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GÉOMÉTRIE ÉLÉMENTAIRE.

Théorie élémentaire dès contaets des cercles ^,des sphères^
des cjfli&dres et des cônes y

Bar M. J. B. DURRANBE V professeur » de matbërnatiques;
spéciales et de physique au collège royal de

\ J N a sauvent reproché à là géométrie élémentaire > telle que Font*
cultivée Euclide et Apollonius, chez les anciens ? Viète et Fermât f
chez les modernes , de ne pouvoir s'élever a cette généralité qui coor-
donne entre elles et rattache à un principe commun toutes lés parues *
d'une même théorie. On Ta jugé à peu près incapable de cette
élégante et féconde simplicité qui accompagne si souvent Jés autres*
méthodes; et*on Pa mLe , en particulier, beaucoup au-dessous-de*
cette géométrie nouvelle que Ton doit au génie créateur de l'illustre-
Monge ; et qui a offert à ses nombreux disciples un si vaste champs
de-«balles découvertes';
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IVTais , sans prétendre f aîrè ici le procès à dés métHDdW âont jer

me plaîs à reconnaître toute la supériorité; saps prétendre non plus
assimiler l'ancienne géométrie à cette autre géométrie qui , née des
méditations de notre Descartes , a reçu de si grands développemens
entre les mains de Lagrange et de ce même Monge , dont la des-
tinée semble avoir été d'associer son* nbnr à toutes les grandes
découvertes qui ont signalé la dernière moitié du XVIII.e siècle ;
je n'en demeure pas moins persuadé qde la géoifiétriç d'Euclide t

maniée d'une manière convenable , peut ? quelque bor i^ qu'elle
paisse paraître , au premier abord , dans ses moyens d'investigation 9-
aller aussi loin qu'aucune autre méthode qu'on tenterait de lui
substituer; et qu'elle peut notamment égâlfcr la géômétlrië anâlitiqvie ,
par la généralité et l'élégance <3e ses résultats; et c'est principale-
ment à faire partager au lecteur ma conviction sur ce poiat que
je consacre l'essai que Pon va lire.

Je prendrai pour exemple deux problèmes qm n'ont pas acquis
moins de célébrité par le rang éminent des géomètres qui en ont
fait tour-à-foùr le sujet de leurs recherches.-, que par8 le nombre et
la variété des procédés qui leur ont été successivement appliqués ;
mais qui néanmoins n'ont été que très - récemment résolus , de
manière à ne plus laisser d'espoir d'orne solution plus heureuse,
par M* Gergonne y qui semble s'être frayé , dans la géométrie ana-
litique, une route entièrement nouvelle (*). On sent assez que je
Yeux parler des problèmes où il s'agit de décrire un cercle qui en
touche trois autres sur un plan ou une sphère qui en touche
quatre autres dans l'espace. Apollonius avait traité le premier
de ces deux problèmes , dans uû ouvrage qui ne BOUS est point
parvenu. Adrien'Romain , géomètre Belge,, tenta de réparer cette
perte ; mais il eut recours à des intersections de sections coniques,
tandis que le problème est de nature à être résolu fiar les élë-

(*) Voyez les Mémoires de Vacadémie de Tarin , pour 1814 5 OVL les Annales
êe Mathématiques , tom. IV , pag, 349 % ei tom.. VII } ^pag. 289..-
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mens , comme en effet Viète le fît peu après. La solution de
Vîète, qui consiste à ramener successivement le problème à une
suite d'autres plus simples n'est point extrêmement compliquée;
mais elle est fort longue et tout-à-fait dépourvue d'élégânçe , ap
point qu'il n'est pas du tout facile d'en garder le souvenir. Fermât
résolut ensuite l'autre problème; mais il y ,a peu d'invention dans
Sa solution , exactement calquée sur celle de Viète , et con-
séquemment sujette aux mêmes reproches. Postérieurement , ce$
mêmes problèmes ont été de nouveau attaqués par un grand nombre
de géomètres, parmi lesquels je distinguerai seulement Descartes p

qui tenta le premier de les résoudre par J'analise algébrique , et
ne recueillit de cet essai que des formules excessivement compli-
quées -, Newton , qui y est revenu à plusieurs reprises et par de$
procédés divers, tant dans, ses Principes, que dans son Arithmétique
universelle ; et enfin les élèves les , plus distingués de Monge , qui
y ont appliqué les méthodes de leur maître. Mais y indépendamment
de leur élégant laconisme qui permet d'en réduire l'énoncé à
quelques mots ; ce qui distingue éminemment les constructions de
M. Gergonne , ce qui leur assure une incontestable supériorité t c'esl
que , tandis que jusqu'ici on n'était généralement parvenu à résoudre
ces problèmes qu'en les ramenant successivement à d'autres , de plus
en plus faciles ; ce qui , en définitif, rendait la construction totale
assez compliquée, M. Gergonne , au contraire 7 arrive directement
au but, et par des procédés qui, avec de très-légères modifications,
se plient sans effort à la résolution de ces mêmes problèmes aux-
quels on avait coutume de ramener ceux-là. Il fait plus encore f

et résout , par les mêmes procédés, le problème où il s'agit de
décrire un cercle qui en touche trois autres sur une sphère ; pro-
blème que , jusqu'à présent, personne n'avait même songé à aborder.

Dans le dessein où je suis de venger l'ancienne géométrie du
reproche d'impuissance dont ces mêmes problèmes ont semblé offrir
un nouveau motif , je ne puis donc rien faire de plus convenable
que de lutter avec elle seule contre ce que la géométrie analitique
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offre peut-être de plus élégant , et de montrer crue 9 par de si
comparaisons de triangles, on peut focilerhent être conduit à ces
mêmes constructions auxquelles M. Gergonne est parvenu par une
iroie touuii-fait différente.

Mais , comme les détails dans lesquels je vais entrer se lient a
4a théorie des pôles et polaires , à celle des centres axes et plans
de' similitude, a celle des centres axes et plans radicaux; théories
cpii n'ont guère été démontrées jusqu'ici que par les méthodes de
Mange ; je commencerai par en établir les principaux points à l'aide
de l'ancienne géométrie. Je ne ferai ainsi , au surplus , qu'atteindre
plus complètement le tut que j'ai en vue ; puisque y tandis que ,
dans les applications de ce genre , les considérations déduites de
la doctrine de Mouge sont souvent Inapplicables , on verra qu'au
contraire les démonstrations élémentaires , par lesquelles je me
propose de les remplacer, ne refusent jamais le service, et s'ap-
pliquent sans distinction à tous les -cas. Je pense d'ailleurs ne point
faire mie chose tout-à-fait imiUîè l ^n mettant à la portée des
hommes mên^e qui n'ont -en-^géométrie que. les notions les plus
élémentaires, des théories dont chaque jour voit étendre ks appli-
cations , et auxquelles le îr extrême fécondité méritera sans douta
bientôt une place distinguée dans tous les ouvrages destinés à ren-
seignement des principes de cette belle scienee.

Ua point pouvant être considéré indistinctement comme ua cercle
ou une sphère dont le Tayon est nul • une droite comme un cercle
dont le rayon est infini , ou comme un côùe dont l'angle géné-
rateur est nul 5 ou , et enfin, comme un cylindre dont le rayon
est nul ; et un plan comme une. sphère ou un cylindre dont le
rayon est infini , cm eoinme un cône dont Pafigle générateur est
droit -, il s'ensuit q-ue tout ce que nous allons dire des cercles , des
sphères , des cônes et des cylindres est aussi applicable , avec des
modifications convenables , aux points , droites et plans ; mais ? pour
atteindre plus rapidement notre but , et écarter des discussions

plus longues que difficiles , nous abandonnerons à la saga-;
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cîtë du lecteur l'examen de ces cas particuliers , sur lesquels, au
surplus , nous pourrons revenir dans une autre occasion.

Par le même motif, lorsque nous parlerons de plusieurs cercles-,
de plusieurs sphères , de plusieurs cônes oia de'plusieurs cylindres,
nous supposerons qu'ils ne sont ni égaux ni concentriques -, il sera aisé
de voir ensuite ce qui arriverait s'il en était autrement.

Enfin , il faudra toujours supposer les objéts'dâns le cas le plus
général; c'est-à dire , que les points dont nous parlerons ne seront
jamais ni au centre des cercles et des sphères , ni sur Taxe des
cônes ou des cylindres 7 ni à la circonférence des cercles , ni à la
surface des sphères , cyKndres et cônes ; et des suppositions ana*»
k)gues devront avoir lieu pour les droites et les plans.

SECTION PREMIÈRE.

^Propriétés des cercles sur un plan»

Des pôles et polaires*

1. Nous appellerons, à l'avenir, pâles conjugués d'un e©reïe *
deux points en ligne droite avec son centre , et du même côté de
ce centre , tels que le rayon du cercle sera moyen proportionnel entre
leurs distances à son centre (*).

2. Il suit de cette définition , i.° qu'il n'est aucun point du plan
â'un cercle qui ne puisse être pris pour pôle , et auquel il ne

{*) II est presque superflu de preVenir qu'ici le mot pôle a une toute autre
acception que celle qu'on lui donne , lorsqu'il est question des cercles d'une
sphère ; nous en aurions employé une autre , sans la répugnance , bien ou l
fondée , que Ton montre généralement pour les mots nouveaux.
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réponde un pâle conjugué 7 dont il est lui-même le conjugué; 2.*
que de ces deux points Tun est toujours intérieur et lî'autre? extérieur
au cercle , de telle sorte que , plus l'un f£félaigne .du centre,
plus l'autre s'en approche ; 3 ° que le sommet d'un angle circojns-
crit au cercle et le milieu de sa corde de contact sant d^ux pdles
conjugués Tua à l'autre.

3. Lorsque par l'un quelconque de deux :pôîes conjugués par
rapport à un cercle „, on meneça une perpendiculaire indéfinie à
la droite qui contient ces deux points, «ous dirons de cette droite
qu'elle est la droite polaire ou simplement la polaire de l'autre
point qu'à l'inverse nous appellerons le,pôle de cette droite.

4. Il suit de ces définitions , >i.° q̂ u'il n'est , sur le plan d'ua
cerde f aucun point qui n'ait sa polaire, ni aucune droite qui
n'ait son pôle ; 2.ù que le pôle est extérieur ou intérieur au cercle ,
suivant que la polaire lui est sécante ou ne le rencontre pas; 3.°
que le sommet de l'angle circonscrit est le pôle de la corde de
contact , dont le milieu est a son tour le pôle de la parallèle à
cette droite menée par le sommet de l'angle.

5. THÉORÈME. Le pôle d'une droite est la commune section
des cordes de contact de.tous les angles circonscrits qui ont leur
sommet sur cette droite ; et réciproquement la polaire d'un point
est le lieu géométrique .des sommets des angles circonscrits dont
les cordes de contact passent par ce point.

.Démonstration. Soit PQ ( fig. i kf ,2 ) une droite fixe passant
par le centre C d'un cercle ; soit S le,sommet d'un angle quel-
conque circonscrit à ce cercle , le touchant en A , B ; soit P l'in-
tersection de la corde de contact .AB avçc la,droite PQ et soit Q
le pied de la perpendiculaire abaissée du point S stir la même
droite.

Soient menés le rayon CA et la droite CS coupant perpendi-
culairement ÀB en son milieu M. Leŝ  triangles rectangles GQS f

CMP seront semblables ,,et il en sera, de mqrne des triangles rec-
tangles CAS; AR1C; on aura .donc les deux proportions
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G P ; G S ; : CM: CQ,,

CS : CA : : CA : CM ;

d'où, on conelufa^par multiplication et réduction

-^ CP : CA : CQ ;

les points P , Q sont donc (i) deux pôles conjugué ; P est dono
le pôle de SQ (3); ce qui démontre le théorème énoncé (*). J

6. Ce théorème revient h dire^ en d'autres termes, que Yinter~
section de deux droites est le pèle de la droite qui passe par
les pôles de ces deux-là* II offre ainsi un irioyeri commode de
déterminer le pôle par la polaire et réciproquement»

7. Si , en effet , le pôle est donné , on mènera deux cordes quel-*
conques qui y concourent, et les sommets des angles circonscrits
qui auront ces cordes pour cordes de contact seront deux points de
la polaire cherchée Si , au contraire , c'est la polaire qui est donnée^
on fera de deux quelconques de ses points les sommets de deux
angles circonscrits , dont les cordes de contact se couperont au pôle
demandé (**).

S, IL

Des centres et axes de similitude*

8.' Nous1 dirons , a l'avenir, qu'un angle est circonscrit à deux

(*) La ttèfmonstralion de Morigë n*est applicable qu'au seul cas ou là polaire
€st extérieure au cercle.

(**) Ce# cortstpiictiotis ont ? su^ toute» autres qu*oti Ieiir substituerait , PaYatt-*
lage ée n'exiger , à la rigueur , que le simple usage de la règle.
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cercles \ lorsque ses côtés seront des tangentes communes a ces
deux cercles , ayant lïune et l!autre les (deux cercles da même
côté , ou Tune et l'autre ces deux cercles de différens côtés j ;
l'angle circonscrit sera dit extérieur dans le premier cas, ^intérieur
dans le second. Dans Pun et l'autre cas, le sommet de l'angle circonscrit
est évidemment en- ligne droite avec les centres dès deux cercles.

9. Nous appellerons , h l'avenir, centre de similitude de dèu&
cercles y im point de la. droite qui joint leurs centres dont les dis-
tances à ces deux centres seront respectivement proportionnelles aux
jeayons des dfeux cercles, C'est , en d'autres termes, un point
\ la fois semblablement placé par rapport aux deux cercles , ce
qui justifie sa dénomination introduite par Mônge-.

10. Deux cercles traoés sur- un même plan ont toujours deux
©entres de similitude ; l'un situé sur la droite même qui joint-kurs
centres , et Pau-tre situé sur le prolongement de cette droite , du
côté du plus petit des deux cercles. Pour distinguer ces deux points
Yùn de l'autre , nous les désignerons respectivement sous les déno«*
minations de centre- de similitude^ inierne e.t de centre d& simili-
tude externe*

11. Il est aisé de voir que, lorsque lès deux, cercles sont exté-
rieurs Pun à Fàutre , leurs centres de similitude interne et externe
ne sont respectivement autre chose (8) que les sommets des angles
circonscrits , tant intérieurs qu'extérieurs; de sorte qu'alors la déter-
xoination, de ces deux points se trouve ramenée à celle de la tan-*
gente commune à4* deux cercles. Nous, verrons bientôt comment on
peut les déterminer dans les autres cas.

ip. THÉOBJ^MJEs Le^centre^ dç similitudfi externes de trois
cercles } tracés sur un même plan, et pris successivement deux à
dèux^ sont tous trois sîtïïêrsuf une mêfne îfgnë droite ; et chacun?
d'eux se .trouvç en ligne droite avec deux des,centres de similitude
interne des mêmes cercles ; de telle sorte que ces six points^
sent, le$ intersections, de quatre droites ̂ formant un quadrilatère
complet.

Démonstration #
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Démonstration. Soient. C , C7 , . 0 " ( fig.. 3 ) les centres des trois

cercles, dont les rayons soient respectivement R , Bf y R" . soient
E , I respectivement les centres de similitude externe et interne
des deux cercles dorjt les centres sont C / , C;/; soient E ' , V ceux
dès deux cercles dont les centres sont C / ; , C; soit menée par le
point C" une parallèle indéfinie a CC/!, coupant EE ' eh Me t U' '
e n N .

Désignons par E " l'intersection dé EE ' et CC7 ; en vertu de
la définition des centres de similitude (g) et à cause des paral-
lèles , nous aurons

G E ' : C"E' ou R : R<'\ : ,

G"E : G' E au. R» : R> : : C"M : O E^ %

nous conclurons, par multiplication et réduction-f

R.W:. CE/'iCW

t e point E /x, intersection dé EEX et CC7, est donc (9) le centre
de similitude externe des deux cercles dont les centres sont C, C';
les trois centres de similitude Externes E , E y , E/7 $ont donc situés ;

sur une même ligne droite ; ce qui démontre la première partie1

du théorèmes
Désignons f en second lïeu , par Ey/ Tintersection^ dé IF et CC^* ;

en vertu de la définition des centres de similitude (9) et à cause-
des parallèles ; nous aurons

C Vi C I ' ou, 72 : R»i L ÇE" : C"N 9.

ou

àloi noiis conclurons^ par muhiplication et réduction
Tom. XL
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Ri iî'i:Cfe": CE"

He point E / ; , considéré comme intersection de ÏF et C C 9 est don<s
encore le centre de similitude externe des deux cercles dont les
centres sont C , C7 ; deux quelconques I ; V des centres de simi-
litude internes sont donc en ligne droite avec l'un E " des centres
de similitude externes ; ce qui démontre la seconde partie du
théorème (*)*

i3. A l'avenir, nous appellerons axe de similitude de trois
cercles, toute droite qui contiendra trois de leurs centres de simi-
litude. Cette droite sera dite axe de similitude externe , lorsqu'elle
contiendra les trois centres de similitude externe ; elle sera dite ,
au contraire , axe de similitude interne , lorsqu'elle contiendra un
seul de ces centres , avec deux centres de similitude internes,
II est aisé de voir que chacun de ces axes est semblablemerit
placé par rapport aux trois cercles : ce qui justifie leur dénomination*

i4« Notre théorème peut , entre autres applications , servir à
déterminer les. centres de similitude de. deux cercles > dans les cas
que nous avons exceptés ( n ) . Pour y parvenir, on décrira arbi-
trairement un troisième h la fois extérieur au:̂  deux cercles donnés ;
on déterminera ( n ) ses centres de similitude, Unt internes qu'ex-
ternes y avec chacun d'eux ; alors , i.°,ejn joignant par une droite deux
centres de similitude de même dénomination ; ££tte droite coupera
la droite qui joint leurs centres au centre de similitude externe;
2 / en joignant , au contraire , par un£ droite deux centres de
similitude de dénominations, contraires 9 dette droite , par son inter-
section avec celle qui joint les centres des deux cercles., fera con-
naître le centre de similitude interne (*)•

(*) La démonstration de Monge n'est applicable qu'au seul cas .où les trois
cercles sont exte'rieurs^ iel uns aux "autres. **

(**) On peut aussi déterminer , dans tous les * cas , les deux centres de simi*
iitude de deux, ceixles ^ ea observant <jue ,..si Ton fait,.de deux diamètres
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15. Sachant ainsi déterminer, dans t&us les cas ? les centres de

similitude , tant internes qu'externes de deux cercles- on pourra aussi,
dâas tous Ie3 cas , déterminer les quatre axes de similitude- de trois
cercles donnés,

$.• m .

Des centres et axes radicaux*

16. Nous appellerons à l'avenir centre radical de deux cercles,
un point de la droite qui joint leurs centres tel que la différence
des quarrés de ses distances a ces deux centres est égale à la
différence des quarrés des rayons des deux cercles respectivement^

17. Il suit de cette définition , i.° qpe deux cercles , tracés sur
un même plan, ont toujours un centre et n'ont jamais qu'un seul
centre radical; 2..° qu« , suivant que le quarré de la distance des
centres est plus grand que la différence des quarrés des rayons f

égal à cette différence ou plus petit qu'elle, le centre radical est
sur le prolongement de la droite qui joint les centres , du côté du
plus petit des deux cercles ^ au centre même d# ce cercle ou entre
les deux centres ; mais toujours , dans ce dernier cas , plus près du
centre du plus petit cercle que de celui du plus grande

18. Nous appellerons à l'avenir , avec M. Gaultier de Tours ̂
axe radical de deux cercles , la perpendiculaire indéfinie menée y

dans leur plan, à la droite qui joint leurs centres , par leur centre
radical.

ig» II est aisé de voir que ? lorsque deux cercles se touchent
ou se coupent, leur axe radical n'est autre chose que leur tan-
parallèles quelconques, les deux bases d'un trapèze , le point de concours des
deux côtés non parallèles sera le centre de similitude externe ^ tandis que Fin-

tersection des deux diagonales sera le centre de similitude interne. C'est une consé-

quence toute naturelle de la doctrine des points et lignes homologues ? doctrine peut-'

être trop négligée aujourd'hui, et sur laquelle on trouve d'amples developpemer:s

dans lea Êlémens de géométrie de C&MXJS,
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gente ou leur corde commune. Nous verrons bientôt comment on
peut facilement déterminer cette droite dans les autres cas.

52Q, THÉQHÈMM. Les tangentes menées à deux cercles de tou$
les points et des seuls points de leur axe radical , terminées à
leurs points de contact, sont égales .entre elleu

Démonstration. Soit P ( fig. 4 » 5 ) un point duquel soient me-
nées à deux cerclas , dont les centres sont G , C' des tangentes
dont les points de contact respectifs soient T ( , T ' ; du même
point P sait ,abaissée sur CC7 une perpendiculaire dont le pied soit
O. Soient menés les rayons GT f C'T7, ainsi que Jçs droites

On aura

ou

ou

d'@ù, en retrandbant et déduisant

O r , i.° si P est un point de Taxe radical , 0 sera le centre
radical, M On aura (i6)

«otre équation deviendra donc , en réduisant ^ transposant et es
la xacine quarrée^

«9fist-à-dire que les tangentes partant du point P seront igaîes*
2.° Réciproquement, si les langeâtes PT\f PT7 sont égales^

«quatioa deviendra simplement
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le point O sera donc (16) le centre radical ; et par conséquent (iS)
le point P fera un des points de Taxe radical.

21. THÉORÈME, Les axes radicaux de trois cercles tracés sur
vn même plan , et considères successivement deux à deux 9 se yoJv ĵ cuû  i é l .
coupent tous trois au même point.

Démonstration. Soient C, C , C ; / les troîs cercles, X, X' , X",'
respectivement , les ^xes radicaux de C' , C//#, de O 7 , C*, de CC',
et soir, O le point de concours des deux premiers. La tangente
menée de ce point à C sera (20) égale aux tangentes menées du
même point aux cercles C , C/x ; ces deux derniers seront donc
égales entre elles ; leur point de concours O sera donc (20) un point
de X ; d'où il suit que X , X ' , X" passent par ce point O(*).

22. Nous appellerons , à l'avenir, centre radical de troîs cercles,
le point de xoneours des axes radÎGaux de ces trois cercles , pri$
deux à deux.

$3. Notre théorème (z-i) fournit un moyen fort simple de dé-
terminer Taxe radical de deux cercles, dans les cas que nous avons
exceptés (19). Il consiste à décrire arbitrairement un troisième cercle
qui coupe à la fois les deux premiers ; «es cordes communes avec
eux seront deux des axes radicaux des trois cercles (19) ; leur
point de .concours sera donc leur centre radical 7 et par consé-
quent l'un des points de Taxe radical des deux cercles dont il
s'agit ; raenant donc , par ce point, une perpendiculaire à la droite
qui joint leurs centres ^ cette perpendiculaire sera l'axe radical
cherché.

*(*) î^a démonstration de Monge n'est applicable qu'au seul cas où , non
seulement les trois cercles se coupent deux à deux , mais encore où ils se cou-

de telle sorte qu'une portion de leur plan leur est commune à tous trois*
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On pourra , au lieu de terminer ainsi la construction » chercher J

au moyen d'un nouveau cercle arbitraire, nn second point de Taxe
radical, qui ainsi se trouvera complètement déterminé.

24. Sachant ainsi déterminer, dans tous les cas , l'axe radical de?

deux cercles ; on pourra aussi, dans tous les cas, construire faeU
lement le centre radical de trois cercles donnés.

SECTION II.

Propriétés des sphères dans l'espacé*

§• L

Des pôles droites et plans polaires.

s5. Nous appellerons à Y axenir pâtes conjugues d'une sphère les
pôles conjugués communs à toutes les sections circulaires faites à
cette sphère par des plans passant par l'un quelconque de ses
diamètres (1)^

26. Lorsque 9 par Pun quelconque de deux pôles conjugés d'une
sphère , on conduira un plan indéfini, perpendiculaire à la droite
qui joint ces deux pôles , nous dirons que ce plan est le plan
polaire de l'autre point , que nous appellerons ? à l'inverse, le
pôle dé ce plan*

27. Enfin , nous appellerons polaires conjuguées d'une sphère
deux droites qui , passant par deux pôles conjugués de cette sphère ,
seront à la fois perpendiculaires entre elles et à la droite qui joint
ees deux pôles»

28. THÉORÈME. Le pôle d'un plan est la commune section*
des plans des lignes de .contact de tous les cônes circonscrits: à
la sphère qui ont leur sommet sur ce plan ; et réciproquement le
plan polaire dun point est le lieu géométrique des sommets de
tous les cônes circonscrits dont les plans des lignes de contact
passent par ce point*
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Démonstration. Soient C le centre de la sphère , S le somme

$'un cène circonscrit , P un quelconque des points du plan de la
ligne de contact, et Q le point de la droite CP où elle est coupée
par le plan conduit par S , perpendiculairement à cette droite. En
concevant un plan par C , S, P ; on se trouvera exactement dans
le cas des figures i , 2 ; on démontrera donc 7 comme, nous Pavons
fait (5), que les points P , Q sont deux pôles, conjugués , et quey

conscquetnment, le point P est (26) le pôle du plan conduit par
Q , perpendiculairement à CP.

29* THÉORÈME. La polaire conjuguée d'une droite est la
commune section des plans des lignes de contact de tous les cônes
circonscrits à la sphère qui ont leurs sommets sur cette droite ;
et, réciproquement, le lieu géométrique des sommets de tpus les
cônes circonscrits à la sphère , dont les plans des lignes de contact
se coupent suivant une droite, est la polaire conjuguée de cette droite.

Démonstration. Une droite D étant située d'une manière quel-
conque par rapport à une sphère f concevons qtie.? par cette droite p

on fasse passer arbitrairement deux plans P , P ' , dont les pôles
soient respectivement p 7 p

/ 5 il est aisé de voir (5) que la droite
d , passant par ces deux derniers, points , sera (27) la polaire con-
juguée de D ; or ^ le plan de la ligne de contact de tout cône cir-
conscrit à la sphère , dont le sommet sera sur l'un ou l'autre des
deux plans P f V/ , passera (28) par p\ ou pf respectivement , et
réciproquement^ d'où il suit que le plan de la ligne de contact de
tout cône circonscrit dont le sommet sera à l'intersection D de
ces deux plans, passera à la fois par p et pf, et conséquemmçnt
par la polaire conjuguée d de D et réciproquement.

30. 11 est aisé de voir (27) que , lorsqu'un angle dièdre est
circonscrit à une sphère , son arête et la sécante qui joint les points
de contaet de ses faces avec la sphère sont deux polaires conjuguées
Vune à l'autre 7 par rapport à cette sphère. Or , de là résulte évi-?
déminent (28) le théorème suivant.

31. THÉORÈME. Les droites qui joignent les deux -points de
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cpntact avec la sphère des faces de tous lès angles dièdres ciï^
conscrits qu% ont leur arête sur un plan fixe quelconque f se coupent
toutes au pôle de ce plan • et réciproquement , si lès droites qui
joignent les deux points dé contact avec la sphère dés faces d'une
suite et angles dièdres circonscrits passent toutes par un même
point fixe, les arêtes de ces angles dièdres seront toutes situées

r. le plan polaire de ce point.

Bes centres , axes et plans d4 similitude.,

32. Deux sphères, extérieures l*un« à l'autre , ëtant données
dans l'espace, on peut toujours concevoir deux cônes qui soient*
à la fois circonscrits à1 l'un et à l'autre* L'axe commun de ces,
deux cônes passera par les centres des deux sphères ; mais, tandis
que le sommet-de l'un-sera sur la droite même qui joint ces deux
centres , Taxe de l'autre sera sur le prolongecnent dô eette droite^
aja-delà du centre de k plus petite. > POUE distinguer ces deux
cônes l'un de l'autre , nous dirons que le-premier est circonscrit
intérieurement , et que > l'autre, est-circonscrit extérieurement aux
deux sphères* II est clair que les sections de-ces-cônes par des
plans passant par les deux centres seront (8) des angles circonscrits
aux eeçeles résultant de la section des deux sphères par le mêm0
pJan.

33. Nous appellerons angle dièdre circonscrit à deux sphères,1

extérieures Tune à l'autre , tout angle dièdre dont le$ faces seront ̂
Fune et l'autre > des plans, tangens communs à. ces deux sphères»,
IL est.a-bd de voir que ces- angles dièdres sont en» même temps
circonscrits à , l'un ou à. l'autre des deux cônes- cir^onscrils k .ces
mêmes ̂ sphères ^ eX q«e con^équemment leur arête passe co îstain-»
ment^ par le sommet de l'un ou de l'autre, cône ; c©s arêtes cou~
pent donc con^taiuiuent la droite tpi passe par. les centres , et. se

ttouyent
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trouvent conséquemment avec elle dans un même plan , que Ton
conçoit devoir diviser L'angle dièdre en deux parties égales; niais,
tandis que l'arête des angles dièdres circonscrits à l'un des cônes
coupe la droite même qui joint les centres , l'arête de ceux qui
sont circonscrits à l'autre cône coupe le prolongement de cette
droite au-deîà du centre de la plus petite des deux sphères. Nous
dirons, en conséquence , des angles dièdres de la première série ,
qu'ils sont circonscrits intérieurement , et de ceux de la seconde
qu'ils sont circonscrits extérieurement aux deux sphères.

34» Nous appellerons à l'avenir centres de similitude de deux
sphères les centres de similitude communs à tous les systèmes de
deux cercles résultant des sections de ces sphères par des plans
quelconques passant par la droite qui joint leurs centres. Le centre
de similitude des deux sphères sera dit interne ou externe, suivant
qu'il sera tel par rapport aux sections circulaires dont il vient
d5êire question. C'est, dans tous les cas , un point semblablemenl
situé par rapport aux deux sphères»

35. Lorsque deux sphère» sont extérieures Tune à l'autre, leurs
centres de similitude interne et externe ne sont autre chose que
les sommets respectifs des cônes circonscrits intérieurement et ex-
térieurement ; ce sont aussi les points communs de concours des
arêtes des angles dièdres circonscrits intérieurement et extérieurement.

38. THÉORÈME. Les centres de similitude externes de trois sphè-
res , prises successivement deux à deux , sont tous trois situés sur uns
même ligne droite, et chacun d'eux se trouve en ligne droite avec deux
des centres de similitude internes ; de telle sorte que ces six points sont
les intersections de quatre droites Jormant un quadrilatère complet t
dont le plan est celui même qui contient les centres des trois sphères*

Démonstration. Cela est évident (12), puisque ces six points ne sont
autre chose (34) que les centres de similitude des cercles résultant de la
section des trois sphères par un plan passant par leurs centres*

3y, A l'avenir , nous appellerons ûxe de similitude de trois sphères
toute droite qui contiendra Xi ois de leur? centres de similitude. Cette

Tom. M, 3
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droite sera dite axe de similitude externe , lorsqu'elle contiendra
les trois centres de similitude externes ; elle sera dite , au contraire,
axe de similitude interne $ lorsqu'elle contiendra un seul de ces
centres avec deux des centres de similitude internes. Ce sont évi-
demment des droites homologues à la fois par rapport aux tiois
sphères, ce qui justifie leur dénomination.

38. Lorsque trois sphères sont extérieures les unes aux autres,
on peut toujours, de deux manières, leur conduire un plan tan-
gent -, car ce plan peut laisser les trois sphères d'un même côté et
pourra être appelée , pour cette raison 7 plan tangent commun
externe 9 ou bien il pourra avoir deux des sphères d'un même
côté et la troisième de l'autre ; et sera dit plan tangent commun
interne -, à chaque plan tangent commun il en répendra un autre 7

symétrique avec lui par rapport au plan qui contient les centres } et
ces deux plans formeront un angle dièdre circonscrit. Il y aura donc un
seul angle dièdre circonscrit externe et trois angles dièdres circonscrits
internes ; et leurs arêtes ne seront autre chose que ce que nous avons
appelé axes de similitude externe et interne des trois sphères.

89. THÉORÈME. Les centres de similitude externes de quatre
sphères , prises successivement deux à deux f sont sur un même
plan , aux intersections de quatre droites , formant un quadrf*
latère complet ; en outre , en prenant trois de ces centres, appar-
tenant à une même droite , et consèquemment relatifs aux trois
mêmes sphères prises successivement deux à deux , ils se trouveront
aussi 9 avec les trois centres de similitude internes , relatifs à la
quatrième sphère , comparée tour à tour aux trois premières s

situés dans un même plan , aux intersections de quatre droites for-
mant également un quadrilatère complet \ enfin , si Von considère
deux centres de similitude externes dont un appartient à deux
quelconques des quatre sphères et Vautre aux deux sphères res-*
tantes 7 ces deux points se trouveront , avec les quatre centres dâ
similitude internes ; autres que ceux qui appartiennent aux deux
mêmes combinaisons de deux sphères rsitués dans un même plan , au&
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intersections de quatre droites formantencore\un quadrilatère complet.

Démonstration. Soient S , S' , S" 7 S//; les quatre sphères dont.
îl s'agît; désignons respectivement par (S/S7), (S^SQ les centres de simi-
litude interne et externe des deux sphères S, S / , et soient adoptées des
notations analogues pour toutes nos sphères ? prises deux à deux.

D'abord , d'après ce que nous venons de dire (36) , les quatre
séries de points

correspondant

respectivement

aux sphères

, (S'*S")

, (S"'e&) f (Se$")

s ,
S ' ,

S" ,

S'",

S' ,

S" ,

S"' ,

s ,

S"

S///

5

s'
seront sur quatre droites ; or , ces points ne sont qu'au nombre
de six ; ils seront donc aux intersections de ces quatre droites f

qui conséquemment appartiendront à un même plan ; ces six points
seront donc au*sî dans ce plan ; ce qui démontre la première
partie du théorème-

En otn?e f d'après cette même proposition (36) , les quatre
séries de points

(S'*S"0 ,

correspondant

respectivement

aux sphères

s , s/
S , S'

s / , s"
S", S

stroïil en lignes droites ; or , ces points ne sont qu'au nombre de
six seulement; ils sont donc aux intersections de ces quatre droites f

formant conséquemment un quadrilatère complet; ces six points sont donc
dans un même plan ; ce qui démontre la seconde partie du théorème*

Enfiii, et toujours d'après la même proposition (36) ; les quatre
séries de points



s
s
s
s/

> s/ >
, S' ,

, S",

, S" ,

S" ,

S"' ,

S'" ,

S'" ,
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(S*S') , (S*S") , (S'/S")

correspondant

respectivement

( s w ) , (s/S") , (s/s-) aux sphères

(S"*S"'), (S'/S"), (S'/S'")
seront en lignes droites ; or , ces points ne sont qu'au nombre de six seule-
ment; ils sont donc aux intersections de quatre droites, formant consé-
qoemment un quadrilatère complet ; ces six points sont donc dans un
même plan ; ce qui démontre la troisième partie du théorème.

4o. A l'avenir ? nous appellerons plan de similitude de quatre
sphères tout plan qui contiendra six des douze centres de simili-
tude de ces quatre sphères prises deux à deux , sans que ces six
points appartiennent aux trois mêmes sphères. Ce plan de simi-
litude sera dit externe , s'il contient les six centres de similitude
externes : il sera dit interne , au contraire , s'il contient deux centres
de similitude externes seulement, avec quatre centres de similitude
internes ; enfin , il sera dit mixte , s'il contient trois centres de chaque
sorte. Quatre sphères ont donc , généralement parlant , un plan de
similitude externe 7 trois plans de similitude internes , et quatre
plans de similitude mixtes. 11 est aisé.de voir, au surplus, que
chacun de ces huit plans est à la fois homologue par rapport aux
quatre sphères, ce qui justifie leur dénomination,

$. I I L

Des plans 7 axes et centres radicaux.

4*> Nous appellerons a l'avenir centre radical de deux sphères
le centre radical commun de tous les systèmes de deux cercles
résultant de la section de ces sphères par des plans passant par la
droite qui joint leurs centres. C'est coiiséquemment (16) un point
de la droite qui passe par les centres dont la différence des quarrés
des distances à ces centres est égale à la différence des quarrés
des rayons des deux sphères.
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4 2. Nous appellerons à l'avenir plan radical de deux sphères le

plan indéfini , mené perpendiculairement à la droite qui joint leurs
centres , par leur centre radical -, c'est évidemment (18) le lieu géo-
métrique des axes radicaux de tous les systèmes de deux cercles
résultant de la section des deux sphères par des plans passant par
leurs centres; d'où il soit (19) que , lorsque les deux sphères se
touchent ou se coupent , leur plan radical n'est autre chose que
ILOT plan tangent commun , dans le premier cas # et celui de leur
commuise section dans le second.

43. THÉORÈME. Les tangentes menées à deux sphères de tous
'es points et des seuls points de leur plan radical sont égales entre
elles , ou , en d'autres termes , les cènes circonscrits de même som-
met , dont le sommet commun est sur le plan radical 7 et qui se
terminent à leurs lignes de contact respectives , ont toujours et ont
seuls leurs arêtes égales de part et d'autre*

Démonstration. Soient C , C les centres des deux sphères 9 P
un point quelconque de l'espace , pris pour sommet commun de
doux cônes circonscrits f et O le pied de la perpendiculaire abaissée
de ce point sur îa droite qui joint les centres. Par les trois points
P ? C ? G', soit conduit un plan ; tout sera dans ce plan , comme
cians les figures 4 e* 5 ; PC f PG ; seront les axes des deux cônes,
et PT , PT7 en seront les arêtes; donc (20), suivant que P sera
ou ne sera pas sur l'axe radical des deux cercles, les droites PT ,"
PT7 seront égales ou inégales , et réciproquement ; or , suivant que
P sera ou ne sera pas sur Taxe radical des deux cercles , ce même
point sera ou ne sera pas sur le plan radical des deux sphères |
notre théorème se trouve donc ainsi démontré.

44» Nous appellerons à l'avenir centre radical de trois sphères 9

le centre radical des trois cercles résultant de leur section par le
plan passant par leurs centres ; et nous appellerons ase radical
des trois mêmes sphères , la perpendiculaire indéfinie menée par
leur centre radical au plan qui contient leurs centres.

40. THÉORÈME. Les plans radicaux de trois sphères $ prises,
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successivement deux à deux , se coupent tous trois suivant nftô
même droite, perpendiculaire au plan qui contient leurs centres »
laquelle n'est autre chose que Vaxe radical des trois sphères.

Démonstration. Si, par les centres des trois sphères, on conçoit
xm plan, les intersections avec les trois sphères seront trois grands
cercles, et ses intersections avec les plans radicaux ne seront autre
chose (4a) que les axes radicaux de ces trois cercles ; ces axes pas*
Seront donc tous trois (21) par un même point qui sera le centre
radical de ces trois cercles ; en menant donc , par ce point, l'axe
radical des trois sphères, cet axe se trouvera à la fois dans les
trois plans / qui conséquemment se couperont suivant cette droite.

46. THÉORÈME. Les tangentes menées à trois sphères de tous
les points et des seuls points de leur axe radical sont égales entre
belles 7 vu f en d'autres termes , les cônes circonscrits de même
sommet , dont le sommet commun est sur taxe radical, et qui se
terminent à leurs lignes de contact respectives , ont toujours et
ont seuls leurs arêtes de même longueur*

Démonstration* Soient4 S , S / , S7/ les trois sphères* R , R/ , R;/

les plans radicaux respectifs de S/ , S", de S" , S % de S , S' , se
coupant dans i*axe radical X : pour que les tangentes menées d'un
ïïiême point P à S / , S" «oient de nirme long leur que la tangente
*nenée de ce point & S ; il sera nécessaire et il suffira (43) q*J£ ce
point *P soit a la fois sur les deux plans IV , \\f/ ; il devra donc
êîre sur leur commune section 2 c'est-à-dire (45) sur Taxe radical
des trois sphères.

- 4?* THÉORÈME. Les six plans radicaux de quatre sphères ,
prises successivement deux à deux , et consèquemment les quatre
axes radicaux de ces mêmes* sphères > prises successivement trois
à trois se coupent en, un .même point*.

Démonstration. Soient S r S7 » &;/ t S w les quatre sphères dont
U s'agit f. et soient X , X ; , X ; / , X"7 les axes radicaux respectifs
de S ' , S" , S " ' , de S» , S '" , S, de S '" , S , S7, de S, S', S" ;

de plu* RA f R" , R"/. * respectivement les plans radicaux
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de S , S' ? de S , S" , de S , S'". Les deux plans IV , R"' se
couperont (45) suivant Taxe X7 ; pour les mêmes raisons ? les deux
plans R;// , R/ se couperont suivant l'axe X ; /

 ? et les deux plans
W , R" suivant l'axe X'". Les troît axes X' X" Xf// se cou-»
peront donc suivant les intersections, deux a deux, des trois plans
W , R/7 ? R/// ; c'est-à-dire , au même point ; il en devra donc être de
îîîême des trois axes X , X ; , X / / ; le premier de ceux-ci passera
clone par le point de concours des trois autres , et conséquemment
ils se couperont tous quatre aux mêmes points,

48* II suit de là que quatre sphères étant quelconques dans
l'espace ? il existe toujours (46) un point et un seul point duquel me-
nant des tangentes a ces quatre sphères f ces tangentes , terminées
à leurs points de contact , sont de même longueur ; ou ce qui
revient au même , un point tel que les cônes circonscrits qui y
auront leur sommet commun , et qui se termineront à leurs lignes
de contât ? auront toutes leurs arêtes de même longueur. Nous appel*
lerons à l'avenir ce point le centre radical des quatre sphères*

SECTION III.

Propriétés des cônes et des cylindres.

§. I.

Des droites et plans polaires*

4g. Soit un angle dièdre circonscrit arbitrairement a nn cône qn%
aura eonséquemment son sommet SUF l'arête de cet angle ; l'angle
dièdre touchera le cône suivant deux droites s formant un angle
qui sera coupé perpendiculairement en deux parties égales par le
plan qui sera conduit par Taxe du cône et par l'arête de l'angle
dièdre. Cela posé , si Ton coupe le cône par un plan quelconque
perpendiculaire à son axe , ce plan coupera l'arête de l'angle dièdre
et la droite divisant l'angle de contact en deux parties égales en
deux points qui seront des pôles conjugués du carcle résultant do
la section du cône par le même plan»
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En effet, le plan de la section circulaire coupera l'angle dièdre

suivant un angle circonscrit dont le sommet sera un des points dont
il s'agit ; ce même plan coupera l'angle de contact suivant la corde
de contact de cet angle circonscrit ; et l'autre point sera le milieu
de cette corde ; or t ce sont précisément là (2) les caractères de
deux pôles conjugues.

50. On voit donc qu'en prenant sur les diverses sections circu~
laires du cône une suite de pôles situés sur une même droite passant
par son sommet , leurs conjugués seront aussi sur une droite
passant par ce même point. À l'avenir , nous désignerons le système
de deux pareilles droites sous la dénomination de polaires conju-
guées du cône.

51. II suit de cette définition (2) , i.° qu'il n'y a aucune droite
passant par le sommet d'un cône qui ne puisse être prise pour
polaire de ce cône et à laquelle i l ne réponde une polaire conjuguée
dont elle est elle-même la conjuguée ; 2.0 que de ces deux droites,
l'une est toujours intérieure et l'autre extérieure au cône; 3,° que
l'arête de l'angle dièdre circonscrit au cône et la droite qui divise
son angle de contact en deux parties égales f sont deux polaires
conjuguées de ce cône.

62. Lorsque , par Tune quelconque des deux polaires conjuguées
d'un cône , on conduira un plan indéfini , perpendiculaire à celui
qui les contient, nous dirons de ce plan qu'il est le plan polaire
de l'autre droite, que nous appellerons, à l'inverse, la droite po-
laire 9 ou simplement la polaire de ce plan.

53. Il suit de ces définitions (4) , i»° qu'il n'est aucune droite
menée par Je sommet d'un cône qui n'ait son plan polaire, ni aucun
plan, passant par ce même sommet qui n'ait sa droite polaire ; 2 •
que la polaire est extérieure ou intérieure au cône , suivant que le
plan polaîre lui est sécant ou ne le rencontre pas; 3*° que l'arête de
l'angle dièdre circonscrit est la polaire du plan de l'angle de contact;
comme la droite qui divise cet angle en deux parties égales est ,
à l'inverse > la polaire du plan coudait, par l'arête de Fangle dièdre,

perpendiculairement
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perpendiculairement à celui qui contient celte arête et Taxe du cône,

54* THÉORÈME. La polaire d'un plan passant par le sommet
d'un cône est la commune section des plans des angles de contact
de tous les angles dièdres circonscrits à ce cène 9 qui ont leur arête
sur ce plan ; et réciproquement, le plan polaire d'une droite passant
par le sommet d'un cône , est le lieu géométrique des arêtes des
angles dièdres circonscrits à ce cène , dont les plans des angles de
contact passent par cette droite.

Démonstration. Concevons } en effet, par Pun quelconque C des
points de Taxe du cône un plan perpendiculaire à cet axe , cou-
pant Parête de l'angle dièdre circonscrit en un point S , ses lignes
de contact en À, B , la polaire en P , et en Q l'intersection du
plan qui contient l'axe et cette polaire avec le plan perpendicu-
laire à ce dernier , conduit par Parête de Pangle dièdre ; on se
trouvera exactement dans le cas des figures 1,2,; d'où on con-
clura (5j que SQ est la polaire du point P ; et que conséquem-
ment (5o, 5s) le plan dont SQ est l'intersection avec celui de
la figure, est le plan polaire de la.droite dont P est l'intersection
avec ce même plan.

55. Ce théorème revient, au surplus , à dire que l'intersection
de deux plans qui passent par le sommet d'un cône est la polaire du
plan qui passe par les polaires de ces deux-là , et réciproquement.

56, En considérant le cylindre comme un cône dont le sommet
est infiniment éloigné, on est conduit à appeler polaires conjuguées
d'un cylindre deiax droites situées dans un même plan avec Paxe
du cylindre , et parallèles à sa direction , telles que le rayon de
ce cylindre est moyen proportionnel entre les distances de ces deux
droites à cet axe. On appelle aussi plan polaire d'une droite f

parallèle à Paxe d'un cylindre un plan perpendiculaire à celui qui
contient cette droite et cet axe , passant par la polaire conjuguée
de cette même droite. A Paide de ces définitions 9 on peut (54)
établir le théorème suivant :

5 7. THÉORÈME. La polaire d9un plan parallèle à F axe d'un
Tbm. XL 4



a'6 T H É O R I E D E S C O N T A C T S
cylindre est la comrttune section des plans des lignes de contact
de tous les angles dièdres circonscrits au cylindre dont les arêtes
Sont sur ce plan -, et réciproquement^ le plan polaire d'une droite
parallèle à taxe d'un cylindre est le lieu géométrique des arêtes
des angles dièdres circonscrits au cylindre 7 dont les plans des
lignes de contact passent par cette droite.

s. .".
Des axes et plans de similitude.

58. Nous dirons, à l'avenir, qu'un angle dièdre est circonscrit
k deux cônes de même sommet, lorsque ses faces seront des plans
tangens communs à ces deux cônes , ayant , l'un et l'autre , les
deux cônes du même côté , ou l'un et l'autre les deux cônes de
di/Térens cotés j l'angle dièdre circonscrit sera dit extérieur , dans le
premier cas , et intérieur dans le second. Dans l'un et l'autre cas ,
l'arête de l'angle dièdre passe évidemment par le sommet commun
des deux cônes , et se trouve dans le même plan avec leur& axes.
- S9. LE MME. Si deux sphères , variables de grandeur et de
situation, sont continuellement inscrites à deux cônes de même
sommet % leurs centres de similitude, tant interne qu^ externe , ne
sortiront pas de deux droites fixes y passant par le sommet commun
des deux cônes, et situées dans le même plan avec leurs ases.

Démonstration. Sûït S le sommet commun des deux cônes. Soient
À , B les deux sphètes dans leur premier état ; E 5 I leurs centres
de similitude externe et interne respectivement. Soient À' , B ' , ces
sphères dans leuf second état ; E x , V 4eufS centres de similitude
externe et interne , respectivement* Soient enfin e , / les centres
da similitude externe et interne des deux sphères À/ , B. 11 est clair
cjue S sera (35) le centre commun de similitude externe soit des
sphères A , À' , soit des sphères B, B7.

Cela pojé, en considérant d>abôtd IeS trois sphères À , À; , B ,
on verra (36) que trois points e , E , S sont en ligne droite , et
cju'il en est de même des trois poïûts i ± î , S.
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En considérant ensuite les trois sphères B , B / , A7 , on verra

pareillement (36) que les trois points E 7 , e , S sont en ligne droite,
et qu'il en est de même de$ trois points V 9 i9 S*

La droite qui contient les trois points e , E , S et celle qui
contient les trois points E ' , e , S , ayant ainsi deux points com-
muns e y S ; elles doivent ne faire qu'une seule et même droite •
et conséquemment les deux points E , E ' doivent être en ligne
droite avec le point S.

Pareillement, la droite qui contient les trois points / , I , S , et
celle qui Contient les trois points V , i , S , ayant ainsi deux points
communs / , S ; elles doivent se confondre en une seule et même
droite ; et conséquemment les deux points I , V doivent être es
ligne droite avec le point S.

La proposition se trouve donc ainsi complètement démontrée.
60. Nous appellerons à l'avenir axe de similitude de deux cônes

de mêmes sommets, la droite qui contient les centres de similitude
de même dénomination de tous les systèmes de deux sphères res-
pectivement inscrites à ces deux cônes. Ces axes de similitude seront
dits internes ou externes 7 suivant qu'ils contiendront les centres
de similitude internes ou les centres de similitude externes des
systèmes de sphères dont il s'agit. Ce sont deux droites passant par
le sommet commun des deux cônes , situées dans le même plan
avec leurs axes, et dont la direction ne dépend uniquement que
de la grandeur et de la situation respective de ces deux cènes (*).

61. Il est aisé de voir que, lorsque les deux cônes sont extérieurs
Ton à l'autre, leurs axes de similitude , interne et externe, ne sont
autre chose (58) que les arêtes des angles dièdres , tant intérieur
qu'extérieur , circonscrits à ces deux cônes,

62. 2HÉ0RÈME. Les axes de similitude externes de trois cônes
de même sommet, pris successivement deux à deux, sont tous trois

(*) La dénomination d'axe de similitude est impropre , attendu qu'il n'y a de cônes
semblables que des cônes égaux \ aussi ne l'exnpleyens-nous que par aftalog^
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dans un même plan ; et chacun d'eux est dans un même plan avec
deux des axes de similitude internes ; de telle sorte que ces six
droites sont les intersections de quatre plans formant un angle
tétraèdre complet.

Démonstration. Soit O le sommet commun des trois cônes ï
auxquels soient respectivement et arbitrairement inscrites trois sphères
S , S ' , S/;. Soient E 7 W , E / ; , respectivement , les centres de simi-
litude externes de S ' , S", de S", S. , de S, S' ; et soient I , V les
centres de similitude internes de S' , S" , de S / ; , S respective-
ment ; OE , O E ' , OE" seront ^60) les axes de similitude externes
des trois cônes pris deux à deux, et 0 1 , OF seront deux de leurs
axes de similitude internes.

Or (36) , les points E , E ' , E " étant en ligne droite , il s'en-
suit que les axes OE, OEy , OE" sont dans un même plan, De
plus 9 E / ; étant (36) en ligne droite avec I P V ; il s'ensuit que
Taxe OE" est dans un même plan avec les axes 0 1 , 0 I ;

 7 ce qui
démontre complètement le théorème.

63. Nous appellerons à l'avenir plan de similitude de trois cônes
de même sommet, tout plan qui contiendra trois de leurs axes de
similitude. Ce plan de similitude sera dit externe , s'il contient les
trois axes de similitude externes ; il sera dit interne, au contrairr 7
3'il contient un seul axe de similitude externe avec deux axes de
similitude internes. Trois cônes de même sommet ont donc quatre
plans de similitude , dont un seul externe et trois internes.

64* En considérant des cylindres dont les axes sont parallèles
comme des cônes dont le sommet commun est infiniment éloigne f

on est conduit à appeler axe de similitude de deux cylindres , dont
les axes sont parallèles 7 un parallèle à la direction commune de
ces axes, tellement située dans leur plan que ses distances aux
axes des deux cylindres sont proportionnelles à leurs rayons res*
peciifs. L'axe de similitude est d'ailleurs dit interne ou externe 9

suivant qu'il se trouve situé entre les axes des deux cylindres , ou
au-delà de l'intervalle qui les sépare. Lorsque les deux cylindres
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sont extérieurs l'un a l'autre , ces deux droites ne sont autre chose
que les arêtes des angles dièdres circonscrits intérieurement et
extérieurement à ces deux cylindres.

De tout cela , il est aisé de déduire le théorème suivant.
65. THÉORÈME. Les axes de similitude externes de trois

cylindres , dont les axes sont parallèles , pris successivement deux
à deux , sont tous trois dans un même plan ; et chacun d'eux est
dans un même plan avec deux des axes de similitude internes ;
de telle sorte que ces six droites sont aux intersections de quatrer
plans formant un prisme tétraèdre complet.

66. On comprend aisément, d'après cela , ce que nous voudrons
dire à l'avenir, lorsque nous parlerons des plans de similitude,
tant internes qu'externes, de trois cylindres ayant leurs axes pa-
rallèles ; et on voit en même temps que ces plans sont au noxpbre
de quatre , dont trois internes et un seul externe,

Des axes et plans radicaux.

67. LE M ME. Si deux sphères sont respectivement inscrites à
deux cônes de même sommet, de telle sorte \qm t hs arêtes des
deux cènes, terminées à leurs lignes 4e contact avec les sphères'^
soient égales de part et d'autre ; quA que soit le système des deum
sphères , elles auront toujours le même plan radical, passant par,
le sommet commun des deux cônes*

Démonstration. Soit S ( fig. 6 ) le sommet commun des deux
cônes, et concevons que le plan de la figure sait^eelt|i de leurs
axes. Soient A , À / les points où ce plan coupe les lignes de contact
des sphères , dont nous supposons les centres en C , (X A cause
des tangentes égales SA, SA /, le point S est (20) un des points
de l'axe radical des cercles résultant de la section des deux sphères/
et par conséquent la perpendiculaire SO mx CC/ £$t Taxe radical
de ces deux cercles*
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II reste présentement à faire voir que pourvu qu'on ait cons-

tamment SA = SA / , quels que soient d'ailleurs les deux cercles,
l'axe radical SO demeurera invariable. Or , c'est une chose facile

SG SO
à apercevoir. En effet, quels que soient ces deux cercles •— , —

seront constans -, et il en sera donc de même du rapport de ces
deux fractions , lequel , à cause de SA==SÀ/, se réduit simplement à
SC

— ; ce dernier rapport étant donc constant •, C C sera constam-
ment parallèle à elle-même ; elle sera donc aussi constamment
perpendiculaire à la droite fixe SC qui sera ainsi l'axe radical
commun à tous les systèmes de deux cercles qui pourront être
décrits sous les conditions prescrites.

Donc aussi le plan perpendiculaire a celui de la figure , conduit
par la droite fixe SO sera le plan radical commun h tous les sys-
tèmes de deux sphères inscrites respectivement aux deux cônes ,
de telle sorte que leurs lignes fta contact soient a la même distance
du sommet commun S ; ce qui démontre la proposition annoncée.

68. A l'avenir % «mous appellerons pl&u raàrcal de deux canes de
même sommet le plan radical commun à tous les systèmes de sphères
inscrites aux deux cônes ', de telle sorte que leurs lignes de contact
avec les deux c^nës «oient à une même distance quelconque de
leur sommet GônwifUR. L%itersectien de ce plan avec celui des
axes sera ce *jue nèus- appellerons Vase radical des deux cônes»
II est aisé de voir que , lorsque les deux cônes se touchent ou se
coupent, leur plan radical n'est atttre chose que leur plan tangent
commun 0*1 celui de leurs communes sectidns.

ùg. TÈlÊ^ÔIiÈME. Si, par le sommet commun de deux cènes,
on mené arbitrairement une droite dans leur plan radical ; et que
par cette droite on conduise des plans tang*>ns aux deux cènes ,
les lignes de contact de ces^ plans feront des angles égaux açee
ta droite dont il s'agit \ et réciproquement, si les lignes de contact
de deux 'plans respectivement iangens à dtu& cènes de même sùm~



DES CERCLES, BBS SPHÈRES, ETC. 3I
met font des angles égaux arec Vintersection de ces deux plans ,
cette intersection sera située sur le plan radical des deux
cènes.

Démonstration. Soit C le sommet commun des deux cônes , et
soit P un autre point quelconque , extérieur à l'un et a l'autre.
Par CP soient conduits respectivement des plans tangens aux deux
cènes ; soient inscrits à ces mêmes cônes deux sphères telles que
les distances de leurs lignes de contact au sommet commun soient
égales à CP ; ces lignes de contact couperont celles des plans tan-
gens ; soit À Tune des intersections sur l'un des cônes , et A'l'une
des intersections sur l'autre cône ; on aura par construction CÀ
—CA'^CP ; et les droites PA , Ï W seront des tangentes aux
deux sphères.

Cela posé ; suivant que ces tangentes PA , VA/ seront égales ou
inégales , le point P sera ou ne sera pas (4^) dans lé plan radical
des deux sphères , qui est aussi celui des deux cônes et récipro-
quement ; et conséquemment CP sera ou ne sera pas sur ce pla« ;
mais, suivant que les mêmes circonstances auront on n'aurorft pas
lieu 9 les triangles isocèles ÀCP , Â'CP auront leurs bases égales
ou inégales et réciproquement ,• donc enfin r suivant que GP
ou ne sera pas sur Taxe radical des deux cônes, les angles
PCA7 seront égaux ou inégaux €t réciproquement*

70. THÉORÈME. Les plans radicaux des trois cents de même
sommet, pris successivement deux à deux ? se coupent mus irms
suivant une même droite.

Démonstration. Soient C , C , O7 les trois cônes 9 X 5 X
7 , X/j%

respectivement , les plans radicaux de G ;, C^, de Ç/*,f C, de C, ç/ 9

et soit O ^'intersection des deux premiers. Si par cette droite O
on mène respectivement dea plans taugens aux trois cônes* i ces
plans détermineront sur eux trois lignes de contact T , T ; , T " ;
et par ce qui vient d'être dît (69), l'angle de O avec T7/ sera e'gal
aux angles de la même droite avec l1 , T7 5 v ces deux derniers
seront donc aussi e'gaux entre eux 5 O est donc aussi sur X*7 -f
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et par conséquent X , X ; , X/7 se coupent suivant une même droite,
comme l'annonce le théorème.

71. Nous appellerons à l'avenir axe radical de trois cônes de même
sommet, la commune section des plans radicaux de ces trois cônes
pris successivement deux à deux.

72. En considérant les cylindres dont les axes sont parallèles
comme des cônes qui ont un même sommet infiniment éloigné >

on est conduit à appeler axe radical des deux cylindres , une
parallèle à leurs axes situés dans le plan de ces axes , de telle
manière que la différence des quarrés des distances de celle droite
aux axes des deux cylindres est égale à la différence des quarrés
de leurs rayons. On appellera pareillement plan radical des deux.
mêmes cylindres le plan perpendiculaire à celui de leurs axes con-
duit par leur axe radical* Si les cylindres se touchent ou se coupent,
leur axe radical n'est autre chose que leur plan tangent commun >

ou celui de leurs communes sections.

Au moyen de ces définitions , et de ce qui a été établi (69 7 70) r

jaous aurons les deux théorèmes suivans ;

73. THÉORÈME. Les lignes de contact avec deux cylindres,
'dont les axes sont parallèles, de deux plans tangens gui partent
dune même droite parallèle à ces axes , tracée comme Von coudra
sur le plan radical des deux cylindres , sont également distantes
de cette droite \ et réciproquement , si les lignes de contact des
plans tangens aux deux cylindres sont également distantes de
l intersection de ces plans , cette intersection sera sur le plan radical
des deux cylindres*

74. THÉORÈME. Les plans radicaux de trois cylindres, dont
les axes sont parallèles , pris successivement deux à deux , se
coupent tous trois suivant une même droite^

75. Nous appellerons à l'avenir axe radical de trois cylindres %

dont les axes sont parallèles, la commune section des plans radi-
caux de ces trois cylindres % pris successivement deux à deux.

SECTION
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SECTIQN IV.

Propriétés des cercles sur la sphère.

Des pôles et arcs polaires.

7*6. Nous appellerons à l'avenir pôles conjugués d'un cercle de
là sphère les deux points de sa surface où elle est rencontrée par
deux polaires conjuguées d'un cône qui ; ayant son sommet au
centre de la sphère, passera par ce cercle, SI , par l'un quelconque
de ces deux pôles , on conduit un arc de grand cercle ? perpen-
diculaire à celui qui les contient tous deux ; nous dirons que l'autre
point est le pôle de cet arc ; que nous appellerons, à l'inverse,
Y arc polaire de ce point.

77, THÉORÈME. Le pôle d'un arc de grand cercle est là
commune section des arcs de grands cercles joignant les points
de contact de tous les angles sphèriques circonscrits qui ont leur
sommet sur cet arc ; et réciproquement 9 Parc polaire d'un point
est le lieu géométrique des sommets des angles sphèriques circons^
crits 7 de manière que les arcs de grands cercles qui joignent leurs
points de contacts , passent par ce point.

Démonstration. C'est une suite évidente de ce qui a été dit ci-
dessus (54).

78. En supposant le rayon de la sphère infini ? on retombé
sur le the'orème démontré (5), .

Tom. XL
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$. II.

Des centres et axes de similitude*

•̂9. Nous appellerons à l'avenir centre de similitude de deux
cercles de la sphère , le point de sa surface où elle sera rencontrée
par l'un des axes de similitude de deux cônes qni , ayant leur
sommet commun au centre de la sphère, passeraient par ces deux
cercles. Ce centre de similitude sera dit interne ou externe , sui-
vant que Taxe de similitude des deux cônes , sur lequel il se trou-
vera situé , sera lui-même interne ou externe. Si les deux cercles
sont l'un hors de l'autre , leurs deux centres de similitude ne; seront
autre chose que les sommets des deux angles sphériques circonscrits
tant intérieurement gu'extérieuTement aux deux cercles,

80. Comme deux grands cercles d'une sphère se coupent toujours
en deux points opposés , il s'ensuit que deux cercles d'une sphère
ont toujours # à proprement parler ? deux centres de similitude
internes et deux centres de similitude externes , mais, pour plus de
simplicité , nous n'en considérerons qu'un seul de chaque sorte.

81. THÈOBÈME, Les centres de similitude externes de trois cercles
dune même sphère 9 pris successivement deux à deux, sont tous
trois situés sur un même arc de grand cercle.; et cliacun d'eux
se trouve aussi sur un même arc de grand cercle avec deux des
centres de similitude internes \ de telle sorte que ces six points
.sont les intersections de quatre arcs de grands cercles formant un
quadrilatère sphèrique complet.

Démonstration. Ce théorème est une suite évidente de ce qui a
été dit ci-dessus (62),

82. Nous appellerons à l'avenir axe de similitude de trois cercles
d'une sphère , tout arc de grand cercle qui contiendra trois de
leurs centres de similitude; cet axe de similitude sera dit externe f
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VU contient Jes t^ois centres de lîmilitude externes ^ \\ sera dit
interne , *u contraire , -s'il contient un de ces centres , avec deqx
des centres de similitude internes. Trois cercles d'une sphère
çlonc quatre axes de similitude : un externe et trois internes.

83, Au moyen de notre théorème (81) , et de ce qui a été
$ervé (79) y rien ne sera plue aisé X[ue d'assigner le& centres de
similitude tant internes* qu'externes de deux cercles d'une sphère ,
dans toutes les situations où ces cercles pourront se trouver Ywa
par rapport à l'autre. On pourra donc aussi ? sans plus de difficulté,
construire les quatre axes de similitude de trois cercles quelconques
d'une sphère, et cela par un procédé tout-à-fait analogue à celui
qui a été indiqué (i4> i5).

84̂  Si l'on suppose que le rayon de la sphère devient infini ^
0U retombe sur le théorème déjà démontré (12).,

Des centres et axes radiewx*

85. Nous appellerons à l'avenir centre radical de deux cercles
d'une sphère ? le point où sa surface est rencontrée par Taxe rr*»
clical de deux cônes qui , ayant leur sommet commun an centra
de cette sphère ? passeraient par ces deux cercles, XJ&xe radical
des deux mêmes cercles sera Tare de grand cercle perpendiculaire
à celui qui joint leurs pôles, conduit par leur centre radical ; c'est
évidemment (68) l'intersection de la surface de la sphère avec le
plan radical des deu& cônes. H est d'ailleurs facile de voir que ,
lorsque les deux cercles se touchent ou se coupent , leur axe ra-
dical n'est autre chose que Tare de grand cercle qui las toucha
tous deux ou qui passe par leurs intersections,

86» 1HÉ0BÈMJË. Les arcs de grands caries tangens à
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cercles d'une sphère > menés de tous les points et des seuls points
de leur axa radical ; et terminés à leurs points de contact, sont
de même longueur.

Démonstration. C'est une suite évidente de ce qui, a été dé-
montré cis-dessus, (69)..

87. THÉORÈME. Les axes radicaux de trois cercles de la
sphère , pris successivement deux à deux K se coupent tous trois
au même, point.

Démonstration, C'est, une suile évidente de. ce, qui a été démontré
çi-dessus (70).

88. Nous appellerons a P avenir centre, radical de trois cercles
d'une sphère , le point de concours des axes radicaux de ces trois
cercles pris successivement, deux à deux.. On conçoit que ces trois
cercles doivent aussi se couper, en un point apposé de la sphère ;
de manière qu'à proprement parler , les trois mêmes cercles d'une
sphère ont deux centres radicaux situés aux; deux extrémités d'un.
i$ême diamètre?, de cette sphère.

89. Au moyen de notre théorème (87) , et dé ce qui a été ob~
serve (85) , rien ne. sera plus aisé que d'assigner Taxe radical de
deux cercles de la sphère , quelle que puisse être d'ailleurs leur
situation respective» On pourra donc aussi, sans plus de difficulté,
construire le centre radical de trois cercles de la sphère , de quel-
que manière d'ailleurs que ces cercles puissent être posés l'un par
rapport à l'autre ; et cela par des procédés tout-à-fait analogues à
ceux qui ont été indiqués (28 , a/±\

90* Si Ton suppose le rayon de la sphère infini, lés théorèmes
que nous venons d'énoncer (86 , 87) deviènpent précisément ceux;.

i ont été. dépionjtrçs ci-dessus {2,0 9 21),,

SECTION
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SECTION V.

Théorèmes et problèmes sur les contacts.

§. I.

Contacts des cercles, et cercle tangent à trois autres sur un plan.

gu Nous appellerons à l'avenir polaires de similitude de deux
cerehes 7 deux droites ayant pour pôle commun 7 par rapport à
ces deux cercles , l'un de leurs centres de similitude ; ces polaires
seront dites d'ailleurs internes ou externes , suivant que le centre
de sianîitude qui en sera le pôle commun sera lui-même interne
ou externe.

92. Chacun des deux centres de similitude de deux cercles
étant (9) un point à la fois semblabîement situé par rapport à ces
deux cercles ; et les polaires des points homologues étant évidem-
ment des droites homologues ; il s'ensuit que les polaires de simi-
litude f soit internes soit externes , de deux cercles sont des droites
semblabîement situées par rapport à ces deux cercles ; c'est-à-
dire ? des droites dont les distances aux centres des deux cercles
sont respectivement proportionnelles a leurs rayons. C'est d'ailleurs
une chose que Ton parviendrai aisément à établir d'une manière
directe.

93. THÉORÈME. Dans tout système de deux cercles, les po-
laires de similitude internes sont également distantes des polaires
de similitude externes , de telle sorte qu'il existe une même per-
pendiculaire à la droite qui joint les centres également distans
des unes et des autres.

D é m o n s t r a t i o n . S o i e n t e , c ; ( fig. 7 , 8 ) l e s c e n t r e s d e
Zom. XI9 n.°lIP i,Cr août 1820* 6
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cercles dont les centres de similitude , interne et externe , soient
respectivement I , E , et dont les polaires de similitude coupent la
droite qui joint les centres; savoir : .les internes en / , z7 > et les
externes en e , e'. D'après la situation de ces différens points,
nous aurons ( i ) , en désignant par R , R1 les rayons des deux
Cercles

ciiRi.R.cl , cH< : R< ; : R> : c'i ,

$;ce::cE:R \ .Bt.':c'e';:c'E : Rf j

dfoù } en multipliant par ordre > et réduisant >

ci: ce : : c& : cl ; di* : cfe* : : c% : et ;

de la on tire

ci-4e : c&~~& : : ci : ̂ E ; êHf^M : ̂ E+^I : : cfV ; c'E ;

Vest - à - dire ;

et} E l : : ci x c% % % *V i E l : : cfV : cfZ ;

mais on a aussi (x , 9)

ci : R : : R : ri ,

fi/ : ̂ 1 ; : cfP : »' ,

c'I:R' :: cl :R ;

multipliant par ordra et réduisant r
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ci :cE:i cfif : c'E ;

la comparaison de cette proportion avec les deux précédentes donne

ei : E l : : efV : El ;

donc ei^e'i' ; d'où on peut conclure encore eif=efi. Donc 5 si O est
le milieu de W , ce sera aussi le milieu de ee* ; et par conséquent la
perpendiculaire conduite par O , à la droite qui joint les rentres,
sera à la fois également distante et des deux polaires de similitude
internes et des deux polaires de similitude externes»

9 4- THÉORÈME. La perpendiculaire à la droite qui joint les
centres de deux cercles , qui est à la fois également distante de
leurs polaires de similitude internes et de leurs polaires de simi-
litude externes , n'est autre chose que l'axe radical de ces deux
cercles.

Démonstration. On a, par ce qui précède *

R*^ce .cE~ce (cc'+c'E) ,

cc>) ;
donc

. ce—cE .

mais , parce que les points e , er sont homologues dans les deux
cercles * et que le point E est homologue par rapport à fous
deux ; on doit avoir

cE : £'E tt cet c'e* „
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zzc'E .ce

donc , on aura simplement,

mais , a cause de 0 ^ = 0 ^ , on a

ou

on a d'ailleurs
cc'—Oc+Oc' ;

donc enfin

donc enfin (18) la perpendiculaire menée par le point O à la droite
qui joint les centres est Taxe radical des deux cercles.

g5. Voilà donc une manière fort simple de construire Paxe ra-
dical de deux cercles , lorsqu'on connaît déjà leurs polaires de
similitude , soit internes , soit externes.

96. THÉORÈME. Laxe radical de deux cercles est placé ? par
rapport à tout cercle qui les touche tous deux , de la même ma~
ni ère que le èont, par rapport à ces deux cercles 9 leurs polaires
de similitude ; savoir : leurs polaires de similitude externes 7 si
le troisième cercle touche les deux autres de la même manière 7

et leurs polaires de similitude internes, si, au contraire , ce troi-
sième cercle touche les deux autres dfune manière différente. Dk)ù
il suit que taxe radical de deux cercles est une droite sembla-
llement placée par rapport à tous les cercles qui les touchent
tous deux ; pourvu que chaque cercle soit toujours touché de la même
manière par tous ceux-là.
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Démonstration. Soit C le centre d'un cercle touchant de la même

manière ( fig. 9 , 10 , i l , 12 ) et d'une manière différente ( fig.
i 3 , 14 ) , en / , t' deux autres cercles dont les centres sont c , cf

 9

et dont le centre de similitude externe est E ( fig. 9 , *o , n , 12 ) ,
ou dont le centre de similitude interne est I (fig- i3 , i4)»

Les points t, tf étant (9) des centres de similitude, de même
dénomination ( fig, 9 , i o , 11 , 12 ) et de dénomination contraire
(fig. i3 , i 4 ) ; ces points doivent se trouver, avec le point E
( fig. 9 , 10 , 1 1 , i - ) et avec le point I ( fig. i3 , Ï4 ) t sur
une même ligne droite , qui n'est autre (i3) que Taxe de simi-
litude externe ( fig. 10 , 1 1 , 12 ) ou l'un des axes de similitude
internes (fig. 9 , i3 , 14 ) de nos trois cercles ; et qui doit con-
sdquemment (i3) être semblablement placée par rapport à ces trois
cercles ; donc , le pôle P de cette droite , par rapport au cercle
touchant, doit être placé , à l'égard de ce cercle , de la même
manière que le sont les pôles p , p/ de la même droite ? par rapport
aux cercles touchés, relativement à ces derniers. D'un autre côté,
le pôle P est (20) un point de Taxe radical des deux cercles
touchés ; et les points p > pf sont Respectivement (7) des points
des polaires de similitude de ces deux cercles. Or , lorsque , par
des points homologues de plusieurs figures semblables , on mène
des droitei qui font des angles égaux avec des droites homologues
de ces figures ? les droites , ainsi menées sont elles-mêmes homo-
logues ; puis donc que Taxe radical et les deux polaires , comme
droites parallèles , font des angles égaux avec la droite ttf, homo-
logue à la fois par rapport à nos trois cercles, et qu'ils passent
respectivement par les points homologues P % p , p* , il s'ensuit
que l'axe radical des deux cercles touchés est situé , par rapport
au cercle touchant ? de la même manière que le sont , par rapport
aux deux autres, leurs polaires de similitude respectives.

97. Nous appellerons à l'avenir pôle de similitude d'un cercle ;
dans le système de trois cercles f le pôle de l'un quelconque des

de similitude de ces trois cercles , pris par rapport a ce cercle*
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Chacun àes cercles du système a donc ainsi quatre pôles de sîmi*
litude ; savoir ; un externe, un interne et deux mixtes*

98. Il est aisé de voir que Pun quelconque de ces pôles > pour l'un
quelconque des trois cercles , est toujours (7) l'intersection de
deux polaires de similitude obtenues pour ce cercle , en le com-
parant tour à tour aux deux autres. Ces polaires sont au nombre
de quatre ; parallèles deux à deux , et formant ainsi un parallé-r
logramme , dont les sommets sont les quatre pôles dont il s'agit. Le
pôle de similitude externe est l'intersection des deux polaires de
similitude externes ; le pôle de similitude interne est l'intersection
des deux polaires de similitude internes ; enfin ? chacun des pôles
de similitude mixtes est l'intersection d'une polaire de similitude
externe et d'une polaire de similitude interne.

99. Pour pouvoir désigner et différencier commodément entre
eux ces divers pôles , nous adopterons les notations suivantes î
soient c, cf\ cft les trois cercles;

i.° Nous aurons, pour c comparé à c* , une polaire de simi-
litude externe , que nous désignerons par (ce r cf) et une polaire
de similitude interne que nous désignerons par .(r. , £')• Nous
aurons de même , pour c comparé à c" t une polaire de similitude
externe , que nous désignerons par {cs , c

11) , et une polaire de si-
militude interne que nous désignerons par (^ , cn\

2.0 Nous aurons, pour c* comparé a c**, une polaire de simi*
litude externe > que nous désignerons par {c'e, c/à) > et une polaire
de similitude interne , que nous désignerons par (^. % c/;)* Noua
aurons de même , pour c? comparé à c , une polaire de similitude
externe ," que nous désignerons par (cr

ë , c) % et une polaire de si-*
militude interne , que nous désignerons par (Vj 9 c)«

3.° Nous aurons enfin , pour cn comparé à c , une polaire de
similitude externe , que nous désignerons par (cn

€ > c), et une po-
laire de similitude interne , que nous désignerons par {cf\ , c). Nous
aurons de même f pour c** comparé a cf, une polaire de similitude
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externe , que nous désignerons par (cu

€ , cf) 9 et une polaire de
similitude interne, que nous désignerons par (clf

i% cl\
On voit, d'après ces notations , que 7 par exemple ? les quatre

polaires pour c seront

(cê , C') s (cg , C'1) , (Ci , £>) f (d , Cli) ;

et il en sera de même pour les deux autres cercles*
Pour designer un pôle de similitude , ou Fînterseetion de deux.

polaires de similitude, relatives à un même cercle, nous sépare-
rons par une virgule les symboles qui désigneront ces deux po-
laires , en renfermant le tout entre deux crochets ; aimsi 9 par
exemple, les quatre pôles de similitude relatifs à c seront désignée
comme il suit

Ke, , O s (Ci ,

et il en sera de même des autres.
Nous continuerons enfin à désigner par E f E ;

f E / ; , les centres
de similitude externes , et par I , V y I / ; les centres de similitude
internes respectivement relatifs à c* et cff , cn et c , c et cf ; et
nous désignerons les axes de similitudô par les trois^ lettres qui
représentent les centres qui s*y trouvent situés , écrites de suite eî
renfermées entre deux parenthèses , en cette manière (EE^77) f

Rien ne sera plus aisé , d'après cela, que de former le tableau
des pôles de similitudes qui ? pour chaque cercla 9 répondent à chacian
de ces axes ; voici ce tableau*
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(EE'E'O J »•[('«, C), (c,, c")], l(c>e, c»), (c>e, c)-] , [(*",, 0 , (c»e, e>)1.

(EH") ;...[('.-, «0 > C'i. ' " ) ] » [(«'« »«") > O'i » «)] » iW'i. 0 » («"«> «0]-

<IE'I") ; ...[(',•, cO , (ct, *") ] , [ ( ^ , *") , {cfx, c)] , [ ( ^ , , O, ( ^ , *0].

(1I/E'O i - [ ( ^ > C), (^ , *")] , [ ( ^ , ^ 0 , {c'e, c)1, [(<"., 0 , ( ^ , «0];

ÏOO. THÉORÈME. Dans le système de trois cercles, / ^ /?<5/^
J<? similitude relatifs à chaque axe de similitude sont des points
sernblablement placés par rapport à ces trois cercles.

Démonstration. Nous avons déjà vu (i3) que chacun des axes
de similitude du système de trois cercles est une droite à la fois
semblablement située par rapport a ces trois cercles ,• et comme
il est d'ailleurs évident que les pôles des droites homologues, sont des
points homologues, la proposition se trouve ainsi démontrée.

io r . On peut , en général, concevoir huit cercles qui touchent
à la fois les trois mêmes cercles donnés. Pour rendre la chose
évidente , prenons un cas fort simple ; concevons que ces trois
cercles , de même rayon 7 aient leurs centres situés aux trois som-
mets d'un triangle équilatéral , et soient extérieurs les uns aux
autres. i.° On pourra concevoir deux cercles dont l'un les touche
tous trois extérieurement, tandis que l'autre les enveloppera tous
trois ; cela ne se pourra que d'une manière unique ; et , dans
l'un et dans l'autre cas , les trois cercles se trouveront touchés de
la même manière par le quatrième- 2.° On pourra concevoir deux
cercles , dont l'un touche deux des cercles donnés extérieurement
et enveloppe le troisième; tandis qu'au contraire , l'autre enveloppera
les deux premiers , et touchera le troisième extérieurement ; mais
Ici , chaque cas pourra arriver de trois manières différentes , ce
qui en fera six , dans chacun desquels deux cercles seront touchés

de
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3e la même manière , et le troisième d'une manière différente ;
on aura donc > en effet , huit cercles tangens à la fois aux trois
cercles donnés.

Mais il faut remarquer que ce nombre de huit pourrait se trouver
réduit, dans certains cas, d'après la grandeur et la situation res-
pective des cercles donnés. Il pourrait même se faire qu'aucun
cercle ne pût les toucher tous trois ; et c'est , par exemple , ce
qui arriverait si , ces trois cercles étant inégaux, le plus petit se
trouvait intérieur au moyen, et celui-ci au plus grand.

102. THÉORÈME. Le centre radical de trois cercles est si-
tué, par rapport à un quatrième cercle qui les touche tous trois f

de la même manière que le sont , par rapport à ces cercles \ leurs
pôles de similitude respectifs ; savoir : les pôles relatifs à taxe
de similitude externe ? si les trois cercles sont touchés de la même
manière par le quatrième ; et les pèles relatifs à Vun des axes de
similitude internes 9 si Vun des cercles n*cst pas touché de la même
manière que les deux autres ; pourvu que y dans ce dernier cas , oh
choisisse celui des axes de similitude qui contient le centre de
similitude externe des deux cercles touchés de la même manière
par le quatrième cercle.

Démonstration* Soient c , cf , cff les trois cercles touchés , C
le cercle touchant , X ' , X " les axes radicaux de c et c/, de c et
Cn

 7 respectivement ; soient de plus xf, xn les polaires de c rela-
tives à la nature du contact , soient enfin p le pôle de c et P
le centre radical des trois cercles; de manière que p soit Tinter-
section de xf

 9 xlf et P celle de X ' , XA'. D'après ce qui a été
dénlontré (96) xf, X7/ sont des lignes homologues de c et C ; et
il en est de même de xf/, ^X^ ; donc le point P , intersection de
X / et X" , est placé , par rapport à C , de la même manière que
l'est ^ par rapport à c> le point p d'intersection de xf , xn -y et on
démontrerait la même chose d^s pôles de c1

 7 cN.
io3. Non seulement le centre radical P et le pôle p de c qui

convient à la situation de G , sont deux points semblablement sî~
Tom. XI. 7
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tués par rapport aux deux cercles C , c ; maïs ils sont de plus
semblablement situés par rapport à la droite qui joint les centres
de ces deux cercles, laquelle est une droite homologue dans l'un
et dans l'autre. Cela est évident , puisque les deux droites qui ,
par leur intersection, déterminent le premier de ces points , sont
respectivement parallèles à leurs homologues , dont l'intersection
détermine le dernier ; de manière que les droites homologues ,
dans les deux systèmes, font des angles égaux, soit avec la droite
qui joint les centres , soit avec la tangente commune ; droites homo-
logues communes des deux cercles.

104. THÉORÈME. La droite qui joint le centre radical de
trois cercles à l'un quelconque des quatre pôles de similitude de
Vun quelconque de ces trois cercles contient aussi les points de
contact de ce cercle avec deux des huit cercles qui touchent à la
fois les trois cercles dont il s'agit ; savoir : avec les deux cercles
qui les touchent tous trois de la même manière , si le pôle est
Tintersection des deux polaires de similitude externes ; avec les
deux cercles fui touchent celui-là autrement que les deux autres,
si le pôle est Vintersection des deux polaires de sirhilitude in-
ternes ; et enfin avec deux cercles qui touchent celui-là de la même
manière que fun des deux autres , et le troisième d'une manière
différente , si le pôle est l'intersection d'une polaire de similitude
interne avec une polaire de similitude externe.

Démonstration. Soient c , c1 , cf/ les centres des trois cercles dont
il s'agit , P leur centre radical , C le centre d'un cercle qui les
tçuche tous trois dune manière quelconque \ t, if, tu &zs points
de contact respectifs avec eux, et enfin p, p1, pn leurs noies de
similitude respectifs 7 déterminés conformément à la manière dont
ils sont touchés par le cercle dont le centre est C.

Si nous menons la droite Ce ; qui contient le point / , ainsi que
les droites /P , tp ; parce que P ; p sont semblablement placés
(io3) par rapport aux droites homologues tC , te , les angles C/P
et ctp devront être égaux ; puis donc que tC et te ne forment
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ga'uiie seule ligne droite , il en devra être de même de tP et fp;
c'est-à-dire, que le point / sera en ligne droite avec les points P ,
p. On prouvera , par un raisonnement semblable , que les points
t* , t't sont respectivement sur Vp/ , ¥pK\

io5. Les deux polaires de similitude , dont l'intersection déter-
mine le point p , ont leurs polaires respectivement parallèles et cor-*
respondantes , relatives à cf, cl/, lesquelles, prolongées sril est né-
cessaire , concourent en un certain point q ; de sorte que les deux
points p, q sont des sommets opposés d'un parallélogramme , formé
par ces quatre polaires. Mais les axes radicaux X ' , X / 7 , dont le
point P est l'intersection, sont respectivement parallèles aux côtés
de ce parallélogramme , et ne sont autre chose (g4) que les droites
qui joignent les milieux de ses côtés opposés ; le point P , inter-
section de ces deux droites r est donc le centre de ce même parallélo-
gramme , et est par conséquent sur une même ligne droite avec
les points p , q ; puis donc que le point / est en ligne droite avec
les points P , p 9 il sera également en ligne droite avec les points/?, ç+

106. PROBLÈME. Décrire 9 sur un plan , un cercle qui touche
à la fois trois cercles donnés ?

Solution. Déterminez r pour l'un quelconque des cercles donnés,;
ses polaires de similitude avec les deux autres ; ayant soin de prendre
la polaire externe pour les cercles qui doivent être touchés de la
mêm£ manière , et l'interne pour ceux qui doivent être touchés
d'une manière différente par le cercle cherché. Ces polaires se cou-
peront en un certain point ; et les polaires homologues relatives
aux deux autres cercles , et respectivement parallèles à celles-là ,'
se couperont en un second point. En joignant ces deux points par
une droite , cette droite coupera le premier des trois cercles donnés
aux points où il devra être touché par deux cercles dont chacun
touchera à la fois les trois cercles de la manière que vous vous
serez proposée. En faisant les mêmes opérations relativement à chacun
des deux autres cercles , on déterminera pareillement leurs points
de contaqt avec les deux cercles cherchés ^ de sorte que le pro-
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blême se trouvera réduit à celui où il s'agit de faire passer un cercle
par trois points donnés.

On pourra même se contenter de chercher les points de contact
des cercles cherchés avec deux des cercles donnés seulement ;
attendu qu'en menant des rayons à ces points, ils détermineront,
par leur concours , les centres des cercles cherchés.

Pour chacune des quatre manières dont on voudra que le cercle
cherché touche les trois cercles donnés , on trouvera deux cercles
qui résoudront le problème ; ce qui fera huit solutions en
tout.*

Cette solution est exactement celle qui a été donnée par M.
Gergonne > dans les Mémoires de Turin.

Autrement. On peut aussi se borner à chercher , pour chacun
des trois cercles donnés , le pôle de similitude qui convient a la
manière dont on veut qu'ils soient touchés par le cercle cherché ,
ainsi que le centre radical des trois cercles. En joignant ce dernier
point à chacun des trois autres par des droites , ces droites , par
leurs intersections respectives avec les cercles donnés , détermine-
ront sur ces cercles les points où ils devront être touchés par les
deux cerclés remplissant les conditions du problème particulier qu'on
se sera proposé.

Cette nouvelle solution est celle que M. Gergonne a donnée en
l'endroit cité des Annales de mathématiques ; elles résultent évi-
demment , l'une et l'autre , de ce qui a été dit ci-dessus ( ÎO4
et io5).

107. Si quelques-unes des droites qui doivent déterminer 5 sur
les cercles donnés, leurs points de contact avec le cercle cherché,
au Heu de couper ces cercles , leur étaient simplement tangentes ,
ou même ne les rencontraient pas , le nombre des solutions du
problème s'en trouverait d'autant diminué , et pourrait même ; dans
certains cas , devenir tout-a-fait nul.

108. Les points et les droites n'étant que des cercles dont le
rayon est nul ou infini> on sent qu'il suffira de faire subir quel-
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ques légères modifications à ces solutions pour en déduire celles
des dix problèmes d'Apollonius, résolus pour la première fois par
Yiète.

§• I I .

Contacts des sphères, et sphère tangente à quatre autres dans
l'espace.

X09. Nous appellerons à l'avenir plans polaires de similitude de
deux sphères, deux plans ayant pour pôle commun, par rapport
à ces deux sphères, l'un de leurs centres de similitude ç, ce sont,1

en d'autres termes 7 les lieux géométriques des polaires de simili-
tude de tous les systèmes de deux cercles résultant de la sectioa
des deux sphères par des plans passant par la droite qui joint
leurs centres,

JIO* On voit par là 9 et par ce qui a été dit (91 > 92) / quel
deux .sphères ont toujours, deux systèmes dedeus: plans -polaire*
de similitude -, savoir, des externes et des internes 5 et que les uns
comme les autres sont sèmblablement situés par rapport aux deux
sphères. On peut aussi de là , et de ce qui a été dit (98 , 94)*
€©nclurê  \% théorème suivant :

m . THÉORÈME. Dans tout système de deux sphères 7 les
plans polaires de similitude"internes sont également distans des
plans polaires de similitude externes 5 de telle sorte quil existe un?
même plan , perpendiculaire à la droite qui joint les centres ègake-
ment distans des uns et des autres; et ce plan n9est autre chose
q^e le plan radical des deux sphères.

I Ï 2 . THÉORÈME. Le plan radical de deux sphères est placé 9

par rapport à toute sphère qui les touche toutes deux , de la même
manière que le sont, par rapport à ces deux sphères 7 leurs plans
polaires de similitude ; savoir , leurs plans polaires de similituda
externes , si la troisième sphère touche les deux autres de la
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même manière , et leurs plans polaires de similitude internes ?

si , au contraire , cette troisième sphère touche les deux autres
d'une manière différente. D'où il suit que le plan radical de deux
sphères est un plan semblablcment situé par rapport à toutes les
sphères qui les touchent toutes deux \ pourçu que chaque sphère
soit touchée de la même manière par toutes celles-là.

Démonstration. Si, par les centres dés trois sphères 7 on fait
passer un plan , ce plan sera évidemment semblablement place
par rapport aux trois sphères, et il en sera de même des cercles
résultant de la section. De plus r l'intersection de ce plan avec le
plan radical des deux sphères touchées y axe radical des sections
circulaires de ces sphères , se trouvera située , par rapport à la sec-
tion circulaire de la sphère touchante (96) r de la même manière
que le seront les intersections du même plan avec les plans
polaires de similitude des sphères touchées y lesquelles intersections
ne sont autre chose que les polaires de similitude des sections
circulaires de ces sphères* Ces polaires de similitude et Taxe ra-
dical seront donc trois droites parallèles semblahlement situées dans
des sections homologues des trois sphères ; les plans polaires de
similitude et le plan radical f qui sont trois plans parallèles, pas-
sant par ces droites * sont donc des plans homologues par rapport
aux trois sphères»

il3* Nous appellerons à l'avenir polaire de similitude d'une
sphère % dans le système de trois sphères f la polaire conjuguée
de l'un quelconque des axes de similitude de ces trois sphères p

prise par rapport à cette sphère. Chacune des sphères du système
a donc quatre polaires de similitude 5, savoir ; une externe , une
interne et deux mixtes.

n 4 H est aisé de voir que Tune quelconque de ces polaires,
pour Tune quelconque des trois sphères y est toujours à Tinter-
section de deux plans polaires de similitude ohtenus, pour cette
sphère > en la comparant tour à tour aux deux autres. Ces pians
polaires sont au nombre de quatre , parallèles deux à deux , et
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formant ainsi un prisme tétraèdre indéfini , dont les quatre arêtes
sont les quatre polaires dont il s'agit. La polaire de similitude ex-
terne est l'intersection des deux plans polaires de similitude externe.
La polaire de similitude interne est l'intersection des deux plans
polaires de similitude internes ; enfin , les deux polaires de simi-
litude mixtes sont l'intersection d'un plan polaire de similitude ex*
terne avec un plan polaire de similitude interne.

I I 5. Dans le système de trois sphères , les polaires de similis
tude relatives à. chaque axe de similitude sont des droites sembla-
hlement situées par rapport à ces trois sphères.

Démonstration. Nous avons déjà vu (87) que chacun des axes
de similitude du système de trois sphères est une droite à la fois
sembjablement située par rapport à ces trois sphères ; e t , comme
il est d'ailleurs évident que les polaires des droites homologues
sont elles-mêmes des droites homologues, la proposition se trouve
ainsi démontrée.

116, Des considérations analogues à celles que nous avons déve-
loppées ci-dessus (101) prouvent que les sphères, en nombre in-
fini , qui peuvent toucher à la fois les trois mêmes sphères données f

peuvent se trouver dans huit cas distincts. Dans les deux premiers,
les trois sphères se trouveront touchées de la même manière : dans
les six autres , deux sphères se trouveront touchées de la même
manière, et la troisième d'une manière différente.

11 j . THÉORÈME* L'axe radical de trois sphères est placé , par
rapport à toute sphère qui les touche toutes trois, de la même manière
que le sont, par rapport à ces trois sphères , leurs polaires de simi-
litude respectives ; savoir : les polaires relatives à taxe de simi-
litude externe , si les trois sphères sont touchées de la même
manière par la quatrième ; et les polaires relatives à Vun des
axes de similitude internes, si l'une des sphères n'est pas touchée
de la même manière que les deux autres ; pourvu que % dans ce
dernier cas , on choisisse celui des axes de similitude qui contient
le centre de similitude externe des deux sphères touchées de la



52 . T H É O R I E D E S CONTACTS
même manière par la quatrième sphère. D'où il suit que Taxe ra-
dical de trois sphères est une droite semblablement située par rapport
à toutes les sphères qui les touchent toutes trois \ pourvu que
chacune des trois sphères soit constamment touchée de la même
manière par toutes celles-là.

Démonstration. Soient s 3 s;, sf/ les trois sphères touchées, S
la sphère touchante , / , tf, tu les points de contact respectifs f

X » xf, xn les polaires de similitude que Von considère sur les trois
sphères touchées , X Taxe radical de ces trois sphères.

Les points / , t*, ttf étant (34) des centres de similitude , le plaa
que Ton conduira par ces trois points sera (3o) un plan à la fois
semblahlement situé par rapport aux quatre sphères s7sy s, S;
les cercles c , cf , c/; , C qu'il déterminera sur elles en seront donfc
des sections homologues $ les pôles p, p/

 7 p
/r, P dçs plans de ces

quatre cercles seront donc des points homologues des quatre sphères j
or, il est aisé de voir (29) que p , p/, plf sont respectivement si-
tués sur x} xf, xu, et (46) que P est sur X ; ces quatre droites #

parallèles entre elles, passent donc par des points homologues7 de
quatre sphères par rapport à un plan homologue commun ; elles
3ont donc elles-mêmes des lignes homologues de ces quatre sphères.

Si Ton conduit trois plans par la droite X et par chacune de
ses homologues x , x*, xn ; il est éviÔeiit que ces plans contien-
dront les points t, tf > iH homologues à la fois par rapport à la
sphère S et à chacune des sphères s y s* y slt ; ces mêmes plans
détermineront sur ces trois sphères des sections circulaires y conte-
nant respectivement les points / , if, tn ; or , comme ces plans sont
invariables quelle que soit la sphère touchante r il en résulte ce
théorème, déjà démontré par M. Dupin> mais d'une manière différente*
*" 118. THÉORÈME. Toutes les sphères qui touchent à la fois
les trois mêmes sphères données ont leurs points de contact a/ec
chacune de ces derrières sur une même section circulaire dont le
plan ^ perpendiculaire à celui des centres 7 passe par l'axe radical
des trois sphères et p&r tune des polaires de similitude de celle

d'entre
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d'entre elles dont il s'agit > pourvu que toutes ces sphères touchent cons-
tamment chacune des trois antres de la même manière , et que
la polaire soit choisie conformément à la nature du contact*

119. Soient respectivement q , qf, qN , Q les points où le plan
conduit par / , V > tn coupe les droites x, xf , af/ , X -, il est
clair que ces points seront des points homologues de quatre sphères,
et Ton voit de plus que Qq , Qq'> Qq" contiendront respective-
ment les points / , / / , tlf , lesquels sont en même temps les points
de contact du cercle G dont il a été tout~à-l'heure question, avec
les cercles c , c/ , cn. On démontrera facilement que ces points
q , q/, qf/, Q , homologues par rapport aux quatre cercles c , ef,
cfi , G sont , savoir ; les trois premiers , les pôles de similitude
des trois premiers de ces cercles , et le dernier leur centre radical»

120. Il ne sera pas plus difficile de démontrer que les centres
de toutes les sphères d'une même série , tangentes à la fois aux
trois mêmes sphères , sont dans un plan mené perpendiculairement
à l'un des axes de similitude des trois sphères dont il s'agit , par
leur axe radical (*). Nous n'insistons pas sur toutes ces choses ̂
parce que nous n'en ferons aucun usage pour l'objet que nous avons
principalement en vue.

121. Nous appellerons à l'avenir pâle de similitude d'une sphère t

dans le systèrrçe de quatre sphères, le pôle de l'un quelconque des
plans de similitude de ces quatre sphères , pris par rapport à
celle-là. Chacune des sphères du système a donc (4o) huit pôles
de similitude , savoir ; un externe, un interne et six mixtes.

122. Il est aisé de voir (28) que l'un quelconque de ees pôles,
pour Tune quelconque des quatre sphères , est toujours lintersec-*»

(*) Et , comme ces centres sont aussi sur le cône qui, ajant pour sommet
le centre de Tune des sphères touche'es , passerait par le petit cercle de cette
sphère qui contient ses points de contact avec les sphères touchantes ; il s'ensuit
que le lieu de ces mêmes centres est une section conique.

Wom. XL 8
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tion de trois plans polaires de similitude obtenus pour cette sphère ^
en la comparant tour a tour aux trois autres. Ces plans polaires
sont au nombre de six, parallèles deux à deux, et forment ainsi
un parallélépipède dont les sommets sont les huit pôles dont il
s'agit. Le pôle de similitude externe est l'intersection des trois plans
polaires de similitude externes ; le pôle de similitude interne est
l'intersection des trois plans polaires de similitude internes ; et les
pôles de similitude mixtes sont l'intersection de deux plans po-
laires de similitude externes avec un interne , ou de deux internes
avec un externe.

123. Nous pourrions ici différencier entre eux ces différens
pôles , en employant des notations analogues à celles dont nous
avons fait usage ( 99 et suivant ) ; maïs , comme cela ne saurait
offrir de difficulté 5 nous nous dispenserons de nous y arrêter,

124- THÉORÈME. Dans le système de quatre sphères , les
pôles de similitude relatifs à chaque plan de similitude sont des
points semblaitement situés par rapport à ces quatre sphères*

Démonstration. Nous avons déjà vu (4o) que chacun des plans
de similitude du système de quatre sphères est un plan à la fois
semblablement situé par rapport à ces quatre sphères ^ et ,
comme il est d'ailleurs évident que les pôles des plans homologues
sont des points homologues , la proposition se trouve ainsi dé-
montrée»

125. On peut, en général, concevoir seize sphères qui touchent
a la fols les quatre mêmes sphères données dans l'espace. Pour
rendre la chose évidente , prenons un cas fort simple ; concevons
que ces quatre sphères , de même rayon , aient leurs centres situés
aux quatre sommets d'un tétraèdre régulier, et soient extérieures
les unes aux autres, i.° On pourra concevoir deux sphères, dont
Tune les touchent toutes quatre extérieurement , tandis que l'autre
les enveloppera toutes trois ; cela ne se pourra que d'une manière
«nique ; et , dans Fun et l'autre cas, les quatre sphères se trou*
veroftt touchées de la même manière par le cinquième, a.0 Ou
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pourra concevoir deux sphères dont Fune touche extérieurement
trois des sphères données et enveloppe la quatrième , tandis que
l'autre ? au contraire ? enveloppera les trois premières et touchera
la quatrième extérieurement ; mais ici chaque cas pourra arriver
de quatre manières différentes ; ce qui en fera huit, dans chacun
desquels trois sphères seront touchées de la même manière , et îa
quatrième d'une manière différente. 3.° Enfin , on pourra encore
concevoir une sphère qui touche extérieurement deux quelconques
des quatre sphères données et enveloppe les deux autres ; et six
sphères pourront être dans ce cas 5 où deux des sphères données
seront touchées d'une même manière , et les deux autres d'une
manière différente de celle-là. On aura donc ? en effet 9 seiz*
sphères tangentes à la fois aux quatre sphères données.

Mais il faut remarquer que ce nombre de seize pourrait sa
trouver réduit, dans certains cas, d'après la grandeur et la situa-
tion respective des sphères données. Il pourrait même se faire
qu'aucune sphère ne pût les toucher toutes quatre ; et c'est, par
exemple, ce qui arriverait si ? leurs rayons étant tous inégaux f

elles se trouvaient , de la plus petite à la plus grande , intérieures
les unes aux autres.

126. THÉORÈME. Le centre radical de quatre sphères est
situé par rapport à une cinquième sphère > qui les touche toutes
quatre , de la même manière que le sont f par rapport à ces sphères,
leurs pâles de similitude respectifs , savoir ; les pôles relatifs au
plan de similitude externe , si les quatre sphères sont touchées de
la même manière par la cinquième ; les pôles relatifs à l'un des
plans de similitude mixtes , si trois de ces sphères sont touchées
de la même manière, et la quatrième dune manière différente par
la cinquième ; et enfin les pôles relatifs à Vun des plans de si-
militude internes , si deux des sphères sont touchées d'une même
manière, et les deux autres d'une manière différente par la cin-
quième ; pourvu que dans le second cas on choisisse le plan de
similitude qui contient Taxe de similitude externe des trois sphères
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qui doivent être touchées de la même manière ; et que dans te
dernier , on choisisse le plan de similitude qui contient les centres
de similitude externes des deux couples de sphères qui doivent
être touchées d'une même manière par la cinquième*

Démonstration. Soient s, s' , s" , su/ les quatre sphères tou-
chées , S la sphère touchante -, X ' , X" , X / ; / les plans radicaux de
s et s', de s et sff

 9 de s' et sfff, respectivement ; soient, de plus , xf,
x / xfn les plans polaires de s , relatifs à la nature du contact ,
respectivement parallèles aux plans radicaux X / , X / ; , X / / ; ; et
soient enfin p le pôle de s et P le centre radical des quatre
sphères , de manière que p soit l'intersection des trois plans xf ,
#", xi(/, et P celle des trois plans X / , X7 / , X w ; d'après ce que
nous avons dit ci-dessus (112) x/, X7 sont des plans semblablement
situés par rapport à s et S ; et il en est de même de xtf

 } X" et
de x"> y X / ; / ; donc le point P , intersection de X7 , X" , X"' ,
est placé par rapport à S de la même manière que l'est , par
rapport à s >r le point p d'intersection de xr , xn , x/// ; et on dé-
montrerait la même chose des pôles de s/ > su, s"\

127. Non seulement le centre radical P et le pôle p de s qui
convient à la situation de S , sont deux points semblablement situés
par rapport aux sphères S, ^;mais ilsspnt de plus semblabîemeni situés
par rapport à la droite qui joint les centres de ces deux sphères
et même par rapport à tout plan passant par cette droite , les-
quels droite et plan sont à la fois homologues dans l'une et l'autre
sphères. Cela est évident , puisque les trois plans qui , par leur
intersection, déterminent le premier de ces points ? sont respecti-
vement parallèles à leurs homologues , dont l'intersection déter-
mine le dernier ; de manière que les plans homologues dans le$
deux systèmes font des angles égaux soit avec un plan quelconque
passant par les centres, soit avec le plan tangent commun , plans
homologues communs aux deux sphères.

128. THÉORÈME, La droite qui joint le centre radical de
quatre sphères à Vun quelconque des huit pèles de similitude de
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Vune quelconque de ces quatre sphères , contient toujours les points
de contact de cette sphère avec deux des seize sphères qui touchent
à la fois les quatre sphères dont il s'agit , savoir ; avec les deux
sphères qui les touchent toutes quatre de la même manière, si le
pôle répond au plan de similitude externe , avec deux des huit
sphères qui touchent trois des sphères données d'une même
manière , et la quatrième d'une manière différente , si le pôle est
relatif à l'un des quatre plans de similitude mixtes ; et enfin avec
deux des six sphères qui, touchant deux des sphères données d'une
même manière, touchent les deux autres d'une manière différente ,
si le pôle est relatif à l'un des trois plans de similitude internes.

Démonstration. Soient c , cf
 7 cn , cfN les centres des quatre

sphères dont ii s'agit, P leur centre radical , C le centre d'une
sphère qui les touche toutes quatre , d'une manière quelconque ,
* > tf y *" 9 *w les P°ints de contact respectifs avec elles , et enfin
p y p* , pN

 f pH/ leurs pôles de similitude respectifs , déterminés
conformément à la manière dont elles sont touchées par la sphère
dont le centre est C.

Si , par les points c } C , p , en conçoit un plan ; ce plan con-
tiendra îe point / , en ligne droite avec c et C ; et , d'après ce qui
vient d'être dît (127), il devra aussi contenir le point P ; menant
donc pt, P / , ces droites se trouveront dans un même plan, à la
fois homologues par rapport aux deux sphères ; mais le point t est
aussi un point homologue commun à ces deux sphères ; donc pt'j
P/ en doivent être des lignes homologues ; mais il en est de même
des rayons et, C/; donc les angles £//>, C/P doivent être égaux j
puis donc que les trois points c , t, C sont en ligne droite , il doit
en être de même des trois points p f / , P. On prouvera , par ua
raisonnement tout semblable, que les points îf

 t t/f, iin sont res~
pectivement sur /'P , *"P , / W P.

129. Les trois pians polaires de similitude , dont l'intersection
détermine îe point pf ont leurs plans polaires respectivement paral-
lèles et correspondais f reialifo à c*, d* %dH

 % lesquels > prolongés,
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s'il est nécessaire , concourent en tin certain point y; de sorte que
les deux points/?; q sont des sommets opposés d'un parallélipipède,
formé par ces six plans polaires. Mais les plans radicaux X7, X " ,
X w , dont le point P est l'intersection, sont respectivement paral«
lèles aux faces de ce parallélipipède , et ne sont autre chose ( n i )
que des plans conduits par les milieux de ses arêtes parallèles -f

le point P , intersection de ces trois plans, est donc le centre de
ce parallélipipède ? et doit par conséquent être en ligne droite avec
les points p, q ; puis donc que le point / est en ligne droite avec
les points P , p ; il le sera également avec les points/? , q.

i3o. PROBLÈME* Construire une sphère qui en touche quatre
autres , données dans Vespace ?

Solution. 'Déterminez p pour Tune quelconque des sphères don*
nées , ses plans polaires de similitude avec les trois autres -7 ayant
soin de prendre le plan polaire externe , pour les sphères qui
doivent être touchées de la même manière , et l'interne pour celles
qui doivent être touchées d'une manière différente par la sphère
cherchée. Ces plans polaires se couperont en un certain point ; et
les plans polaires homologues , relatifs aux trois autres sphère*
et respectivement parallèles à ceux-là , se couperont en un second
point. En joignant ces deux points par une droite , cette droite per-
cera la première des quatre sphères données aux points où elle
devra être touchée par deux sphère», dont chacune touchera à la
fois les quatre sphères données de la manière qu'on se sera proposée.
En faisant les mêmes opérations relativement à chacune des trois
autres sphères > on déterminera pareillement leurs points de con-
tact avec les deux sphères cherchées ; de sorte que le problème se
trouvera réduit a celui où il s'agit de faire passer une sphère par quatre
points donnés.

On pourpa même^se contenter de chercher les points de contact
des sphères cherchées avec deux des sphères données seulement ;
attendu qu'en menant des rayons à ces points , ils détermineront %

par leur concours , J^s centres des sphères cherchées.
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Pour chacune des huit manières dont on voudra que les sphères

données soient touchées par la sphère cherchée , on trouvera deux
sphères qui résoudront le problème ; ce qui fera seize solutions
en tout.

Cette solution est exactement celle qui a été donnée par M»
Gergonne y dans les Mémoires de Turin.

Autrement. On peut aussi se borner a chercher f pour chacune
des quatre sphcres données ? le pôle de similitude qui convient à
îa manière dont on veut qu'elles soient touchées par la sphère
cherchée, ainsi qtie le centre radical des quatre sphères. En joignant
ce dernier point à chacun des quatre autres par des droites , ces
droites, par leurs intersections respectives avec les sphères données f

détermineront sur ces sphères les points où ils devront être touchés
par les deux sphères remplissant les conditions du problème par-
ticulier qu'on se sera proposé.

Cette nouvelle solution est celle qoe M* Gergonne a donnée en
l'endroit déjà cité des Annales de mathématiques ; elles résultent
évidemment, Tune et l'autre , de ce <jui a été dit ci - dessus
(128 f 129),

I 3 I . Si quelqu'unes des droites qui doivent déterminer 9 sur les
sphères données , leurs points de contact avec la sphère cherchée,
au lieu de percer ces sphères , leur étaient simplement tangentes ,
00 même ne les rencontraient pas ? le nombre des solutions du
problème s'en trouverait d'autant réduit, et pourrait mémo 7 dans
certains cas, devenir tout-à-fait nul,

i32« Les points et les plans n'étant que des sphères dont îê
rayon est nul ou infini f on sent qu'il suffira de faire quelques
légères modifications à ces solutions , pour en déduire celles des
quinze problèmes résolus pour îa première fois par Fermât.
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S- ni.

Contacts des cônes et cylindres , et cône et cylindre tangens à
trois autres.

i33* Nous appellerons a l'avenir plans polaires de similitude de deux
•cônes de même sommet, deux plans ayant pour polaire commune,
par rapport à ces deux cônes, l'un de leurs axes de similitude ;
ces plans polaires seront dits internes ou externes, suivant que
l'axe de similitude qui en sera la polaire sera lui-même interne ou
externe,

i34- Nous appellerons a l'avenir polaires de similitude d'un cône
dans le système de trois cônes du même sommet, la polaire de
l'un quelconque des plans de similitude de ces trois cônes, prise
par rapport à ce cône. Chacun des cônes du système a donc ainsi
quatre polaires de similitude ; savoir : une externe , une interne
et deux mixtes.

i35. Il est aisé de voir que Tune quelconque de ces polaires,
pour l'un quelconque des trois cônes , est toujours (54) Tinter-
section de deux plans polaires de similitude obtenus pour ce cône,
en le comparant tour à tour aux deux autres. Ces plans polaires
sont au nombre de quatre formant un angle tétraèdre dont les arêtes
sont les quatre polaires dont il s'agit. La polaire de similitude ex-
terne est l'intersection des deux plans polaires de similitude externes;
la polaire de similitude interne est l'intersection des deux plans po-
laires de similitude internes ; enfin , chacune des deux polaires de
similitude mixtes est l'intersection d'un plan polaire de similitude
externe avec un plan polaire de similitude interne. On peut, pour
désigner ces perses polaires et les différencier entre elles ? employer

des
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des notations analogues à celles dont nous avons fait usage ci-
dessus (99).

i36. Par des considérations tout-à-fait analogues à celles qui
nous ont guidés (101), on se convaincra facilement que trois cônes
qui ont un sommet commun peuvent , en général, être touchés
à la fois par huit autres cônes de même sommet qu'eux ; deux d'entre
eux touchent les trois cônes de la même manièie , tandis que
les six autres touchent 5 deux à deux, deux des trois cônes d'une
même manière 7 et le troisième d'une manière différente.

i37« THÉORÈME. Le plan qui contient l'axe radical de trois
cônes de même sommet et l'une quelconque des quatre polaires de
similitude de Vun quelconque de ces trois cônes contient aussi les^
lignes de contact de ce cane avec deux des huit cônes de même
sommet qui touchent à la fois les trois cônes dont il s'agit • savoir :
avec les deux cônes qui les touchent tous trois de la même ma-
nière , si la polaire est l'intersection des deux plans polaires de
similitude externes ; avec les deux cônes qui touchent celui-là au*
tremeit que les deux autres, si la polaire est Vintersection des
deux plans polaires (le similitude internes ; et enfin avec deux cônes
qui touchent celui-là de la même manière que l'un des deux autres,
ût h troisième dune manière différente , si la polaire est l'inter-
section dun plan polaire de similitude externe avec un plan
polaire de similitude interne.

Démonstration. Soit G un cône tangent à trois autres c 7 cf
 7 cf/,

de même sommet O , et les touchant d'une manière déterminée
quelconque.

Concevons des sphères S , s , s;, sn respectivement inscrites à
ces cônes 7 de telle sorte que leurs lignes de contact avec eux
soient à une même distance quelconque du sommet commun O.
Il est clair que la sphère S touchera les trois autres s , s/ , sn de
la même manière que le cône C touche les cônes c , c* 7 cN, et
que ses points de contact avec elles seront sur les lignes de con-
tact respectives de ce cône avec les trois autres*

Tcm. XI. 9
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ïl est d'abord évident (68 , 70) que Taxe radical des trois sphères

sera aussi celui des trois cônes.
Soient h , kl , kn les centres de similitude des trois sphères s %

sf
 y s11 , déterminés conformément à la nature du contact ; ces trois

points seront en ligne droite (36); Qk, Ok1
9 Okf/ seront (60) les

axes de similitude des trois cônes c , c* , cn ; et conséquemment
Ç62) ces trois droites seront dans un même plan.

11 suit de la que la polaire de similitude de Tune quelconque
des sphères touchées et celle du cône correspondant perceront le
plan de sa ligne de contact avec ce cône au même point, et seront
conséquemment dans un même plan. En effet , considérons , par
exemple , la sphère s , inscrite au cône c. La polaire de $ est
(29) l'intersection de deux plans dont les pôles sont kf, kn ; et
Ta polaire de c est l'intersection de deux autres plans dont les droi-
tes polaires sont Qx' , OxN ; mais le plan de la ligne de contact
de s avec c a le point O pour pôle ; d'où il suit que le pôle du
plan &fOxir relatif à la sphère s doit être à la fois sur ces cinq plans ,
et doit coriséquemment être un point du plan de la ligne de contact
appartenant à la fois à la polaire dé la sphère et à celle du cône qui
ainsi se coupent en ce point et sont conséquemment dans un même plan.

Mais Taxe radical des trois cônes et des trois sphères est aussi
âans un même plan avec la polaire de similitude du cône c t puisque
ces deux droites concourent au point O ; e t , comme dVilleurs la
polaire de similitude de sy q u i , comme nous venons de le voir,
a un point sur ce plan , est parallèle à Taxe radical , il s'ensuit
que cet axe et les deux polaires sont dans un même plan passant
par le point O.

* O r , il a été démontré (117) que , lorsqu'une sphère en touche
trois autres, le plan qui contient Taxe radical de celles-ci et la
polaire de similitude de l'une d'elles contient aussi son point de
contact avec la sphère toucha»te ; on pourra donc dire aussi que
ce point de contact est sur le plan qui passe par l'axe radical et
par la polaire de similitude du cône ; et , puisque 1̂  ligne de contact
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$M cône touchant et du cône touché passe par ce point de contact
et passe de plus par le sommet commun , comme le plan dont il
s'agit, cette ligne de contact sera aussi dans ce plan,
, i38. PROBLÈME. Construire un cône qui touche à la fois trois
cônes donnés du même sommet ?

Solution. Déterminez , pour l'un quelconque des cônes donnés
ses plans polaires de similitude avec les deux autres, ayant soin
de prendre le plan polaire externe pour les cônes qui doivent être
touchés de la même manière > et le plan polaire interne pour ceux
qui, doivent être touchés d'une manière différente par le cône
cherché. Ces plans polaires se couperont suivant une certaine droite
qui sera une des polaires du cône dont il s'agit. Déterminez aussi
Taxe radical des trois cônes. Alors, en faisant passer un plan par
cette dernière droite et par la polaire , ce plan coupera le premier
des trois cônes donnés suivant ses lignes de contact avec deux cônes
de même sommet , dont chacun touchera à la fois les trois cônes
donnés de la manière que vous vous serez proposée. En exécutant
donc les mêmes opérations pour chacun des deux autres cônes 7

le problème se trouvera ramené à faire passer un cône par trois
droites données concourant en un point»

On pourra même se contenter de chercher les lignes de contact
des cônes cherchés avec deux' des cônes donnés ; attendu qu'en
conduisant des plans par ces droites et par les axes des cône$
auxquels elles appartiennent , leur intersection sera Taxe du cône
cherché.

Pour chacune des quatre manières dont on voudra que le
cône cherché touche les trois cônes donnés , on trouvera deux
cônes qui résoudront le problème , ce qui fera huit solutions en
tout.

Cette solution est exactement celle qui a été donnée par M.
Gergonne , en l'endroit des Annales de mathématiques déjà cité»

i3g, Sx quelques-uns des plans qui doivent déterminer, sur les
cônes donnés , leurs lignes de contact avec le cône cherché ? au
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lieu de couper ces cônes , leur étaient simplement tangens f ou
même n'avaient avec eux d'autres points communs que leurs som-
mmets ; le nombre des solutions du problème s'en trouverait d'au-*
tant diminué, et pourrait même , dans certains cas , devenir tout-
à-fait nul.

i4o« Les droites et les plans n'étant autre chose que des cônes
dont l'angle générateur esl nul ou droit, on sent qu'il suffira de
faire subir quelques légères modifications à la solution que nous
venons de donner , pour en déduire celles de dix problèmes
relatifs.au cône tout-à-fait analogues k ceux d'Apollonius pour
le cercle,

I4 Ï« En considérant le cylindre comme un cône dont le sommet
est infiniment éloigné , on est conduit à appeler plans polaires de
similitude de deux cylindres , dont les axes sont parallèles , deux
plans ayant pour polaire commune, par rapport à ces cylindres,
l'un de leurs axes de similitude ; ces plans polaires seront dits
internes ou externes , suivant que Taxe de similitude qui en sera
là polaire sera lui-même interne ou externe.

i4^. On appellera de même polaire de similtude d?un cylindre,
dans le système de trois cylindres , ayant leurs axes parallèles, la
polaire de l'un quelconque des plans de similitude de ces trois cylindres
prise par rapport à celui-là. Chacun des cylindres du système aura
ainsi quatre polaires de similitude-, savoir: une externe , intersection
des deux pians polaires externes , une interne , intersection des
plans polaires internes , et deux mixtes , intersection d'un plan
polaire externe avee un plan polaire interne.

142. On voit aussi (i36) que les trois mêmes cylindres ayant
leurs axes parallèles peuvent toujours être touchés à la fois par huit
autres dont les axes seront parallèles aux leurs , et sur la nature
du contact desquels il y aura les mêmes observations à faire que
sur les diverses sortes de contact d'un cône avec trois autres de
même sommet que lui. Tout cela biea enteodii , on aura
théorème suivant.
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î43. THÉORÈME. Le plan qui contient l'axe radical de trois cy~

lindng dont les axes sont para/elles et Tune quelconque des quatre
polaires de similitude de l'un quelconque de ces cylindres , contient
aussi les lignes de contact de ce cylindre avec deux des huit cy~*
lindres qui touchent à la fois les trois cylindres dont il s'agit •
savoir : avec les deux cylindres qui les touchent tous trois de la
même manière 9 si la polaire est l'intersection des deux plans po-
laire de similitude externes \ avec les deux cylindres qui touchent
celui-là autrement que les deux autres, si la polaire est l'inter-
section des deux plans polaires de similitude internes ; et enfin avec
les deux cylindres qui touchent celui-là de la même manière que
ïun des deux autres et le troisième d'une manière différente , si
la polaire est tintersection de deux plans polaires de dénomina*
fions différentes.

i44» PROBLÈME* Construire un cylindre qui touche , à la
fois trois cylindres donnés > dont les axes sont parallèles ?

Solution. La solution de ce problème se déduit tout naturellement
du théorème qui vient d'être énoncé de la même manière que la
solution de celui dont nous nous sommes occupés (i38) se déduit
du théorème énoncé (i3^). On peut aussi couper les trois cylindres
donnés par un plan perpendiculaire à la direction commune de leurs
axes; décrire (106) sur ce plan , un cercle qui touche à la fois
les cercles résultant des cylindres donnés , et considérer ce cercle
comme la section par le même plan d'un quatrième cylindre qui
résoudra le problème proposé.

i45. On peut , au surplus, faire ici des remarques tout-à-faît
analogues à celle* que nous avons faites ( iSg, i4°)«

S-
Contact des cercles sur la sphère, et cercle d'une sphère tangent

à trois autres.

'- Ea considérant le sommet commua des cônej dont il a été
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question ( i33 et suiv, ) comme le centre d'une sphère de rayon quel-
conque , on est conduit à appeler polaire de similitude de deux
cercles d'une sphère , deux arcs de grands cercles ayant pour pôle
commun, par rapport à ces deux cercles, l'un de leurs centres de
similitude* Ces polaires seront dites externes ou internes suivant
la dénomination du centre de similitude auquel elles seront
relatives.

i4 j . On appellera pareillement/^/*? de similitude d'un cercle, dans
le système de trois cercles traces sur la sphère, le pôle de l'un
quelconque des axes de similitude de ces trois cercles > pris par
rapport à ce cercle. Chacun des cercles du système aura ainsi quatre
pôles de similitude; savoir : un externe ^ intersection des deux polaires
de similitude externes; un interne , intersection des deux polaires
de similitude internes, et deux mixtes, intersection de deux polaires
de dénominations différentes.

i48- On voit aussi ( i36 ) que les trois mêmes cercles d'une sphère
pourront à la fois être touchés par huit cercles dilïérens ? sur
la nature du contact desquels il y aura à faire des observations
analogues à celles que nous avons déjà faites sur le contact d'un
cône avec trois autres de mêmes sommets, ou encore ( lot ) sur
le contact d'un cercle avec trois autres sur un plan. Ces choses ainsi
entendues, on aura ( 187 ) le théorème suivant.

149. THÉORÈME. L'arc de grand cercle qui joint le centrera-*
dical de trois cercles dune sphère à Vun quelconque des quatre pôles
de similitude de Vun quelconque de ces trois cercles , contient aussi
les points de contact de ce cercle avec deux des huit cercles qui
touchent à la fois les trois cercles dont il s'agit ; savoir ; avec
les deux cercles qui les touchent tous trois de la même manière,
si le pôle est l'intersection des deux polaires de similitude externes,
avec les deux cercles qui touchent celui-là autrement que les deux
autres, si le pôle est Vintersection des deux polaires, de similitude
internes ; et enfin avec les deux cercles qui touchent celui-là de la
même manière que Vun des deux autres , et te troisième d9unû
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manière différente , si le pôle est Vintersection de deux polaires
de dénomination différente.

150. PROBLÈME. Décrire un cercle qui en touche à la fois
trois autres donnés sur une sphère ?

Solution. La solution de ce problème se déduit évidemment du
théorème qui vient d'être énoncé, de la même manière que nous
avons déduit du théorème énoncé (137) celle du problème pro-
posé (i38) ; et il y a encore lieu ici à des remarques analogues
à celles que nous avons faites (i39 et i4<>) (*)•

151. Si Ton suppose le rayon de la sphère infini , on retombe
sur le cas où il s'agit de décrire un cercle qui en touche à la fois
trois autres tracés sur un même plan , et notre construction devient
alors , en eiïet , exactement la seconde des deux que nous avons
indiquées (106) pour la résolution de ce dernier problème.

(*) On pourrait déduire une autre solution de ce problème de celle d'un;
problème beaucoup plus ge'nérai que nous avons donnée à la page 27 du tome
VII.C des Annales,
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QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

I. \JuEL est le point du plan de quatre cercles dont les polaires,
relatives à ces cercles , se coupent toutes quatre au même point ?
et quel est ce dernier point ?

IL Quelle est , sur le plan de quatre cercles , la droite dont les
pôles relatifs à ces cercles sont tous quatre sur une même ligne
droite ? et quelle est cette dernière droite ?

III. Quel est le lieu des points du plan de trois cercles dont les
polaires relatives à ces cercles se coupent toutes trois au même
point ? et quel est lte lieu de l'intersection de ces polaires ?

IV. À. quelle courbe sont tangentes les droites tracées sur le
plan de trois cercles, de manière que les pôles de chacune d'elles,
relatifs à ces cercles, soient tous trois sur une même ligne droite ?
et à quelle autre courbe est constamment tangente la droite qui
contient les pôles ?
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GÉOMÉTRIE DES COURBES.

Rapport à Vacadémie royale des sciences ;

Par M. CAUCHY J

Sur un mémoire relatif aux propriétés projectives des

sections coniques ;

Par M, POHCELETJ capitaine du génie,

secrétaire perpétuel de l'académie, pour les sciences mathémâtiquesf

certifie que ce qui suit est extrait du procès-verbal de la séance
du lundi 5 juin 1820.

I/académîe nous a chargés, MM. Àrago ? Poisson et moï ? de
lui rendre compte d'un mémoire de ML Poncelet sur les propriétés
projectiles des sections coniques* 1/auteur appelle ainsi les pro-
priétés relatives aux, cordes communes , aux points de concours des
tangentes communes, et Beaucoup d'autres semblables qui , étant
indépendantes des dimensions attribuées aux courbes qu# Ton con-
sidère et de leurs paramètres f subsistent Iorsqu?on projette ces
courbes sur de nouveaux plans , à l'aide de droites qui concourent:
vers un même point; c'est-à-dire, en d?autres termes, lorsqu'on
met ces courbes en perspective ; ce qui a également lieu pour le

Tarn. XI, n*° 111, x.cf septembre 1820, 10
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cas où , le point de concours s'éloignant à l'infini, les projections
deviennent orthogonales. INous allons d'abord indiquer les moyens
que l'auteur emploie pour établir les propriétés dont il s'agit.

Lorsque plusieurs courbes , qui composent une seule classe ou
famille , possèdent en commun diverses propriétés , une des mé-
thodes les plus expéditîves pour la démonstration de ces, mêmes
propriétés consiste à les établir d'abord pouf les courbes les plus
simples de la classe dont il est question , et à les étendre ensuite
aux autres courbes de la même classe > par la comparaison de celles-
ci avec les premières. Cette méthode peut même servir à la
recherche des propriétés d'une courbe donnée. Veut-on con-
naître , par exemple, celle d'une ellipse ? on commencera par
supposer les deux axes égaux ; ce qui réduira cette ellipse à nue
circonférence de cercle. On remarquera que la surface du cercle
est égale a$ quarré du rayon multiplié par le nombre qui exprime
le rapport de la circonférence au diamètre ; que deux rayons qui
se coupent à angles droits s.ont parallèles aux tangentes menées
par leurs extrémités •, que ^es mêmes rayons comprennent entre
eux une surface constante ; que 1$ somipe de leurs quarrés est
égale à la soipme des quarrés de leurs projections sur un diamètre
quelconque ; que les tangentes des angles aigus qu'ils forment avec
un même diamètre , étant' multipliées l'une par l'autre , donnent
l'unité pour produit ; enfin , que la perpendiculaire élevée sur un
diamètre est moyenne proportionnelle entre les deux segmens ad-
jacens. Si maintenant on considère uns ellipse dont les deux axes
soient inégaux , on décrira sur le grand axe de cette ellipse , pris
pour diamètre r une circonférence de cercle, dont l'ordonnée , comp-
tée perpendiculairement au grand axe , aura un rapport constant
avec celle de l'ellipse. Cela posé , si l'on appelle diamètres con-
jugués de. l'ellipse ceux dont les projections sur le grand axe
coïncident avec les projections de deux diamètres du cercle qui se
coupent il angles droits, on conclura immédiatement des reiïiafques
laites à l'égard du cercle que la surface de l'ellipse est égale au
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produit des deux demi-axes par le nombre qui exprime le rapport
de la circonférence au diamètre; que, dans la rnème courbe ? les
tangentes menées aux extrémités de deux diamètres conjugués , sont
parallèles à ces diamètres ; que deux demi - diamètres conjugués
comprennent entre eux une surface constante -, que les sommes
des quarrés de leurs projections sur le grand axe et sur le petit
axe sont respectivement égales aux quarrés des demi - axes ? et
que, par suite, la somme des quarrés des deux demi-diamètres
équivaut à la somme des quarrés des deux demi-axes ; enfin 7 que
le rapport de ces deux derniers quarrés mesure à la fois le pro-
duit des tangentes des angles aigus formés avec le grand axe par
deux diamètres conjugués et le rapport du quarré d'une ordonnée
aux segmens correspondans de ce même grand axe. Au reste , pour
obtenir le cercle auxiliaire dont nous venons d'indiquer l'usage , îl
suffit de chercher dans l'espace un cercle dont l'ellipse donnée soit
la projection orthogonale > et de rabattre ensuite le plan de ce
cercle sur celui de l'ellipse , après avoir fait tourner le premier
autour du diamètre parallèle au second (*)• Plus généralement, on
peut considérer une ellipse y une hyperbole ou une parabole comme
la perspective ou projection centrale d'un cercle quelconque, et
déduire 5 des propriétés de ce cercle f celles de la projection» Tel
est , en effet, le moyen employé par M. Poncelet pour déterminer
les propriétés projectives des sections coniques. II appelle centre de
-projection le point où se trouve placé dans la perspective l'œil du
spectateur. Ce point est le sommet d'une surface conique du second
degré qui a pour base la courbe proposée. Il est bon de rappeler ^

(*) II paraîtra peut-être plus simple, et il reviendra d'ailleurs au même t de
chercher dans l'espace un pian sur lequel la projection ortogonaîe de l'ellipse
soit un cercle ; et il n'j aura pas d'ailleurs besoin de rabattement. On peut con-
sulter % sur ce sujet, un mémoire de M* F-WUOT, inséré à la page 2.^0 du II*e

yolume de ce recueil» «7» D» G*
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à ce sujet , que, si Ton coupe une surface conique quelconque par
deux plans parallèles , les deux sections seront toujours semblables
entre elles. Il y a plus , si , d'un centre de projection pris à vo-
lonté dans l'espace , on mène des rayons vecteurs aux différens
points d'un système composé de points , de lignes ou de surfaces
quelconques, et que Ton fasse croître ou décroître à la fois tous
les rayons vecteurs dans un rapport donné, on obtiendra un se-
cond système de points , lignes ou surfaces, semblable au premier
et semblablement placé 7 en sorte que les droites et les plans menés
dans les deux systèmes , par des points correspondans, seront tou-
jours parallèles. Le centre commun , vers lequel convergent tous les
rayons vecteurs , est ce qu'on peut appeler le centre de similitude
des deux systèmes. Pour deux cercles, tracés sur un même plan,
ce centre de similitude ne peut être que le point de concours des
tangentes comraunes, extérieures ou intérieures. M. Poncelet ex-
pose ses diverses propriétés , dont un grand nombre dérivent immé-
diatement de la définition même que nous venons d'en donner.

Outre la considération des projections centrales , M. Poncelet
emploie encore , dans son mémoire , ce qu'il appelle le principe
de la continuité. L'admission de ce principe en géométrie consiste
à supposer que, dans le cas où une figure composée d'un système
de lignes droites ou courbes conserve constamment certaines pro-
priétés , tandis que les dimensions absolues ou relatives de ses diverses
parties varient d'une manière quelconque, entre certaines limites ,
ces mêmes propriétés subsistent nécessairement lorsqu'on fait sortir
les dimensions dont il s'agit des limites entre lesquelles on les sup-
posait d'abord renfermées ; et que , si quelques parties de la figure
disparaissent dans la seconde hypothèse , celles qui restent jouissent
encore , les unes à l'égard des autres , des propriétés qu'elles avaient
dans la figure primitive (*). Ce principe n'est, à proprement parler,

(*) Le mémoire qui précède ceci offre, en particulier, des exemples remar-
quables en faveur de ce principe ; on y a vu que le point de concours de» tan*
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qu'une forte induction ? à l'aide de laquelle on étend des théorèmes
établis , d'abord à k faveur de certaines restrictions > aux cas où
ces mêmçs restrictions n'existent plus. Etant appliqué aux courbes
du second degré, il a conduit l'auteur à des résultats exacts. Néan-
moins , nous pensons qu'il ne saurait être admis généralement et
appliqué indistinctement à toutes sortes de questions en géométrie^
ni même en analise (*): En lai accordant trop de confiance , on
pourrait, tomber quelque fois dans des erreurs manifestes. On sait ,
par exemple, que, dans la détermination des intégrales définies, ef
par suite , dans l'évaluation des longueurs , des surfaces et des
volumes , on rencontre un grand nombre de formules qui ne sont
vraies qu'autant, que les valeurs des quantités qu'elles renferment
restent comprises entre certaines limites.

Au reste , nous distinguerons soigneusement les considérations de
M. Poncelet sur la continuité de celles qui ont pour objet les
propriétés des lignes auxquelles il donne le nom de cordes idéales
des sections coniques. Comme ces propriétés nous paraissent mériter

gentes communes à deux cercles , soît extérieures, sôît intérieures $ ne cesse pas
d'exister , lorsque ces tangentes cessent d'être possibles ; et qu'il en est de même
de la corde commune à deux cercles , lorsque ces cercles cessent de s$
couper.

(*) C'est aussi , à ce qu'il paraît 5 l'opinion de M, Durrande $ et c'est ce
qui l'a déterminé à abandonner les démonstrations , très-élégantes d'ailleurs 9

que Monge avait données de la théorie des pôles , de celle des centres de
similitude et dé celle èes axes radicaux, démonstrations qui1 ne sont applicables
qu'à certains cas* II faut donc employer le principe de M» Poncelet, ainsi
que le tour de démonstration introduit par Blonge , à peu près comme oa
employait le calcul différentiel lorsqu'on n'en voyait pas bien encore la inétQr
physique ; c'est-à-dire , uniquement comme instrumens de découverte ; mais c^
n'en seront pas moins des instrumens très-précieux ; car , le plus souvent , en
mathématiques , découvrir est tout ; et ce ne sont pas d'ordinaire les démons-
trations qui embarrassent beaucoup.

X D. G*
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d'être remarquées , et qu'elles fournissent à l'auteur un troisième
moyen de résoudre les questions relatives aux courbes du second
degré, nous allons donner à ce sujet quelques développemens.

Si , après avoir mené , par le centre d'une hyperbole , un dia-
pètre %A qui rencontre les deux branches , on farC passer, par les
points de rencontre des tangentes à l'hyperbole et par le centre ,
une parallèle à ces tangentes-, puis que Ton cherche à déterminer ,
par Panalise , les coordonnées des points oà cette parallèle rencontre
la courbe et les distances respectives de ces points au centre , on
trouvera, pour l'une et l'autre distances, en faisant abstraction du
signe , une expression imaginaire de la forme B\/"^\ ; et par con-
séquent , pour la distance entre les deux points , une autre expression
de la forme 2Z?t/^7. Le coefficient de j /HT , dans cette dernière,
ou la longueur zB , qui est une quantité réelle, peut se construire
géométriquement ; et , comme la considération de cette longueur
peut être utile dans la recherche des propriétés de l'hyperbole.,
on lui a donné un nom, en disant que 2B représente le diamètre
conjugué au diamètre 2.A. On sait qu'étant donné le diamètre 2B , avec
sa direction , on peut facilement en déduire le diamètre iA ; en
coupant les asymptotes par une sécante parallèle à la direction
donnée t la ligne menée du centre au milieu de la sécante indi-
quera la direction du diamètre 2A ; et le rapport de cette dernière
ligne à la moitié de la sécante sera précisément égal au rapport
A
F #

Supposons maintenant que Ton, cherche, par l'avalise, les points
d'intersection $ non plus cj'u** diamètre , mais d'une droite quel-
conque avec iune courbe du sfecohet degré , et la distance de ces
deux points^ ou , en d'autres termes, la corde qui les unit; lors-
que la droite ne rencontrera plus la courbe, la distance donnée par
l'analise deviendra imaginaire, et sçra de la forme sCy/HT; tandis
que le point milieu de la corde conservera des coordonnées réelles.
Il devient alors utile de substituer à la corde imaginaire ; qui n'existe
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pas, Une corde fictive zC , comptée sur la droite proposce , et
dont le milieu coincide avec le point dont nous venons de
parler.

C'est à cette corde fictive qu'on pourrait appliquer la dénomi-
nation de corde idéale , par laquelle M. Poncelet désigne tantôt la
droite indéfinie que Ton considère, et tantôt la corde imaginaire in-*
terceptée par la. courbe , puisqu'il appelle centre de la corde idéale
le point réel que Tanalise indique comme étant le milieu de la
corde imaginaire. Le sens dans lequel Fauteur emploie le mot idéaiç
se trouverait ainsi modifié de telle manière que les longueurs idéales
resteraient des longueurs réelles et constructibles en géométrie. Ainsi ̂
par exemple , dans une hyperbole , dont Iç grand axe rencontre
la courbe , la longueur idéale da diamètre, perpendiculaire au grand
axe, serait le petit axe lui-même. Si f en adoptant cette manière
de s'exprimer , on construit, pour une section conique quelconque^
toutes les cordes idéales parallèles à une direction donnée ; les ex-
trémités de toutes ces cordes se trouveront sur une nouvelle section
conique, que l'auteur appelle supplémentaire de la première , re-
lativement à la direction dont il s'agit*

Cela posé , il est facile de voir que deux sections coniques sup-
plémentaires l'une de l'autre , relativement à une direction donnée f

sont nécessairement ou deux paraboles ou une hyperbole et une
ellipse. Dans le prerpipr cas , les deux paroboles ont le même
paramètre , avec une tangente commune , parallèle a la direction
donnée , et un diamètre commun passant par le point de contact*
Dans le second cas, les deux courbes peuvent aisément se déduire
Tune de l'autre , d'après la condition à laquelle • elles se trouvent
assujetties d'avoir en commun deux diansietres conjugués, doijt l*un
est parallèle à la droite donnée, tandis que l'autre rencontre à la
lois les deux courbes qui se touchent ainsi par ses extrémités.
Dans le même cas , toutes les fois que l'ellipse se réduit à un
cercle, l'hyperbole devient équilatère, et a pour axe transverse le
diamètre du cercle. Enfin , l'on prouve aisément que , si deux
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courbes sont supplémentaires l'une de l'autre , relativement à une
direction donnée , indiquée par une certaine droite , leurs projections
sur un plan parallèle à cette droite jouiront de la même propriété.

En vertu de ce qui précède , si Ton donne une section conique
quelconque , avec un centre et un plan de projection , il deviendra
facile de déterminer, pour la section conique projetée^ i.° Pangle
formé par deux diamètres conjugués , dont l'un serait parallèle au
plan de la section conique proposée; 2.0 le rapport de ces mêmes
diamètres. En effet,* si l'on conçoit d'abord que la section conique
projetée soit une hyperbole , un plan quelconque , parallèle au plan
fle projection, coupera le cône qui a pour base la courbe proposée,
ëî pour' sommet le centre de projection suivant des hyperboles
Semblables et comprises entre des asymptotes parallèles. Par suite,
sî le plan coupant passe ]5ar le sommet du cône , la section se trou-
vera réduite à deux arêtes parallèles aux asymptotes dont il s'agit.
Comme d'ailleurs le même plan coupera évidemment la courbe donnée
suivant une certaine corde terminée à ces deux arêtes, il en ré-
$ufte%j ï.* que rarigle cherché sera équivalent à celui que forme
la corde en question avec la droite qui joint son milieu et le sommet
du cône ; 2.0 que le rapport cherché sera celui qui existe entre
la longueur de cette droite et celle de la demi-corde. Lorsque la
courbe projetée sera une ellipse, le plan mené par le sommet du
cône4 parallèlement att plafh de projection ne' rencontrera plus là
courbe proposée ; mais sa trace sur le plan de cette dernière sera
toujours une droite réelle , à laquelle correspondra une certaine
corde idéale de la courbe donnée. Dans la même hypothèse r on
appliquera les raisonnemens que nous avons employés ci-dessus ;
non plus à la-courbe proposée, mais à la section conique supplé-
mentaire' dfc cette1 courbe , relativement à la corde idéale dont nous
venons de parler; et Ton en conclura, i.° que l'angle cherché est
équivalent k celui que fortne la corde idéale avec la droite qui joint
le "milieu de cette corde èt^le centre de projection ; 2.0 que le
rapport cherché est celui qïïî existe entre la longueur de cette droite
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et la demi-corde. Lorsque la courbe projetée se réduit à un cercle,
tous ses diamètres conjugués sont égaux et se coupent à angles
droits. Par conséquent , dans ce cas particulier , la droite menée
du centre de projection au milieu de la corde idéale de la courbe
donnée doit être perpendiculaire sur cette corde et égale à sa
moitié.

La question que nous venons de résoudre n'a pas été traitée
directement par M. Poncelet ; mais la solution que nous avons dé-
duite des principes qu'il a établis fournit le moyen de simplifier et
de généraliser, tout à la fois, celles de plusieurs autres problèmes
dont nous parlerons ci-après.

Considérons à présent deux sections coniques tracées sur un
même plan. Il peut arriver ou qu'elles se coupent en quatre points
ou qu'elles se coupent en deux points ou qu'elles ne se coupent
pas. Si Ton cherche , par l'analise f les abscisses des points d'Inter-
section , on trouvera que ces abscisses sont les racines d'une équa-
tion du quatrième degré à coefficiens réels , et que cette même
équation a quatre racines réelles dans le premier cas , deux racines
re'elles et deux racines imaginaires conjuguées dans le second, enfin,
quatre racines imaginaires conjuguées deux à deux dans le troisième.
De plus, comme, en combinant les équations des deux courbes,
on peut en déduire une troisième équation du second degré , qui
ne renferme l'ordonnée qu'au premier degré seulement f il en ré-
sulte que l'analise indique seulement quatre points d'intersection,
et que , pour chacun de ces points , on peut exprimer l'ordonnée
en fonctions rationnelle et réelle de l'abscisse. Par suite , si Tonr
trouve , pour un point d'intersection , une abscisse réelle , l'ordonnée
le sera également; et , si l'analise fournit, pour deux de ces points,
deux abscisses imaginaires conjuguées, les ordonnées correspondantes
seront elles-mêmes imaginaires et conjuguées. Considérons, en par-
ticulier , deux points de cette dernière espèce. Comme , pour trans-
former les coordonnées de l'une en celle de l'autre, il suffira de
remplacer -+-\/1ZÏ par — t / ~ î > ̂  e5 t c ^ r 9 u e toutes les

Tom+ XI. 11
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tîons et quantités diverses <jui , étant rationnelles par rapport à
ces ordonnées , ne devront pas être altérées par leur éebange mu-
tuel , seront nécessairement des équations réelles et des quantités
réelles. Par exemple , l'équation de la droite qui pusse par les
deux points sera réelle , ainsi que le qnarré de leur distance mu*
tuelle, ou , en d'antres termes, de la corde qui les unit , et il en
sera de même des coordonnées du milieu de cette corde. Toutefois,
comme „ par hypothèse? , les deux points ne sont pas réels , le
quarré de la corde en question ne pourra être qu'une quantité né-
gative , dont la racine, abstraction faite dq signe 7 sera une expres-
sion imaginaire de la forme nCs/Z^l.

Pour déterminer le coefficient réel ixC , dans cette expression ~9

il~ suffira évidemment de chercher la corde idéale qu'on obtient en
considérant la droite réelle qui passe par les deux points imagi-
naires comme sécante idéale de Tune ou de l'autre des deux courbes
proposées. Par conséquent, la longueur aC sera celle d'une corde idéale
réellement commune a ces deux courbes. Cela posé f si l'on passe
successivement en revue les trois hypothèses que l'on peut faire
sur le nombre des points réels communs aux deux courbes pro-
posées , on trouvera que ces deux courbes ont , en général , ou
six cordes communes, passant par quatre points réels, ou deux
cordes Communes , dont une idéale , ou deux eordes idéales com-
munes* Toutefois , pour deux hyperboles semblables , ou du moins
comprises entre des asymptotes parallèles , ainsi que pour dès
ellipses semblables et semblablement placées , une seule corde corn*
mune naturelle ou idéale subsiste f tandis qu'une autre s'éloigne
à l'infini. C'est ce qui a lieu, en particulier, pour deux circon-
férences de cercles (*). De plus , il peut arriver que deux cordes

(•) La corde commune idéale.de deux cercles extérieurs l'un à l'autre , ou ven
d'autres termes , leur axe radical n'est autre chose que la corde commune
naturelle des hyperboles supplémentaires de ce* deux cercle*, relatives à une
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communes viennent à se confondre , et alors , si ces cordes ne sont
pas idéales , les deux couibes se toucheront évidemment en deux
points réels. Ajoutons que , si l'on projette deux sections coniques f

situées dans un même plan sur un nouveau plan , parallèle à une
corde idéale qui leur soit commune > la projection de cette corde
sera elle-m^me une corde idéale commune aux projections des
deux sections coniques. Par suite , si les deux combes proposées
étaient dissemblables entre elles ^ auquel cas elles avaient nécessai-
rement plusieurs cordes réelles ou idéales communes- pour rendre
leurs projections semblables e! semblable ment placées» il faudra faire
en sorte qu'une àes cordes communes s'éîoîgne à l'infini. Or> rem-
plira cette condition en plaçant le centre de projectio» par-tout où
l'on voudra, pouivu qu'ensuite or* prenne le plan de projection
parallèle à celui <jui passera par ce centre et par Fune des cordes
communes aux deux courbes données»

Dans ce qui précède r nous avons déduit de Fanalïse la notion
des cordes idéales des sections coniques; mais on peut arriver am
même but par des considérations géométriques*

Par exemple > lorsqu'une ellipse ou une hyperbole se trouve cou**
fée en deux points réels par une sécante quelconque P le milieu
de la corde interceptée coïncide avec le point où la sécante est
rencontrée par le diamètre conjugué à sa direction 9 et la corde
elle-même est équivalente au double produit du rapport enlte le
diamètre parallèle et le diamètre conjugué* par une moyenne pro-
portionnelle entre les distances du point que Foo considère aux

quetcoïnqoe k la dre?te qui joint leur& centres. Ont pe&f dire-
pareillement que le point de eoacours idéal des tangentes communes à
cerefes intérieurs- ÎT«n à Fa&ire % ©u % en «Pautres termes * leur cefâîre de
iùacte „ $€>î| iaterae ^ sait e^îersie », aTe&t &utre càs>se qu® le peint de

»
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extrémités du diamètre conjugué. Si l'on détermine ? d'après k$
mêrnes conditions , la corde et son milieu, dans le cas où la sé-
cante devient idéale , on obtiendra ce que nous avons nommé la
corde idéale relative à cette sécante "(*),

Considérons encore deux cercles non concentriques et situés dans
un même plan. Si, par ces cercles , on fait passer deux sphères
qui se coupent, le plan d'intersection des deux sphères rencontrera1

le plan des deux cercles suivant une certaine droite ; et cette
droite , si les deux cercles se coupent ? passera par les deux points
qui leur sont communs. Si , au contraire , les deux cercles ne se
coupent pas , cette droite sera précisément la sécante idéale ? dont
la direction coïncide avec celle de la corde idéale commune , et le
point d'intersection de cette sécante avec la droite * des centres sera
le milieu de la même corde. La construction précédente, en don-
nant un moyen facile de fixer la direction de la corde idéale com-
mune à deux cercles , sert en même temps à faire connaître ses
principales propriétés. Par exemple , si d'un point pris sur cette

(*) Tout ceci revient à dire que la coexistence de deux sections coniques sur
tin même plan donne généralement naissance à six droites déterminées de
grandeur et de situation , lesquelles , lorsque ces courbes se coupent, deviennent ,
en tout ou en partie > des cordes communes à ces deux courbes ; or , s'il est
une définition de ces droites qui convienne également à tous les cas , ne
faudrait il pas l'adopter de préférence à une autre de'fînition sujette à des
exceptions nombreuses , pour lesquelles il faut recourir à âes conceptions in-
génieusçs, si l'on veut 9 mais qui tendent à faire perdre à la géométrie une
partie ae* avantages et de la supériorité qu'on lui a toujours accorde èûv toutes
les autres sciences ? Dans le cas de deux cercles , par exemple , ne vaut-il pas
mieux définir Taxe radical , le lieu des points pour lesquels les tangentes aux
deux cercles sont de même longueur , que de dire que c'est la corde commune
à ces deux cercles ? Nous en dirons autant des tangentes idéales aux sections
coniques dont M. Poncelet paraît s'être également occupé, et qui peuvent offrir
W pareil champ de spéculation.

J D. G,
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sécante , on mène une suite de tangentes aux deqx sphères > elles
seront évidemment égales aux tangentes menées par .ce même point
à leur cercle d'intersection ,: il en résulte immédiatement, que les
quatre tangentes menées à dedx cercles par un point pris, sun la
direction de la corde commune sont égales entre elles (*). Celte
propriété était déjà connue des géomètres. On avait remarqué la
droite k laquelle elle appartient ; et M. Gaultier, auteur d'un mé-
moire inséré dans le XVI. e cahier du Journal de Fècoîe >po!ftech»
nique 9 a particulièrement considéré les droites de cette espèce ,
auxquelles il a donné le nom d'axes radicaux.

Après avoir entretenu l'académie des méthodes employées par M.
Poncelet, nous allons présenter une indication sommaire des applir
cations qu'il en a faites. Son mémoire est divisé en trois paragraphes:
îe premier est relatif aux cordes idéales des sections coniques , et
renferme leur définition. ainsi que leurs propriétés générales , dé-»
duites de considérations purement géométriques. I/auteur y remarqua
également que le point de concours des tangentes menées à une
section eonique , par les extrémités d'une même corde , ou ce qu'on

, (*) Cela nous parait résulter d'une manière presque intuitive «fes propriété*
des tangentes et sécantes partant d'un même point, sans qu'il soit nécessaire
de recourir aux sphères ; mais , quand les cercles ne se coupent pas , le©
sphères ne se coupent pas non plus , et il faut alors prendre pour définition
de l'axe radical la propriété même qu'on lui avait découverte dans le premier
cas , ou toute autre équivalente.

Au surplus , à considérer les choses sous un point de rue purement analî-
tique » l'existence d'un axe radical pour deux cercles résulte tout simplement
de ce que la différence des équations de deux cercles est une équation du
premier degré ; et l'existence d'un centre radical pour trois cercles résulte
de ce qu'en prenant les différences de leurs équations deux à deux , on obtient
trois équations du premier degré dont chacune est évidemment comportée par
les ckui autres*

A D. G.
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appelle communément le pôle de cette corde est un point réel,
lors même que les tangentes deviennent imaginaires. Il montre la
relation qui existe constamment entre ce pôle et le milieu de la
corde , et s'en sert pour construire le pôle idéal correspondant a.
tme corde idéale donnée.

Dans le second paragraphe % M» Poncelet s'occupe des corder
idéales f considérées dans le cas particulier de la circonférence du
cercle , et démontre plusieurs propositions relatives „ soit aux cordes
réelles ou idéales y soit aux pôles de ces mêmes cordes , soit aux
centres de similitude et aux cordes communes de deux ou plusieurs
eercïes situés sur un même plan. On pourrait déduire un grand
nombre de ces propositions des propriétés que possèdent deux points
choisis sur une droite et sur son prolongement » de manière que
leurs distances aux extrémités de la droite soient entre elles dan&
le même rapport. Parmi ces propriétés * Tune dea plus remar-
quables consiste en ce que la circonférence décrite suc la droite
coiàmë diamètre coupe orthogpnalemertt toutes celles qui passent par
les deux points efe question. On doit distinguer , dans le même pa-
ragraphe » une solution très-élégante du problème dans lequel oa
demande de tracer un cercle tangent à trois autres.

Dans le troisième paragraphe , Fauteur établit les principes de
projection centrale ou perspective à l'aide desquels on peut étendre
les théorèmes vérifiés pour le cas du cercle à des sections coniques
quelconques. Par exemple , voulant démontrer que les propriétés
projectives du système de deux cercles ? situés dans un même plan ,
subsistent pour le système de deux sections coniques r il a seule-
ment a faire voir que le premier système peut être considéré * en
général! y comme la projection du second* II recherche, à ce sujet ^
ious les points, de l'espace susceptibles de projetée à&ux. sections
coniques suivant deux cercles, et prouve que tous ces points appar-
tiennent à des circonférences décrites avec des rayons perpendicu-
laires sur les milieux des cordes idéales communes aux deux courbes
données r et respectivement égaux aux moitiés de ces. cordes» Ait
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reste, on est conduit directement au même résultat par la solution
-du piobleme que nous <*vaos fiake plus haut. On pourrait mcrne,
en s'appuyant sur cette solution, déterminer tous les points de l'es-
pace susceptibles de projeter deux courbes quelconques du second
degré , suivant deux autres courbes du même degré , itiaîs semblables
entre elles, pour lesquelles le diamètre, parallèle au plan des deux
premières courbes, fonderait, $vee son conjugué , un angle% donné,
et serait à ce même conjugué dans un rapport donné. On trouverait que
ces points sont situes sur des circonférences de cercles décrites par
des rayons vecteurs qui , aboutissant aux milieux des cordes natu-
lelles ou idéales communes aux deux eourbçs proposées , forment
avec ces mêmes cordes l'angle donné, et sont à leurs moitiés dans
le rapport donné. Plusieurs autres questions du même genre, traitées
par l'auteur , dans ce troisième paragraphe , se résolvent d'après
les mêmes principes.

D'après le compte que nous venona de rendre du mémoire 3e
M. Poncclet, on voit qu'il suppose dans son auteur un esprit fa-
miliarisé avec les conceptions de la géométrie çjt fécond en ressources,
dans- la recherche des propriétés des courbes , ainsi que dans la
solution des problèmes qui s'y rapportent.

Nous pensons , en conséquence, [que ce mémoire est digne de
l'approbation de l'académie ; et nous proposerions de l'insérer dans
le recueil des savans étrangers, si Fauteur ne le destinait à faire
partie d'un ouvrage qu'il se propose de publier sur cette matière»

Signés POISSON ; ÀRÀGO ; CÀUCHY » rapporteur.

L'académie approuve le rapport et en adopte les conclusion».

Certifié conforme à l'original :
Le Secrétaire perpétuel, Chevalier des Ordres royaux

de Si-Michel et de la Légion d'honneur,

Signé
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ANALÏSE TRANSCENDANTE.

TSur le développement des puissances des cosinus en
cosinus darcs multiples ;

Par M. PLANA » professeur d'astronomie à l'université de
Turin.

le troisième volume de son Calcul intégral ( a.8 édit.,
pag. 6o5 et suiv. ) , M. Lacroix a exposé les difficultés que présente
le développement d'une puissance quelconque du cosinus d'un arc
en série procédant suivant les cosinus - des multiples de cet arc ;
développement qu'on avait cru exact |>our toutes les valeurs de
l'exposant, jusqu'à l'époque où M. Poisson y dans le 2*e volume
de la Correspondance sur Vicole polytechnique ; signala Terreur
où Ton était "demeuré Jusqu'alors sur ce sujet.

Il m'a paru que ce point de doctrine pourrait être facilement
éclaîrci de la manière suivante*

En posant

on a

d'oà



donc , en développant le bînome , on aura

— iflmwt

en remarquant que w = i , et que

et faisant, pour

-ffian

an aura

1

• 1*

7

I 3

Si, au lieu de développer (u+r)m> onr*développe^on équivalent
m, au Heu de l'équation ( i ) , on aura la suivante

Tom. XI. za
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Les équations (i f 2) ne sauraient s'accorder qu'autant qu'on

aura généralement JB=^O. Or, il est aisé de prouver qu'effective-
ment cette fonction est toujours nulle t à l'exception d'un cas que
la démonstration mêmç met en évidence* En effet , si Ton subs-
titue les exponentiels aux sinus , Ton voit d'un coup-d'œil que
Ton a

< 1 + . - * = / •

—I

Mais nous avons

£ = Cos.2^4. y ^-

ou bien

partant, nous aurons

11 suit de là que, en vertu des deux équations
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on a

(

ê est - à - dire J?=o , quel que soit l'exposant m, entier ou frac*
tionnaire.

Cette conclusion cesse pourtant d'être vraie , lorsque x~&,
ear alors on a

n étant un nombre entier positif quelconque 5 donc , en revenant
sur nos pas , la première transformée sera

puisque

e

Ainsi nous aurons

ce qui donnera ces deux équations



FONCTIONS

A* étant ce que devient A lorsque l'on y fait #:=«•*
Lorsque m est un nombre entier , positif ou négatif, l'on a

Sin./72«r=o, et par conséquent ces deux valeurs de 2mCos.mx coïn-
cident ; mais , dans le cas où m est fractionnaire, H faut considérer
les seconds membres de deux équations précédentes comme donnant
deux des racines de l'équation

laquelle revient à

II est d'ailleurs facile de voir qu'il n'y a en cela aucune contra-
diclion; car, dans le cas de 4?=?r, on a

f t m t m mw

\ i x *

m mwmmt • m mmmml mmm2

ou bien

ainsi, les deux équations précédentes donnent
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Donc, en remplaçant m par la fraction ^, il viendra

ce qui est un résultat exact, lorsque p et y sont des nombres
entiers , comme nous le supposons,

M. Deflers avait aussi reconnu que la fonction désignée par B
doit être nulle , en général -, mais la démonstration que nous en don-
nons ici nous paraît directe et plus simple ( voyez le volume cité 9

pag. 631 ).
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ASTRONOMIE.

'Observation faite à STBASBOURG de l éclipse de soleil
du 7 de septembre 1820 ;

Par M. H£RRENSCHNEIDER , professeur de physique à la
faculté cLes sciences,

ïjettre de M. le Professeur JKRAMP

Au Rédacteur des Annales j

$ tRÈS-6HÉtl CONFRÈRE ,

J-l'EXTRAIT ci-joint a pour auteur M, le professeur Herrenschneider,
tnon collègue. Comme nous n'avons encore ici ni instrumeris ni
même de local s il faut bien user de moyens étrangers pour par-
venir à notre but. L'observation de l'éclipsé a été faite en présence
d'un assez grand nombre de personnes plus ou moins illustres ; et
en voici le récit trffictefp tirl̂ f̂f&M*̂  ^ptn "dans te €mrr/er du dé-
partement du Bas-Rhin, le dimanche 10 septembre 1820.

« L'éclipsé de soleil du jeudi 9 septembre dernier fut observée
a par le professeur Herrenschneider , dans le jardin attenant à sa
» demeure , rue St-Thomas , n.° 16, avec une lunette achiomatique
» de quatre pieds de longueur grossissant n 5 fois. Il se servît ̂
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» pour observer le temps , d'une bonne montre à secondes , réglés
» sur Tborloge de la cathédrale (*). Il lui manquait ua instrument
?> pour connaître exactement le temps par le moyen des hautains
y> correspondantes. Le disque solaire , observé dans la matinée, et
» pendant l'éclipsé , avec la même lunette , était entièrement pur
» et sans tache. Le commencement de l'éclipsé eut lieu a i.hiomt5?.
» II arriva par un contact subit et fut exactement observé. . ï̂ e
» soleil ayant pris , par le mouvement progressif de la lune » I&
» forme de croissant , dont la largeur diminuait de plus en plus;
» ses deux extrémités , qui en formaient les sommets , étaient arron-
» dies et présentaient une courbure assez distincte. À naesôre que
» la lune avançait , les deux bouts arrondis du croissant solaire se
» rapprochaient de plus en plus. Ayant atteint la dislance de iz(t

» à peu près , on vit se former subitement entre eux ur̂ e
» ligne circulaire lumineuse , qui n'augmentait pas en largeur
D et qu'on doit probablement attribuer à l'inflexion qu'éprouvait la
» lumière solaire , en rasant le bord de là lune* Enfin , la réunion
» subséquente de ces deux bouts indiqua le moment du co'mme%-
» cernent de l'apparence annulaire de l'éclipsé qui arriva à 2^37.mo*.
» L'apparence annulaire augmenta alors visiblement. Après la for-
% rnation complète et régulière de l'anneau, au moment du milieu
» de l'éclipsé , sa plus grande largeur fut estimée à \ doigts et la
» moindre à \ doigt. Le disque lunaire interrompant ensuite
» de nouveau l'apparence annulaire , la ligne lumineuse circulaire

* » reparut également entre les deux bouts arrondis du croissant
» solaire, qui commençait à se former en sens opposé. La rupture

(*) On ne nous dit pas sur quoi l'horloge de ta cathédrale était réglée, m
comment on parvint à régler une montre à secondes sur une horloge publique»
IS'y a-t-ii donc pas de méridienne solaire,à Strasbourg ? La montre à secondes a
du moins pu faire à peu près connaître le temps relatif.
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» de l'anneau arriva à 2.h3§.mtf $ mais la ligne lumineuse ne dis-
> parut qu'au moment oà les deux bouts du croissant s'étaient
» séparés de 12' à peu près. Depuis cette époque , l'éclipsé alla en
3» décroissant, et sa fin arriva a 3.Â58.m48/ (*).

» L'observation de cette éclipse constate le résultat des calculs
» de M. le professeur Kramp, doyen de la faculté des sciences ,
» qui avaient prouvé que l'éclipsé serait annulaire pour la vill«
» de Strasbourg ; ce qui était douteux , d'après les calculs d'autres
» astronomes. La durée annulaire de ce phénomène a été pour
» Strasbourg de 2/%% et la durée totale de l'éclipsé de 3*48.m33.*.

» Des nuages assez épais s'étaient amoncelés devant le soleil avant
* le commencement de l'éclipsé ; mais des intervalles entièrement
* lucides ont permis d'en observer l'instant avec une grande précis
p sion. Les nuages disparurent vers le milieu de sa durée. Quel-
» ques nuages se formèrent de nouveau vers sa fin ; mais sans nuire
> à l'observation.

» Le vent a varié entre N.E et E. Il soufflait avec un frais
» sensible.

» Le baromètre n'a pas discontinué de monter pendant tout le
» temps de l'observation., L'hygromètre de Saussure indiquait le même
» degré d'humidité que le jour précédent.

» Le thermomètre à mercure, exposé au soleil, montrait , au
» Commencement de l'éclipsé , uns température de j4 er(R) * a<*
» milieu i 3^ et à la fin i5£. Un second thermomètre correspon-
» dant, suspendu a côté du prerëner, et dont la boule était noircie ,
» indiquait aux mêmes époques i 5 ° j , i4°7 et i8°~.

(*) Si les calculs donnés par M. Kramp , à la page 345 du VIÏI.e volume
de ce recueil , sont exacts , l'horloge de la cathédrale de Strasbourg aurait
été en avance d'environ i.m£$s. Si l'on admet , au contraire, ceux qu'a donné
M. B. Valz à la page 125 du IX%C volume , l'avance n'aurait été que d'en-
viron 6 secoudes seulement.

J. D. G.
« L'affaiblissement
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» L'affaiblissement de la clarté du jour était très-sensible. Celle

» qu'on aperçut au plus fort de l'éclipsé ressemblait au clair d'une
» pleine lune. Elle était pale et les couleurs des objets paraissaient
» ternes et sombres. Néanmoins , les étoiles ne parèrent point , à
» l'exception de la planète de Vémis , qui s fut visible près de
» l'horizon. »

Trente mille observateurs au moins ont vu cette éclipse : tous
©nt été témoins de son apparence annulaire, ainsi que des rapport*
entre les largeurs des deux bords.

L'endroit de l'écrit précédent» ce qui était douteux, d'après les
» calculs d'autres astronomes» , regarde sur-tout M. Litrow, di-
recteur de l'observatoire de Vienne. Il vient de publier un petit
Iiv^e sons ce titre : Exposé de la grande éclipse de soleil du 7
septembre 1820, suivi de deux cartes ( Pesth , 1820). Les deux
caries sont complètement fausses d'un bout à l'autre. Strasbourg s'y
trouve hors de la limita qui sépare les endroits de la terre où
l'éclipsé doit paraître annulaire-, tandis que, d'après mes calculs f

entièrement conformes aux observations y il devrait être dedans. 11
y a grande apparence qu'il faut porter le même jugement des autres
endroits marqués sur la carte.

Nous avons été extrêmement attentifs sur la prétendue athmos-
pbère lunaire : nous n'avops rien trouvé qui l'indiquât» II faudra
en revenir à ce que dit M. Biot ( Astron.phys., tom. II, pag. 4*3 ).
« Ces circonstances physiques s'opposent à ce que la lupe f dans
* son état actuel, puisse être habitée par des êtres animés , sem-
» blables à ceux qui peuplent îa surface de la terre ; car ils ne
3» pourraient y respirer, ni par, conséquent y vivre. Tout doit être
*» solide à la surface dç cet astre, et il y règne sans doute un
;» froid excessif. »

Agréez , etc.

Strasbourg; le 12 septembre 1820.
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Observation de la même éclipse à MONTPELLIER ;

Par M. GERGONNE.

JLTLSSIS , depuis trois ans , sur les débris d'un observatoire ruine f>
qui pourtant, durant un siècle, n'avait pas été sans quelque éclat
et sans quelque utilité ; habitant un appartement au nord dans le quar-
tier le plus bas d'une ville bâtie sur un terrain très-inégal ; il m'aurait
été impossible non seulement d'observer, mais même de voir l'éclipsé
si je n'étais sorti de chez moi. Un de mes amis voulut bien mettre
à ma disposition une petite terrasse d'où l'on pouvait suivre le
soleil depuis 9 heures et demie du matin jusqu'à son coucher; mais
où je ne pouvais établir mes pendules , que d'ailleurs je Vauraïs
pas eu le temps de régler. Je vis donc bien qu'il faudrait absolu-
ment renoncer au luxe des secondes, ne pouvant employer la qu'une
montre ordinaire que je perte depuis ^5 ans et qui marche assez
bien. Je fis transporter sur cette terrasse un petit quart de cercle
garni d'un niveau à bulle d'air et d'une lunelte achromatique d'un
pied de longueur , et donnant les minutes.

Quelques jours auparavant , j'avais calculé les circonstances de
Véclipse , en poussant l'approximation aux secondes de degrés et de
temps , et les rejetant ensuite du résultat final. Voici l'annonce que
j'avais adressée au journal du département.

i.° Commencement dé l'éclipsé à environ 58° à droite de l'ex-
trémité supérieure du diamètre vertical du soleil, à . . . . 1.* o»m

2.0 Croissant horizontal , a • * . . . , . . a.h2.8*m

3.° Plus grande phase de gdo*rs 5f f b 2
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4.° Fin de l'ecllpse > à environ 77.°^ gauche de l'extrémité supd-

rîeure du diamètre vertical du soleil, à 3.ft52.m

f. Pour savoir à peu près à quoi m'en tenir , j'avais eu le matin
la précaution de régler ma montre au lever du soleil, annonce pour
chaque jour , dans Pannuaïre du département. Maïs , dès 9 heures
et demie , je prenais des hauteurs correspondantes qui devaient m'ap-
prendre , à moins d'une minute près, la différence entre le rnidi de
ma montre et le midi vrai de Montpellier. Mes résultats , corrigés
de cette différence , ont été tels qu'il suit :

i.° Commencement de l'éclipsé , à . , 1 , . , , , i.hQ*m

2.0 La forme arrondie des cornes du croissant , effet naturel de
l'irradiation ? de la diffraction tt peut-être aussi de l'imperfection des
lunettes, m?a permis d'observer assez exactement l'époque où les
dsux courbures étaient tangentes au fil horizontal de la lu-nette ;
je l'ai fixé à 2.*3o.m

3.° L'époque de la plus grande phase a suivi de très-près ; mais,
ma lunette n'ayant point de micromètre } et distrait d'ailleurs par
les mille questions des curieux qui m'entouraient et à qui même
souvent il fallait abandonner l'instrument, je n'ai pu en fixer l'ins-
tant précis, ni la quantité que j'ai jugé fort approchante de 10
doigts , mais plutôt au-dessus qu*au«dessous,

4.° Plus libre des questionneurs à la fin de l'éclipsé, je crois
l'avoir observée assez exactement , et pouvoir la fixer à . • 3.ho^0

Ainsi , d'après cela , mon calcul se serait trouvé en erreur d'en-
tiron 2 minutes en moins , tant sur l'époque de la situation hori-
zontale du croissant que sur celle de la fin du phénomène.

Je m'étais bien promis d'observer l'époque de l'arrivée du bord ele
la lune à chacune des taches que pourrait offrir le disque solaire #
mais je n'y en ai aperçu aucune.

Un vent assez fort régnait dès neuf heures du matin ; il a paru
augmenter un peu à l'époque de la plus grande phase ; il était S. O.

Aucun uuage n'a contrarié l'observation 5 il en était passé quelques-
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uns devant le soleil vers les i r heures ; mais d'un® telle transpa-
rence qu'ils laissaient apercevoir nettement les bords de son disque.

Vers le milieu de l'éclipsé tout le public a vu la planète de Vénus;
mais cela est d'autant moins surprenant que le lendemain oiï l'a
également remarquée dans le milieu, du jour.

Je sens fort bien combien peu des observations faites de la maniéré
que je viens de dire peuvent être profitables à une astronomie per-
fectionnée comme elle l'est aujourd'hui ; mais c'est tout ce qù îl était
possible de faire sans observatoire et sans înstrUmetis.

QUESTIONS PROPOSÉES.

Probïèfne d'Arithmétique.

ls-/N a écrit de suite, et sans aucune séparation , les nombes de
la suite naturelle , en cette manière

13345678910111213141516171819202122^3

En considérant simplement cette suite comme une suite de chiffres
posés les uns à côté des autres -, on propose d'assigner le chiffra
qui en occupera le n.m* rang 9 quel que soit n, sans être obligé
d'écrire ceux qui le précèdent?



INTÉGRATION DES ÉQUATIONS. 97

ANALISE TRANSCENDANTE.

Essai d'une nouvelle méthode servant à intégrer
rigoureusement , lorsque cela est possible 9 toute
équation différentielle à deuoc variables ;

Par M. le professeur KRAMP , correspondant de l'académie
royale des sciences , doyen de la faculté des sciences de
Strasbourg , chevalier de l'Ordre royal de la Légion
d'honneur.

1. O N sait que tome équation différentielle a deux variables a
pour intégrale complète une équation , entre les mômes variables et
des constantes arbitraires, en nombre égal à celui qui désigne Tordre
de l'équation proposée ; constantes qui peuvent se trouver impliquées
avec les variables de toutes les manières diverses admises dans Pana-
lise comme moyens de combinaison. Mais , quoiqu'on démontre
très-rigoureusement que , quelle que puisse être la forme de l'équa-
tion différentielle 7 elle a toujours une intégrale , on est bien loin
encore de savoir assigner cette intégrale dans tous les cas.

2. Le problème inverse , c'est - à - dire , celui où étant donné
l'intégrale complète, avec toutes ses constantes arbitraires, on pro-
pose de redescendre à son équation différentielle, délivrée de toutes
ces constantes, se montre incomparablement plus traitable. Il ne
s'agit en effet, pour le résoudre, que de différentier l'équation
proposée autant de fois consécutivement qu'il y a de constantes

Tom. XI, n.° IV7 i.er octobre 1820. i4
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distinctes à faire disparaître , et d'éliminer ensuite ces constantes
entre la proposée et ses différentielles successives. L'ordre , le degré
et la forrne de l'équation différentielle résultante dépendront évidem-
ment du nombre des constantes que renfermait la proposée , et de
la manière dont elles s'y trouvaient combinées avec les variables et
les quantités communes,

3. Que s i , ensuite , on rencontre une autre équation différen-
tielle , de même forme que celle à laquelle on sera parvenu 9

on sera fondé à supposer que l'intégrale de cette dernière doit aussi
être de même forme que celle de la première ; et , par un procédé
analogue à la méthode des coefficiens indéterminés , on pourra essayer
de remonter à celle-ci. Voilà donc un nouveau champ de recher-
ches qui s'ouvre devant nous , et dans lequel nous allons tenter
de nous engager.

4» En ne considérant , en premier lieu, que les équations du
premier ordre t tjui ne comportent qu'une seule constante arbitraire,
et supposant qu'elles admettent une intégrale algébrique , cette inté-
grale ne pourra être que de la forme

où c est la constante arbitraire, et où P , P>, F» ,.... Ç , Qf 9 Ç", ...•
R , B/, fl;/,,,tM peuvent être supposées des fonctions rationnelles
et entières de x ; puisque 7 dans le cas où quelques-unes de ces
fonctions, se trouveraient affectées de dénominateurs , on pourrait tou-
jours préalablement les faire disparaître»

5, Si de plus l'équation différentielle n'est que du premier degrë
seulement, la constante ne devra également entrer qu'au premier
degré dans son intégrale^ c'est-à-dire ,que cette intégrale sera sim-
plement de là forme
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NOUS nous occuperons uniquement, dans le présent mémoire, des
équations différentielles dont l'intégrale donne la valeur de y en x
au premier degré seulement, et où conséquemment cette variable
est une fonction rationnelle fractionnaire de la constante c ; c'est-
à-dire , que nous ne considérerons , de l'équation précédente , que le
cas très-particulier

6* La différentielle de cette équation est

éliminant donc c entre l'une et Tautre , il viendra

ou , en développant et réduisant

PQ!

—PQ!

dy+PdP'

—P'dP —P'dQ

Y2—°

—Ç'dP

Tîous sommes donc fondés à considérer toute équation différentielle
de la forme

V ^
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ou V ) X , X' , Xff, sont des fonctions rationnnelles et entiers dû
œ , sans y 9 comme devant avoir une intégrale de la forme

où ç est la constante et où P , P/
 p Q , Q/ sont également des fonc-

tions rationnelles et entières de x sans y ; et\% si nous nous pro-
posons de remonter à cette intégrale , ces quatre dernières fonctions
seront les inconnues du problème.

7. En exprimant que les deux équations différentielles sont iden-
tiquement les mêmes, ce qui est permis , puisque nous avons admis
des cseiïiciens à tous les termes , nous aurons

— Q'dP^Xdx ,

8. On peut simplifier la troisième équation , en lui ajoutant et
lui retranchant successivement la différentielle de la première qui est

on a alors pour résoudra le problème les quatre ëquatiora
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QàP>— Ç/dP= \

9. Prenant successivement; i.° la somme des produits respectifs
des première et troisième équations par + Ç et —-P; 2.0 la somme
des produits respectifs des deuxième et quatrième par —-Pet HhÇ;
3.° la somme des produits respectifs des première et troisième par
^Q/et—P/; 4«° enfin la somme des produits respectifs des deu-
xième et quatrième par—P/ et -J-Ç7 , et remplaçant chaque fois

Pa r s a v^eur V, il viendra

VdQ-

"Nous avons donc décomposé notre problème a quatre inconnues
en deux problèmes à deux inconnues 7 puisque les deux premières
équations ne renferment plus que P et Q j et les deux dernières
P/ et Ç7. Pour mieux dire , nous Tavôns réduit à un seul problème
à deux inconnues 5 puisque les deux dernières équations ne diffèrent
uniquement des deux premières qu'en ce que P/ et Qf y ont prÎ5
la place de P et Q respectivement. Nous sommes donc fondés à
en conclure que si P et P / ne sont pas racines d'une même équa-
tion du second degré , ils ne différeront au moins que par des cons-
tantes ; et on peut en dire autant de Q et Ç/.

10. En prenant successivement la somme el la différence t d'abord
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des deux premières équations , puis ensuite des; deux dernières, il
tiendra

—X'(P— —X»P)àx ,

Posant donc

d'où
Q.—p--q >

Ql-p'-q';

ces équations deviendront

i l . En posant donc, pour abréger,



DES ÉQUATIONS. to3

— (X—X'',is=*R'à* , X—X'+X''=:—S< ;

«es équations deviendront

±. =Rp—Sq , 2V^ =Bp'-Sq>,

dx 7

12. Au moyen de ces dernières, il: e$t facile, par la différent
tiation , d'en obtenir d'autres dont chacune ne renferme qu'une
seule des inconnues du prablè&ie» *Si, enéffet, ou élimine d'abord
entre les deux équations de la première colonne et la différentielle

de la première q et — , commeâ%QX inapnntifcs au premier degré,

puis qu'entre ces deux mêmes équations et la différentielle de la

dernière on élimine p et — , comme deux autres inconnues au
dx

premier degré; et ai Ton opère d.tanç fiqrairière ̂ semblable sur les
équations de la seconde colonne y il viendra
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de sorte qu'en posant, pour abréger ,

—SS^dxs:U'àx ;

xIes quatre équation» à résoudre seront

g

do;3

i3 . Au moyen de ces quatre équations ? on déterminera p, q ,
pf , ^ , d'où on conclura (10) P , Ç , P?T Q' qui (5)^, substitués
dans la formule
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donneront l'intégrale de l'équation

V ^ +X+X'y+X»y*=° .

T4» On dira peut-être que nous ne faisons que déplacer la
difficulté et même d'une manière désavantageuse $ puisque nous
ne faisons que ramener Tintégnîtlon d'une seule équation du pre-
mier ordre à celle de deux équations du second ; maïs observons
que ces dernières sont linéaires , et même de la forme la plus
simple ; et nous verrons bientôt d'ailleurs que , lorsque Ton sait
que l'intégrale de la proposée doit être algébrique et rationnelle, on
peut assigner assez facilement l'intégrale de ces dernières.

15. On pourrait encore objecter qae l'intégration de chacune de
ces équations introduisant deux constantes , on se trouvera avoir
bien plus de constantes que ne le comporte la nature du problème ;
mais il faut se rappeler, i.° que les valeurs de p , q , p* % q* doi-
vent vérifier les quatre équations du premier ordre que nous avons
d'abord obtenues (11)5 2«° que celles de Pf Q, P/, Q/ doivent
vérifier l'équation VQI—QPITZV^ 3.° enfin la valeur de y f déduite
de l'intégrale ? qui devra vérifier l'équation différentielle proposée ;
ce qui nous fournira les conditions nécessaires pour déterminer les
constantes superflues.

16, Appliquons ces divers procédés à un exemple \ et soit l'équa-
tion différentielle proposée à intégrer

bous aurons
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De là nous conclurons successivement

5 =

5/=±—X+X'—X"=i—4*+*"

— =+4-6* r

5 — =

5/ — =5x—
d

i f t
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AS*

S/ •-—=—

da?

*J'W42'=,-<

"5

=2+8^-4*a-24^3—6**

5 {RBl—S&p*—,8*'(i— a
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T/=:2 (Sf S ~r S'
~ — S ~ ) +5(iîiî'—55')=8««(i-r«;)* ;

dx do?

substituant donc dans nos équations du second ordre , en p et q
elles deviendront

SJ1

ou , en simplifiant,

Les équations qui devront donner /?< et qf seront donc

*1) - ^ -2(2+*) -g
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II suffira donc d'obtenir l'intégrale des deux premières pour avoir
celle des deux dernières.

17. Essayons de faire

p =

A,B, C,
aurons

cîtant des coefficiens numériques inconnus, nous

substituant dans la première équation , elle deviendra, en ordonnant

—2.B

+ C
+6E

**+ D
+16JE

+10F

x*-\- ZE

+3oF

+I5G

*•+ 6F
+48G

+21H

exprimant donc que cette équation est Identique, nous auront

E+10F+ 5G=o ,

d'où

D=o ,

G=o ,

Substituant dans la valeur hypothétique de/?, elle deviendra



oà. A et B sont les deira confrfa»te$ adbktaipeà qne comporte l'in-
tégrale. ^

L'éqtiaXîon en qi trafféie de h même manière ,* donnera

Âf et J?7 seront les deux constantes.
18. On tirçr& de J4 ^ , ^

en se rappelant qu'ici

22'= i— 4#—3^a , 5 /

et substituant (i i) dans les équations du premier ordre en p et q ,
il viendra ; en

i-=**)== o

Ces relations devant sub?ist3r quel que soit s 9 nous ferons suc-
cessivement ^ = o , ^ ^ i ; fet les deux équations donneront égale-
ment A;z=.Ai B'zd—Bf de sorte <Jue nous auions
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nous aurons- donc aussi

m

5 5 / étant deux nouvelles constantes. *•-*-
- -A. 1

19, JNous conclurons ensuite de là

En. nous rappelant qu'ici F=#(i—^*) > e^ substituait ces yajeurs
dans l'équation

/— QP'zzF ,

elle deviendra, toutes réductions "faîtes ,

iquaiion de relation entre nos quatre constances,
20. En «ubtittiant les valeurs de JP, Q} P', Qf} dans l'équation

elle deviendra , en divisant paf 2 7
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o =

ou encore

ou enfin

d'où Ton voit qu'il s'y a plus proprement q«*une seule constante

*7 en la représentant par C l'équation deviendra simplement

d'où

qui est en effet Tintegrale de Fëquatîon différentielle proposée , comme
il est facile de s'en convaincre , par la differentiation et l'élimination
de la constante C» {*)

(*) On peut faire , contre cette méthode , l'objection très grave, à ce qu'il nous
paraît , que le procédé employé pqur intégrer les équations du second ordre
en p et q , pouvait tout au&si bien , et sans tant de circuit, être immédiate-
ment appliqué à l'équation proposée du premier ordre seulement en y ; mais
peut-être tout ceci n'est-il encore qu'un provisoire7 peut-être M.Kramp, étendant sa
théorie , comme il paraît en avoir le dessein , aux équations des ordtes supérieurs f

nous enseignerait il dam quelque mémoire subséquent, à intégrer généralement et
rigoureusement les équations de la forme

a i ;



DES ÉQUATIONS. ,,3
ai. Pa*S un prochain mémoire , nous nous occuperons soît des

équations différentielles qui admettent une intégrale de la forme

soît de celle dont l'intégrale a la forme

dans le cas où G, H , K sont des fonctions rationnelles et entières en x seule-
ment ; ou tout au moins à en ramener l'intégration à celle de quelque autre équation
plus simple , dut-elle être même d'un ordre plus élevé. L'intégrale de cette dernière
équation doit être de la forme

Ly+*M+bN=o ,

où L , M r N sont aussi des fonctions entières et rationnelles d"e x seulement, în~
connus du problème , et où a et b sont les deux constantes arbitraires. II s'agirait donc
d'exprimer que le résultat de l'élimination de ces constantes entre cette équation et
ses première et seconde cTiffërentfelles , est identique avec la proposée , et de
tirer des trois conditioos résultantes les valeurs de L , M, 2V, ou du moins
des équations différentielles, d'un ordre quelconque, faciles à intégrer, et dont
chacune ne renfermât qu'une seule de ces inconnues.

Tom. XL 26
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QUESTIONS RÉSOLUES.

Solution de la plupart des problèmes de géométrie
proposés à la page 356 du X.* volume de ce recueil ;

Par M. VEGTÈN, licencié es sciences.

XJES constructions du plus gpaad nombre des problèmes que nous
allons résoudre étant faciles à justifier , nous nous contenterons ,
pojçir ^fo^ger , d'en î$d%uçç la solutio» sans là démontrer. Pour
le Blême motif, nous nous dispenserons de mentionner le nombre
des solutions de cbacun d^eux et les circonstances qui peuvent le
rendre impossible.

PROBLÈME 1. Du& pami. donné comme centre 9 décrire un
cercle qui passe par un autre point donné ?

Solution. Prenez pour rayon la distance entre ces deux points.

PROBLÈME IL D'un point donné comme centre, décrire un
cercle qui touche une droite donnée ?

Solution. Prenez pour rayon la longueur de la perpendiculaire
abaissée du point donné sur la droite donnée.

PROBLÈME 111. D'un point donné comme centre , décrire un
cercle qui touche un cercle donné ?
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Solution* Prenez pour rayon la distance du point donné à l'une

des extrémités de celui des diamètres du cercle donné dont la
direction passe par ce point,

PROBLÈME IV. Décrire un cercle d'un rayon donné qui,
ayant son centre sur une droite donnée , passe par un point
donné ?

Solution. Prenez pour centre Tune quelconque des intersections
de la droke donnée avec un cercle qui ait pour centre le pomt
donné et un rayon égal au rayon donné.

PROBLÈME V. Décrire un cercle dun rayon donné qui ,
ayant son centre sur une circonférence donnée , passe par un
point donné F

Solution. Prenez pour centre Tune quelconque des intersections
du cercle donné arec un autre cercle ayant pour centre le point
donné et son rayon égal au rayon donné.

PROBLÈME VI., Décrire un cercle d'un rayon donné qui ;
ayant son centre sur une droite donnée ? touche une autre droite
donnée ?

Solution» Prenez pour centre le point où la première des deux
droites données est coupée par F une des deux parallèles menées
à la seconde à une distance égale au rayon donné»

PROBLÈME VIL Décrire un cercle d'un rayon donné qui t

ayant son centre sur une circonfétence donnée, touche une droite
donnée ?

Solution. Prenez pour centre l'un des points où la circonférence
donnée est coupée par Tune des deux parallèles menées à la droite
donnée à une distance égale au rayon donné.

PROBLÈME VHL Décrire un cercle d'un rayon donné
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qui , ayant son centre sur une droite donnée f touche un cercle
donné ?

Solution. Prenez pour centre Pun des points où la droite donnée
est coupée par un cercle concentrique au cercle donné , ayant un
rayon égal à la somme ou à la différence du sien et du rayofl
donné,

PROBLÈME IX. Décrire un cercle d'un rayon donné qui 9

ayant son centre sur une circonférence* donnée y touche un cercle
donné ?

Solution. Prenez pour centre l'un des points où la circonférence
donnée est coupée par un cercle concentrique au cercle donné
ayant un rayon égal à la somme ou à la différence du sien et du
rayon donne.

PROBLÈME Xm Décrire un cercle d'un rayon donné , qui
passe par deux points donnés ?

Solution. Prenez pour centre Pun des points d'intersection de
deux cercles ayant pour centres les points donnés et pour rayon
commun le rayon donné.

PROBLÈME XL Décrire un cercle d'un rayon donné , qui
passe par un point donné et touche une droite donnée ?

Solution. Prenez pour centre Pun des points où un cercle décrit
du point donné comme centre , avec le rayon donné , est coupé
par Pune ou Pautre des deux parallèles menées à la droite donnée
* une distance égale à ce même rayon.

PROBLÈME XII. Décrire un cercle d'un rayon donné, qui
touche deux droites données ?

Solution. Prenez pour centre l'une quelconque des intersections
des deux parallèles menées à une des- droites données , à une dis-
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tance égale au rayon donné , avec une des parallèle^ menées k
l'autre droite à la même distance.

PROBLÈME XIIL Décrire un cercle d'un rayon donné qui,
passant par un^ point donné , touehe un cercle donné ?

Solution.prenez pour centre l'un des deux points oà la cir-
conférence décrite du point donné comme centre, avec le rayon
donné , est coupée par un cercle concentrique au cercle donné t

ayant un rayon égal à la somme ou à la différence du sien et
du rayon donné.

PROBLÈME XIV. Décrire un cercle d'un rayon donné , qui
touche une droite et un cercle donné?

Solution. Prenez pour centre l'un des points où Tune des deux
parallèles menées à la droite donnée à une distance égale au rayon
donné , est coupée par un cercle concentrique au cercle donné ;
ayant un rayon égal à la somme ou à la différence du sien et
de cç même rayon donné.

PROBLÈME XV. Décrire un cercle d'un rayon donné , qui
touche à la fois deux cercles donnés ?

Solution. Prenez pour centre l'un des points d'intersection de
deux cercles concentriques aux cercles donnés , ayant des rayons
respectifs égaux à la somme ou à la différence des leurs et du
rayon donné.

PROBLÈME XVI. Décrire un cercle qui , ayant son centre
sur une droite donnée, passe par deux points donnés ?

Solution. Prenez pour centre le point où la droite donnée est
coupée par la perpendiculaire élevée sur le milieu de la droite qui
joint les deux points donnés* Ne considérant alors qu'un seul des
points donnés , le problème se trouvera ainsi ramené au I»e*
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PROBLÈME XF1L Décrire un cercle qui, ayant son centre

sur une circonférence donnée, passe par deux points donnés ?
Solution* Prenez pour centre l'un des points où la circonférence

donnée est coupée par la perpendiculaire élevée sur le milieu de
la droite qui joint les deux points donnés. Ne considérant alors
qu'un seul des points donnés , le problème se trouvera ainsi ra-
mené au ILC

PROBLÈME XVHL Décrire un cercle qui 9 ayant son centre
sur une droite donnée, passe par un point donné et touche une
autre droite donnée ?

Solution* Abaissez 9 du point donné, sur la première des deux
droites , «ne perpendiculaire que vous prolongerez au-delà d'une
quantité égale à elle-même ; vous obtiendrez ainsi un nouveau
point du cercle cherché \ de sorte que le problème se trouvera
téduit à décrire un cercle qui , passant par duux points donnés, touche

droite donnée ; problème que Ton Sait résoudre.

PROBLÈME XIX* Décrire un cercle qui\ ayant son centre sur
une circonférence donnée, passe par un point donné ei touche une
droite donnée ?

Ce problème ne paraît point résoluble par les élémens.

PROBLÈME XX* Décrire un cercle qui , ayant son centre
sur une droite donnée , touche deux autres droites données ?

Solution. Prenez pour centre le point où la première des droites
données est coupée par Tune des droites qui divisent en deux
parties égales les quatre, angles formés par les deux autres droites
données. Ne considérant alors qu'une seule de ces deux droites ,
le problème se trouvera ainsi ramené au II.e

PROBLÈME XXL Décrire un cercle qui , ayant son centre
sur une circonférence donnée 9 touche deux droites données ?
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Solution* Prenez pour centre l'un des p3ints où la circonférence

donnée est coupée par Tune des droites qui divisent en deux
parties égales les quatre angles formés par les deux droites données.
Ne considérant alors qu'une seule de ces droites t le problème se
trouvera ramené au IL*

PROBLÈME XX1L Décrire un cercle qui, ayant son centre
sur une droite donnée, passe jtar un point donné et touche un
cercle donné ?

Solution. Abaissez du point donné, sur la droite donnée, une
perpendiculaire que vous prolongerez au-delà d'une quantié égale
à elle-même ; vous obtiendrez ainsi un nouveau point du cercle
cherché ; de manière que le problème se trouvera réduit à décrire
un cercle qui , passant par deux points donnés, touche un cercle
donné ; problème que Ton sait résoudre,

PROBLÈME XXHL Décrire un cercle qui 9 ayant son centre
sur une circonférence donnée , passe par un point donné et touche
un cercle donné ?

Ce problème ne paraît point résoluble par les élémens.

PROBLÈME XXIV. Décrire un cercle qui\ ayant son centre
sur une droite donnés ̂  touche une droite et un cercle donnés ?

Solution* Par le point d'intersection de deux droites , menez-
en une troisième ? faisant avec la première , d'un autre côté , le
même angle que fait la seconde avec elle \ vous aurez ainsi une
nouvelle tangente au cercle cherché ; de sorte que votre problème
se trouvera ramené à décrire un cercle qui touche deux droites
données et un cercle donné 5 problème qu'on sait résoudre.

PROBLÈME XXV. Décrire un cercle qui 7 ayant son centre
sur une circonférence donnée , touche une droite et un cercle
donnés ?
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Ce problème ne paraît pas résoluble par les élémens ; mais on

peut du moins le ramener facilement au XIX.e Si , en effet, on
décrit un cercle qui, ayant son centre sur la circonférence donnée , .
passe par le centre du cercle donné et touche une des deux pa-
rallèles menées à la droite donnée à une distance égale au rayon
de ce cercle ; son centre sera celui du cercle cherché ; de sorte
qu'en ne considérant plus que la droite donnée, ce problème sera
ramené au IL*

PROBLÈME XXVL Décrire un cercle qui] ayant son centre
sur une droite donnée , touche deux cercles donnés ?

Solution. Du centre de l'un quelconque des deux cercles donnés,
abaissez, sur la droite donnée , une perpendiculaire , que vous
prolongerez au-delà de cette droite , d'une quantité égale à elle-
même ; de son extrémité comme centre , et avec le rayon de ce
même cercle , décrivez-en un nouveau ; le cercle cherché devra
aussi lui être tangent; vous aurez donc a décrire un cercle qm
touche trois cercles donnés ; problème qu'on sait résoudre.

PROBLEME XX1L Décrire un cercle qui , ayant son centré
sur une circonférence donnée , touche deux cercles donnés ?

Ce problème ne paraît point résoluble par les éîémens ; maïs
on peut du moins le ramener facilement au XXïILe Si > en
effet , on décrit un cercle concentriqi e à l'un des deux - cercles
donnés , dont le rayon soit la somme ou la différence des leurs j
en décrivant un cercle qui , ayant son centre sur la circonférence
donnée, touche ce dernier cercle et passe far le centre de l'autre |
son centre sera celui du cerele cherché ; de sorte qu'en ne con-»
sidérant plus qu'un seul des cercles donnés , le problème se trou-
vera ramené au III.e

Remarquas» I. On voit, par ce qui précède ? que des vingt-sept
problèmes
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problèmes proposés , il n'y en a que quatre seulement dont la
solution puisse offrir quelque embarras ; et encore deux de ceux-
là se ramènent - ils facilement aux deux autres • de sorte que
toute la difficulté consiste uniquement dans les problèmes XIX
et XXIII (*).

IL Les points et les droites n'étant que des cercles dont le»
rayons sont respectivement nuls et infinis -, il s'ensuit que le
XXVlLe problème comprend implicitement les onze qui le précèdent;
que le X V / comprend les cinq qui le précèdent ; qu'il ea est
de même du DCe , et qu'enfin le III.e comprend implicitement les
deux premiers ; de sorte qu'il n'y a propi\ment que quatre pro-
blèmes en tout. Mais le dernier paraît n'être résoluble que dans
des cas particuliers.

(*) II est aisé de voir que ces deux problèmes reviennent à déterminer
les intersections d'un cercle donné avec une section conique qui n'est pas
tracée et dont on a seulement les élémens ; et il ne paraît pas, en effet,
que ee problème puisse être résolu par un nombre limité d'opérations exécutée*
avec la règle et le compas seulement»

* XL 12
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Démonstration du, théorème de géométrie énoncé à la
page ioo du X.e volume de ce recueil , et d'un
autre théorème analogue ;

Far TWL J. B. DURRÀNDE , professeur de mathématiques
spéciales et de physique au collège royal de Cahors.

uneX HÊORÈME. Le lieu des milieux des cordes menées à
section conique quelconque , par l'un quelconque dss points de son
plan y est une autre section conique ? semblable à la premiers et
gjemblabkmmt située 9 passant par le centre de celle-ci et par le
point donné.

Démonstration. Soient pris le diamètre passant par le point donné
pour axe des x et la parallèle menée par le même point à son
conjugué pour axe des y ; l'équation de la courbe sera de cette
forme

Celle d'une droite menée d'une manière quelconque par le point
donné sera de la forme
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«ù m est indéterminé. En la combinant avec celle de la courbe ,
pour éliminer y, on trouvera que ïes abscisses des deux extrémités
de la corde interceptée sont données par l'équation

Maïs l'abscisse du milieu d'une droite est la demi-somme des
cisses de ses extrémités ; et II est connu d'ailleurs que , dans une
équation du second degré, dont le premier terme est dégagé de
son coefficient, le coefficient du second terme 3 pris avec un signe
contraire 7 est la somme des racines de l'équation; d'où il suit que
l'abscisse du milieu de la corde sera donnée par l'équation

ou (a

mettant donc pour l'arbitraire m 9 dans cette dernière * la valeur

— tirée de l'équation de la corde , on obtien

faites, pour l'équation de la courbe cherchée

— tirée de l'équation de la corde , on obtiendra ? toutes réductions

ce qui démontre la proposition annoncée*

On peut facilement démontrer d'une maniera analogue cet autre
théorème :

THÉORÈME, Le lieu des milieux*des cordes menées à une surface
quelconque du second ordre p par un quelconque des points de l'es-
pace i est une autre surface du second ordre? semblable à la première
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et sembhhïement située f passant par le centre ie c$lle+ci et par h
point donné. K

Démonstration. Pas le centre de la surface et pas* le point àontii
faisons passer un plan diamétral quelconque > que nous prendrons
pour plan des xy , en prenant pour axe des z\& parallèle au con-
jugué de ce plan diamétral. Par le même peint* traçons, sur le
plan des xy, des parallèles a deux diamètres conjugués quelconques
ûe la section de la surfà&e -par ce plan f et prenona cea parallèles

sxes des $ et des f \ l'équation de la surface sera de îa

Une droite menée d'une manière quelconque par le point donné aura
des équations de cette forme

©& 'ÎH el n «ont indéterminés. Eti les combinant avec celle de la
surface , pour en éliminer $ % y , on trouvera que les valeurs do
z qui répondent aux deux extrémités de la corde interceptée sopt
données par l'équation

donc , pour les mêmes raisons que ci-dessus, la valeur de z qui
répond au milieu de cette corde sera donnée par l'équation

a'm+b'n
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mettant donc, pour les deux arbitraires m, n, dans cette der-

OC V

nière , leurs valeurs~~ , %-; tirées des équations de la corde on

obtiendra, toutes réductions faites} pour l'équation de la surface
cherchée ,

ce qui démontre la proposition annoncée,
Nous aurions pu facilement, au surplus , par des considérations

purement géométriques , déduire le second théorème du premier ;
mais nous ne voyons pas trop ce qu'on peut gagner a remplacer
quelques lignes de calcul par un grand nombre de mots»

Réflexions sur le problème d'analise proposé à la
page iài du X.e volume des Annales j

Par un A B O N N É .

Au Rédacteur des Annales;

M O N S I E U R ,

Dans la quatrième livraison du tome X.c de votre estimable
recueil , vous avez proposé de déterminer la condition ou les conditions
de rationnalité des racines de l'équation du troisième degré
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et j'avais eu le dessein de m'occuper de ce problème^ mais f

en y réfléchissant sérieusement, il m'a semblé qu'il n'était pas ré-
solublt 7 ou que du moins , s'il Tétait , ce ne pourrait être que d'une
manière peu commode pour les besoins de l'analise. Or, comme
lorsqu'un problème est proposé, c'est également remplir le but que
d'en donner la solution ou de montrer que cette solution ne peut
être obtenue , j'ai pensé que -vous ne dédaigneriez pas d'accueillir
les réflexions auxquelles j'ai été conduit par un examen attentif de
^e problème.

Lorsqu'on cherche à quel caractère on peut reconnaître que
l'équation du second degré

a ses deux racines égales, on arrive pour résultat à l'équation

Comme cette équation existe uniquement entre les coeiïiciens de la
proposée, qu'elle établit une relation nécessaire entre ces coefficiens ?

et qu'en un mot tout y est déterminé ; on peut , par analogie, se
demander aussi a quel , caractère on reconnaîtra que l'équation du
troisième degré

deux raclrtes égales j et cétfe seconde question Conduit: à:1*
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absolument de même nature que la précédente. On conçoit même
que la question pourrait être indéfiniment étendue aux degrés su-
périeurs , et qu'elle conduirait, pour chacun d'eux, à des résultats
analogues.

Mais lorsqu'on dît que , pour que les racines de l'équation d»
second degré

soient rationnelles , il faut que la fonction t%—^ac des coefficiens
soit un quarré , on n'établit point proprement une relation entre
ces coefficiens qui demeurent encore indéterminés \ sous certaines
restrictions seulement ; en sorte que cette condition revient à pouvoir
résoudre rationnellement l'équation

où / est un nombre rationnel tont-a-fait m&étexmuxé*

Lors donc qu'on propose la même question pour le troisième
degré > l'analogie conduit à prévoir que , pour que les racines
de l'équation soient rationnelles , il n'est pas nécessaire q.u'il
existe entre ses coefficient seulement une relation qui puisse dé^
terminer l'un quelconque d'entre eux en fonction des .autres ; maïs
qu'il suffit pour cela qu'une certaine fonction de ses coefficiens soit
d'upe forme particulière, sans que pourtant ce;tte forme leur ôfcg
leur indétermination , c'est - à - dire , qu'il faut que cette fonction soit
de la même forme qu'une fonction donnée d'une indéterminée / ou
peut-être môme de plusieurs ; mais quelle est cette fonction , e£
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de quelle forme doit - elle être ? Ce n'est guère encore ici qu'a
l'analogie qu'on peut avoir recours. Voyons donc ce qu'elle nous
apprend.

Si dana l'équation de condition

~.4^)=o

on change / en asy , ce qui est permis*; elle deviendra

©r, cette équation n'çst autre que celle à laquelle on parvient en
faisant disparaîtra le second terme de la proposée; dire donc que2

pour que les racines de celle-ci soient rationnelles il faut que b%—l^ac
soit un quarré , c'est, dire, en d'autres termes, qu'il faut que celles
de l'autre le soient aussi; ce qu'on appelle donc proprement la con-
dition de rationnalité des racines des équations du second degré se
réduit seulement a dire que , pour que les racines d'une équation com-
plète du second degré soient rationnelles, il est nécessaire et il suffit
que les racines de l'équation privée» de son second terme jouissent
de la même propriété ; ce qui est d'ailleurs évident, puisque la relation
entre les inconnues des deux équations n'est que du premier degré
seulement.

En nous laissant donc guider par l'analogie 9 nous serons conduits
à dire que, pour que les racines d'une équation complète du troisième
degré soient rationnelles , il est nécessaire et il suffit que les racines
de l'équation privée de son second terme soient elles-mêmes raûon-
îïeîles j ce qui n'est pas moins évident ; mais ? tandis que , dans le
second degré , cette condition permet une vérification facile, il n'en
est plus de même dans le troisième ; et c'est à tel point qu'il est
fcaî&onnablement permis de douter si la chose vaut la" peine d'exé-

cuteur
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cutex le calcul de la transformation , et s'il ne vaudrait pas au moins
autant faire immédiatement Fessai sur la proposée elle-même.

Que si l'on insistait, et si on demandait la condition de ration-
nalité d'une équation du troisième degré sans second terme , cela
reviendrait à faire la même question pour celle du second ; et de
même que , pour que l'équation

ait ses racines rationnelles , il est nécessaire et il suffît de trouver pour
t une valeur qui rende la fonction /* égale à —p 5 pour que
l'équation

ait ses racines rationnelles , il sera nécessaire et il suiBra de trouver
pour / deux valeurs au moins qui rendent la fonction t{t%-\~p)
égale à —g. Voilà je crois toute la réponse qu'on peut raisonnable-
ment faire à la question proposée, pour le troisième degré ; et je
ne pense pas qu'on en ait de plus satisfaisantes à se promettre pour
les degrés plus élevés. On pourra bien , à la vérité , indiquer certaines
relations entre les coeiïiciens qui rendent les racines rationnelles y

et on aura ainsi des conditions suffisantes \ mais je doute que Ton
parvienne jamais à prouver que ces conditions sont nécessaires. (*)

Voici, au surplus, de quelle manière j'avois attaqué la question

(*) Quelqu'un nous avait bien adressé une solution du problème ; anais, outre
que les principes ne nous en ont pas paru assez solidement établis 5 on n'a pas
démontré que les conditions que l'on assignait, suffisantes , à la vérité , e'taient
également nécessaires ; et il est même douteux qu'elles le soient*

J. D. G.
Tom. XL 18
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et quelle sorte de difficulté j'ai rencontrée* J'avais pris
l'équation

attendu qu'il est toujours facile de passer de celle-là à l'autre. Qm
sait que les racines de cette équation sont de la forme

# , £ étant les racines cubiques imaginaires de l'unité et A , B
IQS racines de l'équation

qui f dans le eas 4ont il s'agit, doit^ comme l'on sait, avoir
racines imaginaires, ce qui exige qu'on ail

ii*équâtïon aux quarrés des différences t qui est

prouve déplue que €^tte-^a*rttte doit être égale à tin quarre négatif.
Représentant donc par 18/ la racine de ce quarre, nous aurons

d'oti
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ainsi polir que les racines de la proposée soient toutes trois réelles,
e$4 d'abord nécessaire que

«oit un quarré parfait; mais cette condition ne saunfit sttjjire.
Au moyen de cette transformation les quantités^, B deviennent

mais doivent-elles être âes cubes pir^ftîïsr ? il paraît bien que oui ;
mais ce n'est pas tout que de le soupçonner ? et on pourrait fort
bien objecter que peut-être , en développait leurs i^cifres en séries t

ce qui donnerait évidemment pour les trôis Vateurs de x deà termes
rationnels, les séries résultantes polirraierêt bîeû être de la classé
de celles qu'on sait sommer rationnellement, l@tè fïtèihe que A et È
ne sont pas des cubes parfaits.

Admettons pourtant, bien cfué tiëué ne l'ayditè pas déitiohtré 0

que la condition de rationnante des racines de la ptoposêè éiigé
que A et B soient des cubes parfaite, et rôycms dé quoi dépend
cette nouvelle condition. On sait pa£ la théorie de Fextrarctîoîi des
racines des quantités en partie rationnelles et en partie radicales,
^u€ , pour qu'une fonction àe la forme G-\*\/H soit exaréterriênî
le cube d'une autre fonction de la totttie g-i-{/%J

 7 il faut d'abord
que G%<~~H soient un cube parfait , condition qui , à la vérité t

est toujours remplie pour A et B ; mais on sait aussi que cette
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condition nécessaire n'est pas suffisante 7 et qu'il faut en outre
qu'une certaine équation du troisième degré admette tout au moi/is
niîe racine rationnelle. Nous voilà donc ainsi entraînés, en suivant
la voie même la plus directe, dans «m certle vicieux inévitable,
lequel consiste a avoir besoin, pour nous assuier de la rationnalité
des rach\e$ d'une équation du troisième degré , de résoudre le même
problème pour une autre équation du même degré* C'est là où
sont venus constamment aboutir les diverses sortes de tentatives que
j'ai faites ^ en ass^z grand, nombre , dans la vue d'amener le
problème à une heureuse issue ; et voilà aussi ce qui m'a conduit
à le conside'rer comme un problème tout-à-fait désespéré.

Agréez, etc.
l f le 23 juillet 1820.

QUESTIONS PROPOSEES.
Théorèmes de Géométrie.

I. ^ L , constdéraat successivement deux a deux trois cercles tracés
sur un même plan , on détermine , pour chaque système de deux
cercles y les centres de similitude » tant interne qu'externe *y et que ,
dans chaque système * on fasse de la distance entre ce$ demx centiea
le diamètre d'un nouveau cercle ; les trois cercles pbtenus par retire
construction passeront par les deux mêmes points , et auront ainsi
une corde ^commune.

II. Si , considérant successivement deux à deux quatre sphères
situées d'une manière quelconque dans Tçspace , on détermine , pour
chaque système de deux sphères , les eenttes de similitude , tant
interne qu'externe ; et que , dans chaque système f on fasse de
la distance entre ces deux centres le diamètre d'une nouvelle sphère ;
les six sphères obtenues par cette construction passeront parles deux
blêmes points } et auront ainsi une corde commune.
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ASTRONOMIE.

Description â!un nouveau 7yèticule f

Par M. BENJAMIN VALZ,

JLiA diversité , assez grande , des réticules proposes jusqu'à ce
jour peut faire penser que les besoins de l'astronomie ne sont pas
encore entièrement satisfaits sur ce point. Cette réflexion doit donc
encourager à présenter de nouvelles dispositions , jusqu'à ce qu'il
ne reste plus rien à désirer pour la commodité et l'exactitude des
observations* Sans aspirer à atteindre le but, mais cherchant à
en approcher, s'il est possible, je hasarderai donc de proposer une
nouvelle construction qui me paraît offrir quelques avantages.

Le réticule rhomboïde , ou plutôt rhombe (*), dont les asfronomrs
ae servent depuis long-temps , bien préférable à celui de Cassini f
auquel il a succédé, n'est pas cependant exempt d'inconvéniens. Oa
rencontre d'abord bien des difficultés à le construire exactement ;

(*) Laîande attribue Tinvenflon de ce réticule a Bradlej, dont il porte ïe
nom , quoique , cPaprès son compatriote Robert Smith ( Cours complet d'optique 9

liv, III , chap. VIII , n.° 278 ) , il ne fut Pinyenteur que cPun réticule simple*»
ment angulaire, qu'on trouve encore dans les vieux instrumens anglais, et qui»
dans les observations orthogonales , laissait perdre un cinquième du champ. t~*
réticule de 45° en perd encore environ un tiers,

. XI, nfV% if* novembre 1820* 19
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aussi en trouve-t-on souvent de fort défectueux; ensuite, la véri-
fication en est pénible et délicate; enfin, l'évaluation de ses parties
n'est pas fort aisée à obtenir. En effet, on est obligé, pour cela,
de faire parcourir la diagonale par une étoile , afin de connaître sa
valeur , nécessaire pour toutes les observations , orthogonales ou non ;
mais, est-il facile et peut-on être bien assure de faire exactement
èclore, pour ainsi dire , une étoile , dans le sommet précis d'un
angle , et de la voir disparaître par le sommet de l'angle opposé?
C'est une chose à peu près impossible k exécuter, sur-tout si la
luneite n'est pas montée parallactlquement. La difficulté est rendue
encore bien plus insurmontable par les diagonales , qui partagent
bien ou mal ces angles , et obstruent le point mathématique d'in-
tersection. On pourrait éluder cette difficulté , un peu plus labo-
rieusement , a la vérité , en faisant, d'abord traverser deux étoiles
voisines d'un même côté par rapport au centre du réticule > et une
seconde fois de différens côtés. En effet , soient a , b les routes
interceptées des deux astres, dans la première observation ; la diffé-
rence de déclinaison sera b-—a ; et , lorsque les étoiles auront de
nouveau traversé le réticule, Tune d'un côté et l'autre de l'autre,
à Vopposé, on obtiendra deux autres intervalles a!, bf. La grande
diagonale sera évidemment af\bf*\b—a.

Le réticule carré et celui formé de deux triangles équilatéraux
accolés , proposé le dernier, ne paraissent proprement que des mo-
difications tendant à simplifier la construction ou la vérification de
celui attribué à Bradley, M. Monteiro*-da-Rocha , à Coïmbre ? avait
aussi proposé un autre réticule rhombe , dont les angles aigus étaient
Vie 45 °$ et les côtés prolongés jusqu'au bord du diaphragme. Malgré
l'avantage que présentait la suppression des diagonales, dont il
devenait inutile de connaître la valeur, il ne paraît pas que cette
disposition ait été fort employée -, apparemment par ce que le cal-
cul de l'inclinaison nécessitait les observations d'une même étoile
aux quatre fils , que les réductions en étaient assez longues , et
enfin (Ju'une partie du chaïnp n'était plus propre a ce nouveau genre
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d'observation» D'ailleurs, les fils se croisant, on est obligé dé les
choisir fort délies, afin qu'ils s'écartent le moins possible d'un même
plan ; ce qui ne permet pas d'observer les occultations derrière leur
épaisseur, et ne dispense pas d'un éclairage toujours fort incommode.

Le réticule circulaire , perfectionné par M. Kohler , et rendu
annulaire , est, sans contredit le plus simple et le plus commode
de tous; sa construction, s'effectuant sur le tour, est rigoureuse-
ment exacte ; et n'a conséqueinment besoin d'aucune vérification i
mais ces avantages décidés ne sont-ils pas compensés par quelques
inconvénîeos ? D'abord il faut connaître le diamètre de l'anneau ;
et comme pour l'obtenir , on ne peut être assuré de faire passer
une étoile précisément par le centre que rien n'indique ; on est
obligé, pour ne pas emprunter des catalogues des données sujettes
à diverses réductions, d'observer les passages à travers l'anneau de
deux étoiles voisines , et dans deux stations différentes de la Iunetf' ?
À l'aide de ces huit occultations et d'un calcul assez prolixe , on
parvient à déterminer le diamètre, ce qu*il faudra répéter chaque
fois que Ton fera mouvoir le système des deux oculaires $ le réticule
étant supposé placé entre eux dans ufï chercheur.

Lorsqu'un des astres viendra à passer auprès du centre , non
seulement on ne saura pa$ si c'est au-dessus ou au-dessous , mais
encore on ne pourra déduire l'apothème avec justesse ; la différence
de déclinaison sera donc peu sûre. Si , au contraire , la route de
l'astre , trop éloignée du centre f forme un angle fort aigu avec
la circonférence de l'anneau, l'étoile paraîtra dormir et on ne pourra
saisir exactement les instans où elle semble s'éteindre et éclore en-
suite , par des degrés insensibles* Cette erreur y qui variera suivant
la fatigue de l'œil, sera d'autant plus influente qu'elle s'appliquera
sur une corde plus courte. Il y aura donc une partie assez majeure
du champ rendue inutile pour les observations. Le principal avantage
de ce réticule consiste en ce qu'il est toujours bien placé, et qu'il
n'a pas besoin d'être monté parallactiquement ; mais aussi on ne
peut alors s'assurer si l'un ou l'autre des deux astres ne passe
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pas trop près ou trop loin du centre. On est donc exposé à fair6
souvent des observations qui ne pourront ensuite servir utilement.
Ou pourrait peut-être remédier a une partie de ces inconvéniens
en ajoutant un second anneau plus petit en dedans du grand , ce
qui permettrait d'observer plus près du centre ; et un rayon , dont
la pointe déliée répondrait à ae point , prouverait , en interceptant
l'étoile , si le passage a eu lieu au-dessus ou au-dessous du centre.
Il pourrait même servir à diriger la route d'une étoile de façon à
la faire passer par ce point , ce qui donnerait le diamètre direc-
tement.

Comme ces Ingénieux instrumens sont principalement employés
pour l'observation des comètes , il paraît convenable de les placer
dans un chercheur ou lunette de nuit, afin d'avoir plus de clarté
et sur-tout un plus grand champ , ce qui oblige d'employer de
préférence la combinaison achromatique d'oculaires de Campani, qui
donne un champ plus étendu que celle de Ramsden \ mais le foyer
se trouvant f dans cette construction, entre les oculaires, mobiles tous
deux et ensemble , la valeur des parties du réticule variera , noa
seulement suivant la vue de l'observateur , mais encore suivant le
degré de clarté ou les ouvertures de l'objectif qui changent le
foyer moyen. Les chercheurs ayant de grandes ouvertures à leurs
objectifs , qui ne sont cependant pas achromatiques , les aberrations
focales sont très-grandes , et d'autant plus sensibles à l'œil que
l'astre est plus lumineux. Pour les diminuer , on rétrécit , dans et
cas , les ouvertures ; mais alors la distance focale moyenne en est
alongée • il faudra donc trop souvent une nouvelle évaluation des
parties du réticule qu'on trouvera bien fastidieuse, quelquefois même
assez difficile , et entraînant toujours la perte d'un temps précieux.

Les inconvéniens que je viens de signaler m'ont engagé a chercher
cme nouvelle construction de réticule , exempte , s'il est possible ,.*
de la plupart de ces défauts , au risque peut-être d'en créer de
nouveaux. Voici de quelle manière j'ai essayé d'y parvenir , du
moins pour les observations orthogonales. Dans les autres cas > rin»
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clrnaîson s'obtient avec facilité et bien simplement. On peut même
appliquer aux observations circompolaires ce nouveau réticule, dont
la-construction s'exécute ainsi*

Des deux extrémités du diamètre ÀB (fig. O * et avec la même
ouverture de compas qui a servi à décrire la circonférence ACBD t

sur le diaphragme d'un chercheur f déterminez les deux arcs AC,
BD, de 6o° chacun. Par leurs extrémités, tires les parallèles ÀD *
CB , et le réticule se trouvera décrit. On pourrait le construire ,
ainsi qu'on le fait pour le rhombe , en évident la plaque du dia-
phragme et n'y laissant subsister que les trois lames tracées ; mais,
comme ce travail ne peut être exécuté que par un artiste habile,
qui conserve aux lames une largeur bien égale, en les taillant en
biseau exact , ce qu'on rencontre rarement loin des capitales ; on
pourra y substituer des fils métalliques qui, formés à la filière, seront
nécessairement d'un diamètre bien égal. Ils devront avoir assez d'épais-
seur pour éclipser l'astre pendant quelques secondes ; et , comme
ils ne se croisent pas , il ny aura pas^e superposition qui em-
pêche de les placer rigoureusement ^ans un même plan , sur une
Jes faces du diaphragme. Le fil équatorial ne servant qu*à placer
le réticule dans le sens du mouvement diurne, et nullement pour
les observations , pourra se mettre sur la face opposée. Je Pavais
Sabord disposé perpendiculairement au fil diagonal, comme on le
voit en EF ( fig. i ) ; mais j'ai trouvé ensuite plus convenable dfe
le rendre perpendiculaire aux fils parallèles ( fig. 2 ) ; la partie du
champ, ainsi hors d'usage, se réduisant à bien peu de chose.

Voyons d'abord les formules pour les observations orthogonales;
L'angie aux sommets À et B est de 3o° , et par conséquent
Coi.3o° ==1/3= 1,733. Soit t l'intervalle de temps entre les deux
premiers fils, réduit en arc de grand cercle , pour le premier astre;
soit tf la même quantité pour le second , et soit àD la
en déclinaison ; on aura

(0
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Les observations aux deux derniers fils donneraient le même ré-

sultat , sans qu'il fut besoin de connaître la valeur des parties du
réticule ; mais il convient d'observer aux trois fils » parce qu'on,
obtient ainsi une vérification avantageuse. La différence des temps
des passages à l'un ou à l'autre des deux fils parallèles fera con-?
naître la différence des ascensions droites ; mais h lorsque la décli-
naison sera forte , il faudra prendre la différence des milieux des
passages aux deux fils parallèles > dès que les intervalles de temps
compris entre eux ne seront plus égaux.

Si le réticule n'est pa£ monté parallacliquement , et qu'on n'ait
pas le temps de le diriger sûr le mouvement diurne , il suffira
d'observer le passage da l'un des astres aux deux fils parallèles,
pour calculer l'inclinaison; l'intervalle des fils étant connu, ou déter-
miné ensuite par plusieurs étoiles observées, si l'on veut, dans une seule
station, bien plus fadletnent que les diagonales ordinaires. Soit
donc a 'cette différence EK'^fig* 3 ) , h Tare CR intercepté , réduit
au grand cercle dans VoBservation oblique ? J l'inclinaison qu'on
connaîtra par

Cos.J=— ; (2)

Désignons actuellement par '* l'intervalle de temps entré les deux
premiers ou les deux derniers fils , pour le premier astre , et T

f pour
le second. dP étant là différence de la correction des passages à
l'un des fils parallèles , et D la déclinaison connue , nous ob-
tiendrons ? dans le triangle ÀQÏl,

et dans le triangle rectangle APR,
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Nous avons par conséquent

àP^2{±r^)S\nJS\n.(6o°±J) , (3)

dD=i5dP.Cosi)Cot.J • (4)

Dans le cas où Ton voudrait ne pas employer les lignes trîgo-
îiométriques , ou qu'on se trouverait obligé de se passer de leurs
tables pour les calculs , on pourrait recourir aux formules sui-
vantes, dans lesquelles mzz— =Cos./ et n= V *—"*2 ^ ~M/ _^_ — x

h m F a*

(6)

Les observations aux trois fils procureront deux résultats et une
vérification commode.

Lorsque les astres se trouveront dans les réglons circompolaires J
on ne se servira plus que des fils parallèles; et les deux obser-
vations qu'on y fera , pour chacun des astres, suffiront pour cal-
culer la différence d'ascension droite et la déclinaison inconnue.

Pour le prouver , soit P (iîg* 4 ) ^e P ^ e ^e ^a sphère céleste *
ÀBC Tare du parallèle intercepté entre les deux fils du réticule ̂
AG Tare de grand cercle correspondant ; nous trouverons

ou Sin. f #=Co$J0Sin. ~t i
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et aussi 5in,f a s
d'où enfin

Lorsque le réticule sera dirigé sur le mouvement diurne > on obtien-
dra ainsi la déclinaison inconnue : la différence d'ascension droite se
déduira de la différence des milieux des passages aux deux fiis*
Dans les autres positions du réticule , on remarquera que la va—
leur précédente de la déclinaison inconnue, indépendante de l'in-
tervalle des fils , ne sera pas sensiblement altérée par l'inclinaison *
tant que les arcs de grands cercles interceptés seront à peu près
égaux , ce qu'on pourra obtenir avec facilité, en dirigeant approxi-
mativement les fils parallèles vers le pôle. En effet , les arcs.
AB , CD ( fig. 5 ) étant parallèles -, si Ton suppose deux autres
fils AF , BG , qui leur soient perpendiculaires, l'arc FG qu'ils in-
tercepteront, sera égal à l'arc CD , compris entre les véritables fils.
On aura donc aussi, pour calculer la déclinaison , la même for-
mule que ci dessus (7), puisque l'intervalle des fils n'y entré pour
rien. Quant à la correction du passage au fil , le triangle sphérique
BPD , formé au pôle et aux deux points auxquels les parallèles
des astres rencontrent un même fil , nous donnera

OU

ou encore

L'angle
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L'angle Jf désigne bien la véritable inclinaison da parallèle, au

point où il rencontre le fil , mars non celle du grand cercle ou l'in-
clinaison moyenne que nous avons employée précédemment. Leur
différence, avec une déclinaison considérable, est à bien peu près
égale à l'angle au pôle correspondant à la moitié de l'intervalle de
temps T. On aurait plus exactement ( fig. 4 )

- * , J ^ J — A f

Les arcs de grands cercles interceptés ne sont cependant pa$
rigoureusement égaux. La formule (7), employée pour calculer les
observations obliques , ne donnera donc qu'une approximation com-
mode ; maisj comme il sera facile de diriger les fils parallèles à
peu près vers le pôle , on obtiendra presque toujours 110e exactitude
suffisante, sur-tout pour les régions polaires où il est bien difficile
d'obtenir des observations même passables. Toutefois on pourrait
désirer des formules plus rigoureuses. Cherchons-en donc de telles,
au risque de les avoir un peu plus compliquées. Les triangles,
sphériques APC ^ BPD (fig. 5 ) nous fourniront

&7i.PCS«i.ÀPC" n . „ _ Sin.VDSin.BPD
5 B Dôin.

Substituant les arcs aux sinus très-petits, et les valeurs des angles
au pôle trouvés ci-dessus (8) , on aura

dDCos.D'

Cos.DCos.(J+A) ' Cos.DCos.(J—A) *

donc

adDSîn.JSmACos.D' __

" Cos.DCos.(J+A)Gos.(Jr— A) "~^

Enfin ^ dans le triangle rectiligne rectangle CDR on a
Tom. XL ZQ
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ou

Substituant pour hf sa valeur, assez approchée I5T /COS.D / , et, plus
exactement 2C0S Z^Sin.^^CoUi^, déduite de l'équation Sin .^ '^ :

in.^T/ , transposant, et faisant pour abréger

en aura enfin

(*) On pourrait parvenir moins directement à d'auties formules , en pro-
jetant les données sur un plan tangent à la sphère au lîeu qu'occupent les
astres qu'on observe , ou passant même par les co-tangentes àes déclinaisons.
Soit donc alois Pf ( fig. 6 ) le point où Taxe de la sphère rencontre le plan ,
$I faisons

FG=a ,

Jtfous aurons

. ^ r

^ C o t D ' , b<=zCos.D Sin* ̂  ^ , Sin.^=Sin.D^Sin, V r ,
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On pourrait objecter contre l'emploi de tous les réticules , en

générai , que les*observations ne donnent que les*arcs dont les droites
interceptées entre les fils sont les tangentes, et qu'on leur applique ce-
pendant le calcul comme si c'était ces tangentes même Examinons cette
cause d'erreur, et cherchons à en apprécier la faible influence. L'ex-,
pression de la tangente ? en fonction de l'arc étant

Substituant, dans cette dernière équation ?"pour y 9 -y* kurs valeurs f ïivienàtst

ou 9 en transposant et quarrant r

4 { €o^4D/

®u , en réduisant ?

En posant , pour abréger r

on tire de là

et pa? suite
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«oit p une fraction quelconque , nous aurons

11 faudrait, dans l'expression de Tang.a/, substituer pour lf sa valeur , dé-
duite de la déclinaison D' , connue approximativement ; mais il sera plus con-
venable de chercher à dégager cette quantité même ; parce que se trouvant fonc-
tïori de Cos.D', sa déclinaison , considérable dans ce cas-ci , s*obtiendra , pai?
ce moje», ^vec plus d'exactitude. Reprenons pour cela l'équation

Ou bien

cela donne

rAyant, par supposition » une très-forte déclinaison , on pourra , sans appréhension ,
faire ShuD'-esi , dans l'expression de Sin.A' j mais il serait plus exact d'employer
la déclinaison connue à peu près. Enfin f nous aurons , pour la correction du
passage au fil

S S d P C )
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et

l'erreur sera donc

Différentiant cette expression , pour obtenir la valeur de p qui répond

au maximum , nous trouverons /?= - • ; substituant donc nous

obtiendrons, pour la plus grande erreur exprimée en seconde,

Pour un arc de i° , qui donne Jrz3600" , le maximum de Terreur
est 0^,14 ; pour 2° , ce sera i ^ i â , différence bien insensi-
ble , dans ces sortes d'observations ; ce tju'il convenait de
prouver , pour éloigner tout scrupule sur l'emploi des réticules >
dans le vaste champ des chercheurs.

Les angles soutendus par des lignes égales , dans le milieu et sur
les bords du champ , ne sont pas rigoureusement égaux. Pour
trouver jusqu'où peut s'étendre leur différence ; soient A , Â* deux
arcs parallèles , répondant à des intervalles égaux du réticule , mais
dont le premier se trouve dans le milieu du champ et le second
vers les bords , et soit dD la distance de Pun à l'autre; 00 trouvera

d'où

(io)" '



i46 NOUVEAU RÉTICULE.
supposant A et àD de i° chacun, nous aurons A-~A/==O//^ 55.
Pour 2e , ce sera 4">4 » erreurs encore à négliger, maïs qu'il
fallait vérifier , pour se rassurer entièrement.

Celte dernière correction est la même que celle ques donnerait
la différence de déclinaison des deux astres , lorsque l'un d'eux
serait dans l'équateur ; mais elle deviendrait d'autant plus forte
que la déclinaison serait plus considérable • on aurait en effet

Cos.D '

d'où

Pour de faibles déclinaisons les différentielles infinitésimales ne
sont plus suffisamment exactes, et il faut recourir aux différentielles
finies qui donneront

±~À'&ïnMD .

Si l'on fait D=o 'ou —dZ> , on retombera effectivement sur la for-
mule de correction précédente»
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GEOMETRIE ELEMENTAIRE.

Solution des problèmes proposés au Concours général
des élèves de mathématiques spéciales de Paris,
le 10 de juillet 1820;

Par M. TREUIL , professeur de mathématiques au collège
royal de Versailles > et à l'école royale militaire de
Saint-Cyr.

JLROBLÈME L Un cercle étant donné, dans un plan horizontût f

on demande 9

i.° De faire voir que, si Von coupé un cône droite dont ce
cercle soit la base, par une suite de plans parallèles et verti~
eaux , les sections résultantes seront des hyperboles qui auront
leurs asymptotes parallèles ?

2.9 De trouver sur la verticale élevée par le centre du cercle le
point où il faut placer le sommet pour que les hyperboles dont
il s'agit soient èquilatères ?

Solution. Soient $ ( fig. 7 ) le sommet du cône ; O un quel-
conque des points dé son axe , par lequel soit conduit un plan
horizontal; GH un diamètre de cette section, perpendiculaire au
plan coupant , MN la trace du plan coupant sur cette même section
circulaire; P l'intersection de MN et GH 5 AB la trace du plan
coupant sur le plan du triangle GSH ; A et B les intersections de
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cette trace avec SG et SH ; C le pied de la perpendiculaire abais-
sée de S sur AB -7 * l'angle générateur du cône ; et enfin ia la
longueur AB,

Soit pris le plan coupant pour celui des coordonnées rectangulaires;
ÀB étant l'axe des oc et le point A l'origine • et les % positives étant
comptées de A vers ?• Soient , en conséquence AP=# et PM=y •

Les triangles rectangles APG , BPH donnent

mais on a

HF ou ya=PG.PH -,

donc

telle est donc l'équation de la courbe , que Ton reconnaît être une
hyperbole.^

Si l'on veut, transporter l'origine en C , il faudra changer x en
j?—a 7 et l'équation deviendra

équation d'une hyperbole rapportée a ses diamètres principaux , et
dans laquelle le demi-second axe a pour longueur #Tang.«e.

Donc , d'après les théories connues , l'équation commune aux
deux asymptotes de la courbe est

ces asymptotes font donc , pour toutes les section* parallèles à
celle
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celle que nous avons considérées , un angle constant avec l'axe
transverse de la courbe. ; puis donc que cet axe transverse est cons-
tamment parallèle a lui-même , et qu'il en est de même du plan
qui contient cet axe et l'asymptote t il en résulte que les asymp-
totes des diverses ^sections doivent être parallèles chacune à cha-
cune (*).

Pour répondre à la seconde partie du problème , on supposera
égaux les deux demi diamètres principaux ; ce qui donnera aT?ang*œ~a $

ou Tang.««=i, ou *;=45O , comme on pouvait bien s'y attendre.
Ainsi, pour construire le cône droit dans lequel les sections paral-
lèles à Taxe sont des hyperboles équilatères , il ne s'agit que de
prendre sa hauteur égale au rayon de sa base (**)•

(*) II est connu que toutes les sections parallèles faites , non seulement
dans un cône droit , mais même dans un cône oblique ou dans une surface
conique quelconque , sont âes courbes semblables et semblablement situées
tant entre elles que par rapport au isommet de la surface,, qui en est un
point homologue commun.

On voit par là que , si le plan parallèle à ceux des sections, conduit p r r

le sommet , passe dans l'intérieur de la surface conique , auquel cas il ]a
coupe suivant àes droites , les sections seront des courbes à asymptotes recti-
lignes doî:Ê les asymptotes seront respectivement parallèles à ces droites , et
par suite parallèles chacune à chacune d'une section à l'autre ; ainsi la propo-
sition est vraie pour des sections parallèles faites sous une inclinaison quel-
conque , dans une surface conique quelconque.

Dans le cas particulier du problème propose' , les asymptotes des diverses,
tections sont toutes parallèles aux droites déterminées dans le cône par un
plan conduit par son axe f parallèlement à ceux des sections , et les projections
orthogonales de ces droites sur les plans des diverses sections sont les asymp-
totes même de ces sections. Ainsi , non seulement ces asymptotes sont paral-
lèles, mais elles sont toutes situées sur les deux faces d'un même angle dièdre
circonscrit au cône s et dont l'arête est horizontale.

J. D. G.
(**) Plus généralement, si , sur une base circulaire donnée, on voulait construire

un cône oblique tel que les asymptotes des sections hyperboliques faites dans
Tom. XL 21
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PROBLÈME II. On donne le centre et le rayon d'une sphire j

et on propose de démontrer qu'un plan quelconque perpendiculaire
au rayon coupe, suivant un cercle , tout cône qui a son sommet à
ïextrèmitè de ce rayon et pour base un quelconque des cercles
de la sphère ?

Solution. Pour résoudre cette question nous allons d'abord dé-
montrer que si 7 ayant coupé un cène oblique à base circulaire
par un plan perpendiculaire à celui de sa base , passant par le
centre de cette base et par le sommet du cône, on fait dans ce
cône une section perpendiculaire à ce plan , de telle sorte que cette
section fasse avec les deux arêtes déterminées par le plan passant
par Va$e, les mêmes angles que fait le plan de la base avec ces
mêmes arêtes , mais en sens inverse ; la section sera circulaire.

Soit S ( fig. 8 ) le sommet d'un cône oblique à base circulaire ,
et soit À/SB/ l'angle résultant de sa section par le plan conduit
perpendiculairement à celui de sa base , et passant à la fois par
le centre de cette base et par le sommet du cône. Soit faite dans
ce cône , perpendiculairement à ce plan , une section ÀMBN , cou-
pant, suivant ÀB , le plan de l'angle A /SB /, de telle sorte que
l'angle SAB soit égal à celui que fait SB avec la base du cône ,
et que par conséquent l'angle SBA soit égal a l'angle que fait SA
avec cette même base. Il s'agit de démontrer que cette section est
circulaire.

ce cône , par une suite de plans parallèles à un plan fixe donné, fissent entre
elles un angle égal à un angle donne ; il ne s'agirait que de mener, dans
la base donnée , une corde quelconque , parallèle au plan donne' ; de con-
duire , par cette corde , uu plan parallèle à ce même plan ; de construire%
dans ce dernier plan , et sur celte même corde un arc capable de l'angle donné
et d'établir le sommet du cône en l'un quelconque des points de cet arc. Ou
•voit qu'il reste , dans cette construction, beaucoup d'arbitraire qu'on peut ruettre
à profit pour satisfaire à des conditions donnée.**

J. D. G.
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Pour cela, par l'un quelconque M de ses points; concevons une

section A'MB'N. parallèle a la base du cône, dont les intersections
respectives avec le plan de l'angle A'SB' et le plan AMBN soient
À/B/ et MN, se coupant en P sur AB ; cette section sera circu-
laire et perpendiculaire 7 comme AMBN au plan A'SB7 ; d'où il
résulte que MN sera perpendiculaire a ce plan, et conséquemment
à AB et A'B'. De plus , les angles PBA' et PA'B seront respec-
tivement égaux aux angles PB'A et PAB' ; les triangles A'PB et
APB/ seront donc semblables et donneront, par conséquent >

d'où

PA'PB'-PAPB ^

maïs ? par la propriété du cercle ,

PM*=PA' .PB ' ;

donc aussi

donc enfin îa section ÀMBN est un cercle, dont AB est. UÏI
diamètre (*).

(*) Cette propriété du cône oblique, à base circulaire y peut encore être dé-
montrée comme il suii. Concevons toujours , par la droite qui joint le sommet
au cenlie de la base , un plan perpendiculaire au plan de cette base , lequel
déterminera deux droites sur la surface du cône. Concevons que, par la droite
qui divise l'angle de ces deus-là en deux parties égales , on conduise un second
pian , perpendiculaire à celai de cet angle ; ce dernier plan , comme le pre-
mier, divisera la surface conique % considérée comme indéfinie, en deux parties
exactement sjméiriques et même superposables ; d'où il suit que si , par une
droite menée » clam m second plan » perpendiculairement au premier, on fait
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Cela posé , soient C , le centre d'une sphère ( iîg. 9 ) et CS

l'un quelconque de ses rayons. Faisons de S le sommet d'un cône
ayant pour base l'un quelconque des cercles de la sphère ; par CS
et par le pôle de ce cercle soit conduit un plan qui déterminera
sur la sphère un grand cercle GSH ? coupant le cône suivant les
droites SA7, SB''. Soit GH le diamètre de ce cercle perpendiculaire
à CS, coupant SA/ et SBy respectivement en B et A. À'B' sera
un diamètre de la base du cône } et le plan de notre grand cercle
sera un plan perpendiculaire à celui de cette base passant par son
centre et par le sommet du cône.

L'angle SA'B' ayant pour mesure la moitié de Tare SGB ;, c'est-
à-dire y la moitié de SG+GB7 , et l'angle SAB ayant pour mesure
la moitié de SH+GB' ; à cause de S H = S G , ces deux angles seront
égaux , d'où il suit qu'il en sera de même de SB'A' et SBA.

Donc , d'après ce qui a été démontré ci-dessus , si par GH
on conduit un plan perpendiculaire à CS , ce plan coupera le
cône suivant un cercle dont AB sera un diamètre ; toutes les
sections du cône par des plans parallèles à celui-là, c'est-à-dire §
perpendiculaires à CS seront donc également circulaires.

au cône deux sections formant, en sens inverse ? des angles égaux avec ce même
plan, ces sections seront des courbes égales ; mais 3 si Tune d'elles est paral-
lèle à la base du cône , elle sera circulaire ; donc alors l'autre le sera aussi.
On voit par là ( Rg. 8 ) que la droite qui divise l'angle À'SB' en deux parties
égales doit faire des angles égaux , en sens inverse avee AB et Â'B'.

J, D. G.
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Solutions anaîiticjues des mêmes problèmes ;

Par M. G E R G O N N E .

AJES solutions qu'on vient de lire ne laissent sans doute rien a
désirer du côté de la rigueur et de la brièveté ; mais , comme les
problèmes auxquels elles se rapportent ont été proposés à des élèves
de mathématiques spéciales (*) , on peut présumer qu'il était dans

(*) Pendant combien de temps encore conservera-t-on cette dénominafion
ridicule de mathématiques spéciales ? Quand bien même on voudrait entendre
par là que le cours ainsi nommé est destiné aux élèves qui se consacrent spé-
cialement à l'étude des mathématiques , outre que l'ellipse serait par trop forte,
cette ellipse serait un véritable mensonge ; attendu que les élèves qui , dans
nos écoles , suivent les cours de mathématiques dites spéciales , suivent en même
temps des cours de physique et des cours qu'on appelle, on ne sait trop
pourquoi , cours de philosophie.

Ceci nous rappelle d'avoir un jour entendu un jeune homme que Ton inter-
rogeait sur la division logique , répondre que , par exemple , les mathématiques
se divisent en mathématiques élémentaires 9 mathématiques spéciales et mathé-
matiques transcendantes*

Que l'on tolère dans le monde des locutions vicieuses , à la bonne heure : mais 9

puisqu'enfin c'est par le langage que les idées s'introduisent et se classent dans notre
esprit ? on devrait du moins mettre toutes sortes de soin à rendre correcte
la langue qu'on parle dans les écoles.

Cette langue est vicieuse sous un grand nombre d'autres rapports. Par exemple ,
ces expressions : Jairt sa médecine 9son histoire naturelle 9 ses mathématiques 9

etc., nous sembleraient tout-à-fait sauvages } et cependant on dit : Jaire son
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l'intention de ceux qui en ont faît choix qu'elles fussent résolues
analitiquement. Si donc je m'étais trouvé au nombre des eoneurrens,
je me serais cru tenu en conscience de les traiter ainsi ; et voici
de quelle manière j'aurais procédé.

Première question. Soit pris pour plan des xy le plan du cercle
donné comme base du cône droit dont il s'agit ; et soit pris son
centre pour origine ; son axe sera ainsi dans l'axe des z. Supposons
en outre que son sommet soit du côté des z positif. Si r est le
rayon de sa base , F équation de cette base sera

Si, de plus, on appelle k sa hauteur , les équations d'une droite
menée d'une manière quelconque par son sommet seront de la
forme

x = M(z—k) ; y=N(z—k) ;

M et N étant deux indéterminées.
Cette droite percera le plan des xy en un point dont les équa-

tions seront

si donc Ton veut que cette même droite soit menée sur la sur-

âroit 9 sa rhétorique , sa philosophie , etc., à peu près comme on dirait >%

Jfaire sa barbe ou ses ongles, l/expression Jaire sa philosophie ne pourrait
signifier quelque chose qu'autant qu'on la considérerait comme l'équivalent de
celle-ci : se jaire une philosophie à soi ; or, rien n*est moins propre à atteindre
ce Lut que les cours de nos écoles » où Von nous donne une phiïophie ta mie

Jaite ; et souvent encore quelle philosophie !
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face du cône , il faudra que ces valeurs de x et y satisfassent a
l'équation de sa base ; c'est-à-dire , qu'on devra avoir

Telle est donc la relation qui doit exister entre M et Nf pour
que la droite dont les équations sont

«oit sur le cône. Eliminant donc M f 2V entre ces trois dernières
équations f l'équation résultante

sera celle de la surface convexe de ce cône.
Supposons présentement que le plan des yzf qui est seulement

assujetti à passer par Taxe du cône, ait été choisi parallèle à celui
des sections verticales dont il est question dans l'énoncé du problème;
alors , pour avoir les courbes déterminées par ces sections , il ne
s'agira que de considérer x dans l'équation du cône comme une
constante arbitraire , exprimant la distance variable du plan coupant
à Taxe du cône. Si f en outre, on transporte l'origine au sommet,
ce qui se réduit à changer z—k en z 9 l'équation pourra être
mise SÔUS cette forme

équation que Ton reconnaît pour être celle d'une hyperbole dont
JiX

le demi-axe transverse est — et dont le demi-second axe est $.
T
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Les projections des asymptotes sur le plan des yz auront donc
pour équation commune

Tz

c'est-à-dire 7 que ces projections ne seront autre chose que les Inter-
sections du cône avec le même plan ; ces asymptotes seront donc
toutes parallèles , et situées sur les deux faces d'un angle dièdre
circonscrit au cône.

Si l'on veut que les hyperboles soient équilatères, il faudra qu'on ait

r- =: i ou £ = r , c'est-k-dire, qu'il faudra prendre la hauteur du cône
H.

égale au rayon de sa base.

Deuxième question. Soit pris le centre de la sphère pour origine
des coordonnées rectangulaires , le rayon donné 9 que nous repré-
senterons par r , se confondant avec l'axe des z positifs ; l'équa-
tion de cette sphère sera

x*+y*+z*=7* . (i)

Supposons que la base du cône , considérée comme un plan In-
défini > ait pour équation

le concours des équations (i , 2) exprimera le périmètre de cettô
base.

Les équations d'une droite menée d'une.manière quelconque par
le sommet du cône seront de la forme

*=M(z-r) , r = J V ( z - r ) ; (3)

oà M et H sont deux indéterminées. Cette droite percera le
plan
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plan (2) en tin point dont on aura les coordonnées en combinant
entre elles les équations ( 2 , 3 ) . On trouvera ainsi pour ces
coordonnées

k—r

k—(pM+çN)r

Si donc on veut que la droite (3) soit sur le cône , il faudra que
ce point soit sur la sphère , c'est-à-dire , qu'on devra avoir

*

ou bien , en réduisant ,

-o : (4)

Telle est donc la relation qui doit exister entre M et N pour que
la droite (3) soit sur la sphère. Eliminant donc' ces deux indé-
terminées de cette équation (4) > au moyen des équations (3)
l'équation résultante

(5)

sera celle du cône , considéré comme surface indéfinie.
Si donc on veut savoir suivant quelle courbe ce cône est coupé

par le plan des sy 7 il suffira de supposer z = o dans l'équation
précédente qui deviendra ainsi

Tom.
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=o , (6)

équation que Von reconnaît appartenir à un cercle. Et comme toutes
les sections faites à un même cône par des plans parallèles sont
des courbes semblables , il en résulte plus généralement que , si
un cène a son sommet au centre d'une sphère et pour base
un quelconque des cercles de cette sphère 9 toute section du
cône par un plan perpendiculaire au rayon qui ça à son som~
rhet sera une section circulaire ; c'est le théorème qu'il s'agissait
de démonter ; il revient à dire que , pour un spectateur qui a
ïœil en un point de la surface d'une sphère, et pour un tableau
perpendiculaire au rayon mené à ce point 7 la perspective de tout
cerclé de ta sphère est elle-même un cercle ; c'est le principe de

r

la projection de Ptolemde.
L'équation (4) peut être mise sous cette forme

d'où ForT voit que ies équations du centre du certle sont

cczz*

et qu'en désignant par R Son rayon, on a

II est aisé de voir que les équations du rayon perpendiculaire à
la base du cône sont
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et que la longueur de la perpendiculaire abaissée du centre de
sphère sur le plan de cette base est

d'où il suit que le rayon de la base du cône sera

En conséquence, si Ton représente par ? Tare de grand cercle qui
joint le pôle de cette base à sa circonférence P on aura

Cela posé, considérons 7 sur la sphère, un autre cercle servant
de base à un cône de même sommet que le premier j et supposons
que l'équation du plan de ce cercle soit

z=ptx-\-q'y+kf » (i 2)

La section de ce nouveau cône par le plan des xy sera encore un
cercle ; lea équations de soi* centre seront
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&: f~&, (.3)

en désignant par iZ' son rayon,-on aura

Les équations du rayon mené au pôle du cercle-base seront

et en appelant ff l'arc de grand cercle qui joint son pôle à sa
circonférence , on aura

(16)

En conséquence, si l'on représente par D la distance des centres
des sections des deux cônes par le plan des scy et par $ l'arc de
grand cercle qui joint les pôles de leurs bases , on trouvera

ï^—lhï) S f

COS J=a-

On aura d'après cela
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donc enfin

—D a . Cos.*—

or , la première de ces deux expressions est celle du cosinus
de l'angle sous lequel se coupent les perspectives des deux
cercles de la sphère y et la seconde est celle du cosinus de
l'angle sous lequel ces deux cercles se coupent eux-mêmes ;
donc , dans la projection de Ptolèmée 9 les pei^speciives de
deux cercles quelconques de la sphère sont deux cercles qui se
coupent euoc - mêmes sous le même angle que ces deux-là. Cette
intéressante remarque , qui ajoute un si grand prix au système de
projection de Ploiémée , est due, je crois, à M. Puissant.

Si donc les deux cercles de la sphère sont tangens l'un à l'autre ;
leurs perspectives le seront également ; ce qui est d'ailleurs évident.
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Si donc on proposait de décrire un cercle qui en touchât trois autres
donnés sur une sphère , il suffirait pour résoudre le problème de
construire , pour un même plan , les projections circulaires de ces

trois cercles, suivant la méthode de Ptolémée ; de décrire , dans
ce plan , un cercle tangent à ces trois-là , et de chercher ensuite
quel est le cercle de la sphère dont ce dernier est la projection ;
Ce cercle de la sphère toucherait les trois autres , et serait consé-
quemment le cercle cherché. Il serait curieux de voir à quoi re-
yiendraît finalement cette solution ; mais c'est un soin qu'il convient
de laisser à M. Durrande , qui s'est déjà occupé avec tant de suc-
cès de ces sortes de problèmes (*)•

(*) Nous saisirons , avec empressement f cette occasion de réparer une
omission qui nous est échappée , en préparant le mémoire de M. Durrande
qui se trouve au commencement de ee volume ; omission qui rend incomplète
la démonstration du théorème du n.° 21 ( pag. i3 ) . La démonstration que
l'on donne en cet endroit ne convient en effet qu'au cas où » comme dans
la figure 10 , le point de coueours des axes radicaux n'est intérieur à aucun
des trois cercles ; mais elle ne saurait s'appliquer au cas ou , comme dans
la figuie 11 , ces trois cercles ont une partie commune* Voici comment on
peut raisonner dans ce cas.

Soient C , O f Q* les trois cercles > AB la corde commune de C et C",
À'B' celle de C e t C / ; , coupant la première en O , et enfin A" et B" les
intersections des deux cercles C yet C;. Si ,ia c^oite menée par B" et O ne
passe pas par le point h!f , elle coupera le cercle C en quelque point X et
le cercle O en quelque autre point X ; , et Ton devra avoir , par les pro-
priétés des cordes qui se coupent dans un même cercle

OA .OB ==OA'.OB' »
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QUESTIONS PROPOSÉES.

Problème de Géométrie.

JL/E même qu'un cercle étant donné sur un plan , on sait trouver
son centre et son rayon ; on sait aussi , lorsqu'une section conique
est donnée, trouver son centre , si elle en a un , ses sommets ,

d'où on conclura , en multipliant et réduisant 9

OX'=OX 5

les deux points X , X' doivent donc se confondre entre eux, et conséquem-
ment avec le point A" ; la droite menée par B" et A" doit donc passer par
le point O ; les trois axes radicaux se coupent donc au même point,

Cette démonstration s'appliquerait également au cas de la figure 10 ; maïs
elle ne saurait convenir à ceux où tout ou partie des cercles seraient exté-
rieurs les uns aux autres , et il faut alors recourir à celle de la page i3,

Tontes ces remarques avaient été faites par M. Durrande ; mais la précipi-
tation avec laquelle nous avons arrangé son me'moire nous les a faites à regret
négliger.

Il y a exactement les mêmes observations à faire sur la démonstration du
théorème du n.° 47 ( Pag« 22 ) , que Ton complétera d'une manière tout-à-
fait analogue.
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ses foyers ; son paramètre et les autres élémens qui la
minent.

Mais, tandis qu'on sait aussi trouver le centre et le rayon d'tm
cercle dont un arc seulement est donné , personne encore n'a
enseigné à trouver les divers élémens d'une section conique
dont on connaît seulement un arc qui ne contient aucun de ses
sommets.

C'est ce problème que Ton recommande ici à l'attention des
géomètres.



Tom,XI, plan.III,
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COMBINAISONS.

Solution de quelques problèmes dépendant de la théorie
des combinaisons ;

Par M. ***.

J E me propose de traiter ici quelques problèmes de combinaison
dont je n'ai encore rencontré la solution nulle part. Indépendant
nient de l'attrait que présentent toujours ces sortes de problèmes
et de l'utile exercice qu'ils donnent à l'esprit ; «il sait qu'ils se*
rattachent a diverses théories intéressantes , et notamment à celle
des probabilités.

PROBLÈME L De combien de manières peut-on faire n-parts,
avec m choses toutes différentes les unes des autres , avec la faculté
de faire les parts si inégales qu'on voudra ; mais sous la con-
dition d'admettre au moins une chose dans chaque part ; c est-à-
dire , de ne point faire de parts nulles 7 et d'employer la totalité
des choses, dans chaque système d& répartition ?

Solution. Ayons d'abord égard au rang qu'occupent les parts,
dans chaque système de répartition ; c ' es t -à -d i re , considérons
d'abord comme systèmes de répartitions différens ceux-là mêmes o4
les mêmes parts sont disposées dans un autre ordre ; il nous sera
facile ensuite de voir ce que doivent devenir nos formules, lorsqu'on
ne veut plus tenir compte de cette différence,

Tom. XI, n.° VI, i.Cr décembre 1820. &
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Si d'abord on ne veut faire qu'une part unique , on sera contraint de

ta composer d«s m chéses , %h ï|uîTîeHfe jttHiftËa <|#e dftme%to€f*iè#è ;
de sorte que le nombre des manières de faire une part sera donc
simplement i .

S'agit-il de faire deux parts? >̂n pourra prendre successivement,
pour la première 1 , 2 , 3 , .... m—I , choses , et tout le reste pour
la seconde ; mats \ en général , on pourra composer la
part de k choses d'un nombre de manières exprimé par

m m—i m—2 m—fc-4-i
, . _ _ ^ ^

1 a

et puîsqu'alors la seconde part se trouve tout-à-fait déterminée,
il s'ensuit/que, suivant qu^on voudra faire la première part de 1 ,
2 f 3 * ...*.. m~-% , m-—i choses * le nombre des systèmes 4^ répar-
tition possibles sera

_ _ m
P o u r 1 c h o s e . . . • • « . . . . —

m m—I
I 2.

m m—-1 m—«2

m m*—t

1

Le nombre total des modes de répartition en deux parts sera donc
la somme des ces termes, que Von reconnaît de suite être
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— 2 = 2m—2 .

Il est clair d'ailleurs, que ces divers systèmes d« répartition ne
diiFéreront deux à deux que par le rang des deux mêmes parts
dont la première dans l'un sera la. seconde dans l'autre.

S'agît—il de faire trois parts ? si l'on veut composer la première
de k choses, cela se pourra d'un nombre de manières exprimé par

m m-—ï 7T2—a
• • •6

il restera ensuite à répartir en deux parts les m—k choses restantes ;
ce qui, d'après ce qui précède ; pourra se faire d'un nombre de
manières exprimé par

ainsi Ip nombre total des systèmes de répartition où la première
part sera composée de k choses sera donc

• f 2 *
1 2 ^ V

faisant donc successivement, dans cette formule , k~ i ? 2 , 3 ,...%

772—2 , m~i y on aura , pour le nombre des systèmes de répartition
relatif a chaque nombre de choses adopté à la première part P

savoir :

Pour i chose . . . . . . . . . ^-(zmml—2) ?
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3 m m—I m—-2 f t ^
— ï - ( 2 m > < J — 2)

m m—1

— 1 — ( 2 — 2 ) ,

à la ve'rité, il est impossible d'admettte 772-*-1 choses à la première
part, lorsqu'il en faut faire trois; mais aussi le facteur 2—-2 réduit
k zéro le nombre des systèmes de répartition qui convient à ce cas»

Le nombre total des modes de répartition possibles en trois parts
sera donc la somme de tous ces nombres ; mais cette somme se dé-
compose dans les deux séries que yoiei

m «. . < m *»•—-i ^ m . m m— 1 m—3 , . , m m— ï yn

m , m m—1 , m m—-1 m*—2 m m«"-i . m

la somme de la première est évidemment

et celle de la seconde

réunissant donc ces deux sommes, nous aurons pour le nombre total
des système» de réfwtiuon de no§ m choses en trois part£
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On conçoit d'ailleurs que ce? systèmes ne différeront six à six que
par les rangs que les trois mêmes parts y occuperont.

S'agit -. il de former qUïïtrç paris ? en se déterminant^ ^ former la
première de k choses, on pourra choisir celle part d'un nombre
de manières exprimé par

il restera ensuite à faire trois parts dès m—k choses restâmes, ce
qui , d'après ce qui précède , pourra se faire d'un nombre de ma-
nières exprimé par

d'où il suit que le nombre total des modes de répartition oà la
première part comprend k choses, e*t

m m—1 m—2

faisant donc successivement, dans cette formule , i=i, 2 t 3 ,**.i
m—1 , on trouvera, pour le nombre des systèmes de répartition
relatif à chaque nombre de choses adopté à la première part, savoirs

Pour 1 chose. . , . . . — (3«"»-3.a«*f+3)



3 . : . .

9

m7W—i . . . — (3 —3.2 + 3 ) .

4 [ r^ ~_ Z

A la \(5rîté , lorsqu'on doât répartir m ^choses- erf quatre parts , la
première part n'en saurait admettre m — i , ni même m—2 ; mais

^+ï31 et 3^-3 2 + 5 , qui
mus d'çuK-mêmes.

Le nombre total des systèmes possibles de répartition dç nos m
choses en quatre parts sera^ donc te ^omm^ de toutes ces foi mules,
laquelle se résout évidemment en ces trois suites

:f «=
m m r 1 m m " - ï mm~* • , ^ 772—1 , m \

lesquelles Deuvent^^sjjJtp^^jçespc^veSienlJêin^Iajcées pas les ex-
pressions suivantes
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En conséquence, le nombre total des systèmes de décompositions
en quatre parfs sera ' x

bien entendu que ces systèmes ne différeront, 24 à 24 > que par
les rangé respectifs des quatre mêmes parts.

Un raissonnement tout-à-fait semblable prouvera que le nombre
total des systèmes de décomposition en cinq parts est la somme
des nombres

~ 3 m — 1]= — 44«+4.3m / +4 9

c'est-à-dire , que le nombre de ces systèmes est

On trouvera pareillement que , pour le cas do la x^artkîon
six parts f le nombre des systèmes est

et ainsi de suite.
Rapprochons présentement les uns des autres ces divers résultats.

Nous voyons que , suivant le nombre des parts qwe l'on veut faire ,
le nombre des systèmes de répartition possibles est, savoir j
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d e a . . . . , : ûm—2 ,

de 3 * 3m—3.2m+3 ,

de 4 4m—4.3m+6.2w—4 ,

de 5 5^^5 .4^+ i o . 3 « — Ï O ^ W + 5 ,

de 6 . • . 6m—6.5m+i54«—ao3^i5.a«—-6 ,

or , la loi de ces résultats est manifeste , et l'on ne peut conclure
de suite , comme il serait d'ailleurs facile de s'en assurer par une
induction rigoureuse, que l'en peut distribuer en n parts m choses
toutes différentes les unes des autres, de maniète à ce qu'aucune
part ne soit nulle, d'un nombre de manières exprimé par

î=? (» -3)-+

pourvu toutefois que l'on admette comme systèmes différens ceux-
là même où les mêmes parts ne sont simplement que transposées.

Avant d'aller plus loin, observons que , comme il est impossible
de faire n parts effectives avec un nombre de choses infeiieur à
n\ et que corftme t ,jf*un autre côté, les diverses manières de faire
n parts avec n choses ne sont que les diverses manières de per-
muter ces choses entre elles ; il s'ensuit qu'on doit avoir

( 0 +
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f y r 3 V 4 +

1 **~~T'~1T

Nous croyons devoir consigner ici ces diverses relations , qui d'ail-
leurs se vérifient parfaitement, dans les cas particuliers , parce que
souvent elles peuvent être utilement employées , comme moyens
de réduction (*). Elles peuvent aussi, dans certains cas , faciliter
des éliminations.

Que , par exemple , il faille tirer la valeur de ai des quatre
équations

(*) Elles- sont du genre de celle donnée par M. Sarrus , à la page 22.1 du
précédent volume , et on peut > comme par rapport à celle-là , se demander
si elles auraient lieu encore dans le cas où n serait fractionnaire ou négatif. Ou
peut , au surplus, de leur combinaison, en déduire une infinité d'autres. SI M

par exemple , on en prend la somme , on aura

1 i- „ -i n nmm^X r / NH I . n n*"*1 *-*"*. [»«—l] [(/,-l)«—j]H ., ,

[(«—2,)n—1]~ . . . . . . ;+;/23=s 1.2.5 n .

J. D. G.

Tom. XL M
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en remarquant çpie , tfaprès ce qui précède

4-4.3+6.2-4=0 ;

.aa—4=o ,

4*—4.3*+6.a*—4=1.2.34 ,

on voit que, pour parvenir au but , il ne s'agit, que de prendre
la somifre des produits respectifs de ces quatre équations
•—4> H"6 > ""̂ 4 > c e V1* donne sur-le-champ ,

Tout ce que nous venons de dire est, comme nous l'avons ob-
servé , relatif au cas où Ton admet, comme autant de différens
systèmes de répartition 9 ceux-là même qui peuvent ne différer les
uns dés ^autres que par les rangs que les mêmes parts y occupent *5
mais si , *au contraire } on ne veut admettre , comme systèmes
différens, que ceux-là seulement qui ne sont pas , en totalité f composés
des mêmes parts, on considérera que , dans le cas de n parts,*par
exemple, un seul système , pris au hasard, peut , par la simple
permutation des parts dont il est forme , en fottriïiri un nombre
i.2.3*4...«.& f lesquels ne doivent plus compter ici que pour une
part unique •, d'oiuil suit que > dans le cas de n parts , le nombre
des systèmes de répartition réellement cfifférens ne doit plus êtr©
simplement que
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a i n s i ; c e s e r a d a n s l e c a s d e u n e p a r t . . . • I . . ; . — • ;

d e 3* • : : * • r . . . . i . . . . . .

, _ 3"—3.

de/î-

:
1.2.3

de 6, ; . • ;

et ainsi des autres ; d'oà Ton voit que ces sortes de fonctions n'ont
que Fapparence fractionnaire.

Si Ton demande , par exemple , de combien de manières dix
fruits , tous d'espèces différentes , peuvent être répartis entre quatre
personnes, on trouvera ; pour le nombre cherché,

mais , si Ton demandait simplement de combien de manières on peut
faire quatre parts avec ces dïx fruits , sans aucun égard aux per-
sonnes à qui ces parts devraient être destinées, la réponse serait
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PROBLÈME IL De combien de manières peut-on faire n parts f

avec m choses toutes différentes les unes des autres , lorsqu'on a
la faculté de faire tant de parts nulles qu'on peut , sous la con~~
diiion cependant d'employer toutes les m choses dans chaque mode
de répartition ?

Solution. La solution de ce problème est très-facile a déduire
de celle du pioblème qui vient d'être résolu 7 ainsi qu'on va le
voir ; mais il s'en faut que les résultats qu^on en obtient soient
aussi simples que ceux que nous avons obtenus du premier.

D'abord ; si Ton ne veut faire qu'une seule part , on ne pourra
faire de parts nulles ; tout se passera donc comme dans le premier
problème , et Ton aura , pour le nombre des modes de répartition 7 \*

Si Ton veut faire deux parts , on ne pourra faire qu'une seule
part nulle 7 et d'une seule manière seulement , et conséquemment
le nombre des systèmes qu'avait donné le précédent problème pour
ce cas devra simplement être augmenté d'une unité-, il sera donc,
dans le cas actuel ?

Si Ton veut faire trois parts , on pourra faire ufte ou deux parts
nulles. On pourra faire une part nulle d'autant de manières qu'il
y en a de faire , avec m cboses, deux parts dont aucune ne soit
nulle ; e t , quant à deux parts nulles, on ne pourra les faire que
d'une manière unique , puisqu'on sera contraint de tout mettre dans
la troisième. Le nombre total des systèmes de répartition en. trois
parts sera donc

3m—-3.

ou bien ; par ce qui précède ,
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Sî Ton veut faire quatre parts, ou en pourra faire une , deux

ou trois nulles. On en pourra faire une nulle d'autant de manières
qu'il y en a dev faire, avec m choses, trois parts dont aucune ne
soit nulle. Oa en pourra faire deux nulles d'autant de manières
qu'il y en a de faire, avec m choses , deux parts dont aucune
ne soit nulle. Enfin , on n'en pourra faire trois nulles que d'une
manière unique. En conséquence , le nombre des systèmes de quatre
parts sera ici

" ÎÂ34 '

@u y d'après ce qui précède ,

M-.4

i.a.3 1.2.3.4

En poursuivant le même raisonnement, on trouvera qu'ici
nombre des systèmes de cinq parts est

.
1.2.3.4 mmm 1.2.3.4.5

que le nombre des systèmes de six parts est

i.a.3.4.5.6 '

et ainsi de suite.

Gomme ces résultats se présentent sous une forme peu symé-
triques , il vaudra peut-être mieux se rappeler simplement, dans la
pratique, que , pour obtenir la solution du problème proposé, il faut
prendre la gomme d'autant de termes de la suite ? très*régulière j
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f

T ?

aw-f.5

qu'il y a de parts à faire. ••
S i , par exemple, il s'agit, comme ci-cTessus , de repartir dix

fruits ^

* • - ' ! <

<j«e le n©B»fee'4tes systèmes- *i-t«é^«ptkio» sers
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Maïs ceci suppose qu'on ne tient aucun compte de la manière

dont les parts sont disposées 5 or , il y a des cas où il est néces-
saire d'avoir égard à leur disposition; et tel est , en particulier,
celui où il s'agirait de répartir les dix fruits entre quatre personnes;
car le systèrûe de répartition où , par exemple , telle personne âutait
tout, ne pourrait être assimilé à celui où cette même*persônne n'aurait
rien. Voyons donc comment on pourra avoir égard a cette circonstance.

S'il ri'est questiftti que d'une part unique, on ne pourra, daîis
ce cas, comme dans le précédent, la faire que d'#72£matiière.

S'il s'agit de deux parts , en les faisant d'abord toutes deux effec-
tives , comme dans le Problème I , le nombre des systèmes de répar-
tition sera 2m—-2 . En faisant ensuite une part nulle ? elle pourra
être indifféremment la première ou la seconde , ce tjui fournira
encore deux systèmes; de sorte que leur nombre total sera sim-
plement 2*m

S'agit-il de faire trois parts * ou pourra d'abord les fendre toutes
effectives d'un nombre de ihanières exprimé par

En choisissant ensuite une part déterminée pour être nulle } on
pourra former les deux autres d'un nombre de manières exprimé
par 2m—2. ; mais , comme la part nulle pourra occuper trois places
différentes; il en résultera encore un nombre de système de répar-
titions exprimé par

3^™—6 .

Enfin , il y aura encore'trois systèmes possibles où deux parts seront
nulles. Réunissant donc tous ces résultais , on trouvera que le
nombre total des systèmes de répartition en trois parts est simplement 3m.

En poursuivant le même raisonnement, on trouvera 4m pour le
aombre des systèmes ide ^répartition en quatre parts , 5m pour le
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nombre des systèmes de répartition en cinq parts , et ainsi de suite J
d'où on sera conduit à conclure qu'en général , le nombre des
systèmes possibles de répartitions de m choses en n parts est nm ;
c'est , au surplus , une conclusion qu'il serait facile d'établir sur
un raisonnement rigoureux.

Ainsi par exemple , s'il est question de la répartition des dix
fruits d'espèces diverses entre quatre personnes différentes; elle pour-
ra avoir lieu d'un nombre de manières exprimée^ par 4l°:=1 to485}6»

PROBLÈME 111. De combien de manières différentes peut-on
faire n parts , avec m choses toutes égales entre elles avec la j acuité
de faire les parts aussi inégales qu'on voudra ; mais , sous la
condition de ne point faire de parts nulles, et d'employer la tota-
lité des choses , dans chaque système de répartition ?

Solution. Ce problème semblerait , au premier abord, devoir être
incomparablement plus simple que le premier, Nous l'avons cepen-
dant trouvé beaucoup plus compliqué , peut-être par suite de la
manière dont nous l'avons attaqué. En conséquence nous nous bor-
nerons à en traiter les cas les plus simples.

Si d'abord on ne doit faire qu'une part , il est clair qu'il
faudra tout employer ; et qu'ainsi cela ne pourra s'exécuter que
èïune manière unique.

Veut-on faire deux parts? en s'imposant la condition déplacer
constamment la plus petite des deux parts à la gaucbe de la plus
grande , lorsqu'elles seront inégales , tous les systèmes possible»
de répartition pourront être compris dans le tableau suivant:

i (m— i) ,

3. . (77*—a) f

el
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tt ce tableau devra être prolongé jusqu'à ce que , dans la pre-
mière colonne, on soit, parvenu à la moitié de m 9 si m est pair
ou au nombre Immédiatement inférieur à cette moitié , c'est-à-dire
à \{m—i), si 772 est impair.

Il en résulte immédiatement que le nombre des systèmes d*
répartition sera,

Si 772 est de la forme 2k • — ;

Si m est de la forme
772—1

du moins si Ton n'a aucun égard à l'ordre des parts dans chaque
système de répartition. Dans le premier cas , il y aura un seul
système ou les deux parts seront égales; dans le second , les deux
parts seront constamment inégales.

Si donc on voulait avoir égard à la disposition des parts dans
chaque système, II faudrait doubler chacun des deux nombres que
nous venons d'obtenir , en retranchant une unité au double du pre-
mier , à raison des deux parts égales ; ce qui donnerait également
m — 1 pour le nombre des systèmes quel que fût m ; comme il est
d'ailleurs évident.

Supposons présentement qu'il soit question de faire trois parts ?
en s'imposant la condition de disposer constamment les parts, dans
chaque système, par ordre de grandeur, de gauche à droite , de
la plus petite à la plus grande , et de ranger dans une même colonne
tous les systèmes dans lesquels la première part est la même; on
obtiendra le tableau de répartition que voici:

772 —

772—-3

ï ; 3 , 772—4

Tom. XI.

2,2, m—4

2 , 3 , 772—5

2 , 4 , 172—6

3 , 772—6

4 p m—7

5 , 772—8

4,4, JB—8

4 , 5 , 772 — 9

4 » 6 , 772—̂ 1
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et il ne s'agira ] pour parvenir au but, que de compter le nombre
des systèmes de répartition enregistrés dans ce tableau ; ce à quoi
on parviendra à l'aide des observations suivantes.

La première colonne , en y supprimant le i initial , indique
toutes les manières de faire deux parts avec m—*i choses égales ;
et comme suivant que m est pair ou impair , m—i est au con-
traire impair ou pair , il s'ensuit , d'après ce qui a été dit plus
haut 7 que le nombre des lignes de cette première colonne est

Si m est pair

S i m e s t i m p a i r . . . . . . . . . . . • * . .
2,

La seconde colonne , en y supprimant le 2 initial ? est le tableau
de toutes les manières de faire deux parts avec m—2 choses , dans
lequel on aurait supprimé la première ligne ; et 7 comme m—2 est
pair eu impair, dans les mêmes circonstances que m, il s'ensuit
que le nombre des lignes de cette seconde colonne est

. m——2 m*—4
Si m est pair — 1 ou . • — %

L 2 '2.

. , m—3 m—-5
Si 772 est impair — 1 ou _ . .

La troisième colonne , en y supprimant le 3 initial , offre le
tableau de toutes les manières de faire deux parts avec m—3 choses ,
dans lequel on aurait supprimé les deux premières lignes ; en
observant donc que, suivant que m est pair ou impair, m~~~3 est
au. contraire impair ou pair , on trouvera que 3e nombre des lignes
de cette troisième colonne est

, m—4 m—8
b i m e s t p a i r — - — o u . . « , , • , .——— .1 a a

Si m est impair o~~™~2 ou —7
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Par un raisonnement tout-a-fait semblable , on prouvera que le

nombre des lignes de la quatrième colonne est

^ . . m—4 o m—10
Si m est pair 5 ou • . ,

Si m es t impair — 3 ou . . . . . . . :

que le n o m b r e des lignes d e la c inquième est

S I tfz est pa i r — — . — 4 ou % . . . • • • ,

c . . m—5 . 772—13
c i /72 e s t i m p a i r — — — 4 o u . . . . . . . • |

et ainsi de suite.
Il résulte de là que le nombre total des lignes de tout le ta*

bleau , c'est-à-dire , le nombre cherche , est

Si m est pair r=f{(/72—^)-\{m—4)+(/72"~8}+(tf2-~io)+(772—i4}+.<.} ,

Si 772 est i m p a i r =-7^ (//2—i)~j-(/?2—5)*+(/72-—7)-f-(/72-—1 i)+(/?z—— i3^-f-«.*| *

Pour être en état de sommer ces suites , il faut au moins
pouvoir assigner le dernier terme de chacune d'elles. Occupons-
nous d'abord de la première ; m y étant pair ne peut être que
de Tune de ces trois formes 6k , 6£-f-2 , Ç>k~\~4*

Dans le premier cas , il est évident que la dernière colonne n'aura
qu'une ligne qui sera

Tïl 771 Tïl

2* , 2.k , 2.h , ou — , — , — ;

la série aura donc — termes dont le dernier sera l'unité ou '- ;

cette série sera donc
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laquelle se décompose en ces deux- cî :

c'est-à-dire , en deux progressions par différences , ayant 6 pour

raison commune , et ayant chacune — termes -, on aura donc ^

four la réunion de leurs sommes de termes

1 m ( 772+2 m—z

6 \ 1 ^———-

I 2. 2

m?

12

et ce sera là le nombre des solutions du problème.
Si m 9 toujours pair , est de la forme 6A+2 , la dernière colonne

aura deux lignes qui seront
m—-2

ou

, 2k , 2,k-\~2 ,

2,7c 7

3 ' 3 ' 3 >

<~2 m+i m+i
3 '

m—2
la série aura donc —— termes , dont le dernier sera z ou ~ ; cette

«érie sera donc

laquelle se décompose en ces deux-ci



DE COMBINAISON. i85
c'est-k-dire , an deux progressions par différences dont la raison

commune est 6 , et dont le nombre des termes est ?> pour

l'un et l'autre. Réunissant donc les sommes de ces deux séries t

nous aurons

m 1 (m—2)(m-f-2) m2—4

~*~1T) 7k = ~1T~ 5

et c'est là, dans ce cas, la solution du problème.
Le nombre m, toujours pair, est-il enfin de la forme 6£-+-4 >

la dernière colonne du tableau n'aura qu'une seule ligne qui sera

7 » j , 7 , TO-I 772—1 ™+2

ô ô O

la série aura donc — - termes ? dont le dernier sera Tunité ou \ \

cette série sera donc

laquelle se décompose en ces deux-ci

H (**—*)+(*!— 8)+(m—i4)+(m—ao)+ ; ; . ; + 8+2} ;

\{{rn—4}+(m—i

c'est-à-dire, en deux progressions par différences dont la raison

commune est 6 7 et dont le nombre des termes est —7— > pour

la première , et —— , pour la seconde. Réunissant donc les sommes

de ces deux séries, nous aurons

s ( m m+2 m+a m—4 ) ̂ ^̂  (m—2)(m+2) ma-»4

<j$î aéra, pour ce cas, le nombre cherché.
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Supposons présentement que m soit impair, il sera de Tune de

ces trois formes 6k+1 , 6A+3 , 6A+5.
Dans le premier cas , la dernière colonne du tableau n'aura

qu'une seule ligne , qui sera
m—i m—i m+a

2k 9 2k , 2^4"! y o u —^— f —5"~" t 5 ?

la série aura donc termes ? et son dernier terme sera l'unité

ôu 7 ; cette série sera donc

laquelle se décompose en ces deux-ci :

— 7 ) + ( ^ - I 3 ) + ( / 7 2 ~ I 9 ) + . . . . +6} ,

c'est-à-dire , en deux progressions par différences , ayant, Tune

et l'autre , —r~ termes, et dont la raison commune est 6 : on6
aura donc } pour la réunion de leurs sommes de termes

m—*3 ) (m—i)(m-f 1) m*--i

et ce sera là le nombre des solutions du problème.
Si m , toujours impair , est de la forme 6^-f-3 , la dernière

colonne n'aura qu'une ligne, qui sera

, - , — J

la série aura dope -— termes , dont le dernier sera l'unité ou - s

cette se'rie sera donc
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laquelle se décompose en ces deux-ci :

c'est-à-dire, en deux progressions par différences dont 6 est la

raison commune et dent le nombre des termes est —— ? pour la

m—>3
première , et - ™ - , pour la seconde ; leurs sommes de termes réunies

donneront donc

772-1-3

"*

m-—3 m—1

et ce sera là le nombre des solutions du problème;
Si enfui m , toujours impair , est de la forme 6£+i> , le dernier

tableau aura deux lignes qui seront

OU

m—s. m—2

3

le noinbre des termes de là série sera donc —— ? et son dernier
ô

terme sera 2 ou ~ ; cette série sera donc

laquelle se décompose en ces deux-ci 1
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| { ( ) — 1 9 ) + . ; : . +10+4} f

. . . . +12+6} ;

c'est-à-dire , en deux progressions dont la raison commune est 6 ,
m+i , ., m—5

et dont le nombre des termes est —7— , pour la p remiè re , et - -7 -
pour laT seconde ; on aura donc , pour la réunion des sommes de
leurs termes

6 ' " a ' 6 ~ " > =

et ce sera là le nombre des solutions du problème.
En résumant présentement ces divers résultats, et observant que

les formes 6 £ + 3 , 6&+4 9 6 £ + 5 rentrent respectivement dans
les formes 6A—3 , 6&—a f 6^—i ; nous pourrons dire que le nombre
des manières de faire trois parts effectives avec m choses , toutes
égales entre elles, est

Si m est de la forme 6k , . • • • • • • • — ,

Si m est de la forme ;

Si m est de la forme 6k^2 9 . :
ia

S i m e s t d e l a f o r m e 6 £ ~ f ~ 3 , . ; . . . . . • ;
— 12

On peut désirer de connaître combien il y a de systèmes dans
lesquels plusieurs parts sont égales et combien il y a de parts
égales dans chacun de ceux-là. Pour cela, remarquons que , d'abord
les trois parts ne sauraient être égales qu'autant que m est de Tune
ou l'autre des deux formes 6k , 6/c^jrZ 9 et cela ne saurait arriver
qu'une seule fois.

Mais ;
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Mais, quelle que soit la forme de m , il y aura toujours des

systèmes , en nombre plus ou moins grand , dans lesquels deux
seulement des trois parts seront égales; c'est d'abord ce qui arrive
constamment dans la première ligne de chaque colonne du tableau J
et ce sont alors les deux premières parts , c^est-à-dire , les deux
plus petites qui sont dans ce cas. En outre, de deux en deux
colonnes , à commencer par la première ou par la seconde , suivant
que m est impair ou pair , la dernière ligne a aussi deux parts
égales ; mais ce sont ici les deux dernières ou les deux plus
fortes.

En conséquence, et d'après ce qui précède , i.° si m est de
la forme 6k, le nombre des systèmes à deux parts égales sera

m \ m—4

2.0 Si m est de la forme 6k+i f le nombre des systèmes à
deux parts égales sera

m—ï 772—— I 772~f-ï

3.° Si m est de la forme 6£-f-2 , le nombre des systèmes $
deux parts égales sera

7ft—- J2 m—S 772—- 2,

_ +_ _ ;
4.° Si m est de la forme 6k+B , le nombre des systèmes à

deux parts égales sera

(f-Mf-O-
m—3

5.° Si m est de la forme 6k+4 > Ie nombre des systèmes a
deux parts égales sera

^772. XL ^6
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m—i /'m-—t \ m—a

6.° Si enfin m est de la forme 6k+5 , le nombre des systèmes
a deux parts égales sera

m—2.

Ainsi , eu résumé , le nombre des systèmes à deux parts égales
sera,

01 m est de la forme bk , • • • • • • * » ,

Si m est de la forme 6k"^r i > • * • >

m—a
Si m est de la forme 6£-+~2 . . . . . . . . . ' »

Si m est de la forme 6/c+3 , . . • . . • . . — ,

En retranchant ces nombres de ceux qui expriment le nombre
létal des parts , et retranchant en outre une unité, dans le premier
et le dernier cas, a raison du système unique dans lequel les trois
parts sont égales 9 on trouvera, pour le nombre des systèmes dans
lesquels les trois parts sont inégales

m étant de la forme 6& . • • , . 1 = —

m étant de la forme 6k^i ^ — - — ^ — ^ — ^

m étant de la forme 6&-H2 ? = 3
12 a

m étant de la forme 6k+3 . . . . .
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Dans font ce qnî précède , nous avons tacitement supposé que

Ton n'avait aucun égard à Tordre des parts -, mais , si Ton convenait
de considérer comme systèmes de répartition distincts ceux-là mêmes
qui ne différeraient les uns des autres que par la disposition res-
pective des mêmes parts, voici comment , dans cette nouvelle hy-
pothèse , on parviendrait à assigner le nombre total des systèmes
de répartition.

Soit, en général 7 jVx le nombre des systèmes à trois parts égales,
dans la première hypothèse^ nombre que nous avons vu n'être jamais
supérieur à l'unité et être souvent nul ; soient en outre JV2 le
nombre des systèmes k deux parts égales et JV, les nombre de ceux
dans lesquels les trois parts sont inégales.

Dans la nouvelle hypothèse, les systèmes a trois parts égales
n'étant susceptibles d'aucune permutation, iV, restera toujours Nt.

Dans les systèmes à deux parts égales , la part seule de son es-
pèce pouvant occuper successivement le premier , le second ou le
troisième rang N2 deviendra ici 3 / / 2 .

Enfin , dans les systèmes a trois parts inégales , les parts étant
susceptibles de toutes les sortes de permutations , N3 devra de-
venir ôiVj.

Ainsi , le nombre total des systèmes de répartition qui d'abord
était simplement Nl+Nz+N3 , deviendra ici

mettant donc successivement pour Nt , N2 > i^$ ? dans cette dernière
formule les nombres qui conviennent à chaque cas , nous trouve-
rons que , dans tous les cas , le nombre cherché est également

772—2
; ce qu'on justifierait d'ailleurs par un raisonnement

direct.
De la même manière que. nous avons déduit le cas de trois parts

de celui de deux , on déduirait pareillement celui des quatre parts
de celui de trois ; celui de cinq de celui de quatre ; et ainsi de
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suite ; maïs le nombre des formes du nombre 772 qu'il deviendrait
nécessaire de discuter croîtrait rapidement, à mesure que le nombre
des parts à former deviendrait plus grand.

PROBLÈME IF. De combien de manières différentes peut-on
faire n parts , avec m choses toutes égales entre elles , avec la
faculté de faire tant de parts nulles qu'on coudra ; mais sous la
condition néanmoins d'employer toutes les m choses dans chaque
répartition ?

Solution. La solution de ce problème se déduit de celle du
Problème III , de la même manière que nous avons déduit celle
au Problème II de celle du Problème I.

N'ayons d'abord aucun égard à la disposition des parts entre
elles , dans un même système de répartition. Si l'on ne veut faire
qu'une seule part 7 on ne pourra faire de parts nulles ; et consé-
quemment le nombre des systèmes de répartition sera encore égal
à l'unité.

Si Ton veut faire deux parts, on ne pourra faire qu'une part
nulle , et d'une manière seulement ; le nombre des systèmes de
répartition sera donc 7 d'après le précédent problème ,

Si m est de la forme 2k , H = %
2 2.

Si m est de la forme ^Jc^n , |-i = —— .

II y aura toujours un système unique à deux parts égales , dans
le premier cas 7 et point dans le second.

Si donc on veut avoir égard à l'ordre des parts, on remarquera
que deux parts sont , en général , susceptibles de deux dispositions
différentes , mais que cependant , dans le premier cas , les deux
parts égales ne sont point susceptibles de permutations. En con-
séquence , on trouvera que , quel que soit 772, le nombre de$ sys-
tèmes de répartition, dans ce cas > est constamment m~{-i.
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Si Ton veut faire trois parts , on pourra faire une ou deux parts

nulles seulement. On pourra faire une part nulle d'autant de ma-
nières qu'il y en a de faire , avec m choses égales , deux parts
dont aucune ne soit nulle. On pourra faire deux parts nulles d'une
manière unique. En conséquence , et d'après le précédent problème,
le nombre des systèmes possibles de répartition sera

m

Four la forme paire. . . • ok 9 —- -H «— -+-i =
1 12 22. ia

Jrour la torme impaire . ' . • oyïj^i , -\ +i=
12. a

Pour la forme paire. . . • 6k^.2 9 \* ~f-i=

Four la forme impaire. . • . 6>ï~r"o ,
1 Ï 2

Ici le nombre des systèmes à trois parts ëgales sera toujours
i , pour les deux formes extrêmes , et zéro pour les deux autres;
Quant au nombre des systèmes à deux parts égales , il se trouvera
d'abord, pour toutes les formes, augmenté d'une unité, à raison
du système à deux parts nulles ; mais , dans les formes paires , il
se trouvera encore augmenté d'une unité, à raison du système où
deux parts sont égales à la moitié de m et la troisième nulle» Le
nombre des systèmes à deux parts égales se trouver^ donc ainsi #
dans le cas actuel,

Pour la forme 6k , • * -}-2= — ;
1 2,

P o u r l a f o r m e 6 £ ~ * " " i > • • • , . . . h i =
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Pour la forme 6^2 , ^—^ -+2= -^— ,

m — 3 77?—1

Pour la forme Gk^o , • . . . . . . — r-i — -— ~̂ •

Retranchant donc ces nombres de ceux que nous avions trouvés
pour le nombre total des systèmes de répartition , et retranchant
en outre une unité pour les deux formes extrêmes , à raison des
trois parts égales ? nous aurons pour le nombre des systèmes où
les trois parts sont inégales,

m2+6m+i2 m m*
Jrour la forme btc * • • • • — — — 1 = — ,

12 2 12

Pour la forme

Pour la forme"'"1- ™-r~»-r« ™-r- ™»-4
l a

Pour la forme 6^+3 , . • . . ? —-i= .
12 2 12

En rapprochant ces résultats de ceux auxquels nous a conduit
le .troisième problème , on est conduit a en conclure que le nombre
des manières de faire trois parts avec m choses égales , lorsqu'on
admet des parts nulles, mais qu'on rejette les systèmes dans les-
quels plusieurs parts sont égales , est égal au nombre des manières
de faire trois parts avec les mêmes choses lorsqu'au contraire Ton
admet les systèmes dans lesquels des parts sont égales > mais en
rejetant^ ceux où des parts sont nulles ; d'où Ton peut encore
conclure que , dans la totalité des systèmes de répartition , il y en a
autant où les parts ne sont pas toutes effectives qu'il y en a
où elles ne sont pas toutes inégales.

Veut-on présentement avoir égard à la disposition des parts les
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unes par rapport aux autres ; en procédant comme nous l'avons
fait dans le précédent problème , on trouvera

, (w+2) (7774.7)
Pour m pair ,

2

v . . (m+ï)0ii+8)
rour m impair, . . . •

On poursuivrait sur le. même plan , s'il était question de former
un plus grand nombre de parts.

QUESTIONS RÉSOLUES.

Démonstration du théorème d'analîse transcendante $

énoncé à la page 388 du X* volume des Anqales j

Par M. FRÉDÉRIC SARRUS ,

Et par un ancien ELÈVE de l'école polytechnique.

1YJL SÀRRUS attaque la question d'une manière tout-à-faît $ynthétîque«
II remarque d'abord que Ton a, par les théories connues,

Sin. z =2Sin.— Cos.— 7

Sîn, —- =2Sîn.—• Cos. -7 >a 44
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z z z
Sin.— =£2Sin. -- Cos.—

4 go

Sin, =2Sln.--—Cos.

Sîn. =2Sin« — Cos. — i

§*oïk ; en multipliant et réduisant ,

Sîn.^rra^Sîn.— Cos. — Cos. — Cos. -r . • . . . Cos.— ,.

a" a 4 " &n

Mais comme, a mesure que n augmente 7 Sin.— tend sans cesse I
•

devenir — ; il s'ensuit que, dans le même cas, 2*Sin. — tend sans

cesse à se confondre avec l'arc z ; de sorte qu'en faisant n infini *
on a rigoureusement

Sin.2=,zCos.— Cos. — Cos.—- Cos. —- Cos. — . •. ^ . j
a 4 8 16 32 T

formule dont le second membre a une infinité de facteurs tendant
sans cesse vers l'unité > quel que soit Tare z , ce qui en garantit la
convergence.

En prenant les différentielles logarithmiques des deux membres,,
o» tire de là , en transposant,

=Cot.H- ^Tang. L+± Tang. j + i-Tang. | +„.. (I)

Si
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Sî Ton pose ensuite £—-— , <# étant la demi-elrconférence dont le

rayon est l'unité ; en observant que Cot. - s o et divFsant par

2, ; on aura

qui est précisément la formule à démontrer.
M. Sarrus observe que ces deux séries , Tune et l'autre très-

régulières, convergent rapidement toutes deux vers des progressions
décroissantes par quotiens ayant 4 pour raison; de sorte qu'en pre-
nant pour n un très-grand nombre 7 la dernière , par exemple *
pourra être sensiblement remplacée par cette formule finie

f = TTang>7 + i Tang*
L^anonyme, au contraîre , parvient à son but par un procède

tout-a-fait analitique, et conséquemmeut inverse de celui. de M.
Sarrus. Il cherche généralement quelle fonction, finie peut être équî—
valente à la série infinie

ï Tang. 1 + I Tang.| +

ou x désigne un arc quelconque. Posant donc cette sëne égale
une certaine variable^ ? multipliant par àûc et intégrant, il obtient

( ce oo x , • %

Jydx=C-~ 1 Log.Cos. —+Log,Cos. — +Log.Cos. - r - + w . /";

OU bien

fom
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fyàxzz C—Log/Gos. ~ GOJ>. ^ Cos#~~r Cos.^ . ,;. J ;
*

observant ensuite que

x x M x Sîn.a?
Cos. — Cos.—-Cos-— Cos. — = x »

4 8 16 3a C 2

il en conclut que

d'fcîi, en diffërenùant et divisant par àx ,

. ^ -—Cot^= 1 — - Cot. ~ ;
00 2 &

jDfî qui donne , en remettant pojar y sa valeur et transposant,

» a ia 4 4 8 *" « i6 u io

formule qui est générale quel que soit Tare #•

Si ensuite on Euppoae ^ ^ — , on tombe précisément sur la for-

mule proposée à démontrer.
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Solution du problème d'analise indéterminée propose
à la page 388 du X? volume de ce recueil ;

Par MM. FRÉDÉRIC SARRUS, AUGUSTE OLLIVE et FAUQUIER,

capitaine au corps royal du génie , ancien élève de
l'école polytechnique.

Jt ROJJLÈME. Par combien de systèmes de pâleurs entières et
XV

positives de x et y peut-on rendre la fonction —— égale à un

nombre entier positif N = a ab^c rd^. . . . . , dans lequel a, b , c , d ; •••
sont des nombres premiers inégaux différens de Vunitè?

Solution. On a vu ( tonn X , pag. 385 ) qu'en prenant

on avait

—par :

de sorte que si Ton ne voulait qu'une solution * tout se réduirait
à décomposer le nombre N en trois facteurs ; ce qui est, toujours
possible- sauf à prendre, s'il est nécessaire , un ou deux de ce&
facteurs , ou même tous les trois f égaux à l'unité.

Soit N=:m*ghk ; g et h pouvant Indifféremment être ou n'être
pas divisibles par m j soit qu'on pose



QUESTIONS

q = rnh ; d'où.

ou bien

p~g } q — 7i 7 d'où

on trouve également

c'est à-dire que ? toutes les fois que Ton prendra pour p et q des
facteurs de N non premiers entre eux , on n'obtiendra pas pour &
ei y des valeurs différentes de celles qu'on aurait eu si Ton eût
substitué à ces deux nombres les quotiens de leur division par leur
plus grand commun diviseur.

Ainsi, demander combien il peut y avoir de différens systèmes
de valeurs entières et positives de a? et y qui rendent la fonction

égale à un nombre entier positif donné N=~aHrcy^..•.* o® y

c'est demander , en d'autres termes , de combien de manières on
peut extraire du nombre a^b^cy ..o& deux facteurs entiers et
positifs premiers entre eux ; et c'est aussi à cela que le problème
a également été réduit par les trois géomètres qui Font traité. M.
Sarrus ne nous a donné la sienne que verbalement, il y a déjà assoz
long-temps ; MM. Fauquier et Ollive nous ont transmis les leurs
presque consécutivement. La marche du raisonnement est à peu près
le même dans toutes ; et si nous adoptons ici de préférence la
manière de l e présenter de MM. Sarrus et Ollive , c'est -uniquement
parce qu'elle nous paraît un peu plus rapide.

M^is j avant d'entrer en matière , il est d'abord nécessaire
d'établir ici une distinction. Lorsqu'on demande simplement d$
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trouver deux nombres tels , qu'en divisant leur prodnît par leur
somme ? le quohent soit égal à un nombre donné ; il est clair
que, dire que ces deux nombres sont G et / / , ou bien dire que
ces deux nombres sont H et G , c'est dire une seule et même
chose ; tandis que si , au contraire , on considérait l'équa ion

=iV comme celle d'une certaine courbe, les deux systèmes

de valeurs

appartiendraient à des points essentiellement différons. Quoiqu'il"
semble plus naturel d'envisager le présent problème sous le pre-
mier point de rue que sous le second ; c'est pourtant sous ce dernier
que nous l'envisagerons d'abord ? sauf à modifier ensuite la formule
finale de manière à la rendre propre à l'autre cas.

E t , comme, en permutant entre eux les deux nombres/? ef
g } on ne fait que permuter également entre eux les deux nom-
bres x et y ; nous envisagerons d'abord ces deux mêmes nombres
p et q comme non permutables; et comme ils doivent être pre-
miers entre eux ? et ne peuvent conséquemment être égaux que
dans le seul cas où ils sont l'un et l'autre égaux à l'unité ; il en
résulte que , ce seul cas excepté , il y aura deux fois plus de so-
lutions dans la seconde hypothèse que dans la première. Si donc,
dans cette seconde hypothèse, le nombre total des solutions est o>z\\ \
dans la première , ce nombre se réduira simplement à z + i .

Ces choses ainsi entendues ? concevons que Ton prenne d'abord
p Qt q égaux entre eux et à Tunité ; cela ne se pourra que d'une
manière unique. Nous pourrons ensuite introduire successivement,
d'abord dans p et non dans q9 puis dans q et non dans p , tous
le,s facteurs a, jusqu'au nombre « inclusivement -7 ce qui fera déjà
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naître un nombre 2*~|-i de solutions dans lesquelles aucun des
facteurs b , c, d, oy n'aura été employé, et dans lesquelles
l'un ou l'autre des deux nombres p 7 q sera constamment égal à
l'unité.

Soient prises les valeurs de p et q répondant à une quelconque
de ces solutions, et concevons qu'on y introduise successivement,
d'abord dans p et non dans q , puis dans q et non dans p , tous
les facteurs b jusqu'au nombre £ inclusivement ; on en verra naître ,
y compris le système de valeurs qu'on aura choisi % 2/3+1 solutions ;
et , attendu que chacun des 2*+i premiers systèmes en fournirait
un pareil nombre , il s'ensuit que le nombre total des systèmes de
\aleurs de y» et q dans lesquels aucun des facteurs a 9 d,.*..•#
ïi'est employé est (204+1 )(2jâ+i)*

En prenant un quelconque de ces systèmes , on pourra , ou le
laisser tel qu'il est % ou bien y introduire successivenrfcnt % d'abord
dans p et non dans q, puis dans q et non dans p 9 tous les fac-*
teurs c jusqu'au nombre y inclusivement •, ce seul système en fera donc
naître un nombre d'autres exprimé par 2 y + i ; et 5 comme on en
pourrait dire autant de chacun de ceux dont il fait partie y il
s'ensuit que le nombre total des systèmes de valeurs de p et q dans
lesquels aucun des facteurs d> ..».# n'est employé* est (2«+i)

En poursuivant donc ce raisonnement jusqu'après l'Introduction
des facteurs o , on verra que le nombre des solutions dont le
problème est susceptible } du moins en considérant p et q , et par
suite x et f comme non permutable entre eux 7 est

Que si P au contraire , on ne veut établir aucune distinc-
tion entre x et y > ni conséquemment entre p et q •> c'est-à-dire,
si , revenant au premier des deux points de vue sous lesquels
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la question peut être envisage'e , on demande simplement de corn-
lien de manières on peut trouver deux nombres tels qu'en di-
visant leur produit par leur somme , le quotient soit a^b&c* . . . # . , .#* •
la réponse à cette question sera

M. Fauqùier termine en observant, i.° que , si Ton a N^au ;
le nombre des solutions du problème sera *--f-j ; 2.* que \ si Ton
a N=ahc o} n étant le nombre des facteurs , le

des solutions du problème sera .

terminerons nous-mêmes par une application nu
l'on veut savoir combien il y a de systèmes de deux nombres
le produit divisé par la somme demie pour quotient 36os=*23.3*;5 ;
on aura ^ = 3 , /3~£ ; y~i - de sorte que le nombre demande sexa

ï(7.5.3+1)=^ = 5 3 ;
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QUESTIONS PROPOSÉES.

Problèmes de Combinaisons.

I» J J E combien de manières peut-on choisir n lettres parmi m
lettres desquelles il s'en trouve un nombre # égales à a 5 un nombre
fi égales à b , un nombre y égales à c , et ainsi de suite ; ou, en
8'autres termes, combien le monôme a^'b^c* ..». , danr lequel
HKH^-K • — ̂  admet-il de diviseurs distincts de n dimensions*?

IL De combien de manières peut-on faire n parts avec m
lettres, parmi lesquelles il s'en trouve un nombre &> égales à qy

un nombre £ égales à b, un nombre y égales à c , et ainsi de
suite ; soit qu'on ait ou qu'on n'ait pas égard à Tordre des parts >
dans chaque système de répartition ; et soit qi/*in admette ou qu'on;
exclue les parts nulles -, mais sous la condition d'employer la totalité

m lettres dans chaque système de répartition 2
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GEOMETRIE DES COURBES.

Recherches sur la détermination d'une hyperbole
équilatère % au moyen de quatre conditions données;

Par MM, BRIANCHON , capitaine d'artillerie , professeur
de mathématiques à l'école d'artillerie de la garde
royale , et PQNCELET , capitaine du génie , employé
à Metz.

X HÈORÈME L Dans tout triangle inscrit à\une hyperbole équilatère,
le point iiâ concours des trois hauteurs est situé sur la courbe.

Démonstration, On sait que , pour tout hexagone ABGDEÈ1

( fig. i ) inscrit à une section conique , les trois points de concours
H , I , K , des côtes oppose's sont en ligne droite (*)• Si donc ,
la courbe ayant des branches infinies , on suppose que l'hexagone
ait deux de ses sommets , comme E , F , situés à l'infini , le point
ï , concours des deux côtés opposés EF , BC , se trouvera à l'in-
fini ; ce qui revient à dire que BG et HK seront parallèles.

Maintenant, la courbe e'tant une hyperbole, il est clair que tes
deux côtés DE , FA , adjaeens à EF qui est à l'infini , seront
respectivement parallèles aux deux asymptotes , et, partant , seront

(*) Voyez, pour les démonstrations géométrique et algébrique de cette pro-
priété, les pages 78 et 38i du IV.e volume du présent recueil.

J. D. G.

Tom. XI, n.° VU, \** janvier 1821. 28
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rectangulaires , pour le cas de l'hyperbole équilatàre, qui est celui
dont il s'agit ici.

Les deux derniers sommets E , F de l'hexagone inscrit à cette
courbe étant ainsi portés à l'infini , les quatre autres resteront ar-
bitraires. Soient donc pris a volonté les trois premiers A , B , G
( fig. 2 ) , et soit marqué le quatrième D tel que les deux côtés
AB, CD, respectivement opposés à DE , FA, soient rectangulaires
entre eux. II résulte de ceci que AH est perpendiculaire sur DK.
D'ailleurs ÀK est perpendiculaire sur DH , par la propriété des
asymptotes; donc le point A est le croisement des trois hauteurs
du triangle DHK ; donc ÀD est perpendiculaire sur HK, et consé-
qxiemmenfc aussi sur BC , parallèle à HK. Maïs ? par construction ,
CD- est perpendiculaire sur ÀB ; donc le point D est le croisement
des trois hauteurs du triangle ABC. Or , le triangle ABC a été
inscrit à volonté à la courbe ; donc généralement « dans tout triangle
» ABC , inscrit à une hyperbole équiîatère , le point de croisement
» D des trois hauteurs est un point àe la courbe » •, ce qu'il fallait
démontrer.

Si l'un A des angles du triangle inscrit varie de grandeur % en
tendant vers l'angle droit , le point D se déplacera sur la courbe
en s'approchant continuellement du sommet A ; ce qui revient à
dire que la sécante ÀD , perpendiculaire sur BC , tendra sans
cesse à toucher la courbe en A , et qu'enfin elle sera tangente
quand l'angle A sera droit. Donc.

THÉORÈME IL Dans tout triangle rectangle inscrit à une
hyperbole èquilaûre , la perpendiculaire abaissée du sommet de
Vangle droit sur thypothènuse est tangente à la courbe.

11 suit de là que , si l'angle droit occille sur son sommet , l'hypothé-
nusc se déplacera parallèlement à elle-ir.cme et à la normale menée
à ce. so-nîm^t; ce- q-wi e^-im cas-patîkulrer du - beau théorème dé-
îiioniré par M. Frégier dans le présent recueil (*',

(*) Vojpe* lom* VI , pag. 229 et 3ai , et torn. VII, ppg, 95, J. p. G.



ÉQTMLATÈRE.
Au moyen de ce qui précède 3 si on connaissait deux points A ,

B ( fig. 3 ) de la courbe , et la tangente ÀP en Pun A de ces
points , on pourrait en construire un troisième C en cette manière *
du point B abaissez une perpendiculaire BC sur la tangente donnée ,
elle ira couper au point cherché C la perpendiculaire AC à ÀB.

On sait donc résoudre ces trois problèmes :
Décrire une hyperbole équilatère dont on a trois points et la

tangente en Vun d'eux ?
Décrire une hyperbole èquilatere dont on a deux points et les

tangentes en ces points?
Décrire une hyperbole èquilatere dont on a deux points f la

tangente en Vun de ces points et une autre tangente quelconque ?
En effet, par la construction qui vient d'être indiquée , on ob-

tiendra un nouveau point de la courbe* après quoi , pour achever,
on aura recours aux solutions connues de ces questions : (*)

Décrire une section conique dont on a quatre points et la tan-
gente en Vun deux ?

Décrire une section conique- dont on a trois points et les tçr^
génies en deux de ces points ?

Décrire une section conique dont on a trois points , une tangente
quelconque et la tangente en Vun de ces points?

Il résulte encore du théorème I que , lorsqu'on connaît trois
points A , B , G ( fig, 2 ) d'une hyperbole équilatère , on en a
un quatrième D qui est le croisement des trois hauteurs du triangle
ABC ; en sorte qu'on sait aussi résoudre ces deux problèmes ;

Décrire une hyperbole équilatère dont on a quatre points ?
Décrire une hyperbole èquilatere dont on a trois points et une

tangente ?
Car , au moyen de la construction indiquée , on obtiendra un

(*) Mémoire sur Us lignes du second ordre, etc., par C. J. BJUANCHOU 9

Paris ,1817.
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nouveau point de ta courbe ; après quoi,, pour achever , on aura
recours aux solutions connues de ces questions : (*)

Décrire une section conique dont on a cinq points?
Décrire une section conique dont on a quatre points ei une

tangente ?
THÉORÈME 111. Si deux points , situés sur le plan d'une hy->

perbole équitatère , sont les milieux ou les pôles respectifs de deux
cordes ou de deux droites quelconques également ^situées sur ce
plan ; et que, par chacun d'eux , on mène une parallèle à la corde
ou à la polaire qui correspond à Vautre , le cercle qui passera
par ces deux points et par celui où se coupent les parallèles passera
aussi par le centre de la courbe.

Démonstration. Soient , en premier lieu , CE, CF ( fig. 4) ^es

directions indéfinies des deux cordes en question, I, K leurs milieux
respectifs , O le centre de l'hyperbole équilatère et EF l'une de
ses asymptotes, rencontrant en E , F les deux cordes CL, CK pro->
longées ; les droites OK , 01 seront les diamètres de la courbe ,
conjugués à la direction de ces cordes,

Cela posé, puisque l'angle des asymptotes est droit et que le
point K est le milieu de la partie interceptée par ces asymptotes
sur la direction de CF 7 la distance KO—RF et par conséquent
l'angle KFO^rKOF. Par la même raison , 'l'angle IEO = IOE -, mai$,
à cause du triangle CEF , l'angle C est supplément de la somme
des angles E ,# F , est par conséquent supplément de celle des an-
gles KOF, IDE; donc il est égal \ l'angle IOK , formé de l'autre
côté de IR par les diamètres IK , k) . D'ailleurs, on prouverait,
de la même manière que , si le pçint O était supposé du côté du
sommet de l'angle G, l'angle 10K , formé par ces mêmes dia-
mètres ? serait égal au supplément do l'angle C ; donc il est sur
la circonférence du cercle qui passe par les points K , I et par

(*) Même ouvrage,
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celui L où se coupent les parallèles K L , IL mo^'es p;$r cha un
d'eux à la corde qui passe par l'autre : c'est-à-dire ($ue ,

I.* « Si par chacun des points milieux de deux cordes quel-
» conques d'une hyperbole équilalère , on mène une parallèle à la
» corde qui correspond à l'autre , le cercle qui possora par ces deux
» points et par celui où se coupent les parallelevS passera aussi par
» le centre de la courbe. »

En second lieu , soient PG , PH ( fig. 5 ) deux droites quel-
conques , situées sur le plan d'une hyperbole équilatère , R , Q
leurs pôles respectifs, par rapport à cette courbe. Concevons , par
le point Q 7 la parallèle QC à la polaire PH de ce point ; la corde
correspondante bera évidemment partagée en deux parties égales en
Q ? c a r > d'après la théorie généralement connue des pôles , « le
» diamètre d'une section conique qui renferme les milieux de toutes
» les cordes parallèles à une même droite , située sur le plan de
*> la courbe , passe aussi par le pôle de cette droite ».

Par la môme raison , si par le point R , pôle de la droite PG ,
on mène la parallèle CR à cette droite , rencontrant la première au
point G, la corde qui lui correspond, dans l'hyperbole équilatère,
sera divisée en^ deux parties égales en R ; ainsi, les points R , Q
seront les milieux des droites ou cordes indéfinies RC , QC , qui
passent respectivement par ces points ; et sont parallèles aux deux
droites PG , PH.

Il suit* de là et de ce qui précède que
2.0 « La circonférence qui passe par deux points quelconques

» R , Q , situés sur le plan d'une hyperbole équilatère j et par le
» point L où 3e coupent les parallèles menées par chacun d'eux
» à I3 polaire PG ou P ^ de l'autre passe aussi par le centre de
» la courbe »•

II est d'ailleurs évident que les mêmes choses auraient encore
IÎÊU si , à la place de Tune des deux droites et de son pôle, on
substituait une corde et son point milieu 5 ce qui complète la dér

du théprème çponçé,
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S'il arrivait, dans le cas où l'on considère deux droites PG ,

PH et leurs pôles R , Q , que chacun de ces derniers fût situé
sur la droite qui correspond à l'autre ; c'est-à-dire , si le point Q
se trouvait sur PG et Je point R sur PH , les parallèles PiL ,
QL se confondraient évidemment avec ces droites ; donc la cir-
conférence qui renferme le centre de l'hyperbole équilatère corres-
pondante passerait alors par le point P où se rencontrent ces mêmes
droites; maïs, d'après la théorie des pôles , ce point a évidemment
pour polaire la droite qui passe par les points Q , R ; de sorte
que ces trois points sont tels que chacun d'eux est le pôle de la
droite qui contient les deux autres ; on peut donc énoncer là
proposition suivante :

THÉORÈME IF. Lorsque trois points situés sur le plan d une
hyperbole équilatère sont tels que chacun d'eux est le pèle de la
droite qui contient les deux autres , le cercle qui passe par ces
trois points passe aussi par le centre de la courbe.

Quatre tangentes AB , BC , CD , DE ( fig. 6 ) à une Hîême
section conique , forment , par leur pénétration mutuelle, un qua-
drilatère complet TABCSD, dont les trois diagonales AG , BD ,
ST sont, comme l'on sait, telles que « chacune d'elles est Ja po-
» laire de l'intersection des deux autres » ; de sorte que , si la courbe
est une hyperbole équilatère , la circonférence qui passera par les
trois points P , Q , R , intersection des diagonales , passera aussi ,
d'après ce qui précède , par le centre de la courbe ; d'où résulte
ce nouveau théorème :

THÉORÈME V. Si l'on mène quatre tangentes quelconques à
une hyperbole équilatère , le centre de la courbe sera situé sur la
circonférence qui. passe par les trois points d'intersection des
diagonales du quadrilatère complet formé par ces tangentes.

Ou, ce qui revient au même,
Les centres de toutes les hyperboles èquilatères tangentes à

quatre droites quelconques , tracées sur un plan ? sont situés sur
la circonférence d'un cercle unique qui passe par les trois points '
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r£ intersection des diagonales du quadrilatère complet formé par
ces droites»

C u a autre côté, il résulte d'un théorème découvert par Newton
( Principes mathématiques , etc. f livre I , Lemme XXV , Corol-
laire 3 ) que

« Dans tout quadrilatère circonscrit à une conique quelconque,
» les trois points milieux des diagonales sont sur une droite unique
* qui passe par le centre de la courbe »,

Ou , ce qui revient encore au même ,
« Les centres de toutes les sections coniques tangentes à quatre

» droites quelconques, tracées sur un même plan, sont situés sur
» la droite unique qui passe par les trois points milieux des dia-
» gonales du quadrilatère complet formé par ces droites ».

Donc ? dans le cas de l'hyperbole équilatère , le centre de la
courbe se trouve à la fois sur la droite unique dont il s'agit et
sur la circonférence du cercle qui passe par les trois points P ,
Q , R, où se croisent les diagonales ; en sorte qu'on peut aussi
résoudre ce nouveau problème :

Décrire une hyperbole équilatère dont on a quatre tangentes ?

En effet, ayant déterminé , au moyen de ce qui précède , le
centre de la courbe ( et il y en a évidemment deux , en général,
qui résolvent la question), on le joindra par une droite avec l'un
quelconque P des points d'intersection des diagonales , laquelle ira
rencontrer la diagonale opposée BD, polaire de P en un point X
qui , d'après la théorie des pôles , sera nécessairement le milieu de
la corde correspondante , et par conséquent aussi le milieu de la
partie interceptée par les asymptotes sur cette diagonale ; portant
donc, à partir du point X , deux distances égales à GX , sûr là
direction de la droite indéfinie BDX , leurs extrémités appartiendront
aux deux asymptotes de la courbe , qui ainsi sera parfaitement
déterminée de grandeur et de situation ; car le point qui divisera
en deux parties égales la distance interceptée par les asymptotes
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sur l'une quelconque des quatre tangentes données sera le point do
contact de celte tangente.

Supposons maintenant que ÀBCD soit un quadrilatère inscrit k
une section conique quelconque j les points de concours S, T de
ses côtés opposés et le point d'intersection Q de ses deux diagonales
simples seront encore , d'après la théorie des pôles , trois points tels
que « chaMn d'entre eux sera le pôle de la droite qui passe par
» les deux autres » $ donc , si la courbe est une hyperbole équi-
latère , son centre se trouvera situé , d'après le Théorème IV dé-
montré ci-dessus, sur la circonférence du cercle qui passe parles
trois points Q, S, T , et par conséquent :

THÉORÈME VL Dans tout quadrilatère simple, inscrit à une
hyperbole èquilatère quelconque , le cercle passant par les deux
points de concours des côtés opposés et par le point d'intersection
des diagonales passe aussi par le centre de la courte.

Il suit de là que , quand quatre points A, B, C , D sont donnes
sur un plan , on connaît aussi la circonférence qui passe par le
centre de l'hyperbole èquilatère passant par ces quatre points (*) ;
d'ailleurs le Théorème III indique d'autres circonférences qui ren-
ferment également ce centre ; donc il est entièrement déterminé
de position sur le plan des quatre points donnés , et il en est
par conséquent de même des asymptotes de la tourbe; car , si l'on
prend le milieu K de Tune quelconque CD des dislances qui sé-
parent deux à deux les points donnés , puisque Ton porte , à partir
de K, sur la direction infinie de CD, deux longueurs égales à la
distance de ce même point au centre de la courbe ; leurs extré-
mités appartiendront aux asymptotes de cette courbe. Voilà donc

(*) On peut remarquer qu'à quatre mêmes points donnés sur un plan corres-
pondent toujours trois quadrilatères simples difïe'rens , mais qui tous redonnent
î«s mêmes points Q , S, -T ; en sorte que la circonférence en question est
unique,

une
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une nouvelle solution, très-directe et très-simple , du problème
déjà résolu plus haut , dans lequel îl s'agît de décrire une hyperbole
èquilatère passant par quatre points donnés sur un plan.

On peut tirer du Théorème III d'autres conséquences également
remarquables.

Que A , B , G ( fig. 7 ) soient trois points quelconques, appar-
tenant à une hyperbole èquilatère ; si l'on divise les côtés CA , CB
du triangle ABC , formé par ces points , en deux parties égales ,
aux nouveaux points I , K , et que , par ces derniers , on mène lr^
parallèles IL , KL aux côtés GB , CA , elles viendront se couper
en un point L qui , d'après le théorème cité ? appartiendra au
cercle qui ? passant par I > K , passe en outre par le centre de
l'hyperbole équilalère ; mais le point L se confond évidemment avec
ie milieu du troisième côté AB du triangle ABC ; donc

THÉORÈME VIL Dans tout triangle inscrit à une hyperbole
èquilatère , le cercle qui passe par les trois points milieux des
côtés passe aussi par le centre de la courbe.

Ou > ce qui revient au même,

Les centres de toutes les hyperboles èquilaûres circonscrites à
un même triangle quelconque sont sur la circonférence d'un cercie
qui renferme les trois points milieux des côtés de ce triangle*

On peut conclure de la et de ce qui précède que, quand un
quadrilatère quelconque ABCD ( fig. 6 ) est inscrit à une hyperbole
èquilatère , le centre de la courbe doit se trouver , à la fois , sur
les circonférences de huit cercles differens.

En effet, si l'on trace les diagonales AC , BD de ce quadrila-
tère , on obtiendra quatre triangles inscrits à la courbe , dont les
points milieux G , H , I , K , L , M , qui sont aussi ceux des
diagonales et des côtés du quadrilatère détermineront un égal
nombre de circonférences , passant par le centre de cette courbe/
d'ailleurs , ce centre devra aussi se trouver sur la circonférence qui
renferme les trois points Q , S , T , où se coupent les diagonales
et les côtés opposés du quadrilatère ( Théorème YI ) ; et il eu

Tom. XL 29
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sera 3e même encore de chacune des trois circonférences qui/
passant par les points milieux de deux côtés opposés ou des deux
diagonales de ce quadrilatère , renfermerait aussi le point où le
coupent les deux parallèles menées par chacun d'eux ( Théorème III)
au côté ou à la diagonale qui renferme l'autre.

Le point où se coupent les huit circonférences dont il vient
d'être question est nécessairement unique ; car , s'il était possible
qu'il y en eût un second , toutes les circonférences devraient y
passer a la fols , comme par le premier ; or , toutes ces circonfé-
rences , excepté celle qui renferme les points Q, S f T , et pourvu
qu'on ne combine pas entre elles celles qui passent par les milieux
des deux côtés opposés ou des diagonales du quadrilatère , sont
évidemment telles que 7 prises deux à deux , elles ont pour inter-
section commune l'un des points milieux de ces côtés et de ces
diagonales y donc il faudrait que. tous ces points milieux fussent
confondus en un seul, ce qui est absurde ; donc enfin le centre
de l'hyperbole équilatère qui passe par quatre points donnés sur
un plan est unique.

Si Ton fait attention à la manière particulière dont se trouve
déterminé le point dont il s'agit , relativement aux côtés et dia-
gonales du quadrilatère ÂÊCD , il sera permis d'en déduire la c©n-
séquence générale qui suit :

tlïÊÔRÈMÊ VUL Quatre points étant pris a volonté sur un
pïaà , // existe un autre point , et un seul point , tel qxien le
joignant par des droites avec les milieux des six distances qui
séparent tes quatre premiers deux à deu% 9 Vangle formé par
deux quelconques de ces droites est égal à celui des deux
distances qui leur correspondent, ou en est h supplément. Ce point
unique est f en outre, le centre de t hyperbole équilatère passant
"par ïës quatre points cl ont il s'agit.

Ce théorème souffre pourtant une exception qu'il éàt nécessaire
de signaler : c'est lorsque T un D ( fig, 7 ) des quatre points *qtie
Vôp conVidère est le croiseraient dès hauteurs 4u triarïgle ABC 9
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formé par les trois autres ; car alors ( Théorème I ) , il y a une
infinité d'hyperboles équîlatères passant par les quatre points A ,
B , C , D ; et par conséquent la position du centre de la courbe4

ne saurait être unique; elle est nécessairement indéterminée. Or,
il résulte de là qne les huit circonférences de cercles dont il vient
d'être question , et qui renferment simultanément le centre ; doivent
se confondre en un seul et même cercle ; ce qui donne lieu h la
proposition suivante qui offre un nouveau principe à la géométrie
élémentaire :

THÉORÈME IX. Le cercle qui passe par les pieds des per-
pendiculaires abaissées des sommets d'un triangle quelconque sur
les côtés qui leur sont opposés } passe aussi par les milieux de
ces trois côtés 7 ainsi que par les milieux des distances qui sé-
parent les sommets du point de croisement des perpendiculaires*

Démonstration. Soient P , Q , R les pieds des perpendiculaires
abaissées des sommets du triangle ABC sur les cotés opposés \ et
soient K , I , L les points milieux de ces côtés.

Les triangles rectangles CBQ et ABR étant semblables , on aura j

BC : BQ : : AB : BR ;

d'où , à cause que K et L sont les points milieux de BC et ÀB,

B K . B R ~ B L . B Q 5

c'est-à-dire que les quatre points K, R , L , Q appartiennent k
une même circonférence.

On prouverait semblablement que les quatre points K, R , I , P
sont sur un cercle , aussi bien que les quatre points P , I , Q , L.

Cela posé, s'il était possible que les trois cercles en question ne
fussent pas un seul et même cercle*, il faudrait que les directions
des cordes qui leur sont deux à deux communes concourussent en
un point unique ; or , ces cordes sont précisément les côtés du triangle
ABC, lesquels ne sauraient concourir en un même point ; donc
il est également impossible de supposer que les trois cercles diffé-
rent entre eux; donc ils se confondent en un seul et même cercle.
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Soient maintenant C , A' f B/ les points milieux des distances

DC 9 DA, DB qui séparent le point de croisement D des hauteurs
du triangle ABC de chacun de ses sommets respectifs. Les iriahgles
rectangles CDR et CQB étant semblables , on aura

CD : CR : : CB : CQ 5

d'où \ à cnuse que les points C/ et K sont les milieux des distances
CD et CB ,

CC'.CQ=:CR.CK ;

c'est-à dire que le cercle qui passe par K , R, Q passe aussi par C'.
On prouverait de la même manière que ce cerele passe par les

deux autres points EL? , B; ; donc il passe a la fols par les neuf
points P , Q , R, I , K, L , A ' , B' , C ; ce qiiil fallait démontrer.

Les théorèmes qui précèdent subsistent, en tout ou en partie ,
et avec des modifications convenables ^ dans les diverses circonstances
particulières que peut présenter le système des trois ou quatre points
que Ton considère , et qu'on suppose appartenir à une hyperbole
équilatère.

Par exemple , si l'un À des sommets du triangle ABC s'éloigne
a l'infini des deux autres, et que, par conséquent, les côtés CA,
AB deviennent parallèles , comme l'exprime la figure 8 ; le pied R
de la perpendiculaire AR j'écartçra à l'infini sur BC ; et il en sera
de même des milieux I , L des côtés AC, AB du triangle et des
points h! , B̂  , C / ; par conséquent^ une portion toute entière du
cercle qui passe par ces points sera elle-même passée a l'infini ,
c'est-à-dire qu'elle se sera confondue avec la droite qui contient tous
les points a l'infini du plan de la £gure.

Il suit de là que l'autre partie de ce cercle sera, de son côté
devenue une ligne droite ; et c'est ce qui a lieu en effet ; car , si
des sommets B , C on abaisse des perpendiculaires sur les côtes
ppposés du, triangle , leurs pieds respectifs R, Q seront en ligne
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droite avec le milieu K du côté BC. Dans le cas particulier qui
nous occupe donc, la suite des centres des hyperboles équilaières.
appartenant aux points A, B , C doit se irouvçr sur la droite
indéfinie PKQ , comme cela a lieu en eflfet.

Dans la même hypothèse , où le point A s'éloigne à l'infini et
où les côtés CA y BA deviennent par conséquent parallèles , le
point de croisement D des trois hauteurs du triangle ABC étant
aussi passé à l'infini, il est, dans ce cas particulier , bien évident
que c'est ? avec les trois autres , un quatrième point de l'hyper-
bole équilatère.

Il y a ici une remarque essentielle à faire ; c'est que, bien que
par quatre points donnés à volonté sur un plan , on puisse toujours
faire passer une hyperbole équilatère ; cependant, quand deux de
ces points doivent être situés à l'infini , il n'est pas possible de
se les donner arbitrairement, par le système de deux droites quel-
conques concourant respectivement en ces points ; il faut néces-
sairement que les droites dont II s'agit soient perpendiculaires entre
elles f puisqu'elles doivent être parallèles aux asymptotes de la
courbe.

Si le sommet A du triangle ABC ( fig« 7 ) , au lieu de s'écarter
indéfiniment des deux autres B , C , se rapprochait , au contraire,
de l'un d'eux C , jusqu'à ce que le côté AC devînt Infiniment petit
ou nul , en conservant toujours sa direction primitive ; les points
L , R se trouveraient eux-mêmes rapprochés à une distance infi-
niment petite l'un de l'autre , sur une parallèle à AC , passant par
le milieu du côté AB ou CB ; quant au point milieu I du côté
AC , il serait confondu avec le sommet A.

Soit donc AP ( fig. 9 ) la direction indéfinie de la droite qui
renferme les deux points ou sommets confondus en un seul au
point A j et soit B le troisième point ou le troisième sommet que
Ton considère ; divisons le double côté BA en deux parties
égâîes au point L par la parallèle LK à AP , le cercle qui passera
par A et louchera la parallèle KL en L réprésentera évidemment
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celui qui ? dans le cas général, passe par les milieux des côtés du
triangle ABC ; par conséquent, il renfermera la suite des centres
des hyperboles équilatères qui passent par les points À , B et tou-
chent la droite ÀP en À. Du reste, il serait facile de reconnaître
ce que sont devenues les autres propriétés du cercle dont il s'agit,
et d'en déduire divers théorèmes analogues à ceux exposés dans ce
qui précède , et q̂ ii n'en seraient que des cas particuliers.

Ainsi, le moyen que nous avons indiqué ci-dessus 5 pour trouver
l*ô centre et finalement les asymptotes d'une hyperbole équilatère
assujettie à passer par quatre points donnés sur un pian, s'applique
(rès-bien au cas particulier où Ton suppose cas points ,, en tout
ou en partie , réunis deux à deux en un seul, sur des droites
ou tangentes dont la direction est assignée, ainsi que le poîni de
contact; comme il s'applique aussi très-bien a celui oui un ou deux
de ces mêmes points passent à l'infini sur des droites dont la di-
rection est également assignée.

Mais , quand Ton ne se donne que trois points de l'hyperbole
tkjuiîatère , avec une tangente quelconque , il n'est plus possible
de déterminer de la même manière le centre de la courba ; car
alors on n'obtient <ju*uîi seul cercle, dont la circonférence renferme
ce centre $ il faut donc avoir recoars au procédé indiqué plus haut ,
au moyen duquel on peut obtenir directement un quatrième point
de la courbe ; ce qui ramène le problème à celui où il s'agit de
décrira une section conique dont on a quatre points et une tangente.

Enfin , quand on se donne deux points et deux tangentes quei-̂
conques de l'hyperbole équilatère , ou seulement un point et trois
tangentes quelconques , les deux procédés dont il s'agit sont éga-
lement en défaut. Néanmoins , dans le premier de ces deux cas >
on trouve encore un cercle dont la circonférence renferme le centre
de la courbe ; ce qui donna lieu à ce nouveau théorème ;

THEOREME X Les centres de toutes les hyperboles èqnila-
Ûres tangentes à dev% droites et passant par deux points donnés sur
vn plan sont situés sur une circonférence de cercle unique.
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Dans le mémo cas , on parvient a déterminer , d'une manière

très-simple , un système de deux droites dont l'intersection avec le
cercle en question donne encore la position des centres de^ quatre
hyperboles équilatères qui résolvent le problème ; mais la démons-
tration de ces diverses propositions exige l'emploi des principes qui
sont, jusqu'à un certain point f étrangers à l'objet actuel de cet
article.

On a vu , dans ce qui précède , le rôle qu*on peut faire jouer
aux différens lieux des centres des sections coniques assujetties a
certaines conditions , pour fixer entièrement la position du centre
de la courbe, et par conséquent celle de cette courbe elle-même,
quand le nombre de ces conditions ne. laisse plus rien d^arbitraire
ni d'indéterminé* 11 se présente , à ce sujet, pue question fort in-
téressante , et qui nous semble n'avoir pas encore été résolue XT̂ HM*

manière complète, et dans toute sa généralité >* en voici l'énoncé :
Déterminer quelle est la nature de la courbe qui renferme les

centres de toutes les sections coniques assujetties à quatre conditions
telles que de passer par des points ou de toucher des droites données
sur un plan ?

Aux divers cas particuliers dont il a déjà été question dans le
présent article, et dont le plus remarquable est, sans contredit, celui
qui résulte du théorème cité de Newton sur le quadrilatère cir-
conscrit a une section conique f nous ajouterons les suivans qui ,
si nous ne nous trompons , n'ont pas encore été démontrés ou
résolus :

Les centres de toutes les sections coniques assujetties à passer
par quatre points donnés sur un plan sont situés sur une autre
section conique passant par les points où se coupent les deux dia~
gonales et les côtés opposés du quadrilatère correspondant aux
quatre points donnés.

Les centres de toutes les sections coniques assujetties à toucher
deux droites et à passer par deux points donnés sur un plan sont
situés sur une autre section conique passant par le point d'inter-
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section des deux droites , par le milieu de la distance qui sépare
entre eux les deux points et par le milieu de la partie interceptée
par ces droites sur la direction indéfinie de celle qui renferme les
deux mêmes points (*)•

(*) Nous croyons devoir rappeler au lecteur qu'à la page 261 du TIIÏ.e

volume de ce recueil , M. Coste a résolu , pour la parabole , les questions
analogues à celles qui font l'objet du présent mémoire , qui forme ainsi, avec
le sien , un complément nécessaire à l'ouvrage de M. Brianchon sur les lignes
du second ordre.

Quel que soit le mérite de ces diverses recherches ; on ne doit pas deses-
pérer toutefois de parvenir un Jour à les faire dépendre comme cas particulier
d'un problème unique : celui où il s'agit de décrire une conique qui en touche
cinq autres données sur un plan ; problème que nous avons proposé ( Tom.
iVIII , pag. 284 ) et qui est peut-être susceptible d'une construction élégante
et d'un facile énoncé. C'est ainsi que nous sommes parvenus à faire dériver
la solution des dix problèmes de Viète et des quinze problèmes de Fermât su»
les contacts des cercles et des sphères de celle du plus difficile d'entre eux
£ Voyez tonu IV , pag. 349 , tom. VII , pag. 289 , et tom. XI , pag. 1 ).

J . D, G.

GÉOMÉTRIE



ANSES DE PANIERS.

GÉOMÉTRIE APPLIQUÉE.

Sur le tracé des coûtes en anses de paniers;

Par un ABONKÉ,

Au Rédacteur des Annales ;

M O N S I E U R ,

V-/N vient de construire un pont qui traverse le Taro , sur la route
de Parme à Plaisance. Il est composé de 20 arches en anses de
paniers à 5 centres , égales et de niveau , de 24 mètres de dia-
mètre et 6 mètres de montée chacune. Les piles ont 4 f mètres
d'épaisseur; de sorte qu'il a ? y compris les culées, plus de 600
mètres de longueur ; et c'est peut-être le plus long qui existe en
maçonnerie en Europe. Quoique ce pont me semble très-beau, ïl
n'a cependant pas été exempt de critiques. L'une de ces critiques
s'est portée sur le tracé des arches : on a prétendu qu'elles man-
quent de grâce. Sans décider si ce reproche est fondé ou non ,
il me semble que , pour l'apprécier équitablement , ïl faudrait
d'abprd se former le type d'une arche parfaite , ce qui n'a point
encore été fait que je sache, et comparer ensuite l'arche donnée
à ce type.

Je crois que le terme de comparaison f le type ou l'arche mo-
dèle devrait remplir les conditions suivantes; savoir: i.* que les

Tom. XL 3o
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deux demi-anses soient parfaitement égales; 2.0 que les naissances
soient de niveau et perpendiculaires au diamètre ; 3.° que chaque
demi-anse soit une courbe continue , dont la courbure soit uni-
formément diminuée , de la naissance à la clef $ c'est-à-dire , de
telle sorte qu'en prenant sur la courbe deux portions quelconques
de même amplitude et qu'on leur mène des normales par leurs
extrémités, ces normales et les arcs qu'elles intercepteront forment
des secteurs semblables (*).

Les deux premières conditions sont généralement observées. Quant
à la troisième , il n'y a que la spirale logarithmique qui puisse y
satisfaire -, cette courbe a seule la propriété de donner des secteurs
semblables pour des arcs de même amplitude ; c'est-à-dire , pour
des arcs dont les normales extrêmes font entre elles des angles égaux.
La demi-anse de panier qui pourrait servir de type serait donc
un arc de spirale logarithmique dont l'amplitude serait de go° ;
c'est-à-dire , dont les normales , menées par ses extrémités, seraient

(*) Serait-il déraisonnable de penser que , dans tout ceci , il j a inévita-
blement un peu d'arbitraire ; que l'habitude y joue un assez grand rôle, et qu'il
efï est à peu près connme des modes , dont les plus bisarres même finissent
par trouver grâce pour ce qu'elles semblaient d'abord avoir de £ius choquant ?
Aujourd'hui, par exemple , on semble ne pas mal s'accommoder d'arches sur-
baissées formées d'un seul arc de cercle s et dans lesquelles conséquemment les
tangentes aux naissances sont loin d'être verticales. Quant à la troisième con-
dition , peut-être suffirait-il que la courbure de la demi-anse , toujours convexe,
né variât pas d'un point à l'autre cPime manière trop sensible, Ce qui exclurait
les anses de paniers à un petit nombre de centres ; mais nous ne voyons pas
pourquoi, suivant le plus ou le moins d'ouverture qu'on voudrait donner aux
arches, on n'adopterait pas tantôt des quarts d'ellipses , tarît ôt des demi-cycloïdes
alongées, tantôt des développantes de cercles , tantôt des quarts de developpe'es
d'ellipses ; et en général toutes courbes assujetties à une loi continue. Que si
l*ou trouvait plus commode l'emploi des arc3 de cercles f nous pensons qu'on
ne se triravèrak pas très-mal, dans certains cas, de la développante d'un quart
de polygone régulier d'au nombre de côtés pairemenî pair,

J. D. G,
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perpendiculaires entre elles , et formeraient, Tune la demi-base et
l'autre la montée de l'anse de panier.

Soit ÀHKB un arc de spirale logarithmique ( fig. 10 ). Si Ton
prend sur son périmètre les arcs AH , HK , KB de même am-
plitude , et que l'on en tire les cordes ; Ton peut déduire de }a
génération de la courbe que ces cordes formeront une progression
géométrique , de manière que HK sera moyenne proportionnelle
entre AH et KB -, et de plus , les angles AHK , HKB seront
égaux ; d'où îl suit que , si Ton divise ces angles en deux parties
égales , par les droites HM et KM, ces deux droites seront égales .
de sorte que les points H et K seront sur une circonférence de
cercle ayant le point M pour centre et ayant pour rayon JV1H=MK.
En outre , si , sur AH et KB comme bases , on construit des
triangles isocèles HLA et KSB , semblables à HMK ; les points
A et H, ainsi que les points K et B , se trouveront aussi sur
deux circonférences de cercles ayant les points L et 3N pour centres
et pour rayons respectifs LA=LH et KK=NB. Ainsi, les points
A , H , K , B se trouveront placés ? en même temps f sut la spirale
et sur trois arcs de cercles semblables , qui se raccorderont en H
et K , et dont les cordes et par conséquent les rayons LA, MH,
NK seront en progression géométrique. On voit de plus que sî , au
lieu de diviser Tare de spirale AB , formant la demi-anse , en trois
parties de même amplitude, on l'eût divisé en quatre ou en un
plus grand nombre , il y aurait eu un plus grand nombre de points
placés sur le périmètre de cette courbe ; et que par conséquent la
courbe formée par les arcs de cercles approchera d'autant plus de
la spirale que ces arcs seront en plus grand nombre.

Comme Ton n'a pas de moyen facile pour décrire la spirale d'un
mouvement continu ; on ne peut guère employer cette courbe pour
former l'anse du panier ; et l'on est oblige de lui substituer une
courbe discontinue ? formée par des arcs de cercles qui se raccordent
par leurs extrémités. L'anse de panier qui aura le plus de grâce
sera conséquemmeni celle qui aura un plus grand nou*bre de points
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placés sur la spirale. Pour remplir cette condition t soit n le nom-
bre des centres de la demi-anse ; on prendra chacun des arcs de
cercle d'un nombre de degré exprimé par ^ , et on fera croître
leurs rayons en progression géométrique.

La question est donc réduite à trouver les rayons de ces arcs ,
lorsque la demi-base et la montée sont données. Cette question a
été proposée {Annales, tom. IV, pag. 92 ) , et résolue analitique-
ment par MM. Argand et Bérard ( même volume , pag, 256 et
suiv. ). Il faut, en général , résoudre par approximation l'équation
qui donne la raison de la progression formée par les rayons con-
sécutifs ; mais , dans le cas où la demi-anse ne doit avoir que trois
centres 7 et c'est le cas des arches du pont du Taro , on peut trouver
les rayons de la manière suivante.

Au lieu de supposer que la courbe ÀHKB est un arc de spirale ,
je suppose qu'elle soit formée de trois arcs de cercle AH, HK,
KB , de 3o° chacun. Nous avons vu que la corde HK doit être
moyenne proportionnelle entre les cordes AH et KB. Supposons
ces dernières prolongées jusqu'à leur rencontre en D , et soient
AC et CB la demi-base et la montée ; les deux angles DAC et
DBC seront chacun de 75° ; portant donc DA sur DB de D en
F et tirant AF , cette dernière droite sera parallèle à la corde
HK. Par le point F , soit élevée à DB la perpendiculaire indéfinie
FD 7 , et soit G le milieu de FB. Je divise la longpeur FD en
un nombre arbitraire de parties égales ou inégales Fi_, 12, ^D f

çt du poinjt G comme centre , avec les rayons Gi , G2 , GD ,
je décris des arcs coupant la perpendiculaire indéfinie FD / , aux
points i7 , 27 , D'* Je porte respectivement les ordonnées F i 7 , F27 ,
FD7 sur des parallèles menées à FA par les points 1 , 2 9 D , de
1 en x77 , de 2 en 2." et de D en J)". Par les poiqts F , iu, 2>",
1);/, je fais passer une courbe auxiliaire Fi / /2 / /D / / , et cette courbe
coupe la droite AD au point H. Menant donc par ce point la
parallèle HK à AF , terminée en K à DP , cette parallèle ser§
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la corde intermédiaire, moyenne propoi tonnelle entre r^H et KB ;
et Je problème amené à ce point sera censé lésolu.

Cette construction est facile à justifier. Il est claîr , en effet ,
par la nature de la courbe auxiliaire , que si , du point G comme
centre et avec GK pour rayon , on décrit le demi-cercle KK/O ,
on aura KH = FK/ ; maïs FK/ est moyenne proportionnelle entre
FK et FO , c'est-à-dire , entre AH, et KB ; d'où il suit que KH
est aussi moyenne proportionnelle entre ces deux droites.

Agréez , ete.
Parme , le 20 octobre 1820*

QUESTIONS RÉSOLUES.

Solution du premier des cinq problèmes de géométrie
proposés à la page 160 du X,e volume de ce recueil ;

Par M. M. . . . s .

JLROBLÈME. Déterminer taire d'un quadrilatère rectiligne
circonscrit au cercle 9 en fonction de ses quatre côtés ?

I.

Bans tout quadrilatère rectiligne circonscrit à un cercle , la
somme de deux côtés opposés est égale à la somme des dma?
autres»

Soit ( fig. 11 ) ABCDA un quadrilatère rectiligne , dont les côte's
AB , BC, CD, DÀ , touchent respectivement un cercle aux point*
* , £ , ; , < ? ; il s'agit de prouver que AB+CD=JBÇ-f-DAs

Oi\ sait, en effet, qu'qn a
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= Cb ,

d'où on conclut, en ajoutant et réduisant, ÀB+CD^BC+DÀ ,
comme nous l'avions annoncé^

IL

Si, dans un quadrilatère rectiligne } la somme de deux côtés
opposés est égale à ta somme des deux autres , un cercle pourra
toujours lui être inscrit.

Soït ( fig. 12 ) ÀBCDA un quadrilatère rectiligne dans lequel on
a A£^~CD==BC-|hDA ; il s'agit de prouver qu'un cercle peut
toujours lui être inscrit.

Comme on peut toujours* décrire un cercle qui touche trois des
côtés du quadrilatère , tout se réduit à prouver que ce cercle
touchera aussi son quatrième côté.

Supposons donc qu'on ait décrit un cercle qui touche respecti-
vement les ec)tés ÀB r BG , CD en a , h , c \ il s'agit de prouver
gué ce cercle touchera aussi le quatrième côté DÀ.

Si l'on nie cette proposition , il faudra admettre que , par le point
D on peut mener au cercle une tangente différente de DC et DA i
touchant ce cercle en quelque point d » et coupant AB ou son
prolongement en quelque point E ; alors le* quadrilatère EBCDE
se trouvant inscrit au cercle, on devra avoir* (I)

EB+CD=BC4-DE <f

mais on a par hypothèse
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AB+CD=BC+AD ;

Retranchant donc la première de ces deux équations de la seconde ;
il viendra , en réduisant ,

AE=AD-DE ou AE+ED=AD ;

résultat absurde qui prouve que la tangente DE né saurait différer
de DA , que par conséquent le cercle tangent aux trois côtés AB f

BG , CD du quadrilatère dont il s'agit doit aussi toucher le qua-
trième DA f et qu'ainsi, de cela seulement que la somme de deux
côtés opposés d'un quadrilatère rectiligne est égale à la somme
des deux autres, le quadrilatère est circonscriptible au cercle.

III.

De ce qui vient d'être dit , il résulté év!8emihehi qàë, Ibftqù'oiî
propose de construire un quadrilatère doïit ïéâ fc&t&s Soient doiinëi
et qui soit citcôriScriptï&Ie àh èerëlê , brf r̂djpbsé un problème im-
possible ou iridéCêrmîné ; iii)|iôsVible, si IS sdïhiùë de âèai côtés
opposés n'est pas égale à la somme des deux axitrél : indéWtùitiè t

si , au contraire y cette relation a Heu. Donc aussi demander l'aire
d'un tel quadrilatère c'est proposer un problème impossible, s'il
n'est pas indéterminé.

IV.

Par des raîsennemens tont-a fait semblables, on parviendra fa-
cilement à s'assurer que proposer de déterminer Taire d'un qua-
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drilatère sphérique cîrconscriplible à un petit cercle de la sphère , en
fonction de ses quatre côtés, c'est également proposer un problème
indéterminé , toutes les fois qu'il n'est pas impossible,

Berlin, le 24 octobre 1820.

QUESTIONS PROPOSEES

Problèmes de Géométrie.

I . VJKJEL est le lieu des centres de toutes les sections coniques qui
passent par m points et touchent n droites données sur un plan ,
avec la condition j?2-+72=r 4 ?

II. Qtfel est le lieu des centres de toutes les hyperboles équi-
latères qui passent par m points et touchent n droites données sur
un plan, avec la condition m-+-« = 3?

III. Quel est le lieu des foyers de toutes les paraboles qui pas-
sent par m points et touchent n droites données sur un plan ,
avec la condition 772+»=3?



~2£ 9*

J.V.Ç.JeciL
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OPTIQUE-

Recherches de dioplrique , renfermant la solution du
dernier des deux problèmes proposés à la page
288 du X.* volume de ce recueil ;

Par M. G E R G O N N E .

JLJE but que nous nous proposons ici est d'examiner comment
s'opère la vision et sous quelle apparence se présentent les objets
lumineux ou éclaires, lorsque ces objets se trouvent plongés dans
un milieu homogène d'une densité constante , et que l'œil qui les
contemple se trouve dans un autre milieu homogène , également
d'une densité constante , coniigu à celui-là et séparé de lui par un
plan indéfini. C'est exactement le cas où nous sommes lorsque nous
regardons les poissons dans l'eau , et c'est aussi celui où ils se
trouvent, ainsi que les plongeurs , lorsqu'ils nous regardent. Nous
aurons occasion , chemin faisant , de traiter, comme cas très-
particulier , le dernier des deux problèmes proposés à la page 288
du X.e volume de ce recueil.

TMen que la question que nous abordons ici soit une des plus
simples de toutes celles que la dioptrique peut avoir en vue , elle
ne laisse pas que d'être assez compliquée. Elle a déjà été som-
mairement traitée par M. Lenthéric , professeur au collège royal
de Montpellier, dans une thèse qu'il a soutenue pour le doctorat,
a la faculté des sciences, en mai 1820 ; et nous n'avons d'autre

Tom. XI , *.• VIII, i.er'février 1821. 3i
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but ici que de développer davantage et de simplifier en même
temps y s'il est possible ? les résultats obtenus par cet estimable
professeur.

Pour fixer les idées et éviter en même temps les circonlocutions ,'
nous supposerons constamment que les deux milieux dont il s'agit
sont l'air et l'eau • que ; par conséquent , le plan indéfini qui les
sépare est un plan horizontal ; et que le milieu inférieur est celui
des deux qui réfracte le plus cnergiquement la lumière -, mais on
sent fort bien que nos formules et nos méthodes n'en seront pas
moins facilement applicables à toute autre hypothèse qu'on voudra
faire sur la nature -des deux milieux, $ous aurons d'ailleurs à
examiner successivement le cas où l'objet est dans l'eau et l'œil
dans l'air et celui où c'est , au contraire , l'œil qui est dans l'eau ,
tandis que l'objet est dans l'air, nous verrons que ces deux cas ,
bien que peu différens en apparence , sont cependant bien loin
d'offrir des résultats analogues.

Soit donc un point lumineux plongé dans IVau ; ce point dardera
dans tous les sens des rayons de lumière dont la direction sera
rectilïgne et constante tant qu'ils demeureront dans ce fluide; niais
une fois que ceux qui seront dirigés de manière à pouvoir en sertir
auront atteint la surface de l'eau , ils continueront leur marche
dans l'air suivant une direction encore rectiligne f maïs différente
de la première et plus éloignée qu'elle de la direction verticale (*),

Si un œiî se trouve situé d'une manière quelconque dans Tair,
plusieurs des rayons qui y auront pénétré viendront le frapper,

(*) Je n'adopte Ici l'hypothèse cle rémission que poiir plus âe simplicité. Je
n'ignore pas que les, belles recherches de M. Fresnel semblent présentement
faire pencher la balance en faveur de l'hypothèse des ondulations. Je sai& aussi
que la lumière parvenue à la surface de l'eau ne pénètre pas toute dans l'air 9

et qu'une partie y rentre en se r£fle*chissanl à cette surface; mais c'est là une
circonstance dont il est permis ici de faire abstraction
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Par l'effet de l'habitude cet œil croira le point lumineux placé
dans la direction suivant laquelle il en aura reçu la sensation , et
précisément à l'endroit d'où les rayons du faisceau entré dans la
prunelle divergeraient , s'ilsi n'avaient point été rompus à la surface
de l'eau.

Si, par le point lumineux , on conçoit un plan vertical quel-
conque , ce plan contiendra un certain nombre de rayons émanés,
du point dont il s'agit ; or , les circonstances étant absolument les
mêmes de part et d'autre de ce plan , les rayons à leur entrée
dans l'air, tout en prenant une nouvelle direction , ne s'écarteront
ni à droite ni à gauche de ce même plan , et ne pourront con-
séquerurnenî parvenir à Fœil qu'autant qu'il y sera lui-même situé ;
c'est donc aussi dans ce plan que l'image sera aperçue.

On voit donc que si , par l'œil et par le point lumineux, on
conçoit un plan vertical , c'est dans ce plan uniquement que se
passera tout le phénomène de la vision ; d'où il résulte encore que
si , au lieu d'un point unique , on a un objet visible d'une cer-
taine étendue ; pourvu que les diverses parties de cet objet se trouvent
comprises dans un même plan vertical avec l'œil , son image se
trouvera aussi toute entière comprise dans le même plan. Dans
ce cas particulier 9 le problème, au lieu d'appartenir à la géométrie
à trois dimensions , i>est donc qu'un simple problème de géométrie
plane. En conséquence , c'est par lui que nous croyons devoir
commencer , d'autant que le problème général peut ensuite s'en
déduire avec facilité.

i. Supposons donc ( fig. i ) que le plan de la figure soit le
plan vertical conduit par l'œil et par le point lumineux. Soit CX
l'intersectien de ce plan avec la surface supérieure du liquide ; soit
P le point lumineux et soit CY une verticale conduite par ce point.
Considérons deux rayons infiniment voisins P I , PI' , atteignant la
surface de l'eau en I , V; en entrant dans Pair, ils prendront les
directions nouvelles IL ; FL/, Soit p le point de concours de ces
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nouvelles directions ; îl est clair qu'un œil placé vers LL/ sera
dans le même cas que si, l'sau n'existant pas, le point lumineux,
au lieu d'être en P , se trouvait en p ; c'est-à-dire , en d'autres
termes f que le point p sera le lieu apparent ou l'image du point P,

2. Or, il est visible que le point/? est un de ceux de la courbe
à laquelle tous les rayons réfractés sont tangens $ c'est-à-dire , de
la courbe enveloppe de tous ces rayons ; et que de plus le rayon
réfracté IL est tangent à cette courbe en p ; si donc ( fig. 2 ) MN
est la courbe enveloppe de tous les rayons réfractés relatifs au
point P ; en quelque point O que l'œil se trouve dans l'air , en
menant par ce point O une tangente Op à cette courbe, son point
de contact p sera le lieu de l'image , c'est-à-dire , le lieu apparent
du point P , pour un œil situé en O. La courbe M/?N est ce qu'on
appelle la Caustique relative au point P.

3. L'objet principal de la recherche qui nous occupe doit donc
être la détermination de la nature de cette courbe. Pour parvenir
à ce but ( fig. 3 ) , soient prises respectivement l'horizontale CX
et la verticale CY pour axes des x et âes y; désignons par A l'en-
foncement CP du point P au-dessous du niveau de l'eau ; et con-
sidérons un rayon quelconque émané du point P , ayant PI pour
direction dans l'eau et IL pour direction hors de l'eau. Désignons
par z la distance variable CI de l'origine C au point d'incidence
I ; et , par ce point I , menons la verticale indéfinie GH ; l'angle
GIP = IPC sera ce qu'on appelle Vangle d'incidence et l'angle HIL
sera ce qu'on appelle Vangle de réfraction*

4. Or , suivant les premiers principes de la dioptrîque , pour
les deux mêmes milieux , le rapport du sinus d'incidence au sinus
de réfraction doit être constant, et tout à-fait indépendant de la
direction du rayon incident. Supposant donc que le sinus d'incï-
dençe dans l'eau soit constamment au sinus de réfraction dans
Tair dans le rapport de q à p, nous aurons
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Sin.lVC __ p

•Sïïfi.LlH ~ "7 '

d'où

CoslAX=Sin.UU^ ?-Sfn.lVC
9

mais on a

donc

d'où

S/«.IPC=g=- *

de sorte qu'en posant, pour abréger ;

d'où

nous aurons

En conséquence , l'équation du rayon tdfracté IL , c'est-à-dîre ;
l'équation générale de tous les rayons réfractés relatifs au point
P sera
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équation dans laquelle z est un paramètre tout-à-faît indéterminé.

5, Suivant donc les principes du calcul différentiel , l'équation de
l'enveloppe de tous les rayons réfractés > c'est-à-dire, l'équation de
la caustique , sera (*) le résultat de rélimination de z entre celte
dernière équation et sa différentielle , prise uniquement par rapport
à cette lettre» Cette différentielle est, toutes réductions faites,

Pour éliminer facilement z entre elle et l'équation primitive du
rayon réfracté, nous les résoudrons par rapport à x et y , ainsi
que nous l'avons déjà fait dans une circonstance analogue ( tom. V ,
pag. 288 ). Cette dernière donne immédiatement la valeur de % ;
et , en la substituant dans l'autre , on obtient

d'où résulte

- mx \-_m*z* f ny \ ;

ajoutant donc ces deux équations membre à membre , nous aurons
pour celle de la caustique cherchée

Or , it est connu ( tam. V , pag. 288 ) que l'équation d'une
e étant

Voyez la page 36i du III.e volume de ce recueil.
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l'équation de sa développée est

**

donc notre caustique n'est autre que la développée d'une ellipse
dont les demi-diamètres principaux sont donnés par les deux
équationséquations

h _ n

d ' o ù , on ayant égard à la relation 722=3i-}-7723
 7 trouvée cî-des$u$

(4), on tire

de sorte que l'équation de cette ellipse est

On a , en outre ,
b

a

n
m

7. Ainsi , toutes les fois qu'un point lumineux est plongé dans
l'eau , ceux d'entre les rayons qui en émanent qui sont compris
dans un même plan vertical quelconque passant par ce point ^donnent
naissance , après leur sortie du liquide f à une caustique qui n'est
autre chose que la développée d'une ellipse qui a son centre à la
surface du liquide, et son grand axe vertical. L'UQ des foyers de
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cette ellipse est le point lumineux lui-même; et ses dimensions,
proportionnelles à l'enfoncement de ce point , ne dépendent que
du rapport du sinus d'incidence au sinus de réfraction ; de telle
sorte que les ellipses qui répondent à divers points , et par suite
leurs développées , sont des courbes semblaBles. On aurait des con-
séquences analogues pour deux autres milieux transparens, solides
ou fluides ; il n'y aurait absolument de changé que le rapport des
dimemions des ellipses (*) ; pourvu toutefois que le point lumineux
fût toujours dans celui des deux milieux qui jouirait du pouvoir
réfringent le plus énergique. On conçoit, au surplus s qu'il n'y a
que celle des deux moitiés de la développée de l'ellipse qui ap-
partient à ce milieu qui puisse être utile au problème ; de sorte
que c'est seulement cette demi-développée qui doit être considérée
comme la caustique.

(*) Dans le passage de l'eau dans l'air on a , à très-peu pi es , /?=4 >

^ = 3 , d'où 72=| , m=. ^~-, ou sensiblement 772=§. Cela donne — = { i c'est-

à-dire que l'axe vertical de l'ellipse est à son axe horizontal environ dans
le rapport de 3 à 2.

S'il*s'agit du passage du verre dans l'air, on aura, à très-peu près p = 3 ,

^ = 2 , d'où 72=7 > m— "̂"̂  1 o u sensiblement 772= f-. Cela donne — = 7 , c'est-

à-dire que Taxe vertical de l'ellipse est à son axe horizontal environ dans le
rapport de 4 à 3.

S'il s'agît enfin du passage du verre dans l'eau , on aura, à très-peu près ,

P=zdt 3f==8 , d'où n " = | , m=-^— , ou sensiblement m = ^« Cela donne

o

— = 5 1 c'est-à-dire que l'axe vertical de l'ellipse est à son axe horizontal

environ dans le rapport de 9 à /j.
En général, l'ellipse est d'autant plus alongée que les pouvoirs réfringens des

deux milieux sont moins différéns.
8.
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8* De ce qui précède, et de la figure connue delà dévelopoée
de l'ellipse , il est facile de de'duîre diverses conséquences, dont
les plus remarquables sont les suivantes :

i.° Tant que Fceil du spectateur ne sort pas de la verticale qui
passe par le point lumineux , l'image de ce point ne sort pas non
plus de cette verticale , sur laquelle l'œil peut d'ailleurs se mou-
voir sans que cette image paraisse aucunement changer de place.
Elle paraît toujours d'ailleurs p!us rapprochée de la surface de l'eau
que l'objet lui-mcme , et d'une quantité constamment proportionnelle
à renfoncement de cet objet (*;,

2.0 Si l'œil se meut sur la surface même de l'eau , a mesure
qu'il s'éloignera de la verticale menée par le point lumineux ,
l'image de ce point s'éloignera aussi de cette même verûcole et
dans le même sens , en se rapprochant p^u à peu de la surface
de l'eau.' Lorsque l'œil se trouvera distant de la verticale de la

(*) Si l'oeil est dans Pair , suivant que l'objet sera dans Feau ou dans îe
verre, son image se trouvera rapprochée d'un quart ou d'un tiers du plan
horizontal qui sépare les deux milieux. Si l'œil est dans l'eau et l'objet «lans
le verre , ce rapprochement sera seulement d'un neuvième.

Lorsque M. Lenthéric soutint , à la faculté âes sciences de Montpellier , îa
thèse dont il a e'té question ci-dessus , un des juges fui objecta que la réfrac-
tion e'tant nulle dans le sens normal, l'objet doit être vu à sa véritable place
lonque l'oeil se trouve verticalement au-dessus. Cela pourrait être vrai, si
l'ouverture de la prunelle était un point mathématique ; mais cette ouverture
est la plus grande des deux bases d'un tronc de cône formé par ceux d'entre
les rayons lumineux qui 7 étant sortis de l'eau , parviennent à l'œil. Ce tronc
de cône a sa plus petite base k la surface de Peau , et cette dernière est p

à son tour , la base d'un cône entier , ayant son sommet au point lumineux ,
et comprenant les mêmes rayons dans l'eau. Or , c'est au sommet du eône s dont
le tronc pose sur l'œil , que l'image doit être aperçue ; et, comme ce cône est
plus obtus que celui qui a son sommet à l'objet > il s'ensuit que l'image dok
être plus voisine de l'œil que ne Test eet objet.

Tom. XL 32
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k

quantité —, l'image se confondra avec lui $ c 'est-à-dire que

k
celte image sera aussi à la surface de l'eau et a la distance —

de la verticale qui passe par l'objet* Passé ce terme , l'œil aura
beau s'écarter davantage 7 il verra toujours l'objet à la même place
à la surface de l'eau (*)•

3.° Dans toute situation intermédiaire de l'œil , l'image paraîtra
toujours hors d& la verticale du même côté que lui, et plus élevée^
que l'objet. Si , en parlant d'une situation donnée , cet œil s'élève
«verticalement , il verra l'image s'enfoncer par degrés , en se rap-
prochant de la verticale ; ce sera le contraire si l'œil descend ver-
ticalement, &\ , partant de la même situation , Vœ\\ se meut horî->
zontalement , en s5écartant de la verticale, l'image s'en écartera
dans le même sens et se rapprochera peu à peu de la surface de
l'eau. On reconnaîtra enfin que l'œil , mu obliquement , dans une
direction Tectiligne , parcourt wne ta&g-enie à la 4>austiqu€ , lorsque t

malgré son mouvement , l'image lui semblera immobile. Cette cir-
constance pourrait même offrir un moyen de déterminer l'a caustique
d'une manière expérimentale , e$ d'en conclure ensuite le rapport
dû sinus d'incidence au 3Înus de réfraction.

9. De ce que les caustiques relatives a différens points sont sem-
blables , et semblabîeuïent situées par rapport à la ligne de niveau ,
résulte un procédé graphique assez simple pour déterminer le lieu
de l'image de tant de points visibles qu'on voudra. Soit toujours
CX ( fig. 4 ) Ie niveau supérieur de l'eau, et soit O/ le lieu fixe

(*) L'œil étant dans l'air , suivant cjue l'objet sera dans l'eau ou dans le
k

verre , la distance — sera les trois quarts ou les deux tiers de renfoncement

de l'objet. Si l'œil est dans Veau et l'objet dans le verre , cette distance
IJS huit neuvièmes de renfoncement de cet objet.
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de l'œil ; sur la verticale CP , conduite par O /
> on prendra arbi-

trairement un point P , pour lequel on tracera avec soin la caus-
tique MNM' , que nous appellerons la caustique normale. On fera
bien d'ailleurs de prendre le point P le plus bas possible , afin
d'avoir une caustique de plus grande dimension* Cette caustique,
ainsi tracée , une fois pour toutes , rien ne sernplus aisé que d'assigner
l'image d'un point donné quelconque , pour un œil placé en (K

Soit , en effet, P ' le point dont il s'agît ; en menant PP / , son
point d'intersection S avec GX sera évidemment le centre de simi-
litude des caustiques relatives aux points P , P7. On mènera P /O /

et SO' qu'on fera couper en O par une parallèle PO à P'O', On
mènera par O , à la caustique normale , la tangente Op la tou-
chant en p. On mènera enfin Sp qu'on fera couper en p/ par une
parallèle O/p/ à Op ; et alors f de même que p est l'image de P ,
pour un œil placé en O ; p/ sera l'image de P ; , pour un œil placé
en O7 , et conséquemment le point demandé,

io. En renversant cette construction, on pourra déterminer, pour
une situation donnée de l'œil , en quel lieu doit se trouver un point
lumineux , pour que son Image soit vue en un point donné.

Soit toujours O' le lieu de l'œil, et soit p/ l'Image donnée d'un
point dont il faut assigner la situation. On mènera p/0/ et , paral-
lèlement à cette droite, une tangente pO à la caustique normale.
p étant le point de contact de cette tangente, on mènera ppf cou-
pant CX en S $ et SO; coupant pO en O. On mènera enfin OP,
et ensuite SP , coupée en P / par une parallèle O/P/ à OP, II esE
clair qu'alors P étant , pour l'œil placé en O , le lieu de l'objet
dont l'image est en p ; V/ sera pareillement , pour un œil placé
en O', le lieu de l'objet dont Pimage est vue en pf ; c'est-à-dire,
que P ; sera le point cherché*

n . Sachant ainsi, pour une situation donnée de Pœil, assigner
soit le lieu de Pimage d'un point donné quelconque , soit le lieu
d'un point dont Pimage est donnée ; rien ne sera plus aisé que
de tracer par points 7 soit l'image d'une ligne droite ou courbe
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plane quelconque située, avec l'œil , dans tin plan vertical , soit
la ligne dont une ligne donnée droite ou courbe plane située dans
un même plan vertical est l'image.

S'il s'agit d'un dessin tant soit peu compliqué , ce qu'il y aura
de mieux à faire , sera de tracer à l'avance , soit les images d'une
suite de droites verticales et horizontales équidistantes , soit les
courbes ayant pour images des droites verticales et horizontales
équidistantes. On achèvera ensuite le dessin proposé ; de la même
manière que Ton trace les anamorphoses.

12. Essayons présentement de traduire ces diverses constructions
en analise ; c'est-à-dire, de déterminer les coordonnées de pf par
celles de P ' , et réciproquement. Appelons xry' les premières , X/

9

Yf les dernières ; tout se réduira évidemment à trouver deux équa-
lions de relation entre ces quatre variables et les constantes du
problème.

13. Appelons k la longueur arbitraire CP , et h la hauteur CO/

de l'œil au-dessus du niveau de Feaua Tout étant d'ailleurs dans
la figure 5 , comme dans la figure ^ > abaissons du point O la
perpendiculaire OT sar CS et du point P / la perpendiculaire P'C'
çur la même droite ; en menant OC , O/QJ

 r TP , CP ; , les triangles
rectangles C/CO/ et CTO seront semblables j et il en sera de même
des triangles rectangles P'C'G et PCT ; on ?mra donc

P'C' îC/C: : P C : C T ,

c'est-à-dîre ;

Y':X'::k : CT

; h ::
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conséquence , les équations du point O seront, en ayant t'gai-d
i signesaux signes

kX' kh
(0

Désignons , en outre, par xlf , ytf les coordonnées du point p
de contact de la tangente Op menée par le point O a la caustique
relative au point P ; en abaissant des points jp , p/ les perpendicu-
laires pq y p

f(jf sur CS , nous aurons

CPiC'P'::

c'est-a-dire J

k.F:;

Cç : Cy ;

P9 : PY ^

y" -y' i

d'où 9 en ayant égard aux signes ^

il ne s'agit donc plus que de chasser de ces dernières formules
xf/, yf/ 9 e n exprimant qu'elles sont les coordonnées d'une tan-
gente menée par le point O à la caustique relative au point P.

i4* D'abord, parce que le point p est sur cette caustique, on
aura

d'où , en
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[dx" n /r mx"

«n conséquence, l'équation de la tangente en p sera

ou

puis donc que cette tangente doit passer par le point O ; on
aura

=o . (4)

II faudrait donc se servir des équations (3 , 4) pour chasser xf/\
yti des équations (2) ; maïs II revient au même 7 et II est incom-
parablement plus simple^ de se servir de ces dernières qui donnent

•• — Y/ ' •/ "•" If/ f

pour chasser xf/
 9 y/; des deux autres. Cela donne 9 en supprimant

les accens/désormais superflus,

(II)
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Ainsi , en prenant Taxe des x à la surface de l'eau et prenant

pour axe des y la veriîcile passant par l'œil } on pourra , a l'aide
de ces équations, déterminer, soit au moyen des coordonnées X,
Y d'un point les coordonnées j , y de son image, soit au moyen
des coordonnées x, y de cette image, les coordonnées X, Y dix
point auquel elle appartient.

i5. Il serait assez difficile de tirer de ces équations les valeurs
des coordonnées x, y de l'image d'un point en fonction des coor-
données X, Y de ce point; mais le problème inverse, c'est-à-dire ,
celui de la détermination des coordonnées X , Y d'un point en
fonction des coordonnées x , y de son image est , au contraire ,
très-facile à résoudre. En éliminant , en effet ? x~»X entre les deux
équations ci-dessus , il vient

après quoi Ton tire de l'équation (II) et de celle-ci

16, Qu'on ait présentement une ligne droite ou courbe plane ,
située avec l'œil dans un même plan vertical , et donnée par
l'équation

l'équation de son image s'obtiendra en mettant pour X ? Y dans
celle-ci leurs valeurs données par les équations (III, IV). Que si *
au contraire 7 on donne l'équation
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d'une ligne droite ou courbe plane , située dans un même plan vertical
avec l'œil, et qu'on demande de quelle autre ligne elle est l'image ;
il faudra f pour résoudre le problème , combiner l'équation de cette
ligne soît avec les équations (I, II) soit avec les équations (III, IV)
pour en éliminer # , y ;,l'équation résultante en X, Y sera celle
de la ligne cherchée ; d'où l'on volt qu'en général ce second pro-
blème sera plus difficile à résoudre que le premier.

17, Pour seules applications de ce procédé , nous chercherons
l'équation de l'image d'une droite verticale et celle de l'image d'une
droite horizontale. Soit une droite verticale donnée par l'équation

l'équation de son image sera évidemment

m»

ou bien

Soit qu'on y fasse y = o ou y = — 0© , on a également # = g , ce
qui nous annonce que la droite et son image se confondent éga-
lement et à la surface de Peau et à une profondeur infinie dans

(*) II est très-digne de remarque que cette courbe ( tom. V , pag. 292 ) est
en ïnême temps celle sur laquelle se trouveraient les images d'un point lumi-
neux situé hors de l'eau , sur le prolongement de la verfkale dont il s'agit, sî-
la surface du liquide devenait 1| surface antérieure d'une glace étamée t d'urne
épaisseur quelconque.

le
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le liquide; de sorte que cette droite est elle-même asymptote de
son image*

Cherchons sous quel angle l'image dévie de la droite verticale
à la surface de l'eau , et quel en est le plus grand écartemenu
En diiférentiant l'équation de cette image , on en tire

ây

âv
A la surface de Peau > — devient la co-tangente de l'angle que

fait la verticale avec son image ; puis donc qu'on a alors x=zg ;
y=o Ê en désignant cet angle par ô} on aura

mais, si Ton désigne par % l'angle que fait avec la verticale le
rayon visuel mené de l'œil au point où la droite et son image percent
la surface de l'eau , on aura

don®.

ainsi, la tangente de l'angle ê , toujours moindre que le cube de
la tangente de l'angle 1 , et pouvant croître indéfiniment comme
celle-ci, est constamment proportionnelle à son cube.

Pour savoir présentement en quel point la tangente à l'image de
notre verticale lui est parallèle , et connaître ainsi le maairnum de

Torn. XL 33
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son écartement, 11 suffit d'égaler à zéro le dénominateur de la valeur de

— ; ce qui donne

équation qu'il faudra combiner avec l'équation

= o

de l'image > pour ayoîr les coordonnées du point cherché.
Oh tire inamédiatement dé ces équations , en transposant et

divisant

y—h h

y-~r dou y--- '

ainsi y quels que soient les deux milieux et quelle que soit la dis-
tance de l'œil à la verticale dont il s'agit > c'est toujours à une
profondeur moitié de la hauteur de l'œil au-dessus de la surface
du liquide que le plus grand écartement a lieu/

En substituant cette valeur do y dans la première des deux
équations, elle devient

équation qui n'a évidemment qu'une seule racine réelle' qu'on
pourrait facilement obtenir par les formules connues.

i8. Supposons r en second lieu ; qu'il soit question d'une droite
horizontale donnée par l'équation

r=-k,

l'équation de son image sera évidemment
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ou biea

ou encore

#^=-t- —(y—/

d'où l'on voit que cette courbe est symétrique par rapport à la
verticale qui passe par l'œil, ainsi que cela doit être. De plus,
comme l'équation est satisfaite en posant simultanément ar=i"H çp
et y=o y il s'ensuit que la courbe a pour asymptote l'horizontale
qui détermine la surface supérieure du liquide ; et c'était encore là
un résultat facile à déduire de nos constructions graphiques,

3 g. On pourrait aussi rechercher si le liquide dans lequel les
objets sont supposés plongés amplifie ou réduit leurs dimensions
apparentes et s'il donne naissance aux franges colorées • maïs la
complication de nos formules nous avertit assez que nous ne pour-
rions aborder ces questions sans dépasser de beaucoup les bornes
que nous devons nous prescrire ici. Nous nous contenterons donc
d'observer , relativement à la première de ces deux questions , qu'il
résulte de ce qui a été dit (8) que , si l'œil se trouve sur le pro-
longement d'une verticale plongée dans l'eau et divisée en parties
égales , il la verra aussi divisée en parties égales , mais plus pe-
tites ; d'où l'on voit que , par l'effet du milieu , les dimensions
verticales des objets placés directement au-dessous de l'œil paraissent
plus petites ; et il est aisé de déduire de nos constructions que, dans
les mêmes circonstances , II en doit être de même de leurs dîmen-.
sions horizontales. Ainsi, l'effet du milieu sur des objets qui ne
s'écartent pas trop de la verticale passant par l'œil doit être de
les faire paraître à la fois plus petits et plus rapprochés.
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20. Changeons présentement les rôles ; supposons que le poînt

lumineux est dans l'air , tandis que l'œil est, au contraire, plongé
dans l'eau. Soit toujours ( 6g. 6 ) le plan de la figure un plan
vertical passant par l'objet et par l'œil, soit CX l'intersection de
ce plan avec la surface de Feau ; prenons cette droite pour axe des
x. Soit P l'objet ; et prenons pour axe des y la verticale CY con-
duite par P. Soit PI un rayon incident quelconque et Soit IL le
même rayon réfracté. Par le point d'incidencç I soit menée la
verticale indéfinie GH. Soient CP=& , CI=2 ; et soit toujours le
rapport du sinus d'incidence dans l'air au sinus de réfraction dans
l'eau celui de p à q ; nous aurons

Sin.Gllj *~ Sin.GlL Sin.GlLyJk*+z* q

d'où

donc

5//2.XIL=

6t par suite

qz

En posant 9 pour abréger 9

pz—q\ ^a — 3 9 _

d'oi

nous aurons
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En conse'quence , l'équation dut rayon réfracté ou, pour mieux dire;
l'équation générale de tous les rayons réfractes relatifs au poiot P
sera

<*-*),-

équation dans laquelle z est un paramètre tout-à-fait indéterminé*
31. Il faudrait donc, pour en conclure l'équation delà caustique

relative au point P 7 éliminer z entre cette équation et sa différen-
tielle , prise uniquement par rapport à z ; mais cette équation ne
différant de sa correspondante (4) > relative à la première hypothèse,
qu'en ce que m et n s'y trouvent respectivement changés en m\/—i
et —n ; nous obtiendrons immédiatement la caustique cherchée , en
faisant un pareil changement dans l'équation (5) de la caustique qui
répond au premior cas, laquelle deviendra ainsi

HT)
21. Or , il résulte ûe ce qui a été dit (6) que l'équation d'une

hyperbole .étant

Téquation de sa développée doit être

donc, notre caustique n'est autre que la développée d'une
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hole dont les demi-diamètres principaux sont donnés par les deux
équations

m b n
T " 9 h2+a* ~k

d 'o i , en ayant égard à la relation m ' + ^ ' ^ ï ? trouvée ci-dessus
(20), on tire

de sorte que l'équation de cette hyperbole est

JL
nk J

Oxx a 9 en outre ;

n
—
m

22. Ainsi ; toutes les fois qu'un poifct lumineux est hors de
Teau , ceux d'entre les rayons qui en émanent qui sont compris
dans un même plan vertical quelconque passant par ce point r

donnent naissance , après avoir pénétré dans le liquide, à une caus-
tique qui n'est autre chose que la développée dyune hyperbole qui
a son centre à la surface du liquide et son axe transverse vertical.
L'un des foyers de cette hyperbole est le point lumineux lui-même;
et ses dimensions, proportionnelles à l'élévation de ce point au-
dessus du niveau de l'eau 9 ne dépendent que dû rapport du sinus
d'incidence au sinus de réfraction -, de telle sorte que les hyper-
Boles qui répondent à divers points, et par suite leurs développées ,
sont des courbes semblables. On aurait des conséquences analogues
pour deux autres milieux transparens , solides ou fluides ; il n'y
aurait absolument de changé que le rapport des dimensions des



DE DIOPTRÏQUE.
hyperboles (*) ; pourvu toutefois que le point lumineux fût tou-
jours dans celui des deux milieux qui jouirait du pouvoir réfringent
le moins énergique. On conçoit , au surplus , qu'il n'y a que celle
des deux moitiés de la développée de l'hyperbole qui appartient
à ce milieu qui puisse être utile au problème •, de sorte que c'est
seulement cette demi-développée qui doit être considérée comme
la caustique.

23. La développée de l'hyperbole a, comme elle, des branches
infinies ; mais , a-t-elle aussi comme elle des asymptotes ? Si Ton
voulait s'en tenir au raisonnement employé par la presque totalité
des auteurs de géométrie analitique pour la recherche de ces sortes
de lignes dans l'hyperbole , on serait d'abord tenté de le croire;
On tire , en effet ; de l'équation de cette développée

or, pourrait-on dire, à mesure que x deviendra plus grand', le
facteur radical du second membre tendra sans cesse à devenir l'unité;

O Dans le passage de l'air dans l'eau, on trouve, à très-peu près , 772= \ ;

# = i , d'où — = | ; c'est-à-dire que Taxe transverse de l'hyperbole est à son

^xe horizontal sensiblement dans le rapport de 9 à 8.

S'il s'agit du passage de l'air dans le verre 9 on aura , à très-peu près,

j t t = J , n = i r , d'où — ==| ; c'est-à-dire #ue l'axe transverse de l'hyperbole est

à son axe horizontal sensiblement dans le rapport de 8 à g.
Si enfin, il est question du passage de l'eau dans le verre , on aura , h

très-peu près, 772= | , n~=^~ , —r=2 ; c'est-à-dire que Taxe transverse de

l'hyperbole sera sensiblement double de son axe horizontal.
En général , l'axe transverse sera d'autant plus grand par rapport à l'autre ?

<£iie les pouvoirs refringens seront moins différens.
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donc aussi, a mesure que x deviendra plus grand , cette équation
tendra sans cesse à se réduire à

, m

n

et le deviendra, en effet, lorsque x deviendra indéfini; d'où il pa-
raîtrait naturel de conclure que la courbe a deux asymptotes passant
par l'origine 5 et comme l'équation des asymptotes de l'hyperbole
est

-

il s'ensuivrait que les asymptotes de la développée sont respective-
ment perpendiculaires à celles de la courbe.

^ 4 La vérité est pourtant que la développée de l'hyperbole n'a
point d'asymptotes. Pour nous en convaincre , cherchons Y équation
de la tangente k cette courbe par Fun de ses points j en
rentiant son équation ; on obtient

dx n p mx

d'où il suit que l'équation de la tangente à la courbe par un point
(4/ ; y

;) pris sur son périmètre est

Si l'on veut connaître à quelle distance de l'origine cette tan-
gente coupe Taxe des y , il suffira de faire #==0^ dans son équa-
tion, ce qui donnera , pour la distance demandée

jou encore
y-ri
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Mais P diaprés la situation du point (x; , yf) , on a

k J-\ k

donc ; en substituant ,

ou, en développant et réduisant,

quantité qui devient infinie en même temps que y/. On voit doïic
qu'à mesure que le point de contact s'éloigne du point de rebrous-
sement de la courbe , la tangente coupe Taxe qui passe par ce
point à des distances de plus en plus grandes du centre de la
courbe ; d'où il suit que les tangentes à l'infini , loin de passer
par ce centre 9 en passent, au contraire ; à une distance infinie.

Tout ce qu'on peut donc conclure de notre premier raisonnement
(23) , c'est qu'à mesure que les branches de la développée s'éten-
dent f elles tendent sans cesse a devenir perpendiculaires aux asymp-
totes > avec lesquelles elles forment constamment un angle obtus
du côté du centre» C'est ainsi que les branches de la parabole for-

Tom* XL 34
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ment constamment un angle obtus avec la directrice du côté du
sommet (*)

2,5. De tout ce qui précède, il résulte diverses conséquences ,
dont les plus remarquables sont les suivantes :

i.° Tant qire l'œil, plongé dans l'éau , ne sort pas de la ver*
ticale qui passe par le point lumineux , situé hors de l'eau, l'image
de ce point ne sort pas non plus de cette verticale, sur laquelle
l'œil peut d'ailleurs se mouvoir <, sans que cette image paraisse au-
cunement se déplacer. Elle paraît d'ailleurs plus élevée au-dessus
de la surface de l'eau que l'objet lui-même , et d'une quantité cons-
tamment proportionnelle à l'élévation de cet objet (**)•

a.0 Si l'œil se meut sur la surface même de l'eau , à mesure
qu'il s'éloignera de la verticale menée par le point lumineux ,
l'image de ce point s'éloignera aussi de cette verticale , mais en
sens inverse, et en «'éloignant de plus en plus de la surface de
l'eau.

3.° Dans toute situation intermédiaire de l'œil , l'image paraîtra
toujours hors de la verticale du coté opposé,jet plus élevée que
l'objet. Si , en partant d*une situation donnée , cet œil s'enfonce
verticalement dans le liquide , il verra l'image descendre peu a peu,
en se rapprochant de la verticale ; ce sera le contraire , si l'œil
s'élèv€ vers la surface de l'eau. Si , partant de la même situation,
l'œil se meut horizontalement * en ^'écartant de la verticale, l'image

.'(*) On voit 9 par cette discussion , que c'est avec beaucoup de raîson
M* F examinateur Rejnaud rejette, comme vicieuse , la manière ordinaire de
déterminer les asymptotes de Phyperbole.

(**) Si l'œil est dans Peau et l'objet dans l'air , celte élévation sera i'un
tiers en sus. Si Pœil est dans le verre % suivant que l'objet sera dans Pair
ou dans Peau , ce surcroît d'élévation sera, d'une moitié on d'un huitième
en sus*
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s'en écartera en sens inverse , en s'élevant de plus en plus. On
reconnaîtra enfin que l'œil , mu obliquement , dans une direction
rectiligne , parcourt une tangente à la caustique f lorsque, malgré son
mouvement f l'image lui semblera immobile*

26. Ici y comme dans le cas où l'œil est dans l'air et l'objet dans
l'eau , on peut, avec une caustique normale, construite avec soin,
et une fois pour toutes f déterminer, par un tracé graphique , et pour
une situation donnée de l'œil , soit le lieu de l'image d'un point
donné,soit le lieu d'un point dont l'image est cTonnée. Il suffira,
pour savoir comment doivent a*exécuter ces constructions r d'appli-
quer à la figure 7 ce qui a été dit (9 , 10)*

27» On pourra donc aussi (11) construire graphiquement par
points, soit l'image d'une ligne droite ou courbe plâtre donnée,
située dans un même plan vertical avec l'œil , soit la ligne dont
une ligne droite ou courbe plane donnée , située dans un même
plan vertical avec l'œil ? est l'image*

28. En appliquant k la figure 8 les raisonnemens et calculs
que nous avons faits (12, i3 f Ï 4 » *&)> on trouvera qu'en pre-
nant Vâxe des x sur la surface de l'eau, faisant passer vertica-
lement l'axe des y par l'œil et désignant par h la hauteur de
la surface du liquide au-dessus de lui , si X9 Y désignent les
coordonnées d'un point lumineux , et œ > y celles de son image P

on aura

m-

formules dont on fera les mêmes usages que de leurs corres*
pondantes (i5).
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29. Si Ton demande, par exemple , l'image d'une droite ver-

ticale donnée par l'équation

Péquatîon de cette image sera

m2

ou bien

Soît qu'on fasse , dans cette équation, f = o ou yrs^-os ; on â
également a~g , ce qui nous annonce que la droite et son image
se confondent également soit à la surface de 'Peau , soit à une
hauteur infinie au-dessus du liquide ; de telle sorte que la droite
est elle-même asymptote de son image.

Cherchons sous quel angle l'image dévie de la droite verticale
a la surface de Peau , et quel en est le plus grand écartement.
En* différentiant cette équation, on en tire

dy

a la surface de l'eau , --— devient la co-tangente de l'angle que

fait la droite avec son image ; mais , en ce point , on a $~g 9
y = o ; donc , en désignant cet angle par * , on aufa
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en posant— =Tanga ; formule qui donnera les mêmes conséquences

que son analogue (17).

Le point où le plus grand écartement aura lieu sera donné
par le système des deux équations

d'où Ton tire , par division,

comme nous Pavons trouvé (17) pour le premier cas ; la valeur
correspondante de oc sera donnée par l'équation du troisième degré

équation qui peut avoir ses trois racines réelles , maïs dont;
deux doivent être étrangères a la question.

3o. S'agit-il, au contraire, de l'image d'uae droite horizontale^
donnée par l'équation
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Té<juationi de cette image «era

ou bien

ou encore

équation d'une courbe sj'métrique par rapport à la verticale qui
passa par l'œil » ainsi que cela doit être*

3ï . En raisonnant cçmme nous l'avons fait (^3), on trouverait
facilement que cett% eourf>e a deux asymptotes 7) exprimées par
Véquatioa

n
m.

maïs ; puisque nous nous: sommes convaincus que cette manière de
raisonner est fautive > substituons-lui , comme nous l'avons fait
alors * un raisonnement plus rigoureux. Par la différentiation 9 om
tire de F équation de la courbe

E^zlàl
m zy—hf k \t

3j \ny]
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d'où II suit que l'équation de la tangente ? en un point ( xf f yJ}.
est

iï2

Si , pour savoir a quelle distance de l'origine cette tangente coupe
l'axe des y 9 on fait, dans son équation 7 X~Q , il viendra ? en
transposant,

-y h

En mettant ? dans cette formule , pour xf sa râleur

elle deviendra

i—h s k

f_ Ni __ ay/—h
J h1-
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O r , a mesure que y/ deviendra plus grand • tendra sans cesse

vers la fraction 7 ; e t , comme d'un autre côté — augmentera

sans cesse ? la fraction qui multiplie y**\-h , dans le second terme
de la valeur de y , tendra sans cesse à devenir l'unité -, donc, cette
valeur de y tendra sans cesse à se réduire a

donc , elle deviendra telle , en effet , lorsque yf sera Infinie.
Ainsi , la courbe a réellement des asymptotes ? données par
Téquation

=*± — (y+h) ou + ^ j t
n

d5où Ton volt que ces asymptotes passent par l'œil du spectateur
e& qu'elles sont lés mêmes pour les images de toutes les droites
parallèles à la surface de Peau y puisque k n'entre pas dans leur
équation* De plus , l'angle que font avec l'horizontale les asymp-
totes des hyperboles dont les développées sont les caustiques des

dîfférens points visibles ayant pour tangente + —, il en faut con-

clure que les asymptotes dont il s'agit ici sont perpendiculaires

à celles-là (*)•

'(*) II se préseuts ici une sorte de paradoxe qu*U est nécessaire d'explîquerJ
f/equatios
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3a. On pourrait encore se faire ici des questions analogues à

celles que nous avons indiquées (19); mais, pour les mêmes raisons

* = ± — (r+fy y

des asymptotes de la courbe image d'une droite horizontale n'étant antre
chose que ce que devient l'équation

de Pimage elle-même , lorsqu'on y fait £=o , il paraît s'ensuivre que ces asymp-
totes sont l'image d'une droite située à la surface de l'eau. D'un autre cote,
une telle droite, se trouvant dans le même milieu avec l'œil , ne semblerait
avoir d'autre image qu'elle-même ; enfin, il serait absurde de dire que l'image
de la ligne de niveau est un angle qui a son sommet à l'oeil , puisqu'alors
il s'ensuivrait que l'image de la partie de cette ligne , comprise dans l'angle ,
se trouverait abaissée, ce qui ne saurait être.

Toutes ces difficultés s'évanouissent en recourant à l'équation non résolue de
l'image d'une droite horizontale* Nous avons trouvé, pour cette équation ,

et , lorsqne £=o ? elle se réduit à

elle se de'compose donc alors en ces deux ci

Torri, XI.
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qa>e nous avons données, alors , ÏIQUS ne nous y arrêterons pas , et
îjaus nous bornerons seulçng^nt à observer que , tandis que , lors-
que l'œil est dans l'air , l'effet de la présence de l'eau est de di-
minuer à la lois la. grandeur eJL la distança des objets plongée
dans ce fluide, il arrive précisément le contraire lorsque ces objets
sont dans l'air, tandis que l'œil est dans l'eau,

33. Nous terminerons par traiter brièvement nos deux problèmes
dans toute leur généralité , c'est-à-dire , en embrassant à la fois Jres
trois dimensions de l'espace; et d'abord occupons-nous de leur ré-
solution graphique. ^

34. Soit conduite par l'œil une verticale , et par cette verticale
soit conduit un plan vertical quelconque sur lequel soit tracée
la caustique répondant à un quelconque des points de cette
droite.

Cela posé , veut-on l'image p d'un point P quelconque de l'es-
pace , ou le çoint P dont un point donné quelconque p de l'es-
pace est l'image ; par l'œil et par le point donné on conduira un
pjan verliça| q '̂oja icoagine^a;tourner ensuite autour de son inter-
sçctiaO:a,vec, le jxrexnier , jusqu'à ce qu'il se confonde avec lui ,
en entraînant d'ailleurs le point drniné dans le mouvement. On
appliquera alors les méthodes données (9 , 10,26) à la recherche

n
m

dont là première a lieu dans toute l'étendue de la valeur de x , tandis que
la seconde n'a lieu que jusqu'au niveau de l'eau. La partie d'une droite siluee
à la surface de l'eau interceptée entre les asymptotes sera donc vue à sa véri-
table place , tandis que ses prolongemens , de part et d'autre , seront vus à
la fois a leur véritable place et sur ces mêmes asymptotes.
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du point inconnu qui , entraîné de nouveau avee le plan mobile,
se trouvera à sa véritable place , lorsque ce plan aura lui-même
repris sa situation primitive.

35. Au moyen de ce qm précède , on pourra donc tracer par
points 7 soit l'image d'une ligne droite ou courbe plane ou à double
courbure ou même d'une surface courbe donnée et située d'une
manière quelconque dans l'espace , soit la ligne ou surface dont
pne ligne droite ou courbe plane ou à double courbure ou même
mie Surface courte donnée et située d'urtô manière quelconque
dans l'espace est l'image ; on pourra donc , en particulier, résoudre
graphiquement la dernière des deux questions proposées à la page
a88 du X.e volume de ce recueil.

36. Dans le cas particulier où c'est une surface qui est donnée,
si c'est une surface de révolution dont Taxe soit vertical et passe
par l'œil , il est évident que la surface cherchée sera exactement
dans le même cas# II suffira donc de déduire la génératrice de
l'une de celle de l'autre,' ce qui ramènera la question à un pro-
blème de géométrie plane.

37. Occupons-nous présentement de la résolution algébrique
mêmes problèmes. Prenons la verticale qui passe par l'œil pour
Taxe des z ; par son pied ; faisons passer sur la surface de l'eau

.deux droites fixes quelconques > perpendiculaires entre elles 9 que
nous prendrons pour axes des x et des y ; soient P un point quelconque
et/? son image; soient désignées par X9 Y> Z les coordonnées
du premier et par x > y , z celles du second ; ces deux points
seront avec l'œil dans un même plan vertical. Prenons l'intersec-
tion de ce plan avec la surface dji liquide pour axe des r; soient
pour ce plan if, R les. coordonnées de P , et soient z9 r celles
de;?; soit enfin désignée par h, soit la hauteur de l'œil au-dessus
de la surface du liquide ; soit son enfoncement au-dessous ; nous
aurons ( i 5 ; 28)



RECHERCHES

. ( . T mr
nz\i± I -——

les signes supérieurs ou inférieurs devant être pris ; suivant
l'œil est au-dessus ou au-dessous de la surface du liquide. Mais
oa a évidemment

d'où

T

U viendra donc, en substituant,

38. Si donc une surface courbe est donnée par l'équation
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en y mettant pour X , Y , Z les valeurs que nous venons d'ob-
tenir > l'équation résultante en x y y , £ sera celle de l'image de
cette surface. A l'inverse, l'équation

Kx* Y > z)~° t

étant donnée comme celle de l'image d'une surface inconnue ,
pour avoir l'équation de cette surface , il suffira d'éliminer x, y y

z entre cette équation et les valeurs de X , Y , Z en oc,

Y y z*

3g. Puisque , donner ou chercher une ligne droite ou courbe 9

plane ou à double courbure , c'est donner ou chercher les deux
surfaces dont elle est l'intersection ; il sera toujours facile d'obtenir, par
ce qui précède , soit les deu^i équations de l'image d'une ligne
dont les deux équations sont données , soit les deux équations
d'une ligne dont l'image est donnée par ses deux équations.

4o. Kous avons vu ( 17 ^ 18 , 29 , 3o ) que l'image d'une droite ,
soit verticale , soit horizontale , située avec l'œil dans un même plan
vertical , est généralement une ligne courbe ; or, une ligne courbe
rie saurait être un cas particulier d'une ligne droite ; puis donc
qu'une droite verticale ou horizontale n'est qu'un cas particulier
d'une droite inclinée ? on en peut conclure qu'à plus forte raison
l'image d'une droite située d'une manière quelconque dans un
même plan vertical avec l'œil f est généralement une ligne
courbe* j

Mais une droite située dans un même plan vertical avec ï œil
n'est qu'un cas particulier d'une droite située d'une manière quel-
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conque dans Fespace ; donc } pour la même raison que ci-dessus ,
l'image d'une ligne droite , de quelque manière qu'elle soït située,
tant par rapport à l'œil que par rapport à la surface qui sépare
les deux milieux 9 est généralement une ligne courbe (*).

Nous terminerons en observant qu'il y a une différence . très-
marquée entre la manière dont nous voyons les poissons et celia
dont ils nous voient. Lorsqu'en effet nous regardons ce qui se
passe dans une eau claire, et point très-profonde, nous pouvons
apercevoir , autour de la verticale qui passe par notre œil , tous
les objets qui ne sont pas trop loin de nous et leurs images ne
sont que peu déformées ; en un mot, notre situation par rapport
à ces objets diffère peu de ce qu'elle serait si le liquide n'existait*
pas. Pour les poissons, au contraire , les images des objets situés
hors de l'eau se trouvent toutes renfermées dans l'intérieur d'un
cône droit ayant son sommet à l'œil et son axe vertical, et. dont
l'angle générateur est d'environ 48°.22' Les poissons se trouvent donc
dans lé même cas que s'ils étaient placés au fond d'un fossé creusé.
en entonnoir. En outre y p©ur peu qu'un objet soit voisin de la
surface du liquide éloigné de Taxe du cône % son image, d'ailleurs
très-applatie , se trouve presque sur la surface du cône et à une
immense distance de son sommet, de sorte qu'elle doit presque
échapper à la vue et paraître extrêmement déformée. Les poissons
ne peuvent donc voir d'une manière bien distincte que les objets

(*) C'est donc une erreur de supposer , comme paraissent le faire la
plupart des physiciens, que , lorsqu'on plonge" en partie et obliquement dans
l'eau un bâton rectiligne , la partie plongée se présente à l'œil sous un aspect
re<îtiligne , différant seulement en direction de la partie silue'e hors de l'eau •
La Fontaine a donc été fondé à dire :

Quand l'eau courbe un bâton, ma raison le redresse ;
et il se serait exprime' d'une manière moins exacte , s'il eût dit : quand l'eau
brise , etc.
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peu élevés au - dessus de l'eau et peu distans de la verticale
passant par leur œil (*)•

(*) Un des juges de M. Lentheric s'est cru fondé à infirmer ces conclusions
par la considération que l'œil des poissons n'est pas conformé comme le nôtre ;
mais puisque, dans ce que nous avons dit sur la manière dont nous voyons*
les poissons , nous n'avons supposé autre chose , sinon que notre œil était
conformé pour voir dans l'air ; il s'ensuit que , pourvu que l'œil des poissoni
soit fait pour voir dans l'eau , ces conclusions doivent être admises*
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QUESTIONS PROPOSÉES.

Problèmes de Gêomélrie transcendante.

I. v^UEtLE est la courbe pîane qnî jouit de cette propriété que ,
si un angle d'une grandeur donnée et invariable se meut sur son
plan de manière à lui être toujours circonscrit , ses côtés formeront
avec la sécante passant par leurs points de contact un triangle cons-
tamment semblable à un triangle donné ?

IL Quelle est la surface qui jouit de cette propriété que , si
tin angle trièdre donné et invariable , mobile dans l'espace , lui est
toujours circonscrit, ses faces formeront avec le plan mené par leurs
points de contact un tétraèdre semblable à un tétraèdre donné ?
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ANALISE TRANSCENDANTE.

Mémoire sur Vinlégration des équations linéaires;

Par M. HENRI GERNER SCHMIDTEN,

XJ'INTÉGRATÏON d'une équation différentielle ne consiste, à proprement
parler , qu'à trouver la fonction la plus générale qui satisfasse à
l'équation proposée ; et des cas particuliers peuvent seuls donner nais-
sance à des questions relatives à l'évaluation de cette fonction. Pour
résoudre ce dernier problème , il faut , en effet, absolument con-
naître la valeur arithmétique de chacune des quantités dont se
compose la fonction dont il s'agit ; et alors il faut avoir autant de
méthodes d'évaluation différentes qu'il peut y avoir de relations diffé-
rentes entre ces mêmes quantités.

De là naît l'impossibilité de donner des méthodes d'évaluation
qui soient propres à des équations générales , ainsi que celle de
parcourir l'infinie variété des équations particulières qui peuvent s'y
trouver implicitement comprises ; d'où il paraît naturel de conclure
que l'unique moyen d'avancer cette partie de Fanalise et de sur-
monter les difficultés qu'elle présente, est de trouver des méthodes
propres à développer la même fonction sous plusieurs formes
différentes , parmi lesquelles on puisse choisir celle qui conviendra
le mieux à chaque cas particulier. Ces fonctions doivent d'ailleurs
être aussi simples que la nature des équations qui leur donnent
naissance peut le comporter ; et les séries qu'elles forment doivent

Tom. XI, n.° IX, i.el mars 1821. 36
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en outre offrir une loi facile a saisir. La méthode qu'offre la
série de Taylor (jusqu'ici la seule générale que nous ayons ) n'étaet
d'ailleurs applicable qu'à des cas très-particuliers -, comme il est
naturel que les inJelgrales se compliquant , de plus en plus , à
mesure que les équations sont plus générales ; on se trouve fondé à
considérer l'intégration des équations non linéaires comme surpassant,
généralement parlant f les forces de l'analise.

Soit , en effet , y une fonction d'un certain nombre de variables
indépendantes , donnée par Xéquation différentielle

p.y étant use fonction qui contient les coefficiens différentiels ou
aux différences de Tordre le plus élevé qnî soient dans l'équation
proposée , et fy étant vue autre fonction quelconque des variables
indépendantes des coelïicieiis différentiels ou aux différences; on
aura Véquation intégrale

— signifiant la fonction inverso de <p ; et X étant la fonction la

plus générale qui satisfasse à l'équation <p.X~o.
Au moyen de cette relation implicite , on trouvera facilement la

valeur explicite de y , par des substitutions successives ; ce sera

Maintenant , il se peut que chaque substitution rapproché cette
série de la véritable valeur de y ; mais il se peut aussi qu'elle Teiî
éloigne ; et alors on devra donner une autre forme à lu série ; ca
qui est toujours possible d'autant de manières différentes qu'il y
en aura de partager l'équation entre les deux termes f .y et f.j%
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On voit cependant que ]a vaieur de y restera ; en général ,

très .compliquée , à moins que ç.y et f. y no soient linéaires; par
rapport à y t ce qui embrasse déjà une classe d'équation
étendue et très-importante : celle des équations linéaires.
. On a , dans ce cas,

et je me propose d'en exposer les principales conséquences 9 en
commençant par la partie la plus simple , qui sert en même
temps de base au reste.

Des équations différentielles à deux çariahles.

Le résultat le plus général qu'on ait obtenu sur.ces équations J
est le théorème de Lagrange ? au moyen duquel on sait ramener
l'équation la plus générale à une autre qui ne renferme pas de
terme indépendant de la fonction inconnue. De plus , on intègre
sans difficulté , par des fonctions exponentielles ou algébriques les
équations de la forme

ày

àx

à»j a dn-*y b â»~*y g Ay h

d^« x àx11"1 x2 àxn~~a *«—i dx xn '

et par des intégrales définies celles de la forme

mais les méthodes qu'a donné Euler pour intégrer les équations
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par l'introduction d'une nouvelle variable , ne s'emploient aveae succès
que lorsque les intégrales en sont déjà données par des séries -, et
Ton n'a pas "de moyen direct de trouver la forme de la série qui
satisfait à une équation proposée.

D'ailleurs , on voit facilement qu'en général il doit être impossible
d'intégrer une équatiop sous forme finie , puisqu'il n'y a qu'une
suite infinie qui puisse embrasser , dans sa généralité, toutes les
sortes de transcendantes que l'intégrale peut comporter 7 et dont
un petit nombre seulement 3- été introduit dans le langage
analitique.

Si l'oa savait transformer l'équation proposée en une différentielle
complète , on la ramènerait ainsi à une autre d'un ordre moins
élevé ; et , en continuant de la même manière , on parviendrait
enfin à l'expression générale de la fonction inconnue. Il s'agirait
donc de mettre Péquation proposée

dans laquelle. P, Q, ,.*.*.M, N sont des fonctions de # , sous
la forme

1 a. / x» J L / x, a. / x% d. / y.

Xt y X2 , Xi , Xa étant des fonctions de % qu'il faut déter-
miner e?i effectuant les différentiations , et Comparant ensuite les
coefficîens à ceux de réquation proposée, Cette méthode conduit
à un système de n équations simultanées , çt toutes non linéaires,
à l'exception de celle-ci

par conséquent beaucoup plus difficiles à résoudre que Téqu£-
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tîon propose'e. Ces opérations ont quelque analogie avec celles que
Ton fait , avec tout aussi peu de succès, sur les équations algé-
briques des degrés supérieurs, à une seule inconnue , dans le dessein
de les résoudre. Cependant on est parvenu , par des considérations
particulières, a présenter, sous forme finie, les racines des quatre
premiers degrés de celles-ci ; mais il faut observer que cela ne
s'exécute qu'au moyen de transcendantes particulières pour chaque
degré, auxquelles, à raison du fréquent usago qu'on eu fait, on
a cru devoir affecter des symboles particuliers , qui leur donnent f

du moins , quant aux notations , l'apparence de fonctions finies.
Ainsi, par exemple , la raein® quarrée est déjà une transcendante
à Tégard de la racine de l'équation du premier degré ; de sorte
que l'on ne doit chercher ,> par aucune analogie 5 à présenter Tin—
tégraie de l'équation du second ordre sous forme finie, au moyen
des fonctions exponentielles qui représentent , en général , celle du
premier ordre. En* effet , si Ton compare les quantités Xt , X%

avec P, Q, dans l'équation du second ordre, on aura

p =
 dX* JL- àXl /}=— _£L J^i i^L

Xzdx " Xkdx 7 "~~ dx Xxdx Xkàx X2djc 5

en posant donc

ee qui donne

si Ton fait ensuite

H viendra
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c'est-à-dire l'équation proposée. En faisant ; au contraire

on aurait

dx

d'où 9 en posant ,

on conclurait

Ainsi Ton fait dépendre l'équation (i) de (2) ; mais ce résultat n'est
que très-particulier, et ne donne pas lieu à d'autres tranformations 7

attendu que le même procédé, appliqué à (2), reconduit à (1).
On pourrait encore former des équations par les quantités données

JX"X, X2i X3 , comme on forme des équations algébriques au
moyen de leurs racines ; mais ces recherches ne conduisent qu'à des
cas particuliers et peu utiles. Cependant , il nous sera facile de
découvrir les cas les plus généraux ou la détermination des quantités
Xt, X2 , X$ , dépend seulement d'opérations algébriques. II
«ous suffit pour cela de considérer l'équation du troisième ordre f

pour laquelle on aura , en employant les notations de Lagrange ;

les relations suivantes :
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x> + xx + x, >

x

U faut donc , par exemple , qu'on ait

~ i -c% — - , dou
Si. 3 .Ai

en aura de même

%>} > c* y &2 » c* » ^ t a n t ^ e s constantes. On doit encore avoir
l'équation

V g4 fX

qui revient à

CA étant une nouvelle constante. Posant donc

on nui M

forme q\ i devient exponentielle f lorsque ^=z—1.



376 É Q U A T I O N S
Cette forme est seulement déduite de la considération des deux

coefficiens ; mais on trouvera facilement que, pour un ordre quel-
conque , la relation entre les quantités Xt , Xz , X% ,. ...» que
nous avons établie, réduira chaque coefficient a une quantité algé-
brique , multipliée ou non par une puissance de la variable indé-
pendante telle que l'exposant est toujours —m , celui de la diffé-
rentielle correspondante étant n—m. La détermination des quantités
inconnues dépendra, en tous cas, d'une équation du degré n $ et,
si Ton sait résoudre celle-ci , on a l'intégrale de l'équation

r ce àx»~* x* d*»-a"*"""""*" xn *~ *

©u de celle-cî

comme on le sait depuis long-temps.
On voit ainsi que l'introduction des quantités X1 , X% , X3 ,«.. J

auxquelles, par analogie, on pourrait donner le nom de racines?
ïie facilite l'intégration que dans des cas particuliers , et qu'il faut
modifier le procédé pour obtenir des résultats généraux. En obser-
vant que la détermination d'un nombre m de ces quantités que nous
appellerons pour un moment racines , conduit à une équation de
Tordre m ; on pourrait partager l'équation proposée en deux parties,
à chacune desquelles on donnerait la forme de différentielle par-
faite y par le moyen d'équations des deux ordres m et n—m. En
effet, soit l'équation proposée

on lui donnera la forme
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I d. / Xm â. / à. / X2 â. /
X^ âx \Xrn. t dx- \"" d* \ ï , <L»

et- faisamt ? pour abréger, le second membre =f(y) ? on aura Tïn
tégrale générale. .

des constantes / de sortes que ? si Ton
représente par *> la partie indépendante de% y , on aura

Comme on peut choisir m à son gré , on peut trouver un grand
nombre de formes différentes , par le seul changement de cette
quantité j et Ton trouverait une infinité de formes différentes , en
partageant autrement l'équation proposée. Par exemple , si l'on savait
la partager en deux du même ordre, dont chacune fût facilement
intégrable , on lui donnerait la forme

Tom. XL 37
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et l'on en trouverait l'intégrale complète de deux manières. Ces re~
cherches n'ont, comme Ton voit , aucune difficulté ,* et c'est pour
cette raison que jo ne m'arrête pas à discuter les formules gêné*
raies , dont l'usage s'entendra beaucoup mieux par des exemple^
particul ers.

Quoique Ton ait", dafts ce qui précède, une méthode générale
et directe pour trouver , d'une infinité de manières différentes,
Tintégraie d'une équation proposée ^ on trouve encore de grandes
difficultés relativement à l'évaluation de cette intégrale , sur-tout
lorsque l'équation est d'un ordre un peu élevé.

Toutefois cette; méthode embrasse sous un seul point de vue-
toutes* celles qui ont été données jusqu'ici , et résout. a d'une ma-
nière satisfaisante , un grand nombre d'équations qu'on ne saurait
intégrer san^ son secours , ou ,dti moins dont on n'obtiendrait l'in-
tégration que par des, tâîoiinemens plus ou moins, heureux. Au
surplus , après avoir présenté les intégrales sous la forme de séries,
on:.peut tenter d'employer te mpihode d'Euler, pour les ramener
à des intégrales définies , mais ces recherches étant de leur na-
ture très - particulières , ce ne saurait être ici le lieu de s'ea
occuper.

Je vais maintenant appliquer ces principes généraux à J'équation
<îu premier ordre , dont la forme est

d'où Ton formera celle-ci ;
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en comparant ; on aura

lu
dont l'intégrale est

c'est-a-dire ,

# ^tant une constante arbitraire ; et , après avoir trouvé XL, on aura

c étant une nouvelle constante^jmais l'intégrale n'en contient pour-
tant qu'une , attendu que a disparaît dans le second terme»

Telle est donc l'intégrale complète la plus simple de Te'quatiorç
du premier ordre, et Ton voit qu'elle se présente nécessairement
sous la forme d'une série infinie , à moins <jue Ton n'adopte quel-
que nouveau symbole pour représenter la valeur de X^ On trouveâ

an effet ,

ce qui revient à

ae ,

suivant le signe qu'on a adopté pour la fonction exponentielle f
-

q\ni est la transcendante la plus simple qui , en général , puisse
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représenter Tinte'grale de l'équation du premier ordre. Malgré cette
forme , qu'on a employée avec beau-coup de succès , on trouve
encore des difficultés très-grandes , et même insurmontables , à
évaluer les intégrales de cet ordre; et si Ton observe emn-Hen- ee$
fonctions , que Ton connaît sous le nom de quadratures , sont li-
mitées vis-à-vis des intégrales des ordres* supérieurs, Ton doit s'at-
tendre à d'autant moins de succès pour l'évaluation de ces dernières,
formes. Aussi, je ne m'occuperai presque pas des équations supé-
rieures au second ordre qui ne conduiraient à des résultats satis-
faisans que dans des cas très-particuliers ; et d'ailleurs les apptkalLo&sr
les plus importantes de l'analise ne conduisent, en général , qu'à
des équations du prerftieF ovt tout an plus du second ord^e.

L'intégrale générale de l'équation du second ordre doit être re-
gardée comme une transcendante irréductible, qui neVabaisseaux
quadratures que dans des cas très-particuliers ; mais ici je me pro-
pose seulement de développée quelques-unes- des formes générales
les plus remarquables qu'on peut lui donner ; et alors les cas où
ellaa sont susceptibles de simp4ification se montrent facilement»
Soit l'équation

on, peut lui donner la forme

Mais nous avons déjà observé que , dans ce cas , la
dès racines Xx y Xz mène à une équation de la forme

ou à srae autre qui est ce que devient la proposée ? dans le cas
de
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de /?=o. Nous ayons donc très-peu gagné , et par conséquent,
nous mettrons de préférence l'équation sous cette forme

qui donne

et ensuite

a0 et at étant des constantes* arbitraires» En posant dont

il viendra

On trouve une forme qui est quelquefois plus simple en posant
l'équation

d'où , en comparant

fié* „ ^ P* dP

En intégrant, on aura
Tom. $1. 3y lis.
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d'où, en posant

on tirera

y = - 1 ( Ï / -

Si les Fonctions P , ^ s o n t soumises a Ja seule condition de rendre
X2 égale à une constante c%

 r on trouve facilement

în^^/ ib'mxx^Rà^ î

« et j8 étant de nouvelles constantes arbitraires.
0a pourrait encorexparvenir à un grand nombre d'autres for-

tnilles ; mais, ces recherches n5ayant aucune difficulté, d'après ce
qui précède, je ne donnerai plus qu'un seul exemple , dont l'em-
pLsï devient nécessaire dans des cas particuliers , comme je le ferai
voir ensuite. En mettant l'équation proposée sous la forme

et supposant d'ailleurs que chacun des deux membres s'intègre
facilement, on fera

j_a. f x 2 d. ( „ \ \ m s d.

X2 d;

d'où,
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*Xt

i pxl px^ a. r zx a.

représentant ensuite par U la partie indépendante de y, on aura

On verra facilement que les grandes difficultés attachées à cette
méthode tiennent principalement aux signes d'Intégration , lorsque
les fonctions Xt f Xz , X% y sont un peu générales • mais on
trouvera > en même temps , qu'il doit nécessairement y avoir de
ces signes dans l'Intégrale complète , qui ne saurait sans cela con-
tenir des constantes arbitraires. Donc , s'il y avait des questions ou
l'on n'eût besoin que d'une intégrale particulière ? on parviendrai!
bien plus aisément à l'expression de la fonction inconnue , en met-
tant l'équation sous la forme

7 q qxL d

dans laquelle

y JPàx

en eîrjployant alors les notations de Lagrange ; on aurait

II serait facile aussi de présenter un grand nombre de formes
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pour les Intégrales des équations supérieures ; maïs les raisons que
j'ai données plus haut me les font passer sous silence; et je vais
m'occuper de quelques exemples particuliers qui sont plus propres
à montrer l'usage et l'esprit de la méthode.

Nous avons vu quelles sont les équations les plus générales qui
s'intègrent immédiatement, sous forme finie , par des fonctions ex-
ponentielles ou par des puissances ; je vais faire voir maintenant
quelle est l'équation la plus générale dont l'Intégrale se développe
par une ou plusieurs séries de puissances ascendantes ou descendantes
de la variable indépendante.

Pour cela , il faut que l'équation soit réductible à la forme

' yy

d'où l'on trouvera facilement

par des substitutions successives, on aura n+i séries, dont cha-
cune, divisée par une certaine puissance, procède seulement sui-
vant les puissances ascendantes d^ «#*. Pour abréger, et attendu que
toutes ont la même forme , je n'en développe qu'une seule P savoir ;
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«4-1)....

En commençant l'intégration par rapport au second membre de
l'équation , on obtiendrait n-\-i séries semblables , qui procéderaient
suivant les puissances descendantes de a\ On trouvera d'ailleurs
facilement que l'équation revient à celle-ci :

^ 6 9jili9j4z9....JIn, Bo , 5X , i92 I?,, étant des constantes.1

Pour le cas où /2 = 2 , on a présenté l'intégrale de cette équation
par un procédé qu'il ne serait pas difficile d'étendre à celle-ci ;
niais encore , dans ce cas , la méthode directe a des avantages 9

comme je le ferai voir par un exemple. Soit l'équation très-simple

on aura

d'où

( (y-HXW-H-0

38
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ce qu'on trouverait aussi par la njéthode des coefficiens înde'fer-
îninés; mais, dans le cas où « = i , on n'y réussirait pa§ ; car alors
îl s'introduit des quantités infinies dans la série , ce qui annonce
un changement de forme ( Calcul des fonctions , leçon XVIII ) ;
îl s'agit donc de savoir quelle est la forme de la valeur de y qui
répond a ce cas j or , on trouve alors

c'est-à-dire ,

y = (a,4-aaLos' x) l i— 4-——• -— - 4- l

; d% f •••!.•, étaiU* des constantes q\\i se dt(ilerminedit par Té^uatiofi

d'où

qui
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Cette équation se recommande particulièrement à raison de l'applî—
cation à la physique qu'elle peut offrir. Si , en effet, on y suppose
y = o , ^ = 0 , on obtient celle qui détermine la figure d'une large
goutte de mercure abandonnée h elle-même sur un disque de verre
horizontal ( Voyez le Supplément à ta théorie de l'action capillaire ) ,
et à laquelle M. Laplace satisfait par une intégrale définie , sans
constante arbitraire 7 qui revient à la dernière des séries que nous
venons de présenter. L'on voit que la difficulté consiste seulement à
trouver la forme que prend l'intégrale cherchée -, car , après cela,
les eoeffiriens se déterminent aisément par la méthode des diffé-
rences, comme M. Lacroix Ta présenté ( Traité des différences et
des séries , pag. 216 et suiv. ).

Je n'ajouterai plus qu'un seul exemple qui suffira pour éclaircîr
les principes , qui n'ont d'ailleurs aucune difficulté ; et Ton verra
qu'en général les équations 9 qui ne sont pas trop compliquées , ont
déjà des intégrales très-prolixes j c'est pourquoi je me bornerai seu-
lement à faire voir les formes que celles-ci doivent avoir , et à
indiquer la marche qu'il faut suivre pour déterminer les côefficiens.

Soit donc l'équation

on aura

Je (be +ce
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û/fl j ^ \ I

r+-^—+

/* \ ï i G / /y \ •

où. il faut remarquer que chacun des termes de la dernière séiie
se déduit de son correspondant dans la première , pnr le simple
changement du signe d<* «. Quant aux coeffîdens Àm o , ^ m j l ? *^Am m>

ils se déteinnntnt , en gênerai , au mojen de 1 équation

dont l'inte yrat*on entraîne d^j? des cali uls assez longs. On pourrait

Biaintenant tester de ramener les séries obtenues à une foime finie,
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par des intégrales définies; mais ces recherches, comme je l'obser-
verai , sont d'une nature très-particulière ; d'autant plus que la
méthode d'Euler exige toujours que les constantes satisfassent à
certaines conditions arithmétiques ? au défaut desquelles elles ne sont
pas applicables.

Il laut observer que l'intégrale précédente devient incomplète
lorsque «=o : car alors Jes deux séries soat identiques, et l'inté-
grée doit par conséquent changer de forme. En effet , on trouve
pour ce cas

ce qui introduit nécessairement des puissances de la variable indé-
pendante. Le cas de /3=ro ou de y = o annonce aussi un changement
de forme ; car alors Péquation proposée prend la forme très-simple

ce qui réduit l'intégrale à des se'ries à simple entrée.
Mais un autre cas donne lieu à des calculs très-compliqués ;

savoir: celui de /S-J-yt^o ou y=r—/3 , pour lequel* il s'introduit dans
l'intégrale des puissances de la variable indépendante , dont les coeflî-
cîens ne se déterrement que par des équations aux différences,finie$
à trois variables. En effet, pour ce cas qui se présente aussi sous
la forme,

la première des séries que nous avons trouvées devient, abstraction
faite du multiplicateur a0 7
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On trouvera que l'équation aux différences finies ; d'où dépend
la détermination des coefficiens, devient assez compliquée, quoiqu'elle
ne soit p»s difficile à former ; et que les difficultés de son inté-
gration , qui tiennent sans doute à la nature du problème , consistent
principalement dans l'extrême longueur des calculs. C'est pourquoi
Je me dispense d'entrer ici dans le détail de ces opérations, qui
n'offriraient d'ailleurs aucun principe ou artifice de calcul digne d'être
remarqués , et qui ne pourraient conséquemment mériter de l'intérêt
que par les applications.

Les principes que j'ai exposés au commencement de ce mémoire ,
et que je viens d'appliquer à l'intégration des équalions différentielles,
conduisent aussi à celle des équations aux différences finies , ainsi
que je vais présentement le faire voir.

s- 11.

Des équations aux différences finies à deux variables.

Les équations aux différences^ finies à dçux variables peuvent
être envisagées sous deux points de vue , dont l'un répond pro-
prement au nom qu'on, leur danne., tan dis que l'autre les. repré?*
sente comme exprimant les relations entre-, des valeurs successives
d'une même variable. C'est sous ce dernier point de vne que La-
grange ( Calcul dvs fanctianSy leçon X ^ I I ï ) les a considérées!cérame
é*a»t d-une nature tout-à-fait différente de: celle d.esï é<juatiQ»$> diffé*
x en lie Iles, Aussi cette forme aonduit-elle aux- résultats les .plus g.é>

. et les plus utiles qu'on, puisse obtenir. ÇepeindiiiïtL^ril D«
peuUétre pas inutile^d'eieposer» ceux qa?offi:e; la>premièi?er

&aifc pour choisir, dans des cas particuliers y cetluî qoâ:,€L©&vi§nt.'
nMeû c à l'objet qu'an, a en vue , &<pit pour: réunir sous < un:
vue unique des. méthodes qui, , au pvfixnier aspect: ?

sembler différentes.
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Dans ce cas , on peut envisager la différence et l'intégrale finie

comme des fonctions linéaires de la différentielle et de l'intégrale
qui y répond ; et cette relation a donné lieu à une infinité de
formes créées par l'analogie > et puis rigoureusement vérifiées par
des considérations générales. Mais , comme ces recherches sortent
de mon sujet, je me permets seulement d'exposer loi une liaison
entre la différentielle et la différence , qui correspond parfaitement
à celle qui existe entre les fonctions exponentielles et les puissances ,
indépendamment des expressions en séries.

En effet, si l'on observe que l'équation

l.n àx ^[^T d** + -

par la supposition de 72= 00 9 se change dans celle-ci ;

I à

qui revient k

on trouve que la génération de cette dernière quantité à beaucoup d'ana-

logie avec celle de 0*= , n étant = co.

Comme lès intégrations aux différences finies sont , en général
beaucoup plus difficiles à effectuer que celles aux différentielles;
on verra qme la méthode générale exposée au commencement de
ce mémoire s'applique , avec d'autant moins de succès , aux équa-
tions qui nous occupent présentement , que la considération des
valeurs successives, qui réduit l'intégration a des éliminations ? offre
des résultats plus simples et plus généraux, c'est pourquoi je ne
traiterai que brièvement de cette espèce d'équations.

Soit dona l'équation
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on en aurait Tîntégraje complète , si Ton pouvait trouver n quan-
tités X' , X" , A7" , A w , qui satisfissent à l'équation

Xm étant = ( î+A) m -X ' o suivant les notations adoptées. Mais oïl
s'assurera facilement que la comparaison entre les coefïiciens res-
pectifs de Am~ly } A m M 2 y f , , , , . conduiraient , en général, à des
équations très compliquées, et par conséquent, qu'il faut laisser
un ou plusieurs coefficiens Indéterminés suivant le même procédé
q*je \suu5 dv.-ns employé plus haut»

L'équation i>~ premier ordre s'intègre, en général, sans difficulté.
Soit , en efïet,

en faisant

on aura, pour déterminer X/, l'équation

ou

d'oi l'on tire , en prenant les logarithmes et Intégrant

ce qui revient à

suivant la notation de Vaudermonde.
Maintenant, on trouve aisément

PTom.
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u étant une fonction dont la différence = o .
L'équation du second ordre ne s'intègre que sous la forme d'une

série infinie ; et f pour les raisons que j'ai développées plus haut ,
je me bornerai à un seul exemple. Il faut d'ailleurs observer que
cette équation s'intègre d'une manière ^rès-élégaate par les frac-
tions continues.

Soit dorçc la proposée

•n fera

ce qui donnera

^ = P , , ou X<=

«t Ton aura

Faisant donp Ija pjixiie ii*dép^4ante de y égaje % Z, m prouvera

Un exemple très-simple est

on a , pour ce cas ,

et, en supposant « et fi constantes,



çb" ç*b**

11)0—i) 0*—*x*a--O0--«)0—o

cV .
| , i , I -

â ( ^ 1 ) 0 I )
â—I ( â(^—1)0—I) a*{j>*a—1)0*—i)(ba—1)0—i) ^^"• 'J *

Cette intégrale change de forme lorsque ^ = ^ , ^ = 1 ou 3 = i ; et ,
dans ce dernier cas > on s'assurera aisément qu'elle se réduit à
la forme finie, comme toole équation linéaire à coefficiens constans.

11 faut encore jeter un coup-d'œil sur les équations qui ren-
ferment à la fois des différences et des différentielles par rapport
à la même variable.

S. m.

Des équations aux différences mêlées à deux çarialles.

L'équation aux différences mêlées de Tordre n renfermant en
général (/2+i)aH-i termes , je ne considère ici que celle du pre-
mier ordre , dont l'intégration comporte encore de grandes diffi-
cultés. Il est d'ailleurs facile de s'assurer #que l'intégration d'une
équation quelconque , à coefficiens constans^ dépend seulement
d'opérations algébriques.

Soit donc l'équation du premier ordre

A £

iï faut tâcher de la rendre en différences ou en différentielles
complètes ; mais on verra qu'en général cela est impossible ; car
la forme la plus générale qu'on puisse lui donner est
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par laquelle on ne saurait satisfaire a trois conditions. En effet
en comparant, on trouve

On tire des deux premières

M N — l—^i7"

^ t , pour satisfaire à la dernière relation ; il faut mettre l'ëquatîon
sous la forme

d'où on tire , en représentant par TM le coefficient de y daris
le second membre ,

c étant une constante , et <» une fonction telle que A«=o* Si ensuite
on représente par Z la partie indépendante de y, on aura, en
5ous-entendant les indices,

i fi s irfii
On trouve facilement une seconde forme générale , en mettant
l'équation proposée sous la forme d'une différentielle complète ;
mais , dans tous les cas ; la succession alternative des signes^et
S soumet ces formules générales à des difficultés qui font ressortir
les avantages des travaux de MM. Biot et Poisson sur le môme
sujet.
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Àpirès avoir développé les principales conséquences des principes

généraux , relativement aux équations à deux variables , il me reste
maintenant k traiter des équations aux différences partielles.

§• IV.

Des équations linéaires aux différences partielles.

Parmi le petit nombre des résultats généraux auxquels on est
parvenu , relativement à l'intégration des équations linéaires , il faut
principalement remarquer celui qui ramène l'intégration d'une équa-
tion quelconque a ne dépendre que de celle d'une équation qui ne
contient pas de terme indépendant de la fonction inconnue. Cependant,
on ne sait que rarement intégrer immédiatement, sous forme finie ,
une équation a plusieurs variables , pas même dans les cas analogues
à ceux où Ton intègre les équations a deux variables , par des
fonctions connues , comme , par exemple , lorsque les coefficiens
sont constans. L'introduction de nouvelles variables conduit quel-
quefois à des résultats satisfaisais , qui sont pourtant très-particuliers,
et exigent le plus souvent que l'intégrale soit donnée en série in-
finie , seule forme à laquelle toute intégrale soit réductible. On
sait que la série de Taylor donne le moyen d'intégrer les équations,
soit à deux , soit à plusieurs variables ; mais nous avons vu qu'en
général elle est inapplicable à celles-là , et à plus forte raison à
celles-ci. C'est pourquoi on a formé des séries qui procèdent suivant
des différentielles ascendantes , forme beaucoup plus avantageuse et
toujours possible , à l'exception de quelques cas particuliers , ana-
logues à ceux où la série de Taylor se trouve en défaut ; mais f

quelque élégans que soient les résultats obtenus par cette méthode ,
on peut se demander si elle conduit toujours aux formes les plus
simples des intégrales, qui se développent , comme on sait, d'une
infinité de manières différentes. Il est donc important d'avoir une
méthode générale et directe pour cet objet ; et c'est une telle mé-
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thode que je me propose d'exposer suivant les principes établis
au commencement de ce mémoire ; mais il faut commencer par
la discussion du Cas où l'équation s'intègre immédiatement sous
forme finie , ou du moins par celui où son intégrale se ramène à
celle d'une équation du premier ordre ; et l'on verra ainsi pour-
quoi on ne peut obtenir cet avantage que dans des cas particuliers.

Supposons , pour abréger , qu'une équation de Tprdre m , à n
variables indépendantes > contienne les variables indépendantes dans
tous ses termes; elle renfermera , en gérié^al 7 un nombre de coeffi-
ciens exprimé par

et il s'agira de lui donner telle forme que Fon parvienne a l'in-
tégrale complète par l'intégration de m équations du premier oidre ;
piais chacune de ces équations ne lenfermant, en général, que n
cpefficiens , il n'est pas possible d'introduire , de cette manière f

plus de mn quantités indéterminées dans l'équation proposée \ et ,
à moins qu'on n'ait

m+ï m+2

il devient impossible d'y satisfaire, en général. En effet, si Ton
fait f pour abréger ,

J*ih%i ï- Pm3Ï 7">"Pm,n étant des fonctions quelconques des variables
indépendantes ; on formera l'équation

_, , n , D[
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qui renferme mn quantités indéterminées. Dans tons, les cas par-
ticuliers ou elles satisfont aux coeiïiciens de réquaiion proposée 7

on sait ramener celle-ci à des équations du premier ordre. Il est
d'ailleurs facile de voir qu'un terme Indépendant de z ne changerait
en rien ce procédé. Mais l'équation à deux variables est la seule
qu'on puisse toujours mettre sous cette foqne y quoique la déter-
mination des quantités Pm>t , P ^ , , , mène, en géne'r^l à des
équations plus difficiles à traiter que la proposée elle-même , ainsi
que nous l'avons déjà vu ; mais l'équation générale du second ordre

a déjà — • • conditions de trop •, et plus les ordres sont élevés*

et plus aussi le nombre des conditions surpasse celui dçs <juantitjé§
à déterminer. Pour satisfaire a toutes les conditions* on introduit
souvent avec succès de nouvelles variables , par rapport auxquelles
on obtient alors des intégrales définies on indéfinies ; mais , le plus
souvent, ces recherches conduisent a des équations plus difficiles
que celles qu'on s'était d'abord proposées. II faut d'ailleurs db-
server que , pour le cas des coefficiens constans , les quantités
Fm t , Pmmm j , , ....•• prennent les mêmes propriétés que de simples
facteurs , comme Ta fait voir M. Brisson.

Maintenant, après avoir observé combien sont particuliers les cas
où une équalion s'intègre immédiatement sous forme finie , je vais
reprendre le principe générai 9 pour exposer les principales modifi-
cations qu'il doit subir pour devenir applicable aux équations par-
tielles, et7 en particulier , à celles qui ne renferment que deux
variables indépendantes. Il s'agit seulement de partager l'équation
de la manière la plus avantageuse ? ^t pour cel$, jee -qui p^r^it lé
p]p3 simple est de déterimmer autant 4e e&eifiçieiis qye possible ,
par sd,e$ équations du premier ordre , cpi^me nou$
l'expose^ ; et puis $e transporter les termes înde'ter«)inés de
côte , ce qui domine à Téqyation proposée lg forme
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iz étant une fonction quelconque linéaire de z * et le premier
membre étant du premier ordre par rapport à

On trouve facilement celle-ci, en fonction de iz, avec une fonction
arbitraire de n—i variables ; e t , en continuant ainsi , on parvient
à la valeur de % en fonction de îz , avec m fonctions arbitraires.
Soit alors

on trouvera

II est facile de voir que les quantités Pmn9 Pm-t,n9 •••...• se
déterminent d'une infinité de manières différentes , et, par consé-
quent , donnent lieu à autant de formes différentes ; mais il est
impossible de donner des règles générales pour le partage de l'équa-
tion , et chaque cas particulier indique , sans difficulté, le parti le
plus avantageux que Ton puisse tirer du principe général. Cependant,
il existe , dans tous les ordres , une classe d'équations qui donne
lieu à des considérations trop étendues pour ne pas les exposer ici.

Soit donc l'équation

iz et çz étant des fonctions quelconques linéaires de z , telles seu-
lement que les coefficiens différentiels et les ̂ variables indépendantes
qui sont contenues dans la première ne doivent pas se trouver dans
la seconde. Alors on trouvera facilement qu'il est toujours possible
de satisfaire à l'équation par une série de la forme
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Ax ; Â± , À% ;:..•» étant seulement fonctions des variables indé-
pendantes renfermées dans îz , et Biy B% , 2?5 , des fonctions
des variables indépendantes renfermées dans $z ; mais on voit, en
même temps, que cette forme ne peut être générale que lorsque
îz ou q>z ne contient qu'une seule variable indépendante ; car l'In-
tégrale générale doit" contenir des fonctions arbitraires de toutes
les variables indépendantes moins une , ce qui n'est possible ici que
dans le cas que nous avons indiqué. C'est pourquoi je suppose que
iz ne contient qu'une seule variable indépendante , et alors l'inté-
grale peut être générale , comme on s'en assurera facilement par
le principe des substitutions successives ; maïs aussi je ferai voir
qu'on peut satisfaire à l'équation proposée de beaucoup d'autres
manières. En effet , pour déterminer les quantités Ax , A% , Aj ,...•
J5, , Bz , 2?, , , on n'a que la condition

Or , pour avoir l'Intégrale complète , il faut avoir 772 fonctions
arbitraires , m étant Tordre de l'équation proposée ; il faut donc
absolument qu'un nombre m des quantités Bl , Bz ,.... soient in-
déterminées f Aj , A% ,.... étant seulement fonctions d'une variable ,
ce qui est impossible , à moins qu'on n'ait

conditions qui introduisent m constantes arbitraires , assujetties seu-
lement à ne pas rendre égales entre elles deux des quantités Àx 9

Az >••••• II s'agit donc seulement de satisfaire aux équations

ce a quoi on parvient facilement en supposant

•Sm-f - i — f ^ x 9 • # / n + 2 = ? # 3 J <#/n-4-3 ~ ? # 5 , . . . . , . .

Torn. XL 4o
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e t f 4 ^ AÀ 3 ,

les relations entre ^ , À% , ^ 5 ...... étant des équations ordinaires
de Tordre m 7 pour lesquelles il s'agit seulement d'avoir une in-

* i

tégrale particulière ; désignant donc par •— la fonction inverse de f,

on aura ainsi

et l'intégrale complète

. - j Am

<pa e t — étant la même chose que (p(p et — JL ^ .-et ainsi dès

autres.
Par le théorème de Parsevar, on peut encore ramener chacune

des séries

~ À^?B2. i-

a ne dépendre que de celles-ci :
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dont la dernière conduit à une équation a n — i variables indé-
pendantes, la pioposee en renfermant n ; mais les imaginaires que
cette méthode intioiuît H xendent peu susceptible d'application*

On peut encoie satis^aiie a la forme

de beaucoup d'autres minières ;""Jainsi , si Ton ne veut pas de
fonctions arbitraires , la- manière la plus simple de satisfaire a
l'équation

sera de faire

or , res équations étant toutes semblables ? il suffira de considérer
celle-ci : }

à laquelle on satisfera delà manière la plus générale, en p<f>san|

Br=crçBr , Ur=-Jr,

er étant une constante arbitraire ; et Ton trouvera , en intégrant
ces équations t
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Soient donc Y, , c% , des constantes arbitraires, et Cl}

des fondions quelconques de celles-ci ; on peut faire

ou , si Ton veut,

(yii() ou

$(c) étant une fonction arbitraire de c.
11 est sans doute superflu de faire voir la variété infinie qu'on

pourrait donner aux intégrales de l'équation proposée, en laissant
indéterminées deux ou un plus grand nombre de quantités Ax ,
3t , ...t. y et en comparant de différentes manières les autres termes
de la série»

II faut encore observer qu'il n'est pas nécessaire que les fonctions
iz et <pz contiennent seulement des différentielles |.our que les
méthodes précédentes soient applicables ; elles le sont encore , lorsque
ces fonctions contiennent des différentielles négatives , c'est-à-dire ,',
des intégrales ; mais ce cas donne lieu à des observations qui ne
s'exposent pas d'une manière assez claire lorsqu'on demeure dans
les généralités, ainsi que je le fais ici; et, comme elles je pré-
sentent d'ailleurs d'elles-mêmes assez facilement , je n'en parlerai
qu'en traitant, en particulier, des équations à trois variables; et
alors je ferai voir l'usage des facteurs pour ramener une équation
à cette forme r lorsque cela est possible. Je parlerai aussi , plus
bas , du cas où les coeiïiciens sont des fonctions quelconques de
la somme des variables indépendantes. Je ne ferai ici qu'une seule
observation sur l'équation à eoefficiçns constans. Elle consiste en
ce que si Ton pose l'équation

îz étant une fonction linéaire quelconque de z, à coefficîens co»s~
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tans, et M une fonction quelconque des variables indépendantes ;
en représentant par JV la fonction la plus générale qui satisfasse
à t l'équation

on aura , par les principes qui ont été suffisamment développés
par M. Servois ,

% qui a la forme d'un polynôme , pourra être développée par
toutes les méthodes connues pour le développement des fonctions
purement algébriques ; et Ton parviendra ainsi directement, d'après
ces principes f a tous les résultats de M. Français* 7

Je vais présentement m'occuper de l'équation à deux variables
indépendantes , et , en particulier, de celle du second ordre, afin
d'eelaircir mieux les considérations générales que je viens d'exposer*
Eh général , toutes les équations du premier ordre se ramènent
à des équations ordinaires t et il serait ainsi inutile d'y appliquer
itnrnédiatement le principe des substitutions successives , quoiqu'il
devienne nécessaire pour intégrer celle-ci.

Soit donc Féquation

2r dz . dz t

« , j«, y , j , i , # étant des fonctions quelconques de $ et y ;
il s'agit de lui donner la forme

en supposant
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Pour cela, on trouvera les conditions

Or*, comme', *en gètte'M » il est îtnpo^iWe de éatrsfaire à toutes
ces conditions *? il &st nécessaire de tntéltre Fe<juâtio*n sous

fofrme
Faisons ; par

%tmjoiîrs dtët^F^îr>êr ^^de manière qu^ toutes ces condi-
tions saknt resopliesi. Ap r e^ av^ir întegi^ les deux équations du
premier ordre , on aura up, r£|ultat

V renfermant <ÎSUK fon^tioàs afbitîûîre^, ef îz étant une fonction
linea re qui contient des signes d'intégration par rappoit à x et jr»
oa aura > en conséquence ,

mais on tombe souvent sur des difficultés insurmontables , sur tout
lorsque l'intégntîon des oquat ons du prerniet ordre conduit a des
équations non linéaires ; c'est pourquoi je considère eneofè l'
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tion générale du second oidre sous un autre point de vue. Par la
méthode que M. Laplace a indiquée r on sait rdmenei toute cqua-
tion du second ordre à Tun^ des formes suivantes:

âz %z

èz âz
+

où p, q , r, s sont des fonctions quelconques de ce et y <p(i se
déduisent des variables indépendantes de l'équation proposée par
l'intégration de deux équations du premier ordre.

Je commence par la première ; et 7 en faisant

fpûy Jgdf âp

je lui donne la forme

S
—2U =dx ^
•h.

On voit que cette équation s'intègre immédiatement sous forme

finie lorsque p=o. En supposant respedûv*eJ3pent 4* £t Q fonctions

arbitraires de x et y, et faisant ,

1.+ JL / > d r + - A
n n l J m m % J m

on trouvera

c'est-a-dire ?
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, y s> x /-»
z = T+— I — ImncTàyà

II est facile de trouver, pour cette intégrale , une infinité d'autres
formes plus ou moins simples ; mais je n'en présenterai qu'une
seule , qui est quelquefois préférable à celle-ci.

Ea faisant

-^ et f étant des fonctions arbitraires d e y et de a? respectivement,
on aura

m dx J _̂_ g
dy *~ n dy '

d'où
P P <f d(nl7)

La forme la plus simple qui intègre Péqualio» (B) s'obtient de la
manière suivante : faisant

m mJ J

f étant fonction arbitraire de x on aura

, x àz

m ay àx

d'oà
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les dérivations se rapportant à x* Cette forme , quoiqu'elle con-
tienne seulement une fonction arbitraire n'en est pas moins générale ,
corme Ton sait ; et il était facile de trouver une autre forme qui
en contint deux. Pour cela ? il fallait commencer l'intégration par
rapport à x.

Maintenant 7 après avoir présenté des formes générales , pour
l'Intégration des équations à trois variables, II peut être intéressant
de dlscu:er les cas les plus étendus qui soient susceptibles de sim-
plification. L<°s méthodes dont on se sert pour cet effet consistent
à introduire de nouvelles variables , par rapport auxquelles on
obtient des intégrales , définies au indéfinies ; et les plus générales»
sont celle de Parceval et celle qui conduit à l'intégrale complète
par une somme indéfinie d'intégrales particulières. Cependant, ces
méthodes en laissent toujours à désirer d'autres , dans le cas où
il est possible d'en avoir; aussi connaît-on , pour certains cas par-
tiiuiiers, plusieurs autres méthodes fort élégantes.

Prenons l'équation

d2z âz dz ^
dxdy ' dx ' dy

p , ç , r étant des fonctions quelconques de x^y ; alors on trou
vera facilement, pour la forme (1) , et en observant qu'en général

qu'une valeur zzzuetx satisfait à l'équation proposée, die même que
Tom. XL 4i



3io EQUATIONS
&>=.*$* % u et & étant des fonctions indéterminées de $*\-Y* Faisant ;

pour abréger , ar+jr=*> , et observant que

du ^ du ^ du ^ àa £ ^ _ <**

en aura, pour déterminer u et • , les équations a deux variables

En faisant

représentant par T, JTX des fonctions arbitraires de / , on aura

Si la quantité s , de la forme générale, était une fonction quel-
conque de 9, on trouverait aisément que la série qui la renferme se
ramènerait à l'intégrale de l'équation

d*z , dz ,

sans constantes arbitraires. II faut observer que ces principes s'ap-
pliquent à une équation d'un ordre quelconque , entre un nombre
quelconque de variables.

Soit l'équation

d*z dz dz
8 * ' + « •
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9 , m • m étant des fonctions quelconques de y, et g une fonction
quelconque de #• Quoiqu'elle n'ait pas la forme fz^zçz 9 que nous
avons traitée pins haut , il est facile de la lui donner par des
facteurs. En effet, on a , par la formule (2) ,

dr f* * à(nz) ,
—- =m M — ày

m et n étant des fonctions de y-, et , par l'Introduction des fonc-
tions arbitraires et par les substitutions successives , on en trouve
facilement l'intégrale complète

mn àf '**"*;* ^J rnn dy\ J mn

séries qui se ramènent a la forme finie 5 par le théorème de Par-
sevai et l'intégration des deux équations du premier ordre à deux
variables.

On peut encore intégrer l'équation proposée par une infinité d'In-
tégrales particulières , comme nous l'avons dit plus haut. En effet f

si l'on fait

z=XY y on aura Y^-^Xm f * A(nY) ,
|d# J mn ^ '

d'où

cXàx- — ; eà(-\-— d(nY) ;
| \ m / mn s

de là on conclura facilement, en substituant les valeurs de m et n >
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On ne peut , que dans un cas particulier, savoir , lorsque #=£ r ?

appliquer à (b) la méthode par .laquelle nous avons réduit (a) à
une équation du second ordre à deux variables.

Pour donner un exemple de l'inlégration par d'autres méthodes,
il faut nécessairement choisir une équation moins générale. Je vais
employer les principes donnés par Euier, pour intégrer les équations
à deux variables et par lesquels on peut aussi intégrer quelques
équations partielles, sans les réduire auparavant à des équations
ordinaires du second ordre. Soit donc L'équation

âz* & àz /3 àz £— ï

dydx y dx dy

*> $ £ ; v e'tant des constantes , et g une fonction de x. Alors on a

y j ï f + p y

Maintenant il faut observer qu'entre les limites o et ï , on a

" c r + z ' n > / ( ^

en supposant que les constantes sont telles que l'intégrale ne de-
vienne pas infinie entre ces limites, et que les mêmes conditions
sont remplies dans le présent problème. En faisant

on aura $ entre ces limites

pn supposant
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où <p' est la fonction dérivée de <?. pour trouver la valeur de la
première série , on fera ,

d'où l'on conclura

et , en observant que

et faisant de plus

on aura

et in faisant

on aura ensuite

Fintégrale étant prise entre /=;© et /=sx»
Prenons encore l'équation
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ô2z àz àz ,

I y ™ ï « i & ̂ tant des fonctions quelconques , les deux premières
de x et les deux dernières de y. Alors, en faisant

on aura

Par le théorème de Parseval f et >̂ar la méihode générale exposée
plus haut, on téduit cette série à l'intégrale d'une équation ordi-
naire du second ordre ; maïs y dans un cas assez étendu ? elle se
réduit à la forme finie, par la méthode qu'a indiqué M. Laplace
( Journal polytechnique 7 cahier VIII ).

En effet, lorsque w=/2a , on a

e t , si l'on donne à la série

» 1.2 » \ n\ i.a,3 » \ n \ n

la forme

fCMaH-*) ,
c'est-à-dire d'une fonction arbitraire de fnà%*\-* *7 eu observant
que , entre *=;—ce et *=;Hhoo? on a

on trouvera facilement que l'intégrale de l'équation



LINÉAIRES. 3i5

ï3 d r dxr

ou /* est une fonction quelconque de ce, devient

Pintégrale étant prise entre *=—-co et «:=-f-<**

Dans ce qui précède, je crois en avoir dit assez pour éelaircir
le principe duquel je suis parti ; et il me paraît superflu d'y ajouter
plus d'exemples et de développemens , sur-tout pour les ordres
supérieurs , qui doivent naturellement avoir des intégrales très-
compliquées ; à moins que les équations ne soient très-particulières;
les raisons que j'ai déduites plus haut me dispensent également de
traiter des équaiions aux différences finies à plusieurs variables. Il
est d'ailleurs impossible de donner des règles pour les cas parti-
culiers qui admettent des simplifications dans les méthodes géné-
rales ; mais ces simplifications se présentent d'elles-mêmes sans
difficulté. Depuis long-temps on se sert du principe des substi-
tutions successives , comme d'une méthode d'approximation , fondée
sur des valeurs particulières des quantités qui entrent dans l'équa-
tion proposée ; et on l'a employée f faute de méthodes plus rigou-
reuses ; c'est pourquoi je me suis sur-tout attaché a l'exposer sous
un point de vue qui doit la faire considérer comme la seule mé-
thode générale qui existe pour Pintégration des équations ; j'ai tâché
ensuite d'en déduire les principales conséquences , indépendamment
de la nature particulière des fonctions qu'on a introduites dans
la langue analitique, par des motifs le plus souvent étrangers à
cette branche de l'analise ; et , conformément aux idées de M«
Lacroix ( Cale. diff. et intég. , tom. II f pag. 676 ) 9 j'ai indiqué
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les classes qui ont des propriétés communes ? et qui jouissent de
l'avantage de se ramener à d'autres plus simples. J'ai , plus d'une
fois, observé que, dans certains cas , on parvient plus brièvement
au but par des considérations particulières ; niais il n'en est pas
pour cela moins néceisaire , suivant la remarque de l'illustre La-
grunge , de généraliser et -de réduire les théories , à mesure que la
science s'étend et s'enrichit de procédés nouveaux.

QUESTIONS PROPOSÉES.

Problème d'anaïise indéterminée.

O U E L est le plus petit nombre non premier qui rende la formule
2n—% divisible par/*?
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GEOMETRIE ELEMENTAIRE.

Construction géométrique c£un cercle qui en louche
trois autres donnés sur un plan ou sur une sphère 9

d\in cône droit qui en touche trois autres de même
sommet , et d^une sphère qui en touche quatre
autres dans l'espace ;

Par M. PORCELET 5 capitaine au corps royal du génie ,
ancien élève de l'école polytechnique. (*)

'APPELLE points homologues directs ou inverses , relativement à
deux cercles traies sur un même plan , et à l'un quelconque de
leurs centres de similitude 9 deux points de leurs circonférences
qui , étant situés à la fois sur une droite passant par le centre de
similitude dont il s'agit , appartiennent à deux arcs dont la cour-
bure est dirigée dans le même sens ou en sens contraire 7 par
rapport à ce centre de similitude. D'où il suit que les rayons menés

(*) Les constructions dont il va être question sont celles qui ont élé annoncées
à la page 82 de ce volume. Nous avons pense qu'elles pourraient offrir un
rapprochement curieux avec celles de M. Durraude , insérées également dans
le présent volume ; et , à notre prière 7 Fauteur a bien voulu nous les
communiquer.

J. D. G.
Torn. XI, n.° X, i.tv avril 1821, 4^
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à deux points homologues sont ou ne sont pas parallèles , suivant
que ces points sont directement ou inversement homologues.

En conséquence de ces définitions , deux arcs , deux cordes ,
deux tangentes , etc., appartenant respectivement à deux cercles >
seront directement ou inversement homologues , suivant que leurs
extrémités ou points de contacts seront des points de Tune ou de
l'autre espèce.

On voit, d'après cela , que , pour un point, un arc , une corde ,
une tangente , etc. , donné sur l'un des cercles , il ne correspond
jamais sur l'autre qu'un seul point, un seul arc , une seule corde,
une seule tangente , etc. , duquel on puisse dire qu'il est son homo-
logue de Tune ou de l'autre espèce , du moins relativement au même
centre de similitude.

Il est facile de voir , au surplus , ^que les cordes et tangentes
homologues sont ou ne sont pas parallèles , suivant qu'elles sont
directement ou inversement homologues; ou, en d'autres termes,
que les cordes et tangentes directement homologues concourent sur
la corde à l'infini commune aux deux cercles , tandis qu'au con-
traire les cordes et tangentes inversement homologues concourent
sur la corde à distance finie commune à ces deux mêmes cercles f

c'est-à-dire , sur leur axe radical^ ce qui présente un moyen fort
simple de construire cet axe par de simples intersections de lignes
droites.

Toutes ces définitions et toutes ces remarques peuvent être fa-
cilement étendues , avec les modifications convenables , à deux
cercles tracés sur une sphère , à deux cônes droits de même som-
met , à deux cylindres droits dont les axes sont parallèles et enfin
à deux sphères. On peut même les étendre -à deux courbes planes
ou a double courbure et à deux surfaces courbes , soumises ou non
à la loi de continuité, pourvu qu'elles aient un centre de similitude.

Les choses ainsi entendues , voici comment on construira un cercle
qui en touche trois autres , donnés sur un même plan.

âoient C , O , G" les trois cercles donnés , et soit d'abord
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déterminé celui des quatre axes de similitude de ces trois cercles
qui répond à l'espèce de contact qu'on se propose d'obtenir ; cet
axe contiendra trois des six centres de similitude , les seuls dont
il sera question dans ce qui va suivre.

Soit pris arbitrairement un point M sur la circonférence de
C (*) ; soit M/ Je point inversement homologue à M sur C ; soit
M/x le point inversement homologue à M/ sur C ; / ; et soït enfin
N le point inversement homologue à M//r sur C.

S'il arrive que M et N se confondent 9 M, M' , M/y seront les
points de contact du cercle cherché avec les trois cercles donnés ;
de telle sorte que, par le simple tracé de trois droites , on aura
réduit le problème à faire passer un cercle par trois points donnés.

Si les points M , N ne se confondent pas , en les joignant par
une droite , cette droite ira couper Taxe de similitude en un point P
qui sera invariablement le même , quel que soit le point de départ
M ; et la polaire de ce point P , par rapport au cercle C , cou-
pera ce même cercle à ses points de contact avec les deux cercles
cherchés.

On pourrait , par un semblable procédé , déterminer les points
de contact de ces deux mêmes cercles avec les cercles C' , QJf ;
mais il est clair que , si l'on détermine sur ces derniers les cordes
respectivement homologues a celle qu'on aura déterminée sur C ,
elles joueront, par rapport à eux, le même rôle que celle-ci par
rapport à C , et de plus concourront avec elle en un point qui,
comme on le sait déjà , et comme il résulte d'ailleurs de ce qui
précède , sera le centre radical des trois cercles donnés , ou le
point d'intersection unique de leurs trois cordes communes deux à
deux.

La même opération, répétée pour chacun des quatre axes de

(*) Pour plus d'exactitude pratique , il convient de choisir pour C le plus
grand des trois cercles donnés.
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similitude, donnerait les cordes et les points de contact qoî appar-
tiennent aux huit circonférences tangentes aux proposés ; niais 7 si
l'on remarque que la polaire du centre radical , par rapport a l'un
quelconque des cercles proposés , rencontra les quatre axes de si-
militude en des points qui sont précisément les- pôles des quatre
cordes âe contact qui appartiennent à ce cercle s il sera beaucoup
plus simple, une fols qu'on aura obtenu 9 par la construction qui
précède , le centre radical et les premières cordes de contact^ de
s'en servir pour déterminer simultanément les systèmes des trois
autres. Ces diverses constructions n'exigent d'ailleurs que l'emploi
d'une simple règle, quand on aura la connaissance préalable des
centres de similitude., ou seulement celle des centres des cercles donnés.

Si 5 au lieu de s'arrêter ? dans la construction ci dessus, au qua-
trième point N 5 trouvé sur C , on continuait, de la inerte manière,
à chercher son homologue inverse N7 sur C/ , puis l'homologue
inverse 3N7/ de celui-ci sur G v , puis enjin l'homologue inverse de
ce dernier sur C ; ce dernier point serait , dans tous les cas ? le
point M de départ lui-même ; les six droites tracées d'après les
conditions qui précèdent , et qui se trouveraient dirigées deux à
deux vers les trois centres de similitude que Ton considère , for-
meraient donc naturellement un hexagone fermé , dont les sommets
opposés appartiendraient deux à deux à un même cercle, et dont
les trois diagonales varieraient de position en môme temps que le
point de départ ou premier sommet , en pivotant respectivement
autour de points fixes , placés sur Taxe de similitude correspon-
dant; ce qui offre le moyen de construire simultanément et d'une
manière symétrique les trois cordes ? et par suite les six points de
contact appartenant aux deux cercles tangens relatifs à cet axe de
similitude. Il est en outre bien digne de remarque que les six
sommets de Ton quelconque des hexagones ainsi construits sont, à
la fois , sur une même circonférence de cercle ayant Taxe de si-
militude correspondant pour corde commune avec les deux cercles
tangens au proposé qui appartiennent a cet axe«
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Les Constructions qui précèdent ont l'avantage d'elre fort simples,

puiscjuViles n'exigent que le tracé de lignes droites et qo elLs
dispensent de ceiiâtruire les cordes communes ou les axes radicaux
qui appartiennent aux trois cercles proposés 5 combinés deux à
dtux. On peut même éviter l'emploi direct des axes de similitude
au moyen du procédé qui suit ;

Ayant clioibi 9 à volonté, trois centres de similitude , situés en
ligne droite , et appartenant aux trois cercles donnés combirés deux
à deux ; prenez sur l'un d'eux G une corde quelconque ; cherchez
son hon*o!ogue inverse par rapport à C / , puis l'homologue inverse
de celle ci par rapport à CJf , et ainsi de suite , en procédant
constamment dans le même ordre. Après la sixième opération ,
vous retomberez évidemment sur la première corde. Vous n'aurez
donc , en tout , que seize lignes droites à tracer f y compris les
deux cordes de chaque cercle , lesquelles se rencontreront en un
point qui appartiendra à la corde de contact cherchée relative à
ce cercle. Cela posé , tracez les deux nouvelles cordes qui réunis-
sent deux à deux celles des extrémités des premières qui ne pro-
viennent pas de la même combinaison , et qui sont par conséquent
indépendantes entre elles ; ces deux cordes , ainsi obtenues dans
chaque cercle , se rencontreront en un second point , appartenant
à la corde de contact cherchée , laquelle sera ainsi parfaitement
déterminée , pour chacun des cercles proposés.

Les constructions et propositions qui précèdent subsistent , d'one
manière analogue , pour trois et quatre sphères , données a volonté
dans l'espace , pour trois cônes qui ont un même sommet , et enfia
pour trois cercles quelconques tracés sur une même sphère. On
s'en convaincra d'une manière tout-à-fait simple , dans ce dernier
cas, en considérant l'un des quatre systèmes de trois surfaces coni-
ques qui renferment deux à deux les cercles proposés, et examinant
ce qui se passe dans le plan d'une section quelconque renfermant
la droite ou axe qui joint les trois sommets correspondais ; car ,
en supposant ensuite que ce plan se meuve autour de l'axe dont
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il s'agit , jusqu'à devenir tangent à la fois aux trois surfaces co-
niques , il coupera évidemment , dans cette double position , la
sphère donnée suivant un cercle tangent à la fois aux trois proposés;
ce qui peut servir, en même temps , a justifier ce qui a été dit
ci-dessus relativement au cas particulier où. les trois cercles donnés
sont tracés sur un même plan,
, On peut remarquer que les propositions relatives au système de

trois cercles tracés sur un plan , sont tout-à«falt analogues à celles
que j'ai énoncées dans le tom. VIII.e des Annales ( pag. i4* ) ,
relativement aux polygones inscrits à une conique, dont les côtés
sont assujettis à pivoter autour de points fixes situés en ligne droite;
et j en efïet, il devient très-facile de passer des unes aux autres ,
en invoquant le principe de la continuité. C'est un rapprochement
que je n'ai pas manqué de faire, dans le mémoire dont M. Cauchy
a rendu compte à l'institut.



FONCTIONS CIRCULAIRES.

TRIGONOMETRIE.

jEœposilion des principes fondamentauoc de la théorie
des fonctions circulaires ;

Par M. FRÉDÉRIC SARRUS 9 docteur es sciences»

N sait que toute la théorie des fonctions circulaires est renfermée
dans les quatre formules qui donnent les sinus et cosinus de la
somme et de la différence de deux arcs en fonction des sinus et
cosinus de ces arcs eux-mêmes. Mais , si ces formules se démon-
trent avec assez de 'facilité 9 tant que les arcs dont il s'agit sont
moindres que le quart de cercle , il n'en est plus de même lors-
qu'on suppose ces arcs d'une grandeur quelconque. Peut-être même
est-il permis de douter que les efforts qui ont été faits dans ces
derniers temps pour remplir cette lacune des élémens aient com-
plètement atteint le but louable que leurs auteurs s'en étaient
promis ; et c'est ce qui nous enhardit à revenir de nouveau sur
cette doctrine fondamentale , pour la présenter d'une manière qui
nous parait à la fois très-simple , très-générale et très-rigoureuse*

Soient a?, y deux arcs tout-à-fait arbitraires, et pouvant mêrrie
excéder une ou plusieurs circonféreuces ; par les mêmes considé-
rations qui, dans la géométrie analitiqae ? donnent la distance d'un
point à l'origine et la distance entre deux points ? on aura , d'après
la définition des cordes , sinus et cosinus, et en prenant le rayon
pour unité }
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^~.Cos.f)a=Cord.ft(^—y):

En développant le premier membre de la dernière de ces trois
équations, et ayant égard aux deux premières, il viendra

=Cord.a(#--~y) ; (A)

qmi, en posant y = o , d'où Sin.y=o, Cos,y=i , donne

d'où , en changeant x en %—y ;

2—sCos.(^—y)=Cord.a(#—y) \ (B)

éliminant donc Cord.3(#—y) entre les équatio)3$ (A, B), il vien-
dra, en réduisant r

Cos.(#—^) = Cos^Gos.y+SïnB^Sin.y , (1)

En changeant, dans celte dernière équat'on , y en #~—y , elle
devxendia

ou, en mettant pour Cos.(#~y) sa valeur (I)
Cos.j
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Cos.y =r C o s . * y )

En changeant Cos.\r en i—>Sîms.# ? effaçant alors le terme Cos y p

co-nmun aux deux membres, divisant ensuite par Sin.̂ r et
posant, on aura

y—Cos.sSin.y . (II)

Si , présentement, dans les équations ( I , II) 9 on change s en
i elles deviendront, en renversant

Sin.jSîn.^4-y)+Cos*yCos.(#-{-y) =

prenant !a diiTe'rence des produits de la première par Cos.j^ et de
la seconde par Sin.^-, puis la somme des produits de la première
par Sin.y et de la seconde par Cos.y } en se rappelant chaque
fois que Sin.a/+Cos.*y=ï t ^ viendra

, (III)

; (IV)

de manière que nos quatre formules fondamentales se trouveront
ainsi établies , sans avoir fait aucune supposition particulière sur
la grandeur des arcs a: et y*

Tom. XL
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QUESTIONS RÉSOLUES.

Démonstration des deuoo théorèmes de géométrie énoncés
à la page 289 du IX* volume de ce recueil ;

Par M. G E R G O N N E ,

JLJE modeste auteur àes deux beaux théorèmes que nous allons
démontrer y avait attaché jusqu'Ici trop peu d'Importance pour
songer à nous en fournir lui-même la démonstration que d'ailleurs
BOUS avions vainement cherchée de notre côté. Nous désespérions
donc de pouvoir suppléer à son silence , lorsque M. le capitaine
Poncelet9 lié d'amitié avec lui , a bien voulu nous apprendre que
ces théorèmes étaient fondés sur des principes de statique analogues
à ceux qile nous avlops nous-mêmes, appliqués , quelques pages
auparavant ( tom. I X , page 2 8 1 ) , à d'autres recherches géomé-
triques. Ce trait de lumière nous a suffi pour parvenir au but
que nous nous étions proposé , et qui paraîtrait assez difficile à
atteindre par toute autre voier, ce. qui offre une nouvelle preuve
4e l'utilité, de la statique dans la géométrie.

THÉORÈME T. Soient pris arbitrairement , sur un plan , n
points que Ton numérotera et désignera , à volonté , par (1) , (2) ,
(3) , (n).

Soient joints chacun de ces n points , à partir du point (1) 9

h celui qui porte le numéro immédiatemerit supérieur f jusqu'au
dernier (n) par des droites qui seront évidemment au nombre de
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lî—1 ; et Soient respectivement désignées ces droites par Ips
points qui les déterminent en cette manière

Sur la direction de chacune de ces droîtes , soit pris arbitraire-*
Xnent un point ; et soit designé chacun des «—1 points ainsi • faoi.MS
par les deux numéros qui désignent la droite sur laquelle il se
trouve situé , ainsi qu'il suit ;

( l a ) , (a3) , ( 3 4 ) . . . . . . , . . . ( « - i , n) .

Soient joints, deut h deux, pnr S& nouvelles droites/ceux de
ces points et des premiers dont les indires renfermée1! *en tout trois
nombres consécutifs de la SUîie naturelle', sans répétitions»? î
cunes ; et soient de lignées lés droites de cette noïj^telle sérié?^''
nombre de 2(/2 — 2) , par Tensen^ble des indices fides deux
qui les déterminent, en cette manière

0Xa3) ,

les droites qui, deux à deux , auront les mêmes nombres à leurs
indices se couperont , en général , et donneront ainsi 72— 2 points
d'intersection , que nous désignerons respectivement par l'ensemble
des nombres qui forment les indices de ces droites t en celle
manière

(128) , (234) , (345) (n—2 , «—1 , n) .

Soient de même joints y deux a deux , par de nouvelles droites f

ceux des points des trois séries dont les indices renferment, ea
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, rqnatce nombres consécutif de la suite naturelle ,? sans f

titrén ni lacune ; et soient désignées les droites de cette troisième-
série, au nombre de Z{n—3), par l'ensemble des indices des deux
points qui les déterminent ^ en cette manière

.(»—d{«—,»,«—! ;«) ;

il arrivera qfje leŝ  draL^f qui ?^iois à trois ^ auront les même!
nombres à ^e^s ^mhtçs ( et ce sunt ici, coajmf* on le voitt, celles

p^rtknnea^i à une même colonne verticale ) se couperont au.
p^înt s d̂f sorte qu'elles ne fourmi ont fjue n—3 points d'ia-

, qne«^ious désignerons respectivement par leà nombrea
qui forment les indices de ces droites , en cette manièie

(1234)7 (zfà$) , (3456) , (»—3, « - 2 , * — i , n) .

En pourtmva«*-4e même procédé > avec Jes marnes attentions f

nous obtiendrons une quatrième série de droites , au nombre de
J^(n—4)» concourant, quatre à quatre , en un même point, et
n'ayant ainsi que /2«—-4 intersections , puis une cinquième série d§
droite, au nombre de 5(n—5), concourant, cinq à cinq, en un
même point, et n'ayant ainsi que n—5 intersections; de sorte que
nous arriverons finalement a n—i droites concourant toutes en ua
point unique , designé par (ia3 li).

Démonstration. Gomme un plus grand nombre de points ne
peut qu'alonger la démonstration du théorème , sans la rendre plu»
difficile ; afin de fixer les idées , et pour être en même temps pkif
clairs et plus briefs f nous supposeronb que les points dont il s'agit



RESOLUES. 9

ne son! qu'an nombre de cinq se bernent , situés d'ailleurs d'une
manière quelconque sur un plan , et respectivement désignés par

(0 > (») > (3) , (4) , (5) -,

de sorte que I**s quatre droites qui les joindront consécutivement ;
deux à deux j seront

Supposons qoe ces points soient des masses quelconques, positivés
ou négatives, dont il s'agît de trouver le centre commun de gra-
vite , à rau-e de l'Indéterniination de ces masses, on pourra tou-
jours âuppuaer que les quatre points

(ia) , (23) , (34) , (45) ,

pris arbitrairement et respectivement sur nos quatre droites % sont
les centres communs de gravité respectifs des masses

( 0 et (a) , (a) et (3) , (3) et (4) , (4) et (5) .

Il est clair, en second lieu, que les droites

(0O3) , (30(34) i (3K45) *

ainsi que les droites

(12X3) > (*3)l4) > (34) (5) 9

contiendront respectivement les centres communs de gravité des trois
systèmes de trois masses

(O i (a) , (3) ; (a) , (3) , (4) • (3), (4) , (5) S

d'où il suit que les points d'intersection
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(ia3), (a34), (345),

seront les centres de gravité respectifs de ces trois mêmes systèmes*
Concluons de là que les droites

que les droites

et les droites

1*3) (4) , (204, (i>)

contiendront également les centres de gravité respectifs des deux
systèmes de quatre masses

CO , (2) , (3) , (4) ; (s) , (3) , (4) , (5) ;

ie sorte que les trois premières droites concourront en un premier "
point, et les trois dernières en un second point que Ton pourra *
respectivement désigner par

( i a 3 4 ) < (2345) ,

et qui seront les centres de gravité respectifs de ces mêmes systèmes.
Or, de tout ce qui précède , il suit que les quatre droites

(0(2345)

("3X45)

contiennent également le centre commtrn de-gravité
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proposées ; puis donc que ce centre de gravité es! unique, îl s'ensuit
que ces quatre droites se coupent en un seul et même point, que
Ton peut désigner,par

("345) >

et qm est lui-même ce centre de gravité»

THÉORÈME II. Soient n droites arbitraires et indéfinies , tracées
sur un mê'iie plan , que l'on numérotera et désignera f à volonté 9

par 7 * 7 , 3 , « .
Désignons l'intersection de chaque droite avec celle qui porte le

numéro immédiatement supérieur, de la première à la dernière,
par l'ensemble de leurs indices t en cette manière

( i , 2 ) , ( a , 3 ) , ( 3 , 4 ) , (n—i » n) •

Par chacun de ces points f soit menée une droite arbitraire et
désignons les 72—i droites ainsi menées par les numéros des deux
droites primitives par l'intersection desquelles elles passent respec-
tivement ,' ainsi qu'il suit :

12 , a3 , 34

Considérons , deux a deux, les intersections des droites des deux
séries dont les indices renferment, en tout f trois nombres consécutifs
de la suite naturelle, sans répétition ni lacune; et soient désignés
les points de cette nouvelle série , au nombre de 2(/2—2) , par
l'ensemble des indices des deux droites qui les déterminent, en
cette manière

(1 , a3) , (a*, 34) , (3*, 45) f (»—a , »—un) 9

( 1 2 y à ) 9 (2.6 , 4 ) ? ( ^ 4 9 **) 9 • • • • • » {n*
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les points qui, deux a deux, porteront les mêmes nombres à leurs
indices détermineront une nouvelle série de»—i droites, que nous
désignerons respectivement par l'ensemble des nonibres qui forment
les indices de ces points , en cette manière

l a Ô , 2.01+ 9 3 4 5 > • • • • • • fi""" - i . M — • i . 7 ï •

Soient de même considérées , deux à deux , les intersections des
droites des trois séries dont les indices renferment, en tout , quatre
nombres consécutifs de la suite naturelle , sans répétition ni lacune;
et soient désignés les points de cette troisième série, au nombre de
3(/2—3) , par l'ensemble des indices des droites qui les déterminent,
en cette manière

( I 1 2 3 4 ) 9 ( 2 | 3 4 5 ) , ( 3 , 4 0 6 ) , . • • • • • . ( 7 2 — i , B — - 2 . I Ï — 1 . 7 1 } |

( 1 2 , b/J) ) (%à | 4^) * CH > o t 3) » • • • • ' • • 0*"—"3./Ï—'2 > 72—I./î) t

1 4) » ( a ^4 » S) > (34^ 7 b) > • • Qi—6.n—2.n—1 ,_72) ;

il arrivera que les points qui , trois à trois , auront les mêmes
nombres à leurs indices ( et ce sont ici, comme on le voit, ceux
qui appartiennent à une même colonne verticale ) seront situés sur
une même ligne droite , et ne détermineront ainsi que n—3 nou-
velles droites , que nous désignerons respectivement par les nombres
qui forment les indices de ces points, en cette manière

1 2 3 4 y 2 3 4 5 9 3 4 5 6 , • . . . . « • . 71—3.7Ï-— 2JÎ—1.71 •

En poursuivant le même procédé , avec les mêmes attentions,
nous obtiendrons une quatrième série de points , au nombre de
4(/z—-4) ^ situés , quatre à quatre , sur une même droite , et ne
déterminant ainsi que 72 — 4 nouvelles droites , puis une cinquième
série de points , au nombre de 5̂ /2—5) , situés , cinq à cinq ? sur

une
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même droite, et ne déterminant ainsi que n— 5 nouvelles droites;

de sorte que nous arriverons finalement à n—i points situés sur
une droite unique , désignée par 7s3 n .

Démonstration. Pour les mêmes raisons déjà déduites ci-dessus
nous ne supposerons seulement que cinq droites données , et res-
pectivement désignées par

7 , a* , 3*, 4* , 5 ;

de sorte que leurs quatre points d'intersections consécutives seront

(T, 7) , cT, 3) , (T, 4) , (4*, 5) .

Supposons que ces droites soient les directions de scinq forces
d'un même système dont il s'agît de trouver la résultante ; à causa
de la complète Indétermination du sens et de l'intensité de ces
forces , on pourra toujours supposer que les quatre droites arbitraires

72 P a3 , IÏ4 > 45 ;

sont les directions respectives des résultantes des couples de forces

1 et 2. , 2. et 3 r à et 4 t 4 et 5 f

II est clair} en second lieu > que les points

(î , 53) , (a , 34) , (1 , 43) ;

ainsi que les points

( Î I , 3) , ( 3 , 1 ) , (34 ,5) ^

seront respectivement sur la direction des résultantes des systèmes
de trois forces

d'où il suit que les droites
Tom.
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234 f 345 >

déterminées par les points rorrespondans , seront les directions même
des résultantes de ces systèmes de forces.

Concluons de là que les points

(I , 15b y (a , 345) ,

que les point$

(72 , T& , të ,45) 9

et les points

seront également situés sur les résultantes respectives des
systèmes de quatre forces

de^sorte que lés trois premiers sont sur une même droite , et les
trois derniers sur wie ^utre- droite j leargueHres peuvent être res-
pectivement designées par

et sont les directions respectives'des résultantes de ces deux systèmes.
Or , de tout ce qui précède , il suit que les quatre points

(17, 345) ,

GM5\ 45) ,
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sont également situés sur la résultante commune des cinq forces
proposées ; puis donc que cette résultante est unique y il s'ensuit
que ces quatre points sont sur une même droite , que Ton peut
désigner par

12345 *

et qui est elle-même la direction de la résultante générale du système.

On voit que ces deux théorèmes ont entre eux une correspon-
dance parfaite. Cette correspondance est même telle que chacun d'eux
peut facilement être déduit comme conséquence de l'autre. Conce-
vons , en effet , qu'ayant tracé sur un plan une section conique
quelconque , et qu'ayant^ussi tracé sur ce même plan Ja figure
relative à l'un quelconque de ces deux théorèmes , on détermine
ensuite les pôles des droites et les polaires des points de cette figure ,
par rapport a la section conique dont il s'agit ; en se rappelant que
les pôles des droites qui concourent en un même point appartiennent
à une même droite , et qu'à l'inverse les polaires des points qui
appartiennent à une même droite concourent en un même point,
on verra clairement que les pôles et polaires ainsi tracés formeront
la figure relative à l'autre théorème , qui se trouvera ainsi démontré
à l'aide de celui-là.

Si Ton considère la figure relative à l'un quelconque de ces deux
théorèmes comme la base d'une pyramide ayant son sommet en
un point quelconque , et que , par ce sommet, on conçoive des
droites menées à tous les points et des plans menés à toutes les
droites de la figure , on apercevra sur-le-champ que nos théorèmes
ont leurs analogues relativement à des systèmes de droites et de
plans indéfinis , concourant en un même point.

Si l'on suppose enfin que ce point de concours des droites ou
des plans est le centre d'une sphère , on verra que nos deux
théorèmes doivent encore avoir lieu sur la surface sphérique ; pourvu
qu'on y remplace les droites par des arcs de grands cercles-
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Si Ton suppose J dans le premier des deux théWemes, que cer-

taines masses sont égales et de signes contraires , ou dans le second f

que certaines forces forment des couples , ce qui éloignera soit le
centre commun de gravité, soit la résultante à l'infini; ces circons-
tances introduiront , dans renoncé des deux théorèmes , des modi-
fications plus longues à expliquer, a raison de l'infinie variété dont
elles sont susceptibles, qu'elles ne sont difficiles à concevoir.

On peut ensuite appliquer à chaque polygone , en particulier f

à partir du quadrilatère , soit les théorèmes genéranx ? soit ces
théorèmes modifiés de la manière qu'il vient d'être dît ; de sorte
que nos deux théorèmes peuvent être envisagés , en quelque sorte,
comme des magasins de propriétés des polygones , desquelles on
peut ensuite facilement déduire la solution d'une multitude de
problèmes du genre de ceux qui ont été récemment traités par
M. le professeur BRÏÀNCHON , dans son Application de la théorie
des transversales* Ainsi , nos deux théorèmes ne se recommandent
pas moins par Futilité pratique qu'on err peut tirer que par leur
élégante généralité,

Fous ne devons pas quitter ce sujet sans faire observer que si,
pour plus de symétrie entre les deux théorèmes, nous avons sup-
posé , dans le premier , que les points donnéŝ  étaient situés sur
un même plan ; le théorème n'en pst pas moins vrai , lorsque
ces points sont distribues d'une manière quelconque dans l'espace;
il n'y a môme pas alors un seul mot a changer k sa démons-
tration. Mais, on no saurait, au contraire ? donner une extension
analogue à Fautte théorème; attendu que, tandis que deux points
sont toujours sur, une morne droite ? deux droites ne concourent
pas toujours eo un même point.
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Solution du problème d'arithmétique proposé à la
page Q6 de ce volume ;

Par MM- LENTHERÎC , docteur es sciences, professeur au
collège royal de Montpellier 9

AUGUSTE OLLIVE , licencié es lettres ,

Et VECTEJS, licencié es lettres.

JL ROBLÈME, On a écrit de suite, et sans aucune séparation ?
les nombres consécutifs de la suite naturelle 7 en cette manière :

1234567891011121314 ? 516171819202122a3.....«

En considérant simplement cette suite comme une suite de chiffres
posés à côté les uns des autres ; on propose d'assigner le chiffré
qui doit y occuper un rang quelconque n 7 sans être obligé d'écrira
ceux qui le précèdent ?

Solution. Les trois géomètres qui se sont occupes de cette
question Font également décomposée clans les trous suivantes : i.°
assigner combien de chiffres a le nombre naturel dont le chiffrer
cherché fait partie ; 2.° déterminer , en particulier , quel est
ce nombre parmi ceux qui ont autant de chiffres que lui ; 3-a,
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trouver le rang qu'occupe dans ce même nombre le chiffre dont
il s'agit.

Pour rendre le procédé général plus intelligible, voyons d'abord f

sur un exemple particulier, comment on peut résoudre successi-
vement les trois questions auxquelles le problème se trouve ramené.
Soit /2 = 6i92 ; c'est-k-dire , supposons qu'il soit question de dé-
terminer le 6i92.me chiffre de la série proposée.

i.° On rencontre d'abord , dans cette suite, 9 nombres à9 un seul
chiffre , ce qui fait. 9 chifïres ; et puisqu'on a 6192 > 9 , iî s'ensuit
que le nombre dont le chiflEre. cherché fait, partie a plus à'un
chiffre.

Viennent ensuite QO nombres de deux chiffres, formant en tout
180 chiffres; or $ 6192—g=:6ï83>i80 ; donc le nombre dont

ie chiffre cherché fait partie a plus de deux chiffres.
A la suite des nombres de deux chiffres viennent 900 nombres

de trois chiffres, formant ensemble 2700 chiffres; or 6i83—180
= 6oo3>2yoo ; donc le nombre dont le chiffre cherché fait parue
a plus de trois chiffres.

A la suite des nombres de trois chiffres viennent 9000 nombres
de quatre chiffres , formant ensemble 36ooo chiffres ; or 6oo3
—270o = 33@3<36ooo ; donc le nombre dont le chiffre cherché^
fait partie n'a pas plus de quatre chiffres ; e t , puisqu'il en a plus
de trois, ce nombre a précisément quatre chiffres.

2.* Le dernier reste 33o3. prouve de plus que le chiffre cherché
occupe le 33o3.me rang, à partir du premier chiffre de gauche
de 1000 , premier nombre de quatre chiffres ; d'où il suit que la
question est ramenée à chercher quel est le chiffre qui occupe le
S3ô3.me rang dans la suite

1000100110021ooo31004Î oo5 •.•9999 •

des nombres naturels, à portir de 1000.
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Si 33o3 e'talt exactement divisible par quatre, il est évident que
le quotient exprimerait le rang qu'occupe , dans cette dernière
suite , le nombre dont le chiffre cherché fait partie , et que même
ce chiffre j .occuperait le dernier rang à droite* mais si la division
donne un reste , ce sera le quotient augmenté d'une unité qui ex-
primera le rang de ce nombre , dans lequel le chiffre cherché
n'occupera plus alors la dernière place.

Or, en divisant 33o3 par 4 ? o n obtient 8^5 pour quotient et 3
pour reste *r donc le nombre dont le chiffre cherché fait partie
-est le 82Ô.me de notre dernière suite ; e t , puisque cette suite com-
mence à iooo , ce nombre est 1825.

3.° Enfin , le reste 3 indiquant que le chiffre cherché est le
troisième chiffre de ce nombre , en allant de gaucho à droite , il
s'ensuit que ce chiffre est 2.

En récapitulant donc, on voit que le procédé général peut ie
réduire à ce qui suit : du nombre proposé n , rétranchez successi-
vement les nombres 1.9=9, 2.90=180, 3.900=2700, 4-9000=36ooo,..;•
aussi long-temps que les soustrations pourront être faites ; divises
le dernier reste par autant d'unités ? plus deux que le dernier nombre
retranché aura de zéros à sa droite ; hé prenez que le quotient entier
le plus approché , et notez le reste ; augmentez ce quotient d'une
unité de Tordre marqué par le diviseur ; comptez, dans ce quotientf

ainsi augmenté, autant de chiffres, en allant de gauche a droitef

que le reste aura d'unités ; alors le dernier chiffre compté de cette
manière sera le chiffre demandé.

On peut f pour plus de commodité ? disposer l'opération comme
on le voit ici ;
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Nombre n proposé. * 6192

— *-9 9

i / * reste. . . . . . . . 6 i 8 3

—2.90 180

j2.c reste • • 6oo3

—3,900 • • 2700

3 . ê r e s t e . . . . . . . . . . . . . . 3 3 o 3

reste.

Le chiffre cherché est 2

diviseur

[825 quotient augmenté

Voilà sous quelle forme M. Ollive a présenté le procédé, MM*
Lenthéric et Vecten ont cherché à l'abréger > en remplaçant cette
suite de soustractions par une soustraction unique de la somme de
tous les nombres à retrancher ; ils ont entrevu sans doute que ces
nombres formant la suite très-régulière

1.9+2.90+3.900+4 gooo+.t..,*,..

la somme de cette suite , à quelque nombre de termes qu'on le
bornât , devait affecter une forme également régulière ; et l'examen
dans lequel ils se sont engagés h ce sujet a pleinement justifié ce
soupçon.

On a p en effet >

1.9 . . . .

1.9+2.90 = • . 189 ,

= . . 2 8 8 9 ,
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Ï.9+2.90-4-3.900+4.9000 . . . • ; = ? 38889 >

1.9+3.90+3^00+4 9000+5.90000=488889 ,

de sorte qu'on est conduit a soupçonner que le nombre unique à
retrancher pourrait bien être , en général, un nombre terminé par
9 , précédé d'une suite de 8 , précédés eux-mêmes d'un nombre
d'autant d'unités qu'il y a de 8 à sa droite.

Pour changer ce soupçon en certitude , désignons généralement
par Sm la somme qu'on obtient pour la série, lorsqu'on y admet
m termes , et supposons que la loi se soit soutenue pour toutes les
sommes de termes > jusqu'à la somme des m—1 premiers inclusi*
yement ; nous aurons ainsi

or,
Sm—Smml +772.9.

donc

(772—2)lOm-I+/72.9.IOmwI = 8o.IOmJ>':l+(/72—ï)lOm

donc enfin , •

valeur qui ne diffère de celle de 5 m - I qu^en ce que m—1 y est
changé en 772. Il demeure donc établi que y si la loi se maintient
jusqu'à la série de m—1 termes f elle aura lieu également pour
une série de 772 termes; puis donc qu'elle a lieu pour les séries
de 1 1 2 , 3 , 4> 5 termes, il s'ensuit qu'elle est générale*

Tom. XL 45
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Cefte remarque conduit MM. Lenthëric et Vecten a réduire le

procédé à ce qui suit : écrivez un g sous les unîtes du nombre
n et une suite de 8 a la gauche de ce 9 , en tel nombre qu'en
écrivant un pareil nombre d'unités à la gauche du dernier , vous
n'excédiez pas le nombre n ; faites alors la soustraction , et divisez
le reste par autant d'unités , plus deux que vous aurez écrit de
8 ; augmentez le quotient d'une unité de Tordre marqué par le
diviseur ; comptez enfin, dans ce quotient y ainsi augmenté f autant
de chiffres, de gauche à droite , que vous aurez d'unités au reste;
le dernier chiffre sur lequel vous vous serez arrêté sera le chiffre cherché*

Exemple» Soit nz^SzSz'jô ; on opérera comme on le voit ici ;

Nombre proposé. . . . . . . 82S276

Nombre à retrancher . . . . 4^8889

6Reste . . . . . . . . . . . . . 33g387

reste 3 ioi)Ob4 quot,

ce qui montre que le chiffre cherché est un 6.

.Remarque J , Si le reste de la division était zcro , le chiffre
cherché serait le dernier chiffre de la dro.te du quotient diminué
d'une unité ; à moins cependant que celui-ci ne fût un zéro s

auquel cas le chiffre cherché serait un 9.
Exemple L Soit n~\

N o m b r e p r o p o s é . . , ; . . . . 3'f £ 7

N o m b r e à r e t r a n c h e r . . . . . 2 8 8 9

R e s t e # o g g

reste

4 diviseur

1067 quotient aug»

se qui montre que le chiffre cherché est un 6»
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Exemple 11. Soït « = 59439.

Nombre proposé %43g

Nombre à retrancher, . . • . 3888g

Reste. . . . . . . . . . . . . . 2o55o

reste

5 diviseur

^110 quotient

ce qui montre que le chiffre cherché est un g.

Remarque IL Sî 7 pour former le nombre à retrancher $ on est
obligé d'écrire le chiffre 8 neuf lois consécutivement, on ne mettra
rien à gauche, le dernier 8 tenant lieu du nombre des 8 ; mais
ce dernier 8 ne devra pas entrer en compte dans la recherche
du nombre des unités du diviseur.

De même si Ton devait écrire dix-nenf 8 , on n'écrirait qu'un
1 à leur gauche , le 18 exprimant alors le nombre des 8, lequel
ne devrait compter que pour dix-huit dans la recherche du divi-
seur. On se comportera d'une manière analogue 7 dans tous les ca$
semblables:

De même, si Ton devait écrire nonantc Sf on ne mettrait rien
à leur gauche , et ils ne devraient compter que pour huitante-huîî /
les deux derniers exprimant seulement le nombre des 8 écris à
droite. Si Ton devait en écrire cent xionante, on n'écrirait qu'un 1
à la gauche , et ainsi de suite.

Exemple. Soit n~888g7 54327,

Nombre proposé . . . . 888g754322

Nombre à retrancher. . 8888888889

Reste ; . . . 865438

reste 8

1 0

ioooo86543

d'où Von voit que le chiffre cherché est un 5.
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QUESTIONS PROPOSÉES.

Problèmes de Géométrie.

I. OuEL est le plus petît des parallélogrammes circonscrits à une
ligne du second ordre qui a un centre ?

IL Quel est le plus petit des parallélîpîpcdes circonscrits à
surface du second ordre <jai a un centre ?
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ANALISE TRANSCENDANTE.

JLssai dune nouvelle méthode 5 servant à intégrer
rigoureusement , lorsque cela est possible , toute
équation différentielle à deuoc variables :

Par M. le Professeur KRÀMP 9 correspondant de l'académie
royale des sciences , doyen de la faculté des sciences
de Strasbourg > chevalier de l'Ordre royal de la Légion
d'honneur.

( Deuxième mémoire. )

i/ANS un précédent mémoire ( pag. 97 ) , nous avons fait yoîr
que toute équation différentielle de la forme

on X, Y7 Z sent des fonctions quelconques de x , admet -une
intégrale de la forme

dans laquelle À, Àf > P , P / sont d'autres fonctions de x, et où
Je est la constante arbitraire ; «t nous avons vu que la détermination

Tom. XI, n.* XI7 i. f r mai
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de ces dernières fonctions dépend 9 en général f de l'intégration
d'équations linéaires du second ordre à coeiïiciens variables.

Nous nous réservons de revenir, dans une autre occasion 9 sur
l'Intégration de ces équations. Pour le présent , notre but est uni-
quement de parcourir successivement les diverses formes que peuvent
avoir les fonctions de a: qui entrent dans l'intégrale , en allant des
plus, simples aux plus composées.

Supposons , en premier lieu * que l'intégrale sok

dans laquelle a , af > h , bf, p , p/, q 7 qf sont des constantes
déterminées , et où h est la constante arbitraire.

Si Ton change k en — s ce qui est/: permis 7 cette formule

deviendra

ce qui prouve que 7 dans la formule (I) , on peut transporter les
accens des lettres qui en sont affectées à celles qui en sont dé-
pourvues , sans qu'il en résulte autre chose qu'une simple trans-
formation de la constante arbitraire et conséquemment sans que la

dy
valeur de -7- , délivrée de cette constante • soit aucunement affectée
par ce changement.

S i , dans la même formule, on change h en n ^ + / , et qu'on
multiplie ensuite les deux termes de la fraction par m f ce qui
est permis 7 elle deviendra
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et on pourra profiter de l'indétermination de l, m , n pour rendre
trois des coefficiens égaux à trois nombres donnés; d'où il suit que,
dans les deux séries de coeiïîciens

a , h , p , q ,

a' , V , p' ,<}> ,

de la formule (I) on peut toujours amener trois des coeiïîcîens à
devenir trois nombres donnés , pourvu que ces coefficîens n'appar-
tiennent pas tous trois à une même série , et qu'on modifie les
cinq autres conformément au changement que ceux-là auront éprouvé;
on n'aura fait ainsi , en effet } que l'équivalent d'une transforma-
tion de constante arbitraire , et conséquemment la valeur de
ày
— , délivrée de cette constante, ne sera aucunement affectée de

ce changement.

En chassant le dénominateur et transposant, la valeur de y donne

{(a+bx)—{p+gx)r} + {{a'+l/x)--(p/+q'x)Y}k=o

dont la différentielle est

éliminant k entre Tune et l'autre 7 \\ viendra , en développant
réduisant et ordonnant 7

qu'on pourra représenter par
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dx

en posant , pour abréger ,

ab'~ba'=A , ( i ) (bpt—pbf)~~(aqt—qaf)~2.B , pq'—qp'—C , (3)

ap'—pa'—P , (2) {bp~~p

et Ton pourra évidemment remplacer les deux équations sans
numéros par les deux suivantes :

hpt—ph'^Q+B , (5)

aq'—ça'^Q—B . (6)

I^ors donc que l'on rencontrera une équation différentielle de la
forme (D) , on sera fondé à soupçonner que son intégrale pourrait
bien ê«re de la forme {J) ,' et tout se réduira à déterminer les
coefficiens a , af

 ? b> b1 , p y p
f, q , qf

 7 au moyen des six rela-
tions ci-dessus ; à la vérité 9 elles sembleraient insuffisantes pour cet
objet, mais nous avons vu tout à l'heure que trois de ces coeffi-
ciens étaient tout-a-fait arbitraires ; il n'est donc question que de
déterminer les cinq autres en fonction de ces trois-là ; puis donc
que nous avons pour cela six équations , il s'ensuit que le pro-
blème, loin d'être indéterminé comme il le paraissait d'abord, est f

au contraire , plus que déterminé , et que conséquemment il doit
exister, entre les six coefficiens A , B , <C , P , Q , R une équa-
tion de condition , au défaut de laquelle une équation différentielle
de la forrrie (D) ne pourrait être supposée avoir une intégrale de
la forme (I).

Nous verrons tout à l'heure quelle est cette équation de condition ,
et , pour le moment, nous observerons seulement que 9 si, dans les
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équations que nous avons numérotées , on transporte les aceens
des lettres qui en sont affectées à celles qui en sont dépourvues ,
on ne fera ainsi qaé changer les signes des MX coefficiens A,Bf

C, P 7 Q f R f ce qui ne changera aucunement la valeur de
ây
—- ; conclusion tout-à-fait conforme à ce que nous avions d'abord
dx *

annoncé.
Rien n'est plus facile que de déduire , de ces six équations ? deux

groupes de quatre équations chacun, tels que dans le premier il
n'y entre que les lettres dépourvues d'accens ; et dans le second
celles qui en portent, on trouve , en effet,

(Q4-£)0Ï=P£—Ap y (7) (Q-{-B)ar=Pb'—Jpf , (7')

9 (8) (Q—B)b'=Ra'+Aqf , (8')

gz=:Bp—Cb , (9) (Q+E)?'=R^— W ? (9O

, (10)

II est présentement plus facile d'obtenir l'équation de condition;
Si l'on fait successivement le produit des équations ( 7 , 8 ') et celui

des équations (k
r]/

 } 8) , on aura

prenant la différence de ces équations ; et transposant, nous aurons

mettant ici pour ah1—la* , lqf—qhl , ap'—pa' , pqf—qp* leurs
valeurs respectives A , R 9 P , C et divisant ensuite par A , il
"viendra , en réduisant et transposant,
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Et telle est l'équation de condition qui doit avoir lieu pour qu'une
équation différentielle de la forme (D) admette une intégrale de
la forme (1).

Lors donc que Ton rencontrera une équation différentielle de la
forme (D) qui satisfera à cette condition f on pourra être certain
qu'elle a une intégrale de la forme (I) , e t , pour l'obtenir , on
prendra arbitrairement trois des huit coeiEciens a, a', b , bf > p , p/,

*Ç > <j* » en les choisissant telles néanmoins qu'ils ne soient ni tous
pourvus , ni tous dépourvus d'accens. Supposons , pour fixer les
idées , que ce soient les trois coefficiens a , b , af ; l'équation (>)
fera connaître b* 7 et ensuite p , q seront donnés par ( 7 , 8 ) , tandis
que p1

 > qf le seront par ( 7 ; , 87 ) ; il ne sera donc plus question
que de substituer les valeurs de ces coefficiens dans la formule (I)
pour avoir l'intégrale demandée (*)•

(*) La formule (D} revient à

âx ây

P+zQx+Rx* A+zBy+Cy* *
ott encore h

Rdx Cày

QRx+PR

Si l'on a ,' comme on le suppose ici, B2—•AC-=zQ*—PR ; en représentant
de ces deux binômes par M2 , on pourra , dans le* dénominateurs des deux
membres changer respectivement PR el AC en Q*—M» et 13*—M* f ce qui
changera notre équation en celle-ci ;

Ràx

jposant alors
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Pour appliquer ce procède à un exemple ] soît l'équation

diflérentielle

&Y 3—6y-f*2f*

nous aurons ici

} d'où 1
Cy+B—f ) ( Cày=àf

elle devient

o r , cette équation appartient à une classe qu'on sait intégrer algébriquement,
( Voyez le Traité de calcul différentiel et intégral de M. LACROIX , deroière
édition, tome I I , page 477 > n*° %3 ) , et son intégrale est , comme Ton sait,

oii fe est la constante arbitraire.
En y changeant k eu k2—Ma, ce qui est permis ^ cette intégrale devient

or , comme le signe de ta constante k est arbitraire , il suffira d'écrire simplement

En remettant pour xr, yf leurs valeurs , nous aurons donc

ce qui donne
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=+3 , B=~~3 , C=

=— 7 , Q—

c'est la formule qui répond au cas oir Ton aurait pris arbitrairement a <> b ? a
1 \

pectivement égaux à M2—BQ , —BR , Q—B.
On peut observer , au surplus > que

èxf i ( âxr âx' 1

dont l'intégrale est

''—M

Tinté^rale de -— Sera donc pareillement

égalant donc entre elles ces deux intégrales , en ajoutant à l'un des deux

membres la constante ——. , il viendra , en réduisant et passant aux nombres

ou 3 eh remettant pour xf , y ' leurs valeurs,

(B~M)+Cy

intégrale également
J. n. G.

l'équation
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l'équation de condition est donc satisfaite.. En conséquence »
prendrons arbitrairement

d'après quoi l'équation (1) donnera

on aura ensuite, par les équations (7, 8) , (7', S/)

/?=3 , ^=—5 , //==sio , ^/=s—16

au moyen de quoi la valeur générale de y sera

comme il est d'ailleurs facile de le vérifier > par la différentiatîon
et rélixninatioa de &.

Sait présentement la formule

(p+zçx+rx*')+(pf+2q'x+rfx2')k ' ^ ^

on prouvera f comme ci«dessus ; que , par de simples transforma-
tions de la constante arbitraire , les aecens peuvent être transportés
des lettres qu'ils affectent à celles qui en sont dépourvues ; et que ,
par le même moyen, on peut amener trois des douze coeificiens
à devenir égaux à trois nombres donnés arbitrairement, pourvu que
ces coeificiens ne soient ni tous trois aifectés ni tous trois dépourvu^
d'accens.

En chassant le dénominateur et transpo$ant; cette formule devient
Tonu IX 47
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+[(a'+ZVx+c'x*)—(j>'+29>x+r'x*)y\k = o ,

dont la différentielle est

d*où , en éliminant la constante,

En résolvant cette équation par rapport à —$ développant, ré*

duisant et ordonnant, on obtiendra un résultat de cette forme

dans lequel on aura

t—laf~ A , (i) ptf—qpt^ G f (a)

t^%B 7 (3) /^r^—rpf=zR 9 (4)

'- C f (5) qrt~.rq<- I , (6)

t*-~pat~ P , (7) ^r/—r^s= 3T , (8)
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^ ra1)+ttyq'—ql^^cpi—pc!)—6R

Lors donc qu'on rencontrera une équation différentielle de la
forme (D) , on sera fondé a soupçonner que son intégrale pourrait
hlen être de îa forme (I) ; et tout se réduira à déterminer , s'il
est possible , les coeincîens a , ar

 $ h 7 W , c 9 cr
 9 p 9 p

/ , q » ç;
 ?

T , T^ 7 au moyen des quatorze équations ci-dessus»
Hais ces coefficiens sont au nombre de douze seulement , sur

lesquels nous avons vu que trois pouvaient être pris d'une manière
lout-à-fait arbitraire ; il n'y en a donc que neuf à déterminer en
fonction tant de ces trois-là que des i4 coefficiens dont se compose la

valeur de ~j— ; puis donc que nous avons quatorze équations pour

déterminer ces neuf coefFicîens f il s'ensuit qu'une équation diffé-
rentielle de la forme (D) ne peut avoir une intégrale de la forme
(I) que sous cinq conditions distinctes.

Nous verrons bientôt quelles sont ces conditions ; mais , avant
d9y parvenir, occupons-nous à isoler les uns des autres les quinze
binômes que renferment nos quatorze équations. Des équations qui
ne sont point encore numérotées , on tire facilement} par addition
et soustraction 7

(9) û<f—qa<>-Q-B, (10)

(n ) lrr~ rbf=z S—F ? (^ )
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Yoïlà donc tous ces binômes Isolés les uns des autres > sauf 1©
binôme bqf—qbf

Posons , pour abréger,

d'où

art-~ra'z=ï3il—zE—aF 9 (i3) ^-pc'=:3H+aE—2F , (14)

Remarquons présentement que l'on peut ? de six manières diffé-
rentes 7 faire des combinaisons de quatre sortes de lettres où se
trouvent les deux sortes de lettres b7 q qui entrent dans V7 savoir:

àbcq, àbcr, abqr , abpq , Icpq , bcrq ,

d'où il suit que le binôme bq*—qbf où V est susceptible de six dé-
terminations différentes , en fonction des quatorze lettres qui en-*-

dr
trent dans la valeur de — ; on trouve aisément ? en effet,

doc

(«0

aHF=t:/(Q4.D)+G(5—F) , (fi)

TF=(S + F)(S-F ) + CI, O)

2F)=(Q+D)(S+.F)—CG , (t)

—2.E—2V)=(Q—D)(.S—F)—Al , (Q

Or, ces six équations devant donner la même valeur pour V,
il 6'eusuit qu'en élirninant V entre elles, les cinq équations résolr
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tantes en À > B f C , D , E, F, G , H , 1, P , Qf R , S % T t
seront les équalions de condition cherchées. Nous n'effectuerons pas
l'élimination , car la forme des équations résultantes dépendrait
uniquement de la manière arbitraire dont nous aurions procédé. Il
ïi'en est pas, en effet, du cas où l'on a plusieurs équations de
condition comme de celui où Ton n?en a qu'une seule ; dans ce
dernier cas , en effet , en chassant les dénominateurs, et même les
radicaux s'il y en a, réduisant et passant tout dans le premier mem-
bre , on parviendra toujours à la même équation réduite ? sous quel-
que forme que se présente d'ailleurs l'équation primitive ; tandis
qu'au contraire, lorsqu'on a plusieurs équations de condition, elles
peuvent être remplacées , d'une infinité de manières différentes,
par le système d'un même nombre d'autres équations en même
nombre ? résultant de leur combinaison f sans qu'il soit possible de
deviner, d'après l'un de ces systèmes 7 la forme des équations pri-
mitives desquelles il a été dérivé.

Puis donc que nos six équations sont d'une forme assez simple
et symétrique, nous les conserverons sous cette forme. Lorsqu'on
voudra en faire usage , il ne s'agira que de déterminer la valeur
de F , au moyen de l'une quelconque des quatre premières , où cette
lettre ne se trouve qu'au premier degré, et d'examiner ensuite si
cette valeur satisfait aux cinq autres.

On peut remarquer , au surplus , que nos cinq équations de
condition donnent les valeurs de P , Q 9 R , S , T , en fonction de
A , B y C ± D j E , F y G y H 9 I ; de sorte que si Ton veut former

une valeur de — qui soit intégrale algébriquement 9 on pourra

se donner arbitrairement tous les coefficiens du numérateur, tandis
que ceux du dénominateur se trouveront tous déterminés par ceux-lk.

Des valeurs de nos quinze binômes , il est aisé de déduire deux
systèmes de vingt équations chacun , tels que le premier renferme
toutes les combinaisons trois à trois des lettres dépourvues d'aecens^
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tandis que le second ne renferme que celles qui en sont affectées

voici le premier de ces deux systèmes i

(i8) Pc-~zBp=(

(20} Pr-f-^H«=(

(21) jPa+aBr=(

3Hf aE— %V)a r

C3R+2É:—2F)rf

3il—2E—2F) >

(28)

(^9)

(3o)

(3i)

(a3) (^+F)/^—&=(3H+aJE:— aF)y ? (33)

ra=(3R-2E—2F)^ , (34)

. (35)

Le second système ne devant différer de celui-là qu^en ce que les
petites lettres y portent des accens % nous nous dispenserons de
l'écrire> et nous conviendrons d'en désigner les équations, comme
ci-dessus f par les mômes nombres affectés d'accens*

Lors donc que Ton rencontrera une équation différentielle de îa
forme (D) qui satisfera à nos cinq conditions * on pourra être
assuré que son intégrale est de la forme (I) 5 et ? pour l'obtenir f
on prendra arbitrairement trois des douze coeffîciens a, a? ? b , b',
c, cf 7 p y p* * q * q* > T , r{ • en les choisissant toutefois de telle
sorte qu'ils ne /soient ni tous pourvus ni tous dépourvus d'accens.
Supposons, pour tixer les idées % que ce soit les trois coefficiens
a » b r a''; l'équation (1) fera connaître b* ; on aura ensuite c, c'>
par les équations ( 1 6 , i67) ; les équations ( 18 9 18 ') donneront
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p , pf ; on aura q, ql par les équations ^ 20 , 2O;) ; et enfin r , r'9
par les équations ( 1 7 , 1 *]' ) ; il ne s'agira donc plus que de subs-
tituer les valeurs de ces douze coefficiens dans la formule (I) pour
avoir l'intégrale cherchée.

Pour appliquer ce procédé à un exemple, soit l'équation diffé-»
renliclle

nous aurons ici

et de là

— 2 ^ = + 9 ,

ces valeurs substituées dans nos équations ( « f , ? ^ ^ » ? } {)» ce&

équations deviendront

4^=8 , («) 7^=14 , (y) r( i3—aP)=i8, (0

les quatre premières s'accordent à donner F^=2 , valeur qui satisfait
également aux deux autres ; nos cinq conditions sont donc satis-
faites ; et conséquemment 1 intégrale de l'équation proposée est
algébrique et de la forme (!}•
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En conséquence , pour en obtenir l'intégrale 7 nous prendrons

arbitrairement

l'équation (i) donnera

les équations ( 16 ? i6
A) donneront ensuite

de là on conclura, par les équations ( iS , 18') ».

par les équations ( 20 , 20̂  )

et enfin ; ^par les équations ( 17 , I7 ; ) >

Substituant donc toutes ces valeurs dans la formule (I) ,
aurons, pour Finlégrale de Téquation proposée 7

comme il est d'ailleurs facile de le vérifier par la dîfférentîatîon
et l'élimination de la constante h.

QUESTIONS
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QUESTIONS RESOLUES.

Solution du dernier des deux problèmes de géométrie
proposés à la page î5a du X*9 volume de ce
recueil ;

Par un ABONNÉ,

JTROBLÈME. Construire graphiquement, pour Vun quelconque
des points d'une courbe plane donnée , soumise ou non à la loi
de continuité , le centre de courbure de cette courbe ?

Solution, Quelque procédé qu'on veuille employer pour résoudre
ce problème , ce procédé ne pourra jamais être qu'un a-peu-près
dont le résultat sera d'autant plus douteux que l'arc de courbe
donné aura moins d'amplitude.

La méthode qui s'offre le plus naturellement à l'esprit > pour
parvenir au but , est la suivante ; Par le procédé déjà indiqué
( tom. X , pag« 89 ) , ou par tout autre équivalent , soient menées
des tangentes à différons points de l'arc de courbe donné; en me-
nant des perpendiculaires à ces tangentes par leurs points de * onta t
respectifs , ces perpendiculaires seront des normales a la mè ne
courbe; et conséquemment leur couihe enveloppe sera la développée
de Tare dont il s'agit. Traçant donc celte courbe enveloppe , t
lui menant ensuite une tangente par le point donné; Je point de

Tom. XL 43
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contact de cette tangente sera le centre de courbure de Tare de
courbe en ce même point 7 c'est-à-dire 7 le point cherché.

Mais d'abord , le procédé que Ton est obligé d'employer pour
mener une tangente à une courbe par Yun de ses points , n'est pas
tellement simple qu'on puisse regarder comme chose facile de mener
un certain nombre de pareilles tangentes. En second lieu , s'il est
déjà quelquefois assez difficile de tracer , à la main , une courbe
qui passe par des points donnés , il J'est bien plus encore de tracer,
à la main 7 une courbe qui touche a la fois une suite de droites
données. Enfin, s'il est assez facile de mener, à la simple vue 7

une tangente à une telle courbe par xxn point qui lui est extérieur ,
il ne l'est pas également de bien fixer le point de contact de cette
tangente 9 qui se confond sensiblement avec la courbe même , dans
une partie de sa longueur.

Nous pensons donc que , par toutes ces considérations, on pré-
férera le procédé que voici , lequel , en même temps qu'il n'exige
le tracé que d'une seule normale , détermine le centre cherché par
Fintersection de cette normale avec une courbe assujettie à passer
par des points donnés,

Soit M le point de Tare de courbe pour lequel on veut déter-
miner son centre de courbure , et d'abord soit menée la normale
de ce point, au moyen de sa tangente.

Soient pris sur la courbe, à la droite du point M , des points
arbitraires M / , M ; / , M / / ; , ? et à sa gauche d'autres points ar-
bitraires M/, M/, , M7// ,........ Sur les milieux de MM', MM",
MM"' ? •••«., soient élevées respectivement à ces cordes des perpen-
diculaires indéfinies , èoupant la normale en C' ? C" ¥ Gu/» *.*
Soient aussi élevées sur les milieux de MM/, MM//, MM/// f.......
des perpendiculaires indéfinies à ces cordes t coupant la normale
en C/ , C//, C///, respectivement.

Par les points O, G", C"' , soient élevées à la normale,
du côté droit, des perpendiculaires C'N', G"N" ,
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respectivement égales anx longueurs MM', MM" , MM ; / / , ..«..., ou

n fois plus grandes que ces longueurs ( n étant un nombre arbi-

traire ). Par les points C/, C//, C//7 ? soient élevées à la nor-

male , da côte gauche, des perpendiculaires C/N/yC^N,/, C///N///,.,..,,

respectivement égales aux longueurs MMy , MM//, MM///, ; ou

/2 fois plus grandes que ces longueurs. En joignant les points .....JS / / /,

3N;/, W ? N/ , N// ? N/// , .„*.. par une courbe continue , le peint C

où celle courbe coupera h normale sera le centre de courbure cherché.

Si 7 en effet , des points ••••..C///
 7 G7/

 ? G
;
? C ? C/ , C// , C/f/, ,*,»

comme centres , et avec leurs distances au point M prises pour

rayons respectifs, on décru une suite de cercles, tous ces cercles

toucheront la courbe en ce point 51 , et en outre ils la couperont

aux points ......M"' , M" , M' , M , M, , M/, , M,,, , ; le

cercle dont le centre est G touchera donc et coupera en même

temps la courbe au point M ; et par conséquent ce cercle sera

le cercle oscillateur et son centre fi le ceotre de courbure pour le

point Me

Ii sera même facile de juger 9 par la situation de la cotarBe

.,«.N'" , N " , W t C , N/ , N / ; , N w , . . . . . . par rapport à îa nor~

iiïaîe , si le contact du cercle oscillateur! avec ia courbe est cfon

ordre supérieur au second 9 el si îa kcourbure en M est
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Démonstration des deuoc théorèmes dé géométrie énoncés
à la page iû2 de ce volume;

Par M. VECTENJ licencié es sciences ,
Et par M. J. B* DUBBÀKDE , professeur de mathématiques

au collège royal de Cahors.

Ji HÉORÈME L Si, considérant successivement deux à deux trois
cercles tracés sur un même plan , on détermine , pour chaque
système de deux cercles, les centres de similitude , tant interne
qu'externe , et que , dans chaque système , on fasse de la distance
entre ces 'deux centres le diamètre d'un nouveau cercle ; les trois
cercles obtenus par cette construction se couperont deux à deux
aux deux mêmes points 7 et auront consèquemment une corde com-
mune et leurs centres sur une même perpendiculaire à cette corde*

Démonstration. Soient généralement trois points C, C;, C;/ donnés
sur un plan , et supposons qu'on se propose de trouver , sur ce
plan , un point X dont les distances respectives x , x/

 7 xJ/ à ces
trois points soient proportionnelles à trois longueurs données i? ,
Bf , R/;.

Il est clair que , si Ton construit séparément le lieu L de tous
les points dont les distances aux points C7, C;/ sont dans le rapport
de R* à RJ/ , et le lieu L/ de tous les points dont les distances
aux points C", C sont dans le rapport de R" à R f chacune des
intersections de ces deux lieux pourra être prise pour le point
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cherche X ; ett effet , en représentant par % , ccf, xn, les distances
de cette intersection aux points C > G' , O ' , on aura

Parce que X est sur L

Parce que X est sur L7

OC 3$
on aura donc aussi — = —- . Donc , si Ton construit le lieu L"

21 Rf

de tous les points dont les distances aux points C , C7 sont dans
le rapport de il à R;

 9 ce lieu devra passer par tous les points X f

c'est-à-dire , par tous les points d'Intersection des deux lieux L f

L/ , de sorte que les trois lieux L , L ' , L7/ doivent se couper aux
mêmes points.

Or , il est connu que le lieu de tous les points d'un plan dont les
distances à deux points fixes pris sur ce plan sont dans un rapport donné
est une circonférence qui a son centre sur la droite qui joint 'ces deux
points ; donc les trois lieux L , L/ ? L / ; sont des cercles qui ont respec-
tivement leurs centres sur OC" , C^C , GO ; ces trois cercles se
coupent donc aux deux mêmes points ; ils ont donc une corde
commune ; et par conséquent leurs centres sont sur une même
perpendiculaire au milieu de cette corde.

Si présentement on suppose que les points C , C / , QJf sont les
centres de trois cardes et que les longueurs R, R' , Rn en sont
les rayons } on tombera exactement sur le théorème qu'il s'agissait
de démontrer.

Si deux des trois cercles L , L7 , L/x sont tangens l'un à l'autre ,
iî est clair qu'ils devront aussi être tangens au troisième ; de sorte
qu'alors les trois cercles n'auront qu'un seul point commun.

Si deux des cercles ne se rencontraient pas , il est clair qu'ils
ne devraient pas non plus rencontrer le troisième j mais on voit,
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par le principe de continuité de M. Poncelef, qu'ils devraient avoir
alors un axe radical commun.

THÉORÈME IL Si, considérant successivement deux à deux
quatre sphères situées d'une manière quelconque dans l'espace,
on détermine, pour chaque système de deux sphères 9 les centres
de similitude , tant interne qu'externe > et que 7 dans chaque sys-
tème , on fasse de la distance entre ces deux centres le diamètre
d'une nouvelle sphère ; les six sphères obtenues par celte construc-
tion passeront par les deux mêmes points y et auront ainsi une
corde commune et leurs centres dans un même plan perpendicu-
laire sur le milieu de cette corde»

Démonstration. Ce the'orème se démontre exactement comme le
précédent. Soient en effet C, C , G 7 , Q/f les centres des quatre
sphères données, et R, R;

 7 R
u, Rm leurs rayons. Représentons de plus

par (CC) , (CC") , (OC") , (CC") , (CC^) f ( C C " ) lei six
sphères qui résultent de la construction indiquée. Chacune d'elles
sera le lieu de tous les points de l'espace dont les distances aux
deux points qui la désignent seront proportionnelles aux rayons des
cercles dont ces points sont les centrer

Les intersections des trois lieux (CC), ( C C ) , ( C C ) seront donc
deux points dont les distances aux points C , C7 > G/f, Caseront
proportionnelles à R, Rf, Riè

 y Rut ; d'oii il suit que les lieux
(CC") ? (C'C7") y (C^C^) devront passer par ces deux mêmes
points \ c'est-à-dire que nos six sphères doivent se couper en deux
points y suivant quatre cercles seulement ? et avoir conscquemmenl
leurs centres sur quatre droites situées dans un même pîano

Si deux des six sphères ne font que se toucher , les quatre
autres les toucheront aussi a leurs points de contact 9 de sorte que
les six centres seront sur une même droite*

Si deux des six sphères ne se rencontrent pas 9 les autres ne les
rencontreront pas non plus ; mais elles auront alors un axe radical
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, et ne fourniront deux à deux que quatre plans radicaux

éeuîesnent.

'Solution du problême de géométrie proposé à la
page i63 de ce çolume ;

Par M* FRÉDÉRIC SAREUS , docteur es sciences,

JLROBLEME. Déterminer graphiquement les èlèmens d'une
section conique dont on n'a quun arc qui ne renferme aucun des
sommets ?

Solution* Soient menées a l'arc dont il s'agit deux cordes paral-
lèles quelconques ; en joignant leurs milieux par une droite f cette
droite sera un diamètre ; et si, par le point où ce diamètre coupe
la courbe , on mène une parallèle aux deux cordes dont II joint
les milieux , celte parallèle sera une tangente à la courbe en ce
point , et , par suite , une parallèle au conjugué du diamètre
dont il s'agît.

En répétant la même opération par rapport à un autre système
de deux cordes parallèles entre elles, maïs non parallèles aux pre-
mières , on obtiendra un second diamètre et une tangente à son
extrémité , ces deux diamètres se couperont en un point qui sera
le centre de la courbe.

Nous aurons donc ainsi, pour deux points M 9 M
; de l'arc donnée

Ici diamètres D , D ; et les tangentes T , T ; à leurs extrémités.

Menant par AP une parallèle à T , prolongée au-deik de D d'une
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quantité égale à elle.-même ; son extrémité M / ; sera un troisième
point de la courbe.

?vlehant par M" une parallèle a TV; prolongée , au-delà de D /
7

d'une «quantité égale à eîle-même -, son extrémité My// sera un'qua-
trième point de la courbe.

En poursuivant de la même manière , on déterminera tant de
points du périmètre de la courbe qu'on voudra ; et , excepté le cas
oà par le progrès de l'opération on retomberait de nouveau sur
quelque point déjà déterminé , ce qu'on peut toujours éviter, puis-
que les deux points de départ M , M/ sont arbitraires sur Tare
donné; ces points, distribués sur tout le périmètre de la courbe,
pourront toujours être rendus si voisins qu'on le voudra. ^

On pourra donc toujours en trouver un P , au moins f tellement
situé qu'en décrivant un cercle du centre C de îa courbe et du
rayon CP , ce cercle vienne couper Tare donné en quelque point
P / . Menant donc ? par le centre ? une parallèle et une perpendi-
culaire à PP / > ces deux droites seront les directions des diamètres
principaux ; et, comme on connaît en outre une tangente et son
point de contact; il sera facile, suivant les procédés connus, de
construire les quatre sommets.

Solution
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Solution du premier des deux problèmes de combinaisons
proposés à la page 204 de ce volume ;

Par M. FRÉDÉRIC SARRUS f docteur es sciences*

JE ROBÎ-EME. DJ combien de manières peut-on choisir n lettres
parmi ni lettres ? desquelles il s'en troupe un nombre & égales à
a , un nombre fi égales à b , un nombre y égales à c , et ainsi
de suite ? ou , en d'autres termes , combien le monôme a^b^c^....,
dans lequel «-f-/3~f-y+#.. e 6 . . s = m , admet-il de diviseurs de n
dimensions ?

Solution. On sait que tous les termes et les seuls termes da
produite

sont les diviseurs du monôme afb^c*.*.*.. , lesquels ne s'y trouvent
chacun qu'une seule fois ; d'où il résulte que les diviseurs de n
dimensions de ce monôme sont les termes de n dimensions du
produit dont il s'agit9

Or , si l'on pose a — b—c— * ,*8**,.. =j> 7 auquel cas ce mémo
produit deviendra

ou encore
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le nombre de ses termes de n dimensions ni le nombre des di-
mensions de ces termes ne changera pas ; et il arrivera seulement
que chacun d'eux se réduira a xn , d'où il résulte qu'ils se rédui-
ront tous à ce terme affecté d'un coefficient égal au nombre cherché.

Le nombre cherché est donc le coefficient numérique de xn dans
le développement du produit

Qu'on demande , par exemple , le nombre des diviseurs de trois
dimensions du produit alh%c j on développera le produit

ce qui donnera

et le coefficient 6 de se* , dans le développement ? sera le nombre
des diviseurs de trois dimensions de a3b2c : ces diviseurs sont P en
effet ,

a%
 ; a2b , ab* , aie 7 a*c , h%c .

Comme il y a autant de manières de choisir m—n facteurs parmi
771 que d'en laisser n , on voit qu£ le produit a^b^c* aura tou-
jours aufant de diviseurs de m—n dimensions q*/il en aura de
n dimensions, Dans le développement du produit de nos polynômes
en x, il arrivera donc que les termes également disons des ex-
trêmes auront constamment des coefficiens égaux; cela résulte d'ail-
leurs de la nature même de l'opération.

Si le nombre n n'était supérieur a aucun des exposans a 7 /S ?
y, ; il est aisé de voir qu'on pourrait supposer ces exposans
plus grands qu'ils ne le sont en effet sans rien changer au re'sultat
final j il ferait donc permis aussi de les supposer infinis \ auquel
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cas $ en désignant par 772 le nombre des lettres a , ù 9 c> ..•«. le
produit à développer deviendrait

\m

OU

ou enfin (1—jr)""";

o r , le développement de cette puissance est

donc ? le nombre des diviseurs de n dimensions du monôme a®iBcy
 9e

dans lequel il y a m lettres et où H , /S ; y ,...... sont des expo-
sans quelconques >/& est

m 371+1 m 4-2 m+n—ï

Or , si Ton demandait le nombre des termes du polynôme corn-*
pîet et homogène de n dimensions qu'on peut fermer avec m
sortes de lettres en nombre indéfini de chaque sorte , le problème
reviendrait évidemment a celui-ci ; donc le nombre de ces termes est

m ??Î-}-I m+2 TO+W—1 On—« 4 - 0 î
x 2 3 n ^ (m—i) ! n l

Sok présentement une équation complète du n.me degré entre m
inconnues x , y, z , dont on demande le nombre des termes;
en introduisant dans chacun de ses termes une puissance d'une
f/72-pi ) m e inconnue t du degré nécessaire pour les rendre tous
homogènes et de n dimensions , son premier membre deviendra un
polynôme homogène de n dimensions f formé avec 7724-* sortes
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de lettres; le nombre des termes de la proposée est donc ce qtje
devient la formule ci-dessus, en y changeant m en m-*r i ou
m—i en m; c'est-à-dire que le nombre des termes d'une équation
complète de n.mc degré entre m inconnues , comme aussi le nombre
de eeux d'une équation complète du m.me degré entre n inconnues est

(m+n)\
m\n\

Cette démonstration d'un théorème dVilleurs assez important nous
paraît beaucoup plus courte et plus claire que celle de M. G.
'Fornier, rapportée par M. Gergonne , à la page IJL5 du lY.e vo-
lume de cç recueil.

QUESTIONS PROPOSEES.

Problèmes de Géométrie*

I. HiTANT donnés , sur un plan , trois droites indéfinies et deux
points , correspondant respectivement à deux d'entre elles ; sur quelle
courbe doit être situé un troisième point pour que les trois points
puissent être considérés respectivement comme les pôles des trois
droites , par rapport à une même section conique ?

IL Etant donnés ? sur un plan , trois points et deux droites in-
définies , correspondant respectivement à deux d'entre eux ; à quelle,
courbe une troisième droite doit-eîle être tangente pour que les
trois droites puissent être considérées respectivement comme' les
polaires des trois points , par rapport à une même section conique ?
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ANALISE ALGÉBRIQUE.

Note sur la résolution d'une classe particulière
cTéquations algébriques ;

Par M. BERNARD BERNDTSON ? officier civil au département
de la guerre de S. M. Suédoise ;

Communiquée au Rédacteur des Annales ,

Par M. BERZELIUS , secrétaire perpétuel de l'académie des
sciences de Stockholm.

Lettre de M. BERZELIUS au Rédacteur,

M O N S I E U R ,

J-JA note ci-joinîe m'a été remise par un zèle mathématicien! de
mes amis f pour vous être adressée. L'auteur se trouverait
si vous la jugiez digne d'une place dans vos Annales,

Agréez f etc.

Stockholm, îe 17 mars 18,21*

Tom. XI, n.° XIIp i.e; juin 1821» 5c
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Noie de M. BERHDTSON.

Le soussigné a l'hbnneur de donner avîs à M. le Rédacteur des
Annales de mathématiques que , s'étant proposé de résoudre l'équation

dans laquelle n est un nombre entier positif et où k est une
quantité réelle positive quelconque; il a trouvé, par une méthode
spéciale , appropriée aux divers cas particuliers que renferme cette
formule générale ; qu'en posant

U seule racine réelle positive que pqis^e avoir cette équation est
exactement exprimée par la formule

2—ac

De cette détermination générale de la racine réelle positive de
l'équation ^ils&îiv pour ks cas particuliers, que cette ratine sera
celle de l'équation

si l'on pose

quelle sera celle de l'équation

si Ton pose
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et arin.si'ce suite.

L'exposition, des faits analltîques qui ont amené le résultat qu'on

vîenl de faire connaître ne parait guère susceptible, à raison dp$

deveioppemens qu'elle exigerait , de trouver place dans un recueil

périodique ; niais l'auteur s'engage à communiquer ces faits aux

géomètres qu'ils pourraient particulièrement intéresser (*).

(*) Dans l'ignorance ou nous sommes des considérations qui ont pu conduire
l'auteur à ce singulier résultat , nous aurions tiesiVd d'offrir du moins à nos
lecteurs une vérification simple de ses formules ; mais , même pour le cas
particulier du troisième degré , les calculs sont trop longs et offrent trop p^u
d'intérêts pour mériter de trouver place ici. INous nous bornerons donc à re-
marquer que depuis long-temps nous avons observe que % quels que soient
a , h » m , l'une des racines de l'équation

peut être indistinctement exprimée par Tune ou l'autre des deux formuler
prolongées à l'infini

m~ l/~

Ces résultats sont , comme l'on voit , du genre de ceux qu'a présenté Bî»1

Shmidten dans un précédent mémoire,
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ARITHMÉTIQUE.

Evaluation de l'erreur qui peut affecter les produits
et puissances des nombres approximatifs ;

Par un ABONNE.

trois nombres entiers quelconques 7841 , 824 , 75 ;
on aura

et ce produit sera rigoureusement exact , si ses facteurs le sont
eux-mêmes»

Mais, si l'on n'est pas certain de l'exactitude de ces mêmes
facteurs, et que l'on sache seulement de chacun d'eux que, s'il
est fautif, ce ne peut être que d'une quantité qui ne saurait ex-
céder une demi-unité ; voici comment on parviendra à déterminer
jusqu'à quel ordre d'unités on peut compter sur l'exactitude du
produit.

On fera la supposition la plus défavorable ; c'est-a-dire que Ton
admettra que ces facteurs sont tous fautifs , qu'ils le sont tous
dans le même sens, et que l'erreur qui affecte chacun d'eux est
précisément d'une demi-unité. En conséquence , le véritable produit
devra être



A P P R O X I M A T I F S . 37?
les signes supérieurs ou les signes inférieurs devant être pris , sui-
vant que ces facteurs seront fautifs en moins ou en plus, Ea
développant, ii viendra

734.1x824x73^:^(7341X8244-7341X73+824x73)

Le verîlabîe produit devant être compris entre celui qui résulte
de remploi des signes supérieurs et celui qui résulte de l'emploi
des signes inférieurs , la différence entre l'un et l'autre donnera
îa limite de Terreur dont le produit apparent peut être affecté.
Cette différence est rigoureusement

7341X824+7341X73+824X73+»;

maïs il est clair que ce qui suit la somme des produits deux
à deux est trop petit vis-à-vis de cette somme , pour qu'il importe
d?y avoir égard ; de sorte qu'on peut prendre simplement pour
limite de Terreur

7341X824+7341X73+824X73^6645029 ;

or , ce nombre est plus grand qu'une demi-dixaine de millions >
d'où il suit que dans le produit apparent 44I^75832 7 on n'est
pas même sûr du second chiffre à gauche ? qui pourrait se trouver
fautif de plus de la moitié de l'une des unités qu'il exprime 7 ce
dont beriif.oup do gens sans doute ne se douteraient guère.

On voit par là que 7 si les trois facteurs avaient été

7341 ; 8,24 ; 0,0073 ;

approchés seulement à moins d'une demi-unité décimale du dernier
ordre pria p auquel cas le produit apparent aurait été
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non seulement on n'aurait pu compter sur aucun des chiffres dé-
cimaux de ce produit ; mais on n'aurait pas même été sûr du
chiffre des unités.

En appliquant les mêmes raisonnemens au produit d'un plus
grananombre de facteurs , on parvient à cette conclusion générale:
* Le produit de m facteurs , entiers ou décimaux , approchés
seulement à moins d'une demi-unité pris du dernier ordre de
chacun deux 7 peut être fautij dans autant de chiffres sur la
droite quen renferme la somme des produits m —i à m—i de
ces mêmes facteurs considérés comme des nombres entiers.

Dans l'application de cette règle à la pratique > on pourra, le
plus souvent, se contenter d'examiner combien aurait de chiffres
le produit des m—i facteurs qui y considérés comme entiers , se
trouvent les plus grands.

Si l'on suppose que tous les facteurs sont égaux y on obtient la
règle suivante pour les puissances :

La m.me puissance d'un nombre , entier ou décimal, approché
seulement à moins d'une demi-unité du dernier ordre prés peut
être jautif dan s autant de chiffres sur la droite qiien renferme m
fois la (m — i)Tae puissance du même nombre considéré comme
entier.

Nous ne dirons rien de l'erreur qui peut affecter les résultats
de divisions et d'extractions de racines , exécutées sur des nombres
approchés, parce que, dans aucun cas, cette erreur ne saurait être
très-grave. Mais les principes que nous venons d'établir nous sem-
bleraient devoir trouver place dans tous les traités élémentaires. Il
n'arrive que trop souvent, en effet, que, faute de les connaître,
on se fait illusion sur l'exactitude de certains résultats, où Ton
conserve un grand nombre de chiffres décimaux qui les compli-
quent en pure perte 9 et 'que Ton serait d'autant mieux fondé à
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supprimer, qu'on pourrait, à tout aussi boa droit , les lemplaeer
par d'autres 5 écrits tout-à-fait au hasard.

Ceux qui désireront de plus amples détails sur ce sujet pourront
consulter un petit ouvrage ayant pour titre : Essai sur les nombres
approximatifs ( Paris , Duprat , an VII ) ; mais ce qui précède nous
paraît plus simple et plus élémentaire.

QUESTIONS RÉSOLUES.

Solution du premier des problèmes de géométrie proposés
à la page 228 de ce volume j

Par M. GERGONHE*

OUR ne point interrompre la marche de nos recherches par des
questions incidentes 9 nous allons » avant d'entrer en matière , établir
quelques formules qui nous seront nécessaires pour parvenir à
notre but.

Soit une section conique rapportée à deux axes obliques quel-
conques , et donnée par l'équation

j£*+By*+2C#y+2Â/X'+2JB/y+C/zzo > (1)

et soit use droite rapportée aux mêmes axes et donnée par
l'équation
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*

Nous allons chercher quelle relation il doit exister entre les
coefRciens de ces deux équations , pour que la droite soit tangente
à la section conique.

Pour obtenir cette relation, remarquons d'abord qu'en désignant
ptr ( &* , y/ ) le point de contact, l'équation de la tangente est

ou bien

t. r
'+O «̂  A'v'+B'y'+n "" l *

cette équation devant être la même que l'équation (2) , il s'ensuit
qu'on doit avoir

• " Ax'+Cy +Af

OU

ou encore

mais, parceque le point de contact €st sur la droite (2) , on doit
avoir aussi
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bx'-^-ay'—ab=zo ;

éliminant donc x', y' entre ces trois dernières équations , il viendra
pour l'équation qui exprime la condition demandée

a*b*(C*-ÀB)+2a*b[A'C—AB')+ a1 ( A'*— A C)

+2ab\B>C—BA')+2ah{CC>—A>B>)= o . (3)

Si la droite donnée était Taxe des x ou celui des y f on au-
rait , dans le premier cas , $=o et dans le second ^ = o , ce qui
réduirait la condition à

A^~*JO~Q , (4) ou B^—BC—o . (5)

Si , après avoir changé respectivement a , b en xa , hi f on
suppose ensuite ^=o ? la droite passera par l'origine l et aura pour
équation

en faisant les mêmes transformations dans Péquation (3), elle devient

)=o ; (7)

cfest donc la Téquation de condition qui exprime que la droite (6)
est tangente k la courbe (1).

Si, de plus, la courbe (1) passait elle-même par l'origine , qui
serait alors le point de contact, on aurait C/^-0 $ ce qui rédui-
rait la condition (7) à celle-ci:

hB^o . (8)
Tom* XL 5t
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Nous terminerons par rappeler que le centre de la courbe (i)

est donné par les dérivées de son équation , prises successivement
par rapport à x, y , lesquelles sont

Ax+Cy+A'=o , (9) By+Cx+B'=o , (10)

et donnent

(c*-~AB)x+(B'C—A>B)=o , (u)

l—B'A)=o . (12)

PROBLEME L Déterminer le lieu des centres de toutes les
sections coniques qui touchent à la /ois quatre droites données
quelconques ?

Solution. Soient prises deux quelconques des droites données pour
axes des coordonnées , et soient les équations des deux autre*

si qu'il suit Ï

Supposons que l'équation (i) soit celle des coufbes dont il s'agît;
parce que ^es courbes doivent toucher les deux axes , les équations
(4 » 5) auront lieu ; on exprimera ensuite que ces courbes touchent
les deux autres droites, en exprimant que l'équation (3) a lieu,
ainsi qu'une autre équation que l'on déduirait de celle-là en y
changeant respectivement a , b en a* , b* ; mais , en vertu des
conditions (4 , 5), ces équations se simplifient et deviennent

a b (C*~-

En y substituant pour les deux binômes AtC^^ÂBt, B/C'^
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leurs valeurs données par les équations ( n , 12 ) , où 3:, y sont
les coordonnées des centres, elles deviendront

(€*— JBVaïx+2ay—ah)^z{CQf— A'B') ,

à9oa, en multipliant en croix et réduisant

ie lieu des centres des sections coniques qui touchent à la fois
les quatre droites données est donc une ligne droite.

Il ne s'agit ? pour construire cette droite , que de connaître deux
points de sa directioa; or 7 il est aisé de voir qu'on satisfait éga-
lement à son équation soit qifoa fasse

ou

or , par la situation de nos quatre tangentes , il est aisé de recon«
naître l'un ou l'autre de ces points pour le point milieu de la
droite qui joint l'intersection de deux quelconques de ces tangentes
à l'intersection des deux autres ; on a donc cet élégant théorème :

THEOREME. Le lieu géométrique des centres de toutes les
sections coniques inscrites à un même quadrilatère est la droite
qui joint les milieux des trois diagonales de ce quadrilatère (*).

(*) C'est un renversement du théorème de Newton , cité par M. le capitaire
Poncelet, à la page 211 de ce volume. Cet estimable géomètre nous en a
adresse récemment une démonstration purement géométrique que nous publie-
rons à îa première occasion,
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Rien ne sera plus aîsé, d'après cela , que d'assigner le centré

de la section conique inscrite à un pentagone donné quelconque.
Il ne s'agira en effet , pour cela 7 que de faire tour à tour abs-
traction d'un côté puis d'un autre côté du pentagone , et de cons-
truire , a chaque fois ? la droite , lieu des centres des sections
coniques qui touchent ses quatre autres côtés ; on obtiendra ainsi
deux droites dont l'intersection sera le centre cherché ; on voit
clairement par là que le problème ne saurait avoir qu'une solution.

Comme on peut obtenir cinq droites qui contiennent le centre
demandé et que ce centre est unique > il s'ensuit que ces cinq droites»
doivent se couper au même point ; d'où résulte un élégant théo-
rème sur le pentagone , que nous laissons au lecteur le soin de
Suppléer.

Lorsqu'une section conique est inscrite à un triangle , on peut
toujours la considérer comme inscrite à un quadrilatère f pourvu
que Ton regarde son point de contact avec l'un des côtés comme
un quatrième sommet tel que les deux côtés du quadrilatère qui
s'y terminent font entre eux un angle égal à deux angles droits ;
on a donc ce théorème :

THÉORÈME. Le lieu géométrique des centres de toutes les
sections coniques qui, étant inscrites à un même triangle , tou—

- thent Vun de ses côtés en un même point, est la droite qui passe
pur le milieu de ce côté et par le milieu de la distance du som-
met opposé au point de contact commun.

Il sera done très-facile d'assigner le centre de la section conique
qui 9 étant inscrite à un triangle donné , touche deux côtés du
triangle en des points donnés ; il ne s'agira pour cela, en effet f

que de mener des droites par les milieux de ces deux côtés et
par les milieux des distances des sommets opposés aux points de
contact donnés ; ces deux droites se couperont au centre cherché.

Lorsqu'une section conique touche les deux côtés d'un angle ,
on peut toujours la considérer comme inscrite à un quadrilatère ,
pourvu que Ton regarde ses points de contact avec les deux côtéi
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âe l'angle comme deux sommets opposes du quadrilatère , et qu'on
admette que ses deux autres sommets se confondent avec le som-
met même de l'angle ; de là , et de ce qui a été dit ci-dessus , résulte
ce théorème :

THÉORÈME. Le lieu géométrique des centres de toutes les
sections coniques qui touchent les deux côtés d'un même ongle
aux deux mêmes points 7 est la droite menée du sommet de cet
cngle au milieu de celle qui joint les deux points de contact*

PROBLÈME IL Déterminer le lieu des centres de toutes les
sections coniques qui, touchant à la fois trois droites données 9

passent en même temps par un même point donné ?
Solution* Soient encore prises ici deux quelconques de trois

d oites données pour axes des coordonnées , et soit pour l'équation
de la troisième

soient enfin a/
 ? h; les coordonnées du point donné. D'abord f parce

que nos courbes touchent les deux axes# nous aurons (4 , 5)

en second lieu ? parce qu'elles touchent la troisième droite , nou*
aurons , comme ci-dessus t

en outre , parce que ces courbes passent par le point donné 9

nous aurons

enfin ? m, y désignant les coordonnées des centres dont le li
fât demandé, nous aurons encore (9 » 10)
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et tout se réduira à éliminer A , B , C , A', B' , O entre ce»*
six équations.

Si , dans la quatrième équation , on substitue pour A1, B' les
valeurs données par les deux dernières , elle donnera

Cette valeur et celles de A' , B1 étant substituées dans les trois
premières , elles deviendront •

—P)C ] *

a')C\

z\(x—a')A+{y^.b')C}\(y—b')B+{x—a>)C\

= {z(b>x+a'y--a'b')—zbx+zay—ab)} {C*—AB) ;

de telle s.orte qu'en posant , ' pour abréger,

(x—a>)A+(y—b<)C=P ,

tout se réduira à éliminer P , Q , R , entre les trois équations

zy—b<)R*=o , <?M-â'(2#—a')#'=o ,

= [z{b'x-\-a'y—a'b>)--(ibx+ixay—ab)} R* .

La valeur de R* , introduite dans les deux premières, au moyeu
de la dernière , donne en réduisant
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d*où , en transposant ; multipliant membre à membre , et divisant
ensuite par PQ ,

4a'b<(2#—a')(?Y--&') = {*{}>'x+a'y—a'bf)—[-hs\iay-ah)}% ;

îe Heu cherché est donc une section conique (*).
Voyons quel est le centre de cette courbe j on sait que ce centre

est donné par les deux dérivées de l'équation de la courbe ? prises
successivement par rapport à x et y -, les deux équations du centre
cherché seront donc

(b'x+a'y—a'V)—

—a')^ {a!—a*) {2{bfx+afy—afbf}—{pJbx*\-2ay— ah)}

Ce centre se trouvera donc aussi sur toute ligne dont l'équation
sera une combinaison quelconque de ces deux-là ; il sera donc, en
particulier, sur la droite dont on obtient l'équation en divisant ces
deux-là membre à membre ; c'est - à - dire P sur la droite dont
l'équation est

Or 5 on voit aisément , i.° que cette droite passe par le milieu
de la distance du point donné à l'origine ; 2,Q qu'elle passe aussi

(*) M. le capitaine Foncelet a aussi démontré cette proposition , par deg
eonsldératioos géométriques»
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par le milieu du segment de la troisième tangente intercepté entre
celles qui ont été prises pour axes.

En cgnsidérant donc que cette troisième tangente peut être
choisie de trois manières différentes , on parviendra à la cons-
truction suivante du centre de la section conique , lieu des centres
de toutes les sections coniques qui ? étant inscrites ou ex-inscrites
a un même triangle donné y passent par un même point donné ,
intérieur ou extérieur à ce triangle : Par le milieu de la distance
du point donné à chacun des sommets et par le milieu du côté
opposé soit menée une droite ; les trois droites menées de cette
manière se couperont en un même point , qui sera le centre
cherché (*).

A l'aide de l'équation de la courbe , on peut obtenir autant de
ses points qu'on voudra. Occupons-nous seulement de la recherche
de ceux qui paraissent être de la construction la plus facile; mais
d'abord mettons l'équation sous une autre forme. En développant
le second membre comme le quarré d'un binôme , et transposant
dans le premier le premier terme de ce quarré , il vient , en
déduisant,

—a

Or f on satisfait à cette équation , en posant à la fois

(*) On voit par là 9 pour le dire en passant, que si le point donné est
le centre de gravité de Faire du triang'e formé par les tangentes données f

ce point sera en même temps le centre de la courbe cherchée.
d'où
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d'où 11 su't que ce sont là les équations de deux' droites qui se
coupent sur la courbe dont il s'agît. Or , la première est celle
qui joint le point donné à l'origine ; et quant à la seconde, c'est
la droite qui joint les milieux des segmens des deux premières
tangentes déterminés par la troisième ; en prenant donc tour à tour
chacune des tangentes pour la troisième , on aura la construction
suivante de trois points de la courbe * : inscrirez au triangle des
tangentes un autre triangle dont les sommets soient les milieux
des côtés du premier ; les points où les côtés de ce second triangle
seront respectivement coupés par les droites menées du point donné
aux sommets du premier seront trois points de la courbe demandée ;
et , comme le centre est connu , par ce qui précède , rien ne sera
p*u> facile que d'obtenir trois autres points de cette courbe.

Si l'on demandait le centre d'une section conique touchant à îa
fois quatre droites données et passant en outre par un point donné ;
ce cenire devant se trouver à la fois (Prob. 1) sur une droite et
( Pr<b> II ) sur une section conique , le problème aurait au plus
deux solutions.

Mais, si Ton demandait le centre d'une section conique qui,
touchant à la fois trois droites données 7 passât en outre par deux
joio s donnés; on voit ( Prob. Il) que ce centre devrait «e trou-
ver à ia fois sur deux sections coniques, et qu'ainsi le problème
pourrait avoir jusqu'à quatre solutions.

SI Von demandait le lieu géométrique des centres de toutes les
sect'ons coniques qui , passant par un point donné , fussent ins-
crites à un angle donné et touchassent en outre un de ses côtés
en u i point donné ; on considérerait la distance du point de con-
tact donné au sommet de l'angle donné comme un triangle d'une
aire nulle , ayant deux côtés égaux et coïncidens f et son troisième
ecté , de longueur nulle , dirige suivant l'autre côté de l'angle
do *né ; le problème se trouverait donc ramené au précédent ; le
lieu cherché serait donc une section conique ? et Ton pourrait
assigner son centre ainsi que six poiuU de son périmètre..

Tarn. XL 5a
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PROBLÈME III. Déterminer le lieu des centres de toutes les

sections coniques qui , touchant à la fins deux droites données ,
passent ert outre par deux points donnés ?

Solution* Prenons les deux tangentes pour axes des coordonnées,
et soient (a , b) , (af , h1) les deux points donnés. En supposant
toujours que l'équation (i) est eeiîe des courbes dont on cherche
le lieu des centres, nous aurons d'abord (4 , 5)

A'*~AC''—o ,~ (-) B'%-BC' = o . (f)

En second lieu , parce que ces courbes passent par les deux
points donnés , nous aurons

Aa

enfin , x , y étant les coordonnées du lieu des centres , nous
aurons encore (9 , 10)

Ax+Cy+A'zzo , (f) By+C*+B'=o . (s)

et il s'agira d'éliminer A 9 B , C p A/ , B/
 f O entre ces six

équations.
Si d'abord on élimine C/ entre les deux premières , et C cntie

les deux dernières , on aura

Ea éliminant B entre ces deux équations , on trouve
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équation qui peut être satisfaite d e d e u x m a n î è r e 5 i

d'abord

nous en conclurons

puis , en vertu de l'équation ÀBn

rëquation (s) donnera alors

et Ton aura enfin par l'équation (*)

Toutes ces valeurs étant substituées dans l'équation (>\ elle
deviendra

On aura de mémo , par l'équation (y') $

d?où, en transposant P divisant et réduisant
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#—- a y—* b

ou encore
#— a y—'b

a—a* ~~ 6 — b1 '

équation de la droite qui passe par les deux points donnes.
Or f cette droite ne saurait être le lieu cherché des centres; car

alors elle devrait Pêtre encore lorsque les points donnés seraient
respectivement sur les deux côtés de l'angle des tangentes données ;
tandis qu'il a été reconnu ci-dessus ( Proh. I ) qp'alors la droite,
lieu des centres , devait passer par le sommet de cet angle.

Il faut donc adopter l'autre équation

en substituant dans ABf*~BA/% , elle donne

on a donc

. B=A ~ , B'=A** ;

et de plus, par (*) et (̂ ) ,

substituant ces valeurs dans l'équation (y) , elle deviendra

l?équation (^) donnera pareillement
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en éliminant Afy comme inconnue , entre ces deux équations , A
disparaîtra de lui-même ? et l'on obtiendra $ pour l'équation de
îa courbe cherchée

En développant cette éqnaiion s on trouve qu'elle est généralement
du qatrième degré 9 non décomposable en deux facteurs rationnels
du second ; de sorte que le lieu cherché n'est ni une section co-
nique ni un système de sections coniques»

PROBLÈME IV. Déterminer le lieu des centres de toutes les
sections coniques qui % touchant une même droite donnée t passent
en outre par les trois mêmes points donnés P

Solution. Soit pris l'un quelconque des trois points donnes pour
origine , et soient fait passer les axes des x et des y par les deux
autres que nous supposons distants de celui-là des quantités c 9 h.
Soit do plus l'équation

a' b> *

celle de la tangente. En prenant toujours l'équation (i) pout !*ëquâ«
îion des courbes dont on cherche le lieu des centres , nous expri-
merons que les courbes passent par l'origine en faisant C'zzo. Les
conditions de passer par les deux autres points donneront ensuite

de plus $ la condition de toucher la droite donnée deviendra (3) 9

à cause de £ ' = o t
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Enfin, x9 y étant les coordonnées du lieu des centres, on devra
avoir (9 , 10)

et il s'agira d'éliminer À , B, C , Af, B/ entre ces cinq équations.
Mais d'abord , au moyen des équations (11 , 12) , nous pouvons

simplifier la troisième qui devient

{afAf—b'B>y=a'bf(2brx+2ay—afbf)(C2—AB) ;

ou , en y mettant pour A/ , B/ leurs valeurs données par les
deux premières équations

){C*—AB) \

les mêmes valeurs, substituées dans les deux dernières , donnent

tirant de celles-ci les valeurs de A , B , pour les substituer dans
la précédente , C s'en ira de lui-mènie t et il viendra ; pour Té-
quation du lieu demandé ,

(2X'—a)—•

^a'b'^ix—a)(2y—b , ( 2 ^ +

équation du quatrième degré , non décomposable en deux facteurs
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*\& ail second degré . A i n s i , ea généra l , le Leu c}\ "r« lv: n 'est

ni une sec lion conique , ni un sys tème de secUciis cor;-q»; es.

Si néanmoins la t angente passait par l 'origine , c'est-i'-riire 5 par

l 'un que lconque des points donnés -, en supposant son équation

y
_

ce qui revient à supposer que Û/ , h1 se changent respectivement
eu A<2/f A^ ;

5 et à faire ensuite A = O, réquation deviendrait simplement

hbfx(2>x—d)~aafy(zy—h) ;

qui est celle d'une section conique. Ainsi ? le lieu des centres de
toutes les sections coniques qui , passant par les trois mêmes points,
sont tangentes à une même droite en l'un de ces points est lui*
même une section conique*

Si l'on prend successivement les dérivées de cette équation par
rapport k x et y f on aura , pour déterminer le centre de la courbe,
les deux équations

4%—a^o 9 4.y~h~o .

Ainsi ce centre est le milieu de la droite menée du point qui est
sur la tangente au milieu de la distance entre les deux autres; de
sorte qne le centre de la courbe est tout-à-fait indépendant de 3a
direction de la tangente. On voit d'ailleurs que la courbe a deux diamètres
conjugués, parallèles aux droites qui joignent le point de contact
aux deux autres points.

Oo voit que la courbe passe par le point de contact , et , d'après
Ja position du centre , elle passe aussi par le milieu de l'intervalle
einre les deux autres points ; elle passe encore par les milieux
des distances du point de contact aux deux autres, II serait facile
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au surplus , à l'aide de l'équation ci-dessus , de trouver d'autres
points de cette courbe,

PROBLÈME V. Déterminer le lieu des centres de toutes les
sections coniques qui passent par les quatre mêmes points donnés ?

Solution, Faisons passer l'axe des x par deux quelconques des
quatre points donnés et l'axe des y pour les deux autres ; et soient
alors les équations de ces quatre points ainsi qu'il suit:

En prenant toujours réquation (i) pour réquation commune des
courbes dont il s'agit , et exprimant qu'elles passent par ces quatre
points , nous aurons

De plus , $ , y étant les coordonnées du lieu des centres , on aura

Ax+Cy+A'=o ,

Eliminant À , A! entre les équations de gauche , et B > S/ entre
celles de droite; il viendra, en réduisant ,

= o

d'où, éliminant enfin C 9 Cf, on obtiendra , pour réquation du
lieu demandé
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ce lieu est donc une section conique.
En égalant a zéro les dérivées de cette équation , prises succes-

sivement par rapport à s et y ? on aura, pour déterminer le centre
de la fcourbe, les deux équations

Ainsi 7 la courbe a pour centre le n/ilîeu de la dtoîte qui joint
ïe milieu de la distance de deux qu':îeon crues du Ï-OS quatre points
au milieu de la distance enire les deux autres.

On voit y par la forme de l'équation ? qae la courbe a deux
diamètres conjugués parallèles aux axes des coordonnées ,• d'où l'on
peut conclure que sî 7 par le centre de la courbe ? on mène deux
droites , l'une parallèle à la droite qui joint deux quelconques de
nos quatre points et l'autre parallèle à celle qui joint les deux autres ,
les directions de ces droites seront celles de deux diamètres
conjugués.

Voyons présentement quels sont les points les plus remarquables
du cours de la courbe. On voit d'abord que cette courbe passe
par l'origine : ce qui revient k dire que , si Ton joint deux quel-
conques des quatre points dont il s'agit par une droite , et les
deux autres par une autre droite , le point de concours de ces
deux droites sera un point de la courbe*

On satisfait aussi à l'équation de la courbe en posant

«or y ce sont là les coordonnées du milieu de l'intervalle entre les deux
points situés sur l'axe des y j puis donc que ces points sont quelconques *
on en peut conclure que le milieu de l'intervalle entre deux quel-
conques des qualre points donnés eat un point de la courbe.

Tom. / X 53
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Enfin ', on satisfait encore à cette équation en posant

donc , si Ton mène une parallèle à chacun des axes par le milieu
de l'intervalle entre les deux points situés sur l'autre 7 les deux
droites ainsi menées se couperont en un point de la courbe ; ce
qui revient à dire que si , ayant joint deux quelconques des points
donnés par une droite et les deux autres par une autre droite ,
oa mène par le milieu de chacune de ces deux droites une pa-
rallèle a l'autre > les deux droites ainsi menées se couperont en un
point de la courbe.

On a donc , en résumé , le théorème suivant :
THÉORÈME. Dans tout quadrilatère simple , les six points

milieux des quatre côtés et des deux diagonales y les trois points
d'intersection tant des deux diagonales que des deux systèmes de
côtés opposés , et enfin les trois points d^intersection des parallèles
menées soit à chaque diagonale par le milieu de Vautré , soit à
chaque côté par le milieu de son opposé, sont douze points d'une
même section conique. Son centre est au milieu commun des droites
qui joignent les milieux soit des deux diagonales , soit des côtés
opposés du quadrilatère. Enfin , les trois systèmes de deux droites,
menés par ce centre parallèlement soit aux deux diagonales , soit
à deux côtés opposés f sont trois systèmes de diamètres conjugués
de la courbe* Cette section conique est le lieu des centres de toutes
les sections coniques circonscrites au quadrilatère dont il s'agit,

II est facile de se convaincre, au surplus, que les douze points
de la courbe que nous venons de désigner sont situés deux à deux
aux extrémités d'un même diamètre.

Il est également facile de voir que la section conique sera une
hyperbole ou une ellipse ; suivant que le quadrilatère sera ou ne
ne sera pas convexe.

Si donc Ton demandait le centre d'une section conique qui passât
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par cinq points donnés ; en faisant tour a tour abstraction de deux
de ces cinq points on trouverait y par ce qui précède , que le
centre de la courbe doit être à la fo sur deux sections coniques ;
et comme il est d'ailleurs connu que la section conique qui passe
par cinq points donnés est unique • il s'ensuit que les deux sections
coniques qui devraient déterminer le centre de celle-là devraient
être tangentes Tune à l'autre. On peut , en excluant ainsi , tour à
tour , chacun des cinq points donnés , obtenir cinq sections coniques
qui devront toutes se toucher en un même point.

Concevons présentement que de deux des sommets consécutifs
du quadrilatère Fun marche en ligne droite vers l'autre jusqu'à se
confondre avec lui ; il est clair que notre théorème ne cessera .pas
pour cela d'être vrai; mais alors notre quadrilatère se réduira à un
triangle, le côté d'une longueur nulle aune droite indéfinie , menée
d'une manière quelconque, par l'un des sommets de ce triangle,
et les sections coniques circonscrites à des sections coniques passant
par deux points donnés et touchant une même droite en un point
donné ; on a donc ce théorème :

THÉORÈME. Le lieu des centres de toutes les sections coniques
qui i passant par les deux mêmes points donnés , touchent en outre
une même droite donnée en un même point est une autre section
conique passant par le point de contact donné , par le milieu de
la droite qui joint les deux autres points donnés , par le point où celte
dernière droite coupe la tangente donnée > par le point où la
parallèle menée à la même droite par le point de contact ren-
contre la parallèle menée à la tangente par le milieu de Vintervalle
entre les deux points donnés, enfin par les milieux des distances
de ces deux points au point de contact. Cette section conique a
son centre au milieu commun de deux droites dont Vune joint le
point de contact au milieu de Vintervalle entre les deux autres,
tandis que Vautre joint les milieux des distances du point de
contact à ces deux4à. Elle a un système de diamètres conjugués pa-
rallèles aux droites qui joignent le point de contact aux deux
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autres points, et un autre dans lequel un des diamètres est paral-
lèle à la droite qui joint ces deux dernier^ points 9 tandis que
Vautre est parallèle à la tangente.

11 est y au reste , facile de voir que la courbe est une hyperbole
ou une ellipse, suivant que les deux points qui ne sont pas sur la
tangente sont situés de même ou de diJTérens côtés par rapport à
elle. On aperçoit aussi très-facilement qne les six points du cours
de cette courbe que nous venons d'assigner sont, deux à deux %

aux extrémités d'un même diamètre.
Si présentement nous supposons que les deux points qui ne sont

pas sur la tangente se rapprochent Pun de l'autre jusqu'à se con-
fondre , ainsi que l'avaient déjà fait les deux autres, nous obtiendrons
ce théorème, déjà obtenu par d'autres considérations ( Proh.I ) -f mais
qui se trouve ici plus complet.

THÉORÈME. Le lieu des centres des section* coniques qui
touchent à la fois les deux côtés d'un même angle aux deux mêmes
points est le système de deux droites dânt F une joint les deux
points de contact, tandis que Vautre joint le sommet de V angle
au milieu de Vintervalle qui sépare ces deux points*

QUESTIONS PROPOSÉES.

Problème de Géométrie»

\JuELLE est la courbe enveloppe de toutes les sections coniques
qui, passant par les mêmes m points donnés , touchent les mêmes
n droites données • sous la condition m>\~n = /^?

FIN BU ONZIÈME VOLUME*
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