin.xCos.zSin.y—l—Sin.xSin.(x-—y) ;

Fa changeant Cos.*xr en 1—Sin.’z, effacant alors le terme Cos ¥,
co-nmun aux deux membres, divisant ensuite par Sin.z et trans.

posant, on aura
Sin.(#—y)=Sin.2Cos.y—Cos.2Sin.y . an

Si, présentement, dans les équations (I, II), on change z en
z--y , elles deviendront, en renversant :

Sin.ySin./z~+ y)~+Cos.yCos.[z=4y) = Cos.z ;
Cos ySin.(z~ y)—Sin yCos.(z~ y=Sin.z ;
prenant 'a différence des produits de la premiére par Cos.y et de
la seconde par Sin.y, puis la somme des produits de la premiére
par Sin.y et de la seconde par Cos.y , en se rappelant chaque
fois que Sin.*y~Cos.*y=1, il viendra
Cos.(z-+y) = Cos.zCos.y—Sin.zSin.y , (1II)
Sin.(#=4y)=Sin.zCos.y-}-Cos.2Sin.y ; av)

de manitre que nos quatre formules fondamentales se trouveront
ainsi ¢tablies , sans avoir fait aucune supposition particuliére sur

la grandeur des arcs z et y.

LS
(Y

Tom., XI.
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QUESTIONS RESOLUES.

Démonstration des deux théorémes de géomélrie énoncés
a la page 289 du IX* volume de ce recueil ;

Par M. GERCONNE.

LE modeste auteur des deux beaux théorémes que nous allons
démontrer y avait attaché jusqu’ici trop peu d'importance pour
songer.a nous en fournir lui-méme la démonstration que d’ailleurs
mous avions vainement chercliée de notre c6ié. Nous désespérions
donc de pouvoir suppléer a son silence, lorsque M. le capitaine
Poncelet, lié d’amitié avec lui, a bien voulu nous apprendre que
ces théorémes étaient fondés sur des principes de statique analogues
3 ceux que nous avions nous-mémes. appliqués , quelques pages
auparavant { tom. 1X, page 281), 4 d’autres recherches géomé-
triques. Ce trait de- lumiére nous a suffi pour parvenir au but
que nous mnous étions proposé , et qui paraitrait assez difficile a
atteindre par toute autre veie; ce. qui offre une nouvelle preuve
de l'utilité. de la statique dans la géométrie.

THEOREME 1. Soient pris arbitrairement , sur. un plar} B
points que l'on numérotera et désignera , a volonté , par (1), (2) »
(3);ne (). ‘

Soient joints chacun de ces » points, & partir du point (1),
3 celui qui porte le numéro immédiatement supérieur , jusqu'au
dernier (2) par des droites qui seront évidemment au nombre de
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n—1; et soient respectivement designées ces droites par lps deux
points qui les déterminent en cette maniére

(1)(2) 5, (2)3), BL4) seieecs, (n—=1(n).

Sur la direction de chacune de ces droites, soit pris arbitraire-
ment un point ; et soit désigné chacun des n—1 points ainsi <hoisis
par les deux numéros qui désignent la droite sur liquelle il se

trouve situé , ainsi qu’il suit:
(12) ? (23) 9 (34)...;..;~...(n—-l N n)’.'

Soient joints, deux 4 deux, par de nouvelles droites’, ceux de
ces points ct des premiers dont les indices renferment 'en tout trois
nombres conséentifs -de la shite naturelle’, sans répétitionsws Jap
cunes ; et soicnt désignées les droites de cette nouvelle sérieq ad
nombre de 2(n—2), par l'ensemble des indices "des deux points
qui les déterminent, en cette manidre

(123) 5 (3134) » B)ED) ++ vvvs (oo, 1) 5

(12)(3) » (23,(4) , BHG):eeenn(p—2, fz;xg)’({;):;;

les droites qui, deu;‘i 3 deux , auront les mémes nombres | l’eursf’
indices se couperont, en géndral, et donneront ainsi n—z poi_nt-‘slt
d'intersection , que nous désignerons respectivement par lfepseinbléi
des nombres qui forment les indices de ces droites’, en celle’

maniére

(123) , (/234) s (348) e (n—2,n=1 ).

Soient de méme joints , deux & deux, par de nouvelles droites ,
ceux des points.des trois séries dont les :indices renferment, en
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$onb, quatee nombres consecutits de la suite naturelle ; sams répés
tittdén ni lacune; et soient designees les droites de cetle iroisteme
série, au nombre de 3(n—3), par 'ensemble des indices des deux
points qui les délerminent, en cette manicre

>

(1)X(234) 11(2,345) » (3,(456) vvvve'(B=3 (B2, 1 1) ;

(12)34) , (23, 49) 5 (34)90)cvves s (B=3 ,0—s)t—1 1)

A ]

_/

(19, 4) 5 (=vd) 9) 5 W49/ (V)e v veee (=0 ,00—0 111 )12} 3

L

il arrivera qpe les. droites qui ,.210is A trois, auront les méme:
nombres 4 lewgs indices { et ce sunt ici, comme on le voit,, celles
qui appartiennent A une méme colonne verticale ) se couperont au
wéme point , dg sorte qu'elles ne fournnont que 7—3 points d'in-
tersqectiop , qnertnous designerons respectivement par les nmombres

qui forment les indices de ces droites, en cette maniéie
(1234) (2345) , (3156) yoeeaes(n—3,2—2, n1,n) .

En poursuivant-te méme procédé , avec les mémes attentions ,
nous obtiendrons une quatrieme série de droites , au nombre de
4(r—4), concourant, quatre & quatre , en un méme point, et
n'ayant ainsi que z—4 intersections, puis une cinquiéme série de
droite, an nowbre de 5(n—5), concourant, cinq & cing, en un
méme point, et n’ayant ainsi que z—35 intersections; de sorte que
nous arriverons finalement & n—1 droites concourant toutesen un
peint unique , designé par (123 .......72)%

Démonstrasion. Comme un plus grand nombre de points ne
peut qu'alonger la demonstration du théoréme, sans la rendre plus
difficile ; afin de fixer les idées, et pour étre en méme temps plus
clairs et plus briefs, nous supposcrens que les points dont il s'agit
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ne sont qu'an nombre de cing se lement , situds d'ailleurs d'une
maniére quelconque sur un plan, et respectivement désignds par

Wy @, By D, &

de sorte que lrs quatre droites qui les joindront consécutivement ;
deux & deux, sercnt

COH2) s (13) 5, (B.(4) s (DS) .

Supposons que ces points soient des masses quelconques , positives
ou negatives, dont il ¢'agit de trouver le centre commun de gra-
vité, & rau-e de Vindétermination de ces masses, on pourra tou=
jours suppuser que les quatre points

(2}, (33), G, U9,

pris arbitrairement et respectivement sur nos quatre droités ; sont
les centres communs de gravité respectifs des masses

(1) et (2), (2) et 3), (3) et (4), (4) et (3) .

Il est clair, en second licu, que les droites

(@3 » @GP > Bi4d) »

ainsi que les droites

(12)(3) » (23)(4) » GBHOB) »

contiendront respectivement les centres communs de gravité des trois
systémes de trois masses

W@, @D, Wi Brl), ®;

d’od il suit que les points d’intersection
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(123) , (234), (345) »

seront les centres de gravité respectifs de ces trois mémes systemes,
Concluons de la que lcs droites

OED . @ >
que les droites

-y

2)34) » (23)(45)
et les droite;

=@ > (294(9) s

contiendront également les centres de gravité respectifs des deux
systémes de quatre masses

W@, @, W @, 3, @, O ;

de sorte que les trois premiéres droites concourront en un premier’
point, et les trois derniéres en un second point que lon pourra-
respectivement désigner par

(123§, (a345)

et qui seront les centres de gravité respectifs de ces mémes systémes,
Or, de tout ce qui précede, il suit que les quatre droites

(V@345 »
(12)(345) »
23)45)
a3HG) 4

contiennent également le ceéntre commun de gravitd des cing miasses’
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proposées ; puis donc que ce centre de gravitd est unique, il s'ensuit
que ces quatre droites se coupent en un seul et méme point, que

I'on peut désigner par

(12345) ,

et qui est lui-méme ce centre de gravité,

THEOREME I1. Soient n.droites arbitraires et indéfinies , fracdes
sur un méae plan, que I'on numérotera et désignera, a volonté ’
Parr;2,3,..0...7,

Désignons I'intersection de chaque droite avec celle qui porte le
numéro immédiatement supérieur , de la premiére A la derniére,
par l'ensemble de leurs indices, en cetie maniére

(;.’2-)) (;’ 5) ’ (3‘,2‘)’.-.0..("—1’;).

Par chacun de ces points, soit menée une droite arbitraire et
dédsignons les 2—1 droites ainsi menédes par les numéros des deux
droites primitives par lintersection desquelles elles passent respec<
tivement , ainsi qu’il suit :

32, 33, 3% yiecere.(nm=i)n s

Considérons , deux & deux, les intersections des droites des deux
séries dont les indices renferment, en tout, trois nombres consécutifs
de la suite naturelle, sans répétition ni lacune; et soient désignés
les points de cette nouvelle série , au nombre de 2(n—2), par
Yensemble des indices des deux droites qui les déterminent, en
cette manidre

(-l-, ‘2'_3—) ’ (;, 3'—43’ (g-, E) yesvses(R=2 43 n—1.n) ,

.(r;’g;l (5;2)3 (32.)5"“'--('1—2-11—1"-’-)5
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les points qui, deux 4 deux, porteront les mémes nombres & leurs
indices détermincront une nouvelle série de n—1 droites , que nous
désignerons respectivement par Vensemble des nombres qui forment
les indices de ces points, en cette maniére

33, :’._6-: ’ '—.’,5',......71—2.:;—..;; .

Soient de méme considérées , deux 3 deux, les intersections des
droites des trois séries dont les indices renferment ,_en tout , quatre
nombres conséeutifs de la suite naturelle , sans répétition ni lacune;
‘et soient désignés les points de cetie troisiéme série , au nombre de
3(»~—3), par I'ensemble des indices des droites qui les déterminent,
en cette maniére

S S——

(-.i ’ _2_52) ’ (2 » 545) ) (g., 450) gsecis e (n—d P n-—z.n—l.n) Py

(T;,EZ), (23 4, 49) , (34,5),.......(11—-5.0——2,n—x.n),

— — ’ e ————————— Y

(-12_3' ’ Z) ’ (;3»2 , '5‘) s (345, 0) yeeoeees (=3 n—2.n—1 4 n) ;

il arrivera que les points ‘qui , trois a trois , auront les mémes
nombres a leurs indices ( et ce sont ici, comme on le voit, ceux
qui appartiennent 2 une méme colonne verticale ) seront situés sur
une méme ligne droite , et ne détermineront ainsi que n—3 nou-
velles droites, que nous désignerons respectivement par les nombres
qui forment les indices de ces points, en cette maniére

1234 5 2345 , 3456 ,4v0veesin=dn—2:n—11 -

En poursuivant le méme procédé , avec les mémes attentions,
nous obtiendrons une quatriéme série de points , au nombre de
4(n—4), situés, quatre & -quatre , sur une méme droite, et ne
déterminant ainsi que n—4 nouvelles droites , puis une cinquiéme
série de points, au nombre de 5@n—5), situés, cing A cing, sur

une
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‘une méme droite, et ne déterminant ainsi que n—5 nouvelles droites;
de sorte que mnous arriverons finalement & z—1 points situds sur
une droite unique , désignée par 123....n .
Démonstralion. Pour les mémes raisons déja déduites ci-dessus,
nous ne supposerons seulcment que cinq droites données , et res-
pectivement désignées par

T, 2, 3, 4, 5;
de sorte que leurs quatre points d’intersections consécutives seront
(1)5) (;’g)a Gyrd)s G, 5) -

Supposons que ces droites soient les directions de,cinq forces
d’'un méme systéme dont il s'agit de trouver la résultante ; i cause
de la compléte indétermination du sens et de Dintensité de ces
forces , on pourra toujours supposer que les quatre droites arbitraires

12, 23, 3, 1By

sont les directions respectives des résultantes des couples de forces

— — —~
I

1l est clair, en second lieu , que les points
@,2), @G,3B, G,
ainsi que les points
(Ey?;), (-2_3.)2') ’ (‘z)-g);

seront respectivement sur la direction des résultantes des systémes
de trois forces ‘

\

—

— = — T ey _— e
1,2,3; 2,3,4; 3,455,

d’ou il suit que les droites

Tom. XI. 44
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123 , 234, 34—5' ’

détermindes par les points rorrespondans , seront les directions méme
des résultantes de ces systémes de forces.
Concluons de la que les points
- ] ,y m—
(X, 234) , (2, 345) »
que les points
Gz,30, (3,4,
et les points

(23,5, G3,¢

seront également situés sur les résultantes respectives des deux
systemes de quatre forces

—
2

— - e ey Wy ey e
1,2,3,4; y 3, 4,53

de-sorte que les trois premiers sont sur une méme droite, et les

trois derniers sur une -autre dt‘oite.-; lesquettes peuvent étre res-
. « ®

pectivement designées par

et sont les directions respectives des résultantes de ces deux systémes.
Or, de tout ce qui précede, il suit que les quatre points

(T, 2345 ,

az', 35 ,

— —

23, 45 ,

(234 , 5

ot
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sont également situés sur la résultante commune des cinq forces
proposées ; puis donc que cette résultante est unique, il sensuit
que ces quatre points sont sur une méme droite, que l'on peut
désigner par \

12345 s

et qui est elle-méme la direction de larésultante générale du systéme.

On voit que ces deux théorémes ont entre eux une correspon-
dance parfaite. Cette correspondance est méme telle que chacun d’eux
peut facilement étre déduit comme conséquence de I'autre. Conce-
vons , en effet , qu’ayant tracé sur un plan une section conique
quelcenque , et qu’ayant.aussi tracé sur ce méme plan la figure
relative 2 l'un quelconque de ces deux théorémes, on détermine
ensuite les poles des droites et les polaires des points de cette figure ,
par rapport a la section conique dont il s’agit ; en se rappelant que:
les poles des droites qui concourent en un méme point appartiennent’
a une méme droite, et qu’a linverse les polaires des points qui
appartiennent 2 une méme droite concourent en un méme point,
on verra clairement que les péles et polaires ainsi tracés formeront
la figure relative & l'autre théoréme , qui se trouvera ainsi démontré
3 Paide de celui-l3,

Si l'on considére la figure relative & I'un quelconque de ces deux
théorémes comme la base d’une pyramide ayant son sommet en
un point quelconque, et que, par ce sommet, on congoive des
droites menées a tous les points et des plans menés a toutes les
droites de la figure, on apercevra sur-le-champ que nos théorémes
ont leurs analogues relativement & des systémes de droites et de
plans indéfinis , concourant en un méme point.

Si l'on suppose enfin que ce point de concours des droites ou
des plans est le centre d'une sphére, on verra que nos deux
théorémes doivent encore avoir lieu sur la surface sphérique ; pourva
qu'on y remplace les droites par des arcs de grands cercles.
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Si 'on suppose ; dans le premier des deux théordmes, que cer-
taines masses sont égales et de signes contraires , ou dans le second ,
que certaines forces forment des couples, ce qui éloignera soit le
centre commun de gravité, soit la résultante & linfini; ces circons-
tances introduiront , dans I'énoncé des deux théorémies , des modi-
fications plus longues a expliquer, & raison de I'infinie variété dont
elles sont susceptibles, qu'elles ne sont difficiles & concevoir.

On peut ensuite appliquer a chaque polygone, en particulier ,
a partir da quadrilatére , soit les théorémes genéranx , soit ces
théorémes modifiés de la manjére qu’il vient d’é¢tre dit; de sorte
que nos deux théorémes peuvent étre envisagés , en ¢uelqne sorte,
comme des magasins de propriétés des polygones , desquelles on
peut ensuite facilement déduire la solution d’une multitude de
problémes du genre de ceux qui ont éié récemment traités par
M. le professeur BRIANCHON, dans son Application de la théorie
des transversales. Ainsi, nos denx thecorémes ne se recommandent
pas moins par lutilité pratique quon enm peut tirer que par leur
élégante geénéralitd,

Nous ne devons pas quitter ce sujet sans faire observer que si,
pour plus de symétrie entre les deux théorémes , nous avons sup-
posé, dans le premier , que les points donnés étaient situés sur
un méme plan; le théoréme n'en est pas moins vrai, lorsque
ces points sont distribués d’ane maniere qnelconque dans ]’éspace;
il n’y a méme pas alors un seul mot a changer & sa démons-
tration, Mais, on ne saurait, au contraire , donner une extension
analogue a4 lautie théoréme; attendu que, tandis que deux points
sont toujours sur wne mdme droite , deux droites ne concourent
pas toujours cu un méme point.
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Solution du probléme darithmélique proposé & la
page g6 de ce volume ; |

Par MM. Lentreric , docteur &s sciences, professeur au
collége royal de Montpellier ,

AvcustE OLLive, licencié &s lettres
Et Vecren, licencié ¢s lettres.

TN A N s i s 2 v e

P ROBLEME. On a écrit de suite, et sans aucune séparation;
Zes nombres consécutifs de la suite naturelle , en cette maniire:

12345678g10r1121314151617181920212223.....

En considérant simplement cette suite comme une suile de chiffres
posés & coté les uns des autres; on rropose dassigner le chiffre
gui doil y occuper un rang quelcongue n , sans ére obligé d'écrire
ceux qui le précédent ?

Solution. Les trois glomdtres qui se sont occupés de cette
question P'ont également décompasce dans les trois suivantes : 1.°
assiyner combien de chiffres a 'e nombre naturel dont le chiffre
cherché fait partie ; 2.° determiner , en particulier , quel est
ce nombre parmi ceux qui ont autunt de chiflres que lur; 3.%
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trouver le rang qu'occupe dans ce méme nombre le chiffre dont
il s’agit.

Pour rendre le procédé général plus intelligible, voyons d’abord,
sur un exemple particulier, comment on peut résoudre successi=
vement les trois questions auxquelles le probléme se trouve ramené,
Soit z=6192 ; c’est-a-dire , supposons qu’il soit question de dé-
terminer le 6192.¢ chiffire de la série proposée.

1.° On rencontre d'abord , dans cette suite, g nombres d’zz seul
chiffre , ce’ qui fait g chiffres; et puisqu'en a 6rg2>9, il sensuit
que le nombre dont le chiffre. cherché fait. partie a plus d'un

chiffre.
Viennent ensnite go nombres de dewvzx chiffres, formant en tout

180 chiffres ; or , 619g2—0=6183>180 ; donc le nombre dont
le chiffre cherché fait partie a plus de dewx chiffres.

A la suite des nombres de deux chiffres viennent goo nombres
de zrois chiffres, formant ensemble 27oo> chiffres; or 6183 — 180
=6003>2700; donc le nombre dont le ehiffre cherché fait partie
a plus de ‘rois chiffres. _

A: la sujte des nombres de trois chiffres viennent gooo nombres
de gquatre chiffres, formant ensemble 36000 chiffres ; or 6003
—2700=23303<36000 ; donc le nombre dont le chiffre cherché -
fait partie n’a pas plus de quatre chiffres; et, puisqu’il en a plus
de trois, ce nombre a précisément quatre chiffres. _

- 2.° Le dernier reste 3303. prouve de plus que le chiffre cherché
~ occupe le 3303.° rang, a partiv du premier chiffre de gauche
de 1000 , premicr nombre de quatre chiffres ; d’ol il suit que la
question est ramende & chercher quel est le chiffre qui occupe le
3303.™¢ rang dans la suite

100Q100110021000310041005.¢.1000raes9909 o

des nombres naturels, 3 portir de 1000.
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Si 3303 était exactement divisible par guatre, il est dvident que
le quotient exprimerait le rang qu'occupe , dans cette derniére
suite , le nombre dont le chiffre cherché fait partie , et que méme

ce chiffre y .occuperait le dernier rang 3 droite ; mais si la division
donne un reste, ce sera le quotient augmenté d’une unité qui ex-
primera le rang de ce nombre , dans lequel le chiffre cherché
n’occupera plus alors la derniére place.

Or, en divisant 3303 par 4, on obtient 825 pour quotient et 3
pour reste; donc le nombre dont le chiffre cherché fait partie
est le 826.m° de notre derniére suite; et, puisque cette suite com-
mence a 1000, ce nombre est 1825,

3.° Enfin, le reste 3 indiquant Aque le chiffre cherché est le

troisiéme chiffre de ce nombre, en allant de gauche i droite , il

s'ensuit que ce chiffre est 2.

En récapitulant donc, on voit que le procédé général peut se
réduire & ce qui suit : du nombre proposé 7z, retranchez successi-
vementlesnombres 1.9=9, 2.90=180, 3.000=2700, 4.000=36000, ..:s
aussi long-temps que les soustrations pourront étre faites; divisex
le dernier reste par autant d’unités , plus deux que le dernier nombre
retranché aura de zéros & sa droite ; né prenez que le quotient entier
le plus approché, et notez le reste; augmentez ce quotient d’une
unité de l'ordre marqué par le diviseur ; comptez, dans ce quotient,
ainsi augmenté , autant de chiffres, en allant de gauche & droite,
que le reste aura d’unités; alors le dernier chiffre compté de cette
maniére sera le chiffre demandé, ‘

On peut, pour plus de commodité , disposer l'opération comme

on le vyoit ici:
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Nombre » proposé. . ... .. 6192

_109 * ® & s 0 & s 8 s O o -~ 9

ITrestes v h e e e e ... 6133

——2.00 ¢ s 0 et e s e e 180

e

2.8 Teste 4 v v v e e e s . . 6003

—3.000 ¢4 s e s e v e u . 2700

3.8 Iesle. . oo s o s e .sse. 3303 4 diviseur

restCo o o o 3| 1825 quotient auvgmenté

L )

Le chiffre cherché est 2.

Voild sous quelle forme M. Ollive a présenté le procédé. MM.
Lenthéric et Vecten ont cherché a I'abréger, en remplagant cette
suite de soustractions par une soustraction unique de la somme de
tous les nombres & retrancher; ils ont entreva sans doute que ces
nombres formant la suite trés-réguliére

1.9+2 «9043.900+4.9000+ e usuas..

la somme de cette suite, 3 quelque nombre de termes qu'on le
bornat , devait affecter une forme également réguliére; et I'examen
dans lequel ils se sont engagés 3 ce sujet a pleinement juétiﬁé ce
soupgon.

On a, en effet,

19 et e eti il i i =00.9;

194290 . .0 e e e ..

Il

. .189,

1.9+2.9043.900 . ... ... ... =..2889,

) 1.9
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1 _9..\_2,9?—}-3.900-—}-/;.9000 <. .. = 3888,
'1.92.90-3.gy00+4.9gooo-45.90000=48888g ,

. . e o e . s s o s e s e e e ¢ 5

de sorte qu'an est conduit a soupconner que le nombre unique 3
retrancher pourrait bien étre , en genéral, un nombre terminé par
9, /précédé d’'une suite de 8, précédés eux-mémes d’'un nombre
d’autant d’unités qu'il y a de 8 a sa droite.

Pour changer ce soupgon en certitude , désignons généralement
par S, la somme qu’on obtient pour la série, lorsqu'on y admet
m termes, et supposons que la loi se soit soutenue pour toutes les
sommes de termes, jusqu'd la somme des m—1 premiers inclusie

vement ; nous aurons ainsi

Smes =9 8011041010 107 4 410 3) f(m—2)1 07"
or,
Sm=sm.41+mog.10m-‘ ;
done

S.,=9+80(14 10410} 107} 10m" 4 10™3) Y (m—2) 10™" 4 m.0. 1 0"}

or, .
(m—2)10™"*~-m.q.10™" '=80.10™"*<}(m—=1)10" ;

donc enfin ,

Sm=g+80(1410+10"+ 10" wsicfr L0M 3} 10" ) (m 1) 107 ;

valeur qui ne differe de celle de' S,., qu'en ce que m—1 y est
changé en m. Il demeure donc établi que , si la loi se maintient
jusqu’a la série de m—1 termes, elle aura lieu également pour
une série de m termes; puis donc qu'elle a lieu pour les séries
de 1, 2, 3, 4, 5 termes, il s'ensuit quelle est générale:

Tom. XI. 45
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Cette remarque conduit MM. Lenthéric et Vecten a réduire le
procédé & ce qui suit : écrivez un g sous les unités du nombre
n et une suite de 8 i la gauche de ce g, en tel nombre qu'en
écrivant un pareil nombre d’unités & la gauche du dernier , vous
n’excédiez pas le nombre 72 ; faites alors la soustraction, et divisez
le reste par autant d’unités, plas deux que vous aurez écrit de
8 ; augmentez le quotient d’une unité de l'ordre marqué par le
diviseur ; comptez enfin, dans ce quotient, ainsi augmenté , autant
de chiffres, de gauche & droite , que vous aurez d’unités au reste ;
le dernier chiffre sur Jequel vous vous serez arrété sera le chiffre cherché.

Exemple. Soit n=528270; on opérera comme on le voit ici;

Nombre proposé. .. ... . 828276
Nombre & retrancher . ., . . 488889

Reste o o v v v e v ewns. 339387 | 6 divis.

" “reste 3 | 156564 quot.

ee o

ce qui montre que le- chiffre cherché est un 6.

Bemarque 1. Si le reste de la diyision éuait zéro, le chiffre
cherché scrait le dernier chiffre de la dro.te du quotient diminué
d’'une unité , & moins cependant que celui-ci ne fut un zéro,
auquel cas le chiffre cherché serait un g.

Exemple 1. Soit n=73157. "

Nombre proposé. . ... .. 3157

Nombre 4 retrancher . . . . . 2889

—e

Reste. . oo uvuw v o, 268 4 divisenr

reste o | 1067 quotient aug.

ge qui montre que le chiffre cherché est un 6.
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Exemple 1I. Soit n=5q9439.

i\Iombre proposé « . . . . 59439
Nombre a retrancher. . ., . 38889

————

Reste, « . v . e v v ven e« 20550 5 diviseur

reste o | 14110 quotient

ce qui montre que le chiffre cherché est un g.

Remarque I1. Si, pour former le nombre 4 retrancher, on est

obligé d’écrire le chiffre 8 neuf fois consécutivement, on ne mettra
rien & gauche, le dernier 8 tenant lieu du nombre des 8; mais
ce dernier 8 ne devra pas entrer en compte dans la recherche
du nombre des unitds du diviseur. ‘

De méme si on devait écrire dix-nenf 8, on n’dcrirait qu’un
1 A leur gauche, le 18 exprimant alors le nombre des 8, lequel
ne devrait compter que pour dix-huit dans la recherche du divi-
seur. On se comportera d’une maniére analogue , dans tous les cas
semblables: -

De méme,si I'on devait écrire nonante 8 ; on ne mettrait rien
3 leur ganche , etils ne devraient compter que pour huitante-huit
les deux derniers exprimant seulement le nombre des 8 écris a
droite. Si lon devait en dcrire cent nonante, on n’écrirait qu’un r
a la gauche, et ainsi de suite.

Exemple. Soit n=2888qg754327.

Nombre proposé . .. . 8889754327
Nombre & retrancher. . 8888888889

Bestea o v 0 v v v 0 0 u 865438 10
reste 8 | 1000086543

e% co 00 0 0

d’ol l'on voit que le chiffre cherché est un 5.
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N ~ 4
QUE&T}L&JNS PROPOSEELS.
Lroblemes de Geéomeélrie.

1. QUEL est le plus petit des parallélogrammes circonscrits & une
ligne du second ordre qui a un centre?

I1. Quel est le plus petit des parallé]ipip(‘:dcs circonscrits 4 uné
surface du second ordre qai a un centre?
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—

ANALISE TRANSCENDANTE.

Essai d'une nouvelle méthode , servant & integrer
rigoureuserment , lorsque cela est possible , toute
équation différentielle & deux variables :

Par M. le Professeur Krame , correspondant de I'académie
royale des sciences , doyen de la faculté des sciences
de Strasbourg, chevalier de I'Ordre royal de la Légion
d'honneur.

( Deuxiéme mémoire. )

DANS un précédent mémoire ( pag. 97 ) , nous avons fait voir
que toute équation différenticlle de la forme

3_1 =X+2Yy+zy= ’

ou X, ¥, Z sont des fonctions quelconques de # , admet une
intégrale de la forme

A A
Y= PPk’

dans laquelle 4, 4/, P, P/ sont d’autres fonctions de =z, etou
k est la constante arbitraire; et nous avons vu que la déterminations

Tom. XI , n.* XI, 1.* mai 1821, 46
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de ces derniéres fonctions dépend , en général , de lintégration
d’équations linéaires du second ordre & coefliciens variables.
Nous nous réservons de revenir, dans une autre occasion , sur
Vintégration de ces équations. Pour le présent, notre but est uni-
quement de parcourir successivement les diverses formes que peuvent
avoir les fonctions de 2 qui entrent dans l'intégrale, en allant des
plus simples aux plus composées.

Supposons , en premier lieu, que lintégrale soit

_ (adbm)4-(a bk 1y
T (pgmpyak

dans laquelle @, @/, &, ¥ ,p,p’, g, ¢’ sont des constantes
déterminées , et ou % est la constante arbitraire,

. 1 . ‘

Si l'on change % en — , ce qui es permis , cette formule

deviendra

__ (aba)f(adbadk
Y= ootk

ce qui prouve que , dansla formule (I), on peut transporter les
accens des lettres qui en sont affectées & celles qui en sont dé-
pourvues,, sans qu’il en résulte autre chose qu’une simple trans-
formation de la constante arbitraire et conséquemment sans que la

d . .
valeur de {; , délivrée de cette constante , soit aucunement affectée

par ce changement.

8i, dans la méme formule, on change % en nk+/, et qu’on
multiplie ensuite les deux termes de la fraction par m , ce qui
est permis , clle deviendra

__ [m(@-laty4-m @416 a1 4-(mna’-mnb/xk .
T Un(pHp)+m(glg a1+ mnp'+mngx)k
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et on pourra profiter de l'indétermination de 7, m, » pour rendre
trois des coefficiens égaux & trois nombres donnés; d'ou il suit que,
dans les deux séries de coefliciens

0757}’,77
a v ,p, 9,

de la formule (I) on peut toujours amener trois des coefficiens &
devenir trois nombres donnés, pourvu que ces coefliciens n’appar-
tiennent pas tous trois & une méme série, et quon modilie les
cing autres conformément au changement que cenx-la auront éprouvé;
on n'aura fait ainsi , en cffet , que I'dquivalent d’une transforma-
tion de constante arbitraire , et conséquemment la valeur de
d

:ll , délivrée de cette constante, ne sera aucunement affectée de
J

ce changement.
En chassant le dénominateur et transposant , 1a valeur de y donne

{(a+b2)—(p+g2)y 3+ {(a'+¥2)—(p/+g'z)y Y k=0 ]
dont la différenticlle est
d ) oty Y
(b—gy)—(p+g92) 4 §+ &'—9'n)—(pt9'=) 5 (h=0;
éliminant % entre I'une et Vautre, il viendra , en développant,
réduisant et ordonnant ,
dy _ (ab/=ba")+-[(Gp'—pb)—(ag'=qa")]y+(pg'—gP)y*

4 (ap'—pa)H10Op'—pb)+(ag'—ga)1x4 (bg'—gb')x? #
-

qu’on pourra représenter par
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€§:}‘ Ax—*-g‘ HJ. + {:73
e T Pasueodien ? (D)

dr | Fepogu-plice
en posant, pour abréger,
abi—-ba'=d , (1) @p'—pb)=(ag'=—qa)y=2B, py'—qp'=C, @3)
ap'—pa'=P , (2) (bp=pbht(ag'—qah=2Q , by'—gV=L , (4

et l'on pourra évidemment remplacer les deux équations sans
numéros par les deux suivantes:

bp'—pb/=Q+B , )
ag’'—qa'=(Q—B . - (6)

Lors denc que l'on rencontrera une équation différentielle de la
forme (D), on sera fondé a soupgonner que son intégrale pourrait
bien éire de la forme (1) ; et tout se réduira & déterminer les
coefliciens @, 4/, b, b/, p,p’s g, ¢/, au moyen des six rela~
tions ci-dessus 5 4 la vérité, elles sembleraient insuffisantes pour cet
objet, mais nous avons vu tout & I'heure que trois de ces coeffi-
ciens étaient tout-a-fait arbitraires ; il n’est donc guestion que de
déterminer les cinq autres en fonction de ces trois-la; puis donc
que nous avons pour cela six équations, il s’ensuit que le pro-
bléme, loin d’¢ire indéterminé comme il le paraissait d’abord, est,
au contraire , plus que déterminé , et que conséquemment il doit
exister , entre les six coefliciens 4, B, €, P, (, R une équa-
tion de condition, au défaut de laquelle une équation différenticlle
de la forme (D) ne pourrait étre supposée avoir une intégrale de
la forme (I). -

Nous verrons tout 4 I'heure quelle est cette équation de condition , )
et , pour le moment, nous observerons seulement que , si, dans les
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équations que nous avons numérotées , on transporte les accens
des lettres qui en sont affectées a celles qui en sont dépourvues,

- on ne fera ainsi qné changer les signes des six cocfliciens 4, B,
C, P, @, B, cec qui ne changera aucunement la\valeur de

dy . ] .
- conclusion tout-a-fait conforme & ce que nous avions d’abord

annoncé.

Rien n’est plus facile que de déduire, de ces six équations , deux
groupes de quatre équations chacun, tels que dans le prewmier il
n’y entre que les letires dépourvues d’accens, et dans le second
celles qui en portent, on trouve, en effet,

(Q+B)4=Pb—AP ) 6)] (Q+B)a’=Pb/“"AP’ ’ o)
(Q—B)o=Ra-}-Aq , €)) (Q—B)b'=Ra'--Aq' , &n
(Q+-B)g=Bp=Cb , @ (Q+B)g'=Rp'—Cl' , (9)

(Q—Bp=Pg4Ca, (10} (Q=Bp'=P¢'4+Ca’. (10

Il est présentement plus facile d’obtenir I'équation de condition.
Si Pon fait successivement le produit des équations (7, 8’) et celui
des équations (7/,8), on aura

(Q*—B*)ab'=PRba'APbg' — ARpa’— A’pg’

L P}

(Q*~B*)ba'= PRab/4-APyb/—ARap'— A'gp’ ;
prenant la différence de ces équations , et transposant , nous aurons
(Q*—B*+PR)ab'~lbe')= AP (bg'—qb")t A R(ap'—pa’)—A*(pg'—qp’);
mettant ici pour ab/—ba’ , bg'—qb’ , ap’—pa’ , pyg’—qp’ leurs

valeurs respectives 4 , B, P, C et divisant ensuite par A , il
viendra , en réduisant et transposant,
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Q*—PR=B"—AC ,

Et telle est I'équation de condition qui doit aveir lien pour qu’une
équation différentielle de la forme (D) admette une intégrale de
la forme (I). ‘ ‘

Lors douc que l'on rencentrera une équation différentielle de la
forme (D) qui satisfera i cette condition , on pourra étre certain
qu'elle a une intégrale de la forme (I), et, pour VPobtenir , on
prendra arbitrairemuent trois des huit coefficiens @, @/, 4, &/, PP
-4, g’ , en les choisissant telles néanmoins qu’ils ne soieat ni tous
pourvus , ni tous dépourvas d'accens. Supposons , pour fixer les
idées , que ce soient les trois coefliciens @, b, 4/ ; I'équation (¥)
fera connaitre 4/, et ensuite p, ¢ seront donnés par (7, 8), tandis
que p’, ¢’ le seront par ( 9/, 8 ); il ne sera donc plus question
que de substituer les valeurs de ces coefliciens dans la formule (I)

pour avoir l'intégrale demandée (*).

(*) La formule (D) revient a

dx dy
P42Qu4-Rx? — A+4aBy4Cy*’

ou encore A
Rdx Cdy

Hex*p2QRa+4-PB ~  Cox»42BCy4AC °

Sil'on a, comme on le suppose ici, B2em=AC=Q2—PR ; en représentant chacun
de ces deux binomes par M2, on pourra , dans les dénominateurs des deux
membres changer respectivement PR et 4C en Q3—DM2 et B*—M?, ce qui

changera notre équation en celle-ci:

(e Qb — (G By—IE |

posant alors
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Pour appliquer ce procédé a4 un exemple ; soit I'équation
différenticlle
dy 3emBy-f-2y2
A 1—Bxp1dar

nous aurons icl

Rax<4-Q=x/ / Rdx=dx’
d’olx
Cy+B=y' Cdy==dy"
elle devient ‘
do! dy’
2! 3 JVI2 - yla_M: ;

or , cette équation appartient & une classe qu'on sait intégrer algébriquement,
( Voyez le Traité de calcul différentiel et intégral de M. LACROIX , derniére
édition , tome II, page 477 , n.° 693 ), et son intégrale est , comme I'on sait,

k(y-l....xl)a:(x/:_.Mz)(ylz—Ma) .

ol k& est la constante arbitraire,
En y changeant k en k2—]M2, ce qui est permis ; cette intégrale devient

(x/y/==D2)2==ke (x/==y")? 5
or, comme le sig;le de la constante k est arbitraire , il suffira d’e‘crire simplement
slytem V2= =k(xlm—y) .
En- remettant pour x' » 3/ leurs valeurs , nous aurons donc

(Hx+Q)(CJ’+B)-M2=A { Rx—C_y-]-(Q—B) 1i

ce qui donne
— i [(M’-'BQ)—BB®]+[(Q-B)+Rx]k
r=e (QFRz)+k
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A=+43, B=—=3, C=+4-=2,
P=t1, Q=—i, B=-+4i3;
Q+B=—7, Q—B=—1

B:—AC=(*—PR=3 ;

4
\~

c'est la formule qui répond au cas ol Pon aurait pris arbitrairement @, b, o/ res= .
pectivement égavx & M:—BQ , —BR, Q—B.
On peut observer , au surplus, que

al2mei2 2 | ale=D —§+1l4

dx! 1 S dat dx’ }

dont Vintégrale est

I ocl==IVI

——

M Log. R

dy’ .
Y - sera donc pareillement

EX] 3 )
Pintégrale de prrzsi

e L y!—M
—_— 0 o —
o 08 g4’
égalant donc entre elles ces deux intégrales , en ajoutant & Pun des deux

Log.k
membres la constante - 8

, il viendra , en réduisant et passant aux nombres

y—M _ A x!—M
e T SN

ou, en remettant pour x/, 4/ leurs valeurs,

(B=M)y+Cy _, (Q—M)+Rx

(B+M)+Cy — " (Q+M)+Hhx ’
intégrale également algdbrique. X
° J. D. Ga
‘ I'équation
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Péquation de cendition est donc satisfaite. En conséquence, mnous
prendrons arbitrairement

a=r , b=2, a=3,
d’aprés quoi I'équation (1) donnera
b'=g ;
on aura ensuite, par les équations (7,8),(7/, &)
p=3, g==5, p/=10, ¢ ==10;
au moyen de quoi Ja valeur générale de y sera

)+ G4ondk -
Y= Geszyf(10—162)k ’

comme il est d’ailleurs facile de le vérifier , par la différentiation
et I'élimination de Z.

Soit présentement la formule

_ (at2bacx - (/A 2b e/ 22 ) ) I
y= (pt2gxra?)d-(p'd2q atrz)k ’ @D

on prouvera, comme ci-dessus, que, par de simples transforma-
tions de la constante arbitraire , les accens peuvent étre transportés
des lettres qu'ils affectent a celles qui en sont dépourvues ; et que,
par 'le méme moyen, on peut amener trois des douze coefficiens
a devenir égaux a trois nombres donnés arbitrairement, pourvu que
ces coefficiens ne soient ni tous trois affectés ni tous trois d‘épourvué
d’accens.

En chassant le dénominateur et transposant, cette formuledevient

Tom. IX, 47
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{lata2bztca®)—(pt2qz4rat)y}
(/A2 2/ 2 y—(p/F2g'a T/t yk =0 ,

dont la différentielle est
d
{00+ 2)—(q +r 2yI—(p g a4r e ]

| +z2[L6’+c’w)-(9’+r’w)y]—(P’+29’x+r’x’) -j;’f } k=0 ;
d'ol, en éliminant la constante,
{<a+sz+cx=)-cp+¥qx+rx=)y} (o) ~(g by I=(pbagetris) 5 }
= o abatoa)—~(ptagebrey 0o ~(trogi=(phagetre) }:’;’}

\ , . : )
En résolvant cette équation par rapport a Ey— » développant, ré=
x

duisant et ordonnant, on obtiendra un résultat de cette forme

Y =, (A2Bk-Co)o( 2B Py +(GfaHap Lty
ds 7 Pt Q-6 w4 Sx 3= Lach 3 (D)

dans lequel on aura

abl—ba'= 4, (1) py—gp'= G, (a)
ag'—ca'=2B , 3  pri—np/=20, (4)
bel—cb/= €, (5) grimrg'= 1 , (6)

opl—pa'= P,  (7) erl—re'= T ,  (8)
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(Ep'—p¥y—(ag'—ga')==D ,
(cp/—pe!) —(ar'—ra’)= 4E |
(cq’—qe/=—(br!—rb)=2F",

(Gp'—=pl)-(ag'—qga)=2Q ,

(cg’—qgc")4-(or! =—rb")=2§ ,
(ar/ =)+ §(bg/— g H-(cp'—pey=OR -

Tors done quon rencontrera une équation différenticlle de Ia
forme (D), on sera fondé a soupconner que son intégrale pourrait
bien étre de la forme (I); et tout se réduira & déterminer , s'il
est possible , les coefficiens @, @/, 6,8 , ¢, ¢, p, 9 v 9, 9,
7, r’, au moyen des guatorze équations ci-dessus.

Mais ces coefficiens sont au nombre de dowze seulement , sur
Tesquels nous avons vu que Zrors pouvaient étre pris d’une maniére
tout-a-fait arbitraire; il n'y en a donc que nezf 4 déterminer en
fonction tant de ces trois-la que des 14 coefliciens dont se compose la

d . .
valeur de -E‘Z- 5 puis donc que nous avoms quatorze équations pour
X

déterminer ces meuf coefficiens , il s'ensuit qu'une ¢quation diffé-
renticlle de la forme (D) ne peut avoir une intégrale de la forme
(I) que sous c¢ing conditions distinctes.

Nous verrons bientét quelles sont ces conditions ; mais , avant
d’y parvenir, occupons-nous a isoler les uns des autres les quinze
binomes que renferment nos quatorze équations. Des équations qui
ne sont point encore numérotées , on tire facilement, par additior

et soustraction ,
bp'——pb'=(Q+D , (9) ag'—ga’=(Q—D , (10)
CGlmmge’=S4+F | (11)  brierb= S—F , (12}
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arlmery =3R=2E—2(bg'~qb"} ", cp'—pc'=3R42E—2(bg'—qb’);

voild donc tous ces binomes isolds les uns des autres , sauf le
binome bg/—qgb’

Posons , pour abréger,
b—ghi=V (:5)
d’ou -
orimepg'=3Re=2Em2V , (13)  ep'—pc/=3R42E—2V ,  (14)

Remarquons présentement que l'on peut, de six maniéres diffé-
rentes , faire des combinaisons de quatre sortes de lettres ou se
trouvent les deux sortes de lettres &, ¢ qui entrent dans }, savoir:

‘ abcqg, aber, abgr, abpg, bepg, berg ,

d’od il suit que le binome &g/—gb/ ol V est susceptible de six dé-
terminations différentes , en fonction des quatorze lettres qui en-

d .
trent dans la valeur de ~% ; on trouve aisément , en effet,

dx
2ABV=A(S+F)4C(Q—D) , 0
2HV == 1(Q4-D)4G(S—F) , ®
Pr=(Q+D)(Q—D)+46G , )
TV=(S+ F)(S=F)+4CI, )]
V@RA2Emal y=(Q4-D)S+F)—CG , 0
V(3R—2E—2-V)=(Q-—D) (S=F)=Al, )

Or, ces six équations devant donner la méme valeur pour ¥V,
il e’ensuit qu'en éliminant 7 entre elles, les cing équations résul=
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tantes en A, B,C,D,E,F,G,H,I, P, Qr n, §,7T;
seront les équations de condition cherchées. Nous n’effectuerons pas
Vélimination , car la forme des équations résultantes dépendrait
‘uniquement de la maniére arbitraire dont nous aurions procédé. 1l
n'en est pas, en effet , da cas ou l'on a plusieurs équations de
condition comme de celui olt 'on n’en a qu’une seule ; dans ce
dernier cas, en effet , en chassant les dénominateurs, et méme les
radicaux s'il y en a, réduisant et passant tont dans le premier mem-
bre , on parviendra touvjours 4 la méme équation réduite , sous quel-
que forme que se présente d’ailleurs I’équation primitive ; tandis
gu’au contraire, lorsqu’on a plusicurs équations de condition , elles
peuvent étre remplacées , d’une infinité de maniéres différentes,
par le systéme d’un méme nombre d’autres équations en méme
nombre, résultant de leur combinaison, sans qu'il soit possible de
“deviner, d’aprés I'un de ces systémes, la forme des équations pri=
mitives desquelles il a été dérivé,

Puis donc que nos six équations sont d’une forme assez simple
et symétirique, nous les conserverons sous cette forme. Lorsqu’on
voudra en faire usage, il ne s'agira que de déterminer la valeur
de 7, au moyen de I'une quelconque des quatre premiéres , ol cette
lettre ne se trouve qu'au premier degré, et d’examiner ensuite si
cette valeur satisfait aux cinq autres. )

On peut remarquer, au surplus ; que nos cinq équations de
condition donnent les valeurs de P, @, R, §, T, en fonction de
A,B,C,D, E,F, G, H, I; de sorte que si I'on veut former

dy s e e s
une valeur de =, qui soit intégrale algébriquement , on posrra
X

se donner arbitrairement tous les coefficiens du numérateur, tandis
que ceux du dénominateur se trouveront tous déterminés par ceux-la.

Des valeurs de nos quinze binomes , il est aisé de déduire deux
systtmes de vingt équations chacun , tels que le premier renferme
toutes les combinaisons trois 2 trois des lettres dépouryues d’accens,
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tandis que le second ne renferme que celles qui en sont affectées ;
voici le premier de ces deux systémes :

Ac4Ca=2Bb , (16} 2Bq-_f.(Q—D)c—(S+F)a, 26)
Gr4-Ip=2Hy , an 2Hb=(S—F)?—-(Q-—D)r, 27)
Pb—Ap=(Q4Da, (18) Pc—2Bp=@3R}aE—2Ma , 28
Ty—=Ic=S+Fyr, 190 Tp=—2Hc=@GBR42E==2V)r, (29)
VatAdg=(Q—D)s , (20}  PrdzHa=(3R—2E—2F) , (30)
Vr4Ib=(S=F)q , (21} Ta+aBr~=(3R—zﬁ—nV; R 1)

Vp=Gb=(Q+4D)g , (22) (Q+4D)c=—=Cp=(3R42E=2F)} , (32)
VimCy=(S4F% , (23) (S+Pp=Ge=GR42E—27)g, (33)
PgiGo=(Q-D)p , (26 (Q=D)r+la=(3R=2E—2Pg , (34)

Thf-Cr=(5=F)c y (25 (S=Faf-Ar=@R—=2E—=2P)b . (35)

Le second sysiéme ne devant différer de celui-1d qu'en ce que les
petites lettres y portent des accens, nous nous dispenserons de
I’écrire, et mous conviendrons d’en désigner les équations, comme
ci-dessus , par les mémes nombres affectés d’accens.

Lors donc que l'on rencontrera une équation différenticlle de Ia
forme (D) qui satisfera & nos cinq conditions , on pourra étre
assugg que son intégrale est de la forme (I) ; et , pour l'obtenir,
on prendra arbitrairement trois des douze coefficiens 2, &/, &, &/,
c, ¢, ps>pyq,q, r,r; en les choisissant toutefois de telle
sorte qu’ils ne’soient ni tous pourvus ni tous dépourvus d’accens.
Supposons, pour fixer les idées, que ce soit les trois coefficiens
a, b, a'; équation (1) fera connaitre 4/; on aura ensuite ¢, ¢/, -
par les équations (16, 16”) ; les équations (18, 18/) donneront .
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p, p'; on aura g, ¢' par les ¢quations (20,20/); et enfin r, 7/,
par les ¢quations (17,177); il ne s'agira done plus que de subs-
tituer les valeurs de ces douze cocfficiens dans Ja formule (I) pour
avoir l'intégrale cherchée.

Pour appliquer ce procédé a un exemple, soit I'équation diffé-
renticlle

dy (104-faxmm1f2?) =2 (5—22—=0x)y-} (342 —x2)y2

dx 74 12042283424 %94-7 X4

nous aurons ici
A=410, D=-5, G=++3,
2B=+4 4, 2E=+2, zH=+41,
C=—14, F=46 , I=w—1,
P=47, Q=412 , 6B=+22, {S=+24, T=+7
at de la
Q4D=— 2, Q—D=+48, 3R42E=-13 ,
S+ F=412, S—F=*1o, 3R—2E=+4 9,
ces valeurs substituées dans nos équations («,B8,v,2,:,¢), ces
équations deviendront
=8, (o V=14, () F@3=2F)=18, ()

V=2, Q) V=14, {3 V( g—2V)=10, (8

les quatre premiéres s’accordent & donner P'==2, valeur qui satisfait
également aux deux autres; nos cinq conditions sont donc satis=
faites ; et conséquemment lintégrale de I'équation proposée est
algébrique et de la forme (I).
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En conséquence , pour en obtenir lintégrale , nous prendrons
arbitrairement

“a=3, b=2; a=1,

Péquation (1) donnmera |

b'=4,

les équations (16, 16/) donneront ensuite

de 13 on conclura, par les équations (18, Ié'/),‘

Cp=2, =3,

par les équations ( 20, 20’)
~q=1‘ R g'=3 ,
et énfin, par les équations (17, 17/),

r=r , =2 .
Substituant donc toutes ces valeurs dans la formule (1), rous
aurons , pour liniégrale de 1’équation proposde ,

_ (ho5an) 4 (4-8x -3k
Y oot ot Of6atank |

comme il est d’ailleurs facile de le vérifier par la différentiation
et I’élimination de la constante £.

' QUESTIONS
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QUESTIONS RESOLUES.

Solution du dernier des deux problémes de géomelric
proposes & la page 132 du X.° volume de ce
recueil ;

Par un ABONNE.

(o Sle Via Vi Vi Y Vo Vo Y ¥

AS » . 1y
.P ROBLEME. Construire graphiquement , pour l'un quelcongue
des points d'une courbe plane donnée , soumise ou non & la loz
de continuité , le centre de courbure de ccite courbe?

Solution. Quelque procédé qu’on veuille employer pour résoudre
ce probléme, ce procédé ne pourra jamais étre qu'un a-peu-prés
dont le rdsultat sera d'avtant plus douteux que l'arc de courbe

donné aura moins d’amplitude,

s

La méthode qui soffre le plus naturellement 4 Pesprit , pour
parvenir au but, est la suivante : Par le procédé déja indiqué
(tom. X, pag. 89), ou par tout autre équivalent , soient menées
des tangentes a différens points de arc de courbe donné; en me-
nant des perpendiculaires & ces tangentes par leurs points de ronta t
respectils , ces perpendiculaires seront des normales a la mére
courbe; et conséquemiment lewr courbe enveloppe sera la développde
de Turc dont il s'agit. Tragznt denc ceite courbe enveloppe , t
lui menant enc<vite une tangente par le point denné, le point de
Lom. XI. 48
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contact de cette tangente sera le centre de courbure de larc de
courbe en ce méme point, cest-a-dire, le point cherché.

Mais d’abord , le procédé que l'on est obligé d’employer pour
mener une tangente a4 une courbe par 'un de ses points , n’est pas
tellement Simple qu'on puisse regarder comme chose facile de mener
un certain nombre de pareilles tangentes. En second lieu, s'il est
déja quelquefois assez difficile de tracer, 2 la main, une courbe
qui passe par des points donnds, il P'est bien plus encore de tracer,
4 la main, une courbe qui touche a la fois une suite de droites
données, Enfin, s'il est assez facile de mener, & la simple vue,
une tangente 4 une telle courbe par un point qui lui est extérieur,
il ne l'est pas également de bien fixer le point de contact de cette
tangente , qui se confond sensiblement avec la courbe méme , dans
une partie de sa longueur,

Nous pensons donc que, par toutes ces considérations, on pré-
férera le procédé que voici, lequel , en méme temps qu'il n’exige
le tracé que d'une seule normale, détermine le centre cherché par
Iintersection de cette normale avec une courbe assujettie 3 passer
par des points donnés,

Soit M le point de I'arc de courbe pour lequel on veut déter-
miner son centre de courbure , et d’abord soit menée la normale
de ce point, au moyen de sa tangente.

Soient pris sur la courbe, & la droite du point M, des points
arbitraires M/, M/, M//,....., et & sa gauche d’autres points ar-
bitraires M,, M,, , M,, ,..ec... Sur les milieux de MM/, MM~
MM/, v.eey soient élevées respectivement a ces cordes des perpen—
diculaires indéfinies , ¢oupant la normale en C/, C7, G/, ...
Soient aussi élevdes sur les milieux de MM,, MM,,, MM, ; ..
des perpendiculaires indéfinies 3 ces cordes , coupant la normale
en C,, G,, C,, . respectivement,

Par les points G/, C#, G/, ... soient élevées & la normale ,
du ¢oté droit, des perpendiculaires C/N/, G/N/ , G/N/! | wuiunves
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respectivement dgales anx longueurs MM/, MM/, MM/, ......, ou
n fois plus grandes que ces longueurs ( 2 étant un nombre arbi-
traive ). Par les points C,, C,, C,,, ... soient élevées & la nor=-
male, du c6tc gauche, des perpendiculaires C,N,,C,N,,C, N, ...,
respectivement dgales aux longueurs MY, , MM, , MM,,, .. s ou
7 fois plus grandes ue ces longueurs. En joignant les points . N/
N7, N, Ny, N,y Nyyy e par une courbe continue , le peint C
ol cetic courbe coupera la normale sera le centre de courbure cherché,

Si, en effet , des points ..C" , C7,C,C,C,,C,, Cpryunn
comme centres, et avec leurs distances au point M prises pour
rayons respectifs, on deécrit une suvile de cercles , tous ces cercles
toucheront la courbe en ce point M, et en outre ils la couperont
anx points ..M o MY, M/, M M, ,M,, M, ,u.; le
cercle dont le centre est G touchera done et coupera en méme
temps la courbe au poiut M ; et par conséquent ce cercle sera
Ie cercle osculateur et son centre (G le centre de courbure pour le
point M.

1} sera méme facile de juger , par la situation de la courbe
e N, N7, N, €, N,y Ny, Nyjps e par rapport 2 la nor-
male , si le contact du cercle osculateur!avec la courbe est d'un
ordre supérieur au sccond , et si [a courbure en B est mozimum
OQ MIRSMLE.
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Démonstration des deux théorémes de géomeétrie enonces
a la page 152 de ce volume ;

Par M. Vecrewn, licencié &s sciences,
Et par M. J. B.Durranpe , professeur de mathématiques
au collége royal de Cahors.

(s Via Ve Vi Y0 U Sla Vi VB %)

THE’ OREME 1. Si , considérant successivement deux & deuz irois
cercles tracés sur un méme plan , on détermine , pour chaque
systéme de deux cercles, les centres de similitude , tant interne
qu'externe , el que, dans chaque systeme , on fasse de la distance
enire ces ‘deux cenires le diamétre d'un nouveau cercle; les trois
cercles obtenus par cette construction se couperont deux & deux
aux deux mémes poinis , el auront conséquemment une corde comn-
mune et leurs centres sur une méme perpendiculaire a cette corde.

Démonstration. Soient généralement trois points C, C/, C/ donnés
sur un plan, et supposons qu’'on se propose de trouver , sur ce
plan, un point X dont les distances respectives z, 2/, 2// 4 ces
trois points soient proportionnelles a trois longueurs données R,
', R”,

Il est clair que, si I'on construit séparément le lieu L de tous
les points dont les distances aux points C/, G/ sont dans le rapport
de B’ a R, et le lieu L/ de tous les points dont les distances
aux points G, C sont dans le rapport de B’ a4 R, chacune des

intersections de ces deux lieux pourra étre prise pour le point
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cherché X ; en effet, en représentant par x, 2/, 2/, les distances
de cette intersection aux points G, G/, C”, on aura

2 x!
Parce que X est sur L ... ... i i
x x!!
Parce que X est sur L/ . . . .. .. T
. x x' . ’ - . .
on aura donc aussi - =5 Donc, si 'on construit le lieu L/

de tous les points dont les distances aux points C, C/ sont dans
le rapport de B 4 B/, ce lieu devra passer par tous les points X,
c’est-a-dire , par tous les points d’intersection des deux licux L.,
L/, de sorte que les trois licux L, L/, L/ doivent se couper aux
mémes points.

Or , il est connu que le lieu de tous les points d’un plan dont les
distances 4 deux points fixes pris sur ce plan sont dans un rapport donné
est une circonférence qui a son centre sur la droite qui joint 'ces deux
points ; donc les trois lieux L, I/ ,L// sont des cercles qui ont respec-~
tivement leurs centres sur C/C”, C”C, CQC’; ces trois cercles se
coupent donc aux deux mémes points; ils ont donc une corde
commune ; et par conséquent leurs centres sont sur une méme
perpendiculaire au milieu de cette corde,

Si présentement on suppose que les points G, C/, C” sont les
centres de trois cercles et que les longueurs R, R/, R/ en sont

les rayons, on tombera exactement sur le théoréme qu’il s’agissait
de demontrer,

Si deux des trois cercles L, L/, L/ sont tangens 1’un 4 l'autre,
il est clair qu’ils devront aussi étre tangens au troisieme ; de sorte
qu’alors les trois cercles n’auront qu’un seul point commun.

Si deux des cercles ne se rencontraient pas, il est clair qu’ils
ne devraient pas non plus rencontrer le troisiéme ; mais on voit,
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par le prinripe de continvité de M. Poncelet, qu'ils devraient avoir
alors un axe radical commun.

THEOREME 11. 8¢, considérant successivement deuzx & deuz
quaire sphéres situdes d'une maniére quelconque dans lespace ,
on détermine , pour chagque systéme de deux sphéres , les centres
de similitude , tant interne qiexicrne , et que , dans chaque sys-
téme, on fasse de la distance entre ces deux centres le diamétre
dune nouvelle sphére; les siz sphéres obtenues par celte construc—
tion passeront par les deux mémes poinls , et auront ainsi une
corde commune et leurs centres dans un méme plan perpendicu-
laire sur le miliexw de cette corde.

Démonsiration. Ce théoréme se démontre exactement comme le
précédent. Soient en effet C, C/, G”, G/ les centres des quatre
sphéres dounées, et B, R/, R/, R/ leurs rayons. Représentons de plus
par (CC/), (CC7) , (C/C7), (CCvy, (CC7), (CGH) les six
sphéres qui résultent de la construction indiquée. Chacune d’elles
sera le licu de tous les points de lespace dont les distances aux
deux points qui la désignent seront proportionnelles aux rayons des
cercles dont ces points sont les centres.

Les intersections des trois lieux (CC’), (CC”) , (CC/') seront done
deux points dont les distances aux points C, C/, G/, G/ seront
proportionnelles 2 R, R/, R’ , R/ ; dou il suit que les lieux
(¢Cry, (GG, (G7C/7) devront passer par ces deux mémes
points ; c’est-a-dire que nos six spheéres doivent se couper en deux
points , suivant quatre cercles seulement, et avoir conséquemment
leurs centires sur quatre droites situées dans un méme plan,

Si deux des six sphéres ne font que se toucher , les quatre
aotres les toucheront aussi a leurs points de contact, de sorte que
les six centres seront sur une méme droite.

Si deux des six spheres ne se rencontrent pas, les autres ne les
rencontreront pas non plus ; mais elles auront alors un axe radical
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commun , et ne fourniront deux a deux que quatre plans radicaux
seulement,

Solution du probléme de gdométrie propose a la
puge 165 de ce volume ;

Par M. FreEvgEric SARRUS , docteur €s sciences.

s = i iy P Wi s s s !

_P ROBLEME. Déterminer graphiguement les  élémens d'une
section conigue dont on n'a quun arc qui ne renferme aucur des
sommets ?

Solution. Soient mendes & Varc dont il s'agit deux cordes paral-
Ieles quelconques ; en joignant leurs milieux par une droite , cette
droite sera un diamétre ; et si, par le point ol ce diarmetre coupe
la courbe, on meéne une paralléle aux deux cordes dont il jeint
les milieux, cette paralitle sera une tangente i la courbe en ce
point , et , par suite , une paralltle au conmjugué du diamétre
dont il sagit.

En répétant la méme opdration par rapport a un autre systéme
de deux cordes parallcles entre elles, mais non parallcles aux pre-
miéres , on obtiendra un second diamétre et une tangente i son
extrémité , ces deux dizmétres se couperont en un point qui sera
le centre de la courbe.

Nous aurons denc ainsi, peur deux points M, M/ de l'arc donné,
les diametres D, D/ et les tangentes T, T/ & leurs extrémités.

Menant par M/ une parallele a8 T, prolongée au-dela de D d’une
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quantité égale & elle-méme ; son extrémité M/ sera un troisitme
point de la courbe.

Menant par M” une paralléle & T/; prolongée , au-deld de D/,
d'une .quantité égale i elle-méme ; son extrémité M*/ sera un qua-
tritme point de la courbe.

En poursuivant de la méme maniére , on déterminera tant de
points du périmétre de la courbe qu’on voudra; et, exceptd le cas
o par le progrés de l'opération on retomberait de nounveau sur
quelque point déja déterminé , ce qu’on peut toujours éviter, puis-
que les deux points de départ M, M’ sont arbitraires sur l'arc
donné ; ces points, distribués sur tout le périmeéire de la courbe,
pourront toujours éire rendus si voisins qu’on le voudra.

On pourra donc toujours en trouver un P, au moins, tellement
situé qu’en décrivant un cercle du centre G de la courbe et du’
rayon CP, ce cercle vienne couper 'arc donné en quelque point
P’/. Menant donc, par le centre, une paralléle et une perpendi-
culaire & PP/, ces deux droites seront les directions des diamétres
principaux ; \et, comme on connait en outre une tangente et son
point de contact; il sera facile, suivant les procédés connus, de
construire les quatre sommets,

Solution
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Solution du premier des deuse problémes de combinaisons
proposes a la page 204 de ce volume ;

Par M. Freperic Sarrus, docteur s sciences.

A% T Vi Vi Vo Y Y Y Y

P ROB:EME. D: combien de manitres peut-on choisir n leitres
parmi m lettres , desquelles 1l s'en trouve un nombre « égales a
a, un nombre ¢ fgales & b, un nombre o égales a ¢, et ainsi
de suite ? ou, en dautres termes , combien le monome a*be:¢?....,
dans lequel wtp-t-y-+........=m, admet-il de diviseurs de n
dimensions ?

So’ution. On sait que tous les termes et les senls termes du
produit.

(rdata i o) (14402 e 6P 1 Fr oo e s

sont les diviseurs du monome &”4%c%...... , lesquels me s’y trouvent
chacun qu’une seule fois; dou il résulte que les diviseurs de =
dimensions de ce nonome sont les termes de 7z dimensions du
produit dont il s’agit,

Or, si lon pose g=b=¢=.,,......,=2, auquel cas ce mémc
produit deviendra

L S A S e L e e T A € & SL 2 L1 SRR S

012 «oncore

Jumm g P Jommy Bt ey

" A

$eamwaoee 2

L2 f Satatt ) St 4

Zom. XI. 44
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le nombre de ses termes de z dimensions ni le nombre des di-
mensions de ces termes ne changera pas ; et il arrivera setlement
que chacun d’eux se réduira a 2", d'ou il résulte qu’ils se rédui-
ront tous i ce terme affecté d’un coeflicient égal au nombre cherché.
. Le nombre cherché est donc le cocflicient numérique de 2" dans
le développement du produit

(1Fz+a . 2") 12+ 2 t2®) 12t 22

Qu’on demande, par exemple, le nombre des diviseurs de trois
dimensions du produit @*4*c; on développera le produit

.

(1 +x+x’+x3)( 14z4a*)1-}a) ,

ce qui donnera

1432452462345+ 43254 2¢

et le coefficient 6 de 2°, dansle développement , sera le mombre
des diviseurs de trois dimensions de @%)*c : ces diviseurs sont , en
effet ,

a2, ab, ab*, abc, ac, bc.

Comme 1l y a autant de manitres de choisir m—n facteurs parmi
m que d’en laisser 2, on voit que le produit 2%/#¢¥..... avra tou-
jours autant de diviseurs de m—n dimensions qu’il en aura de
7 dimensions, Dans le déyeloppement dy produit de nos polynomes
en x, il arrivera donc que les termes dégalement distans des ex-
trémes auront constamment des cocfliciens égaux; cela résulte dail-
leurs de la nature méme de lopération.

Si le nombre n n’était supérieur 2 aucun des exposans « , 8>
e il est aisé de voir qu'on pourrait supposer ces exposans
plus grands qu’ils ne le sont en effet sans rien changer au résultat
final ; il serait donc permis aussi de les supposer ipfinis ; auquel
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cas, en désignant par m le nombre des lettres @, 7, ¢, .. le
produit a développer deviendrait

QT S S A I G

(=

or, le développement de cette puissance est

ou

m
> ou enfin  (1—2)"";
X

+ m m=-1 m-} mn==1
1+—x+—"-z~-'7—n-—-: x’+.....+ .z m3 - W A

n

donc , le nombre des diviseurs de » dimensions du monome a*44:”.......
dans lequel il y a m lettres et o0 w, 8, 3 ,.... sont des expo-
sans quelconques >7 est

m md1 m2 m-f-ne=x

n B
AEDBNRINRN o

I 2 3 n

Or, si l'on demandait le nombre des termes du polynome com~
plet et homogéne de » dimensions qu'on peut fermer avec m
sortes d~ lettres en nombre indéfini de chaque sorte, le probleme
reviendrait évidemment & celui-ci ; donc le nombre de ces termes est

m md-1 m-2 M=fri=—1 (m—-n-l-l)t

e i T T PGV N

X 2 3 n (m-—l)‘n'

Soit présentement une équation complete du n.™® degré entre m
inconnues #, ¥, Z ,e... dont on demande le nombre des termes ;
en introduisant dans chacun de ses termes une puissance d'une
{m-f1)™¢ inconnue Z du degré nécessaire pour les rendre tous
homogenes et de » dimensions, son premier membre deviendraun
poiynome homogene de 2 dimensions , formé avec m-i-1 sortes
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de lettres ; le nombre des termes de la proposce est donc ce que
devient la formule ci-dessus, en y changeant m en m—1 ou
m—1 en m; cest-d-dire que le nombre des termes d'une équation
compléte de n.™¢ degré enire m inconnues , comme aussi le nombre
de ecux d'une équation compléte du m.™* degré enire n inconnues est

(m-}-n)!

m!n!

Cette démonstration d’un théeréme d'ailleurs assez important nous
parait beaucoup plus courte et plus claire que celle de M. G.
‘Fornier, rapportée par M. Gergonne , a la page 115 dulV.® vo-
lume de ce recueil.

QUESTIONS PROPOSEES.

Problémes de Geometrie.

L ETANT donnés , sur un plan, trois droites indéfinies et deux
points,, correspondant respectivement 4 deux d’entre elles ; sur quelle
courbe doit étre situé un troisiéme point pour que les trois points
puissent étre considérés respectivement comme les poles des trois
droites , par rapport a une méme section conique ?

II. Etant donnés , sur un plan, trois points et deux droites in-
définies , correspondant respectivement & deux d’entre eux ; & quelle.
courbe une troisi¢me droite doit-elle éire tangente pour que les
trois droites puissent étre considérées respectivement comme les

olaires des trois points , par rapport & une méme section conique ?
) P
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ANALISE ALGEBRIQUE.

Note sur la résolution dune classe particuliére
d'équations algébrigues ;

Par M. Bernarp Bernprson , officier civil an département
de la guerre de 8. M. Suédoise;

Communiquée au Rédacteur des Annales,

Par M. Berzerivs, secrétaire perpétuel de I'académie des
sciences de Stockholm.

[ o Vi W VT W N L VL VeV

Lettre de NI. Berzerivs au Redacteur,

MONSIEUR,

LA note ci-jointe m’a été remise par un zélé mathématicienY de
mes amis , pour vous étre adressée, L’auteur se trouverait heurenx
s1 vous la jugiez digne d'une place dans vos Annales.

Agréez , etc.
Stockholm, le 17 mars 1821,
dom, XI, n,° XII, 1.5 juin 1821, 50
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Note de M. BERNDTSON.

Le soussigné a I'honneur de donner avis 3 M. le Rédaeteur des
Annales de mathématiques que , s’étant proposé de résoudre I’équation

“zn+l__x__k=o ,

dans laquelle 72 est un nombre entier positif et ol % est une
quantité réelle positive quelconque ; il a trouvé, par une méthode.
spéciale , appropriée aux divers cas particuliers que renferme cette
formule générale , qu’en posant

>~

Ny 111 ) e——

PYTRIY Pr— k
o=k, b=+ ik, = P T

la seule raeine réelle positive que puisse avoir cette équation est
exactement exprimée par la formule

b2e==qc

r=—
ab=—(asz¢). -

De cette détermination générale de la racine réelle positive de
Péquation ‘iki‘suit:, pour les cas particuliers, que celte racine sera
celle de 1’équation

2—z—hk=o0 ,

si 'on pose :
a=yiFh, b= kL =t PR
quelle sera celle de I'équation A '

gk =0

v

sil'on pose
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e 4 k Kk
=V Fh, b=t L, = Bk

el ainsi“Ce suite,

v

L’exposition des faits analitiques gqni ont amené le résultat qu'on
vient de faire connailre ne parait gucre susceptible, & raison des
devceloppemens qu'elle exigerait , de trouver place dans un recucil
périodique ; mais Vauteur s'engage a communiquer ces falts aux

géometres qu'ils pourraient particulierement intéresser (*).

(*) Dans lignorance olt nous sommes des considérations qui ont pu conduire
Tauteur a ce singulier résultat , nous aurions desivd d’cffeic du moins & nos
lecteurs unc vérification simple de ses formules ; mais , méme pour le cas
particulier da troisieme degré, les calculs sont trop longs et offrent trop peu
d’intéréts pour meriter de trouver place ici. Nous nous bornerons donc & re=
marquer que depuis long-temps nous avons observé que , quels que soicnt
a ,b,m, l'une des racines de 'équation

xm-—ax——bzo 3

peut étre indistinctement exprimée par Fune ou lautre des deux formules

o By

prolongées & l'infini

D

m"‘l/ é
‘x"‘y a+m-1/—"“—'z
14 +;7=‘*“ —
a4 me 1y

G4 ernee

Ces résultats sont , comme Ton voit , du genre de ceux qu'a présenté M,
Shmidten dans un précédent mémoire.
J. D, G,
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- ARITHMETIQUE.

Evaluation de lerreur qui peut affecter les produits
et puissances des nombres approximalifs;

Par un ABONNE.

AN s N W e e e

SOIENT trois nombres entiers quelconques 7341, 824, 75 ;
on aura

7341 <X824><73=441575832 ,

et ce produit sera rigoureusement exact , si ses facteurs le sont
eux-mémes. 7

Mais, si I'on n’est pas certain de l'exactitude de ces mémes
facteurs, et que l'on sache seulement de chacun d’eux que, sl
est fautif , ce ne peut étre que d'une quantité qui ne saurait ex-
céder une demi-unité ; voici comment on parviendra & déterminer
jusqu'd quel ordre d’unités on peut compter sur l’exactitude du
produit.

On fera la supposition la plus défavorable ; c'est-a-dire que l'on
admettra que ces facteurs sont tous fautifs, qu’ils le sont tous
dans le méme sens, et que l’erreur qui affecte chacun d'eux est
précisément d’une demi-unité. En conséquence , le véritable produit
devra étre

(734120 2 )(8adat 1 )(73+

—

)

win

-
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les signes supédricurs ou les signes inférieurs devant étre pris, sui=
vant que ces factcurs seront faulifs en moins ou en plus, Ea
développant, il viendra

73418247373 (7341X82447341 7348247 3)
'i"%(7341+824-1|-73)i: £

Le véritable produit devant étre compris entre celui qui résulte
de T'emploi des signes supérieurs et celui qui résulte de I'emploi
des signes inférieurs , la différence entre Fun et Pautre donnera

la limite de lerreur dont le produit apparent peut étre affecid.
Ceite différence est rigourcusement

7341 X 82447341 < 734824 X 7345 ;

mais il est clair que ce qui suit la somme des produits deux
a deux est trop petit vis-d-vis de cette somme , pour qu’il importe

d'y avoir égard ; de sorte qu'on peut prendre simplement pour
limite de I'erreur

734182447341 X 734824 73=6645029 ;

or, ce nombre est plus grand qu'one demi-dixaine de millions ;
d’otr il suit gque dans le produit apparent 441575832, on n’est
A A . 4 - .
pas méme stir du second chiffre & gauche , qui pourrait se trouver
fautif de plus de la moitié de l'une des unités qu’il exprime, ce
dont becuenup de gens sans doute ne se douteraient guére,
Oa voiv par la que, si les trois facteurs avaient été

7341 8,24 3 0,0073 ;

»

approchéds seulemient a moins d’ane demi-unité décimale du dernier

ordre pris, auquel cas le produit apparent aurait été



3-8 NOMBRES APPROXIMATIFS.

~J3

44,157832

non sculement on n’aurait pu compter sur aucun des chiffres dé-
cimaux de ce produit; mais on n’aurait pas méme été sir du
chiffre des uniiés. '

En appliquant les mémes raisonnemens au produit d'un plus
‘gran(rnombre de facteurs, on parvient i cette conclusion générale:

Le produit de w facteurs , entiers ou décimauz , approchés
seulement & moins d’une demi-unité pris du dernier ordre de
thacun deux , peut ére fautif dans autant de chiffres sur la
drotte qu'en renferme la -somme des produits m—1 4 m—i1 de
ces mémes facteurs considérés comme des nombres entiers.

Dans l'application de cette régle a la -pratique , on pourra, le
plus souvent, se contenter d’examiner combien aurait de chiffres
le produit des m—r1 facteurs qui, considérés comme entiers , se
trouvent les plus grands.

Si Pon suppose que tous les facteurs sont égaux, on obtient la

régle suivante pour les puissances :
La m™¢ puissance d’un nombre , entier ou décimal , approché

seulement & moins d'une demi-unité du dernier ordre prés peut

étre fautif dans autant de chiffres sur la droite qu'en renferme m
Jois la (m—1)"™° puissance ds méme nombre considéré comme
entier.

Nous ne dirons rien de l'errenr qui peut affecter les résultats
de divisions et d’extractions de racines, exécutées sur des nombres
approchés, parce (que, dans aucun cas, cetle erreur ne saurait étre
trés-grave. Mais les principes que nous venons d'établir nous sem-
bleraicnt devoir trouver place dans tous les traités élémentaires. Il
n'arrive que trop souvent, en effet, que, faute de les connaitre
on se fait illusion sur P'exactitude de certains résultats, ou lon
conserve un grand nembre de chiffies décimaux qui les compli-
quent en pure perle , et que l'on serait d'autant mieux fondé i
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supprimer , qu’on pourrait , & tout aussi bon droit, les remplacer
par d’autres, derits tout=a-fait au hasard.

Ceux qui désireront de plus amples détails sur ce sujet pourront
consulter un petit ouvrage ayant pour titre : Essai sur les nomires
approzimatifs ( Paris, Duprat, an VII ); mais ce qui précide nous

parait plus simple et plus élémentaire.

QUESTIONS RESOLUES.

Solution du premier des problémes de géomelrie proposes
a la page 228 de ce volume ;

Par M. GERGONNE.

POUR ne point interrompre la marche de nos recherches par des
questions incidentes , nous allons , avant d’entrer en matiére , élablir
quelques formules qui nous scront nécessaires pour parvenir a
notre but.

Soit une section conique rapportde & deux axes obliques quel-
conques , et donnée par I'équation

Ax*-By*A-2Cay-tod'x+2B'y4C'=0 , (1)

et soit ume droite rapportée aux mémes axes et donnée par
I'équation
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® 7
‘;+T=l. (2)

Nous allons chercher quelle relation il doit exister entre les

coefliciens de ces deux equations, pour que la droite soit tangente
a la section conique,.

Pour obtenir cette relation, remarquons d’sbord qu’en désignant
par (&’ ,y’) le point de contact, l'equation de la tangente est

(Ax'4Ly' A"z +(By'4 Co'+B)y+(4'a’+B'y'+C)=o0 ,
ou bien

2 + y .
Alx/4-Bly '-C? Al x! 4Byl 4-C1 = I,

Ax’-{-Cy’-{— A — Byl+cxl+ B

cette équation devant étre la méme que l'équation (2), il s’ensuit
qu’on doit avoir

_ AXBy4C , __ A4 BytC
Ax/4-Cy A/ By'4Cx/+-B ’
ou
o(As'+Cy'H- A (4 5+ By 4-C)=0
5(By'+Ca/4-B")(Ad'a’4B'y'+C)=o0 ,
ou encore

(e Ad4-A")2'+-(aC+B')y/4-(ad'+C' =0

(¢B~+B')y' 4 C+A)2/'4-{¢B'+-C)=0 ;

mais, parceque le point de contact est sur la droite (2), on doit
avoir aussi

X4
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ba'tay'—ab=o ;

&liminant done 2/, ¥/ entre ces trois derniéres équations , il viendra
pour I'équation qui exprime la condition demandée

@*b*(C'—AB) 420"/ A' C—AB))+ a* (A*—A4 C')

20b* (B C—BA')428b(CC'—A'BY) 3=0. (3)
+ (B —BC) i

8i la droite donnée dtait I'axe des = ou celui des y, on au-
rait, dans le premier cas, ==0 et dans le second a=0, ce qui
réduirait la coud:tion a

AP—=AC/=0 , 4) ou Br—BC'=o0 . (%)

Si, apres avoir changé respectivement @, 4 en Az, a6, on
suppose ensuile A=0, la droite passera par l'origine, et aura pour
équation

® Y o
—+5 =0, (6)

en faisant les mémes transformations dans 'équation (3), elle devient
a*(A*—AC')}2ab, CC/—~A'B/\4-b*(B*—BC)=o0 ; (7)

c’est donc la I'égnation de condition qui exprime que la droite (6)
est tangente a la courbe (1)

Si, de plus, la courbe (1) passait elle-méme par lorigine, gni
serait alors le point de contact, on aurait €/=o0; ce qui rédui-
rait la condition (7) a celle-ci:

aA' —bB'=¢ . (8
Tom. XI. 5%
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Nous terminerons par rappeler que le centre de la courbe (1)
est donné par les dérivées de son équation , prises successivement
par rapport & x, ¥, lesquelles sont

Az4-Cy+A4'=o0 9) By4-Cz<+B'=o , (10)
et donnent

(c*=~AB)x4-(B'C—A'B)=0 , (11)
(e*—AB)y+(A'C—B'A)=o0 . (12)

PROBLEME 1. Déterminer le licu des centres de toutes les
sections coniques qui louchent & la fois quatre droites données
guclconques ? :

Solution. Soient prises deux quelconques des droites données pour

axes des coordonnées , et soient les équations des deux autres
ainsi qu'il suit z

X
=
a

>~ [

x ¥
=1 . -;—,-l——l-)-;_x.

Supposons que I'équation (1) soit celle des courbes dont il s'agit;
parce que ces courbes doivent toucher les deux axes, les équations
(4, 5) auront lieu ; on exprimera ensuite que ces courbes touchent
les deax autres droites, en exprimant que I'éguation (3) a lieu,
ainsi qu’'une autre équation que I'on déduirait de celle-la en y
changeant respectivement @ , 4 en @/, %/ ; mais , en vertu des
conditions (4, 5), ces équations se simplifient et deviennent

¢ b (C*~4B)+-2a (4/C—AB')+2b (B/C—BA')+2(CC/—A'B)=0 ;
0'5’(6’--‘43)4‘20’(/1’C—AB’)+25’(B’C—BA’)+2(CC/_A/B/)=0 .

En y substituant pour les deux binomes A/CemAB!, B/CweBA’
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leurs valeurs données par les ¢quations (11, 12), ot @, y sont
les coordonnées des centres, elles deviendront

(C*—ABY2b 428 y—ad)=2(CC'—A'D) ,
(C*—AB)(2b' 420"y —a'bl)=2(CCl—A'B’) ;
d’oir, en multipliant en croix et réduisant
2bx-b2ay —ab=2b/z+2a'y~a'l! ;

le licu des centres des sections coniques qui tonchent a la fois
s quatre droites données cst donc une ligne droite.

Il ne s’agit, pour construire cette droite, que de connaitre deux
points de sa direction; or, il est aisé de voir qu'on satisfait éga-
lement & son équation soit qu'oa fasse

x=-a , r=zia ,
ou

7’:;5/’ 9’—'—:'17 H

or, par la situation de nos quatre tangentes, il est aisé de recon-
naitre 'un ou lautre de ces points pour le point milieu de la
droite qui joint Dlintersection de deux quelconques de ces tangentes
a lintersection des deux autres; on a donc cet élégant théoréme :

THEOREME. Le licu géomélrique des centres de toutes les
sections conigues inscrites & un méme quadrilatére est la droite
gui joint les milieux des trois diagonales de ce quadrilatere (*).

(*) Cest un renversement du théoréme de Newton , cité par M. le capitaire
Poncelet, 2 la page 211 de ce volume. Cet estimable glométre nous en a
adressé récemment une démonsiralion purement géoméirique que nous publies
rons a la premieére occasion.
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Rien ne sera plus ais¢, d’aprés cela, que d'assigner le centré
de la section conique inscrite 4 un pentagone donné quelconque.
Il ne s'agira en effet, pour cela , que de faire tour a tour abs-
traction d’'un c¢6té puis d’un autre c6té du pentagone , et de cons-
truire, 4 chaque fois , la droite , lieu des centres des sections
coniques qui touchent ses quatre autres c6tés ; on obtiendra ainsi
deux droites- dont lintersection sera le centre cherché; on voit
clairement par la que le probléme ne saurait avoir qu’une solution.

Comme on peut obtenir cing droites qui contiennent le centre
demandé et que ce centre est unique, il s’ensuit que ces cinq droites
doivent se couper au méme point ; d’oit résulte un élégant théo-
réme sur le pentagone, que nous laissons au lecteur le soin de
suppléer.

Lorsqu’ane section eonique est inscrite 3 un triangle, on peut
toujours la considérer comme inscrite & un quadrilatére , pourvu
que l'on regarde son point de contact avec l'un des cotés comme
un quatri'me sommet tel que les deux cétés du quadrilatére qui
s’y terminent font entre eux un angle égal a deux angles droits;
on a donc ce théoréme: '

THEOREME. Le liev géométrique des cenires de toutes les
sections coniques qui, élant inscrites @ un méme iriangle , tou=
- chent Pun de ses cOtés en un méme point, est la droile qui passe
puar le miliew de ce coté et par le miliev de la distance du som-
met opposé au point de contact commun.

Il sera done trés-facile d’assigner le centre de la section conique
qui , étant inscrite a un triangle donné , touche deux cétés du
triangle en des points donnés; il ne s'agira pour cela, en effet,
que de mener des droites par les milieux de ces deux cotés et
par les milieux des distances des sommets opposés aux points de
contact donnés; ces deux droites se couperont au centre cherché,

Lorsqu'une section conique touche les deux cétés d'un angle,
on peut tovjours la considérer comme inscrite & un quadrilatére,
pourvu que l'on regarde ses points de contact avec les deux céOiés
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de l'angle comme deux sommets opposés du quadrilatire, et quon
admette que ses deux autres sommets s¢ confondent avec le som-
met méme de Vangle ; de la, et de ce qui a été dit ci-dessus , résulte
ce théoréeme :

THEOREME. Le lieu géométrique des centres de toutes les
sections coniques qui touchent les deux c¢bdids d'un méme angle
auzr deux mémes points , est la droite menée du sommet de cet
angle au miliew de celle qui joint les deux points de contact.

PROBLEME 11. Déterminer le licu des centres de toutes les

sections coniques qui , touchant & la fois trois droites données ,
passent en méme lemps par un méme point donné ?

Solution. Soéient encore prises ici deux quelconques de trois
d-oites données pour axes des coordonnées, et soit pour l'équation

de la troisi¢me

x y

— a3

-+ ;
goient enfin @/, & les coordonnées du point donné. D’abord, parce
que nos courbes touchent les deux axes, nous aurons (4, 5)

AP dC'=0, Br=BC'=o;

en second licu, parce qu’elles touchent Ja troisiéme droite , noua
aurons , comme ci-dessus ,

(C*—dB)(2ba~t2ay—ab)=2(CC'—A'D’) ;

en outre , parce que ces courbes passent par le point donn¢,
nous aurons

Aal~4-Bb' 42 Ca'b/ A2 A'a'4-2B/b+4C'=0 ;

enfin, x, y 'désignant les coordonnées des centres dont le liew
gst demandé , nous aurons encore (9, 10)
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Az Cy+Ad'=o0 , By+Czx--B'=o0 ;

et tout se réduira 3 éliminer 4, B, C, A/, B’, C/ entre ces’
six équations. :

Si, dans la quatridme équation, on substitue pour A4/, B’les
valeurs données par les deux derniéres , elle donnera

C'=a/(22~—0a") A4V (2y—b'),B42(b/x+a'y—a't’)C .

Cette valeur et celles de A4/, B/ étant substituées dans les trois
premiéres , elles deviendront -

{ (=) A+(y—b')C } 4B/ (2y—B)(C*— AB)=o ,
{ (y—8) B+ (ama!)C} +a2a—al}(C'—AB)=0 ,
2{(z—a") A+(y—¥)C}}ly—b) B+ (2—a')C}
={2(0/eta'y—a'l)—2bx~+20y—ab)}(C*—A4B) ;
de telle sorte qu’en posant, pour abréger,
(#=—a")d+-(y—b")C=P ,
~ g=¥)BHa—aiC=Q,
C*—AB=R*,
tout se réduira a éliminer P, @, I, entre les trois équations
Poeg-b/(ay—b\H*=o0 , Q@+a/(2x2—a)R*=0 ,
2PQ={2(b/ata'y—a'b)—(2b2~+}2ay—ab)} B* .

La valeur de A*, introduite dans les deux premidres, au moyen
de la derniére, donne en réduisant
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2b/(ay~—b') Q4 2/ a4-ay—a'l )= (2batray—al { P=o |

2a/(2a—a’)P-{ 20/ axa'y—a'b)—(2bxt-2ay—al ) Q=0 ;
d’'ott, en transposant, multipliant membre & membre, ct divisant

ensuite par P(Q,
4a'b!(2a=—a")(2y—0b') = {2(¥/ a4-a'y—a'V )= 2baxtaay—ab)}*

le licu cherché est donc une scction conique (*).

Voyons quel est le centre de cetie courbe; on sait que ce centre
est donué¢ par les deux dérivées de I'équation de la courbe , priscs
successivement par rapport a & et ¥ ; les deux équations du centre
cherché seront donc

200 (2y—b') = (0'=b) { 2(V/ 20/ y—a'V/)—(2bzx+-2ay—ab) } ,
20/b(20—a')=(a/—a'){ 20/ x40/ y —a' b/ y—(2bx4-2ay —ab) } .

Ce centre sc tfrouvera donc aussi sur toute ligne dont I’équation
sera une combinaison quelconque de ces deux-la ; il sera donc, en
particulier, sur la droite dont on obtient I’équation en divisant ces
deux-l14 membre & membre; c'est-a ~dire, sur la droite dont
I'équation est

2% ' 2y =—=b/

Qe—a! Do)

Or, on voit aisément , 1.° que cette droite passe par le milien
de la distance du point donné a lorigine ; 2.° qu’clle passe aussi

(™ M. le capitaine Poncelet a aussi démontré cette proposition , par deg
considérations géométriquess



388 QUESTIONS
par le milieu du segment de la troisiéme tangente intercepté entre
celles qui ont été prises pour axes.

En considérant donc que cette troisi¢‘me tangente peut étre
choisie de trois maniéres différentes , on parviendra a la cons-
truction suivante du centre de la section conique , lieu des centres
de toutes les sections coniques qui, étant inscrites ou ex-inscrites
4 un méme triangle donné, passent par un méme point donné,
intérieur ou extérieur & ce triangle : Par le milieu de la distance
du point donné & chacun des sommets et par le miliev du cbté
opposé soit menée une droite ; les trois droites menées de cette
maniére se couperont en un méme point , qui sera le cenire
cherché (*).

A laide de V’équation dec la courbe, on peut obtenir autant de
ses points qu’on voudra. Occupons-nous seulement dc la recherche
de ceux qui paraissent &ire de la construction la plus facile; mais
d’abord mettons I'équation sous une autre forme. En développant
le second membre comme le quarré d’'un binnme, et transposant

dans le premier le premier terme de ce quarré , il vient , en
réduisant ,

4(a'y bz =2bx-}2ay—abd){ 4(0/ zta'y—a'b))—(2bx+}2ay—ab)} .
Or, on satisfait a cette équation , en posant i la fois
a'y—blz=o ,

2bz+-2ay=ab ;

(") On voit par la, pour le dire en passant, que si le point donné est
le centre de gravité de laire du triange formé par les tangentes données,
ce point sera en méme temps le centre de la courbe cherchee.

d’ot
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d’'olt il su't que ce sont la les équations de denx droites qui se
coupent sur la courbe dont il s’agit. Or , la premiére est celle
qui joint le point donné a lorigine ; et quant & la seconde, c’est
la droite qui joint les milieux des segmens des deux premicres
tangentes déterminés par la troisitme ; en prenant donc tour & tour
chacune des tangentes pour la troisidme, on aura la constraction
suivanle de trois points de la courbe ': inscrivez au triangle des
targntes un autre iriangle dont les sommeis soient les milievx
des ¢Otés du premier; les points ou les cdlés de ce second triangle
seront respectivement coupés par les droites menées du point donné
aux sommels du premirr seront irois pornis de la courbe demandée ;
et, comme le centre est connu, par ce qui pré(:éde , rien ne sera
p'us farile que d'obtenir Zrofs autres points de cette courbe.

Si on demandait le centre d’'une section conique touchant 2 la
fois quatre droites donnédes et passant en outre par un point donné;
ce ceutre devant se trouver & la fois ( Prob. I) sur une droite et
( Prab. II') sur une scction conique , le probléeme aurait au plus
deux solutions.

Mais, si I'on demandait le centre d'une section conique qui,
tonchant & la fois trois droites données, passit en ontre par deux
join s donués; on voit ( Prob. 11 ) que ce centre devrait se trou-
ver & ia fois sur deux sections coniques, et quainsi le probl¢me
pourrait avoir jusqu’a quatre solutions,

8i l'on demandait le lieu géométrique des centres de toutes les
sect ons coniques qui , passant par un point donné , fussent ins-
crites & un angle donné et touchassent en outre un de ses cdiés
en un point donné; on considérerait la distance du point de con-
tact donné au sommet de I'angle donné comme un triangle d’une
aire nulle , ayant deux c61és égaux et coincidens, et son troisieme
ccté , de longueur nulle , dirigé suivant Pautre c6té de Iangle
do .né; le probléme se trouverait donc ramené au précédent; le
licu cherché serait donc une section conique , et l'on pourrait
assigner son centre ainsi que six points de son périmétre..

Iom. XI. 52
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PROBLEME III. Déterminer lc lieu des centres de toutes les
sections coniques qui , touchant & la fois deux droites données ,
passent em outre par deux points donnés ?

Solution. Prenons les deux tangentes pour axes des coordonndes,
et soient (@, b), (a’, &) les dcux points donnés. En supposant
toujours que l’éqnation (1) est celle des courbes dont on cherche
le lieu des centres, nous aurons d’abord (4, 5)

A*—A4C'=o0 , («) Br_RC'=0 . (8)

En second lieu , parce que ces courbes passent par les deux
points donnés , nous aurons

Aa*4Bb*42Ca b 424’a 4280 4+-C'=o0, ()
Aa*4-Bbr+2Ca’b/+424'a’+2D0/+C'=o0 ; (")

enfin, x, y étant les coordonnées du lieu des centres, nous
aurons encore (9, 10)

Ax+0y+A’=O > (5’) By+Cx+B/=o 3 (s)
et il s'agira d’éliminer A , B, C, Z’ , B’ , €’ entre ces six
-équations,

Si d’abord on élimine €’ entre les deux premiéres , et € entie
les deux derniéres, on aura

AB"*=BA"* ,
x(Az+t-A)y=y(By-+B) .
En éliminant B entre ces deux équations, on trouve

- (d'z—By){ A(A'2+B/y)+A4} =0 ,
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équation qui pent Cire satislaite de  deux manicres
d’abord

3gr

Prenons

A(A'z+-By)+dr=0 ,
nous en conclurons
A
——A’x+8'y !

. 97 . /2 e .
puis , en vertu de l'équation AB/=p 4/

B/a

B ——

AxtBry °
I'équation (3) donnera alors

A'B

C-——'-—-' ————— 3
A'x4Bry ’

et lon aura enfin par léquation («)

Cl=—(A'a4Bly) ;

Toutes ces valeurs étant substitudes dans I'équation (3 | ellg
. P
deviendra

{ A/ =)+ Bly—p) =0
doll

ﬂ’(x—a)+B’(y~5):o N
On aura de méme, par P'dquation (3/),

Aty + By =i/, =0 |

d’oli, en transposant , divisant et réduisant,
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x—a y—b

Knmmat! ;——-'7)7 ’
ou encore

x—a y—b

a—a! I;_:——l; i

équation de la droite qui passe par les deux points donnés.

Or, cette droite ne saurait étre le lieu cherché des centres; car
alors elle devrait 'étre encore lorsque les points donnés seraient
respectivement sur les deux cétés de I'angle des tanguntes données;
tandis qu’il a été reconnu ci-dessus ( Prod. I) qv’alors la droite,
lieu des centres , devait passer par le sommet de cet angle.

Il faut done adopter lautre équation

A’J:‘_—-B/y H
en substituant dans AB*=BA’*, elle donne

Az*=By* ; :

" on a donc

x? x
B=4 — B/=4~ .
7 ye 2

r
et de plus, par («) et (),
Az Ax
C/:: —_— C:-—A:r-'-A} .
A ¥y ?

substituant ces valeurs dans I’équation (7), elle deviendra

(ey—bx) A*A-2y(brtay —ab)AA'4y* A =0 ;

Féquation () donnera pareillement
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QI
o)
@D

(ay—blz)* A d2y(blata'y—a'b)Ad A/ fy> 47 =0 ,

en ¢liminant 4’y comme inconnue , entre ces deux dquations, A4
disparaitra de lui-wéme , et l'on obiiendra, pour Pequution de
la courbe cherchée

§ (ay==bag)re=(a/y—=blx)2 } 3

=4 {(bx+ay-ab)»(6’x+a’y-—a’b’)}§(ay-—bx) 2 Yxtroly-albiy=(aly~b'%)*bxtay-abd} .

¥in développant cette éqnation, on trouve qu'elle est généralement
du qatrieme degré , non décomposable en deux facteurs rationnels

du sccond; de sorte que le lieu cherché n'est ni une section co-
nique ni un systéme de sections coniques.

PROBLEME 1V. Déterminer le lieu des centres de toutes les
sections coniques qui, touchant une méme droite dounée passent
en outre par les trois mémes points donnés P

Solution. Soit pris 'un quelconque des trois points donnés pour
origine , et soient fait passer les axes des z et des y parles deux

autres que nous supposons distants de celui-ly des quantités 2, &.
Soit de plus I'équation

poosty }

4

® ¥
Pl
ceile de la tangente. En prenant toujours Péquation (1) pour Iédqua-
tion des coarbes dont on cherche le lieu des centres, nous expri-
merons que les courbes passent par l'origine en [aisant €/=o. Les
conditions de passer par les deux autres points donneront ensuite

Aet-nd' =0 , DY faBi=o0 ,

de plus, la condition de toucher la droite donnée deviendra (3),
a cause de C/=so,
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a*b/}(C* = AB)4-2a"5/( A'C — AB')+(a’ 4'—¥'B’)*=0 :
24’4 (B/C—BA") .

Enfin, x, 4 étant les coordonnées du lieu des centres, on devra
avoir (g9, 10)

Az4Cy+4'=o , By+Ca4-B'=o0 ;

et il s’agira d’dliminer 4 , B, C, A’, B’/ entre ces cinq dquations.
Mais d’abord , au wmoyen des équations {11, 12), nous pouvons

simplifier la troisicme qui devient

(@’ A!—b'Bly:==a/¥/ (2b/ x4 20y —a'b’) (C2==AB) ;

ou, en y mettant pour A/, B’ leurs valeurs données par les

deux premiéres équations
(Aaa’—Bbb’)2=+a’b/(ab’x;}-za'y._a'b’)(C’—-AB) H
les mémes valeurs, substitudes dans les deux derniéres, donnent
(2x—a) A42Cy=o , (2y—bB42Cx=o0 ;

tirant de celles-ci les valeurs de 4, B, pour les substituer dans
la précédente , € sen ira de lui-méme, et il viendra, pour Ié-

quation du lieu demandé ,
{00/ 2(20—a)—aa'y(2y —b)}
+a'b 22—a)(2y—b (2bx + 2ay—abd) 24/ 1+ 2a’y—a’b\=0

équation du quatri¢tme degré , non décomposable en deux facteurs
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rationue’s da second degré. Ainsi, en général, le Lew ohiechin’est
ni vne section conique , nioun systéme de secticus COT:-ques.
S1 pemmoins lz tangente passait par lorigine , c'est-idire , pat

Pun quilconque des points donnds ; en supposant son cgnation
£ & 3

x ¥
Tt =0

ce qui revient a supposer que @/, &/ se changent respectivement
en ae/, ab/, et a luire ensuite A== 0, ’équation deviendrait simplement

bz (2z2—a)=aa’y(2y—0b) ;

qui est celle d'une section conique. Ainsi, le lieu des centres de
toutes les sections coniques qui, passant par les trois mémes points,
sont tangentes 2 une méme droite en l'un de ces points est lui-
méme une section conique.

Si l'on prend successivement les dérivées de cette équation par
rapport a # et y, on aura, pour déterminer le centre de la courbe,

les deux équations

4x=—a=0 , 4y—b=o .

Ainsi ce centre est le milieu de la droite menéde du point qui est
sur la tangente au milieu de la distance entre les deux autres; de
sorte que le cenire de la courbe est tout.d.fait indépendant de la
direction de la tangente. On voit d'ailleurs que la courbe a deux diametres
coujuguds, paralleles aux droites qui joignent le point de contact
aux denx autres points,

Ou voit que la courbe passe par le point de contact, et , d’aprés
Ia position du centre , elle passe aussi par le milicu de l'intervalle
entre les deux autres points ; elle” passe cncore par les milicux
des distances du point de contact aux deux autres, Il serait facile
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au surplus, & Taide de I’¢quation ci-dessus , de trouver d’autres
points de cette courbe.

PROBLEME V. Déterminer le lieu des centres de loutes les
sections coniques qui passent par les quaire mémes points donnés ?

Solution. Faisons passer I'axe des x par deux quelconques des
quatre points dornés et I'axe des y pour les deux autres et soient
alors les d¢quations de ces quatre points ainsi qu’il suit:

3 x=q , x==a’ , x==0 ,
ye=o y=0 ; y=b;

En prenant toujours I'équation (1) pour l'équation commune des

r=o0 ,

y=b;

courbes dont il s'agit, et exprimant qu'clles passent par ces quatre
points , nous aurons '

Aa 2 Alqg 4-Cl=0 , Bj »}2B'b 4-Cl=0 ,
Aa*d2da'4-C=o0 , BY'24-2Bb4-Cl=0 .,
De plus , 2, y étant les coordonnées du lieu des centres , On aura
Ax4-Cy4-A'=o0 , By4-Cx<4-B'=o0 .

Eliminant 4, A4’ entre les équations de gauche, et B, B’ entre
celles de droite; il viendra, en réduisant ,

{20——(a+a)} C'd20a'yC=0 ,

{oy—(2 43} C/-2bl/aC =0 ;

3

d'ou, éliminant enfin €, €/, on obtiendra , pour l'équation du
lieu demandé

bz
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bbiz2x—(ata)} =aa’y{2y——(ly+g,/)} .

ce lieu est donc une section conique.

En égalant a zéro les dérivées de cette dquation, prises sucees-
sivement par rapport & x et ¥, on aura, pour déterminer le centre
de la courbe, les deux équations

a=;(ata’) , y=3z0-+5).

Ainsi , la courbe a pour centre le wilicu de la dicite qui joint
Ie milien de la distance de deux quelcongnes de ros quatre poinis
au milicu de la distance entre les denx autres,

On voit, par la forme de léquation , que la courbe a deux
diametres conjuguds paralleles aux axes des coordonnées; d'ou l'on
peut conclure que si, par lc centre de la courbe , on méne deux
droites , l'une parallele & la droite qui joint deux quelconques de
nos quaire points et lautre paralléle a celle qui joint les deux autres,
Ies directions de ces droites scront celles de deux diamctres
conjugués.

Voyons présentement quels sont les points les plus remarquables
du cours de la courbe. On voit d'abord que cette courbe passe
par lorigine: ce qui revient a dire que, si 'on joint deux quel-
conques des quatre points dont il s’agit par une dreite, et les
deux autres par une autre droite, le point de concours de ces
deux droites sera un point de la courbe.

On satisfait aussi & I'équation de la courbe en posant

z=0 , y=:2+8) ,

or , ce sont i les coordonnées du milieu de Vintervalle entre les deux
points situés sur Vaxe des g ; puis done que ces points sent quelconques,
on en peut conclure que le milieu de Dintervalle entre deux quel-
conques des quaire points donnés est un point de la courke.

Tom. 1X, 53
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Enfin ; on satisfait encore & cette équalion en posant
a=i(ata),  y=i0+Y);

donc, si 'on mene une paralléle & chacun des axes par le milien
de Uintervalle entre les deux points situés sur lautre , les deux
droites ainsi menées se couperont en un point de la courbe ; ce
qui revient & dire que si, ayant joint deux quelconques des points
donnés par une droite et les deux autres par une autre droite ,
on méne par le milieu de chacune de ces deux droites une pa-
ralléle a l'autre, les deux droites ainsi mendes se couperont en un
point de la courbe.

On a donc, en résumé, le théoréme suivant:

THEOREME. Dans tout quadrilatére simple , les siz points
milicux- des quatre cdiés et des deux diagonales , les trois points
d’intersection tant des deux diagonales que des deux systémes de
cbtés opposés , et enfin les trois points d’intersection des paralléles
menées soit @ chaque diagonale par le miliew de lautre , soit &
chaque cdté par le miliew de son opposé, sont douze points dune
méme section conique. Son centre est au milieu commun des droiles
qut joignent les milicux soit des deux diagonales, soit des coiés
opposés du quadrilatére. Enfin , les trois systémes de deux drottes,
menés par ce cenire parallélement soit aux deuz diagonales ,soit
a deux cbtés opposés , sont trois systémes de diamétres conjuguds
de la courbe. Cette section conique est le lieu des centres de toutes
les sections coniques circonscrites aw quadrilatére dont il s agit.

Il est facile de se convaincre, au surplus, que les douze points
de la courbe que nous venons de désigner sont situés deux a deux
aux extrémités d’un méme diamétre.

Il est également facile de voir que la section conique sera une
hyperbole ou une ellipse , suivant que le quadrilatere sera ou ne
ne sera pas convexe.

Si donc l'on demandait le centre d’une section conique qui passt
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par cinq points donnés ; en faisant tour 4 tour abstraction de deux
de ces cinq poinls on trouverait , par cc qui préctde , que le
centre de la courbe doit étre 3 la fo sur deux sections coniques
et comme il est d’ailleurs connu que la section conique qui passe
par cing points donnés est unique ; il s’ensuit que les deux sections
coniques qui devraient ddéterminer le centre de celle-la devraient
étre tangentes l'une & l'autre. On peut, en excluant ainsi, tour a
tour , chacun des cing points donnés , obtenir cinq sections coniques
qui devront toutes se toucher en un méme point.

Concevons présentement que de deux des sommets consécutifs
da quadrilatére 'un marche en ligne droite vers I'autre jusqu’a se
confondre avec lui; il est clair que notre théoréme ne cessera pas
pour cela d’étre vrai; mais alors notre quadrilatére se réduira a un
triangle , le c6té d’une longueur nulle a une droite indéfinie , mende
d’une maniére quclconque , par 'un des sommets de ce triangle,
et les sections coniques circonscrites 4 des sections coniques passant
par deux points donnés et touchant une méme droite en un point
donné; on a donc ce théoréme :

THEOREME. Le licu des centres de toutes les sections coniques
qut , passant par les deux mémes poinis donnés , touchent en ouire
une méme droite donnée en un méme point est une autre section
conique passant par le point de contact donné , par le milien de
la droite qui joint les deux autres points donnés , par le point o celle
derniére droite coupe la tangente donnée , par le point ou la
poralléle menée @ la méme droite par le point de contact ren-
contre la paralléle menée & la tangente par le miliew de I'intervalle
entre les deux points donnés, enfin par les milieus des distances
de ces deux points au point de contact. Cette section conique a
son cenire au milicu commun de deux droites dont lune joint le
point de contact au milieu de lUintervalle entre les deux autres,
tandis que Pautre joint les milieux des distances du point de
contact & ces deuz-1d. Elle a un systéme de diaméires. conjugués pa-
ralléles aux droites qui joignent le point de contact aux deux
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autres polats, et un auire dans lequel un des diamétres est paral-
lile a la droite qui joint ces deux derniers points , tandis que
lautre est parallele d la langente.

1l est, au reste , facile de voir que la courbe est une hyperbole
ou une ellipse, suivant que les deux points qui ne sont pas sur la
tangente sont situés de méme ou de différens cotés par rapport a
elle. On apergoit aussi tres-facilement gue les six points du cours
de cette courbe que mnous venons d’assigner sont, deux a deux,’
aux extrémités d’'un méme diamctre. -

Si présentement nous supposons que les deux points qui ne sont
pas sur la tangente se rapprochent I'un de l'autre jusqu’a se con-
fondre , ainsi que l'avaient d¢éja fait les deux autres, nous obtiendrons
ce théoréme, déja obtenu par d’autres considérations ( Prob.I ) ; mais
qui se trouve ici plus complet. '

THEOREME. Le lieu des centres des sections conigues qui
touchent & la fois les deux corés d'un méme angle avr deux niimes
points est le systéme de deux droites dont I'une joint les devx
points de contact , tandis que [autre joint le sommet de langie
au milieu de lintervalle qui sépare ces deux poinis.

e

QUESTIONS PROPOSKES.

Probléeme de Geométrie.

QUELLE est la courbe enveloppe de toutes les sections coniques
qui, passant par les mémes 7 points donnés , touchent les mémes
n droites donndes ; sous la condition mAtn=4"?

FIN DU ONZIEME VOLUME,
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Recherche du lien des centres des sections coniques assujetties A quatre
conditions ; pac M. Gergonne. 379==400,.

GEOMETRIE APPLIQUEE.

Du tracé des voites en anses de paniers; par un Abonné. 221235,
GEOMETRIE DES COURBES.

Rapport 4 l'académie des sciences, sur un mémoire de M. Poncelet , re-
Iatif aux propriétés projectives des sections couiques; par M. Caucky. 6g==84.
Démonstration d’une propriété des lignes et surfaces du secoud ordre; par

M. Durrande. 122%=123,
Détermination de I'hyperbole équilatere, au moyen de quatre conditions
données ; par MM. Brianchon et Poncelet. 205=-221,
Sur les anses de paniers 3 par un Abonné. 22Y==225¢
Recherche graphique da centre de courbure d’une courbe quelconque , en
Pun quelconque de ses points; par un Abonné. 361==364.

Détermination du centre et des diamétres principaux d'une Section conique
dont on n’a qu'un arc , ne comprenant aucun des sommets ; par My

Sarrus. 367==369. -
Recherche du lien des centres des sections coniques assujetties 4 quatre
conditions ; par M.j Gergonne. 379=400:

GEOMETRIE ELEMENTAIRE.

Théorie élémentaire des contacts des cercles , des spheres, des cylindres et
des cénes ; par M. Durrande. 1—68-
Solution d’une série de problémes de géométrie ; par M. Pecten. r1f=—122.
Solution des problémes proposés au concours général des éléves de mathé-
mathiques spéciales de Paris ; par M. Treuil. 147—153.
Solation d’un probléme de géométrie, par M. M..s 225==228,
Solution des problémes du contact des cercles-, sphéres, cylindres et cénes 3
par M. Poneglet. 317323,
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Démonstration de deux théortmes apparlenant & la géométrie de la regle;

par M. Gergonne. 326-=337.

Démonstration de deux théorcmes de géométrie ; par MM, Pecten et

Durrande. 364—367.
OPTIQUE.

De la vision, dans le cas de deux milieux, séparés par un plan indéfinis
par M. Gergonne. 229268,

STATIQUE.
Excmple. de Papplication de la statique & la géométrie ; par M. Gergonne. 326==337.

TRIGONOMETRIL

Sur le développement des puissances des cosinus en cosinus d’arcs multiples ;
par M. Plana. 84=go.
Sommation d'une série procédant suivant les tangentes d’une suite d’arcs sous=~
doubles les unes des autres; par M. Sarrus et un .Abonné. 195—19g.
Exposition des principes fondamentaux de la théorie des fonctions circulaires ;
pac M. Sarrus. 323e=326.




DES MATISRES. 405
CORDRESPONDANCE

Entre les questions proposées ef Jos questions résolucs.

Tom. IX, pag. 289 Théoremes. Démontrds tome X[,  pag. 326~=337.
Tom. X., pag. 288 1I Problémes. un seul, 22G=-268.
Pag. 316 1II Problemes. e

Pag. 356 XXVII Probiemes. 23 seuiements $14—122,

Y Probléme I, 1Gg==204.

Pag. 388 {Problbme 1L 195~~1gg.

Tome XI, pag. 68 1V Problémes. e
Pag. ¢6 Probleme. 337e=34he

Pag. 132 II Théorémes. 364—367.

Pag. 163 Probléme. 367—3Co.
Probléme 1. 369=-=372.

Pag. 204{P1‘0b]éme 11, i
SProbl(‘:mc I. 37q=f00.

Pag, 228 Probléme IL L

Probléme III. Lo i naing




406 CORRECTIONS ET ADDITIONS.

A — -

ERRATA
Pour le onziéme volume des Annales.

[a %a o Vo Vi Vi, %o Vi o S ]

PAGE 79 ; & la note, ligne 1, == perdendiculaire ; lisez : perpendiculaire.
Pag. 337, ligne 6, — és lettres 5 lisez : &s sciences.
Pag. 357, ligne 6, en remontant , =intégrale ; lisez : intégrable,

Supplément & IErrata du X.* volume.

Pag. 320, au fitre , == APPLIQUEE ; lisez : APPROCIIEE.
Pag. 393, ligne 7, == au licu de wemomeses ; lisez : 18{=188.

Lo r——






