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( Troisiéme mémoire. ) (*)

68. DANS notré second mémoire nous avons entrepris la solution
du probléme de déterminer les élémens de Vorbite d’un corps

planétaire ou cométaire , moyennant un nombre suffisant d’obser-

() Voyez les pages 161 et 237 du 1v.° volume de ce recueil,

Tom. V', n.° 1.°%, 1,°% juillet 1814, i



2 PROBLEMES

vations, On sait que ces élémens sont au nombre de siz: la lon-
gitude du nceud, Vinclinaison de Vorbite , la position de la ligne
des apsides , le grand axe, l'excentricité et I'instant du passage par
P'une des deux apsides. En continuant de désigner par a l'angle
que constitue 'excentricité de I'orbe terrestre , chacune de ces six in-
connues pourra étre représentée par une série telle que A4Br+Ca’+-...;
elle sera trés-convergente, étant disposée selon les puissances de a
que l'on sait étre une fraction angulaire égale & un soixantiéme a peu
prés. Le premier terme A4 sera ce que devient cette série dans le
cas de A=o0: cest celui d’un mouvement uniforme et circulaire,
Ce premier terme constitue proprement la difficulté du probléme ;
les coefficiens des autres se trouveront en suivant une marche ana-
logue a celle de nos problémes précédens, et qui sera le résultat
de quelques différentiations successives. -

69. Dans le probleme VII qui a précédé immédiatement celui-ci,
nots avons supposé la position du plan de Torbite connue; deux
observations suffisaient alors pour trouver , dans tous les cas, les
valeurs générales et rigoureuses des quatre inconnues qu’il restait a
déterminer. Si cette position n’est pas connue d’avance , il y aura
deux inconnues de plus, ce qui rend le probléme beaucoup plus
difficile. II sera convenable alors de s’'occuper d’une méthode générale
qui puisse nous conduire 3 la détermination du plan de Vorbite,
indépendamment des autres inconnues. Les essais que nous avons
faits pour y parvenir seront 'objet du probleme qui suit.

no. PROBLEME VIII. Trois observations dune planéte ou
d'une cométe élant données , déterminer les deux élémens desquels
dépend la position du plan de son orbite : savoir la longitude du
neud , et langle que fait le plan de cet orbite avec celui de
Décliptique ?

71. Solution. Les notations que nous avons employées dans les
trois problémes précédens seront conservées. Soient donc
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s...l'angle ESN; longitade du nceud.
g...rangle MNL ; inclinaison de lorbite.
o...l'angle ASN, que fait la ligne des nceuds avec celle des apsides.
b...le demi-grand axe de l'orbite de la plandte ou de la comeéte.
#.o.Uexcentricité de P'orbite ; ce qui donne

5Cos .. .pour le demi-petit axe ; ‘
4Sin... .. pour la distance du foyer au centre. -

a...le demi-grand axe de l'orbite de la terre supposé circulaire.

p...le temps périodique de la terre, dont le mouvement est supposé
uniforme. ‘

g...le temps périodique de Uastre.

Le premier de ces termes est connu. Quant 3 'autre , le théoréme
Képlérien p*: g*=a’:5* nous fait voir qu’il dépend du demi-grand
axe 4, et que les deux quantités 4 et ¢ ne forment qu’une seule
inconnue.

72. Aux ¢ing élémens désignés par les lettres £, o, ¢ w5 &
il faut en ajouter un sixiéme : c’est cclui qui doit fixer le
moment du passage de la cométe par I'aphélie de son orbite. Nous
supposerons donc que , dans cet instant , la terre était au point B
de la sienne. La sixiéme inconnue sera donc

t...langle NSB que faisait la ligne des nceuds avec le rayon
vecteur de la terre SB, A Vinstant du passage de I'astre par l'aphelie
de son orbite. (¥)

73. Nous continuerons d’employer la lettre ¢ pour désigner I’ Ano-
malie vraie , et la lettre = pour exprimer I'Anromalie excentrigue.
La longitude de la terre, supposée au point T de son orbite, ou
I'angle EST , sera désignée par ¢; ce qui rend l'angle NST=0—3,
et l'angle BST=¢—p—p. Et comme l'astre emploie le méme temps
pour parcourir 'arc AM de son orbite , et pour décrire ainsi 1’ano-

(*) On suppose toujours qwon a sous les yeux la figure du Deuxiéme mémoire.
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malie vraic ¢, & laquelle répondent Pexcentrique » et le rayon vec-
teur SM==r, on aura les équations qui suivent:

bCos.2p .
7=
1=Sin,xCos.0 '
., Cos.xSin.o
Sin.x= - ,
1—Sin.xCos.@
Cos @—Sin,
Cos.n== £

1—Sin, zCos.@

P .- .

= (e g ) == 2= S0 SNk o
g

74 En éliminant de toutes ces formules lanomalie vraic ¢, et
en conservant la seule anomalie excentrique »f, 2 laquelle nous

aurons soin de tout réduire , les égalités précédentes seront trans-
formées dans celles qui suivent :

Cos..Sin.»
1-4-Sin.zeCos.e
Cosoe4-Sin. s
14-Sin,xCos.x

r=b(14Sin.xCos.%) 3

Sin.g=

COS.@::

o qui donne
7Sin.e=5Co0s.-Sin.» ,
7Cos.o= b Cos.»+Sin..) .
»5. En abaissant du point M qui est le lieu de Pastre dans son

orbite, la perpendiculaire MN sur la ligne des nceuds , les deux
coordonnées de ce point seront exprimées comme il suit :

MN=rCos.(:=¢)=5bP ,
SN =r8in.(-40) =40 ;

ce qui donne
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P=(1+4Sin.xCos.%) Cos.(++9¢) ;
Q=(1-+S8in.xCos.x)Sin. (s4¢) ;

et, en développant moyennant les formules du n.° 74,
P =Cos.:Sin..~4Cos.:Cos.x—Sin.:Sin.x»Cos.zc ,
Q=Sin.sSin.+4-Sin.:Cos.x—4-Cos.sSin.«Cos.¢« .

Nous continuerons d’employer les letires P et @ , dont nous avons
déja reconnu la nécessité indispensable pour la solution générale
du probléme.

76. Les mémes quantités P et  peuvent encore &tre autrement
exprimées , par la longitude et la latitude géocentriques au moment
de l’observation. En continuant de désigner

Par A...la longitude géocentrique ,
Par B...la latitude géocentrique ;
nous avons fait voir (55) que

bP _ Cos. gCos.(8=23)=4-Sin.gSin.(¢—A)Cot.B _

—

a Cos.84-Sin. gSin.(3=—A)Cot.B !
5Q - Sin, (§=—13)
a Cos.p+4-Sin.ASin,(§=—A)Cot.B '

]igalant entre elles les deux expressions équivalentes de P, aussi
bien que celles de Q , on aura donc deux équations renfermant
d’un c6té Vexcentricité w , I'anomalie excentrique x et 'angle : que
fait la ligne des nceuds avec celle des apsides, et de l'autre le

rapport —;—j- des axes et les deux angles g et y, desquels dépend la

position du plan de 1 orbite.

77. Ainsi donc , pour résoudre complitement le probleme pro-
posé , nous avons besoin de trois observations. Elles nous fourniront
immédiatement les trois longitudes géocentriques 4, 4/, A7, les
trois latitudes géocentriques B , B/, B/, et les trois angles ¢, ¢/, ¢/,
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dont les différences seront supposées proportionnelles aux temps.
Outre les six inconnues déji mentionnées (71, 72), nous aurons
encore les trois anomalies excentriques », */, xl! qu’il faudra déter—
miner également. Le nombre des inconnues étant ainsi porté a neuf,
il faudra, pour résoudre le probléme , neuf équations indépendantes
entre elles. Sixz de ces équations seront fournies en égalant entre
elles les deux expressions équivalentes de P, celles de P/ celles
de P/, et de méme celles de Q , de @/ , de @”. On aura de
plus les trois équations (73), savoir : -

—’:}—(e ——p—1)=x +Sin.pSins ,
f_(,;/ =/ 4-Sin.«Sin.»’

. —y—n)=x' +-Sin.xSin.»’ ,
P (/= ymr) = n//4-Sin.uSina”
q

Ici on pourra; par une simple soustraction, éliminer l'inconnue 4,
on obtiendra ainsi les deux équations qui suivent:

1;. (¢ —0)=x/ ~x +Sin.p(Sin.x/ —Sin.x ) ;
r
— (=) =/l -Sin (i oS0 )

Nous remarquerons qu'en divisant l'une de ces deux dernidres
équations par l'autre, on aura l’équation symétrique qui suit, et

qui est débarrassée du rapport L | savoir :
q

o= ¢ (» —x") 44 Sin.u/Sin./ —Sin.«"")
¢/ (2 ey 40/ Sin.p(Sinw//—Sin.x )
+0//(x —! )+6’/Sin.p(8in.u -—-Sin.x/) .

78. En nous arrétant aux deux équations obtenues en éliminant
Pangle #, le probléme sera réduit & Awiz équations, renfermant un
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pareil nombre d’'inconnues. Pour le réduire ulté;ieurement aux deux
seules inconnues g et , lesquelles déterminent la position du plan
de Vorbite , il faudrait donc éliminer successivement les six autres

inconnues , savoir : les trois anomalies excentriques x , »/, »”/ ; I'angle s ;
Pexcentricité g, et le rapport -’-;- ou—;f- ; or, cette élimination est
analitiquement impossible , tant que ’on conservera la forme trans-
cendante des deux dernitres équations , renfermant 3 la fois les
anomalies excentriques =, »/, »//, et les sinus de ces mémes ano-
malies. Reste donc & exprimer les unes par les autres. De pareilles
expressions, au délaut d’étre rigoureuses , pourront au moins étre
approchédes ; et ces approximations seront applicables & notre pro-
bléme , pour peu que les observations quon emploira ne soient
pas trés-éloignées l'une de I'autre.

79. PREMIERE APPROXIMATION. L’angle est égal & son sinus.
Cela donne ¥=Sin.¥, en désignant I'angle par ¥. On a rigoureu-
sement ¥=Sin. ¥4 Sin ¥4 L SinS¥4. ., . ; Perreur est donc égale
4 2Sin’Y44-28inS¥4-... En prenant ici pour ¥ la différence de

nos deux anomalies excentriques ou #—x, I'équation
_’ql (¢—6) = »/—n4-Sin.u(Sin.~'—Sin,x)
prendra la forme

-’-;- =28in, -:- (»/-—-n) { Cos. E (z/;x)+Sin.chOS. "; (x’—l—z)} .

et sera devenue entitrement algébrique. La supposition =Sin.{ ne
peut étre employée sans erreur sensible quautant que l'observation
moyenne ne différe des deux autres que de lintervalle de quelques
jours ; cependant , elle sert de base aux méthodes de du Sejour
et d’Olbers , comme nous le verrops bientét ; et, dans tous les
cas , elle fournit une premitre approximation fort utile,
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s , 3Sin.
80. SECONDE APPROXIMATION. L’angle 4 est égal & TrCoed 11

. . 5 e
n'en differe effectivement que deis——{-...., ce qui fait
100

0,0002 , pour ¥=30° ,

0,0018 , pour ¥=45° ,

0,0080 , pour ¥=60° .

Pour un angle moindre que 30°, la différence est insensible. Ce

théortme se trouve dans 'ouvrage de Snellius , nommé Cycloméiricus
( Lugd. Batav. 1621 ) ; mais des auteurs trés—instruits, en le faisant

remonter plus haut de prés de deux sidcles , en atiribuent Phonueur
au. celtbre et savant cardinal Nicolaus Cusanus. Cette formule
fournit , pour la solution du probléme , une approximation plus
exacte, mais elle conduit & des équations plus compliquées.

81. TROISIEME |4PPROXIMATION. IL’angle ¥ est égal &
144Cos. . , . . 7
mmnd/. Il 'en différe effectivement que de ke ce

qui fait

0,000005 ,... pour ¥=30°" ,

0,000100 ,...pour ¥=45° ,

0,000800,...pour ¥=60° .
En faisant usage de cette troisitme formule, on pourra employer
des observations. de quelques mois d’intervalle.

82. Dionis du Séjour, dans son Quatorziéme mémoire analitique

( Acad. des sciences , année 1779 , pag. 155 ), a substitué au
secteur curviligne de l’astre, qui est proportionnel au temps , l'aire

rectiligne comprise entre les rayons vecteurs et la corde corres—
pondante. On a, pour le premier,

%— (¢—0) = #/—rd-Sinupe(Sin »/—Sinmx) ;

et on aurait pour l'autre
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-Z-(0’-——0):S'm.(x’—-")-i—Sin.y(Sin.n’-—-Sin.") :

Cet astronome suppose donc tacitement que la différence entre les
deux anomalies excentriques est assez pelite pour étre sensiblement
confondue avec son sinus. Le théoréme auquel cette supposition I'a
conduit, et qui lui a servi pour déterminer la position du plan
de lorbite , est identique avec celui qu'Olbers a publié, dans un
traité allemand en 1797 , et qui revient eneore au principe employé
par du Séjour. Cependant cet astronome ne parait pas en avoir
tiré tout le parti qu’il pouvait, parce que, dans son traite, il s’est
renfermé dans le seul cas particulier , et peu probable, du mou-
vement parabolique. (¥)
83. Comme nous avons (75)

(*) En poussant ces approximations plus loin , j’ai trouvé
v RV 8o}-25Cos.¢
" Sing  544-48Cos.d3Cos.2y
v 213-}101Cos.44-Cos.2y
" Sing 150~4-150Cos Y~415Cos.24
L . 1337+924Cos.¢+49()’os.2«}/' )
" Sinsd " 100041125C0s.f180C0s.2¢45Co0s.3¢

v 315124-26274Cos.Y4-2264Cos.2¢-10C08.3¢9
"Sindy  245004-29400C0s.y45880C0s.2¢4-280Cos. 3¢

VI

VII

Les erreurs de ces formules approximatives sont respectivement égales & la neuviéme,
la onziéme , la treiziéme et la quinziéme puissances de Pangle 4. En calculant,
d’apres ces mémes formules , Parc de 60, on le trouve

d'aprés IV ... 3¢ \/5_ erreur 0,00004855 ,
daprés V... & \]5— erreur 0,000003614665 ,

435

daprés VI ... 22 \/3: erreur 0,000000219670 ,

@aprés VII,... 2222 4/3 : erreur 0,000000018055 .

Tom. V.

]
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4P =r Cos.(s+0) ,

5Q =r Sin(s40) , .
5P’=I"COS‘(e+¢’) »
- Q' =r'Sin(e+¢) ;

nous én déduirons
b PQ'—P'Q)=rr'Sin.(¢/—0) ,
ce qui devient, en réduisan-t
PQ'—P/Q=Cos.xSin.(*—x)~Cos..Sin x(Sin./—Sin.s) .
De plus, nous avons (77)
!’;_(o/..@=(x/__x)+sm.,a(sm.,,/—sm.,) ,

ce qui devient, en remplagant 'angle */—, par son sinus

Z—-(0’——9):S'm.(x’-—&)-}-Sin.y(Sin.n/;-—Sin.,,) .
Il en résulte
PQ-PIQ= % (¢—0)Cos.u «
On aura de méme

P/Q//_P//Q/: l’— (0//‘0/)C0$." ’
9

P Q/—P/Q = % (¢/~—0)Cos.ie 3

d’ou 'on tire

La derniére peut étre appliquée, sans erreur sensible , 4 tout angle moindre que 9o

Ces approximations , quil serait facile de pousser plus loin , peuvent, dans
certains cas , dispenser de l'usage des tables, et donner lieu & d’autres applications
utiles. Elles donnent en particulier des approximations faciles du nombre =, et c’est

méme dans celte vuc que Snellius s'était occupé de la formule v 5

Snv 24-Cos.
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PQ/'—P/Q+4P/Q//—P//Q/4-P/'Q—PQ/'=0 :

équation essentielle , et remarquable par sa simplicité.
84. Divisant les trois premitres de ces équations 1’'une par lautre,
on aura
PQ—PQ _ 0—8
PQr—P1Q T Yy
PIQ/—PIQy  gr—g
PQi—PI1Q) = f—y *

Ainsi donc, tant que les observations seront assez rapprochées pour
que les angles #/—x , %//—x/ puissent étre confondus avec leurs sinus ,
sans erreur sensible, les trois différences des produits PQ'—P/Q,
P/Q/—P1Q, PQ'—P"Q, seront proportionnelles aux intervalles
des temps. Il en résulte deux équations entiérement algébriques,
qui ne renferment d’autres inconnues que les deux seuls angles g,
5 » desquels dépend la position du plan de Vorbite , et dont nous
pourrons tirer, avec facilité, les expressions litérales de ces inconnues.

85. Procédons d’abord au développement de ces trois différences

. . b
de produits. Faisons —=m ; on aura
a

Cos.8Cos.(8==)<}-Sin.sSin.(0—A)Cot.B
Cos.p4-Sin.gSin.(d~A4)Cot.B ?
Cos.8Cos.(8/—3)4-Sin. 8Sin. (=AY Cot. B
Cos.s4-Sin, gSin.(d—A4’)Cot. B/ ?

mP =

mP’

fl

pu Cos.8C0s.(8/"—3)~}-Sin. Sin. (8/'==A4")Col. B/
miT= Cos.+-Sin Sin.(—A")Cot. B/ ?
Sin. (04—
mQ = — )

. Cos.~4-Sin gSin:(d—A)Cot.B
Sin.(8/==0)
mQ = — s
Cos.p4Sin.gSin.(8—A") Cot. B

Sin.(¢//—23)
Cos.84-Sin, 8Sin.(d==A'yCot. B!

mQ//:
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86. Pour présenter ces développemens sous la forme la plus
simple, nous ferons d’abord

¢ et =t
0t/ =1/
¢ =k

de manitre que A=/-}1/; ces trois lettres désigneront ainsi les in-
tervalles des temps. De plus, nous désignerons les trois dénomi-
nateurs par D, D/, D ; de maniére que

D =Cos.p+Sin.gSiny—A4 Cot.B ,
I/ =Cos.g4-8in.sSin. 3 —A4" )Cot. B/,
D/’ =Cos.p-+Sin.pSin/ y—A")Cot. B .
Enfin nous emploirons les lettres M, N, O pour exprimer les
trois différences de produit qui suivent:
M=Sin (8 —.4 )Sin.(¢ —5)Cot. B—Sin (¢ — A’ )Sin.(¢—y)Cot.B/
N=S8in.(6 —A Sin.(¢/—p)Cot. B—Sin.(¢//—A4'")Sin.(6 —5)Cot.B” ,
0 =Sin.[¢/—4/)Sin.(¢//—y, Cos. B—Sin.(#/— A4")Sin.(¢/—3)Cot.B" .

87. En faisant usage de ces notations, on aura, de la manitre
suivante , les développemens qu’on demandait, savoir:

D D' (P ¢ —PF/ Q)=Cos.£Sin.t +MSin.s ,
D D/{P Q'—P"Q )=Cos.gSin.s+NSin.p ,
DD/ P'Q/"—P" Q') =Cos.pSin.t/4-0Sin.p .

88. Reste donc simplement A substituer les expressions que nous
venons d’obtenir dans les égalités (84), savoir

KP ¢ —P' )=t (PQ'—P"Q)
I P'Q!—PQ )= t/(PQ//—=P"(Q) .

En mettant ici 3 la place de D, D/, D/, leurs valeurs respec-
tives , tirdes de (86); ensuite ala place de PQ/—P/Q, P/Q//—=Pl(Q’
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PQ/"—P/'Q) , leurs valeurs données (87), on aurales deux dquations
du second degré qui suivent :

o=(%Sin.z—1Sin.%z)Cos.”#
~}-ASin.£8in. y—A4//)Cot.B//Sin.pCos.p
—18in./Sin.(3—A’ )Cot. B’ Sin.£Cos.p
-+ (AM—1tNSin.pCos.p
-2 MSin.(3—A"")Cot.B"/Sin g
—tNSin..(3—A4" )Cot.B/ Sin.*s ,

o= (/ASin./—#'Sin.%)Cos.*p
~}-7Sin.2/Sin.(y—4 )Cot.B Sin.pCos.s
—2/8in.ASin.(3—A4")Cot.B’Sin.sCos.s
-+ (A0—1'N)8in.pCos.p
~+2408Sin.(3—A4 )Cot.B Sin.’s
—t/NSin.(y —A")Cot. B/Sin.?¢ .

89. Ici je remarquerai d’abord que, tant qu’il n’y aura qu’un inter-
valle de cinq 2 six jours entre la premiére et la seconde, de méme
qu’entre la seconde et la troisitme observations, la valeur numérique
des deux différences de produits ASin.z—7Sin.%, ASin./—/Sin.%
sera au-dessous d’un dix milliéme , et quainsi il sera permis de
supprimer les premiers termes de nos équations , sans erreur sen-
sible. Divisant alors par Sin.s, elles seront rabaissées au premier
degré, et donneront, pour Tang.e les deux expressions équivalentes
qui suivent

ASin.tSin.(8—A")Cot. B/"—1Sin.hSin.(3—~A")Cot. B'~4-h M—t N

—Tang.p= A MSin.(3—A") Cot. Bi—tNSin-(9—4') Cot. B/ '

2Sin#’Sin. (§—.A4)Cot. B—t'Sin.hSin.(8~=A")Cot,B'}-hO—t'N
h0Sin, (~=A)Cot.B=t'NSin,(d=—A"")Cot. B/

.

—Tang.p=

~90. Essayons de donner aux numérateurs et aux dénominateurs
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de ces deux fractions la forme counue de bindéme, savoir £Cos.p—GSin. .
Dans cette vue , nous ferons, pour abreger,

a=Cos.4 Cot.B , a’=Sin.A Cot.B
b=Cos.4’ Cot.B’ , ¥/=Sin.A’ Cot.B’
¢ =Cos. 4" Cot.B” ; ¢ =Sin, A4"Cot.B" .

®

m=Sin.(*—A4)Cot. BSin.# —Sin.(¢ A’ )Cot. B/ Sin.¢ ,
n =8in,(#—A4,Cot. BSin."’—Sin.(¢"— _4//)Cot. B"/Sin.¢/ |
0=S8in,(#—A4")Cot.B/Sin.#'—8in.(#//— 4/ Cot.B/Sin.g ;

m/=8in.(# —A )Cot.B Cos.”” —Sin,(¢/ — 4’ )Cot.B’ Cos.
n/=8in,(# —A4 )Cot.B Cos.t//—Sin.(#//— A4//)Cot.B/Cos.0 ,
o’ =Sin.(*—A")Cot.b’ Cos.0”—Sin.(¢/— A4")Cot. B//Cos.¢

9t. Enfin, proposons la derniére notation que la nature du pro-

bléme exige , et qui parait nécessaire pour présenter l'inconnue sous
la forme la plus simple : savoir,

D=hm—tn—c'hSin.i+b'iSin %y ,
E=hm!'—tn/—chSin.i+4-b1Sin.e
F=btn—c'hm ,
G="b'tn'+bin—c' hm'—chm
H=>\)tn/—ckm’ ;

D' =ho—t'n—a’hSin.t/4-b/'1/Sin.}; ,
B =ho!—t'n'—akSint/<-b1'Sinde
'=bi'n—a'tko ,

G'=bt'n-b't'n! —aho——a'bo’

H' =bi'n'—akho! .

g2. Les deux expressions (8¢) deviendront alors



D'’ASTRONOMIE. 15

DCos,d—ESin. ¢
FCos.28=GSin Cos.d4-HSin.2d ’
D'Cos.0—E'Sin.d
FCos,20=—G/Sin.dCos.04-H'Sin.28

—Tang.p=

—Tang.s=

93. Reste donc, pour trouver 'angle inconnu 3, A égaler ensemble

ces deux fractions qui , par la nature du probléme , doivent étre
équivalentes. On aura I'équation du troisiéme degré qui suit:

o=(DF'—D'F)
— (DG'—D'GA-EF/—E'F )Tang. »
~+(DH/—D/HA-EG'—E/G)Tang.?y
~-(EH'—E’H)Tang?y « (*)

04. La tangente de langle inconnu », duquel dépend la déter-
mination de tous les autres ¢lémens est donc la racine d’une équation
assez simple du troisiéme degré; et la nature du probléme nous
permet de présumer qu’elle est la seule réelle. Remarquons que
nous ne nous sommes permis aucune supposition sur la nature de
Vorbite, le grand systtme de la gravitation universelle nous apprenant
uniquement que c’est une section conique. En appliquant , dans
chaque cas particulier , les valeurs numériques données par les obser-
vations aux expressions littérales de nos formules , mous verrons
si c’est une parabole, une ellipse ou bien une hyperbole. Dispensés
de lemploi ordinaire et trés-pénible des fausses positions , nous
devons remarquer que notre solution , de méme que toutes celles
de Valgtbre élémentaire, conduit directement au but qu'on s%était
proposé. En supposant 2 la terre un mouvement circulaire et uni-
forme, pendant l'intervalle qui sépare les observations , nous avons fait
disparaitre de nos formules la Jigne @ , demi-grand axe de l'orbe

(*) Enne supposant point nulles les deux différences ASin-tSin.k et ASin.t/-#/Sink ,

Péquation finale qui donne Tang.d est beaucoup plus compliquée ; mais elle ne
s'éléve ndanmoins qu'au quatribme degré,
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terrestre ; cette supposition ne peut donc influer sur les résultats
que sous le simple rapport de linégalité de nos trois rayons vecs
teurs : inégalité insensible pendant l'intervalle de temps que mnous
avons supposé. Il nous reste donc i enseigner la petite correction
qu’il faut employer, pour faire coincider V'orbite calculée par notre
méthode avec des observations plus éloignées ; et ce sera lobjet
d’un autre mémoire.

95. Ayant trouvé I'angle », on trouvera l'inclinaison de Vorbite,
ou l'angle g, moyennant I'une ou Vautre des deux formutes (92),
dont Pidentité pourra servir d’ailleurs & vérifier le calcul. Connais-
sant ainsi les deux angles desquels dépend la position de Vorbite ,
rien n’empéchera de procéder A I'évaluation numérique des fractions
P, P, P, Q, (¢, Q, moyennant les formules (85) ; on verra
si les trois différences de produits PQ/'—P/Q , P/Q/—P/Q/,
P@//—P/Q sont entre elles dans la raison des intervalles des temps,
et si la troisitme est égale & la somme des deux autres. Cette
condition étant remplie , on sera sir qu’aucune erreur n’a pu se
glisser dans D’évaluation numérique des formules générales.

96. Toutefois , rappelons-nous que les formules (85) ne nous
font pas trouver les quantités P, P/, P/, Q, ¢/, ¢”, mais

P WP WP BQ  BQ  BQV
—, =, =, -

les produits -

. b
, ; la fraction o

a ’ a ? a a
qui désigne le rapport entre les demi-grands axes des deux or-
bites, étant elle-méme une des inconnues du probléme. Pour éviter

toute erreur, nous désignerons par la lettre #, la fraction -Z— , et
nous ferons

P=nM , Q=nN , R=n0 ,

P'=nM' , @' =nN , R'=n0,

Pl=pM" , Q'=nNt, R'=n0/.

Comme nous avons déja employé la lettre 22 pour désigner la
racine
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racine quarrée de P>-+(Q*, nous désignerons de méme par O celle
de M*~4-N*; il en sera de méme , lorsque ces lettres seront affectées
d’un ou de deux accens.

97. La position du plan étant déterminée , le nombre des in-
connues sera réduit & six: savoir,

Les trois anomalies excentriques », /, %/,

L’excentricité . . . . . . .« g,

L’angle que fait la ligne des
apsides avec la ligne des nceuds ¢ ,

Le rapport des deux axes 2.

Pour les déterminer , nous aurons les Zuiz équations qui suivent

(1)
(2)
©)
(4
)
(6)
()
8

nM =Cos Sin.u~+Cos :Cos., —Sin.cCos.xSin.x

nM/ ==Cos sSin..+Cos.6Cos.2 —8in.cCos..Sin,»/
nM”:Cos.aSin.(.a—[—Cos.eCos.x’/—-Sin.chs.ySin.n’/
nN =S8in.:Sin.«+Sin.sCos.» —-Cos.sCos xSin.x
nN/ =Sin.sSin.e4SineCos.e/ —4Cos.sC0s.£Sin.»/
ﬂN”=S'In.tSiD.‘u-l—Sir].ECOS.;’-”—I—-COS.sCOS.pSin."” ;
(¢ =)/ W= —x +-Sin.u(Sin.x/ —Sinx ) ,

(07 —0"\/ n3=#//—»/4-Sin.x/Sin.»"/—Sin.w’) .

-
L]

we

-

Six équations suffisent pour trouver les inconnues qui nous restent.
On poarra employer les équations (1, 2, 4, 5, 7), en employant
la premiére et la seconde observations ; ou bien les équations

(2,3, 5,6, 8, si Pon veat faire usage de la seconde et de

la troisitme. Les deux solutions doivent donner le méme résultat,

et setviront & vérifier 'une par Pautre.

98. En choisissant les deux premiéres observations qui nous
fournissent les six quantités connues M, M/, N, N/, ¢, ¢, nous
aurons les cing équations qui suivent:

Tom. V. 3
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nM =Cos.Sin.p~+Cos.cCos.x —Sin.:Cos.xSin.,
nM/'="Cos Sin.x-~Cos.sCos.»’— Sin.cCos.. Sin.
nIN = Sin.sSin.z~- Sin.cCos.x ++Cos.¢Cos. 4 Sin.x
1 N/==Sin.;Sin.x-}-Sin.iCos.»"-Cos.cCos..Sin+/
(¥—8)y/ 73 = (#t—n)-Sin.e(Sin.x/ —Sin ) «
99. L’élimination de I'angle ¢ nous fournit le meyen de réduire

4 frois les quatre premiéres de ces équations. Nous avons déja
observé, dans le précédent mémoire, que

R—7R' ou n(0—0/)=28in.£Sin.¢Sin.¥ ,
PQ/'—P'Q ou n*MN/—M'N)=2Cos uxSin:¥(Cos.#4-Sin.£Cos.0), ’
RR/—PP'—QQ/ ou n*(00/'—MM'— NN')=2Cos.*sSin>¥ ;
de méme que, dans le probléme précédent, nous avons employéd
les lettres ¢ et ¥ pour désigner la demi-somme et la demi-diffé-

rence des deux anomalies excentriques , tellement que *»'=¢~y,
et »==¢—<. Moyennant cette notation , la derniére équation prendra

la forme qui suit: .

(¢—8)y/ 73 =24~+2Sin 4Cos.eSin.¥ .

100. Pour présenter nos quatre équations sous la forme la plus
simple dont elles peuvent étre susceptibles , nous emploirons les
quatre lettres @, 4, ¢, 4, de la manitre qui suit: soient

20=0—0',
2b=MN'—~M'N ,
202 =00'—MM'—NN'

2d=0—-0 ,
elles deviendront alors
n a=Sin.xSin.eSin.¥ ,
n*b = Cos.#Sin. ¥ Cos. ¥+-Sin.#Cos.¢) ,
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n"c=Cos.£Sin.¥ ’,
dy/ wi=v-Sin..Cos.eSin.¥.
1071, Pour tirer de ces quatre équations les valeurs numériques
de nos quatre inconnues, dans des cas quelconques, et sans aucun

emploi de moyens approx?matifs , 1l faut employer les fausses po-
sitions. Alasi , supposant une valeur quelconque & Vangle ¢, la

. .. . . a .
premiére et la troisiéme équations nous fourniront— ==Tang.~Sin.¢ ;
. [

ce qui fera cunnaitre l'excentricité #. Divisant de méme le quarré
de la troisitme par la seconde, on aura

Cos.xSiny
Cos.@4-Sin.Cos.y *

-
-Z— ]

ou
5Cos.pSin ¥mc?Cos.¥=¢*Sin.xCos.¢ ,

d’od I'on tirera facilement 1'angle ¥, moyennant un nouvel angle,

2

bCos.e

tel que Tanga=

» et qui fournira Sin.,(¥—a)=Sin.aSin.£Cos.0.

On aura ensuite
Cos.£Sin.

?

[4

et les quatre inconnues étant ainsi supposées connues, on en fera
Pépreuve sur la quatrieéme équation ; on aura soin de noter erreur
qui en scra résultée , et qui conduira a- une secoade position plus
approchante que lautre.

102. On pourra cependant se passer de l'emploi des fansses po-
sitions , dans le cas ol les observations sont assez rapprochées pour
que , sans erreur sensible, on puisse faire Sin¥=v , et Cos.d=1.
Nos quatre équations deviendront alors

n a= Sin £Sin ¢Sin.¥ ,
r*5=Cos..Sin. ¥ 1+Sin.«Cos.¢) ,



20  PROBLEMES
nc=Cos.£Sin.¥ ,
dy/ni= Sin.¥(14~#Cos.p)

Il sera trds-facile, dans cette supposition ,” d’exprimer’ les angles p 4
¢, ¥, en #, de la manitre suivante : _

na3b(2c—nb)

., Nelb(2c—nb)
Sin."g= adc(nb=—c)zcr *
. nc*(a>-f-c?)
2 —
Siny= b(2c—nb)
nb(2c—nb)
a’-}-cz-

et substituant, on aura pour z, qui forme la principale inconnue
du probléme , lexpression trés-simple qui suit:

1

2cd2—-(a=+c5)b"
n= bd2

- 103, Cette expression nous fait connaitre , sur-le-champ-, les
trois cas de lellipse, de la parabole et de I'hyperbole. Tant qu'on
aura 2¢d*> (a*4-¢*)b , le grand axe de lorbite sera posttif , ce
qui indique I'e/lipse. Dans le cas opposé , de 2cd* < (a*-4-c*)b, l'axe,
devenu ndgatif, indiquera V'Zyperbole. On reconnaitra la parabole
3 ce qu'on aura alors 2¢d?*=(a*-4¢*)b. Le cercle se reconnaitra sur-
le-champ & I’égalité des trois rayons vecteurs, qui sont proportionnels
aux radicaux R, R/, R”, ou bien O, 0/, O”. On aura, dans ce
dernier cas, Sinx=o0, et Cos.e=1; ce qui donne

n*b=Sin.¥Cos.¢ ,
7 c=Sin.¥ ,
dy/ni=SinV ;

ce qui fournira, entre les trois quantitds &, ¢, d, l'équation de
condition d*=(b*~-¢*)ct.
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104. Substituant , dans les expressions littérales de p, ¢, ¥, la

valeur de » qu'on vient de trouver , et posant, pour abréger,
a*~-c*=f*, on aura les formules qui suivent:

Sink= V/ di==2bcd*4brfr Cos.pe= \Vzbedz — b2f>
d3 ? . d> ?

. 2 ey 2 f2 cdze=bhf?
Sinp= N2V . Cosp= W e WS 3
o\ b 2bedi-b7fs e\ dimzbcd*+-b>f2

. C\)zbcdl-—b’fz
Sm.«l/-—..____b_z.___ .
105. Ayant ainsi trouvé les anomalies excentriques » , »/ moyennant

/=o¢-¥ et »==¢—V , on passera aux anomalies vraies ¢ et ¢/,
moyennant les équations connues

. Cos.%Sin.ze Cos.x~4-Sin.ge
Sin.p= —— ; Cosp= ———,
1+4-Sin,xCos.» 14-Sin.xCos.x
et par conséquent
Cos..Sin,
Tang.o= e

Cos.x4-Sin.g ?
ou bien
Tang.; ¢=Tang.(45°~—#)Tang.; «

106. Connaissant 1’anomalie vraie ¢, on aura, pour déterminer
Uangle ¢ que fait la ligne des apsides avec celle des nceuds , les
équations suivantes , parmi lesquelles on peut choisir,

PSin.@ PCos.o
COS.(5+¢>_ Cos.z¢Sin.x - Cos.z4-Sin.z ?
) Sin, Cos.
Sin.(sg)= QSin.p — QCos.¢

Cos.uSine  Cosaed=Singe

107. Reste donc a déterminer le seul angle , qui fixe l'instant

du passage par le périhélic, et qui sera la seule inconnue de l'une
quelconque des trois équations
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{.(g..g-@:x—}-Sin.,«S’n.n ’

ou (0 —3—1)y/w=x +SineSinx ,
(¢ —5 =7/ ni=» ~4-SinxSin.x
(9//..—3\—'0 ‘/',,‘Ezz//_{_Sin.FSin.*” .

108. Dans cet exposé , on a pris pour exemple la premiére et
la seconde observation , qui ont conduit aux anomalies excentriques
x et #/, et de la aux anomalies vraies ¢ et ¢, On pouvait em—

ployer dc méme la seconde et la troisitme observations , par le
moyen desquelles on aurait déterminé les anomalies excentriques »/
et »/, lesquelles auraient conduit ensuite aux anomalies vraies @ et ¢’.

., a
Les valeurs de Pexcentricité #, du rapport des deux axes — , de

Pangle ¢, aussi bien que de langle #, qui détermine linstant du
passage par le périhélie , doivent étre les mémes, d’apres les deux
procedés , avec uve petite difference , commune a toutes les mé-
thodes proposées jusqu'ici, et qui vient de ce que nous avons supposé
les rayons vecteurs de I'orbite terrestre sensiblement égaux , pendant
Vintervalle qui sépare trois observations ; qe de plus nous avons
supposé les differences angulaires #/—x , »//—x/ sensiblement égales

¥ leurs sinus respectils ; et qu’enfin nous avons supposé ASin.z—zSin.2
q
" et ASin./—#/Sin.z Pune et Vautre évanouissantes, Nous nous réser-

vons d’enseigner, dans un meémoire suivant, les moyens les plus
expéditifs que fournit lanalise , pour faire disparaitre ce resie d’er—
reur; et, en méme temps, nous essayerons de faire usage d’obser-
vations moins rapprochées entre elles. Nous terminerons le mémoire
actuel , en appliquant notre méthode a quelques exemples ; et, dans
cette vue , nous choisirons la seconde cométe que Méchain & découverte
en 1781 , et quil a observée pendant les mois d'octobre, de no-
vembre et de décembre. 1l en a calculé Porbite , supposée Parabolique,
d’aprés la méthode de Laplace ; il a- trouvé ainsi
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Le lien du naeud ascendant , ou Vangle y=77.° 22/ 55",

L’inclinaison de lorbite , ou langle p=27.° 12/ 47 .

Nous ferons l’évaluation de ces mémes an‘g-les R d’aprés notre
méthode , laquelle nous apprendra, en méme temps , si l'orbite est
Parabolique , Elliptique ou bien Hyperbolique.

10g. Des cinq observations de Méchain, faites en novembre, nous
choisirons celles du 14, du 19 et du 25 novembre. Elles sont toutes
rapportées a la méme heure du jour , savoir & 8 heures 2¢9/ 447,
temps moyen de Paris : ce qui fournit, pour les neuf élémens de
notre analise , les valeurs angulaires qui suivent :

Longitudes de la terre, vue du soleil , ou angles ¢, & ¢/,

¢ =52.2 53 5o” , t = 5° 3 14/=18194" ,
¢ =57.2 57/ 4, donc ¥ = 6.° 4/ 28/=21868" ,
o/=64.° 1/ 32/ ; h=11.° 7/ f2/!'=A40062/" .

Longitudes géocentriques de la cométe , ou angles A, 4/, 4/,

A =307.° 14 45, 0 —A =—254.° 20’ 55 ,
A '=306.° 51/ 26/ donc /= A —wem248.° 54/ 22/,
A"==306.° 41/ 377 ; O/ e A = e 2.4,2,° 407 5/

Latitudes géocentriques ;le la cométe , ou angles B, B/, B”;
B =55° 17/ o, ‘
B/ =39.° 14/ 487 ,
B/’ =2q.°,58/ 43/ .
‘110. On en tire la liste des logarithmes qui suivent.
Logarithmes des Sin. et Cos. des longitud. Géocent.
Log.Sin.4 =09,9009382 , Log.Cos.4 =g,781924g ,
Log.Sin.4’ =g,9031620 , Log.Cos.4’ =0q,7780232 ,
Log.Sin.4"=¢,904088q9 , Log.Cos.4/=9,7763639 .

Les sinus des longitudes sont négarifs.
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Log. des Sin. et Cos. des Long. de la terre, vue du soleil ;
Log.Sin.! =9,9077605 , Log.Cos.! =g,7804949 ,
Log.Sin ¥ =9,0281887 . Log.Cos. =g,7248022 ,
Log Sin#/=0,9537546 ; Leg.Cos.t/=0q,6414446 .

Log. des trois différences Ang. t, v, h et de leur Sin.
Log. =8,9455031 , Log.Sin.z =8,9449397 ,
Log.t/=09,0253840 , Log.Sin.#’=9,0245700 ,

Log.. =9,2883075 ; Log.Sin.2 =q,2855735 .
Il en résulte
%Sini —¢ Sin.2=0,0000853 ,
A8in.t/m=t/Sin.h=0,0000907 ;

On peut donc regarder ces deux différences comme évanouissantes.
Log des Cot. des trois Lat. Géoce. B, B/, B” , et des prod.
~ Sin(¢t—A)Cot.B ,....;

Log.Cot.B =g,8406070 , ‘Log.Sm.(o —A Cot.B =q,8241976
Log.Cot.B/ =0,0878113 , Log.Sin.(¢# —A’)Cot.B’ =0,0576892 ,
Log.Cot.B”=0,2389351 , Log.Sin.(#"— A4")Cot.B"=0,1875247 .

Log. des prod. désignés par a, b, c ,al, b, o (90)

Log.a=9q,6225319 , Log.a/=09,7415452 ,

Log.t=9,8658345 ,. Logd’'=q,9909733 ,

. Log.c=0,0152990 ; Log¢/=q,1430240 .

Les produits &/, b/, ¢/ sont négatifs.
Valeurs des quantités m, n, o0, m’,n', o et de leurs logarithmess
m=-—0,3454160 , m’=—0,3349471 , '

n ===0,6285206 , n/=—0,6368338 ,

0 =—0,2786088 ; 0/==—0,3170086 .
Log.
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Log.m=9,5383425 , Log m’=9,5249762 ,
Logn=9,7983194 , Log n/=q,8040262 ,
Log.0 =09,4449948 ;  Log.o’=g,5010711 .

Valeurs des coefficiens D , E, F,G,H, D/, E/, ¥/, G/, H/; (g1),

D=—0,0259450 , D'=-0,0038155 ,
'E===0,0141056 , E’=-o0,0123514 ,
F=40,0449740 , F'=-0,0354211 ,
G=-4-0,0747632 , G/=+0,0059353 ,
H=+40,0261437 ; H'=-—0,0237557 .

Valeurs numériques des produits nécessaires aw calcul des coef-
JSiciens (93) ;

IIs ont été tous multipliés par la neuviéme puissance de i
DF/'=—g19000 , EF=-—/99636 ,
D'F=—+1715¢8 , E/F=-553497 ,
DG’'=—1539q91. ;3 EG'=— 83721 ,
D/G=—4-28525q , E/‘G=-}923430 ,
DH!/'=~4-616342 , EH'=-335088 ,

D'H=- q9751 ; EH/=-4322911 .
Différences de ces produits , servant & [Péquation finale en  ;
DF/—D/F=—1090598 , EF—E/F=—1055128 ,
DG'4-D'G=— 439250 , EG/'—E/G=—1007151 ,

DH/—D'H=-1 516591 , EH/'—E'H=- 12177 ,
dom. V. 4
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lfi‘qwzﬁon Jinale faisant connaftre ; ;
0=10H0598
—1494378Tang. »
~+ 490560Tang.y
<+ 12177Tang’s .
La seule racine réelle de cette équation fait connaitre la tan-

gente de l'angle 3; il sera égal & 91.° 19/ 37/ : c’est la longitude
du nceud.

De 13 on passera a linclinaison de Porbite ou I'angle g ; les deux
formules (92) s’accordent a donner
g=152.°11/ 56/ ,
180.0—p= 27.248/ 4V ,
112. Mettons 3 c6té les résultats de la Méthode de L APLACE,
pour laquelle on a employé les observations , beaucoup plus éloi-

gnées des g octobre, 17 novembre et 20 décembre, en admettant

toutefois la supposition peu rigoureuse , et méme trés-peu probable
du mouvement parcbolique. Elle a donné

=77.° 22. b5/,
180.0—p=27." 12/ 4/ . (%)

") Voyez Astronomie de Biot , 2.° &dit. , tom, 111 , additions , pag. 202.
Dans sa Cométographie , tom. 11, pag. 108 , Pingré, d'aprés Méchain , avait donné

=770 22/ 5ot ,

180.0=~pg=27.0 13/ 8§,



D’ASTRONOMIE. 27
113. Ayant déterminé ainsi la position de I'orbite, il faudra passer
4 Dévaluation des quantités P, P/, P7, Q, ¢/, Q" , toutes mul-

. . L3 a . . I3 .
tiplides par le facteur inconna < » ou divisées par 2, en faisant

usaze des formules (76). En supprimant ce facteur qui est commun
a tous, on aura

P =0.5493415, Q =o0.8¢g42916,
P/ =0 .3727041 , (@ =0.9951803 ,
P'=0,1634109 ; @”=o0 .1060116 ;

d’ou il résulte
P Q —P Q =o0.2133547 ,

PIQ/—PrQ/=0 . 2495918 ,
P Q'—PQ =0 . 4614411 .

Le rapport des deux premiéres différences s’écarte trés-peu du rapport
des temps ; de plus , la somme des deux premiéres est presque
rigoureusement égale a la troisicme dont elle ne difféere que de 0,0015.
On a employe ici les valeurs angulaires trouvées (110), deduites des
ptey 8 \ ’

observations de 14, 19 et 22 novembre. En se servant de celles
des 17, 19 et 22, on aurait eu

P Q) —P/ Q =o0.0588550 ,

P/Q//==P"()) =0 . 0883150 ,

P Q'—P/Q) =0 .1470228 .
La différence entre la troisitme et la somme des deux autres n’est
que de 0,00015.

¥ . a )
114. Reste done 3 déterminer le rapport n ou - des axes, l'ex-

centricité g, langle: de la ligne des apsides avec celle des nceuds,
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et instant du passage au périhélie. Je me bornerai ici aux deux
premiers. On trouve

7 == —

Cette valeur négative de 7, ct conséquemment de 4, indique une
branche Zyperboligue. Eile explique et justifie la différence entre
nos résultats et ceux de Laplace , déduits de 'hypothese parabolique.
Le cosinus de # deviendra donc imaginaire. Sin.. sera une quan-
tité réelle , mais plus grande que lunité, On trouve en effet

Log.Sin.x=0,660g274 ; donc
Sine=4 . 580652 ;
1-}+Sin.x=5 ., 580652 ,

1—Sin.e=3. 580652 ;

on aura donec
Distance périhélie ou wm(14-Sin.u)b=1,048364 ,
Distance aphélie ou —(1—Sin.x)5=1,633934 .
La premitre , obtenue par la méthode de Waplace,
est  0,0609951 ;
Différence avec la nétre 0,087369

¢’est un douzitme du demi-grand axe de Porbe terrestre.
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GEOMETRIE ANALITIQUE.
Propriéiés des diamétres conjugués de Uellipsoide ;

Par M. GERGONNE,

[ Sla W Vo ¥l Vo ¥ Vo V]

SOIENT @, b, c les trois demi-diameétres principaux d’un’ ellip-
soide , pris pour axe des coordonnées. Soient ensuite (#, y, z),
(@, ¥/, 2), (&, y”, z/) les extrémités de trois autres demi-
diameétres quelconques; on aura

z2

22 2.
=+ 3+ = =1,

«xl2 ylz z/2
- 5+ =1 (1)

x!’2 yllz z/l2
— — —_— =1I,
a b: c*

Si lon veut, en outre ; que les nouveaux demi-diamé&tres soient

* conjuguds les uns aux autres , il faudra exprimer de plus que le plan

tangent a l'extrémité de chacun est, i la fois, paralléle & chacun

des deux autres ; ce qui donnera encore
xlxl gyl zlzl

e — =0,

a3 b2 c2
xx ylly zlz

= TR EE=e ) G

xx! ¥y zz/ .
- vt a =

az

En posant, pour abréger,
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Y
=X, T:—_-Y, -j—:Z,

Q8

=x, L=y, Lz, } @

ey

al " 2N
Zoxn, Loyr, Z=zu,
a & <

o

ces équations deviendront‘
X *+Y *+Z *=1 , L X Xn4+-y' Y'+-Z! Zl'=o0 ,
X 24-Y -2 2= , 3 (§) X'X Y'Y +27Z =o, | (5)

XYz =1 ; S XX +Y Y'+4Z Z' =0 .

Or, il est connu , par la théoric de la transformation des coor-
données dans l'espace (*) , que , lorsquon a de telles relations

entre des quantités , oa a aussi entre elles les relations suivantes

Xp X Xi=r ,
Y yetyr=1, \ (6)
Z 4y Zr i =y

(YZ/—Z V) A ¥ 21— B YV (Y E— B Y =1,

(ZX'—X 2!y 4~(Z/ X=X/ 1y ZX— X1 Z =1 , Y (7)

(XY —Y X'y (VXN —X YV e (X T e VXY= 1

XYV Z/—XZ' VI ZX Y/~ Y X/ ZN4-Y 2/ X/ — Z V' X=1. (8)

En remettant , dans ces relations, les valeurs des symboles qu’elles

(*) Voyez entre autres le tome 1.°¥ du Traité de ¢ dlcul différentiel et de calcul
intégral de M. Lacroix; page 450 de la 1."¢ &dition , et page 528 de la a.°
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renferment , données par les équations (3) , et chassant les déno-
minateurs , il yiendra

x=+x/2;1-x/{= =g s

yhyobyn=r , ) (@)

zz_‘_z/n +z//z =cz 5
(y2/—zy!)*=(y/ 2! — Zly!ly? ,,‘__(}‘,//z___ 2y =hre
(et mal o () = 2P ama S =, ) (10)
(xy/_yx/)z+(x/y//_y/x//)3+(x//y_y//x)2 =azbz ;

Si maintenant on désigne par 4/, &/, ¢/ les trois demi-diaméetres
conjugués dont il s’agit, et par 4, g, v les angles qu'ils forment
deux a deux respectivement ; il est aisé de voir qu'on aura

z *+y *Hz *=a ,
al byl 2z 2 =0, ) (12)
alPylg = ot
(y 2/ —z y' Y+(z o/ —z 2/ Y4(x y/ —y 2/ )*=a’”b*Siny,
(y! &=z y" (2! a/'—z! 2/ ye=(a! y//—y’ &//)*=b/c"*Sina, ) (13)
(y's —stty (e —allz Yd(ely —ylls Y=crarSine,

xy/zll_xz/.yl/_‘_zx{y//._yx’z”_'_yz/x//—-zylxll

==abc\] 1—Cos.24=~=L05.28—LC0s.2y4-2C05.2C05,8C05.% (14)

Comparant alors la somme des équations (12) 4 la somme des
équations (9) , puis la somme des équations (13) & celle des équa-
tions (10) et enfin Péquation (14) & Déquation (11), il viendra
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a/‘+b/3+c/3=al+52+cl .
B/3c/2Sin2w-}-c2a'2Sin.2 g4-al2b/28in,2y=b>c>J~c2a>~}a2b> ,
0/2b/2¢/2 (1==Cos.2==Cos.2 g=—Cos.>y-}-2Cos.«Cos.8Cos,y)==a2b2c2
Ces relations sont connues (*) ; mais je ne sache pas qu'on y soit
parvenu jusquici d’une maniére si simple et si directe.
Le méme procédé, qui peut étre facilement appliqué a toutes les.

surfaces du second ordre qui ont un centre , s'applique avec la plus
grande facilit¢ aux courbes planes du méme ordre.

]

QUESTIONS PROPOSEES.

Probléme d'architecture.

LA base et la montée d’une anse de panier & 27-}-1 centres étant
donnés ; eonstruire I'anse de telle sorte que son.perimétre ou que

‘ P que
'aire comprise entre elle et sa base soit un mazimum ou un minimum ?

Il est entendu que la courbure aux naissances doit étre perpen-
diculaire sur la base.

Problémes de Géomeltrie.

I. Trois cercles tracés sur un méme plan, étant tels que chacun
d’eux touche les deux autres; trouver le rayon du cercle qui passe
par leurs trois points de contact , en fonction des rayons de ces
trois .cercles ?

II. Quatre spheres étant tellemeut situées que chacune d'elles
touche & la fois les trois autres ; démontrer que leurs points de contact
deux 3 deux sont tous six sur une méme sphére, et déterminer le
rayon de cette sphére en fonction des rayons des sphéres données?

(*) Voyez la page 113 du 3.° volume de ce recueil.
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MATHEMATIQUES APPLIQUEES.

" ExPERIENCES sur la flexibilité , la force et Uelasticité
des bois , avec des applicalions aux constructions ,

en geénéral , et spécialement & la construction des
vaisseaux ,

Faites A 'arsenal de la marine francaise & Corcyre en 1811

Par Cu. Duriv , copitaine en premier au corps du
genie marilime,

PREMIER MEMOIRE ,

Présenté a la premitre classe de Yinstitut de France , le 12
davril - 1813. (%)

[a Sa Yo ¥l Wiy Vo Vo Vo V)

C’EST en parcourant un arsenal de marine que Galilée , frappé des
grands travaux qui s'offraient i ses regards , congut l'idée d’appliquer
les sciences mathématiques 2 la détermination de la foree des bois.
C’est donc sur nos chantiers et dans nos ateliers qu’est née I'ap~
plication du calcul aux travaux des arts. 1l semble en effet que
ce soit la quelle ait di naitre; car, nulle part des ouvrages plus
importans ne sont exécutés par de plus grands moyens, avec une
précision plus rigoureuse , et dans un moindre espace de temps.

(*) Sur le rapport de MM. Carnot, Prony et Sané rapporteur, ce mémoire
a obtenu Iapprobation de la classe le 19 de juillet 1813. 1l doit paraitre dans
le cahier du journal de Pécole polytechnique qui est actuellement sous presse.

Tom.V, ne° II, 1.7 goit 1814. 5
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Aprés que Galilée cut ouvert ainsi la carritre, elle fut parcourue
par les savans les plus illustres; des qu'il y eut un premier germe
de théorie dans les arts, la théorie forma des ingénieurs. C’est alors
que la partic expérimentale a fait des progrés plus sensibles, et
quon a remplacé plus généralement I'hypothése et le systéme par
des données fruits de 'expérience , et par des calculs rigoureux fondés
seulement sur ces donndes.

Sans retracer ici I’histoire des travaux dont nous venons de parler,
nous nous contenterons de citer la savante préface d’un traité sur
la résistance des solides, qu’on doit a I'ingénieur Girard qui, lui-
méme , a fait de nombreuses et belles expériences sur la force des bois.

Jusqu’ici , I'on a cherché principalement & déterminer la résistance
dont les bois sont susceptibles avant leur rupture , soit en les rom-
pant perpendiculairement & leurs fibres, soit en les affaissant sous
des poids qui agissaient dans le sens méme de ces fibres.

Sans doute, il est nécessaire de connaitre ce point extréme, cette
limite de la force des bois, afin d’employer toujours des matériaux
doués d’une force plus grande que tous les efforts auxquels ils
devront résister, dans les constructions et dans les machines ou ils
entreront comme élémens; mais il faut toujours se tenir assez loin
de cette limite; et, lorsqu’on veut faire des travaux durables, il
faut s’en tenir bien plus loin encore; car le temps diminue inces-
samment la force des bois , et mille causes concourent a détériorer
leurs qualités primitives.

Il est un autre genre de recherches non meins utile, plus utile
peut-étre , et qui cependant me semble avoir été le moins suivi;
c’est de déterminer les résistances comparées des bois , lorsqu’on
les soumet a4 des forces capables d’altérer trés-peu leur figure, et
de trouver, si je puis m’exprimer ainsi, leur résistance virtuelle.

Lorsque nous construisons nos édifices , nos machines, nos vais-
seaux , nous supposons que les pieces d’une dimension considérable,
et d’ailleurs peu chargées, conservent la figure qu'un dessin ri-
goureux leur a donnde : il n’en est rien. Dans la nature , les moindres
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forces ont leurs effets certains , quoique par fois trop petits pour
tomber sous nos sens ; et souvent ces effets, insensibles individuel-
lement , s'accumulent au point de produire les résultats les plus
marqués et les plus graves : nous n’en citerons qu’un seul exemple.

Le plus grand édifice que nous puissions construire en charpente
est sans contredit un vaisseau , tel qu’il le faut aujourd’hui pour
entrer en ligne dans nos escadres. Lorsqu’un vaisseau du premier
rang est établi sur les chantiers , ses derniéres alonges s’élévent au-
dessus du faite des plus hautes maisons. Il doit loger mille hommes
et au-dela, renfermer leurs vivres pour six mois, et toute l'ar-
tillerie d’'une place forte de seconde classe. Aussi la solidité de sa
construction répond-elle & I'immensité des objets qu’il doit contenir,
Nous avons nommé murailles ses parois en charpente ; et leur
épaisseur est en effet au moins égale 3 celle des murs extérieurs
de nos maisons ordinaires. Les liaisons , les supports en tous genres
y sont combinés avec intelligence ; le cuivre, le fer y sont pro-
diguds pour maintenir 'ensemble de toutes les parties, Qui douterait
qu'avec des moyens si puissans et si bien disposés, la forme du
vaisseau ne se trouvat assurée d’une manidre invariable? cependant
cela n’est pas. A peine est-il lancé sur la mer, que, d’une part l'inégale
réaction produite dans un sens par les poids accumulés vers les
extrémités , et de l'autre la répulsion de I’eau, concentrée vers le
milieu , courbent ¥ la fois toute ceite grande machine , et font
former a ses parties des arcs qui, sur une corde de soixante métres ,
-ont présenté quelquefois un demi-métre de fleche, et au-deld.

Une telle déformation est énorme sans doute; elle change puis-
samment la stabilité du vaisseau ; elle influe sur toutes ses autres
qualités. Cependant, si nous voulions savoir quelle serait la fléche
d’'un arc ayant deux métres de corde, et ayant d’ailleurs la cour-
bure que nous venons d’indiquer, nous trouverions que le nouvel
arc devrait avoir pour fleche moins de dewx diziémes de millimétres ,
c’est-a-dire , une grandeur presque insensible , sur une longueur au
moins égale & notre plus haute stature.
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C’est donc cette altération 2 peine sensible des bois que je me
suis premiérement preposé d’apprécier. C’est leur résistance & tout
changement d’état, au moment ol celte résistance commence &
faire sentir ses:effets, c’est-a-dire, lorsque les corps alitrent infi-
niment peu leur forme, en vertu des poids qu’ils supportent, que
jai euen vue d’évaluer.

On verra peut-étre avec quelque intérét que les lois et les ano-
malies observées dans les expériences faites en grand sur la rupture
des bois, c’est-a-dire , au point ot leur déformation est la plus
grande possible, ne sont que la conséquence nécessaire des variations
extrémement petites que leurs moindres flexions offrent & I'observateur.
Clest & peu prés ainsi que les fonctions intégrales dérivent des lois
qui coordonnent les élémens différentiels de ces mémes fonctions,
et peuvent en étre rigoureusement déduites,

Je vais maintenant passer au détail de mes expériences. Sur un
grand établi, jai fait fixer deux supports horizontaux et de niveau,
distants entre eux de deux metres ; jai fait donner la forme d’un
parallélipipéde 3 des morceaux de chéne, de cyprés, de hétre et
de sapin ou de pin , seuls bois dont je pouvais disposer.

Ces parallélipipédes , ayant un peu plus de deux métres, étaient
posés tour & tour sur les supports , dont ils mesuraient la plus
courte distance , en dépassant trés-peu de chaque coté 5 assez seule-
ment pour que la pitce, en prenant de la courbure , ne se ra-
courcit pas au point de tomber entre les appuis.

J’ai chargé ces parallélipiptdes , que jappellerai simplement des

régles , par des poids placés a dgale distance entre les deux supports ;
alors chaque régle a pris une certaine courbure.
, Premierement, il ést évident que la régle a di se plier suivant
une courbe plane verticale. Secondement , la courbe formée par
chaque aréte de la régle est symétrique 2 droite et & gauche, par
rapport au plan vertical mené par le point milieu ol la charge est
appliquée, et perpendiculairement au plan méme de la flexion.

Voila la courbe dont nous avons voulu déterminer les élé-
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mens ; Dous avons toujours considéré la [ace concave de la rigle
plide.

Or, dans lcs nombreuses expériences que nous avons faites , nous
avons constamment observé que, quand les poids sont peu consi-
dérables , les flecches des arcs formés par la régle pliée sont pro-
portionnelles 3 ces poids mémes.

Mais, quand les fleches sont trés-petites , par rapport a la corde
constante de plusieurs arcs , la courbure de ces arcs est directement
proportionnelle aux fleches correspondantes : de 1a jai conclu ce
premier théoréme , auquel avait déji conduit la théorie.

. La flexion des bois produite par des poids trés-petits est pro-
portionnelle & ces poids; en mesurant cette flexion par la fleche
de leur arc, c’est-d-dire, par I'abaissement ou la descension du
point milieu de la régle. _

Denc aussi, lorsqu'une méme pitce de bois est chargée entre les
mémes appuis par des poids différens , ces poids sont réciproquement
proportionnels au rayon de courbure de la rigle a2 son peint mi-
lieu, et la courbure elle-méme est par conséquent proportionnelle
2 ces poids trés-petits.

Aprés avoir ainsi déterminé le rapport de la force virtuelle de la
flexion avec le poids qui produit cette flexion , il convenait de voir sila
méme loi se conserve , en chargeant le corps par des poids plus
considérables ; ou, si elle ne se conserve pas, quelle est P’altération
que cette loi supporte : c’est ce que jai fait , avec beaucoup de
soin et de patience, en employant un double décimétre de Kursch,
parfaitement gradué. L’habitude de prendre des mesures, que j’ai
depuis long-temps été forcé d’acquérir, me fait assurer que toutes
celles que j’ai consignées dans mon travail ne différent par de deux
dixiémes d’un millimetre de leur vraie valeur. Cette quantité, toute
faible qu'elle est , a paru cependant trop forte encore aux yeux
d’un géometre (*) qui porte dans la physique une précision inconnue

* Laueur de VAstronomie physique.
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jusqu’ici. Mais observons qu’il est, dans chaque genre de recherches,
un degré d’exactitude quil serait aussi impossible que superflu de
vouloir outre-passer. Cest ainsi qu’il m’aurait fallu des ébénistes pour
polir' mes bois , si javais voulu , par exemple, que leurs faces
fussent planes, 4 moins d’'un demi-dixiéme ou méme d’'un dixime
de millime¢tre prés. Observons encore que deux dixi¢mes de milli-
meétre équivalent a l'ancienne mesure appelée poinz : telle est la
limite de mes erreurs.

Jai pris les quatre espces de bois les plus généralement em-
ployées dans les arts : cc sont celles que j’ai déja nommées. Le
chéne et le sapin étaient coupés depuis peut-étre vingt-cinq ans ;
puisqu’ils provenaient du vaisseau russe le Michaél, que jai dé-
moli en 1810, et qui avait peut-&tre alors vingt ans de construction.

Aussi ces bois sont-ils loin d’avoir la force qui leur appartient.
Mais , comme il s’agit ici de déterminer les lois qui régissent la
force et V’élasticité des bois, par des rapports généraux et indé-
pendans de la vigueur absolue des fibres ligneuses, et méme indé-
pendans du genre et de l’espece des arbres, on voit que ces bois
étaient aussi propres & remplir notre objet que s’ils eussent été de
fraiche coupée. Au reste, le cyprés et le hétre n’avaient guére plus
d’'un an d’abattage , .et leur élasticité nous a présenté les mémes
propriétés que les bois que nous venons de dire avoir vingt-cing
ans de coupe : ce qui démontre notre assertion jusqu'd l'évidence.

On a travaillé quatre parallélipiptdes ayant , comme nous l'avons
dit, quelque chose de plus que deux metres de longueur; on leur
a donné trois centimdtres d’équarrissage ; ensuite on a placé succes-
sivement chaque régle sur les appuis, et on I'a chargée , sur son
milieu par 4 kilogrammes , puis par 8, 12, 16,..., jusqua 28
kilogrammes. A notre travail sont joints des tableaux qui font
connaitre 1.° les fleches de Plarc pris par les régles; 2.° les diffé-
rences premiéres de ces fleches.

En jetant les yeux sur ces tableaux, on voit d’abord que 8 kilo-
grammes font plier la régle du double seulement de la flexion
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produite par 4 kilogrammes, ce qui nous fait voir qu’an-dessous
de ces deux charges les différences secondes deviennent trop petites
pour étre appriciées, Ce résultat eoncorde avec ceux d’ot nous
avons déduit le premier théoreme.

Je remarque ensuite que , dans les tableaux de tous les bois ,
du chéne, du cyprés, du hétre et du sapin, les différences pre-
mictres des fleches vont toujours en augmentant.

Elles offrent , il est vrai , quelques légéres anomalies ; mais, immé-
diatement aprés une différence trop faible , s’en présente une en
sens contraire qui la surpasse beaucoup plus ; et, comme les erreurs
ne portent que sur des diziémes de millimétres , je ne doute pas
qu’ecn employant des bois travaillés avec la derniére perfection,
et en recourant 4 des moyens d’observer que je n’avais pas & ma
disposition, on n’obtienne des résultats plus exacts, et tels que les
différences secondes soient constantes,ou du moins n’éprouvent que
des variations tout & fait insensibles.

Ainsi , nous pouvons regarder les différences secondes des di-
mensions comme constantes, lorsque les poids qui chargent une
méme pitce croissent par différences premiéres constantes, et cette
loi si simple est pourtant tellement concordante avec l’expérience
que, si nous formons, pourle chéne par exemple , le développement
régulier des termes qu’elle exprime , les résultats ne différeront
jamais des observations de quatre dixiémes de millimetre; et la flexion
totale a laquelle nous arriverons est cependant de 406 de ces dixiémes,
Il est facile d’expliquer cette légére anomalie.

La régle, en se courbant, forme un arc plus long que sa corde;
il faut donc, lorsqu’elle se plie, qu'elle glisse plus ou moins sur
ses appuis. Mais ces appuis étaient de simples arétes en bois, tra-
vaillé proprement , 4 la vérité , mais sans beaucoup d’art; les
alongemens ont di se faire , non d’'une maniére continue , mais
par de petits ressauts plus ou moins sensibles. Qu’on se rappelle
toujours que nous étions dans un pays ou tout manquait, jusqu'a
des balances assez précises pour pousser l'exactitude au-deld des
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dix milli¥mes ; si méme elles y arrivaient, et I'on verra qu’aucune
des petites différences de l'observation et du calcul n’est au-delx
de la limite totale de la justesse des opérations.

Nous avons voulu voir ensuite le résaltat des mémes formules
pour la charge, trés-considérable, de 8o kilogrammes. En com-
parant nos résultats avec ceux obtenus pour une charge de 4 kilo-
grammes seulement, nous avons reconnu que y proportion gardée ,
le cyprés a le moins de fleche sous la grande charge , ensuite le
chéne , puis le sapin, enfin le hatre. '

De 14 nous tirerons cette conséquence remarquable ; Quand méme
la résistance virtuelle d'une espéce de bois serait trés-forte; st
les différences secondes étaient considérables pour cette espéce , avec
une charge assez grande , ce bois finirait par plier plus que celui

d’'une autre espéce, dont la résistance virtuelle ¢ la flexion serait
eependant plus petite.

On sait qne le hétre est éminemment élastique ; le tourneur en
fait Parc qui sert de régulateur & son tour. Dans la marine , les
meilleurs avirons , ceux qui supportent sans se rompre les efforts
les plus grands, les chocs les plus brusques, sont les avirons de
hétre. C’est que les différences secondes pour le hétre étant consi-
dérables , cette grande flexion dont le hétre est susceptible , avec

des charges données, lui permet de céder 4 des chocs brusques ,
et le rend peu cassant.

Remarquons, au contraire, que le cyprds, peu flexible et trds-
cassant , a ses différences secondes presque insensibles : elles ne sont
pas le tiers de celles du hétre.

Jai détermind les pesanteurs spécifiques des quatre espices de bois
soumises aux expériences précédentes, I'ordre de ces pesanteurs est
aussi celui des résistances a la flexion.

De 1i résulte cette conséquence importante : De deux vaisseauz
dont la charpente sera d'égal volume , celui construit avec le bois
le plus pesant prendra moins d’are ou de courbure , que celui construrt

avec
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avec le bois le plus léger. Car, toutes choses égales d’ailleurs, I'arc
des vaisseaux est proportionnel & la flexibilité virtuelle.

Ainsi , les vaisseaux de la Baltique ct de la Hollande doivent
prendre plus d’arc que ceux de la Méditerrande.

Mais , d’aprés les mémes calculs , De deux vaisseaux dont la
charpente a le méme poids , et qui sont construits en bois diffé~
rens , le vaisseau construit avec le bois le plus léger sera celui
dont I'arc sera le moins considérable, et qui conséquemment pré-
sentcra la plus grande solidité.

Le célébre Don G. Juan parait avoir entrevu cette vérité, puisqu’il
voudrait que l'on construisit les vaisseaux avec les plus légers des
bois, les bois résineux, et non plus avec le chéne. .

Au reste , toutes les expériences précédentes, en offrant les élémens
de la résistance virtuelle , donneront les moyens de calculer et par
Id d’obtenir des résultats comparables , sans en venir aux expériences -
coliteuses de la rupture des piéces. Par ce moyen, on connaitra
micux les qualités des bois qui conviennent aux divers travaux des
arts en général, etsur-tout des constructions navales ; et on pourra
fixer les dimensions des piéces de chaque navire d’'une maniére moins
arbitraire. Ces opérations, plus éclairdes , conduiront a des résultats
avantageux.

Dans le port ou je dois me rendre incessamment, j’espére pouvoir
déterminer les élémens des forces virtuelles des bois , mesurés sur
des pidces parfaitement saines, et non plus sur des bois usés, tels
que ceux dont je pouvais disposer a Corcyre. Si la classe prend
quelque intérét & ces recherches, jaurai I'henneur de lui en com-
muniquer les résultats.

Les ingénieurs de la marine agitent en ce moment une question
importante. On sait qu’autrefeis Ia maiture de nos vaisseaux ctait
faite avec des sapins, ou plutét des pins da nord, parce que les
rares qualités de ces bois les font rechercher de toutes les nations.
Depuis long-temps les approvisionnemens de ce genre que possédaient
nos arsenaux sont épuisés ou du moins tellement appauvris quik

Tom. V. 6
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faut recourir & d’autres bois. On a proposé les sapins de la Toscane
et les pins de la Corse. On a cru trouver en eux plus d’avantage
que dans les anciens bois du nord , dont nous pouvons disposer
encore ; et cela est vrai. Mais en ont-ils plus que les bois du nord
dans leur fraicheur ? voild ce qui n’est point encore décidé.

Ensuite, il ne suffit pas de considérer la résistance a la rupture;
la résistance i la flexion est aussi d’une considération trés-importante.
Car la flexion des mats ne s’opérant que par Valongement des
cordages qui les soutiennent ; de deux méts qui casseraient sous le
méme effort, celui qui plie le plus exige un plus grand alonge-
ment dans les cordages et par conséquent un plus grand effort de
la part du vent. Done aussi la force des cordages doit étre dans
une relation nécessaire avec la vésistance que les méts opposent A
.toute flexion.

Dans tous les cas, il faut déterminer les dimensions des mitures
suivant la nature des bois qu’on emploie , et I'on voit que les données
dont nous avons parlé jusqu’ici, sont propres 4 répandre quelque jour
sur ce beau probléme. ‘

Apres avoir multiplié les expériences sur les pitces d’une seule
et méme forme,nous en avons considéré qui avaient des épaisseurs
et des largeurs différentes, et nous sommes parvenus a ce résultat
constant : '

La résistance & la flexion est proportionnelle aux cubes des
épaisseurs. Nous avons essayé de démontrer par la théorie cette vérité
d’expérience.

Lorsqu’on plie un parallélipiptde de bois, les fGibres intérieures
sont comprimées, et les fibres extérieures sont alongées ; de maniére
qu’il se trouve une fibre intermédiaire d’une longueur invariable ;
et cette fibre est toujours la méme , quelque courbure qu’on donne
au parallélipipede. '

Pour démontrer Veffet de V'alongement ou du raccourcissement
des fibres, Duhamel imagina V'expérience la plus ingénieuse. 1l scia
par le milieu, et perpendiculairement 4 la direction des fibres, les
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trois quarts de I'épaisseur de la piéce, puis il enfonga dans le trait
de la scie un coin fort mince, et d’un bois encore plus dur que
le chéne. La piece étant ensuite soutenue par les deux bouts , et
la face ol était le trait de scie étant en dessus , on chargea cette
pitce Lpar des poids; or, quoiqu’elle fut sciée aux trois quarts, un
quart seul des fibres put résister par son extension ; de maniére
que la piéce avait conservé toute sa force. Lorsque le trait de scie
était moins avancé, la force était plus grande ; elle était plus petite
dans le cas contraire. Lorsqu’on aura déterminé par 'expérience la
position précisé de la fibre invariable, on voit, par ce que nous venons
de dire , que rien ne sera plus facile que d’en conclure le rapport
des forces nécessaires pour produire un alongement ou un raccour-
cissement déterminé des fibres d'une méme piece de bois: les ex~
périences qui devront servir de base & ce calcul , offrent a faire
une des plus belles recherches que puissent présenter les questions
relatives 4 la force des bois.

Apres avoir chargé les pitces par des poids uniques , je les ai
charge’es par des poids uniformément répartis sur toute leur longueur;
et j’al trouvé que, pour le méme poids accumulé au milieu d’une
pi¢ce , ou réparti uniformément sur toute son étendue , les Heches
ou descensions sont entre elles comme diz-neuf est a trente ; et ce
rapport se conserve le méme , soit pour les bois d’une espéce diffé~
rente , soit pour les bois de dillérentes dimensions.

Si donc on prend le poids d’une pitce prismatique pour unité,
en doublant les trente dix-neuviémes de la fléche qu'elle prend,
lorsqu’on la soutient horizontalement par les deux bouts, on a la
fleche qu’elle prendra lorsqu’on la chargera d’un poids égal au sien,
mais accumulé au milieu. Ce principe donne un moyen simple de
peser , sans balances , les bois trés-lourds et trés-longs , pourva
que leur épaisseur soit constante.

On voit, par ce que nous venons de dire , que rien ne sera plus facile
que de considérer un poids unique chargeant une piéce par son milieu
comme un poids uniformément réparti le long de cette piece, et
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réciproquerﬁent: considération d’une fréquente utilité dans les arts!

J'ai déterminé enfin la flexion des pitces en fonction de la distance
des appuis, et jai été conduit & ce résultat : Deux piéces d’égal
équarrissage se plient suivant des arcs dont les fleches sont pro-
portionnelles auz cubes des distances des appuis.

Rapyelons-nous d’ailleurs qu’entre les mémes appuis, les fieches
sont réciproquement comme les cubes des épaisseurs.

En combinant ces deux principes avee cet autre que, pour des
flexions peu considérables, les fleches sont directement proportion-
nelles aux charges, on arrive & ce résultat singulier :

Deux piéces de bois étant semblables, c'est-d-dire, ayant leurs
dimensions homologues proportionnelles, et étant d’ailleurs supposées de
la méme espeéce; en les soutenant par leurs extrémités, les fleches
des arcs qu'elles prendront, en vertu de leur propre poids, seront
directement proportionnelles aux quarrés des longueurs des piéces ;.
et par conséquent , quelle que soit la grandeur absolue de ces
piéces , elles prendront toutes un seul et méme rayon de courbure.
La méme chose aurait encore lieu , si I’on chargeait les piéces par
des poids accumulés ou répartis, mais proportionnels au poids méme
de ces pitces.

Ce résultat parait étre de nature 3 s'appliquer souvent dans les
constructions ; car les édifices de méme nature ont ordinairement
tous leurs élémens proportionnels. Si donc nous voulons comparer
deux vaisseaux scmblablement construits , avec les mémes matériaux ,
dont les dimensions partielles soient ainsi proportionnelles a celles
méme de ces vaisseaux , nous en conclurons que Zarc des vais-
seaux , toutes choses égales d'ailleurs , doit avoir un seul et méme
rayon de courbure , quelle que soit leur grandeur absolue.

On doit maintenant voir clairement pourquoi les grands vaisseaux,
indépendamment de toute autre cause , ont proportionnellement
beaucoup plus d’arcs que les petits navires : c’est que la fleche de
ces arcs suit la loi des quarrés des dimensions principales du navire.
Ainsi , dans le cas que nous avons déja cité d’'un navire de soixante
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métres qui prendrait un demi-métre d’arc , un petit navire d'un métre
de long, et semblable au premier, ne prendrait pour fleche de son
arc qu'un trois mille six centitmes de demi-métre , au lieu d'un
soixantiéme , simple rapport des longueurs.

Jusqu’ici nous n’avons que la fleche de la courbe donnée par la
flexion des bois, et la corde de cette courbe ou la distance des
appuis. Aprés avoir attentivement examiné la forme offerte par cette
courbe , et l'avoir rapportée , par la pensée , aux formes qui me
sont le plus familiéres , jai jugé qu’elle devait trés - peu différer
d’'une hyperbole; je I'ai supposée telle,et voici comment j’ai vérifié
cette hypothése.

Jai pris une régle de sapin, dont la longueur excédait un peun
deux meétres, et dont les autres dimensions étaient o™,1 et o™01 ;
je lai placée sur mes deux appuis , toujours éloignés de deux
métres 'un de Vautre ; je l’ai‘fait courber, en chargeant son milieu,
de maniére A présenter une fléche de treize centimétres. Cette cour-
bure est trés-considérable ; et jai voulu qu'elle fit telle , pour
mieux observer les anomalies qui pourraient se présenter dans les
relations hypothétiques que je cherchais & confirmer ou a détruire.

Une ligne droite horizontale , servant de corde i cet arc, et ayant par
conséquent deux métres m’a servi d’axe des abscisses. Je I'ai di-
visée en vingt parties égales. Par chaque point de division, jai
tracé unc ordonnée verticale qui allait jusqu'd la courbe ; j’ai donc
pu déterminer ainsi vingt-un points de cette courbe. J'avais pour
plan de projection une planche parfaitement aplanie , que j’appliquai
verticalement le long de la regle pliée, et sur laquelle j’ai tracé
la courbe, sa corde et ses coordonnédes. Ensuite j’ai relevé , avec
tout le soin possible , les abscisses et. les ordonnées de cette courbe;
“et, pour balancer les erreurs, je prenais la demi-somme des or-
données symétriques , & droite et & gauche du milieu.

Pour déterminer mon hyperbole comparative , j’ai congu une ligne
de ce genre, dont I'axe réel serait vertical , ct dirigé suivant la
fleche de Varc élastique ; cette ligne dailleurs passant par les cing
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points suivans :

1.° le point milieu de Varc; 2.° et 3.° les deux
points d'appui ;

4.° et 5.° les deux points qui correspondent au
milieu de chaque demi-corde , & droite et & gauche de la fleche;
de maniére que les cinq abscisses de ces points étaient : —1™; —0,5;
0;4+0,5;41™. A Vaide de ces données , rien n’est plus facile
que de trouver I'hyperbole comparatrice ; son équation se présente sous
une forme extrémement simple.

En rapprochant I’hyperbole comparatrice etla courbe élastique pro-
duite par la regle plide, nous nous sommes assurés que, pour les
mémes abscisses , les plus grandes différences des ordonnées des
deux courbes ne sélevent pas & sept diziémes de milliméire.

Dans ces différences , il faut toujours comprendre deux dixiémes
de millimetre pour les erreurs qui ont pu étre commises , en me-
surant & vue d'eeil les dixiemes de millimeétre ; 'on concevra alors
que, sur une étendue de deux mille millimétres, et pour une cour-
bure de 130 millimétres,, ne pas trouver sept dixi¢mes de milli-
métre pour les plus grandes différences, c’est une identité qu’il est
rare de rencontrer , méme dans les résultats que la théorie démontre
devoir étre les mémes. Nous pouvons donc conclure premiérement
que , quelle que soit la courbe élastique produite par la flexion
des bois entre deux points d’appui, il est permis de la confondre
avec 'hyperbole, sans crainte d’erreurs appréciables dans la pratique,

méme dans les calculs ol les approximations seraient poussées
assez loin.

Faisons voir maintenant pour quelle raison la courbe élastique
approche si fort de se confondre avec ’hyperbole. Lorsqu;une régle
est pliée sur deux points d’appui, le long desquels elle peut glisser
podx‘ se mettre en équilibre avec les poids qui la chargent , il faut
que Veffort produit au point d’appui par la tendance au redres-
sement de la piéce soit nul ou, ce qui revient au méme, il faut
qu'en ce point la courbure de la regle soit nulle, et par conséquent
le ‘rayon de courbure infini.

Cest parce que , dans I'hyperbole , les rayons de courbure s’ac-



SUR LA RESISTANCE DES BOIS.
croissent suivant une loi trés-rapide, en séloignant du sommet,
que I'hyperbole se trouve encore si voisine de la courbe élastique,
méme a des distances assez grandes de ce sommet.

Mais comme , & une distance finie du sommet, le rayon de courbure
de I'hyperbole ne devient pas infini ; on voit que , vers les appuis, la
courbe élastique , ayant moins de courbure que I'hyperbole, lui
sert de corde et passe au-dessus. Donc auprés de ces appuis ( et
intérieurement ) les abscisses de I’hyperbole doivent étre les plus petites.
Crest précisément 4 cela qu'il faut attribuer les différences dont le
maximum est, comme nous I'avons dit plus haut, inférieur & sept
dixiémes de millimétre. '

Je ne me suis pas borné 3 Yexamen de la courbe produite par
la flexion d’une seule reégle ; j'ai plié successivement d’autres regles
en sapin, en chéne, en hétre ; j’ai constamment trouvé les diffé-
rences de l'’hyperbole comparatrice 3 la courbe réelle moindres que
sept dixi¢mes de millimetre. .

Je dois faire remarquer un fait d’expérience vraiment singulier.
Si, au lieu de mettre la charge 3 égale distance des appuis, on la
“rapproche de 'un d’cux d’une quantité peu considérable , la courbe
élastique n’est plus symétrique par rapport A la verticale équidistante
des deux appuis. Néanmoins , cette courbe se confond encore A trés-
peu prés avec une hyperbole ; mais cette hyperbole, au lieu d’avoir
un axe vertical et l'autre horizontal , se trouve rapportée 4 deux
diamétres conjugués dont l'un est horizontal et l'autre oblique &
I'horizon.

Il est visible en effet que, dans cette hypothése, les tensions
de la régle, en chaque point d’appui, ne doivent pas cesser d’dtre
nulles ; les rayons de courbure doivent donc encore étre infinis en
ces points de la régle ; et la courbe, cessant d’étre symétrique avec
la verticale , ne peut plus correspondre qud un arc d’hyperbole
dont aucun axe ne soit vertical. Lorsqu’en suppose les abscisses
horizontales , les ordonnées conjuguées ne peuvent donc plus étre
verticales ; mais ces ordonnées appartiennent toujours  un systéme
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de diametres conjugués, et voild ce que nous voulions faire remarquer.

Aprés avoir considéré la courbe produite par une flexion unique ,
j’ai cherché & comparer les courbes qui résultent de flexions dif-
férentes. Ici se présente une nouvelle série d’expériences , plus dé-
licates peut-étre que les précédentes, et dont jexposerais la marche
si je n’avais pas déja dépassé les bornes que cette analise doit avoir.
Je me contenterai de dire qu’aprés avoir déterminé une courbe simple ,
ayant avec la véritable élastique un contact trés-intime , j'ai supposé
leurs rayons de courbure identiques au point qui leur est commun.
Mais , on a de sunite ce rayon au sommet de I'hyperbole ; on a
donc aussi le maximum de courbure de I'élastique pour une fléche
donnée. _ '

Je passe enfin & lexplication de la rupture des bois. Jobserve
que les bois homogenes doivent rompre au point ol leurs fibres
atteignent un certain degré constant d’alongement ou de raceour-
cissement. Cette condition combinée avec les principes exposés pré-
cédemment sur la flexion des bois , me conduit A retrouver et &
démontrer les diverses lois connues sur leur rupture.

Je viens de donner une idée de la premiére partie de mes re-
cherches ; Fautre est encore trop incompléte pour étre présentée i
la classe. Je me suis occupé , dans cette seconde partie , de la
flexion des bois, lorsqu’on les plie sur des surfaces données. On
sait que c’est en pliant ainsi les bois que nous recouvrons par des
bordages , 4 Vextérieur , et par des paigres, a lintérieur , toute
1a membrure de nos vaisseaux.

Dans les ports du nord de IEurope on cZauffe les bordages,
en les mettant dans des étuves ; jai cherché a voir quelles alté-
rations ce procédé produit sur la force des bois.

Je me suis ensuite occupé de ce que nous appelons des assem-
blages : ce sont les formes diverses par lesquelles nous joignons une
pitce de bois & une autre. Je me suis proposé de déterminer la
force de ces assemblages, en appréciant soigneusement tout ce qui
peut contribuer & leur bonté.

~ Enfin,
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Enfin, je me suis occupé de la torsion des bois. Deés que ces
élémens des machines sont sollicités par des forces qui ne concourent
pas au méme point, il y a tendance & la torsion; et, comme toute
force produit son effet, il y a réellement torsion. Clest ainsi que
des efforts trop puissans brisent les arbres des pressoirs et des moulins.
Je me suis donc proposé de déterminer les forces de torsion , en
fonction du diametre des bois, de leur longueur et du temps, qui
entre ici comme un élément d'une puissance extraordinaire.

Si linstitut voit ces recherches avec quelque intérét , et pense
que leur continuation puisse étre utile, je m’appliquerai & les com-
pléter, et j’aurai I’honneur de soumetire au jugement de la classe
ce que de nouvelles observations m’auront appris.

GEOMETRIE DES COURBES.

Description des sections coniques , par les inlersections
continuelles de leurs tangentes ;

Par M. GERGONNE.

[a Ve % V1o ¥, VL, Vi, Vo V3

DANS le X.¢ cahier du Journal de I'école polytechniqgue ( page 49 ),
M. de Prony a déduit de la théorie des Solutions particuliéres , un
mode de description des scctions eoniques , par les intersections
continuelles de leurs tangentes , qui est fort simple et fort
commode , et trés- propre conséquemment A faciliter le tracé

des épures des voltes. Je suis parvenu au méme résultat, par des
Tom. V.. 7
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considérations tout 3 fait élémentaires, en cherchant i résoudre le
probléme suivant.

PROBLEME. Etant donnés les élémens qui déterminent une
section conique , lui mener une tangente paralléle & une droite donnde ?
Solution commune & Pellipse et a I'hyperbole. Soient C le centre,
A et B les sommets , et F, G les foyers d’une ellipse ( fig. 1)
ou d’une hyperbole ( fig. 2). De Tun quelconque ¥ des foyers,

soit menée une perpendiculaire FP 4 la droite a laquelle on veut
que la tangente cherchée soit paraliéle

; de Vautre foyer G pris
pour centre, et avec un rayon égal au premier axe AB, soit décrit
un arc coupant ¥P en P, et soit menée GP ; enlin soit menée 2
FP par son milieu N une perpendiculaire NM , rencontrant GP en
M ; cette droite NM sera la tangente cherchée , et le point M sera
celui ou elle touche la courbe.

Pour le démontrer, soit menée MF, on aura, par construction,
MF=MP ; on aura donc MG4MF ( fig. 1) et MG—MF ( fig. 2)
=MG+4MP ( fig. 1) et =MG—MP ( fig. 2) =GP=AB; ce qui
prouve déja que le point M appartient a la courbe. En second lieu,
la droite MN , faisant des angles égaux avec les droites GP et MF,
est tangente au point M. Enfin, NM étant perpendiculaire 4 FP qui
est elle-méme perpendiculaire & ladroite donnée , sera conséquemment
parallele & cette droite.

Solution pour la parabole. Soient FH ( fig. 3 ) la direction de
Paxe , F le foyer et HP la directrice de la courbe. Par le foyer F
soit menée a la droite donnée i laquelle on demande que la tengente
soit parallele une perpendiculaire FP, coupant la directrice en P;
soit mende 4 cette droite FP, par son milieu N, une perpendicu-
laire NM coupant en M la parali¢le PM menée & P’axe par le point
P ; alors NM sera la tangente cherchee , et lc point M sera celui
ol elle sera touchée par la courbe.

Si en effet on meéne MF, on aura, par construction, MF=MP;
ce qui prouve déja que le point M appartient & la courbe. En second
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Lieu, Iégalité des anglcs NP, NMF prouve que la droite INM
est une tangente en M. Enfin NM étant perpendiculaire 3 FP,

qui est elle-méme perpendiculaire 3 la droite donnée , sera consé-
quemment paralléle a cette droite.

Si T'on congoit présentement que la droite donnée , 4 laquelle la
tangente demandée doit étre paralléle , varie de direction , par degrés
insensibles , 4 cause que GP (fig. 1, 2) doit étre oonstamment
égal 4 AB, le point P ne sortira point d'une circonférence KPH
ayant G pour centre et un rayon égal & AB; en conséquence, le
miliewu N de FP ne sortira point d’une autre circonférence ayant
AB pour diameétre ; ainsi en menant de tous les points P de la
circonféerence HPK des droites PF, PG aux deux foyers ¥, G,
et en élevant aux droites PF , par les points N ou elles sont coupées
par la circonférence ANB, des perpendiculaires NP termindes en M
aux droites PG , ces perpendiculaires seront des tangentes & la courbe,
et les points M seront ceux ou elles la toucheront.

Quant a la parabole , on voit que si, par le foyer F, (fig. 3)
on méne une suite de droites FP, terminées en P & la directrice;
et que , par les points N ol ces droites coupent la tangente AN
au sommet A, on leur éléve des perpendiculaires NM , terminées
en M par leur rencontre avec les paralléles a2 Paxe menées par
les points P; ces perpendiculaires seront des tangentes 4 la courbe,
et les points M seront ceux ou ellés la toucheront.

Donc, 8¢ lun des cotés d'un équerre passe constamment par
Lun des foyers d'une section conique , et que son sommet parcourt
la circonférence décrite sur le premier axe comme diaméire , s'il
sagit de lellipse ou de lhyperbole, ou une tangente au sommet,
s'il s'agit de la parabole, l'autre cdté de léquerre sera constam-
ment tangent & la courbe. C'est en cela que consiste le théoréme

de M. de Prony.
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QUESTIONS RESOLUES.

Démonstrations du dernier des deux theorémes enonces
@ la page 296 du quatriéme volume de ce recueil.

(e Via S Vg Vla Vlg Vi Wio V]

E NONCE. Dans toute ligne du second ordre qui a un centre ;
si l'on méne deux tangentes paralléles a une méme droite fize
quelconque , et une iroisiéme tangente variable ; le produit des seg-
mens des deux premiéres tangentes compris depuis leurs points de
contact jusqu'd la troisiéme ,sera une quantité constante. (*)

Démonstration analitique ;

Par M. BErarp , principal et professeur de mathématiques

du collége de DBriancon , membre de plusieurs sociétés
savantes.

Les points de contact des deux tangentes paralltles entre elles
étant les extrémités d’un diametre, nous prendrons ce diaméetre, que

(" Dans la Théorie des fonctions analitiques, page 134 de la premitre édi-
tion et 187 de la deuxiéme , Lagrange a démontrd que , non seulement cette

propriété appartenait aux sections coniques ; mais que de plus elle n’appartenait
qua elles seules. Mais sa démonstration sort du cercle des élémens,
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nous appellerons 22 , pour axe des a , et son conjugué 25 pour
axe des y.

Si alors 27/, 3/ sont les cordonnées du point de contact de la
troisitme tangente , nous aurons

bal* taryr=a*p? (1)
et I'équation de cette troisitme tangente sera
bzx/*atyy'=a*b* - (2)

On en déduira la longueur des segmens que cette tangente déter-
mine sur les deux premiéres, en y faisant successivement x=a et

x=-—a, et en prenant les valeurs correspondantes de y, ce qui
donnera

b=(a--x'>'; L
ay’

ay', 2

y==

le produit de ces deux segmens sera donc

a2b2——b2xl}

b2,

azy/z ’

quantité qui, en vertu de 'équation (1), se réduit 3 +5*, cest-a~

dire , le quarré de la moitié du conjugué du diamdtre qui
joint les points de contact des tangentes paralléles.

Démonstration géomélrique ;
Par M. Bruancuon, capitaine d’artillerie.

Soient ( fig. 4, 5) C le centre de la courbe , AB un diamétre



54 QUESTIONS

quelconque , DC son demi-conjugué,, AM et BN des tangentes aux ex—
trémités de ce premicr diamétre, M, N les points ou clles sont
coupées par une troisitme tangente variable quelconque MN, 1l
- s'agit d’établir que AMXBN est une quantité constante.

Pour cela, soit menée PQ, tangente paralltle 2 AB ( fig. 4 )
et asymptote (fig. 5), coupant en P et Q les prolongemens de
MA , NB.

Par une propriété connue du quadrilatére circonscrit aux sections
coniques (*), les directions des diagonales PN et QM du quadri-
latere MNQP doivent concourir en quelque point S de la direction
du diamétre AB qui joint les deux’ points de contact opposés ; d’apres
quoi les paralleles MP et NQ donneront

SB:SA::BQ:AM ,

SA:SB:: AP:BN ;

done
AMX<BN=AP x<BQ ;
mais on a
AP=BQ=CD ;
done

AMXBN=CD" .

(" Voyez, entre autres ,la page 167 du troisitme volume de ce recueils
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Solution du probléme de dynamique proposé & la
page 320 du 4. volume de ce recueil ;

Par M. DuBuaT , professeur & Técole de Yartillerie et
du génie.

ENONCE. Le point de suspension dun pendule simple , &
Pétat de repos , étant subitement entrainé , d’un mouvement rec-
tiligne et uniforme , avec une vitesse connue ,le long d'une droite
horizontale, on propose dassigner la nature de la trajectoire dé-
crite par lextrémité inféricure de ce pendule, ainsi que toutes les
autres circonstance du mouvement ; en faisant toutefois absiraction
de la résistance du milieu P

Solution. Prenons le point de suspension du pendule & I’état de
repos pour origine des coordonnées rectangulaires, et la droite par-
courue par ce point pour axe des x ; si nous prenons pour. unité
la longueur du pendule, et que nous supposions qu'a Vépoque ¢
I’abscisse de son point de suspension est #/, et les coordonnées de
son extrémité inférieure &, ¥, nous aurons les équations de condition

(x—x/>=+y‘=1 , (1) z/=bt ; (,,)

b désignant la vitesse constante du point de suspension.
Si, de plus, nous prenons la masse de ce pendule pour unité,

et que nous dédsignens par g la tension inconnue de sa verge, et
par g la gravité, les équations du mouyement seront
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a: dz ,
5;; =pz=a’),  (3) a:{ =py—g i @

Soient #—a/=S8in.4¢ ,- y==Cos.{¢ 3 on aura , en substituant et
ayant égard a Péquation (2), ’

. de , do \e2 .. .
4 dt—:p Cos.4¢-—-16( - ) Sin,4e=Sin.4¢ ; (5)

o d2e . do \»
—45n Sin,4¢~=16 ( Fry ) Cos.4¢=uCos.bo—g ;  (6)

équations entre lesquelles éliminant ., il viendra
r dz¢ .
43; =gSin.40 ;

et, en multipliant par 4d¢ et intégrant

o
8 < 'ﬁ%) =g(€—Cos.40)=g(€—1-}2Sin.*2¢) ;

mais I'angle ¢ devant étre nul en méme temps que la vitesse an-
gulaire , on doit avoir =1, et par conséquent , en séparant les
variables

2d9 do d¢(3m 2¢0-4-Cos.29)
Sm.z@ Sin.eCos.p Sin.@Cos.p ?

dzy's g=

ou enfin
dz
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dr ‘/____ deCos.p . d¢Sin.g  d.Sing d.Cos.e
&~ "Sin.p Cos.p  Simg  Cose

d’o} en intégrant et faisant la constante nulle , attendu que # et
tang.4¢ doivent étre nuls en méme temps,

{74 E:Log.Sin.‘p--Log.Cos.qx:Log.%i:% =Log.Tang.¢ ,
et par conséquent |
Tang.@:et‘lg .
de 1a on tire

4Tang.@=4TangSp Zei‘lg-—u&\/;
1==6Tang.2¢4-Tang,+p - I_Gegzvgr +¢4t\/§ !

Tang.fo=

et par suite

Tang4p '46*\/§(x—-e=f\’§) .

Sin.fe= =
n 49 V 1+Tang-’4¢ (‘+ezivg)g y

X - 1-5-6e2t\@+e4t\/é _

Cosfo= ————————— =
MG e
Done
x=51;}-4ei,\,z’;' ) 1—e2VB . _ 1=Ge2!V5 4-c41\E

CigextV)* r= GgeVB)®
Tome V. 8
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et telles sont les équations qui donnent la situation du mobile
chaque instant ; on en-tire .

da . O eztv; 4“/5
by F .V
; " (x-{-ezt\/g)

?

I_th\/é

dy - 2t\/-
—— =165 .¢ V| o ;
d ' # (1+é2‘\/5);

Iélimination de d7 et de ef\/g entre ces deux équations et la valeur
de y donnerait I’équation différentielle de la trajectoire; mais cette
équation serait probablement fort compliquée.

Si l'on fait =0, on trouve 2=0, y=-=1, 7 =0 cé qui
prouve que les constantes sont déterminédes conformément aux con-
ditions particuliéres de la question. '

Si Von égale la valeur de y & zéro, il vient

34”\/5_6331\/2'_*_ 1I=o,

AVE=3+2y/3

¢t par conséquent

1 e L
t=;—{,-;Log.(3f_2‘/z) ’

ce qui donne pour # deux valeurs , 'une positive et Pautre négative,
¢est-a-dire , antérieure 3 V'époque d’out on compte les temps.
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L l d d}’ . . 31 J
a Yvaleur € 'a;‘ montre ensuite que ¥y parvxent a son maximum

lorsque # est infini, et la valeur de y prouve que ce maximum

est —-r1.

Quand 4 labscisse qui répond 4 y=o0 ou ezt\/g’:.?;—l-z V2,
elle est ’ ‘

b e
_;—J;Log.(o+2\/z)-—x H

elle peut étre positive nulle ou négative , suivant que la vitesse 2
sera plus ou moins grande.

Il résulte de tout ce qui préctde que la courbe décrite par Iex-
trémité inférieure du pendule a une branche trés-courte au-dessous
de l'axe des #, et une branche asymptotique au-dessus du méme
axe, l'asymptote étant une parallele a I'axe des z , dont ’ordonnée
constante est dégale a I'unité,

Les diverses circonstances que peut présenter la trajectoire sont
représentées par les figures 6 , 7, 8, dans lesquelles CP est le
pendule au repos, c'est-a-dire, dans sa position initiale, CD I’ho-
rizontale que l'on fait parcourir, de gauche & droite & son point
de suspension et enfin AB lasymptote.
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QUESTIONS PROPOSEES.

Probléme de statique.

Sorr une verge élastique , inextensible , uniformément pesante , dont le
poids.et lalongueur soient donnés; et supposons que cette verge doive étre
soutenue par deux points fixes , situés sur une méme droite horizontale.

Si ces points sont situés aux deux extrémités de la verge, cette
verge, en vertu de son dlasticité, affectera une courbure dont la
concavité sera tournée vers le ciel, ,

Si, au contraire , ces deux points sont réunis au milien de la verge,
elle prendra, au contraire, une courbure dont la convexité sera tournée
vers le ciel.

Dans ces deux cas extrémes, il est clair que la courbure de la
verge sera plus grande que pour toute autre disposition des deux
points d’appui.

On propose , d’aprds cela , d’assigner la situation de ces deux
points qui fera prendre 2 la verge le moins d’arc possible ; c’est-
a-dire , de maniére que la perpendiculaire abaissée sur P'horizontale
qui joint les points d’appui, du point de la verge qui s'en écarte
davantage , soit en dessus soit en dessous , soit un minimum ?,
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DISCUSSION DES LIGNES er SURFACES DU 2.4 ORDRE. 61

GEOMETRIE ANALITIQUE.

Essai d’un nouveau mode de discussion de Péquation
generale des lignes et de celle des surfaces du second
ordre ;

Par M. GERCONNE.

Av NN

JUSQU’ICX on a employé, pour la discussion géométrique de I'équation
generale da second degré, & deux ou A trois indeterminees, ou la
resolution effective de cette équa.ion , ou la transformation des coor=-
donnces , ou enfin la connaissance de quelques propriétes appar—=
tenaut exclusivement aux diameétres principaux des lignes et surfaces
du second ordre.

La discussicn par la résolution effective de I'équation ou, autre-
ment dit , la methode de Chezy, est sans doute bien préférable 3
ce qu'on rencontrait autrefois sur ce sujet dans les Traités d'appli-
calion de U'olgébre & la géométrie ; mais , outre qu'aprés des calculs
peu symétriques , elle ne conduit, en definitif, qu'a la connais-
sance d’un systéme unique de diamétres conjugués, c'est & tort,
ce me semble, qu'on la présente comme modele de la methode
3 suivre, dans la discussion des lignes et surfaces de degres plus
élevés, puisque , poassé le quatriéme degré , la resolution de Iéqua~
tion est impraticable dans I'état actuel de Panalise , et que dés
le troisieme, la discussion de Iéquation résolue présente des diffi-
cultes & peu prés insurmontables. ‘

La discussion par la transformatior des coordonnées semblerait ,

Tom. ¥y 0 11, 1.5 septembre 1814 : 9



62 DISCUSSION DES LIGNES

pour cette raison, mériter la préférence : d’autant qu'elle est sus-
ceptible d’une certaine élégance. M.:Bret, en particulier ,. dans divers'
articles de ce recueil, a montré tout le parti qu’on en pouvait tirer.
Cependant , on sait que, déja pour les surfaces du second ordre,
clle n’est point exempte de difficultés; et que, dans tous les cas,
elle exige des calculs assez compliqués , sur-tout lorsqu’on veut
rapporter les grandeur et direction des diamétres principaux -aux
axes primitifs, et que ceux-ci ne sont point rectangulaires.

Quant a la discussion tirée de la connaissance préalable de quelque
propriété appartenant exclusivement aux diamétres principaux, bien
qu’elle soit peut-étre la plus brieve de toutes, comme M. Bérard
I'a prouvé dans un article de ce recueil et dans un ouvrage par-
ticulier (*); on sent pourtant qu’elle ne saurait étre considérée comme
un procédé vraiment élémentaire , puisque c’est 3 la discussion méme
de l'équation qu’il appartient de faire découvrir les propriétés que
cette méthode met en usage.

La méthode dont je me propose de tracer ici les principaux
lindamens me parait n‘avoir aucun de ces inconvéniens, et semble
en méme temps plus naturelle qu'aucune de celles-la. Elle serait
sans doute susceptible de perfectionnement ; aussi je ne la présente
que comme un simple essal. Elle a sur-tout cet avantage que les
résultats qu’on en obtient forment un tout dont les parties ont entre
elles une étroite liaison. A la vérité , cette liaison n’est pas sans
quelque inconvénient dans les exercices et examens publics , ol
‘il est beaucoup plus commode de savoir établir chaque proposition,
indépendamment de toates les autres; mais il n'est point du tout
démontré que ce qu’il faut faire pour briller dans les examens, du
moins suivant leur mode actuel , soit aussi ce qulil y a de plus
propre & se rendre habile dans la science. :

Je vais d’abord m’occuper des lignes du second ordre ; je passerai
ensuite & la considération des surfaces du méme ordre. Mais , comme

(") Voyez la note de la page 294 du 4™ volume de ce recueil,
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il a déja été fréquemment question des unes et des autres dans ce
recueil , j'élagucrai tout ce qui ne sera pas proprement relatif 2 la
méthode que j’ai en yue d’exposer.

§. L

Discussion des lignes du second ordre.

Soit Iéquation
Ax*~+-By*4-2Czxy-+t+24'2+2B'y+D=o0 , (1)
exprimant une courbe rapportée & deux axes quelconques , formant
entre eux un angle . Soit
y=matg, (2)
Iéquation d’une droite quelconque, rapportée aux mémes axes. En
éliminant y entre elles, il vient
(d42Cm—+-Bm? jx* 42§ A'4-B'm )+ C+Bm’ glat-(D+2B'g+Bg*)=o0; (3)
ainsi , généralement parlant, la droite (2) coupe la courbe (1) en
deux points. _

On sait que si, dans une équation, on délivre le premier terme
de son coefficient, le coefficient du second terme , pris avec un signe
contraire , devient alors la somme des racines; et comme , d'un
autre coté, l'abscisse du milieu d’une droite est la demi-somme des
abscisses de ses deux extrémités , il s’ensuit que, pour le milien
de la corde interceptée par (1) sur (2), on a

(A'4-B'm)+-(C4-Bm)g )
& At -
A-4-2Cm—Bm?

En substitant cette valeur dans (2), on trouvera, pour le méme

milieu ,
__ (A4Bm—(44Cm)g )
¥ A~4-2Cm<4-Bm2
Les équations (4) , (5) sont donc celles du milieu de la corde
interceptée par (1) sur (2).
En faisant varier g, dans les formules (4), (5), sans faire va-
rier 72, on obtiendra les coordonnées des milieux d’une suite de
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cordes toutes paralléles entre elles. On obtiendra donc I’équation da
lieu géométrique de ces milieux , en éliminant g entre ces deux
formules (*) ; cc qui donnera , par la suppression du facteur
A~-2Cm-+Bm* , commun i tous les termes de I’équation résultante ,

(A+4-Cm)z~+-(CBm)y-+(A'++B'm)=o0 ; (6)

(*) Les commengans ont d’ordinaire quelque peine & bien comprendre comment
ces sorles d'éliminations de constantes conduisent au but ol I'on veut atteinlre :
et c’est quen effet la raison quon leur en donne communément est plus méla-
physique que mathématique. 1l me semble que la chose devient évidente , en
raisonnant & peu prés comme il suit

Soient

X, ¥y, Ay=o0, (), '4’(-’”:)’, Ay=o0 , (&,
les équations de deux courbes rapportées aux mémes axes. Si, en les considérant
comme les équations d’'un méme probléme déterminé & deux inconnues, on en
tire les valeurs de x et y , ces valeurs, fonctions de A4, seront les coordonnées
de lintersection des deux courbes.

Si l'on fait varier la valeur de cette constante A, le point d'intersection des
deux courbes variera aussi, et lon pourra demander quelle est la courbe dont il
ne sortira jamais , quelque valeur que l'on puisse donner & A,

Pour résoudre cetle question, on considérera quen supposant A4 déterminée,
le point d'intersection des deux courbes n’est pas seulement donné par les deux
équations («), (B) , mais encore par tout systtme de deux équations que l'on
voudra déduire de leur combinaison , ou encore par le systtme de l'une quel-
conque d’entre elles’ et d’une combinajson quelconque de l'une et de Pautre.

Donc, en particulier, on pourra, dans Ja recherche du point'dont il s’agit,
remplacer équation (8) par le résultat de I'élimination de A entre elle et I'équa~
tion («); en sorle que, si ce résultat est

f(xs ¥)=o0 , (¢2]
le systtme des équations («), (¥) pourra, dans la recherche du point d’intersection
des deux courbes, remplacer celui des équations () , (8)-

Mais , lorsque la constante A4 varie , la courbe (%) demeure constamment la
méme ; d’od il suit que cette courbe doit contenir tous les points d'intersection
que lon.déduirait de la gombinaison des équations («), (8) , en donnant suc~
cessivement a la constante A toutes les valeurs imaginables ; cette courbe () est
donc la courbe demandée.

Rien ne serait plus facile que d’étendre ces considérations 3 la géométrie A troie
dimensions, )
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équation d’une ligne droite , quelle que soit 7. Ainsi les courbes
comprises dans 'équation (1) jouissent toutes, sans exception , de
cette propricté, trés-remarquable, que les milieux d’un systeme de
cordes paralltles; quelle qu’en soit d’ailleurs la direction commune,
y sont tous situés sur une méme ligne droite que , pour cette raison ,
nous appellerons , & 'avenir, un diamétre de la courbe. On voit
donc que, non seulement ces courbes ont une infinité de diamétres,
mais que de plus, ces diametres affectent, en geénéral , toutes sortes
de directions ; de maniére qu’il n’est aucun des points d’une ligne
du second ordre par lequel on ne puisse en concevoir un.

L’équation d’une parallele quelconque au diametre (6) doit étre
de la forme

A4-Cm
Y=— a8 (7

d’olt il suit que, si on la représente par

y=m'atg' , ®
on aura, entre 7 et m/, ’équation de relation
A4Cm
R —
m = — e o0 Bmm/!4-C(m+m')4A4=o0 . (9)

Cette équation étant symétrique , par rapport & m et m/, il en faut
conclure que les milieux des cordes paralleles au diametre (6) sont
sur un diamétre parallele 3 (2); et, comme m et m/ demeurent
indéterminés , il s’ensuit, plus généralement, que les milieux des
cordes paralltles & un diamétre quelconque sont sur le diameétre paral-
lele aux cordes que le premier coupe en deux parties égales. Ainsi,
généralement parlant , & chaque diamétre , il en répond nécessairement
un autre tel que les cordes paralléles a chacun d’eux ont leurs milieux
sur Pautre. A 'avenir nous appellerons diamétres conjugués les deux
diamétres d’'un semblable systéme. On voit donc que , non seulement
les lignes du second ordre ont une infinité de systtmes de diametres



66 DISCUSSION DES LIGNES
conjugés , mais qu'en outre tout diametre d’une telle ligne en a
nécessairement un qui lui est conjughe’.

D’aprés ce qui précéde , les équations de deux diamétres , conjugués
ou non conjugués,, peuvent étre représentées ainsi quil suit:

(Ad4Cm )a4-(CH-Bm )y+(A4'+-B'm )=o ,
(A4-Cm"w4-(CA-Bm!)y+-(A/+B/m’) =0 .

Pour connaitre le point ol ils se coupent, il faudra combiner ces

(10)

équations entre elles. Mais si, auparavant), on prend leur difference,
puis la différence de leurs produits respectifs par m’ et m, en di-
visant chaque fois par m—m/, il viendra

Cax~+By+-B'=o ,
(11)
Az+Cy—+A'=o .

Ainsi, dans la recherche de I'intersection des deux diamdtres, on
pourra remplacer le systtme des équations (10) par le systime des
éqlfations (11); et puisque ces derniéres sont inde’peud::mes de m
et m/, il en faut conclure que tous les diamétres des lignes du
second ordre se coupent en un méme point. 1i est de plus aisé de
voir que ce point doit étre leur milieu commun. puisqu'a chaque
diamétre répond un conjugué qui doit le couper en son milieu.
Le milieu commun de tous les diamétres d’une ligne du second
ordre est ce quon appelle le centre de cette courbe.

Nous remarquerons , avant d’aller plus loin , que les équations (11)
n’étant aitre chose que ce que devient l'équation (6), lorsqu'on y
fait successivement m=o0, m= o ; il en résulte que ces équations
(x1) sont respectivement celles des diamétres qui coupent en deux
parties. égales les cordes paralléles a4 T'axe des y et les cordes pa-
ralleles & l'axe des # ; cest-a-dire , en d'autres termes , que ces
équations. sont celles . des conjugés des diametres respectivement paral-
leles aux axes des y et des z.

Si donc les axes étaient paralltles 3 deux diamétres conjugués,



ET SURFACES DU SECOND ORDRE. 6y
les diametres exprimés par les équations (11) devraient étre res-
pectivement paralléles aux axes des x ct des y; on devrait done
avoir, dans ces équations, et conséquemment dans Iéquation (1),
C=o0. Ainsi, le parallélisme des axes des coordonnées avec deux
diamétres c_ohjugués jouit de la propriété de priver I’équation (1)
du rectangle des coordonnées ; il est de plus aisé de voir que cest
la la seule circonstance ou elle puisse en étre privée.

Si le centre de la courbe se confondait avec l'origine, les équa-
tions (r1) devraient appartenir & deux droites passant par cette ori-
gine : on devrait donc avoir & la fois 4’=0, B’=o. Ainsi, la
situation du centre & l'origine des coordonnées jouit de la propriétd
de priver P’équation (1) des premiéres puissances des deux variables,
et il est de plusaisé de voir qu’elle en jouit exclusivement.

Si donc on prend pour axes des coordonnées deux diamétres con-
juguds quelconques, I'équation (1) prendra la forme trés-simple.

Az*~4-By*+D=o , (12)

sous laquelle la discussion en deviendra incomparablement plus
facile.

Mais ceci suppose que les droites (11) concourent effectivement
en un méme point. En combinant leurs équations, on en tire

BA'—CB _ AB—CAr

¥="C—aB * YT GaB ’ (13)

d’ott I'on voit que, si I'on a C*—=AB=o0, la courbe n’a plus de centre,

ou que du moins son centre détant infiniment éloigné des axes pri-

mitifs ne saurait plus étre pris pour origine. Nous verrons bientét,

au surplus , que la courbe est susceptible d’étre exprimée par

une équation fort simple qui convient dégalement au cas ou elle
)

a un centre et 4 celui ou elle en est dépourvue:
Si I'on avait & la fois les trois relations
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C*=AB, BA'=CB' , AB'=CA , (14

dont chacune est comportée par les deux autres, les deux équations
(11) rentreraient 'une dans l'autre; la courbe aurait donc une in-
finité de centres situés sur l'une ou l'autre de ces droites.

Soient 2/, y/ les coordonnees de I'un quelconque des points de
la courbe , en sorte qu’on ait

Az*+By’*4-=2Czy'+24'2'+-2By'+4-D=0 ; (15)

en désignant pour abréger par @ , & les coordonnées du centre,
Vequation du diamétre passant par ce point sera

y—y' =L (1maf) . (16)

xl—g.

SE, par le méme point, on méne une parn“é!e au conjugué de
ce diamétre , son équation sera, en vertu de Péquation (6),

(= AClyt— b (- 2 O =0 Bly =B (= =0r (17)
Mais, en vertu des dquations (i1), on a .
—Ae~Cb=4",
—Ca—Bb=P';
en conséquence , Péquation (17) deviendra
(44 Cy'-A! (g—a’)-(By'+Ca'+-BYy—y) =0 ;
w;, en développant ct transposant,
(By'+Ca’'+By4-(A2'4-Cy'+ A=
- &Axl4-By’t 2Ca'y'+A'a'- By

on
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ou enfin, en ajoutant l'équation de la relation (13) et réduisant,

(By+-Ca/+4-B )y 4-( A5/ +Cy'+A)a+(A'a'+B'y'+D) =0,
ou encore

Axx'4-Byy'—4-C(ay'mp-a'y)p-A' (@~4-2')4-B'( y 4y 4-D=0. ad)

Cette droite ayant un point commun avec la courbe, et ne pouvant
d’ailleurs en etre une corde , puisqualors ce point en serait a la
fois le milieu et Pextrémité ; il faut en conclure que c’est une
tangente 4 cette eourbe.

Si Ton suppose que la tangente est 'axc des y, et que le
diamétre au conjugué duquel elle est parallele est 'axe des # : auquel
cas son point de contact avec la courbe sera lorigine ; leurs équa-
tions devront éire respectivernent 2=o0, y=o0; on devra donc avoir,
outre /=0, y/=o0, les conditions B/=o0, C=o0, D=0, en sorte
que l'équation (1) deviendra simplement

Az*+By*2A4'z=o0 . (19)

Telle est donc la forme que prend I’équation de la courbe , lors—~
qu'on prend pour axes un diamétre et la tangente 3 son extrémité y
ce qui est toujours possible, toutes les fois que l’équation (1) n’est
point absurde d’elle-méme ; c’est-a-dire , toutes les fois qu’il y a
au moins un systéme 2/, ¥/ de coordonnées réelles, quiy satisfait.
La discussion, trés-facile , de Véquation (19) fera donc connaitre
toutes les courbes que peut exprimer [équation (1). (*)

(*) Sachant mener une tangente & la courbe par un de ses points, il ne

sera pas difficile de lui mener une normale par le méme point. De 14 on passera & la
tangente et 4 la normale par un point extéricur. Nous nous bornons 4 indiquer
ces divers objets, sur lesquels nous n’aurions rien de nouveau a dire. Muis nous ne devors
pas négliger de remarquer que ce sera naturellement ici le lieu de faire mention
des belles propriétés dont jouissent ce gu'on est convenu d’appeler les pdles des
lignes du sccond ordre. On pourra consulter a ce sujet les pages 293 ct 302 du trois
si¢me volume de ce recueil.

Tome V., 10
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Les diamétres conjugués rectang laires sont ce qu'on appelle les
diamétr s principauzx de la courbe , et leurs extrémités en sont les

sommets. Pour obtenir les directions de ces diamétres, il suffira
de joindre & I’équation

A4-C(m-m!y+Bmm' =0 , (9)
I'équation suivante
1~4-(m4-m’Cos.y+mm’=o0 (20)

qui exprime que les deux diamétres sont perpena}culaires Pun &
Fautre {*). La symétrie de ces équations prouve que m et m’ seront
donnés par une méme equation du second degré, et qulainsi il n'y
a quun systeme unique de diamétres principaux.

Soient x, y les coordonnées de I'un des sommets de la courbe,
et r sa distance au centre ou la longueur du demi-diameétre prin-
cipal qui lui répond ; representons toujours, pour abréger , par @,
b les coordonnées du centre , données par les formules (13); nous
aurons , a la fois, ‘

(* Soient en effet deux droites y=mx , y==m'x , passant par lorigine des
coordonnédes que nous supposons former entre elles nn angle . Pour exprimer
que ces droites sont perpendiculaires l'une & Vautre , il est nécessaire et il suffit
dexprimer que deux points (a, 8), (a’, ¥ pris respectivement sur I'une et lautre
sont les extrémités de Phypothénuse d'un triangle rectangle dont le sommet de -
Pangle droit est A lorigine. Celte condition donne

(@==a') 22 (@=ma/) (b—1") Cos.'y+(b--b’)2=a2+2abCos.y+b2+a’2+a’b/COS y=-bi2

ou en réduisant

aa/$-bbt}-(ab/-4-bat)Cos.y==0 ;
mais on a d'ailleurs

b=ma N ==m'a! ’

ce qui donnera, en substituant et divisant par aa’, I'équation mentionnée dans le texte.

)
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(z—ay2la—a)y—8)Cost(y—Bp=r* ,  (21)

y—b=m(x—a) . (22)
D’un autre c6té 'édlimination de m/ entre les équations (g) et (20)
donne
(€—~BCos.y)m*4-(Ad—B)m—{C—ACos.y) =0 . (23)

Enfin I’équation (1) peut facilement étre mise sous cette forme
A(z—ay~+B(y—by+aC(a—a)(y—b)
+2(Aa—|—C:é—}-A’)x—l—z(Ca-{—Bé—l-Bl)y

~+D—Aa*—~Bb*—2Cab=o0 ;

faisant donc

Aa*4-Bb*4-2Cab—D=A ,
et remarquant qu’en vertu des équations (11) on a

Aa+4-Co4-A'=0 ,
Co+Bi+4-B' =0 ;
elle deviendra simplement
A(x—a)*+B(y—b)*~+-2C(a—a)(y—=0)=A . (24)

Cela posé ; si , dans les équations (21) et (24), on introduit

pour y—>» sa valeur donnée par l'équation (22) elles deviendront

(#—a)*(1-4-2mCos.ym*)=r*, (

25)
(z—a)(A42Cm~+Bm*)=A ;

équations entre lesquelles éliminant (x—a)*, il viendra
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(Bra—A)m*+2(Cr*— ACos.)m~+(Ar*—A)=o ,

éliminant enfin 7 enire cettc équation et I'équation (23) on aura

d’abord

(AB—C*)rt—A(A—~2CCos.y+B)r*~4-A*Sin2y =0 , (26)
et ensuite
. Cr2==ACos.y _ Arze—A
m=== Br:—A - Cra==ACos.y - (27)

I.’équation (26) donnera les longueurs des demi-diamdtres principaux ;
les formules (27) en détermineront la direction ; et ensuitc 'une des
équations (25) , combinée avec l’équation (22), fera connaitre les
sommets.

Parvenus a P'équation (26), on pourra poursuivre la discussion,
comme I'a fait M. Bérard 2 la page 106 du 3¢ volume de ce
recueil,

Dans le cas particulier ot I'on aura 4B=0C*, la courbe, n'ayant
point de centre, n'aura qu’un diamétre principal et conséquemment
quun seul sommet que lon pourra déterminer comme il suit.
L’équation (16) du diameétre deviendra simplement

AB—CA
S R ¢ -
IY'= Fa—en @)
en exprimant donc que ce diamétre est perpendiculaire 4 la tan-
gente & son extrémité , donnée par I'équation (18) il viendra

AB—CA! A 4-Cyl4-dA! AB—mCA! Ax'4Cyigd
’+§ BA/—CB  By4-Ca't y% OV Ba—CB " Byd-Cag- B O
équation qui, combinée avec ’équation (15), ne donnera, en ayant
égard a la rélation AB=C?, qu'un seul systtme de valeurs de 2/
et y/ lesquelles seront les coordonnées du sommet. Il est ais¢ de
voir qu'alors tous les diamétres seront paralleles.
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Lorsque,, comme on le fait communément dans les traitds élé-
mentaires , on suppose les axes des coordonnées rectangulaires , les

derni¢res recherches et les résultats quon en obtient se simplifient
considérablement.

§. IL
Discussion des surfaces du second ordre.
Soit I'équation

Ax*4-Byr-Cz24-24'y 242 Blzaod-2Clxy -2 A/ x4-2B"y4-2Cl z4-D=0 , (1}

exprimant une surface rapportée 4 deux axes quelconques, formant
entre eux des angles «, g, y. Soient de plus

a=mz+tg , y=nzth , (2)

les équations d'une droite quelconque. En ¢liminant z et ¥ entre
elles et 'équation (1), il viendra

(Am‘+Bn’+C+2A’n+2B’m+zC/mn)z’
2§ (Am=+-C'n4-B')g4-(C/'m~+Bn-+-A') h-+(A"m~+4-B"'n+-C")} z
+(Ag*+Bh*~+-2C/gh+24"g4-2B""h+D)=o0 . (3)
En raisonnant comme dans le §. précédent, on verra que le milieu
de la corde interceptée par (1) sur (2) est donné par les équations (2),

jointes a I'équation

_ (Am3-Cn4-B)g4-(C'm~-Bnd-ANh-4-(A'm4-R'n}-C"y
— Am24-Bn2~4-2C'"mn~+-2B'm--24'n ) (4)

Si donec on élimine g et %z entre elles , I'équation résultante , en

&, ¥, z, sera celle du lieu des milieux des cordes paralleles a (2).
Cette équation est, toutes réductions faites ,
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(Am+4-Cin-B'yx4(C'm~t Bt A')y+(B'm4-A'n+-C)z4-(A'm+4-B'n4-C"y=0; (5)
équation d'un plan quels que soient 2 et 7. Ainsi, les surfaces comprises
dans I'équation (1) jouissent toutes , sans exception , de cette proprieté
trés-remarquable , que les milieux d’'un systeme de cordes paral-
Ieles, quelle qu’en soit d’ailleurs la direction commune , sont tous si-
tués dans un méme plan que, pour cette raison, nous appellerons
a Vavenir plan diamétral de la surface. Ainsi, non seulement ces
surfaces ont une infinité de plans diamétraux , mais ces plans affectent,
en général, toutes sortes de directions; en sorte qn’il n’est aucun
point de Vespace par lequel on' ne puisse en concevoir un.
Soient présentement trois droites quelconques

x:mé-—i—g , r=im'z-g’ , -\ z=mzt-g" ,
(2) () (2
y=nz+4"h ; y=n'z+k'; y=n"z-+h" ;
les équations des plans diamétraux qui couperont en deux parties
égales les cordes paralléles & ces droites seront respectivement
(4dm +4-C'n ~+B)x~-(C'm +Bn +A’)y+(B’m ~+-A'n +C)z+(A”m ~}Bi'n 4-CN=0, (5)
(Am! +-Cin! B (! 4-Br! Ay (B! it -C) - (A"l 4Bl F-CMy=0, (5
< Am”+C’n”+B’}x+(C’m”+ Br/lp A"y (B'm/ S A'nl 4-C) z4-(A"m/ = Bn/'4-CV)==0 « %)
Or, la droite (2) étant prise arbitrairement, ce qui hxe la situa-
tion du plan (5), on peut toujours assujettir les droites. (27), (27)
3 btre” parzﬂle?eé‘é ce planr; et, comme par ces conditions eclles
demeurént -encoreiindéterminées , on peut en outre assujettir I'une
d’elles a &tre paralléle au plan que détermine Lautre. En se rappelant

donc la condmon de parallehsme entre un Plan et une droité dans,
Vespéce , cela, donuera_ les trois. écluatxon&

C+Am m'/ =-Bn n’ +C/(m n! +m'n Y+-B/(m m’) +4/(n 4’ y=o ,
C+ Am/ m”+Bn’ n”+C’(m’ a/leem!/In! Y4Bl (m! e Al (0! 4-nlly=0 , ®) .
CH-Am''m +-Bn'n 4C'(mi'n. sm: nt)-B/ (m"~-ni YA (n/'n Y==0

-e
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puis douc que ces équations sont symétriques en m et n, m’ et n’,
m’ et n'’, il en faut couclure qu’alors chacun des plans (5) , (5/) . (57)
coupera en deux parties égales les cordes paralléles & V'intersection des
deux autres. Les trois plans d’un pareil systéme sont ce qu’on appelle
des plans conjugés , et leurs intersections deux & deux , lesquelles
ont évidemment leur milieu commun au point d'intersection des
trois plans 4 sont ce qu'on appelle des diamétres conjugués. Ainsi ,
non seulement les surfaces du second ordre ont une infinité de svs-
témes de diamétres conjugués, mais ces diamétres alfectent en général
toutes sortes de directions , en sorte qu'on peut toujours trouver
un systéme de tels diamétres, et meéme unc infinité, ot Vun de
ces diametres passera par un point donné arbitrairement.

Que les plans diamétraux donnés par les équations (5),(5/), (57)
soient coujugués ou non conjugués , si I'on prend successivement
la somme des produits de ces équations m’—m/, m"’—m , m—m/,
par n/—n’/, n/'—n , n—n’, et par m’n'—m’'n’ , m"’n—mn’’ , mn’—m’n,
en divisant, dans chaque cas, I’équation resultante par m/n/—m/'n’
~j~m/'n—mnn'"~+-mn'—m'n , il viendra

A x4-Cly+B/z4A"=o0 ,

Cx~+By+A'z+4B'=o0 , (7)
B/z-A'y+4C z+C"=0

~e

dquations qui, ayant lieu en méme temps que les équations (5),
(5%), (5”) , pourront conséquemment leur étre substituées , dans
la recherche du point d'intersection des trois plans qu’expriment
celles-ci ; puis donc que les équations (7) sont indépendantes- de
m, n, m,n , m”,n,il faut en conclure que les plans dia-
métraux des surfaces du second ordre se coupent tous au méme.
point; il est de plus facile de voir, par ce qui a été dit ci-dessus,
que toutes les cordes qui passent par ce point doivent y avoir leur
milieu, eten conséquence on appelle le centre de la surface.
Nous remarquerons , avant d’aller plus loin , que les équations (7)
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n’étant autre chose que ce que devient l’ébquation (5) lorsqu'on y
fait successivement m= &, n= o , m=n=o, il sensuit que ces
équations sont respectivement celles des plans diamétraux qui coupent
en deux parties égales les cordes paralléles & I’axe des x, les cordes
paralleles & Vaxe des y, et les cordes paralléles & 'axe des z ; c’est-a~
dire, en d'autres termes , que ces équations sont celles des plans
conjugués aux diametres respectivement paralléles aux trois axes.
Si donc les axes des coordonnées étaient paralleles & trois diametres
conjugués ou , ce qui revient au méme , si les plans coordonnés
étaient respectivement paralleles & trois plans diamétraux conjugués ;
des trois équations (7) la premitre ne devrait renfermer que x seu~
lement, la seconde que y et la troisitme que z 3 on devrait donc
avoir , dans ces équations, et conséquemment dans I'équation (1)

A'’=o0 , B'=0, C'=o0.

fAinsi , le parallélisme des axes des coordonnédes avec trois diamétres
conjugués jouit de la propiiété de priver I'équation (1) des rectangles
des coordonnées ; et il est de plus aisé de voir que c'est la la seule
circonstance ol elle puisse en étre privéde.

Si le centre de la surface se trouvaita Porigine, les équations (7)

devraient étre celles de trois plans passant par cette origine ; en
devrait donc avoir, i la fois,

A’=0, B’=o, (’=o.

Ainsi , la situation du centre 3 Dorigine des coordonndes jouit de
la propriété de priver I'équation (1) des premiéres puissances des
trois variables , et il est de plus aisé de voir qu’elle en jouit ex-
clusivement.

Si donc on prend pour axes des coordonnées trois diamétres
conjugués quelconques, l’éqixation (1) prendra la forme trés-simple

Ax*~+By*4-Cz*+-D=o , | 8)

sous
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sous laquelle la discussion en deviendra incomparablement plus
facile (*).

Mais tout ceci suppose que les équations (7) donnent pour z, ¥ » 2
des valeurs finies et déterminées ; en les résolyant par rapport &

ces inconnucs , on obtient

AN A2 —BC)-B"(CCl— A'B/y4-C"(BBI—C’ A’y

xT=
ABCm A A2 BL/ 2 G Cl2 mn AV B/ CY ’
B/(B/2==C A)-C"(AA'—BCly4- A C Cl—A'B) \
y= ABC = AA12em B2 C C 20 A/BI LY » ) (9)
C/(Cl2mm AT} AN (BB —C! ATy Bl (A A! =B/ C1)
L= .

ABC—A A2 BB 2w C Cl2fr2 A3 C!

Or, si l'on a

ABC— A4’ —BB—C Crda /B0 =0 ,

la surface n'aura point de centre ; ou, pour mieux dire, son cenire
se trouvant a une distance infinie , ne pourra étre pris pour
origine. Si une seule des coordonnées du centre €tait indéterminée ,
chacune des équations (7) se trouverait comportée par les deux autres,
et la surface aurait une infinité de centres , situés sur une droite
donnée par le systéme de deux quelconques de ces équations. Si
deux des coordonnées du centre se trouvaient indéterminédes , la troi~
sitme lc serait aussi, alors les trois équations (7) ne seraient point

(*) On remarquera sans doute que Ia démonstration de la possibilité de ramener
Péquation & cette forme, par un choix convenable des coordonnées , assez difficile
4 dlablir, dans les autres systémes de discussion , méme en supposant les coor—
donné.s primitives rectangulaives, se présente , pour ainsi dire, d’elle-méme dans
ecelui-ci.

Tam. V: 1 94
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distinctes les unes des autres, ¢t le plan cxprimé par l'une quel-
conque d’entre elles deviendrait le lieu des centres. Au surplus,
nous verrons bientot que’ les surfaces du second ordre peuvent étre
exprimées par une équation simple qui convient également & celles
qui ont un centre et a celles qui en sont depourvues.

- Soient a7/, y/, z/ les coordounées de 'un quclconque des points
de la surface courbe , en sorte qu’on ait

Az 4-By*4-Cz/* 42 Ay’ 2/ 2B/ 2/ x'4-2C'a'y!

24/ a2 B"y! 420"z 4-D=o0 ; (10)

en désignant, pour abréger, para , 4, ¢, les coordonnées du centre ,
les equations du diamétre passant par ce point seront

x'—a yl—=b

(z—2/) , y—y!=

R

zl—c 2l—c (e—2') ; (11)

I'équation du plan mené , par lextrémité de ce diamétre , paral-
l¢lement au plan qui contient ses deux conjugués sera , en vertu
de Déquation (5)

{4 (w—a)+-C/(y'—B)+B!(z/—€) ) (w—2)
{0} B (y—b - A(E—C)} (—y)) | =0, (12)
B (ama) b ALy )€ ()} (2—2)

Mais, en vertu des équations (7), on a

—Aa—Clh—Ble=A" |

—C/[l'-B 6-A/5=B// ’
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—Bla—A'b—C c=C" ;
en conséquence 1’équation (12) deviendra

(A 2/4-Cly'+=B2/ A" ) (wv—a)
~+-(C/x’+B y/+A/Z/+B//)(],__y/) =0
A (B/a/ Ay 4-C 24 C/1)(z = 2!)

ou, en développant et transposant
(4 2'4-Cy'4-B/z/+A")x
-H(Cw/+ By Az By
A B/a/ - Ay 'A-C 2/ )z
=Ax/’-l-'By/"-|—-Cz”+2A’y’z’+2B’z’x’+2C’x{;f’+A/’x’+B’/y/+C’/z’;
ou enfin, en ajoutant Péquation de relation (10) et réduisant

(A 2/4-C'y'+B'z/4+A"\x
+(C’x’+ B j)”/+ Az B//)}, -+ A/’x’—i—B’/y/—I-C” z/-+D=o0 ;
+( B/a/<~ A’y/—i—c z/+(j//) z ‘

ou encore

Axx/++Byy'+Czz/
A/ (yz!Yzy’) B/ (za! 4z2') 4 Clxy'-ya’) (13)

- d(a-al - By -y O (e— 2y D=0
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Ce plan a un point commun avec la surface courbe : c'est celui
dont les coordonnées sont x/, y/, z/; mais il ne saurait en avoir
plusieurs; car, si cela ¢tait, en menant par ce méme point des
paralléles aux deux conjuguds du diamétre qui 8’y termine, il y
en aurait an moins unc qai scrait une corde de la surface, ct qui,
au lieu d'avoir son milieu sur le plan diaméiral qui doit la couper
en deux parties égales , y aurait au contraire son extrémité; le
plan (13) est donc un plan tangent & la surface courbe.

Si l'on suppose que le plan tangent estle plan méme des 2y,
et que le diamétre par Pextremité duquel il passe est I'axe des z,
auquel cas le point du contact scra l'origine des coordonnées; a
cause de /=0, y/=o, z/=o0, l’équation (13) deviendra d’abord

;A//x+B//}f+C//Z+D= o ;

et , comme alors clle devra se réduire simplement 4 z=o , on
devra avoir

A’=o0, B'’=o, D=o.
Si de plus les axes des # et des y sont respectivement paralltles
a deux conjuguds du diametre qui se confond avec Vaxe des z
ou, ce qui revient au méme , si les plans des xz et des yz sont

conjugués a celui auquel le plan des @y est paralltle , on devra
avoir en outre, comme ci-dessus,

A'=0, B'=o0, (=0,
Péquation (1) deviendra donc alors simplement

Ax4By*~4-Cz*4C/'z=o0 ; (14)’ :
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et pourra indistinctement exprimer toutes les surfaces du second
ordre. Cette dernitre équation a donc, dans le fond , autant de
généralité que I'équation (1) ; du moins lorsque cette derniére n'est
point généralement absurde; c’est-a-dire, toutes les fois qu'il existe
au moins un systtme de valeurs de #, ¥, z qui y satisfait, (*)

Les diametres conjuguds rectangulaires d’'une surface courbe sont
ce qu'on appelle ses Diamétres principaux , et leurs extrémités en

X

(* Sachant ainsi mener un plan tangent & la surface, par un de ses points,
il ne sera pas difficile de lui mener une normale par le méme point, Il ne
S'agira pour cela que de connaitre les conditions de perpendicularité entre un plan
el une droite. Or, en supposant , pour plus de simplicité , que P'un et Pautre
passent par lorigine , que la droite est (x=mz , y=nz) et que le plan est
z=px-+qy , il suffira d’exprimer que deux points (a, b, ¢}, (a/, b, /) pris
arbitrairement sur I'une et Yautre sont les extrémités de hypothénuse .d’un triangle
reclangle dont le-sommet de Pangle droit est & lorigine; ceite condition donne

(@i )22 (b =b/) (cmmmc’) COS. 0
a2-}-b24-c2-}-2b¢ Cos.-2caCos, g4-2a8Cos,y

o} (b ==bl) 22 (c==c!) (@ —a’) Cos. 8 )y ==
- Jar2 g brat or2g-2b/c/Cosetacla’Cosf-2a'b/Cosy

o} (cmi!) 22 (@—a?) (b—1") Cos.
ou en réduisant

aa'4-bb/ e+ (be'-cb") Cos.ad-(ca'dac’) Cos.p4-(ab/--ba’) Cos.y

mais , par la situation des deux points, on a

a=mc , b=ac, =pa'-q¢b ;

substituant donc , il viendra, en divisant par ¢,
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sont les sommets. Pour s’assurer de Uexistence de tels diamélres,
dans les surfaces du second ordre, et en fixer la direction , il faat
joindre aux équations (6) les équations suivantes

14m m' n n' 4-(m n' 4-m’ n YCos.y-}-(m —-m’)Cos.p~4-(n -n’ )Cos.a==0,
Xf-m! m/'~n! n''4=(m! n/'4~m''n’ yCos.qy~}-(m! 4-m") Cos.p4-(n! 4-n'")Cos.a==0 , }(15)
' 1~4-m''m =-n'"n 4-(m''n 4m n)Cos.y--(m"-}m )Cos.g4-(n"~4n YCos.a==0;

qui expriment (*) que les diamdtres conjugués sont, deux a deux,
perpendiculaires 'un & Pautre.

’

{ (m—4-p)4-npCos.a-4-(14mp)Cos ~+nCos.y } 6! %
~+{ (n4-g)4-mqCos.p+4(1-4ng) Cos.a--mCos.y } &/

et, comme a’, & doivent demeurer indéterminés et indépendans , les conditions
cherchées seront

(m4p)4-npCos.a~-(1-4mp)Cos.g+4nCos.o=o ,

(n49)FmqCos.p4-(14ng)Cos.e4-mCos.y=o0 .

De 13 on passera aux plans tangens et aux normales par des points extérieurs
et, par suite, aux surfaces coniques circonscrites et a leurs lignes de contact.
On sera condoit ainsi & exposer les propriétés des surfaces du second ordre,.
relativement & ce quon est convenu d’appeler leurs poles. On pourra consulter
A ce sujel, ce qui a été dil aux pages 293 et 302 du 3.m¢ volume de ce recueil.

(*) Soient, en effet, (x=mz , y=nz), (x=m'z, y=n'z) deux droites que,
pour plus de simplicité , nous supposons passer par lorigine ; nous exprimerons
guelles sont perpendiculaires I'une & l'autre , en exprimant que deux pcints (@, ,¢),
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Telles sont donc les équations qui, combindes avec les équa-
tions (6) , feront connaitre m et n , m/ et n', m" et n” ; et,
comme ces trois couples de quaniitds y entrent symétriquement ,
on est en droit d’en conclure qu’elles doivent dépendre d’une méme
équation dua woisieme degré , et que conséquemment les surfaces
du second ordre n'ont qu'un systéme unique de diametres prin-
cipaux ; c’est ce quc le calcul va confirmer.
Si Pon prend successivement la difference des produits respectifs
de la premiére et de la dernitre des équations (6) par m” et m

et par n/ el n, les équations résultantes pourront étre derites ainsi:
(B'm~A'n4-C)in/—m')+ (C'm~4~Bn—+A") m'n""—n'm’)=0 , (16)
(B'mA-A'n+-C)n/ —n' }4-(Adm—~+C/'n=B/) (m/n/'—n'm")=o0 , | (17)
En opérant exactement de la méme maniére sur la premitre et

sur la dernicre des équations (15) , les deux équations résultantes
pourront éire mises sous cette forme :

(mCos.p4-nCos.a=1) (n'=—=m/)=f=(mCossy=}-n=4-Cos.2) (m/n't==n'm!ly=0 , 18

(1:.Cos B~§-nCos.a~4~1) (1! == n/ yj-(m~-nCos.y=}-Cos.8) (m/n!!==u'm!)y=o0 . ;'(19)

(@, b, ¢y, pris respectivement sur ces deux droites , sont les extrémités de I'hy-
pothénuse d’un triangle rectangle dont le sommet de l'angle droit est & Lorigine.
Cette condition donnera, comme dans la nete préeédente ;

aa'-}-bbl4-cc'4(be'4-cb') Cos.at-(ca’4-ac’)Cos.p4-(ab/4 ba") Cas y

mais on aura ici

a=mc¢ , b==nc , a&'=m'c/ , bl=n/c/ ;

ce qui donnera , en substituant et divisant par ec’ , la premitre des équatiors
mentionnées dans le texte.
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Or , en éliminant m/—m// entre les équations (16) et (18) , et n/—n’
entre les équations (17) et (1g), m/n//—n/m’” disparaitra de lui-
méme des équations résultantes, et elles seront,

(mCos.ybn+4-Cos.) (B'mA/nd-Cy—(mCos.4-nCos.ar1) (C'm=}-B n- Ay=o, 2
(20)
(m~nCos.y~+Cos. g) (B'm~A'n4Cy=(mCos.p-nCos.a1) (A m+Cn}-B Y=o ; S

De ces deux équations on déduirait une équation finale en m ,
qui serait du troisidme degré sculement, et dont par conséquent
les racines seraient les valeurs de m , m’, m”. On aurait de plus
une valeur de ~ fonction de m , laquelle deviendrait »/ et »/, en
y changeant m en m/ ct m//; mais il sera plus convenable d’opérer
comme 1l suif.

Soient x , ¥, z les coordonnées de 'un quelconque des sommets
de la surface courbe, et r sa distance au centre ou la longueur
du demi-diamétre principal qui lui répond; en continuant, pour
abréger , de représenter par a, b, ¢ les coordonnées du centre ,
données par les formules (9), nous aurons, a la fois,

(z— a)*~+-2(y—b)(z—c)Cos.a
Ay —0)*4-2(z—c)(x—a)Cos.e =r:; (21)

H-(z—c)*~+-2(x—a)(y—0b)Cos.y
g—a=m(z—c) ;  y—b=n(z—c) ; (22)

en outre Iéquation (1) peut facilement &tre mise sous cette forme

Alz—a)+Bly —by4-Cla—o)

24 (y—=b) z—c)t2B/(z—c) (x — a)+2C/(z—a) (y—B)
: ~+32
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F2(4 a4 Clbt-Blod-A)z
F2(Clat+B bot-Ale+-B/)y
ro(Blad-A/b4-C c+4-C) 2
’—}—D—-44’—Bb’f’-—- Cc*m2A'bc—2B/ca—2C'ab=0 ;
posant , pour abréger,
'AaT+Bb=+_cc=+24/5¢+;5/ca+zwz—-pz A,

et remarquant qu'en vertu des équations (7) les coefficiens des
premieres puissances de z, ¥, z sont nuls, elle deviendra simplement

s+ By—by+ oo
A-2Ay—b)z—c)F2B/(z=c) (x—a)F2 C/(x—a)(y—b)=A . (23)
Cela posé ; si, dans les équations (21) ct (23) , onv introduit ,

pour #—a et y—=b les valears données par les: équations (22),

elles deviendront

(ze—c)?{14+m*n*~+2nCos.a~t-2m Cos.sf-2mnCos.»} =r* , )
.
24

(2—c)*$C4~ Am* 4 Bu*~2.4'n 4 2B/m 4 2C/mn{ = A

é'rfaai?ons entre lesquelles éliminant (z—¢,* , il viendra

dom. Ve 12
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(Ar*—D)m*+=(Br* — A)n*+2(C/r*~ACos.y \mn

(25)
+ 2(B/r*—ACos.8)m~+-2(A4'r*~ACos.«)n4(Cr*— A)=o

éliminant enfin 72 et 7 entre cette équation et les équations (20)
on aura d’abord

(ABC—AA»—BB"*—C(C"*+2A4'B/ Crt
(BC—A")4-2(B/C'—AA)Cos.«
—A( 4+ (CA—B/*)+4-2(C'A’—BB’)Cos.p ) r
~+(AB—C"*)42(A'B'—CC’)Cos.y
| (36)
ASin.*4—2A4’(Cos.a—Cos pCos.y)

+A*{ +BSin."g—2B/(Cos.p— Cos.yCos.«) ) r*
~+-CSin.?y —2(/(Cos 7 — Cos.2Cos.p)

—A3(1—Cos.?4=—Cos.># —Cos.?+2Co0s.4Co0s.8Cos.y) =0 ,

et ensuite

(A'r2==ACos,e) (C'r2—ACos.9)—(Brz—A) (B’r>=-ACos.8)
- (Ar2=—=A) (Brz=—A)—(C'r2—ACos.y)2?

m ’

(27)

. (B'r2e=ACos.8)(C'r2e—=ACos.5)—(Ar2e=—=A) (A'r2— ACos.e)
- (Ar2—A) (Brze—A)=(C/r2==—ACos,y)?2

L’équation (26) donnera les longueurs des demi- diamdtres prin-
cipaux ; les formules (27) en détermineront la direction, et ensuite
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Pune des équations (24), combinée avec les équations (22), fera
connaitre les sommets.

Parvenus & I'équation (26), on pourra poursuivre la discussion ,
comme l'a fait M. Bérard , 4 la page 110 du troisime volume
de ce recueil.

Dans le cas particulier ou l'on aura

ABC—AA?*—~ BB’ (C/*4-2A4BC=0 , (28)

la surface , n’ayant point de centre , n’aura qu'un seul diamétre
principal que Yen pourra determiner comme il suit : les équations
(16) du diamétre deviendront alors

AnA -BC)—I—B"(CC’-—A'B’)—{-C”(BB!—-C/ A . ,
C’f(C/Z—AB)—{-A”(BB’—-C’A’)+B”(AA/_B/U) (&~ Z) 3

X =

;e B/!/(Bz=C A)4-Cr/( A’A/._B/Cl)_*_ ACCl—A'B
Y=Y = O ABy— A BB—C A B (AA—B/Ch

(z—2'y &

En exprimant donc que ce diamétre est perpendiculaire au plan
tangent & son extrémité , donné par I'équation (13), on aura deux
équatiens en a2/, ¥/, z/ qui, combinées avec l'équation (10), ne
donneront , pour ces trois cocordomnées , en ayant égard a la rela-
tion (28), qu'un scul systéme de valeurs lesquelles seront les eoor-
donnédes du sommet cherché. 1l est aisé de voir qu’alors tous les
diameétres seront paralleles.

Lorsque , comme on le fait ordina'rement dans les traités élémen—
taires , on suppose les axes des coordunnées rectangulaires , les

derniéres recherches et les résultats qu’on en obtient se simplifient
considérablement.
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1

QUESTIONS RESOLUES.

Diémons'ration des deux théorémes de geomeélrie énoncés
a la page 384 du 4° volume de ce recueil;

Par un ABoNEKE,

AVV TN N

THE"OHEME 1. §i deux. ellipses, tellement situées sur un plan
que deux diamétres conjugués de Pune soient respectivement paral-
léles & deux diamétres conjugués de Uautre , se coupent en quaire
points, 5 ces quatre points seront sur une troisidme ellipse dans
laquelle les diamétres conjugués égauz” seront respectivement paral-
leles aux diamétres conjugués que Pon suppose éire déja paralléles
dans les:deux premiéres.

- Démonstration. Soient pris les axes des coordonndes respectivement
paralleles aux diaméetres conjugués que l'on suppose 1étre dans

les deux ellipses dont il s’agit; les équations de ces deux ellipses
seront de la forme

A x=+By2+2D x42E y+K =o ,

(1)
Al By Ao D/ a2 Ely+K'=0 .

Or , il est connu que, lorsque deux courbes sont rapportées
aux mémes axes, toute combinaison de leurs équations appartient

A
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3 une troisitme courbe qui coupe chacune d’elles aux mémes points
o clles se coupent elles-mémes.

Soit donc ajouté au produit de la premiére des deu\ equahons
ci-dessus par B/—A’ le produit de la seconde par A—B , il
viendra en réduisant

(AB'—BA)x*~4-(AB'—BA")y*

-2 { D(A—B)—D{d'—B')} x-4-2 { E(A—B)—E(A'—B")}y ()

A {K/(A—B)— K(4/—B)} =0

?

équation d’une courbe qui contient les’ quatre intersections des
deux premitres ; or, on voit que cette courbe est une ellipse dans
laquelle les diamétres conjugués égaux sont respectivement paral-
leles aux axes des coordonnées , c’est-a-dire , aux diamétres con-
jugués que l'on suppose étre paralleles dans les deux premidres;
ce qui démontre la proposition annoncée. '

Si Pon suppose les axes des coordonnées rectangulaires , on aura;
pour ce cas particulier , la proposition suivante :

COROLLAIRE. 8i deux ellipses dont les azes sont respective-
ment paralléles se coupent en quatre points , ces quatre poz:nls
seront sur une méme circonférence. (*)

Ce qui préceéde ne supposant aucunement que les quatre coeffi-
ciens 4, B, A, B/ soient plutét de mémes signes que de signes
différens , 1l s’ensuit que la proposition a également licu, lorsque

(*) Ce cas particulier avait é1é proposé par M, Bérard qui en avait fourni
une démonstration assez simple que nous aurions mentiounée ici, si celle que
Ion vient de voir ne se trouvait la comprendre.

J. D. G.
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les courbes données, au lieu d’étre deux ellipses , sont deux hy-
perboles , ou bien une ellipse et une hyperbole. Enfin I'un des
deux coefliciens 4 , B ou l'un des coefliciens 4/ , B’/ pouvant
&tre supposé nul ; il s'ensuit que la proposilion est encore vraie ,
lors méme que l'une des courbes données ou toutes les deux sont
deux paraboles.

Si, au lieu de multiplier respectivemeni les équations (1) par
B/'—A’ et A—B, on les etit multipliées par —A/—B/ et +A-+B,
Véguation (3) elt été celle d’une hyperbole équilatérale rapportée
3 deux axes paralleles & deux diameétres conjugués paralléles eux-
mémes aux diameétres conjugués que l'on suppose étre paralléles
dans les deux premiéres courbes ; ce qui peut fournir de nouveaux
théorémes.

THEOREME 1I. Si irois ellipsoides , tellement situés dans
lespace que trois diaméires conjugués de lun quelconque solent
respectivement paralléles & trois diamétres conjugués de chacun des
deux autres, se coupent en huit points; ces huit poinis seront &
ba surface d'un quatriéme ellipsoide dans lequel les diamétres con-
Jugués égaux seront respectivement paraliéles aux diaméires conjugués
que Uon suppose éire déja paralléles dans les trois premiers.

Démonstration. Soient pris les axes des coordonnées respectivement
paralléles aux diamétres conjugués que I'on suppose I'étre déja dans
les trois ellipsoides dont il s’agit; les équations de ces ellipsoides
seront de la forme

4 2B y*4-C z*4-2D 24-2F y4-2F 24K =o ,
A 4B’ y*+C' 242D/ a+2E/ y+2F/ z4-K' =0 , ) (1)
AV x> 4By 4-C/ 2 2DH gef=2 Ety -2 FV/ z4-K ' =0 .

Oc, ¥ est connu que, Jorsque trois surfaces sont rapportées auzm:
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mémes axes, toute combinaison de leurs équations appartient & une

quatriéme surface qui contient les points d’intersection des trois
premiéres.

Soit donc prise la somme des produits respectifs des équa-
tions (1) par
A’ B/ B’ A//+ B/C'"C’ B//_I,.C/;,{//__ A R
A"B —B/A+B"C —C""B4-C"A—A4"C ,

A B'—B A'+B C'—C B'A-CjA'—A C’

-

il viendra, en réduisant ,
(AB/C/"—AC'B"4-CA'B"—~BA/C""4BC’! A" a= CB' A" x*
H—(AB/C”-—z;(C’B/’+CA’B”——BA/C//+BC’A”——CB’A”)y’
A=(AB'C""—AC'B"4CA'B/—~BA C'"+BC' A" —CB’ 4" z*

“}~Fte. . .. =0 ;

H

dquation d'une surface qui contient les huit intersections des trois
premiéres ; or , on voit que cette surface est un ellipsoide dans
lequel  les diameétres conjugués égaux sont respectivement paralleles
aux axes des coordonnédes , c’est-2-dire , aux diameétres conjugués
que l'on suppose étre paralléles dans les trois premiers ; ce qui
démontre la proposition annoncée.

Si I'on suppose les axes des coordonnées rectangulaires, on aura,
pour ce cas particulier , la proposition suivante :

COROLLAIRE. §i trois ellipsoides , tellement situés dans lespace
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que leurs axes soient respectivement paralléles , se coupent en huit
points ; ces huits points seront & la surface d'une méme sphére.
On pourrait faire ici des remarques analogues a celles qui ont
été faites sur le premier théoréme; on parviendrait ainsi & établir
que les trois premitres surfaces peuvent étre trois surfaces quel-
conques du second ordre, et que la quatriéme peut étre une quel-
conque de celles d’entre elles qui sont pourvues de centres.

QUESTIONS PROPOSKES.
Problémes de Géométrie.

L ON demande trois cercles tels que chacun d’eux touche les.
deux autres , et qui satisfassent de plus aux conditions suivantes =
1.° que les points de contact de l'un d’eutre eux avec les deux
autres soient deux points donnés; 2.* que ces deux derniers tou-
chent une méme droite donnéde ?

If. On demande trois cercles A, B, C, tels que chacun deux
touche les deux autres , et qui satisfassent de plus aux conditions.
suivantes : 1.° que le point de contact de A et B soit un point
donné ; 2.° que A ¢t C soient tangens & une méme droite donnée ;,
3.° quec B et C soient aussi tangens & une méme droite donnée?




ESSAF SUR LES PRINCIPES DU CALCUL DIF. , cte. 93

ANALISE TRANSCENDANTE.

Essai sur un nouveau mode d'exposilion des principes

du calcul differentiel;

Par M. Servois, professeur aux ¢coles dartillerie. (¥)

[ Vo Wi Vo Vo Via Vi Vo ¥

» A mesure que ( l'analise ) s'étend et senrichit de
» nouvelles méthodes, elle devient plus compliquée ,
» et lon ne peut la simplifier quen généralisant
» et en réduisant , tout & la fois , les méthodes qui
» peuvent étre susceplibles de ces avantages. »

( Mécanique analitique, page 338. )

<

1. JE commence par fixer quelques notations et par donner quelques
défnitions.

Jexprime

Par fz, fz, Fz, ¢z,..... des fonctions quelconques de la quan~
tit¢ quelconque z : je les appelle Fonctions mondmes simples.

Par ffz , ffFz,..... des fonctions de fonctions de z: ce sont
des Fonctions monbmes composées.

(» Ce quon va lire est, en substance, extrait de deux mémoires, sur le dé-
veloppement des fonctions en séries, par la méthode différenticlle , présentés & la
premiére classe de linstitut, le 1.¢¥, vers la fin de 1805, le 2me, en 1809, et
qui ont regu l'approbation de la classe , sur un rappoit de MM. Legendre et
Lacroix , en dale du 5- doctobre 18p2.

o

Tom.V, n° IV , 1.°" octobre 1814, 13
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Par fz, fz, Pz,.....f"2 , la fonction marquée par f, prise
successivement 1 fois , 2fois , 3fois.....nfois, de la quantité z : ce
sont des Fonctions monémes du 1°° , du 2.°, du 3.°,....du n™*

ordre : n est Vexposant de l'ordre de la fonction.

Par =z, f"*z,.....f7"z, des fonctions de z dont la définition
compléte est donnde par l'équation géndrale

f—rg=f—"frz=z : (1)

ce sont des Fonctions inverses ou d’Ordre négatif.

Si la quantité sous le signe fonctionnaire, c’est-a-dire, le suyjes
de la fonction , est polynome, on le met entre parenthéses. Ainsi,
f(a+z) désigne la fonction f du bindme a--z. Lorsque le sujet
de la fonction est regardé comme complexe, on emploie, avec les
parenthéses, des virgules interposées entre les sujets partiels. Ainsi
f[x, (b4y), z,...] exprime la fonction f des quantités z , b4y, z, ...

Si fz=2z; c'est-4-dire , si-le sujet n’est pris qu'une fois, la
fonction f est le facteur 1. Si fz=az , ou si le sujet est pris 2
fois , la fonction f est le facteur a.

En supposant que le sujet z soit complexe , par exemple,
Z2=0(Z, ¥ ,eeu) s X, ¥ ,..... lant des quaniités variables , ar-
bitraires ou indépendantes qui regoivent respectivement les accrois-
semens invariables ou .constans quelconques «, 8 ,....0) si on a

,fZ"-:tP(x—‘—,ao s )"‘*‘ﬁ s .. ‘) ’

la fonction f est ce qu'on appelle U'étaz varié de z. Je propose,
avec Arbogast ( Calculs des dérivations , n.° 442) de disigner cette
fonction particulitre par la lettre E; et jadopte les définitiens
suivantes

E z=op(a—tu,yt+e ,0ciin)

;E'fz::cp(x—-« s FB yeacen) ) (2)

Erz=g(xdne, y4ng,.....)
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Si fz==Ez—z, la fonction f est ce qu’on appelle la différence

de z. a laquelle est consacrée , depuis long-temps , la lettre A.
Aiusi, on a les définitions

Az=FEzm—z=0¢(x"4u,y+8,. 0. )0—0(z, y,....) . 3)

On conclut de la, sur-le-champ, cette autre expression de l’état

varié

Ez=z4Az . 4)

Quand le sujet z est complexe, on a souvent besoin d’exprimer
que la fonction f n’est prise que par rapport a un seul suyjes partiel.
Si donc l'on veut exprimer que la fonction f n’est prise que par

. f . . . .
rapport & x, on écrira —z; si la fonction ne doit atteindre que y,
X
. f . . . f £ ,
on écrira—z, et ainsi de suite. —z, — z,....sont donc les fonc-
y x N4 '

tions f partielles de z. Ainsi, a étant un. facteur, on aura la défi-
nition: suivante du facteur a partiel

o
;-z:tp(ax, Yoreres) o

De méme, d’aprés (2), (3), on aura les définitions suivantes des
élats variés partiels et des différences particlles
3

Er Enr , }
——z:@(x—l—nu,y,....) 3 -—;'z=¢\x,y+nﬁ,....);
x

iz=¢(x+a,y.....)-—ga(x,y,....): —z=z; (5)
x

y E
%z:rp(x sy, )o@y )= p Ze=Z o

J

f°z est toujours: égal & z; car, lexpression: elle-méme indique’
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qu'on ne prend pas la fonction f de z, et par consequent quﬁ
cet égard z ne subit aucune modification. Ainsi
EO EO
"——a Z EOZ—AO L= _— = —“"‘z——-t-.;' (G)
x ¥y

Toute fonction inverse admet un complément arbitraire , lorsque
la fonction directe du r.°* ordre a la propriété d’annuler dans son
sujet certains termes, ou d’y rendre égaux i l'unité certains facteurs.
Ainsi, par exemple, la différence A annulant , entre autres, les termes
constans , la fonction inverse A"z prend, a celégard , pour com-
plément additionnel , la constante arbitraire A.

On a coutume de désigner par 2z, 2z ,.... 2"z, des fonctions
dée z quon appelle intégrales , et dontla définition est dans I'équation

A'Zrz=3¢A"z=z ;
et, comme on a aussi (1)
| A'A™ " =A""AN"z=z ;
il sensuit que
e=AT"z o)

‘Par la méme raison , L étant la notation du logarithme naturel,
et e celle de la base du systeme, on aura

LLfz=z==Le? ; LL"*z=z=L3 ;.,..,
Ponc aussi
er=L""z 3 ef=L"%z ;... (8)
On irouvera de méme
Sin.*!z=Arc.(Sin.=2z) 3 Tang."*z=Arc.(Tang.=z) ;.... (9)

car on a
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z=S8in,Sin." * z=8Sin.Arc.(Sin.=z)
-=Tang.Tang." ' z=Tang.Arc.(Tang.=z) :

Pour prévenir toute méprise, le produit de fx par fy sera répré-
senté par fz .jfy. L'expression fzfy signifierait la fonction f du
produit de # par fy. La puissance » de fx sera indiquée par (fz)"
L’expression fa" désignant la fonction f de la puissance z de a.

2, Soit

Fz=fz4fotpz}ee... (10)

c’est-h-dire , supposons que la fonction F de z est telle que , pour.
la former , il faut, & la fonction f de z, gjouter (algébriquement )
une seconde fonction f de la méme lettre, puis une troisiéme marquée
par ¢ , et ainsi de suite. La fonction F est alors de la classe des
Jonctions polyndmes. On peut indiquer cette signification de la
fonction F par une notation trés-expressive , qui a le grand avantage
de permettre de traiter les fonctions polynémes comme des fonctions
mongmes , sans perdre de vue de quelle manigre elles sont com-
posées. On écrit pour cela

Fz=(f4+f4o+....)z;
il en résulte qu'on a aussi
Fiz=(f4f+o+t.....)"z . (11)
Si ¥/ est une autre fonction polynéme de z, donnée par I"équation
Flz= (/e oou )z

on pourra aussi exprimer qu'on prend la fonction F/ de Fz, en
écrivant

FFz=(fl-dfto/4= .. ) S F04000)2 5 (12)

et ainsi de suite.
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Rien n’empéche qu’une, plusicurs. ou toutes les fonctions mo=
némes composantes ne soient des facteurs. Dans le dernier cas,
aprés en avoir averti, on saura, sans. équivoque (11), (12), que
Fz, F’Fz,.... sont les produits de z multiplié par le polynéme
f4-/~o-4-...., ou par le produit (F4-f/—4-¢/~.. Y(f4f4e4e)-

3. Soit :

p(z4y4....)=eztoy+.... (13)

Les fonctions qui, comme ¢, sont telles que la fonction de la
somme ( algébrique ) d’un nombre quelconque de quantités est égale
a la somme des fonctions pareilles: de chacune de ces quamtités ,.
seront appelées distridbutives..

Ainsi , parce que

alzt+yt.)=aztay+..; E(zty+..)=FEz+Eyd-..;..
le facteur &, létat varié E,.... sont des fonctions distributives ;

mais., comme on n’a pas
Sin(zy=4...;=Sin.z+Siny4-... ; L(x-ty+..)=Lat-Ly—+...;...

les sinus, les logarithmes. naturels,..... ne sont point des fonctions.
distributives..

4. Soit.

ffe=ftz . (14)

Les. fonctions qui , comme f et f, sont telles qu’elles: donnent:
des résultats identiques , quel que soit Vordre dans lequel on les.
applique au sujet, seront appelées. commutatives entre elles..

Ainsi , parce qu’on a

abz=baz 3y aBz=FEaz;....

—_—

les facteurs: constans. 2, & . le facteur constant @ et I’état varié E,,
sont des. fonctions. commutatives entre- elles ;: mais comme , @ étant.
toujours- constant et x variable, on. n’a pas:

Sinvaz=aSin.z. ;; Exz=aEz ; Axz=x20z j.....;
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il sensuit que le sinus avec le facteur constant, I’état varié ou la

différence avec le facteur variable ,..... n’appartiennent point i la
classc des fonctions commutatives entre elles.

5. On recucille de ces simples notions plusieurs théorémes importans.

Si deux fonctions simples ¢, ¢ sont distributives, la fonction

mondme composée sera aussi distributive ; car puisque , par hypothese

Yaty)=qatVy , otu)=oi-+oz,

on aura évidemment

oV a-ty)=olda-iy) =e(t+u)=0l+Pu= oVid-oyu .
11 suit de 14 immédiatement que les différens ordres d’une fonction
distributive sont aussi des fonctions distributives.
6. Si les fonctions mondémes f, f, @,..... composantes de la
fonction polynéme F sont distributives , la fonction polynéme F
aura aussi la méme propriété ; car, d’apres la-délinition (10) on aura

F(a-ty) ={(a4+y)+fa+y)tol@+y) 4.5

mais , parce que £, f, ¢, sont distributives, cette équation deviendra

Fla4y)=fz+fr+ox~4.fy+fr+oy+o..=Fz4-Fy.

On dira la méme chose (n.° 5) des différens ordres F* de la méme
fonction.

7. Si les fonctions f, f, ¢,.... sont commutatives entre elles
deux & deux, de maniére qu’on ait

ffe=flz , fez=0fz, foz=9z ,0.c..;

et si ensuite , ayant pris un certain nombre 2 de ces fonctions,
on en forme toutes les fonctions mondémes composées que peut
fournir la permutation entre eux des n signes fonctionnaires, toutes
les fontions mondmes composées résultantes seront équivalentes,

Ainsi, par escmple, si I'on prend les trois premiéres £, f, o,
on aura

fos=floz="fofr=offz=folz=0flz .
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Pour le démontrer généralement , considérons la fonetion monbme
S d®VF . ... 2

on pourra, sans en changer la valeur, permuter entre elles deux
lettres fonctionnaires consécutives quelconques ¢, ¥, par exemples
Car , soit
\ F.....z=¢,
on aura
P 2=V

or, par hypothése , -

oVr=+es ,
donc

* ¢'4/Fosoo .Z=‘L¢F..-.-.Z ;
et, en prenant, de part et dautre, la fonction composée.
f‘b"llf¢‘4/F0lll.lz=f000|0'f¢¢F'lllc.‘z .

Il suit de 13 que chaque lettre. fonctionnaire peut é&tre amenée &
quelle place on veut de la combinaison premitre, et partant qu’om
peut faire subir aux lettres fonctionnaires toutes les permutations
possibles, sans altérer Ta valeur de la fonction composée. |

On conclut évidemment de ce théoréme que si, avec les lettres
fonctionnaires commutatives entre elles deux & deux [, f, ¢,...s
on forme , a volonté, de nouvelles fonctions, composées de deux ,
de trois,..... lettres, telles que ffz, ?¥Fz,....., toutes celles-ei
seront aussi commutatives entre elles et avec la premiere.

8. Si f et f sont commutatives entre elles, elles le seront avec
leurs inverses qui seront aussi commutatives entre clles, cest-i-
dire , que , si I'ona

¥ ffz:ffk s (15)
on aura aussi
ffrrle=ftz; firtz=t~'fz; f =1z, (16)
En effet , on a (1)
JH
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St =
ff’"'z:ff"'z 3
i te=({""fz ;
et, en prenant de part et d’autre la fonction f~*,
ﬂ"'z:f”fz .

C'est le premier des theorémes (16), et le deuxiéme se démontreraiy
de la méme maniére, Quant au troisitme ou a (1)

S =Y

et , d'aprés le premier des théorémes (16),

ST fa= Yz
laquelle devient le troisiéme théoréme (16), en y changeant fz en z:
g. Des théorémes (n.°® 7, 8 ) on conclat, sans discussien, les
formules qui suivent.

Quand f, f, ¢,....étant commutatives entre elles, &, 72, 72, .00s
sont des nombres entiers positils, on a

or, (15)

done

fne—frns | (1)
puis, en désignant f.fz par ¢z,
Pe=f"f "= f"{nz (18)
enfin, en désignant f"f™z par vz,
Whe o frf R = fRmpkng | (19)

1o. Si les fonctions monomes d’une fonction polynéme sont i Ia
fois distribuilves et commu:atives enire elles , tous les ordres de
Ia fonction polynéme serout des fonctions distributives (on le sait
dejy d'aprés le n.° 6 ) et commutatives , non sculement avec les
difierens ordres des composantes , mals aussi avec tous les ordres des
fouctions distributives qui sont commutatives avec ces derniéres,

Soit

Tom. V. 34



102 ESSAI SUR LES PRINCIPES
Fe=fztfz.... .

et supposons que les distributives £, f,....soient commutatives tant
entre elles qu'avec une distributive quelconque ¢. On aura (n.° 6)

fFe=0z4f/z4..... =Lz}fTz}..... =Ffz .

On trouvera de méme

JFz=Ffz ,...., oFz=Foz |

Ajoutant % cela la considération fournie par la formule (17), la
proposition se trouvera complétement démontrée.

11. Si les fonctions monomes de deux fonctions polynémes sont
distributives et commutatives entre elles , les deux fonctions poly=-
nomes seront distributives ( n.° 6 ) et commutatives entre elles.

Soient, en effet,

Fe=fzdfzt.viiny Flz=fzflz. 0
on aura évidemment
FFz= 24tz oo .V ff 24 .0 .
FFz=flz-tfz4 oo .24 2400

or, d'aprés I'hypothése , ces deux développemens sont composés
de termes identiques deux 2 deux; on a donc

FF/z=F/Fz .

(20)

Si on fait ensuite
Y=t zd-fzem.ans s

en supposant f/ f7 ... distributives et commutatives entre elles

et avec f, f,...., ', f7,....; F” sera commutative avec F, F/;
et par conscquent on aura (n.° 7)

FE/ ¥z =FF/ ¥/ 2=YFF/z=F/F/'F2e=F/FF/ z=F/FFz;
et ainsi du reste.
12. Le développement des fonctions monémes composdes , telles
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que FF/z , FE'F/z,.....(n.° 11) dent les fonctions simples sont
des fonctions polynémes, lorsque d’ailleurs les fonctions monémes
qui composent ces dernieres sont distributives et commutatives entre

elles, ne présente ancune difficulté. On a, dans les équations (20),
le type de celui de F¥/z; on passe, par le méme procédé, de
celui-ci 4 celui de FF/F/z , et ainsi de suite ; on sait donc dé-
velopper les fonctions comprises dans la formule

FF/ . .ooz={f4fF .. (tfde) eiiz o (21)

Le développement général d’un ordre quelconque F"z d’une fonction
polynéme Fz, aux fonctions mon6émes distributives et commutatives,
ressortit & la théorie générale du développement des fonctions en
séries , dont nous allons exposer les principes.

13, Je suppose qu’on ait respectivement

T=w, F=F, TSy, F=Y ...,
lorsque Pr=0, Px=0, ?/2=0, /=0 ,...y;
Jéeris la suite indéfinie d’équ;ations '
Fa=F ot0 2.F 2z,
F/'2=Fpg+t+o¢/ 2 .F'x , R
F/ g =Flyb-o/lz Fz (23)

équations que je rends identiques, en supposant,

Fax—Fa Fra—F/p | Y
y Flige === | Filig= (4
Px Y Pl

Flr=

yioer (24)
Je prends la somme des produits respectifs des équations (23)
par 1, ¢z, or.0'%, ex.Px.9/% ,e.u.., et jJobtiens , en réduisant,

Fr=Fator.Yotox.0v/x . F/lrtox. gx.¢/x Fliiy4. ... (25)

Les équations (24) donnent ensuite , sur-le-champ,
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FaeFe Fy=—Fa Fo—Fa
/g —— . F/‘)’: —_— F/“ = h es 00
o5 ’ oy > L0 %) s ’
L3783 Y/ S P Vo
pr,= T 1:3_?_6 N - e il e Vg
o'y ) @' 2
) RPN T i B7 1. —Frr
FPlym L Trhme X Frig= Fe -ty yeenns
¢e ¢ ¢

8 o« ® s e s s ) e c s e & s ¥ > 9 0 e s e e s e s 3 s o)

Or, de celles—ci (26) on tire facilement les coefficiens F/g, ¥y,
Fy ... de lequation (25), exprimés par les scules fonctions
F,e, o, ¢ ,.... des constanles «, 8, y ,..... Ona, en ellet,

] (Fp—Fa)
7 g T 2
B o0 )
(Fy—Fz)  (Fo—Ta)
F”y: z - — - ’
v ¢y 6. ¢y (27)
Friye T Ey—Fo | Fe=Fe)(9i—9)
0= PSP QS Qy.dy. ¢V 9By ¢ ]

@ o+ 8 ¢ & ® &2 @ o T P e @ e ¢ O & ° o O B ° o & s+ 8 o o

Voild Ja série (25), de forme trés-générale , établie analitique-
ment , par un precédé fort naturel et qui a l'apparence de la plus
grande simplicité ; de sorte qu’il semble qu’il n’y ait plus qu'a
descendre de ld aux différens cas particuliers. Mais on a bientét
remarqué que cc procédé présente aussi de graves inconvéniens.
Le premier est de conduire péniblement , méme dans les cas les
plus simples , & la loi quirégne entre les cocfficiens F/g, F/y ,.ui;
le deuxitme , et il est majeur, est de ne rien donner dans le cas peut=
étre le plus utile , celui de I'égalité, en tout ou en partic , entre les cons-
tantes @, £ ,....; car, alors les coefliciens prennent, tous ou partie, la
forme indéterminde $. C'est ce qui alicu , en particulier, quand toutes
les fonctions ¢z, ¢/, ... sont égales , et par conséquent lorsqu’il s’agit
de développer Fa suivantles puissances d’une autre fonction oo, ou bicn
encore , quand les fonctions $x, ¢/x,...., étant différentes les unes
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des autres , sont toutes de la forme 2"¥x. Cependant, aprés un
examen réfléchi, on reconnait que ces inconvéniens ne sont pas insur~
montables , et qu'ils disparaissent quand on modifie un peu le procédé;
et, en particulicr , quand on n’attaque pas d’abord le probleme
général. Voici ce que jai trouvé de plus simple & cet égard.

14. Dans F(a-ty) je considére y seule comme variable, ayant
« pour accroissement arbitraire et constant. Jécris I’équation identique

F(ety)=—Fx }
(3

Fla-ty)=Farpy | s

laquelle, en faisant

Fx4-y)~=Fx
--——i-__ =fy » (28)
devient
F(o4-y) =Fa—tyfy: (29)

Je prends les différences successives de I'équation (29) , par rapport
3 y seule ; et pour cela je fais observer qu'en général (3)

A(¢y . 'J’y):?(y—l-n) . '4’(y‘+u)—4‘y' . \Py ;

ou bien
Aoy - Vy)=9y . A¥y+Agy . Hy+e) 5 (30)
aprés quoi j’ai successivement
AF(@@t+y)= o« fy4(y+ «ASy;
A7F (z4y)= 200 fy+(y+29) A%y ,

AT (amy)=3e A (30 A 5

d’'ot: je tire, par transposition ,
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AF o i
fr= (x+y) (H—)Af !

AsF (x4) ( J-24)
24 fy=——L =TT Ay

( )
AI !‘+V (y+ o)
3:2f (‘ ) 3 i/‘

@

prenant enfin la somme des produits respectifs de ces équations (31) par

v+ ¥ (ye)(y+-2a)
9 — [ +"'_'_—‘—,'—___—' 3%ecey
Te24 1.2.3.a2

il vient en réduisant, et ayant égard & l’équation (29),

F(ay)=Fot L AF(amy)~ L2

~ AF(a4y)4. s

ou bien, en transposant,
\ oy ,
Fa=F(a+y)—  AF(ahy)H T AF(oty)

Y y+a)(y42e)

1.2.3.4%

A’F(z4y)+..... " (32)

On peut donner & ce développement plusieurs autres formes trés-
remarquables.

D’abord je fais a-}y=p; relation qui donne, parce que & est
constante ,,

Alz+y)=Ay=Ap=u ;

par conséquent l'expression A"F(z-4y) devient évidemment A"Fp,
les différences étant prises par rapport a p qui varie de «; om
a ainsi

-n) (=) (x

l-\Fp-F*—IﬂAZFp-

2, 02

Fx—-l"p—l—

(x—p) (x=—=p=—2) (x—p—20)
Lo2..3. ad

-

A’Fpt-...... (33)
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PDans ce nouveau développement, je change x en a4na ; alors le
premicr membre devient (2)

Fla+4-n.)=EFzx ;

dans le second , #—p devient z#—p-n«. Aprés cela je change p
en & ; alors Ap devient Ax, et A*Fp devient A"Fa; les diffé-
rences étant priscs par rapport & x qui varie de «; il vient ainsi

n ne=l n=—2

E'Fx=F(atne)= F +— — ———A3Fx+ (34)
Ici je fais ne=m ; d’ou n=—::—2; et j'ai

m(rmn=—a) 17 (771mm 02) (1150 2 08) 3
Flzdm)= Fx-l- AF + A’F +'———-—AF +.. (35)

2.3.

Dans équation (35), je fais #=o0; ce que j'exprimerai, rela-
tivement aux fonctions Fa,....A"Fz, en écrivant Fz,,... A"Fz,;
puis je change m en x, et jai

& (2w X (mmm02) (Hmm22)

Fx-—Fxo—]— AF 0+ ASF °+————5———A3F o+ (36)

15. La série (33) est aussi donnée par le procédé du n.° 13,
quand on fait

k

pr=z=~—p ; Vr=Z—p——u ; YX=F—p—28 j0.0..3

mais il est bien plus difficile d’arriver 4 la forme générale et bien
simple A™Fp qui comprend tous les coefliciens. On conclut sur-le-
champ de cette sériec la possibilité du développement de Fz suivant

. . - x—p .
les puissances entidres et positives de =, bien que le procédé du
o

n.® 13 ne donne rien i cet égard. En effet, les produits
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x=p (x==p) (X—p=2) (20m=p) (=Pt (K =mepp =2 26)

. .
@ ? a2 ? “3 geesey

étant développés , sont tous de Ia forme

(e (o
de sorte qu'aprés ce développement , il sagirait simplement d’ordonner
par rapport aux puissances (x—p) (x—p> .;et, sans calcul,

x-—
on apercoit déja que le coefficient de la premitre puissance ——”—}:

serait la série
AFp—~; AFp4-2 AFp—. ... (37)
Il ne serait méme pas. difficile de les déterminer tous d’aprés cette
seule considération ; mais il sera.plus court d’en faire la recherche
par un procédé analogue d celui qui vient d’étre employé (n.% 14).
D’abord je prends la somme des produits respectifs des équa=
tions (31) par —=1,—1, 42, —, +-....., ce qui donne , en
réduisant et multipliant par «,
of y =AF(a-4y)— L A*F(a-y - L ATF@y)— . oo
—y A=Ayt A= (38)
Tci je fais "
AF (o) — L AT ey AF ()= = Aoy 5
notation d’aprés laquelie on aura
Afy— Ay 43 A y— o =dfy
et, en général
Az Az Nz—, ., . =dz . (39)
€est la délinition. compléte d’une nouvelle fonction de z, poly—
nome
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néme et meme infinitindme , en général,, que jappelle la difé-
rentielle de z.

Il s’ensuit , sur-le-champ, que )

Adz—; A’dz4-1 Adz—..... =dz
et, en général
Ad'z—; Ad"z4- Adzem ... o =d"F T2 (40

d’z, d’z,....d"z, sont les d/fférentivlles de différens ordres de z.

Cela étant , I'équation (38) devient '

of y =dF(@+y,—ydfy - (41)

Je prends les différences successives de celle-ci, et j’ai, eu égard
3 la formule (30),

WA fy=A dF (z+y)— «d fy—(y+ A dfy ;
«Afy = AdF (a—+y)—22Adfy —(y+-20)A%dfy ,
aA“"fy:AHF(x+y)—-3uA3dfy—-—(y+3¢)A3dfy »

¢ @ & 4 o o ¥ ¥ & o o & F @ o s 9 T P o 0 ¢ o

Je prends la somme des prod’uits respectifs de ces équations par
1, m=i, 2, —.... et jai , en réduisant
w(Afy- 1Ay A y-w) =AdF 24y)- 1 A2dF (v y) H ANE (a4y)-on
e dfy—y By — A A — )
équation qui , d’aprés les motations fixées (39), (40), devient
adfy=aF(ay)—udfy—ydfy ,
ou bien
2adfy=d"Flaty)—ydify . (42)
Je fais sur celle-ci les mémes opérations que sur Féquation (41);
cest-d-dire , que je prends la somme des produits respectifs de
ses differcnces successives par 41, —I, =3, —..... ce qui me

a2
donne, en réduisant, et ayant toujours égard aux notations (39’ , (40) »

dom. V. 15
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3udfy =IF(ay)—yd’fy . (43)

Le procédé détaillé pour passer de I'équation (41) 2 ’équation (42)
sert évidemment de formule pour passer de celle-ci a I'equation (43),
puis de cette dernitre & une nouvelle , et ainsi de suite; de sorte
que c’est par une induction rigoureuse qu’on obtient la suite in=
definie d’équations

e fy=d Fla+4y)—yd fy ,
2ud fy=dF (zy)—ydify ,
3ud* fy=d"F (z-4+y)—yd’fy ,
4ud?fy=dF (aty)—ydy ;

En prenant la somme de leurs produits respectifs par

2 r3
Y y Y y
_ — Ok RN AU S S
« Ie2.00 1.2.3.03 1.2.3. 404770 ?

il vient, en ayant égard a I’équation primitive (zq).,

F(;r-l-y):Fx—l—

d’olt en transposant,

Fr=F(s-t+y)— L dF ety 2 d

Série bien analogue avec la série (32) et qui, comme cette der-

niére , prend, dapres les meémes procédés , plusieurs formes dif-
férentes , savoir ;

(x=—p) (x P)

EFpt S PEpdean, (45)

1.2.3.43

dF—l—

Fa=Fp+

E'Fa=F(s-4tna)=Fat i:- dFot = dFat 2o dFabn,  (46)

(44)
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m?2 3

4Tz

m
1.2,0% 1.2.3.03

F(z4-m)=Fz+ — dFe+ IFat-.. (47)

3

x
1.2.3.a3

Fo=Faot 2 dFz,t—— d*Farg+ PPzt (48)

16. Je m’empresse d’appliquer ces formules au Jéveloppement.
des differens ordres d’une meéme fonction. ’
Soit
Fo=0"z;
Ia différence constante de z étant «, on aura (3)

AFz=—0¢"t%z— 0%z .

Si la fonction ¢ est distributive, cette expression se changera em

- AFz=0%p"z—2) . (49)
Admettons, I'hypothése’, et faisons un moment
P smmz=fz . (50)

D’aprds les théorémes (n.°s 5, 6), ¢% et f seront des fonctions:
distributives ; et , au lieu de (4g), nous aurons

AFz=9¢"fz ,

puis, en prenant la différence de celle-ci,
AFr=¢*+fz—0"fz= 0" 0%f2—fZ) . (51)

Si la fonction ¢ est commuiative avec les facteurs constans , elle:
Te sera aussi , en vertu du théoréme (n.° 10), avec la fonction
binéme f, (50) , cest-a dire;, qu'on aura

o*fz=fo"z .
Admettons encore I'hypothese ; parce que f est distributive, nous
aurons , d’aprés (50),

O fi—fr=fo"z—fr=f{p2z—2)= 22 ;

ainsi, l'équation (51} devient:
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\ A*Fr=¢*fz. ‘
On trouverait de méme
A’Fa=¢*f3z , AFr=¢*f%2 yore.;
et, par une induction manifeste
ArFz=9¢*f™z ;

expression qui, si 'on veut faire usage de la notation proposée (n.°2),
devient

ATFr=0"(¢*—1)"z . (52)
Or, on a (6)
Fr,=¢°z=z [ A"Frx,=(¢%—1,"z ;
donc, par la formule {36), on aura

x(x— X (Km==2z) (m

$rz=z+ — (¢“—1)z+ (cp“——l 2z ——I——-———-—-(¢“-—1)3z+ (53)

Actuellement , d’apr‘es la définition (39) et la formule (52), on
trouve

dFz=ATFz-1 A*For+...=¢"[(¢"-1)z-2 (0"~ 1)z 1 (e%-1)’z-...] (54)

Je désignerai, en général , la fonction polynéme , qui est ici entre
parenthéses , par Lo*z ; L sera ainsi la notation d’une fonction

déterminée de 0z , dont la définition compléte sera donnée par
Péquation

Loz =(¢*—1)z=2(¢"—1)%24 3 (¢*—1)02z—... (65)

Ya fonction L s’appellera Zogarithime et L¢“z sera une fonction
mondme composée qui s’énoncera : logarithme de % de z. 1l est
clair (n.° 10) que la fonction L¢” est non seulement distributive ,
mais commutative avec la fonction @ et le facteur constant. Il
nen est pas de méme de la fonction simple L,

Ainsi, équation (54) devient
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dF2=¢"L¢"z .

De celle-ci on conclut sur-le-champ

d’For=0(L¢*)z , P’Far=0Le*’z,....d"Fr=0"Le*)"z ; (56)

par conséquent , en faisant #=o dans Fz, dFz,..... d"Fz , on a,
d’aprés la formule (48), cet autre développement de #*z :

3

ozt T Lok —— (Lowyat Lozt (57)

1.2.3.43
Tirons quelques conséquences importantes. Dans (57) I'accroisse<
ment « étant arbitraire , je le fais égal & l'unité, et jai

0z =z Loz = (Lo)z e (L) 58
z—z+-1— z -L—z-( ¢)z:—2-3\ Pzt (58)

Je compare cette expression, terme 4 terme, avec celle de I'équa-

tion (57); et, parce que # cst absolument indéterminé , jobtiens
la relation

aLoz=Lo¢%z . (59)

Soit f une fonction distributive et commutative avec ¢ et les
facteurs constans; prenons de part et d’autre de I'équation (58) la
fonction f*, nous aurons, eu égard & la formule (13, n.° g9),

Sre=(f8 =) fLbs (L) e

Développons chaque terme du second membre de celle-ci, par la
méme formule (58), et nous aurons visiblement

ofa=atalfet =@ Pt

+rLgzt-2 = L)L)z ~ (60)

x2 \2 _
+ z:;(L¢/Z+.-...o
:'i—oovot.
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d’ailleurs , toujours d’apres (58 ) , on a cette autre expression

(foyz=s+ally)st = 18 2tmmn 5

X

donc , en comparant terme 3 terme avec (60) , nous aurons, i
cause de lindéterminée 2, la relation -

Lf¢z=Lfz+1%x . (61)
Supposons.
Loz—yz ¢

prenons , de part et d'autre , la fonction inverse L*%, et nous
aurons (1) ,
: 9z=L""z ; oz=(L""¥)z ;
et par conséquent , daprés la formule (58) s

. z 3
(L- ’\;/)xz=z+ —:-_7 \]/z+ %"I/’z—*—ﬁg‘l’sz—b ceeese (62)

Soient encore f et ¢ deux fonctions distributives et commutatives
tant entre elles. qu'avec les facteurs constans. ; z et x étant des:
exposans. arbitraires, on a sur-le-champ (1),

S a=L""LS "7 5, (63)
mais (61), (59) on a aussi

Lfugcz=Lf “;z+L¢’z=usz+xI}¢z s
donc: (63) or aura, em employant la notation (n.° 2 )

S z=L"'@Lf42L¢z ; 64)
et, d’aprds (62)

S ¢ ze=z+4 (@l 2L+ {;_(uLf+xL4>)’z
—+ F_ = (lLfalefzd.. ... (65).

1.2,

Faisons: quelques Bypothé’ées: particulidres’, sur la. forme: de Ia
fonctiom: ¢'; et d’abord soit:
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gpr=z+fz=(14f)z ;
en supposant «=1 , on aura sur-le-champ , d’aprés (53), (58), (55)

X KT Xowmen 3

(4 rz=zt — fz—l—--— -——[z-[——- —_ —-—f3z+ .....
(1--}-f)"z:zz-i"—xJE L(I+f)z+';:; [La+)] 240  (66)

LO+f)z= fz— ; /’z+—;— /%-% izt
Soit
C@z=fz4-fz .
Je prends, de part et d’autre, la fonction inverse f=%, et jai
S ez=zf 2,
laquelle, en faisant,
Sfiez=Vz , JFfz=Tz,

devient

Yz=z+4Fz ;
et d’apres la formule (66), j obtiendrai

X Xwm] KLemmd

Ve=z+— Fz+—' -——F’z+ -

F’z+ v
va=z+ §L(1+F)z+§_’-2- [LeA-F)] 24 o

L(+F)g=Fg— = Fir+ £ Fy— ;—F4{+.....:.

Dans celles-ci , je mets pour ¥7 et Fz leurs expressions d’hypothése,
puis je prends, dans la premiére et la seconde, de part et d’autre,
la fenction f et jai
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X1

o= ()= 1T S =iy += PV o pRe

o =(A T T LOH 1 1 S LA DT ek | (67)

O A e O A /Lot J
Soit ’

: 9=/ t+7+97 .
On fera fz447=Fz, et on aura (67) les développemens relatifs 3

Fr=0+F)% .
Dans ceux-ci, au lieu des différens ordres F2z, F’z,...., on mettra
leurs développemens donnés par les mémes équations (67) , d'aprés

Fra=(f+4)g -
On voit, sans qu’il soit besoin d’insister , comment on arriverait
aux deux développcr-nens de lordre z de la fonction polynéme
quelconque , aux fonctions distributives et commutatives ; c’est-a~
dire , qu'on sait développer la fonction

¢ 1=+ f+F4¥44. )z . (68)

17. Je vais appliquer ces géoéralités aux fonctions données par [
considératim} des différences des quantités variables , fonctions que
yappellerai fonctions différentielles.

En considérant g comme fonction des deux seules variables z ,
{ ce que nous dirons pourra sappliquer sans peine aux fonctions
d'un plus grand nombre ), ses fonctions différentielles, zozales et
partielles , sont (n.° 1) /

E E A A d d
B, oo S5 AL 21 S Y& o, L

On voit que, d’aprés la notation proposée (n.° 1 ) pour les fong=
tions
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tions partielles , en général , nous exprimons les différentielles par-

. d d
tielles PAr —% 5 T Zseeees
g

Les définitions des fonctions différentielles totales (3), (4), (39),
exprimées d’aprés la notation proposee ( n.° 2 ) pour les fonctioms

polynémes, seront

En=(14A)g , An=E—1)y; |
{69y

\
d=(A—; A A =B 1) Emr) 217 |

Elles serviront de formules pour exprimer les fonctions diflérentielles

e . E A d
partielles , en y changeant simplement E, A, d n—, —, =,
E A d .
ou en - , -—, — respectivement.
Y ¥ v ‘

Ajoutons la formule qui établit la communication entre les fonc~
tions totales et les fonctions - partielles : c’est
E E )
Fr=7 —t- (70)

Elle est évidemment vraie; car , pour avoir ¢(a—+4e«, y+8)=Fz,
il suffit de changer d’abord y en y-p, c'est-a-dire , de prendre

d’abord — 7 ; ensuite , dans le résultat , de changer 2 en 2}
S 4
t4 \ L4 3 7 E E
¢'est-2-dire , de prendre l'dtat varié —, selon x, de —z.
o XY

Cela posé, il est facile de voir d’abord que toutes les fonctions

différentielles sont distributives. En effet, les états variés E, — , —
x r

le sont évidemment, ainsi que les facteurs constans. Or , d’apres
leurs definitions (6g) 4 les différences et différenticlles totales ou
partielles sont des fonctions pclyndémes dont les composantes sont
des ordres d’états variés et des facteurs constans; donc, en vertw
du thécreéme (n.° 6), cllessont elles~mémes drseridutives.

Tom. V. 6
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En second lieu , tous les états variés sont commutatifs avec le
facteur constant; il est méme trés-remarquable que tout état varié

est commutatif avec toute fonction d’ordre constant ; c’est-a-dire ,
qu'on a *

E

Eer=¢Ez , —E @{:‘P%{ ) 'yE—‘P{=¢7 (8
1l est fort indifférent, en effet, de ~changer d’abord # en 24w,
par exemple, dans la fonction gz, puis de prendre la fonction ¢,
ou bien de prendre d’abord la fonction ¢ de z, pour y changer
ensuite @ en e« Il suit de 1d que les états variés sont commu-
tatifs , tant entre eux qu’avec toutes les différences et différenticlles.

En troisidme lieu, les différences et différentielles, étant commu~
tatives avec les états variés, et étant des fonctions polynémes com-
posées d’états variés qui sont commutatifs avec les facteurs constans,
seront, en vertu du théoréme (n.° 10), commutatives avec les
facteurs constans, ' - ' .

En quatritme lieu , d’aprds la définition de la différence partielle

A d )
— %, celle-ci sera commutative avec 5 z et = z(n.°10), puisque
x

ces dernidres sont commutatives avec —z et les facteurs constans.
: x ’
En cinquiéme lieu, d'aprés la définition de la différentielle par-

» . . d ' .
ticlle =z, celle-ci sera commutative avec P (n.° 10), puisque
X,

cette derniére 'est avec les différens ordres de —3{ et avec les fac-
teurs constans.

De toutes ces obscrvations réunies, il résulte que toutes les fonctions
différenticlles ‘et leurs différens ordres , positifs ou négatifs , sont
des fonctions commutatives , tant entre elles qu’avec les facteurs
gonstans, On pourra y ajouter les fonctions intégrales

b b S S
2,';-, I’f:;:_z‘:_
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ainsi que leurs differens ordres; puisque ces fonctions ne sont que
des diffcrences et différenticlles dordres negatifs (n.° 1)

Ains1, toutes les formules donnédes dans larticle précédent sont
immediatement applicables & toutes ces fonetions. On en recueille
sur-le-champ plusicurs expressions abrégées dont voici les plus re-
marquables.

Dans la formule (46), je mets 7 au lieu de Fa ; je ecompare
avec l’équation (62), et jai

Erz=(L"*d,"z ; (71)
et par conséquent aussi
En En
-;{——(L"'— s (L"'—'){' (72)

D’aprés les expressions précédentes et la définition A"g=(E—1)"z
(69), on a sur-le-champ

An d
Arg={Lrtd—i) ;"F(L";““)nz;

An
rie <L" ~-l>{ (73)

En comparant les définitions (6g) de la différentielle avec la for—

mule (55) on ebtient

dr A n E \n
i=[Leap=aEre Te=[ L2 ) Te=( 3 )
dn A P E \n
—_— = I,( —_ ] = (L _.> . -
P { [ 1+ " ) z 5 z (74)

Si, dans la formule A"z=(E—1)"z, on met, au lieu de Eg,

E E . .
Pexpression équivalente — — 7, qui elle-méme (6g) est équivalente &
xr ¥

(1+-§ >(1-—|—§->{, on aura
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et ()T 22 T
=[2(+7)—]% %)

Si, dans drz=(LE,%z, (74) , on met, au lieu de Eg, Pexpres-

sion (70), on aura

r=(LZ Ve - @6)

or, daprés la formule (61) et les expressions (72), on a

E E
L";‘{--L-—H-L*{--z-i-—z <—+ ){,

donc, au lieu de (76), on aura
a d d \»
d{—(x+;>i~ (77)

. L E
Si, dans I’équation (64), on change v, f,2, ¢ en m, =
E .
n, — , respecivement, on aura
oy ] :

Em En E E
- Fi=eltme, y4ns)=L-" (’”L P e )z-,

équahon qui, d'aprés (62), deviendra

Em En 4, 4 N
— }—z:¢(x+mw » y+ng)=L (zr ~ +n;)z (78)

On sait (n.° 11, 18 ) développer toutes ces expressions abrégées.
C’est ici le lieu de faire observer qu’on peut former, en com-
binant les fonctions différentielles entre elles et avec les facteurs
constans , une infinité de fonctions différentielles nouvelles qui toutes,
d’aprés nos théorémes généraux (n.°° 5....10) seraient distributives
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et commutatives , tant entre elles qu'avec les facteurs constans,

Ainsi, en affectant des notations particulitres & des fonctions po-
lyndmes , telles, par exemple , que

&

az4bEz , az+4-bEz4-cE*z , dz-f-ad®zt0d3z4-...00

on formerait de nouveaux algorithmes qui auraient toutes leurs lois
théoriques et pratiques dans les formules (n.° 16 ). Le Calcul des
variations , en particulier , est le résultat d’'une considération de
cette espeéce.

Les facteurs, étant des fonctions éminemment distributives et com-
mutatives entre elles, sont visiblement compris comme cas parti-
culiers dans nos formules. Alors Vexpression L¢“z est le logarithme
naturel du facteur ¢* qui multiplie z ; l’aqtre expression L"='Yz
est la méme chose que I'expression vulgaire ¥z, (n° 1 ). Il nest
pas méme nécessaire d’aller chercher ailleurs une théorie des loga-
rithmes ; elle est toute entitre dans la définition (55) et les for-
mules (59), (61), (62). Par la méme raison , les moyens de déve-.
loppement fournis par les élémens, pour élever un polyndme quel-
conque & une puissance quelconque , sont tous des cas particulicrs
de ceux qui conduisent au développement de la formule (68).

18. Nous avons, dans ce qui précéde, esquissé I'ensemble des
lois qui rapprochent et mettent en communication toutes les fonctions
différentielles , c’est-a-dire , la théorie la plus générale du caleul
différentiel. La pratique de ce calcul, laquelle n’est autre chose
que lexécution des opérations indiquées dans les définitions , ne:
formerait pas une branche séparée , si on n’avait pas remarqué que,
pour certaines classes de fonctions variables, les fonctions différentielles
réduites se présentent sous des formes beaucoup plus simples qu'on
n’aurait pu le préjuger. D’ailleurs les fonctions, variables en gén(ral,
eu égard & létat actuel de Vanalise , se composent d’un assez
petit nombre d’autres fonctions qu’on appelle élémentaires , et dont
il suflit de connaitre les fonciions différentielles pour étre en état,
d'apres les régles du calcul ordinaire, de trouver celles des pre—
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m'éres. 1l serait déplacé d’entrer ici dans aucun détail concernant
les états vartés et les différences des fonetions élémentaires; je me
borne & la recherche de leurs differenti les.

Les fonctions élémentaires simples d'une seule variable z sont
les fonctions monémes ’ ‘

am™, o, Lz, Sinz, Cosx,

dans lesquelles on attribue & 2 une différence constante. Les fonctions
élémentaires composées sont ) _
ox. ¥z , (px)m , a®*, Lox , Sinpzxr , Cosox.

Il y a, pour faire dépendre les différentielles de ecelles-ci, et,
en géneral , des fonctions composées , de celles des fonctions simples ,
un théeréme important qu’il faut préliminairement etablir,

Soient y:: ¢z , et Fy=Fox; ¢, F sont des fonctions queleonques.
En supposant que la différence de y est la constante g, on a,

par la formule (47)

m m* m3 o
F(y—!—m)—l"y-l- -; dFy+:—,B‘"'d Fj + x-2.3.ﬁ3d I‘} e
Ici m est arbitraire ; partant, je puis faire
— n* 2 4. __’_23__ ¥ )
m:nd¢x+ad px-t :.2.3d o SR (79)
et )aurai -
F(y—},—m):Fy—l—% dFy.dea-t 17:3 dFy. d*0z—4..un
. n* 7 . (89)
-+ oy d*Fy(dez)*+-....

+...
mais , d’aprés la formule (46), eu égard & I'hypothése (79), ona

o(xtne)=02-}+ -:i dea- % d*Patw=y4m

done:
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Fly—m)=Fox+ns) .

Je développe-le second membre de celle-ci, par la méme for-
mule (40), et jai pour F(y—m) cette autre expression

F(y+m)=Foat T dFoap- = T4

laquelle , comparée avec la premitre (80), donne sur-le-champ,
3 cause de l'indéterminée 7, ‘

dF¢x=‘3§l.d¢x . 1)

Si on avait #=V¢, en donnant 4 z la difference constante «, il
est clair qu'on aurait, par la formule (81)

dFy d
dFe¥s = —y.ﬁ.dﬁpt H
B8 '
et ainsi de suite.
Cela posé , d’aprés la formule (56), en y supposant que la

fonction ¢ deviennc le facteur @ , et que z soit égal a Punité ,
nous avons ’ ' ’

da*=a*La* ; (82)

« étant la variation constante de . Dans cetter hypothdse, on a
w=Az, o=A=40r=..... ; par.conséquent , d’'apres la défi-
nition (3g)

der=Az==« .
Drailleurs, d’aprés (59) on a
’ La*=ala ;

donc , au lieu de (82), on aura .
de*=¢*dz.La .. - (83).

Supposons ensuite
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‘Fér=Fy=0aP=a .

Nous aurens , d’apres le théoréme (81)
¥
da¢”=i‘f—-.d¢x .
g
Mais , d’aprés (83), puisque dy=g par hypothése , on 2

d¥=a'La=a% .La ;

donc, en aura .
da®*=a%.d¢z.Lg ; (84)
c’est-3-dire , Ia formule pour différencier les exponentiels.

Si on fait attention que La®*=¢sLa, et par conséquent que

dgz.La=dLa% , la formule (84) deviendra
da?*=q?".dLa?" ;
dans laquelle , si on fait F#=4®", ce qui est permis, on aura -
dFz=Fz .dLFx ; (85)

c'est l’éxpre'ssion de ce théoréme : la différenticlle d’une fonctiom
variable est toujours égale 4 cette fonction multipliée par la diffé~
rentielle de son logarithme.
On en eoticlut sur-le~ehamp
dLFz= e ¢ (86)

cest la formule pour différencier les logarithmes naturels.

en faisant attention que L(Fz"=mL¥z ; d’apré‘s les formules (85)5
(86), on aura :

dFz,m=F2)".dL(Fa)"=m(Fa)™ dLFz=m (Faymr.dFw: (87)

¢’est la formule de différentiation deés puissances.
Puisque L(¢z.Fe)=Los+LFz, on aura (85) A
(d¢x . Fa)
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d{¢z.F2)=¢2.Fr.dL(¢x . Fo)=¢s.Fx(dLoz+dLFx) ;
donc , d’aprés (86)

d(¢x.Tx)=Fr.d¢s+ox.dFx : (€8)
c’est la formule de différentiation des produits.
Soit
;_ Cos.xx-}-\/.:-; Sin.ezx o
Fa= Cos,*w ’ (09)

« est une constante , & est variable , et sa diflérence constante est 1,
On a

- AFz= Cos.u(x+1)+\/::rSin.u(x+1) ___ Cos.zx-\/—1Sin ex .

Cos. >+t u CosXe >

puis, en développant, par les formules trigonométriques connues,
les cosinus et sinus de ax—«, et en réduisant

AFz=Fz. \/:T.Tang..u ;
par conséquent, en gdénéral
AmFz=Fz(y/=1. Tang.&)™ ;
donc, d’aprés la définition (39), on aura
dFz=Fz.[(y =i . Tang.«)—*(y/=:i.Tang.e)+-....]
et, en comparant avec la formule (55),
dF2=Fz.L(1-4y/=: . Tang.«) . (90)
D’ailleurs (88)

de_—=< = Y. d(Cosuuamty/ = . Sin.ez)
— s 1 * .
+(Cos.ax4/ =1.Sin.ex).d <Eo_s; . (91v)

Mais, d’une part, en différenciant la formule connue

Tom. ¥. x7
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Cos,*ex+Sin2wz=1 ,
d’aprés (87), on trouve

Sin.ax

dCos.er=— .dSin.ex ; (92)
Cos.ax

et par conséquent

d/Cos.uzty/ =7.5in.u2)=d.Sin.ez. V" ‘Cos.exty/=i.Sin.ax); (93)

Cos.ax

Drautre part, en se rappelant que dz=1, on a, par la formule (83)

1 \* 1 \*
d (Cos.m) =—(Cos.m) LCos. 5

donc , en substituant cette expression et celle (93) dans (91), et
eomparant avec (go), on aura

d.Sin.ur . Y_L —1,Cose=L(1+y =i . Tang) ;

—
08. a8

et de la en faisant
Ay =1 =L(Cos.e{-y/ =i.Tang.«) ,
on tire .

dSin,ax=ACos.ax ; (94)
puis , en mettant cette expression dans (92) ,
dCos.ex = —ASin.ax . ’(95)

Si on changeait ici «x en 2, on aurait ces formules

. A 4 .
dSin.x= — Cos.z , dCos.x=— ~ Sin.z
o

Ici la différence de x est 1 ; si 2 était fonction d’une autre variable , on
aurait, en vertu du théoréme (81) :

—~

dSinz= ::-f- d2Cos.z , dCosa=— - dsSin.z . (96)

%

Dans ces formules, la quantité « est un arc arbitraire.
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Ta constante A4 , quoique impliquée d'imaginaires , est facilement
ramenée 3 une forme toute réelle. En effet , & cause de la for-
mule connue
1 — I B
1~ Tang e - (1+\/::.Tang u)(x-—-\/:.Tang‘u) ’

Cos.2e=
on a

’ b 4 — 1-Fy/—1.Tang.a
Ay ==1L[Cos *a.(1-}y =i.Tange]=1L —-———____L) ;

x--\/:.Tang o

et, en développant la derniére expression d'apres une formule loga~
rithmique connue , puis en divisant par /=1,

A=Tang.a=: TangJle~; TangSu—.... (97)

Ainsi, quand on ne saurait pas d’ailleurs que cette expression
de A est égale & « , on aurait toujours le moyen , d'aprés les
équations (96) , et (q7) , de dilférencier les fonctions trigonomé=
triques. Au surplus , par les seuls ¢lémens , on démontre que
-;i =1 ( voyez , Théorie des fonctions analitiques , n.° 28 de
la 1.7® éddition, et n.° 23 de la seconde ).

19. Nous avons vu naitre le calcul différentiel da simple déve=
loppement des fonctions d’une variable suivant les puissances de
cette variable : ce calcul va nous servir maintenant & nous élever
3 quelque chose de plus général.

Supposons qu'on dorne , entre les variables # , y , I'équation
P=o et I'équation z=Fzx, On peut du moins imaginer qu'on ait
tiré de la premitre celle-ci y=9%xr, et qu'enire cette derniére et
Ta seconde, on ait éliminé 2, pour avoir z=fy; de manit¢re que

Yhypothése revient & donner les trois équations
y=¢z , z=Fz, z=fy. (95)

Alors, d'apres la formule (45), on aura
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<y p) dfp +(y--p)z dzfp+

Fa=/fy= (99)

Dans celle-ci, p est une arbitraire qui a pour différence constante
. Je différencie I’équation (99), par rapport & z scul, et jai

de=dy.-d-£-” +9—:ﬁ)dy.di/{{’ . (100)

puis je suppose qu'en faisant y=p dans J’=o0, on trouve entre
autres x=#, et réciproquement ; on aura (98)

p=¢, dp=dd , fp=fee=Fs.
Ensuite , je fais y=p dans (r00), et cette équation devient

dFs=d¢s. f’” ‘ (101)

dfp _ dme
3 — dgo °

L’¢quation (101) est la méme que {(81) , trouvée d’une autre
manicre. Je divise I'équation (100) par dy, je différencie par rapport
Az, etjai

dF d
. ( x) dy fp+(y p)d -M+" (102)

dans celle-ci, je fais y=p, et jai
d&fp 1 d' dF
g: ~ deo (dcpo
Joptre sur ’dquation (102) comme j'ai fait sur (gq) et (100);
Sest-a-dire, je divise par dy, je différencie, je fais y=p, et jai

fl’f_f’__:_{_d[id("_l"f)],
g dpo | dge \de¢

L’induction est manifeste, et l'on voit que j'aurai, en général,
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& Lgf L 2 og faE
?T_dqaed§dq:edgd<podg 'dcpsd;dcpogg?"”}' (103)

Il y a, dans cette expression, un nombre n—i1 de différentielles
subordonndées. Elle est fort simple; mais on en découvre une autre
qui ce préte mieux aux développemens que la pratique exige, en
employant un procédé qui n’est pas dépourvu d’élégance.

Je fais, pour abréger,

dfp dz2f; dn
W=a, P =poui L =,
ﬁ ﬁz ﬁ"
R . . Koo 2\ 2
Je multiplie successivement 'équation (9g) par ;—; =) vee}-

je fais d’ailleurs attention qu’en général
J q 8

& ! —(m=1)
—p)m T e d(y P)

relation qui se vérifie aisément, d’aprés la formule (87); et jai
Keaom) ay
— dF —_— A -.—é\ . — e | d + x—-ﬂ d #‘. e
()= ao—y. L a0y +E0 Y

(=) b= — o). dlomiy B € (ot dy b Y (1ol
dy

Q_g) dF“‘"""“(f‘—“ d(y-p)*-Bla—d(y-2) ’+- (@)’ ==

Or, d’aprés la formule (£5), on a
e ) 2 -
y—-p:(x—-o)d@o-}—-(—x-;;l d2P0deerees 3 (105)

puis, en différenciant par rapport & #
 dy=des-(a—0)d2¢0 4= . wile (106)

1l suit d’abord de (106) que (y—p)~ " et d(y—-p)’"‘ seront res-
pectwement des formes 1
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(=)= A@w—0) =T Be— "0 Dk G (=) H HAK (@ L@= 2
d(y—p)=m= A (x=t) " B (@)~ O (@ ) 2pob KLY @) (107),

de cette derniere on conclut que , m étant un-nombre entier plus
grand que o , il manque , dans le développement de diy—p)™™
suivant les puissances ascendantes de (a—+¢), le terme wultiplié par
(=61 ; puis ultérieurement que ,z ¢tant aussi un nombre plus
grand que o , il manquera , dans le développement de (x—)"* .
dly—p,~™ , le terme multipli¢ par (2—¢ " Dailleurs, il est évi-
dent (107) que , tant que 2 sera ¢gal & .2 ou plus grand, ce dé-
veloppement ne renfermera point des puissances négatives de(a—-
Mais , d’apres la formule (87) , ¢ étant positif , d% @~ ¢)7 est nul,
quand 2>¢ ; et d"(w—0)? est de la forme Ra—0)", r étant plus’
grand que zéro, quand n<g. Donc , en- prenant la différence d”
de Vexpression (#—¢ "+ d(y—p)~™, tous les termmes ou (z—¢) a
un exposant moindre que 2 seront détruits , tous les autres pren-
dront la forme Ii(x—o/ , puisque , le terme en (x—¢)" manquant,
dans tous les autres » Vexposant de (x—¢) est plus grand que 7 ;
par conséquent, lorsqu’on fera #==¢, on aura toujours

dr[(z—o "+ 1 d(y—p)~"] =o. (108)
Il suit, en second licu , de I'équation (z06) , que l'expression
d
(x—ﬂ)”""_.;‘%} est toujours de la forme

d X
()t ™ y.._y; =(g—t-Plo—on+ 14,

mais (87) d"(x—¢)"=1.2.3.....7; donc , quand on fera z=1¢, on
aura toujours

dr[(x—on+t, J%]= 1.23.0.0.72. (109)

Je fais & présent l'application de ces deux observations impor=
tantes 4 la suite d’équations (104). '
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Je fais x=9¢ dans la premilre ; le premier ferme , & cause de
(109) , devient 4 et les suivans s’anéantissent ; donc

—
A= % I dFa } :
y—p o
Jindiquerai par le o, placé en flanc d’une expression, qu’il faut
faire , dans son développement , x—i=o.

Je différencic une fois la seconde équation (104), puis je fais
=0 ; le premier terme —Ad[z—¢)2dly—p) '] est nul (108) ;3

d . ’
le second Bd [(a:—e)2 ._3;.] devient B (109); tous les suivans s'é-
y——p

vanouissent ; donc
b2
B:—.d{ <..__) de} :
y=p 0

Je différencie deux fois de suite la troisidme équation (104) ,
puis je fais #=0 ;" les deux premiers termes du second membre ,
étant dans le cas de (108) , sont nuls ; le troisitme se réduita C
d'apres (109); les suivans sont visiblement nuls; donc

C:d’i(g)ngx§ .

dl n’est pas mécessaire d'aller plus loin pour conclure en toute
rigueur qu’en général

‘N= i’:’:’z;—_d"" &(ﬂ)ndl*’x§ (r10)
ﬂ” y__p o ] -

ainsi V'équation (9g) devient

)2
Fa= Fe—{—(JIp)g;:;dF § ‘y l {(y_p) de}

y—p)3 Z(r_o dF:r% .. (111)

1.2.5

ou bien , si on veut mettre , pour y ef p , les expressions cor—
respendarites @z et ¢4,
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(===t dF 2
Qx=0d

Qx—o? gcx—-@zde}
(px=—-0)? Jo

Fx:f‘f’-l“(@x—@’) { §0+

(px==0pb)3 g (x=—t)3dFx }
(@u—gi) §q

I.2

..., (112)

Cest la formule du professcur Burman { voyez Mdmoires de
Zlnstiut , 1.7¢ classe , tome 1l , page 16 ) ; dans le second des
deux mémoires dont ceci est lextrait , je lavais déduite de la
céleébre formule de Lagrange pour le retour des suites.

Dans Pexpression (r10) du terme général des coefficiens de la
formule (111) , on pourra meltre , avant les différentiations , au
liecu de y—p , son expression en x , si la forme de I'‘quation
¥=o le permet; sinon, apres les différentiations, il faudra subs-

1.2.3,

. %0 . .
tituer pour — , dy, d*y, .... ce que deviennent ces fonctions ,
I=p .

gqnand z—o et y—p s’andantissent a la fois ; ce qui sera possible,
en général , d’aprés I'équation F'=o.

Si I'équation donnée entre x et y est simplement y==¢z , om
aura d’apres (105)

Ll T
\5’:1.’ o dgs’

en supposant toutefois que I’équation gx=o0 ne donne pour =
qu'une seule valeur égale & ¢ C'est ce qu'il faudra substituer au

Xt
lien de —— aprés les développemens.
y—p =

Si I’équation donnée entre x et y est par exemple
b=y mep) Y
qui donne en effet #=¢ quand y=p et réciproquement ; l'équas

tion (rx1) devient

Fa=Fury—p)¥. dFot L2041 (442, dF]

(r=—p)3 .,
;;-{273_—& [(9)°. dF ] e (113)

Celle-c,
h
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Celle-ci , quand on fait p==o0, est la formule de Lagrange que nous
venons de rappeler.

Soit , entre les variables x et y, la relation
F—t=(y—2)4(2 , ¥) » (114)
qui donne z=¢ quand y=x, et réciproquement.

Dans la fonction donnée F(x,y) et dans (114), je regarde =
scul comme variable et j’ai, d’aprés la formule (113),

d .,
F(x ] .7’:=F(9 > y)+(y—7‘) ;— F(d ) ),») . wka s y>+"".,
(y=2)1 dn <
{.2...11 § F(e, ,’}’) [-‘L 8 Y)]" }+.” (115)

F(e, ) et les coefficiens de (y—zx) sont des fonctions de y que
je développe suivant les puissances de (y—a), par le moyen de:
la formule (45) etj’ai, en laisant dailleurs pour abréger u=F(¢, ),
V:‘l’(a A)

cy M =23 & :
I‘(',y)-—-u‘!‘(y—"‘}\) - u+ )g u.+ 1'2'3 ';: 174 nuo;

gt d deer
g F(o, ). [¥. )] S=——‘(—~ u. " -l-(y—-;») —-— Tu A W

Je substitue ces résultats dans (115), jordenne suivant les puis—
sances de (y—a), et jai

(y 0L (y — )T

F(z , y)=utdA(y—»)+B

+. -+N

— 4y (116)

équation dans laquelle le terme général des coefficiens est

da* dn- n pee1 d"'2 d
N‘_—'ZI 72'——-( UV)+ ( >+~;nw

d dn-2

dn-1
(Y (). s
Tome F. . 18
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Telle est (116) une formule trés-étendue, dont jai fait , dans
mes deux mémoircs, de nombreuses applications. J’y étais parvenu
immédiatement, et par une méthode bien différente : celle de 1'é-
limination des fonctions arbitraires, par les différentiations partiel-
les ; méthode qui', manide par les Laplace, les Lagrange, ete.»
a fourni les plus brillans résultats ; et qui, dansla matiére dont nous
nous occupons , permet d’aborder avec succés ce probleme trés-gé-~
néral: Une équation étant donnée entre plusieurs variables, développer
une fonction proposée d’une ou de plusicurs de ces variables en série
ordonnée suivant les puissances de l'une d’entr’elles, ou snivant les
puissances et produits de plusieurs d’entr’elles. Je ne puis donner
ici qu’une idde de la maniére de procéder, en en faisant 'applica-
tion a un cas peu compliqué.

Soit donnée I'équation.

St=ugp z4t)+Fvi2-+1). (118)

1l s’agit de développer F(2-#) suivant les puissances et produits
de z, ¢?

La résolution de l’équation (118) donnerait pour 7 une expres.
sion de la forme ¢=f(v, ¢, 2): u, v, # n’ayant dailleurs entr’elles
aucune équation de condition ; ainsi, on peut considérer # comme
fonction des trois variables indépendantes », ¢, x, dont les diffé-
rences sont constantes et égales 2 l'unité. Cela étant, on sait, et
il serait d’ailleurs facile de le conclure de la formule ( 78, n.° 17 ),
qu'on a, en désignant, pour plus de simplicité , a2 par p,

d ur d2
Fp:Fp°+u-;~Fpo+ —_ = Fro =

o Epetz = & S Ep '
p~—1xr 2 e = - cennee
y Po L2 u oy Po > (119)

+ _ Fpo +.-.-..

s
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Le zéro, en flanc de Fp, -i-Fp , in, veneenes > Signifie qu'il faut
14

faire égales h zéro les variables #, ¢, aprds les développemens.
Je différencie successivement Fp par rapport 2 w,¢, 7, et ]al,
en faisant attention au théoréme (8:),

- d d d d d d
= Fp_..de.-;t, —V-Fp__de.-;-t-, ;—Fp-—-de (1—1——‘; z‘).

Jélimine entre celles-ci dFp, et jai

d 4 d t
d d u v
” Fp= ~Ip. T --Fp: —-Fp T - (120)
14 —¢ 14—t

Je différencie successivement I'équation (118) suivant z, ¢ , & eb-
j’écris les résultats comme il suit

d .

— t{dfi—udop—rd¥p)=op , (r21)

‘,i tdft—udep—rdyp)=+p , (122}
(I-{—-%t}(dﬂ——-ud(pfv—wdg/p):dﬂ . (123)

Jdlimine entre ces trois dernitres le facteur polynéme eommun 3

leurs premicrs membres, et jai

—_— = 4 — = ( "’—t) . 12
G i G | (124)
Je mets ces expressions (x24) dans les équations (120), et j'ai
A (125)

dn _do e 4 d o ¥
qu_pr.a:/;t, VFp -—Fp 7

Comme la fonction ¥ est arbitraire , celles-ci donnent
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a . d,,w 4 i, %
_;W}'—x(;p'djt’ 5 ‘PP—--;@P.aft,

(126)
d _ d op d d +p

Quand on fait, dans (118), u=¢=o0, il vient fi=o. Supposons
que cette équation donne #==¢; on aura Fp,=F(a) ; et, d'apres
les équations (125),

Plx4-0)
dpp

Yat0)
e

d d d d
—Fp,=—F(a4) . — Fp,=—=F(x+4) . .
—¥po=—_F(at9) —~ Fpo= — F(z+¢)
Voild déja les trois premiers termes du développement (119) entiére-
ment déterminés. Pour passer outre , on différencie les équations (125),

la premiére suivant z et ¢, la seconde suivant ¢ ; et on a, pour
ds= d d dz . . . .

—;Fp > ;—-Fp » = Fp , des expressions qui contiennent li-
néairement les différentielles, selon z, v, 2, de Fp, op, 4p et 2
On élimine les différenticlles suivant z et ¢ , par le moyen des

équations (124), (125), (126); et, réductions faites, il vient

ar 4 . a o a 1
. x[pr.@p)] ~Tp. (opdr (b2 5 1)
o Fr= /e - S '
d d d d
. slemewr] SE@rep.en(4 L) (127
= W@nn - RIE ’
a1~ 4d d d
;[_—-Fp.@py] -—Fp.(¢p)’.d’ﬁ‘(1-—|—z—-t>
& Fpe x x x
e = RIZE @y} "

Dans celles-ci , on satisfait & I'hypothese z=p=o0, qui donne 7=¢,
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d . .
p=a-+40, et, daprds (123) —i{=o;et on a les trois coefliciens

d d

Vo e d» , d=
différentiels u—l?‘pG . -;-Fpo , -;-Ppo.

On continue de la méme manitre ; c’est-4-dire , on différencie les
ds dz d

équations (127) , suivant z et ¢, pour avoir ~Fp, — — Fp ,
u U
d &

— ——

s
— = Fp, ;—Fp. Dans les résultats, les différentielles sclon z et
de Fp, ep, Ip sont éliminées par les équations (125) , (126) ;
d

=1, =2 le sont d'aprés (124) ; on élimine lcs deux autres
14

d d d 4 . d 4 ad
4= ==, == =—{, quisont J]a méme chose que — —¢ , — —¢, res=
u x v X ) x U x ¢
pectivement , aprés avoir différencié suivant 2 les équations (124).

. .o . A o a
Ensuite on satisfait & 'hypothése z=v=0, qui donne o= bl

x
4n

et, ce quiil faut bien remarquer , en général == /==0; eomme il
x

est aisé de le conclure de I'équation (123) ; et on a les quatre coefficiens

43 d> d d J= a3
";" Ep, > ';“ ’;"Ff’o y — ';"FPO ’ "; Fpa <

U

La route & suivre pour continuer indéfiniment est suffisamment
reconnue; et il est visible que tout se réduit a des différentiations,
suivant z et ¢, des derniers résultats obtenus , et & l’élimination
des différentielles, suivant z et ¢, de Fp, ¢p, ¢p, d'aprds (125),

. P L | dr a
et des différentielles de la forme — it i, d’aprds les

équations (124) différenciles , suivant # , autant de fois qu’il es§
nécessaire.

Supposons actuellement, em particulier fz=#, et partant dff==1;
en faisant cette hypothése dans (125) et (126), on aura d’abord
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d(ad , m ' mf__‘_’_ da
;—i;ﬁrﬁ'ﬁ%} (ep)"— = Fp+— Fp (@m ;

et comme , d'aprds (125), (126),

a a a a
S Fpmon. & SFp. S op-
~Yp=op.— Tp+—Tp.—op;

8 e

d, omer 4 d

S opn=mlep)m ! ep=mien)™ Sop
il_viendra , en réduisant,
a4 ) d(d s
LI LR Ry
ul(xl’(f'/ §= pebipm p-(ep) (128)
On trouvera, de la méme maniére .

-g—z—g- Fp“(Qp)’"'(«W)”% = j g FP (op)" (W“\ e } (129)

Cela étant , en différenciant successivement, par rapport 4 z , la
premiére (125), on aura, eu égard a (128),

a"._'_Id. d ‘;dgd
ZF”f;(;'FP"PP)‘::z: \‘W%

di,d [ dz
-'—Fﬂ“j;; "FP (fev)_r — g Fp.(op? E
et, en géncéral
dm=2{ q , ’
-Fp— gw F/?,<<€p}m§ . (39
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On différenciera ensuite I'équation (130) successivement par rapport
a ¢; et, en faisant attention i (129), on trouvera

d dm dam d dm=1 g d
— P-—- — — ip__-_x_.‘ »;-%.—- Fp _\W,}mz- ,_{TE_ Fp @p/md’/ ? K
dm d2 dm+1¢ g
e = —-— F o \ml Ve s
— —p 13 Fr-() (\”P/;,
et, en géncral
dm gn dm+n=t ( d . “n o
—— Fp= g-; Aep ™. (Yp) E . (131)

C’ast le terme général des coefliciens du développement cherché,
ou il n’y a plus qu'a satisfaire 2 la condition u=¢=0, qui (118)
donne 7z==0. Alors, dans notre terme général (131), p se change
en z; les différenticlles partielles suivant & , deviennent totales;
il est alors

- ili‘.rpo—dmﬂﬂ {dFz.(pz)m.(4a)'} 5 (132)

L4

e® on aenfin (119)
F(a+4f,=Fa-tudFe.s2+ %d{de.((px)z}—{—

~-edFx, Va2 % d{dFz gxdr )4 (33)
1

o+ ;"; 44 AF . (48)" ) Ao

S

Je m’abstiendrai de faire des applications des formules de déve-



140 ESSAI SUR LES PRXNCIPES DU CALCUL DIF., etec.

Ioppement quon vient de lire, pour ne pas excéder les limites
que je me suis prescrites. En eflet, mon projet a ¢té uniquement
d'offrir un apergu un peu détaillé de la manidre dont jai traité
les principes du calcul différenticl, dans la 1.7 partie du travail
que jai eu lhonneur de présenter 3 la 1.7¢ classe de Vinstitut;
les applications des formules de développement des fonctions en
séries sont l'objet d’une seconde partie. J’y suis parvenu & déduire
de ces formules , sans avoir besoin de recourir & aucune notation
ncuvelle , les formules principales fonddes jusqu'ici sur Vanalise
combinatoire ou sur le calcul des dérivations. MIM. les Commissaires
de la classe ont bien voulu dire , & cet égard, dans leur rapport:
» En rappelant ainsi au calcul différentiel des méthodes varides, et
» dont quelques-unes ne paraissent pas trés-convenables & létat
» actuel de Vanalise, (Vauteur) a fait une chose trés-utile pour
» lascience. 1l faut bien que tous les faits nouveaux , dés qu’ils.com-
» posent un ensemble , quoiqu’ils ne semblent point avoir en eux-
» meémes une trés-grande importance, soient ramenés aux théories

qui forment le corps de la science , et dont il est le plus &
» propos d’encourager la culture. »

Y

11 serait encore plus étranger & mon dessein d’entrer dans aucun
détail concernant la 3¢ partie, dans laquelle je m’occupe de la
recherche des moyens pratiques les plus simples de développer
ultérieurement , et jusqu'ad ce quon ait mis en évidence les diffé~
rences constantes , les différentielles des fonctions composées, dong
Yensemble est donné immédiatement par un premier développement,
c'est-d~dire,, par les formules de la seconde partie.

Mais 1l pourra n’étre pas inutile maintenant de jeter un coup~
d'eeil général sur les divers systémes qui, jusqu’ici, ont été suivis
dans Pexposition des principes du calcul différentiel ; les réflexions
que cet examen fera naitre seront tout a fait propres a faire res-
sortir les avantages de la théorie qui vient d’gtre exposée, a pré-
venir de fausses interprétations , et enfin & réfuter les objections aux—
quelles cette théorie a pu et pourrait encore donner naissance.
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{

PHILOSOPHIE MATHEMATIQUE.

Réfleaxions sur les divers systémes .d'exposilion des
principes du calcul differentiel , et , en particulier ,
sur la doctrine des infiniment petils ;

Par M. SeErvois, professeur aux écoles d'artillerie.
b

[a i Ya Vi Vo Vo S o 4]

PABMI les différentes. manitres de présenter le calcul différentiel,
je me dirai pas qu’il y en ait une qu’il soit nécessaire d’adopter,
Toutes celles qui sont légitimes ont, du moins aux yeux de ceux
qui les proposent, quelques avantages particuliers. Mais, s’il est
utile de lier solidement le calcul différentiel avec Danalise algé-
brique ordinaire; si le passage de V'une & Vautre doit étre facile
et s’exécuter, pour ainsi parler, de plain-pied; si Pon doit pouvoir
répondre , d’une maniére a la fois claire ct préeise , aux questions:
Qu’est-ce quune différentielle ? Quand et comment se présentent
comme d’elles-mémes les. différentielles? Avec quelles fonctions ana~
litiques conscrvent-elles , non de simples analogies , mais des rapports
intimes ? JJe croirai ne rien accorder i la partialité , en affirmant
qu’on inclinera vers la théorie dont j’ai essayé de tracer une esquisse
rapide dans l’article qui précede celui-ci.

Dans Vanalise algébrique , apres avoir considéré les quantités comme
déterminées ou constantes , on est mené naturellement 3 les cor—~
sidérer comme variables. Toute variation , qu’elle soit elle-méme
constante ou variable , est essentiellement une quantité finie ; au
moins est-ce la le premier jugement qu'on a d& en porter. Or,

Tom.V,ne° V, 1.5 novembre 1814. 19
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il faut exprimer la variation d'une fonction composée de variables
élémentaires , par le moyen des variations de celles - ¢i : voila e
premier probléme que l'on puisse se proposer dans ceite partie ;-
les premiers essais ‘de solation conduisent'a des séries. Ainsi , quand ,
des larithmétique , on n’aurait pas déja trouvé des séries , telles
que les quotiens et les racines, approchées par le. moyen des dé--
cimales , on y serait nécessairement parvenu, en considérant la quantité
comme variable. Les séries et le calcul différentiel ont donc du
prendre naissance ensemble ; c’est & lentrée de ce dernier qu’on
rencontre un premier développement de l'état varié d’une fonction
quelconque, z par exemple. En essayant d’ordonner ce de've.loppement
d’une autre mani¢re, on ne peut se dispenser de faire attention 2
la série trés-remarquable de différences

Az—I A%z A z— A%z, ..,

3 laquelle on est tenté de donner un nom qui rappelle sa com-
pasition : celui de différentielle se présente comme de lui-méme,
Déja, en comparant les deux développemens différens dont est
susceptible le binome élémentaire (1-4-2)™, on avait trouvé la série

] v %d"‘!—% 03—-§d4+..--.' [

3 laquelle on avait donné le nom de logarithme de (1-a); ainsi,
par la simple analogie , la différentielle est comme le logarithme
de létat varié (z4Az). Chemin faisant, d'autres rapports , entre
la différentielle, la différence , I'état varié et les nombres, se sont
manifestés ; il a fallu en rechercher la cause ; et tout s’est expliqué fort
heureusement, quand, aprés avoir dépouillé, par une sévére abstraction,
ces fonctions de leurs qualités spdcifiques, on a eu simplement
considérer les deux propriétés qu’elles posstdent en commun, d’étre
distributives et commutatives entre elles.

Cette marche , si naturelle , n'a point été celle des inventeurs.
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1l est de fait que le calcul différenticl est né¢ des besoins de la gécme’irie.
Or, le calcul algébrique , qui s’occupe essentiellement de la quantité
discréte, c'est-a-dire, des nombres , ne peut sappliquer & la quan~
tité continue , cest-a-dire, & Vétenduc, que lorsquon suppose que
les variations numeériques deviennent arbitrairement ou indéfiniment
petites. Ainsi , le moyen d’union entre le calcul et la géométrie
est nccessairement la méthode des limites ; c’est pourquoi les in-
venteurs , et les bons esprits qui sont venus aprés, ent pris, ou
du moins indiqué, pour méthode d’exposition ct d'application du
calcul différentiel, celle des limites.

Newton n’a point, comme Mac-Laurin et quelques autres de
ses compatriotes , transporté sans ménagement la mécanique dans
son calcul des fluxions; sa théorie est fondée sur celle des der-
niéres raisons des quantitds ; et , suivant lui , Ultime rationes
revera non sunt rationes QUANTITATUM ULTIMABUM , sed
LIMITES ad quos rationes semper appropinquant. ( Livre 1.°%
des Principes ; Scolie sur le lemme X1 ); principe trés-lumineux ,
et qu'on n’a pas assez remarqué.

Leibnitz , co-inventeur, professait la méme doctrine; il a cons—
tamment donné ses différentielles pour des quantités incomparablement
pctites ; et, dans les applications, il a toujours cru gn’on pouvait
rendre les démonstrations rigourcuses par la méthode d’Archimede :
celle . des limites..... Quod etiam Archimedes sumsit aliique post
ipsum omnes , et hoc ipsum est quod dicitur differentiam esse datd
qudvis minorem ; et Archimede quidem PROCESSU res semper deduc—
tione ad absurdum confirmari potest. ( Réponse aux diflicultés
de Nieuwentiit ; ceuvres, tom. 3¢, page 328 ). D’ailleurs , ce
savant -homme n’a jamais admis de quantités infiniment petites
dans le sens propre de ce terme. On connait la discussion assez
longue qui a existé entre lui et Jean Bernouilli a cet égard’; dis-
cussion dans laquelle il a constamment tenu la négative ( Voyez
le Commerce épistolaire entre ces deux illustres géométres , publié
par Cramer ).
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Euler ne parle pas un autre langage, dans la belle préface de
ses Institutiones calculi differentialis...... Hic qutem LIMES qui
quasi ralionem ultimam incrementorum constituit , verum est
objectum calculi differentialis. Et si, dans le cours de son livre,
il échappe & ce grand homme quelques expressions un peu dures , on
doit , ce me semble , les interpréter bénignement , d’aprés ce principe
formellement reconnu.

On sait que d’Alembert s’est distingué parmi les géomeétres qui
ont appliqué la méthode des limites au calcul différentiel. Ainsi,
on ne doit point étre surpris de compter dans les mémes rangs
les bons géometres qui sont venus apres : tels que Karoten , Kcestner,
Holland, Tempelhof , Vincent Ricati et Saladini, Cousin, Lhuilier,
Paoli , Pasquich, Gourief , etc. Il ne serait d'ailleurs pas difficile
de faire voir que les méthodes particulieres , telle que celle des
Fonctions dérivées de I'immortel Lagrange , laquelle a de nombreux
sectateurs , et celle des indéterminées , proposée ou recommandée
par Boscowich, Naudenot, Arbogast, Carnot, etc., reviennent fon-
cierement a celle des limites. Comment est-il donc arrivé que cette
étrange méthode des Znfiniment petits ait acquis, du moins surle
continent , tant de célébrité ; et méme qu'elle soit parvenue &
placer son nom parmi les synonymes de méthode différentielle ?

Je pourrais, si jen avais le loisir, assigner & cette usurpation.
plusieurs causes probables ; mais ce qui m’tonne d’avantage , c’est
que la méthode des infiniment petits conserve encore ,non seulement des
sectateurs , mais des fauteurs enthousiastes : écoutons un moment ,
un de ces derniers, et admirons ! « Le soin d’éviter 'idée de V'infins,
» dans des recherches mathématiqnes , prouve incontestablement,
» outre une routine aveugle , une véritable ignorance de la signi-
» [ication de cette idée ; et nous ne craignons pas d’avouer que
» nous croyons anticiper sur le jugement de la postérité, en déclarant
» que , quelque grands que puissent étre les travaux de certains

géometres , le soin qu’ils mettent & imiter les anciens, dans
» l'exclusion de I'idée de l'infini, prouve, d'une maniére irréfragable,
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qu'ils ne sont pas i la hauteur i laquelle la science est portée
» depuis Leibnitz , puisqu’ils évitent cette région élevée ol se trouve
» le principe de la génération des quantités, et par conséquent la
» veritable source des lois mathématiques, pour venir ramper dans
» la région des sens, la seule connue des anciens, ou l’on ne trouve
» que le grossier mécanisme des calculs. » ( Réfutation de la théorie
des fonctions analitiques de Lagrange. Paris , 1812. Page 40 ) Déja,
dans un premier ouvrage ( Introduction & la philosophic des mathé-
matiques. Paris, 1811 ), le méme auteur, en annonc¢ant que « les
» procédés ( du calcul différentiel ) implique une antinomie qui
» les fait paraitre, tour & tour , comme doués et comme dépourvus
» d’une exactitude rigoureuse » .... ( Philosophie, etc., page 32),
avait gourmandé¢ les géometres non infinitaires, avec ce ton tranchant
et cette emphase dogmatique qui forment la couleur dominante des
écrits inspirés par le Systéme philosophigue ( celui de KanT ) dont
il fait profession,
Essayons, un instant, d’apprécier tout cela % sa juste valeur.
Dabord , je me rappelle fort bien que Kant, trouvant Iinfini
dans la raison pure et le fini dans la sensibilité, a conclu, de la
coexistence de ces deux facultés dans Détre cognitif , qu'il doit y
avoir , relativement a lidée cosmologique, par exemple, plusieurs
antinomies qui ne sont au fond que des illusions auxquelles il
n’est point difficile de se soustraire , quand on veut bien distinguer
soigneusement ce que chacune des formes de la cognition y apporte
pour sa part. Faisons la méme chose, par rapport i la prétendue
antinomie mathématique que le disciple s'applaudit ¢’avoir décou-
verte dans la théorie du calcul différentiel. Admettons , ce qui est
vrai, que le calcul appartienne exclusivement & la sensibilité qui,
selon ces Messieurs , est la faculté de Vindividuel ; il s’ensuivra
quil y a, non seulement paralogisme, mais erreur palpable a sou~
mettre au. calcul Vinfini , qui est du domaine d’une autre faculté:
celle de V'absolu , ou ce qu’ils appellent la raison pure. Je demande
Pardon a mes lecteur de I'emploi que je viens de faire d’un idiome
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avec lequel , sans doute, peu de personnes en France sont fami-
liarisées ; mais je fais ici un argument que nous appellions jadis
ad hominem.

Qu’on ne dise pas que cette illusion est tellement nécessaire qu’on
ne puisse la décliner...! On marche devant celui qui nie le mou-
vement. Newton, d’Alembert , Lagrange, etc., ont marché ; cest-
a-dire , qu’ils ont mis en effet les principes du calcul différentiel
hors de toute dépendance de la chose et méme du mot infin:.

Mais linfini n’est-il pas cetze région élevée ou se trouve le prin-
cipe de la génération des quantités , la véritable source des lois
mathématiques ? Non certainement , & moins que vous ne soyez bien
décidé a rester sous l'influence de Villusion que vous avez signalée.
J'ajoute , relativement au calcul différentiel , que lintroduction de
I'idée d’infini n’y est pas méme utile.

I'idée d'infiniment petit n’abrége point lexposition. En effet, il
est impossible d’établir la hiérarchie des infiniment petits. de différens
ordres , sans avoir recours a la série de Taylor, ou a quelques autres
équivalens. Je défie de prouver sans cela, d’'une maniere satisfaisante,
que , par exemple , dz étant un infiniment petit duo 1.°% ordre,
d’z en est un du second. Méme défaut dans les applications. Si
on. n’'admet pas I'hypothése de la courbe polygone, hypothése qui
parait si étrange & ceux qui viennent d’étudier les élémens de la
géométrie Euclidienne , je défie qu’on démontre , sans la série de
Taylor , que le prolongement, jusqu’a la tangente , de l'ordonnée
infiniment voisine de celle du point de tangence, que la différence
entre- |’arc infaitésimal et sa corde , etc., sont des infiniment petits
du 2.* ordre au plus. Sil’on admet la gothique hypothése : le rapport

y- 4 4 . 1 hY
1o st regoureusement egal 4 celui del’ordonnée i la sous-tangente ;

pourquoi dong alors néglige-t-on des termes en différenciant I’équation:
de la courbe ? Diailleurs , comme l’a fort bien remarqué lauteur
de la théorie des fonctions. analitiques, c’est zn fart que les résultats.
du calcul infinitésimal sont exacts par compensation d'erreurs : or 5
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je porte encore le défi d’expliquer ce fait majeur , sans avoir re-
cours avx séries. Cela dtant , puisqu’il faut absolument, et avant
tout , étre maitre du développement en séries, pourquoi ne passe-
rait-on pas de 13 immeédiatement au calcul différenticl, par la porte
de plain - pied qui est ouverte ? et pourquoi reviendrait-on , par
un circuit ténébreux , celui des considérations infinitésimales , aux.
principes de ce calcul ? Qu’on se forme, si 'on veut, et ce qui
est possible , d'aprés la vraie théorie , des méthodes abrégdes qui
permettent de biffer ou d’omettre , & I’avance , des termes de dévelop-~
pement, qui disparaitront 2 la fin de longs calculs; je ne m’y oppose pas;
les géométres exercés le font tous yet quand une fois on est en pos-
session de ces méthodes , on peut , dans la géométrie et dans la
mécanique , parler un langage qui se rapproche de celui des 7nfi-
nitaires , sans néanmoins attacher aux mémes termes les mémes
idées ; mais il serait absolument impraticable de commencer
par la.

Il y a plus. Sil'on consulte I'histoire du calcul différentiel , combien
y verra-t-on de questions puériles ou ridicules , de contestations
plus qu’animées, d’erreurs méme, prendre leur source dans l’obs-
curité répandue par les infiniment petits, et dans la difficulté de
leur maniement. Je ne puis m’engager dans cette discussion ; mais
qui est-ce qui ne se rappelle pas les incompréhensibilités de Sturmius 5
les Subtilités de Guido Grandi; les Peonts jetés entre le fini et
Vinfini de Fontenelle ; la méprise de Sauveur, dans le probléme
de la Brackystochrone ; celle de Jean Bernouilli lui-méme , dans sa
premiere solution du probléme des Isopériméires ; celle de Charles
sur les solutions particuliéres des équations différentielles; les dis-
cussions - relatives 4 1’expression analitique de la force accélératrice
du mouvement varié : discussions qui dégénérérent en dispute entre
Parent et Saurin , relativement aux théorémes d’Huygens sur la
force centrifuge, et qui enfantirent cette ridicule distinction de Ia
f rce considérée dans la courbe polygone ct dans la courbe rigou-
reuse ; discussions enfin qui ne sont pas cncore terminées, a en
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juger du moins par quelques mémoires de Trembley ( Académie
de Berlin , 1801, elc. ) cle., elc.

En un mot, je suis convaincu que la méthode infinitésimale n’a
pi ne peut avoir de théorie qu'en pratique ; cest un instrument
dangereux entre les mains des commengans , qui imprime néces~
sairement , et pour long-temps, un caractere de gaucherie, de pusil-
lanimité, 4 leurs recherches dans la carriére des applications. Enfin,
anticipant , 4 mon tour, sur le jugement de la postérité, j'ose prédire
que cette méthode sera un jour accusée , et avec raison , d’avoir retardé
le progrés des sciences mathématiques. Mais je dois reprendre le
6l de mes réflexions.

Jai déjA insinué la distinction que j’établis , d’aprés Euler, entre
la méthode deaposition et la méthode dapplication du calcul
différentiel. Celle-ci , quand il est question de Vespace et du zemps,
objets des prineipales applications , est nécessairement la méthode
des suites en général. Sous le rapport ‘particulier de la pratique ,
rien , & mon avis, ne surpasse , en €élégance, j’allais presque dire en
majesté , la marche tracée dans les deux derniéres parties de l'ex~
cellente Théorie des jfonctions analitiques. Quant 4 la premiére
méthode , celle d’exposition , j’ai toujours trouvé quelques incon-
véniens & la déduire de la considération des fonctions dérivées, ou
en général des limites. Un des plus graves , selon moi, est de ne
conduire aux séries fondamentales qu’aprés leur avoir gratuitement as-
signé leur forme. Cetinconvénient, bien senti par 'auteur des Fonctions
dérivées , n’a pas été heureusement écarté par la démonstration pro-
posée ( Théorie des fonctions , page 7 de la 1.7® édit. et page 8
de la 2. ), Je m’en suis expliqué franchement, 3 la téte de mon
second mémoire ; et j'ai cité les opinions conformes d’Arbogast
( Lettre manuscrite ) et de Burja ( Mémoires de Berlin , 1801 ); mais
personne moins que moi n’aurait songé a oser fonder la-dessus le sean-~
dale d’'une REFUTATION dc la théorie des fonctions analitiques. J'ai
donc dd porter mes vues d’un autre c6té ; et voiei la marche que j’ai suivie.

Les premiers développemens en séries que l'on rencontre, sont

les
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les résultats de transforinalions successives appliquées a une équation
identique, Lierivons , par exemple,

b 4 ¥

i~}a 1~4-a :

Exécutons indéfiniment sur le second membre I'opération de la di-
vison , et nous aurons la série

I
—— == Lo P e

i4-a
Ecrivons encore l'équation identique
LI + [
a—b o4-x (a$x)(@@—b) °

Faisons successivement =0, x==¢, ¢=d ,....; et nous aurons
la suite des transformées .

1 1 b .
a—b @ a(a=—b) ’
1 1 bfc )
a—b a-f-¢ (@t @—b) 7
I 1 b4-d

]

a=b a+d+ (a4-d) (a—b) ’

s & « 6 & o & & 0 6 & € & » & ¥

Prenons la somme des produits respectifs de ees équations par 1 .
b RIG . b(b4-c) (b4-d)
par -; s par aatc) s P a(a+c)(a+d) 2

réduisant , la série

Par«...e.; €t nOuUs aurons, en

b(b4-c) b (b4-0) (b4-d) . (b4p

a(a4-c)(@+d) +" "+ a(a-c)(a4d).(a4p)(a4-7)

Tﬂm‘ ro 20

X

b ¢ b
o5 —;-+ a(a~=c) +

ﬂ-'b
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b (b4-c) (b-d) s (b40) (h4-9)
a(a-{-c) (@) (e~pp)(a-t-¢) (a=—b) )

C’est avec cette formule que Nicole enseigne & sommer une in-
Einité de suites ( Mémoires de 'académie des sciences de Paris. 1727 )

Ces séries ont la propriété d'étre arrétées a quel terme on veut,
et d’avoir un terme complémentaire , nécessaire pour conserver
I'identité. Dans la premiere , «ce complément est le reste de la di-
vision & laquelle on s’en tient, divisé par 1~z ; et dans la secoude,
il se trouve & la fin. Je savais que la ‘série de Taylor a, dans
le fait, un semblable complément qui doit aussi appartenir & toutes
celles qui en dérivent, et par‘cons'é}luei}t‘z‘a totttes les séries connues;
d’ou il m’a été permis de conjecturer que toutes les séries doivent
étre le résultat d'une suite de transformations d’équations identiqaes ;
que toutes doivent jouir de 'avantage d’étre arretées od Y'on veut,
et de conserver lidentité par le moyen d’un terme complémentaire,
Cette conjecture s'est hcureusement changée en certitude, etil en est
résulté une notion nouvelle , et’ bien importante , sur la nature des
séries. On a vu au commencement du précédent mémoire , com-
ment , en partant d’équations identiques, je suis arrivé aux déve-
loppemens fondamentaux. « Le procédé que suit Taunteur ( est-il
» dit dans le rapport de MM. les Commissaires ) a deux avantages
» qu'il faut remarquer; le premier, c’est qu’il n’exige pas que 'on
» connaissc 3 l'avance la. forme des séries qu'on cherche ; le second,
» c’est qu’il permet d'arréter ces séries & quelque terme que ce scit ».
Lia formé du complément se reconnait sur-le~champ. Pour la série
de Taylor, en particulier , cette forme ~ est celle que Ampére a
remarqué le premicr , dans un trés-beau mémoire d'aralise ( x111.° cahiier
du Journal de lécole polytechnique ).

Ici encore, je me trouve en opposition directe avec le Philosophe
transcendantil. « Lies séries , prises dans toute leur géndralité .., ont,
» par clles-mémes, dans le nombre indéfini de leurs termes , et
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sans le secours d'auciine quantité complénentaire , une signification
déterminde.... c’est la le point philosophique de l'importante
question des scries ; et c'est ce point que, suivant nous, les
géometres n'ont pas encere atteint, dans Pétat o se trouve la
» science. » ( Rcfutation eic. , page 58 ). On n’a pas encore besoin
cette fois d’ergotisme, pour faire ressortir la fausseté de ces asser—

¥ ¥ ¥ 3

tions. L’céquation identique, les transformations successives , la série
et son compleuent sont des fails. Les séries divergentes ne peuvent
dlre employéw quamec jeur complément; et c’est ainsi qu'on a
depuis lung-temps résoiu fort heureusement le paradexe présenté par

Y

. 1 )
e céveloppement de la fraction vl Quand la convergence cst re-
I 1

ot

ecnnuc, en prononce la diminution successive et indéfinie du com-
plémenr, ~dlaprés la comparaison des développemens consécutifs et
la raison d'identité ; alors seulement les séries servent utilement aux
besoins de la pratique, sans avoir égard 4 ce complément.

On aura remarqué, sans doute, que mnotre procédé d’exposition
oflre un autre avantage considérable : c’est de conserver aux quan-
titds par rapport auxquelles nos séries sont ordennées toute la généralité
dont elles sont susceptibles, c’est-a-dire, de ne point exiger de
eonsidérations particulieres , sous le rapport du positif , du négatif,
de Denticr ou dn [ractionnaire.

Un second inconvénient de Papplication des limites 3 Pexposition
du calcul différentiel , inconvénicnt quelle partage avec la méthode
infinitésimale , est de laisser sous le voile du mystére ces belles
analegies des fonctions diffcrentielles entre elles et avec les facteurs.
On a vu comment je suis parvenu & déchirer ce voile. A cet égard,
MM. les Commissaires ont encore eu la bonté de dire : « En montrant
» que Cest a leur nature distributive, en général , et commutatives
» entre elles et avec le facteur constant, que les états variés, les
» différences et les differentielles doivent leurs propriétés et les ana-
» logies de leurs développemens avee ceux des puissances , ( 1auteur )
» en donne la véritable origine, et éloigne cette idée de sdparation
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» des échelles qu'Arbogast avait imaginée , d'aprds Lorgna, pour
» expliquer les mémes circonstances , et qui a paru un peu hasardée, »
En effet, et il ne faut qu'une légere attention pour l'apercevoir,
nous ne perdons jamais de vue, dans nos formules, le syer des
Jonctions ; et il n’y a ni séparation d’échelles ni opérations qui se
terminent exclusivement 4 ces échelles. La notation proposée ( n.° 2)
n’est point d’un wusage indispensable; elle est seulement trés-utile,
en tant qu'elle épargne la peine de représenter , a chaque instant,
des fonctions polynémes par de nouvelles lettres. La belle méthode
d’'intégrer les équations aux coefliciens constans, publide dans les
Annales de mathématiques (tome 3, pag. 244 et suiv. ), et qui
ajoute tant d'intérét aux formules de l'analogie , ne réclame pas
davantage la séparation des échelles , comme il serait aisé de le
faire voir. Je ne puis rien dire ici d’un autre genre d’application
que ces formules fournissent & P'auteur du mémoire cité ( 7bid. n.°% g
et 10); cela m’engagerait trop loin: Je ferai sculement observer
que , si Pon craint de broncher dans une route scabreuse et peua
fréquentée , il faut ne prendre, pour formules de départ, que celles
3 la formation desquelles on a assisté , et qui, identiques d’abord,
n'ont été transformées que d’aprés la double propriété des nombres
d’étre distributifs et commutatifs entre eux. Ainsi, par exemple,
je conclurais au moins & une révision de la formule de départ, si,
parmi les résultats qu'elle m’aurait donnéds , je trouvais unc série
comme celle-ci ( 727d. pag. 252, formule 23 )

F'e 1 1 1 1 1 1
— — — — — -~ yyi0
4 x 22w 3 xre33 5 xteme32
kN . ) .
Tin cffet, & cause do
a2 1 x 33 et :'J‘
ek s ? e =14 —...
R 2 asm ] 20 G 2 X2em32 2 32 i L 2w b
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x 1 1 1 I 3 5
o T T e - — —_— b e
‘4‘ ( 5 5 7 + ) + {xz-—l x'—’--—BZ x2—53 ’
d'olt, & cause de
- = I 1 4
- el g e e ) res
A 3 + 5 7‘ + 9
on conclaf
1 1 ¥
- — s e
1 3 5 ) X~ =5
o= — ————— — g T
py— e — —
x b o X 32 X2m=52 1 1 L

I ) 4 1 ) 1 4
© =5 e - ———— e S — g o o &
I 3 5 7 e 4 M

résultat qui n’est pas vrai.
Je fais encore I'essai de x==1, et jai

1 1 1 1 3 1 1 T ¥
o= o +? Z+"§'""oun"":+ 4 "—-é-—*-“""'" ? H

résultat encore plus dtrange que le promier. (¥)
On me permetira, je pense, de tirer encore de ma thdoric des

(*) Cest la formule (21) dumémoire cité, empruntée d’Euler , et de laquelle 'auteur
2 déduit la sienne (23) , qui contient le germe de 'erreur que je reléve ici. Cette
formule d’Fuler , vraie pour quelques cas particuliers , n'en est pas moins , en
général, d'une fausseté manifeste , puisqu’en y supposant a==n= , z ¢tant un nombre

. o y . n
entier positif ounégatif, elle donne — =220 .
4
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fonctions distributives et commutatives , une conséquence d une autre
nature : c’est que la notation Leibnitzienne, pour le calcul diffé-
rentiel, doit &tre conservée. Laissons aux Anglais lears lettres ponctuées
conservons aux accens l'atile emploi de multiplier nos alphabvts'
et, en nous rapprochant de la notation qui, de l'aveu de tous lcs
analistes , est la plus parfaite , celle des puissances , des-
tinons exclusivement les exposans numdriques A représenter les
différens ordres de fonctions répétées. Quand 3 ma netation des
différentielles partielles, on en pensera ce quon voudra; elle n’a
_d'autre avantage que d’étrc en harmonie avec celle que jal cru
devoir adopter pour les fonctions particlles en gencral, laquelle ne
peut guere étre plus simple ni plus signilicative. Au reste, il est
remarquable qu’Euler en ait proposé une toute semblable, dans un
mémoire qui fait partie des Nova Acta de Petersbourg (1786 , pag. 17).

Jaurais pu me dispenser de donner ( n.° 19 ) une idée de lex-
tension dont les séries fondamentales (m.° 15) sont susceptibles,
si javais cru devoir me borner 4 établir ce qui est précisément né-
cessaire pour différencier les fonctions ; mais, & mion avis, le calcul
différentiel pur s'étend plus loin qu'on ne le pense communément;
et, en particulier, le développement des fonctions en séries appartient
plutét 2 la substance de ee calcul qu’a ses applications, D'ailleurs,
j’ai voulu montrer comment des séries fondamentales on peut s’élever
a ce quil y a de plus général , d'une maniére fort naturelle. Icd
encorc je suis en opposition avec le Philosophe , au moins pour
la méthode. On sait avec quel fracas il a communiqué au premice
corps savant de I'Europe, ct ensuite au public, certaine formule
générale , d'owr il tire toutes celles que lon connait pour le déve-
doppement des fonctions ; c’est-a-dire , qu'il descend , pendant que
je m’efforce de monter.

La formule générale du Criticiste présente Far développée suivant
les produits des états variés successifs de ox, savoir

0z , ez 0(2-+2) , ox.o(as). (2428 ,ienn;
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¢ étent la différence constante de la variable 2. Les coefliciens des
differens termes sont des fonctions trés-compliquées des différences
des mémes fonctions , daus lesquelles il faut, aprés tout dévelop-
pement , mettre une des valeurs de 2 , donnée par la résolution
de l'équation ewr=o0. On aura sans doute déja aperqu que cette
formule n'est elle-méme qu'un cas particulier .de notre formule
( 23, n° 13 ). Effeclivement , il suffit de faire

px=0x , Vax==0(a+z) , Pae=0(x428) ,..0is;

et partant

®w= 0 Y ,6=0¢+E ? 7:“_‘-‘22 PELEEEY

pour avoir, par nos équations (23), (27), et la série et les coef~
ficiens du Philosophe.

Pour passer de la'a la série ordonnée suivant les puissances de
¢x , il suppose % infiniment petit et, sous ce prétexte , it change
tout bonnement les A en d. Ccla pourra paraitre fort bien aux
yeux attaqués du strabisme infinitésimal ; mais ce wnest plus de
cela qu'il s’agit; c’est aux détails de transition , poussés jusqu’a l'une
ou l'autre des formes reconnues dans le précédent mémoire (n.° 1g),
que je lattendais. Or, & cet égard , il est d’une discrétion mer-
veilleuse. Voyez , en effet, les tableaux d’expressions équivalentes
( Béfutation , etc., pages 18, 19, 33) lides par ces phrases laco-
niques : « on verra de plus que ces expressions simplifiées davantage
» peuvent étre mises sous la forme..... on peut facilement trans-
» former ces expressions en celles-ci..... » ; et, si vous ne voulez
pas l'en croire sur parole, ayez le courage d’entreprendre ces
transformations......! Ajoutez & cela que ses tableaux d’expressions
analitiques ne présentent pas toujours une loi générale bien prononcée :
tel est, en particulier, celui des expressions marquées par la lettre
‘N (page 19). Je l'ai insinué (n.° 13), et je laffirme ici posi-
tivement ; ces difficultés de détail sont un vice capital dans la
mcthode descendante , ( que jappellerais synthétique , si je ne
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discutais avee un Criticiste); et leur absence de la méthode ascendante
assure ) celle-ci tout l’avantage sur sa rivale. (%)

™ J’ i dit (ne 15) quon pouvait, par un simple changement dans la ma~

niére d’ordonner s passer dudéveloppement suivant les produits (——) (x-—p)

(x_z—“)’ (x:-p) (x-z—-u> (x-’:-u),...., au développement suivant

. o =D \2 Ke=—p \3
les puissances ( “p ) s ( 4 ) s ( P ) »++.-+ On verra peut-étre avec quel~
o o B

que intérét comment je puis justifier cette assertion.

Je prends, comme plus simple , le développement de F(x-}-na). Il ne faut
qu'une légére attention, aprés les premiers essais de développement , pour re=
connaitre quon a

F(anu)=Fa-+ %gA Fa— = AFo 4 AT
+____ %A:Fx‘_ - A3Fx+ IIA;F.%’ —.. §

) (1)

I'.obntooco-tn-oooooo.o

: ' Aam+1Fx  BAm+:Fz
-+ AmFy— . - }
126 m~-1 (m=—1)(m=4-2)
+ - . LN 2 - e - o o - (. - - e & s v o > &
. ( m
¢quation dans laquelle les coefficiens 4 , B, +. .. de la série qui multiplie ; :’ - >

série que, pour abréger, je désignerai & avenir par I, sont, d’aprés la théerie
générale des équations , et en représentant respectivement par S,, S, , S, ,..5
des sommes de produits 1 & 1, 24 2, 343 3,u.,p A u,

P

A=S,(1,2500m) B:St(liz""7m+1) > C:‘S;(!)zv"sm{‘z) s*asy M:S”(x,z,...m-{-‘u-x).

g est le rang de la letire If; A étant supposée la premiére. Je désignerai par P la -

* sdrie qui multivli nm*v R A B
scne qu muiliplie —————— 5 §€5 cocliriciens seront venss 3
g P g m2’ (mA2)(m43) 7

Ou
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On me permettra , avant de terminer , de présenter ici , sur
Vapplication de la philosophie transcendentale , et en général des

&

A, B ,.... &ant ce que deviennent A, B,..... respectivement , quand on g
change m en m=-1. Or, il est visible quon a les relations

A= dpmeet , B=Bepd/(mt2) , C=CoB/ (3’ wnes 5 Ml==MA-L/mfse) §

d’olt I'on conclut sur-le-champ

M'=M-L(m—4-p)+Km-p==1) ) 4-.0e

=}
FAmg2)e () (1) (mpe) -

Je fais , pour abréger,

A B A B
= —_— = — L A= (o ———— L
A= m1 '’ B (1) (-2’ 3 A mefa’ B (m+2)(m+3)’ ¥

ce qui donne
AT FxmmA A+ 1Fx4-B A+ 2Fgpem, 0 =211 &)

Am+1Fx-—A’Am+ ‘Fx-{-—B’A’“"‘ 3 Fx—m..::P H (../‘.)

et la relation générafe (2) devient

M= m++ P MA-LA-KAoeie o BfAS1} (5)

fle fais ici m=o0; alors (1) A, B, C,.... sont nuls et jai

ve quon sait d&a (1). Je fais ensuite m==1, dans (5); et , d'apres les valeufy
de A, B, C,..... relatives & m==o , jai

P’lfozz;. . zx

-l
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systémes métaphysiques aux mathématiques , quelques réflexions qui
ne pourraient que difficilement trouver place ailleurs , et que.le
sujet qui m’occupe semble amener d'une manitre assez naturelle.

M= + —— ML A1) = jr 5( —+———+ i +1§ (6)

e

or, on a l'équation identique

(2+.“—!).1+ (2+{"—2) :+(2+# 3) —+..n-o
14-p I

(edp—p=—1) 1
+ i T abp ’

eu bien

(2+H)z—- +— + —— et +--— : §

(pe=—1).3 1

X R S SO

d'ol lon tire

~

' 1.
F&"‘m‘*' + + l+.“ 2+‘“§1+.u+ K —|—...+ Ty

g'est-a-dire (6) qu'on a, lorsque m=1,

M/ =M L+ K+..+——B+ A+F+I 0!

En général , si, pour le cas de m, on a la relation (7)5 je dis que, pour le
gas de m--1, on aura

M//——M/+ Y +——— B = A — - +1 (8)

-

En effet, daprds l’hypolhése (7) et la telition “générale (5, on aura
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Javais bien prévu, en lisant KANT, queles géometres seraient,
tét ou tard, lobjet des tracasseries de sa secte. On trouve, dans

. m—-1
M/=M—+4:L4:K+...= ~AK-4-....
T K= o QLK)
/=LA K = 20 (L+K+I+....j ,
’ m~-ge
K/‘::K+§I+}H+....=;’_"j_:;(K—{—I—}-H—P ..... Y,

Je tre de 1i ces deux rdsultats

1.5 MA-LA-Kfe..= ’"m_’:".M/' , LK1

__mp _ mpe—1
= L/, K4I4+H~+...= ot K wen s

2.0 MUK 0 =MAL4K 4o 2 (LRI § RATHHE e 5

donc , on aura, par la subslitution du 1.er dans le 2.m¢,

i) W () L (e K N
1\1’+L/+K/+...._.. —_n_l:l-—I—_ -;——l— -n:;-— . — 3 e
par conséquent

Lr K :
(o1 YA LA A= (k) (MR o S )= (ALK,
ce qui donne

P M/ARLAK A =M= LA KA
m—-2-4-p

équation dont le premier membre est , d’aprés (5) , Pexpression de M, Done
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les prolégoménes de la Critigue de la raison pure , ce passage
trés—-mgmﬁcahf ( Je cite d’apres la tradaction latine de Born )
Cum enim vLZ, unquam de matlesi sud philssophati sint ( arduum
sand megotium ).... Iritw regule atque empiricé usurpal@..... iis
sunt instar axiomatwm ; mais Jétais loin d’imaginer jusqu’a quel

la relation (8) est vraie quand la pelation (7) a lieu ; mais, pour m=o, m=1,
cette dernitre est démontrée ; donc elle est géneralement vraie. En [appliquant
a l'équation (4), on aura

P= A"+ Fa—AA™+Fzt BA™3Fz— CAS+4Fz..
— AT F g L AATY ‘Fq:%} BA™ 4F 2.

41 ATH3Fz i AATHFat..,

—i AmtAFz--..

.

La premiére ligne horizontale est la méme chose (3) que A1l ;la 2.m¢ la ménie
chose que =—=:Acm ; la 3.m¢ la méme chose que ~3a3m,....; donc

P._An——A=n+ AdTTem2 A4n+....,

Cest 1a relation qui régne entre deux séries consécutives , coefficiens de n, dans
le déweloPpement de. F(x4-na) , suivant les puissances de n 3 relation que nous
avons établie dune autre maniére .( B.° 15 ); et de laquelle il suit que, si l'on
fait , comme en l'endroit cité,

AFx— I A2Fx4-2 ASFxeam ., ... 2=dFx ,
on aura

N=d"Fx , P=dm+1Fx ;

On passe absolument de la méme manidre du développement‘de (142)", donné
par la formule du binéme, au développement suivant les puissances de n ; d’o

~ Ton voit que C'est pure paresse aux anahstes d’introduire l'infini pour e&"ecluer,
"ge passage. ‘
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point ils seraient maliraités, Voyez, dans cette fastueuse conclusion
de la Philosephie des mathématiques ( pages 256 et suivantes ),
avec quel superbe didain on y répond a cette question : Quel était
lUétat des mathématiques , et sur-tout de lalgorithmie, avant cette
philosophie des mathématiques ? Vingt fois on y répdte: « On ne
» le savait pas...... onne s'en doutaitméme pas...... on n’en avait
» pas lidée......» ‘

Mais sommes-nous bien aussi pauvres qu'on le dit? et la PZLi-
losophie critigue ne se pavanerait-elle point un peu aux dépens
de notre plumage ?

« Les théories des logarithmes et des sinus , purement algébriques,
» n’étaient point connues...., » Quelqu'un a deja réclamé contre
cctte allégation , en citant entr’autres l'ouvrage de Suremain-de-
Missery ( Théorie purement algébrique des quantités imaginaires ;
Paris 1801 ).

« La loi fondamentale de la théorie des différences n’était pas
connue.....» On qualific ainsi 'expression de la différence A” du
du produit Fz. fz , par les différences de Fz et de fx, formule que
Taylor a publide depuis long-temps, dans les Transactions philo-
sophiques ( tome 30, page 676, etc. ). Il est bien vrai quon ne
Pavait pas « reconnue pour la Joi fondamentale de toute la théorie
» des différences et des différenticlles » , parce qu'il n’est pas vrai
qu'elle jouisse de cette propriété. Les lois vraiment fondamentales
de ces deux théories sont dans les définitions de la différence et de
la différentielle. On déduit de ces définitions quelques faits généraux,
fort utiles pour la pratique : la prétendue loi est du nombre. Au
surplus , le Philosophe a bien senti l'insuffisance de sa loi, quand
il est question de différencier les fonctions de plusieurs varia-
bles ; car elle ne va pas jusqud donner la forme des dévelop-
pemens en différences et différentielles particlles. Mais admirez le
subterfuge qu'il emploie pour sauver l'universalité de cette loi; il
affirme que la forme dont il sagit « n’a besoin d’aucun artifice

p pour étre déduite ou démontrée..... » 3 mais , si cela est, vous
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ven é&les que plus coupable davoir présenté cette forme dans une
formule fausse ( Philosophie , ete., formule (4%), page 116 ). On
peut la comparer avec la vraie formule que j’ai donnée dans le
précédent mémoire (7 5), et qui comprend, comme cas irés-particulier ,
la loi philosophique. ’

« La théoric des grades et gradules n’était point connue.....»
C’est-a-dire , qu'on n’avait pas pensé i créer de nouvelles notations
pour représenter des expressions aussi simples que

AMLo(atut)  d7Lew
- L¢x 2. :L¢m "

Voild , fout au plu.;',' ce que je puis' accorder. Les nouveaux calculs
du philosophe sont trop voisins de celui des différences et de celui
des différentielles pour constituer une branche particuli¢re de I'ana-
lise ; et certes, ce me scrait pas”la peine ‘de faire du calcul diffé-
rentiel lui-méme un algoriihuie séparé de celui des différences , si
la différentielle s'exprimait en fonction des différences aussi sim-
i)lement que le gradule s'exprime en fonction des différentielles,
Cest une considération de philosophie toute commune qui a suggéré
aux analistes , 3 Euler en particulier, la triple génération du nombre
suivant les formes N=P+Q , N=P.Q , N=PQ¢. D’apréé la
méme considération , il n’est échappé & aucun d’eux qu’on peut
faire varier @, dans z==¢x , de trois manitres ; c’est-3-dire , en
supposant que x devienne x-+%¢, #.¢, 2% et qu’en conséquence
de chacune de ces hypothéses, la fonction z peut aussi varier de
trois manires , et devenir z-+%, 2.%, z5; de sorte que, pour dé-
terminer ce. que d‘eviént z, quind laccroissement % est répété un
certain nombre de fois , il y a’, emn général , neuf problemes i
résoudre. Le calcul des différences ‘et celui des différentielles -sont
nés de la considération du premier de ces problémes, c’est-i-dire ,
de la correspondance établie cntre les états variés 2-+% et z-+%3
et, si les autres problémes étaient aussi féconds, il resterait encore
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bien des nouveaux algorithmes & créer; de sorte que lenuméxahon,
présentée par la philesophie transcendantdle , des branches de ce
qu'elle appelle Théorie de la constitution algorithmique ,serait loin
d’étre complete. Mais les analistes n'ont pas ignoré que les auties
probl¢mes se ramenaient trés-bien au premier. Cependant le calcul
des gradules semble se recommander sur-le-champ , par une appli-
cation importante ; celle que le philosophe en fait & la recherche
de la forme des racines d’une équaiion déterminde , exprimées en
fonction de ses coefficiens.... Voild du moins ce qu’on voudrait nous
faire conclure d’une discussion qui occupe quatorze mortelles pages
in-4.° ( Philosophie , etc. , pag. 85-——96) hérissées des signes algo-
nthquues les plus sauvages. Mans quand peu efﬁ‘a)e de tout cet
appareil , on se donne la peme de discuter les raisonnemens , de
simplifier les calculs , et de traduire les formules en langue ana=
litique vulgaire, on ne peut se défendre de refuser net son assen-
timent aux asserlions de Vauteur,

Apres avoir posé l’équation identique

(a’+x)(a’/+x)...._—A+Bx+.... E, ()

N

on nous dit que c’est par le calcul différentiel qu'on doit chercher
a exprimer 4, B, ,..,. en fonction de &/, a’/,...., et que réci-
proquement c’est par le calcul des” gradules \qu’on doit arriver anx
expressions de @/, a/,.... en [onction de A4, B,.... « En effet
» le produit (@/4-2)(a”-x) .... ne saurait étre dédcomposé en parties
» de la sommation que par le calcul différentiel ; et la somme
» A-+Bz-..... ne peut-&ire composée en facteurs que par le calcul
» des gradules » ( Zbid. pag. 83 ). La premire. pfopcsition est
fausse; on a su exprimer les coefficiens en fonction des racincs,
long-temps avant la découverte du calcul différenticl. La =2.¢ pro-
position, qui n’est point une conséquence de Ja- premitre, 4 moins
qu'on ne veuille introduire dans 1’analise un vague de raisonnement
que repousse l'exactitude de la science, n’est point prouvée. Je vais
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méme découvrir, trés-facilement , par Vanalise commune, le résultas
auquel parvient le philosophe , armé de ses gradules.

Voici des bypothéses évidemment permises

¢ .
Quand les facteurs a’4-z , o’z ,....., La fonction B

—
1.° (a’+x)""” R (a”—-}-x)""'"...., [ g
2.0 (aa)?, (a4, gv-b
deviennent ( , devient ¢
3.0 (al4=z)'e, (@4 ey Ene
[ o e e e [ aen 3

Pour plus de simplicité , ne prenons que trois facteurs, La premiére
hypothése donne

(a’—l—x)"“". (a//_l_x)g//un' (a///+x)xm.,, ;5’"‘ :

\ N :

dans ce résultat , formons la seconde hypothise; nous auroms
(/) I BY (114 g W8N, (1] TR Y =D =D, (2

Si Pon avait admis quatre facteurs , on ferait dans ce résultat la
3.° hypothése. En général , quand il y a m facteurs on fait m—1
hypothéses - successives. Actuellement soient faits dans (2) #=¢a ;
$/=b, tVW'=¢, et il viendra

(n—a)(n'—b)
o= CTI =D . NG

Si on fait ¢, 4, ¢ infimiment petits s ®, n’ seront aussi infiniment
getit& 2
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petits; et , parce qu'en général g*=1--zLa, quand z est infini-
ment petit, P'équation (3) deviendra

1

—— oy

a/'={ 14(n—a)(n'—b)LE } =) e=b) _ 4 (4

expression qui, lorsqu’on suppose « la quantité arbitraire « égale
» & zéro, pour plusde simplicité » ( 7bid. pag. 9o ) prend la forme

o= { N

1 }Mm’. SN (5)

) S 2

Voild, bien sérieusement , le résultat unique du réle que T'on
confie au calcul des gradules, pour lui assurer une entrée brillante
dans le monde. Etait-ce bien la peine de le mettre en scéne ? Jose
le demander.

Jai fait remarquer quon dispose, dans (4), de larbitraire z,
en lui donnant la valeur zéro ; mais cette hypothése réduit g a A;
_par conséquent , dans le second membre de (5), il n’entre plus que
le coefficient 4 ; et la racine @’/ n’est plus exprimée que par un
scul des cocfliciens de I'équation. D’ailleurs cette hypothése con~
trarie évidemment celle qu’on est obligé de faire plus bas ( pag. 95 ),
d’aprés laquelle les différentielles successives de 2, savoirdz , d*x,...,
doivent satisfaire & certaines conditions qui, soit dit en passant,
auraient grand besoin elles-mémes d’étre conciliées entre elles. Quot
qu’il en soit, dato non concesso , que le second membre de (5) soit
une fonction des coefficiens 4, B,....; quelle est la conséquence
quon prétend en tirer ! c’est que « la quantité ¢// est une quan-
» tité irrationnelle ou radicale de l’ordre 3—1 » ( page 9o ) ou de

~

wr=of ) /4 Vwpn} )

n, n’, n/ étant des fonctions des coefficiens A4, B ,....

Tome V. 22

la forme
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Ici le philosophe a beau senvelopper du mystére transcendantal ;
on n’en apergoit pas moins que son raisonnement se réduit d ceci:
Pexpression du second membre de (6) peut étre ramenée a la forme
du second membre de (5) ; dont cette expression représente la forme-
de 2. Je nie la conséquence. Pour que dcux choses puissent étre
prononcées égales entre elles , lorsqu’elles sont égales & une troi-
sitme , il faut que celle-ci soit déterminée : or, l'expression second
membre de (5) est complétement indéterminée , puisqu’élle revient

a la forme N% ou ZVE. Je le demande; que dirait-on de la lo-
gique de Panaliste qui-, ayant trouvé, au bout de ses calculs, les
dcux expressions a=3%, =7, en conclurait a=5?

« La loi fondamentale de la théorie des nombres était inconnue.... »
On nous donne pour telle un. théoréme. algébrique ( 767d. équat. (D),
pag. 67) qui n'est pas plutét la loi fondamentale de cette théorie
que le théoréme connu ‘

P

=a" ' az" e Fa T el

X=——q

‘dont le premier est une conséquence pew éloignée. Les nombres
entiers sont des termes de la suite indéfinie de nombres, qui a zéro
pour origine et 1 pour différence entre deyx termes consécutifs
quelconques ; c’est la leur définition , et conséquemment la vraie
l6i fondamentale de leur théorie. Le Pkilosophe s’empresse de conclure
de 'son théoréme Vimpossibilité de soumettre les nombres premiers
@ une loi (1bid. page 68 ) ; mais je serai bien curieux de voir comment
il concilierait cette conséquence avec la remarque singuliére que
Lambert a consignée dans son Essai d'architectonique ( Riga, 1771,
page 507 ) et dont voici la substance : dans le 2.™° membre de
I'équation ‘
x x2 a™

ot

Y m—r I~—x2 [—xT

o=zt 22 F 225 32254 2t 227 - ..

cheque coefficient est égal au nombre des divisqurs de Lexposant;
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de maniere que fous les termes et les seuls termes affectés du coeffi-
cient 2 ont un exposant premier.

« La résolution théorique des équations d’équivalence dtait tout
» a fait problématique....» Malgré les promesses de la philosophie,
elle en est encore au méme point. Les formes assignées aux racines
(#bid. pag. 94 ) ne sont ni plus ni moins problématiques qu’elles
Vétaient ; et Ja résolution générale des équations ( littérales ) de tous les
degrés , donnée par le philosophe (Paris, 1812) est certes bien loin
d'avoir levé tous les doutes. Voyez, entr'autres, ceux de mon estimable
ami , le professeur Gergonne , dans ce recueil , tom. I, pag. 51,
137, 206 ). -

« La résolution des équations différentielles était encore plus im~
» parfaite.... » La philosophie I’a donc bien avancée ! Je n’en suis
point persuadé. J'aurais désiré d’ailleurs qu’'on fit au moins une
légére mention des méthodes générales proposées par Fontaine ,
Condorcet , Pezzi, etc. ; quand ce n’etit été que pour les combattre.

« La loi de la forme générale des séries (le développement de Fr ,
» suivant les puissances de ¢x ), et encore moins la loi de la forme
» la plus générale de ces fonctions techniques ( le développement
» suivant les produits des états variés ) , n’étaient nullement connus..... »
La premi¢re cependant n’est qu’un cas particulier de la formule
de Burman que jai donnéde (112); elle se trouve dans le Calcuf
des dérivations d'Arbogast (n.° 287 ) ; et l'autre est, comme je
Iai dit, un cas particulier de ma formule (23), connue au moins
pour des cas trés-dtendus : tel est celui-ci

For=A4Bzoz+Cx*¢x .¢'24D2’0x . ¢/ . ¢/ 24 cevrs

car c’est & cela que revient la résolution du probléme de l'article 348
du Calcul des dérivations. Ajoutons qu'Euler s'est élevé & quelque
chose de plus général encore, lorsque, dans un mémoire fort ori-
ginal ( Nova Acta Petrop. 1786 ) sur la fameuse série de Lambert ;
il part de cette expression
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2"=14on4-¢/nt¢//n4-.....

- « La loi de Taylor ne s’étend qu'aux fonctions données immé-
» diatement , et non 4 celles données par les équations......»
( Réfutation , etc., pag. 30 ). Nous avons démontré le contraire
dans notre précédent mémoire (n.° 19).

« Deduire le développement de =z ( d’aprés l’équation donnée
» 0==¢(#, @) ), suivant les puissances de ¢a ; c’est dejh beaucoup
» plus que ce qu'on fait jusqu'a ce jour dans l'algorithmie....»
( Zbid. pag 32 ). Cette prétention doit étre apprécide aprés avoir
lu les articles, depuis 318 jusqua 326 inclusivement , du Calcul
des dérivations.

Je serai plus bref encore sur l'autre question da Criticiste : Quel
sera Uétat de Palgorithmic , aprés cette philosophie des mathéma-
Ziques ? Je vois des promesses ; I'avare lui-méme n’en est pas chiche;
et des annonces de résultats..... c’est autre chose encore ; écoutons.
( Réfutation , eic., pag. 38 ).

« 8i la philosophic avait deja donné la législation des mathéma-
» tiques.....» Cette législation appartient sans doute & la philosophie,
en général , mais non 2 aucun systéme particulier. Les péripatéticiens
Hertinus , Dasypodius et Comp.® ont mis la géométrie en syllogismes.
Les philosophes de Port-Royal , nouveaux Procustes , ont torturé
cette méme géométrie , pour la réduire aux proportions de leur
étroite logique. Un philosophe allemand, d’abord disciple de Kant,
puis transfuge dans les rangs opposés , vient de persuader au” mathé-
maticien Langsdorf qu’il fallait refondre les principes de la science,
admettre, en géométrie , des points spaciguz , ¢te., etc. Voila un
échantillon des services que les systémes.rendent aux mathématiques.

« Et qu'elle Velit garantie, par l’explication rigoureuse de toutes
» les difficultés.,..» Oui! les difficultés i 1magmalres du calcul dif-
férentiel , exphquees par une Antinomie crztzgue’ Les Patadoer de
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Kramp résolus par des zéros , ou des infiniment petits, pairs et
impairs ! ete. !

« Et sur-tout par la découverte des lois fondamentales de cetie
seience ... ». Je le répéte , il n'y a d’autres lois fondamentales que
les définitions, qui ne sont plus a découvrir.

« Lois qui doivent enfin conduire & la solution des 'grands pro-
» blémes qu’on n’a pu- résoudre jusqu’a ce jour....». Fiat! Fiat!

« Que resterait-il 4 faire aux géomeétres ¥ Deux choses: l'une ...,
» de recevoir, de la philosophie , les principes des mathématiques..».
Ce serait mon parti , si la philosophie était un corps de doctrine
révélée.

« L’autre d’étudier la philosophie transcendantale qui est la base
» de cette derniére ....». Mais, si le résultat de cette étude était de
ne pas croire au transcendantalisme , ou du moins d’en douter ?
Car , aprés tout , c’est une opinion humaine ; bien plus , c’est un
systtme enveloppé de ténebres que peu de personnes peuvent se
Hatter de percer. Ch, Villers accuse les académiciens de Berlin de
n’y avoir vu goutte ; d’autres lui adressent la méme politesse. Au
milien du brouhaha des discussions philosophiques d’outre-Rhin , on
ne distingue bien clairement que ce refrein... « On ne m’entend
» pas..! ». Et Uon prétendrait établir , sur une base de cette na-
ture , laplus claire et la plus certaine des sciences !....

Pour moi je déclare , en finissant , que je m’en tiens provisoire=
ment & la philosophie des mathématiques dont Dalembert qui en
valait bien un autre , et comme philosophe et comme mathémati-
cien , a posé les principes. « Comme la certitude des mathémati-
» ques ! dit-il , ( Encyclop., Art. APPLICATION ) vient de la sim-
» plicité de leur objet , la métaphysique n’en saurait étre trop
» simple et trop lumineuse ; elle doit toujours se réduire a des
notions claires , précises et sans obscurité. En effet, comment les
» conséquences pourraient-elles é&tre certaines et évidentes , si les
» principes ne l'étaient pas? Plus cette métaphysique , ajoute-t-il,
» ( 1bid. Art. ELEMENS) est simple et facile, et , pour ainsi dire,

~

b4
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» populaire , et plus elle est précieuse ; on peut méme dire que la
» facilité et la simplicité en sont la pierre de touche ».

Au surplus ;, bien convaincu que jai raison contre la Philosophie
critigue ; je ne veux point me donner des torts envers le philo-
sophe : je me hite donc de déclarer que je me plairai toujours &
reconnaitre , dans l'auteur de la Philosophie des mathématiques ,
un géometre trés-habile et trés-instruit, dont les travaux pourraient
devenir extrémement utiles 2 la science , s'il parvenait jamais & se
soustraire a I'influence du systéme philosophique par lequel , suivant
moi , il sest trés-peu philosophiquement laissé subjuguer.

La Fere, le 1o d'aolt 1814,

ARITHMETIQUE.

Sur le caractére de divisibilité des nombres par cerlains
diviseurs ;

Par M. GERGONNXE.

fa Vo ¥ STy Wl Vo Vo W, )

Som‘ N un nombre entier quelconque , écrit dans le systéme de
numération dont 5 est la base. Concevons quon ait partagé ce
nombre , en allant de droite i gauche, en tranches de m chiffres
chacune , sauf la derniére qui pourra en avoir moins; et soient,
en allant aussi de droite & gauche, A,, A,, A,, A;,.... ces
‘tranches , considérées comme autant de nombres isolés. On aura
éyidemment

N=A,+A,b"4A B 7A  §30 s



DES NOMBRES. CITr

Cette équation pourra ensuite ¢tre mise sous les trois formes suivantes

N=4mA, 4A, 07 A 52 )+A, (1)
Nz (A, (3mm 1)+ A (B 1) A, (31" )rry
A AA A A )
N (A (F1)-FA (B 1)4A, B3
HA A FA ) —(A A A )

En observant que les premidres parties de ces diverses expressions
de N sont respectivement divisibles par ™, §™em1 , ™41 | et
conséquemment par tous diviscurs de ces trois nombres, on pourra
établir les propositions suivantes..

1.° Dans tout systéme de numération , le reste de la division
d’un nomlbre quelconque par un diviseur quelconque de la m.™°
puissance de la base du sysiéme , est le méme que celui quon
obtient en divisant sa premiere iranche de m chiffres a droite
par ce diviseur. ' )

2.° Dans tout systéme de numération , le reste de la division
dun nombre quelconque par un diviseur quelconque du plus
grand nombre de m chiffres est le méme que celui quon ol-
tient en dwisant la somme de ses tranches de m ehilfres par-
ce diviseur.

3. Dans tout systéme de numération le reste de la division
d'un nombre quelconque par lun quelconque des diviseurs de la
m.™¢ puissance de la base augmentée d’'une unité est le méme que
celui guon obtient en divisant par le méme diviseur la somme
des tranches de m chiffres de rangs impairs moins la somme des
tranches de m chiffres de rangs pairs.

Afin donc que la premieére division réussisse , dans chaque cas,
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il sera nécessaire et suffisant que la seconde, plus simple, réus-
sisse également. Voild donc autant de caractéres de divisibilité des
nombres par certains diviseurs.

Ainsi, par exemple, dans notre systtme de numération, la di-
visibilité d’un nombre par 37 tiendra & la divisibilité par 37 de la
somme de ses tranches de trois chiffres ; sa divisibilité par 7 dé-
pendra de la divisibilité par 7 de la somme de ses tranches de
trois chiffres de rangs impairs moins la somme de ses tranches de
trois chiffres de rangs pairs.

Si Ton suppose m=1, on retombe sur les caractéres connus de
divisibilité par 2, 3, 5, g et 11,

QUESTIONS PROPOSEES.
Problémes de Géomélrie.

I QUELLE surface décrit le sommet d’un angle tri¢dre tri-rectangle
mobile, dont les arétes sont assujetties & toucher perpétuellement
une surface fixe du second ordre ?

II. Quelle surface décrit le sommet d’un angle triddre tri-rectangle
mobile , dont les faces sont assujetties a étre perpétuellement tan-
gentes & une méme surface fixe du second ordre ?
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HYDROSTATIQUE.
De la stabilite des corps flottans

Premier mémoire de la seconde partic des dépeloppemens de
géomélrie ;

Par M. Cu. Durin, correspondant de linstitut de France,
associé étranger de celui de Naples, capitaine du génie
maritime , etc.

Bapport sur ce mémoire , fait & la premiére classe de
linstitut de France , '

Par M, Carnor,

[a T e Sio ia V1o Ve o

M. Sané, M. Poinsot et moi , avons été chargéds par Ta classe
de lui rendre compte d’un mémoire sur la stabilité des corps ﬂottans",
qui lui fut présenté le 10 janyier dernier, par M. Charles Dupin,
capitaine en premier au corps du génie maritime , et aux travaux
duquel la classe a déja plusicurs fois applaudi. Ce mémoire méme
a été composé par un jeune officier qui s'attendait a chaque mo~
ment A recevoir des ordres pour se rendre aux armées.

Le mémoire de M. Dupin est la premiere application des mé—
thodes exposées par le méme auteur dans cinq autres mimoires
de géométrie , approuvés par la classe, et publiés ensuite sous le

Tom. V, n° V1, 1.5" décembre 1814. . 23
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titvte de Développemens de géoméirie, pour faire suite & la géo-
métrie descriptive et a la géométrie analitique de M. Monge.

En voyant ces premiéres recherches, notre illustre Lagrange,
dont les suffrages peuvent étre regardés comme les plus beaux titres d’un
jeune géomeéire , a fait d’elles cet éloge, confirmé par le jugement de la
classe. « L’auteur a trouvé le secret de dire des choses neuves et
» intéressantes, sur un sujet que nous croyons épuisé. ».

Le nouveau sujet que M. Dupin s’est proposé de traiter , dans
le mémoire .dont nous avons & rendre compte , est plus difficile
encore que celui des mémoires précédens, et semblait pareillement
épuisé, La théorie de V’équilibre des corps flottans sur un fluide

a fait I'objet des recherches des plus grands géometres. Archimede
est le premier qui s'en soit occupé ; et le ]wre ou il traite cctte
matitre , si peu abordable de son temps , est, avec raison , r(,"ardc,
comme un des écrits qui font le plus d’honneur a son génie. En
n’employant que la methode synthétique, Aruhxméde recherche les
conditions de lethbre des corps sphériques , cylmdnques et para-
boliques. 1l détermine dans quel ¢us I’équilibre doit étre stable et
dans quel cas il ne doit pas I'étre. En admirant la force d’esprit
qu'exigeaient ces premiers résultats d'une science alors dans Ien=
fance , on ne peut s'empécher d’avouer qu’unc méthode qui doit,
3 chaque corps nouveau dont on s’occupe , recourir & de nouveaux
moyens de solution, ne soit d'une étude et d’une application ex=
trémement pénibles.

M. Dupin annonce que, dans un second mémoire , il reprendra
toutes les questions traitées par Archimede , pour les faire dériver,
comme autant de corollaires, d’un seul et méme principe : si cette
‘partie est bien traitée , ce ne sera pas la moins intéressante de
son travail.

Dix - neuf sidcles se passerent avant qu on revint aux questions
traitées par Archimdde, pour reculer de ce coté les bornes de la
science. Deux géomctres l'entreprirent,

pour ainsi dire, en méme
temps.
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Bouguer, dans le veyage ot il fut , avec Lacondamine , me-
surer sous l’équateur un arc du méridien , employait ses loisirs &
composer le Traité du navire; tandis quEuler , & Pétersbourg,
écrivait son livre intitulé Scientia navalis. Dans ces deux ouvrages,
on voit la question de Déquilibre des corps flottans traitée sous
un point de vue beaucoup plus général que ne lavait fait Archi-
meéde. La seule restriction qu'on s’y permette encore est de re-
garder les corps comme symétriques par rapport a un plan. Telle
est, en effet, la forme de nos vaisseaux de guerre ou de com-
merce , ces grands corps Hottans dont ’équilibre et la stabilité sont
d’une considération si importante.

Bouguer se rapprocha de la méthode des anciens ; il présenta
ses iddes sous une forme géométrique ; il les rendit par la plus
sensibles ; et les ingénieurs maritimes de toutes les nations adop-
térent sa maniere de déterminer la stabilité des corps flottans, Euler
n’abandonna pas sa meéthode accoutumée , et parvint au méme but
par une analise simple, élégante et facile.

M. Dupin suit une marche différente de celle qu’avaient adoptée
ces deux illustres géometres; il emploie une géométrie qui n'était
pas connue de leur temps , et ce nouvel instrument le conduit & -
de nouveaux résultats.

Au lieu de se tenir toujours infiniment prés de chaque position
d’équilibre , pour voir ainsi ce qui se passe autour d’elle, il con-
sidére , & la fois , toutes les positions qu'un corps peut prendre ,
en flottant sur un méme fluide , lorsque ce corps est d’'un poids
constant et d’une forme extéricure invariable.

Pour que le corps flottant soit en équilibre , il faut, comme on
sait, que son centre de gravité soit sur la méme verticale que le
centre de volume de sa cardne ; cetle carine étant terminde au
niveau du fluide par un plan horizontal qu'on appelle le plan de
Sotiaison.

- Mais , le poids du corps étant supposé constant, le volume de
la caréne lest aussi, Si donc, par des transpositions dans lintérieur ;
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“on fait prendre au centre de gravité du corps flottant toutes les
positions possibles , $ans que la ﬁgure extérieure de ce corps change ,
on va trouver , pour ces différens états d'un méme corps, une
infinité de plans de flottaison différens, et une infinité de carénes
‘différentes. Chacune de ces cardnes a son centre de volume en un
point particulier. Voild , par conséquent , une infinité de centres
de caréne. Ils forment une surface : c’est la Surfuce des centres
de caréne. Tous les plans de flottaison sont tangens & une antre surface
qui , par rapport & ces plans, est du genre de celles que M. Monge
a nommées enveloppes : cest la surface enveloppe des flottaisons.
- On n’avait pas encore eu lidée d’envisager ces deux surfaces,
et c’est leur considération qui conduit M. Dupin, d’abord 4 des
théorémes qui renferment tous ceux que lon connait déja sur
la stabilité des corps flottans , et ensuite & beaucoup d’autres théorémes
nouveaux.

L’auteur observe premiérement que la définition de la surface
des centres de cartne et celle de lenveloppe des flottaisons dtant
purement géométriques , la recherche des propriétés générale de ces
surfaces doit appartenir uniquement & la science de l'étendue. 1l
s’occupe d’abord des propriétés de la premitre de ces surfaces, et
la traite d’aprés les principes qu'il a exposés dans ses Développe~
mens de géométrie : voici les résultats auxquels il parvient.

La surface des centres de caréne est nécessairement d’une éten-
due finie ; ellé est fermée de toutes parts. Quelle que soit la forme
irréguliere du corps fottant, la surface des centres de caréne est
toujours continue ( en ce sens que ses plans tangens se succédent
constamment , par une ddgradation insensible dans leurs directions ,
de maniére 'h ne former ni angles ni arétes sur la surface ). »
* S8i Pon place le corps flottant dans une position d’équilibre , le-
centre de sa cartne sera en un certain point de la surface lieu des
centres, et le plan tangent a la surface en ce point sera néces—
sairement paralléle au plan de flottaison , c’est-a-dire horizontal.

De 1a résulte immédiatement cette autre propriété générale. Dans
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une position d’¢quilibre quelconque , la droite mende par le centre
de gravité du corps flottant et par le centre de caréne , est mor-
male , en ce dernier point; ala surface des centres de caréne.

Ainsi , dés le principe , Pauteur ramene la recherche des positions
d’équilibre d’un corps flottant a la détermination des droites nor-
males & la surface des centres de caréne , en ne prenant, parmi
ces normales que celles qui passent par le centre de gravit¢ du corps.

Il ne suflit pas de déterminer une position d’équilibre , il faut
8’assurer de plus que cette position est stable.

On voit des corps flottans que 'on cherche vainement 4 déranger
de leur position primitive. De quelque c6té qu’on les incline , ils
tendent toujours 2 se redresser. On en voit, au contraire qui, dés
quon les dérange un peu de leur premiére position , de quelque
c6té qu'on les incline , ’inclinent encore davantage , et ne reviennent
plus & leur premiére assictte. Enfin on en voit d'autres qui, pen-
chés d’'un certain c6té , tendent & se redresser , tandis qu’en les
penchant dans une autre direction , ils s’écartent de plus en plus
de la position primitive. Dans le premier cas, on dit que I'équilibre
est stable , dans le second, qu’il est absolument instable, et dans
le troisitme que cet équilibre est mizze.

Or , rien n’est plus facile que d’assigner les caractires de ces
différens genres d’équilibre , en considérant la surface des centres
de caréne. Lorsqu'on incline trés-peu le corps fottant , on peut
concevoir qu’il tourne autour d’un axe horizontal. Maintenant, par
le centre de la caréne qui correspond & la position d’équilibre , con-
cevons un plan perpendiculaire 2 cet axe; ce plan sera vertical et
coupera normalement en ce point la surface des centres de caréne.
Déterminons , pour ce méme point, le centre de courbure de cette
section ; il sera sur la méme verticale que le centre de gravité du
corps flottant. Cela posé, 1.° il est au-dessus , I'équilibre est abso-
lument szable ; 2.° s’il est au-dessous, I'équilibre est absolument
instable ; 3.° sils se confondent , I'équilibre est mizze. Ainsi, ce



178 STABILITE
centre de courbure joue, dans la théorie de M. Dupin, le méme
réle que le métacentre dans la théorie de Bouguer. ‘

De ces principes résulte ee théoréme nouveau et remarquable :
suivant que la position d'un corps flottant est stable ou non sta—=
ble , la distance du eentre de gravité de ce corps au centre de
sa caréne est un minimum o un Waximum , par rapport & rtoules
les positions voisines que peut prendre le corps flottant.

En appliquant 3 la stabilit¢ les propriétés de la courbure des
surfaces , auteur conclut d’abord que , si I'on incline successivement,
autour de tous les axes possibles , un corps en équilibre sur un
fluide,, 1.° la direction de la plus grande stabilité est celle ol I'axe
est paralléle & la direction de la plus grande courbure de la sur-
face des centres de ecaréne, =2.° la direction de la moindre stabilité
est celle ol l'axe est parallele & la direction de la moindre cour-
bure de la méme surface.

De Ia il suit immédiatement que les directions de plus grande
et de moindre stabilit¢ d’un corps flottant quelconque se croisent
toujours & angle droit.

Pour examiner les stabilités comprises entre ces deux extrémes,
M. Dupin se sert encore de la surface des centres de cartne; il
a recours & la courbe indicatrice et aux tangentes conjuguées de
cette surface. On peut voir, dans le rapport de M. Poisson ; sur
les trois premiers mémoires de M. Dupin , la définition de cette
eourbe et de ces tangentes, ainsi que lexposition de leurs prin-
cipales propriétés , faite avec autant de clarté que de précision. (*)

Il nous suffit de dire que , si I'on coupe une surface par unm
plan infiniment voisin de son plan tangent et parallele & ce plan,
Ia section est une courbe du second degré, que M. Dupin appelle
indicatrice, parce qu'elle indique en effet la forme de la surface,
4 partie du point ok elle est touchée par le plan tangent que I'on

€* Consultez aussi la page 368 du 4.m¢ volume de ce recueil.
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considére. Les diamétres conjuguds de cette indicatrice représentent
autant de systémes de tangentes conjuguées de cette surface.

BRevenons a la surface des centres de caréne. Elle a partout ses
deux courbures dirigées dansle méme sens: son indicatrice est donc
constamment une e//ipse. Les axes de cette ellipse sont paralléles
aux dircetions de plus grande et de moindre stabilité du corps
Hottant. ’

Les degrés de stabilité du corps flottant sont proportionnels aux
quarrés des diametres de lindicatrice ; ces diamétres étant dirigés
dans le sens de linclinaison du corps flottant.

Or, les diamétres d'une ellipse sont disposés symdétriquement de
coté et d’autre des deux axes ; donc les stabilités intermédiaires
sont aussi disposces symétriquement de coété et d'autre des deux
dircctions de plus grande et de moindre stabilité. (

Si l'on appelle , avec M. Dupin, stabilités conjugudes , celles qui
apparticnnent a des inclinaisons répondant a deax diameétres con+
jugués de Pindicatrice , on verra qu’elles jouissent de cette pro-
prieté générale : pour une méme position d’équilibre , la somme
de deux stabilites conjuguées est nécessairement constante et £gale
2 la somme de !a plus grande et de la moindre stabilités du corps
flottant,

Enfin M. Dupin, par le secours de la -courbe indicatrice déter-
mine , dans les cas d'equilibre mixte, les limites qui séparent les
directions ol I’équilibre est stable d’avec celles ou il ne D’est pas.

Jusqu’ici , Pauteur supposait que la forme extérieure du corps
fottant dit rester constamment la méme; il suppose ensuite que

’
lement & laisser constantes les hauteurs des centres de gravité du
corps et de sa caréne , ainsi quc la figure de la ﬂottaisc\m. Alors
il examine les transformations infinies que peut éprouver la sur-
-face des centres de caréne ; il ramene ces transformations i celles
dont il a fait ’cxamen dans ses Développemens de géométrie. 1l en
conclut que les nouvelles surfaces des centres de caréne auront

cette forme varie d’une maniére trés-générale ; il s'assujettit seu=



180 STABILITE

toites un contact, au moins du second ordre, avec la surface pri«
mitive ; et par conséquent , que tous les nouveaux corps flottans
auxquels ces nouvelles surfaces appartiennent ont la méme stabilité
que le premiers corps flottant. Cest ainsi que M. Dupin cherche
2 utiliser les principes qu’il a présentés dans ses premicrs mémoires.

Telles sont les principales propriétés de la surface des centres de
caréne. Aprés les avoir développées, l'auteur considére spécialement
la surface enveloppe des flottaisons et l'aire de chaque flottaison.

Cette seconde surface est, comme la premitre, fermée de toutcs
parts ; elle présente aussi partout ses deux courbures dirigdes dans
le méme sens. Elles ont ensemble cette corrdlation singuliére qu’elles
ne peuvent jamais se couper ; tantt la premiére embrasse compleé-
tement la seconde ; tantét la seconde embrasse completement la
premiere.

Draprés sa définition , P'enveloppe des fottaisons a pour plans
tangens tous les plans de flottaison. Or, le point de contact de
Yenvcloppe et de ces plans est le centre de gravité de laire de
chaque flottaison ( cette aire étant terminée par le périmetre du
eorps flottant ). Ce théoréme revient, quant au fond, & celui qu’on
doit & de Lacroix , membre de P’ancienne académie des sciences ;
Euler en parle dans la préface de son traité : Scientia navalis.

M. Dupin [fait voir généralement que le plus grand et le plus
petit rayon de courbure de la surface des centres sont égaux au plus
grand ou au plus petit moment d’inertie de l'aire de la fottaison,
divisé par le volume de la caréne.

De Ia il conclut immédiatement que la direction de la plus grande
ou de la moindre stabilité du corps flottant est parallele & laxe
du plus grand ou du plus petit moment dinertie de laire de la
flottaison : théoréme connu.

Par une correspondance bien singuli¢re, la courbure de la surface des
centres de caréne dépend donc spécialement de la figure de la flot-
taison ; mais la courbure de la surface enveloppe des flottaisons
dépend de quantités plus compliquées. Gependant , il est intéressant

de
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connaitre les élémens de cette courbure; ils indiquent dans quelles
directions les stabilités primitives croissent ou décroissent par les
degrés les plus lents ou les plus rapides, et peuvent montrer les
états prochains de stabilité d’un corps flottant dérangé de sa po-
sition d’équilibre. Cette recherche ne peut étre que d’un grand intérét
pour la théorie de la construction des vaisseaux.

Voici , 4 ce sujet, les résultats auxquels l'auteur parvient; ils
s'offrent sous une forme singuliere.

Si I'on charge le contour de la flottaison par des poids propor-
tionnels a4 la tangeute de langle formé par la verticale et la paroi
du corps flottant, les axes principaux du plus grand et du plus
petit moment d'inertie de cette ligne pesanie seront respectivement
paralleles aux directions de plus grande et de moindre courbure de
Penveloppe des flottaisons.

Et si l'on divise par la superficie de la Hottaison deux fois ce
plus grand ou ce plus petit moment d’inertie , le quotient sera le rayon
de moindre ou de plus grande courbure de la surface des flottaisons.

Aprés s'etre occupé de tout ce qui peut caractériser une po-—
sition d'cquilibre, considérée isolément, M. Dupin considére, 4 la
fois , toutes les positions d’équilibre que peut prendre un corps flot—
tant dont la forme est invariable , ainsi que son poids ct la po-~
sition de son centre de gravité.

Cette partie de son travail , quoiqu’elle ne paraisse pas devoir
tre aussi féconde que la premitre en conséquences utiles , semble
peut-étre plus originale , et par la généralité des résultats, et par
la simplicité des moyens de solation. _

D’aprés la théorie précédemment exposée , la recherche de toutes
les positions d’équilibre du corps flottant est ramence 4 celle de toutes
les droites que l'on peuat, du centre de gravit¢ de ce corps , mener
normalement 4 la surface des centres de caréne.

L’aatenr prouve d'abord que tout corps solide , fottant sur un
fluide , présente au moins deux positions d’équilibre ; I'une dont
la stabilité est absolue; l'autre dont linstabilité est pareillement ab-

dom. Vy 24
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solue ; principe qui 'n’avait pas encore été démontré directement,

Ensuite ce géometre fait voir que le nombre des positions d’é-
quilibre d’un corps flottant est généralement pair ; et il prouve que
le nombre des positions d’équilibre du premier genre est toujours
égal au nombre des positions du second genre.

Et si l'on fait tourner la surface des centres de cardne autour
d’un axe quelconque mené par le centre de gravité du corps flot-
tant, puisqu’on determine la surface de révolution enveloppe de P'es~
pace parcouru par cette surface ; en se dirigeant ensuite sur la courbe
de contact de lenveloppe ct de l'enveloppée, on rencontrera suc-
cessivement tous les centres de caréne qui appartiennent aux po=
sitions d’équilibre , et ces centres appartiendront alternativement 2
des positions stable , instable , sicble, instable, ete.

8’il y a des positions d’équilibre mixtes, il faudra regarder cha-
cune delles comme la réunion de deux positions d'¢quilibre , Pune
stable et Pautre instable ; et 'on trouvera toujours , en marchant
sur la courbe de contact dont nous venons de parler, que les centres
de caréne qui correspondent & des positions d’équilibre, appartiennent
alternativement a des positions d’équilibre stable et instable.

Ce nouvel ouvrage de M. Dupin confirme les espérances que ce
jeune savant a données par ses premiers travaux ; et l'on ne peut
qu’applaudir a ses eflorts constans pour en diriger les résultats vers
la pratique du grand art auquel il s'est voud, Nous pensons que le
mémoire de M. Dupin mérite I’approbation de la classe , et nous
lui proposons de le faire comprendre dans la collection des savans
étrangers. .
Signé Sané, Poinsot et Carnot, rapporieur.

Le Seccrétaire perpétuel pour les sciences mathématiques certifie
que ce rapport est extrait du proces-verbal de la séance du mardi 30
aolGt 1814.

Signé Delambre, chevalier de la Légion d’honneur.
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PHILOSOPHIE MATHEMATIQUE.

De lusage des infiniment pelils dans la géomélrie
elémentaire;

Par M. GERGONNE.

[a Ve Vi 1o Vi Vo Vo S ¥

LA mani¢re dont je me suis expliqué en divers endroits de ce
recueil , et emploi f{réquent que j’y ai fait de la série de Taylor,
donnent assez & cornaitre que je ne pense pas que la méthode
des infiniment petits doive éire employée dans les sciences exactes,
da moins comme méthode d’exposition,

Mais je manquerais de bonne foi si je dissimulais les objections
graves que l'on peut opposer, aux méthodes plus rigoureuses par
lesquelles celle-la rst communément remplacée. 1l est certain , en
effet , que ces mcthodes sont d’erdinaire longues , compliquées et
difficiles & suivre; ce qui est un inconvénient notable , sur-tout des
Penteée d’une science, ou l'on s’expose , par leur emploi prématuré,
a rebuter un grand nombre de commengans que des méthodes moins
sévéres auraient au contraire attirés, et dont_les études et les succés
auraient pu tourner evsuite au profit de la science. Dans les élémens
de géométrie, en particulier , la réduction & V'absurde ou la méthode
d’exhaussion , constamment employée par les disciples d’Euclide ,
présente un vice capital qui consistc dans son opposition formelle
avec l'esprit d’invention , et dans la nécessité ot elle met souvent
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celui qui enseigne de supposer déji connus & Vlavance , par une
sorte de révélation d’en haut , les résultats dont il va établir la légi-
timité ; résultats qui, par suite, ne se gravent que tres-difficilement
dans la mémoire de léléye qui ne voit immédiatement, par exem-
ple, pourquoi le volume d’unc pyramide est plutét le produit de
sa hauteur par le tiers de sa base que par toute autre fraction de
cette base, et qui ne congoit pas mieux comment les premiers in-
venteurs sont parvenus a deviner ces sortes de résaltats, (¥)

C'est 14 sans doate ce qui a pu déterminer plusiears auteurs
d’élémens & donner la préférence a la méthode des limites qui, au
surplus, ne différe guére que par les termes de celle d’exhaussion ;
mais cette méthode des limites’, outre quelle ne satisfait peut-étre
pas autant lesprit que la premiére , n’est point elle-niéme sans
difficulté , et n’est pas, plus que l'autre , exempte de longueurs , du
moins lorsqu’on veut la présenter d'une maniere biew” rigoureuse ,
et en mettre les résultats & couvert de tout soupgon d’inexactitude.

Iy a déja “assez long-temps que jai songé a substituer & l'un
et a lautre procédéé un tour de raisounement qui, bien qu’il écarte
toute considération d’infiniment petits, rénnit cependant & la sim-
plicité et & la concision I'avantage inappréciable de laisser la marche
de Tinventeur tout & fait & découvert, et de ne rien laisser & désirer
du coté de la rigueur. Un seul exemple suffira pour le faire con-
cevoir nettement; je le choisirai des plus simples.

(*) Ceci me rappelie qu’aux examens d’admission & Pécole polytechnique , un
jeune homme interrogd , il y a quelgnes années , sur le centre de gravité du volume du
tétratdre, et débutant ainsi, dans sa réponse : « je vais prouver que le centre de

’ ’ ]
» gravité du volume d’un téiratdre est & une disiance de sa base qui ne saurait
, fut tout & coup
déconcerté , par cette brusque apostrophe de Pexaminateur : « Comment avez-

» &tre moindre ni plus grande que le quart dec sa hauteur »

» vous deviné cela 7 » IL’examinateur avait raison ; cela semblait en elfet tomber
des nues; mais le jeune homme naurait-il pas été fondd A lui demander , % con
tour , pourquoi il rejetait en statique un mode de procéder dont il venait de
#accommoder en géometrie?
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Je suppose que , sachant mesurer les aires des figures rectilignes,
on ait besoin , pour la premitre fois, de déterminer celle d’un cercle.
La nouveauté du probléme et son peu d’analogie apparente avec
les problémes antéricurement résolus pourront d’abord causer quel-
que embarras, et la premiére pensée qui s'oflrira pour le surmonter,
~sera de substituer quelque a,pproximation 4 une évaluation rigoureuse.

On circonscriza donc au cercle un polygéne régulier d'un tres-
grand nombre de cotés ; et, supposant entre 'une ct autre figures
une identiié qui réellement n’a lieu qu'a peu prés, on prendra pour
laire approchée du cercle le produit du périmetre du polygone circons-
crit par la moifi¢ du rayon; résultat évidemment d’autant plus approché
que les cotés du polygone seront plus nombreux , mais, dans tous
les cas, plus grand que le véritable.

Dans la vue de le diminuer un peu, et conséquemment d’atte—
nucr encore lerreur, il se présente asscz naturellement ala pensée
de substitucr au périmetre da polygéne la longueur de la circon-
férence , qui est plus petite,, c’est-a-dire, de prendre pour Daire
approchde du cerc’~ le produit de sa circonférence par la moitié de
son rayon. On ne pourra plus savoir ici, du moins @ priori , si
Perreur est en plus ou en moins , attendu lespéce de compensation
introduite dans la premiére évaluation ; mais, si l'erreur existe en
effet , sa grandeur absolue n’en devra pas moins demeurer évidem-
ment subordonnée au nombre des cotés du polygdne circonscrit , et
décroitre 4 mesare que ce nombre augmentera,

Cette errcur , si elle existait, devrait donc étre, de sa nature ,
essentiellement variable ; mais, d’un autre c6té, elle ne saurait I'étre,
puisque la considération du polygéne n’entre plus pour rien dans
la dernitre évaluation A Iaqnel‘e on s'est arrété , et que les élémens
gu'on y emploie sont constans comme l'aire méme qu’on cherche a
évaluer ; donc erreur est tout 4 fait nulle; donc il a di s’opérer
une exacte compensation ; donc l'evaluation est rigoureuse; donc, ete.

Jai trainé, & desscin , le raisonnement un peu en longucur , afin
@en rendre Uesprit plus facile a saisir ; mais , lorsqu’une fois il
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est devenu assez familier , on peut le rendre beaucoup plus concis ;
il se réduit en effet a dire que si lerreur d’un calcul fait sur des
quantités constantes dans la vue d’évaluer, par approximation, une
autre quantité aussi constante , est de nature a étrc indéfiniment
décroissante , cette erreur est, par lda méme , tout & fait nulle.

Les mémes considérations peuvent étre facilement transportées dans
le calcul difiérentiel. On peut y envisager d’abord les dx , les dy, e
comme des quantités d’une petitesse finie arbitraire, et leur intro-
duction dans les calculs comme un simple procédé d’approximation.
Alors leur évanouissement de certains résuliats sera le critérium
de lexactitude de ces résultats; ce qui rentre exactement dans les
idées déja développées depuis long-temps par M. Carnot d’'une ma-
ni¢re si lumivneuse ( Voyez ses Réflexions sur la méthapkysique du
calcul infinitésimal , Paris, 1813 ). Mais il faut convenir qu’ici il
peut s’offric souvent, relativement aux suppressicas de termes , des
difficultés de pratique assez sérieuses, et que le recours a la série
de Taylor peut seul faire complétement évanouir.

-
—

CORRESPONDANCE.

Lettre au Rédacteur des Annales , conlenant une
démonstration élémentaire du Lemme enoncé ¢ la
page 345 du 4.me volume de ce recueil.

[a Vi Vi Vi Mo V1, V1o Sa 22 4

MONSIEUR ,

J’AURAIS bien désiré pouvoir répondre complitement & Tappel que
vous faites aux géométres, dans la note de la page 348 du 4.°¢
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volume des Annales ; et rendre ainsi tout 3 fait élémentaire la
belle théorie développée a la page 138 du méme volume. En atten-
dant que quelqu’un de plus adroit que moi y soit parvenu, je vais
au moins donner du Lemme de la page 345 une démonstration,
toujours algébrique, mais délivrée du moins de I'emploi du calcul
diflérentiel. \

La question dont il sagit ( pag. 346) est de rendre minimum
Vexpression
z=a\/ Fadincatby/ by Snag » (1)
sous les conditions
aty=4 , (2)
aSine=/0Sin.p=xk , (3)

A et » étant deux constantes.

Soient fait d’abord passer sous les radicaux , dans (1), les coef-
ficiens qui les affectent ; en ayant égard & (3), cette équation de~
viendra

z::ﬁ{ ‘/a=+hzx2+‘/b=+7\2+_y3; H

d'olt en quarrant et extrayant ensuite la racine quarrée,

2=y (@b 422 @iy )2\ ez @iy b as ) abay
équation qui, a l'aide de (2), et en posant, pour abréger,
(a+bp4r4A*=C* , abtazy=2 ,

peut facilement étre mise sous cette forme

=k ‘/_AC 22y VZifaz(ay—bays=z 3 (4)



188 CORRESPONDANCE.
Or, on voit évidemment que, C étant une constante , z ne peut
devenir minimum , qu’autant que la fonction

\/ Zr-p2 (uy—bx) :em2i

sera la plus petite possible ; et, comme d’ailleurs elle ne peut jamais
devenir négative , on ne peut parvenir au but qu'en la rendant abso-

lument nulle , c’est-a-dire , en posant
Z=\/"Z A r(ay—bx)* 3
ee qui donne, en quarra;lt, réduisant, divisant par a*, eﬁ.trayant
la racine quarrée et transposant,
bx=ay ,

En combinant cette équation avec (3), il vient

zSin.e=ySin.¢ ,
d’onr -
k*2*Sin2e=Fk*y*Sin%g ,
el
k*xSin.2a-2*y*Sin.*Sin.*g=k*y*Sin.*4-2y*Sin.*«Sin.* s ,
ou encore
© 2*Sine(k*-y?Sin.?g) =y*Sin.2g(£*~+-2Sin.e)
ou enfin

2Sin.x ¥Sin.g
Vidziomre iy S g ?

qui est précisément 1’équation (6) de Iendreit cité.
Agréez, ete.
21 aolt 1814,
' QUESTIONS
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QUESTIONS RESOLUES.
Solution du probléme de situation proposé¢ & la page
231 du 3.m¢ golume des Annales ;

Par M. Arcanp.

ANV

N, B. Le rédacteur des Annales a regude M. Argand un beau mémoire d’ana-
lise indéterminée , contenant la solution du difficile probléme de la vage 231 du

3.me yolume de ce recueil. Ce mémoire étant trop étendu pour pouvoir paraiire

de suite, Pauteur , & la priére du rédacteur, a bien voulu en faire un extrait,
présentant le procédé pratique, dégagé de toul raisonnement ; extrait trés-propre
a aider a Pintelligence du mémoire , lorsqu’il paraitra ; c'est cet exirait que I'on va
mettre sous les yeux du lecteur. On doit espérer que l'exemple de M. Argand
encouragera quelques géomelres 3 aborder d'autres questions, propoesées dans les

Annales , et demeurédes jusqu’ici sans solution.

PROBLEME. Soit une circonférence divisée en un nombre quel-
conque N de parties égales; et soient affectés arbitrairement , et
sans suivre aucun ordre déterminé , aux poinis de division , les
numéros 1, 2, 3 ,....N—v, N, Soient joints ensuite , par des
cordes , le point v au point 2 , celui-ci au point 3, le point 3
au poini 4, el ainsi de suite , jusgu'é ce qu'on soit parvenu &
joindre le point N—i1 au point N et enfin ce dernier au point 1.
On formera ainst une sorte de polygoéne de N cotés , inscrit au
cercle, et qui, en géncéral , ne sera point régulier , puisque ses cotés
pousront élre inéfgauz , el que méme quelques-uns d’entre eux pourront
en couper un ou plusieurs des autres. Si lon varie ensuite , de
toutes les maniéres possibles , le numeérotage des points de division ,
et guon réplte, pour chaque numérotage , la méme opération q-e
ci-dessus | on formera un nombre déterminé de polygénes inscrits,
.parmi lesquels plusieurs ne différeront les uns des autres que par
leur situation.

Tome V. 25
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On propose de détermincr, en général, quel sera le nombre des
polygdnes réellement différens ?

Solution. Soit' N le nombre des c¢6tés du polygbne que, dans les
exemples qui suivront, nous supposerons constamment =6,

1. Soit, en général , suivant a notation de M. Kramp, m!=1,2,3,..m:
on aura _ainsi

1l=1, 2!=2, 3!=6 , 4{!=24, 5!=120, 6!=720,
On sait dailleurs que o!=1.

Employons le symbole 72? & désigner combien il y a de nom-
bres premiers 3 m dans la suite 1, 2, 3,....;2; on aura ainsi
1?=1, 2?=1, 3?=2, 4?=2, 5?=4 , 6?=2. Il est connu
que si m=a“bhc¥...., a,b,c,.... étant des nombres premiers

Q=1 be=1 =1

inégaux, on aura, en général , m? =m el cesen
a c

D,, D,, D;,....D, sont les diviseurs de NN, N compris ; de’,

sorte que, s’ils sont disposés par ordre de grandeur, on a D, =1,

D,,:N. Représentant donc, en général , par & un de ces diviseurs,
d sera susceptible de 7 valeurs. \

Pour N=6, on a D=1, D,=2, D,=3, D,=6, et y=4;
les valeurs de &, dans ce cas, seront donc 1, 2, 3, 6.

dy,d,, dy,....d sont les diviseurs de d, d non compris, de
maniére que leur nombre est ¢, et que, s'ils sont disposés par ordre
de grandeur, on a d,=1.

Pour d=x, oma............:=o0,

2, di=1...0.0...8=1,
3, di=1.........5=1,
6, di=1,d,=2,d,=3 :=3 .

2. P,PFA,.....P/, TV, A/,..... sont des signes de fonctions
dont on va -successivement expliquer la nature.
La définition de la fonction P, quel que soit &, est

Pd=(-1;- >"<-§)?dz

Ainsi pour N=6 ,
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PD,=P1=6'.6%1!=6.2. 1= 12,
PD,=P2=3*.3?2!'=qg.2. 2 = 36,
PD,=P3=023.2231=8.1. 6 = 48

PD =P6=16.1?6! =1 .1 .720=720

3. I est une fonction dont la définition est

2N \d=t, N d—=1
1 1 =N — V7 [ — |? 14
Pour  impaic Td=n (22 )5 ( 3 )( —)r
e rae N (2 VEO NN (2N,
Pour d pair I'd= - ( = )-\ y )Kz)
Ainsi, pour N=6,
I'D,=I'i=6.12°.6%0!=6.1.2.1= 12,
i, =r:=3. 6'.3?1!=3.6.2.1= 36,
o, =I'3=6. 4*.2?i!=6.4.1.1= 24,
Fire=re=3. 2°.1?3!=3.8.1.6=144 .

4. A est une fonction dont la délinition est
.v. Nd=Td ;

Pour & jmpair . . ... . .
2
E—lmpair ..... Ad:%\fL ,
Pour 4 pair et ira
N . rd
= Ppair...... ANd= — Tk
Ainsi, pour N=6 ,
AD,=A1=T1=12,
.36
AD _-Az---:f?:zts =12 ,
AD;=A3=T3 =24,
AD,=A6="" =2 5

5 P/, IV, A’ sont des fonctions dont la définition générale est
¥d=Fd—(¥d,+4¥'d,+F'd 4..+¥4d) ;

do} lon voit que, ponr calculer ces sortes de fonctions , il faut

" aller continuellement des plus petits nombres aux plus grands, ev
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observant que, ¥ nayant pas de diviseurs plus petits que 1ui,_on
a simplement F/D,=F/1=F1.

Comme , par le n.° précédent, on a, dans le cas de d impair,
Ad=T'd, et comme dailleurs un nombre impair ne peut avoir
que des diviseurs impairs, il s’ensuit qu'on peut, quand & est im-
pair , écrire plus simplement A/d=T"d.

A laide de ces attentions on trouvera, pour N=6,

P/'D,=P1=Pi=12,
P/'D,=P2=P2—P/1=36—12=24 ,

P/'D, =P3=P3—P/1=/48—12=36 ,

YD, =P6=P6—(P/ 14P/24P'3)=720~(12424+436)=648.
D, =I"1=T1=12 ,
I"D,=I"2=T2—~IT"1=36—12=24 ;

D, =TI"3=I3~I"1=2{=—12=12 ,

/D, =I"6=C6—{"14T"24T"3)= 14 fmm(12=24~=12)=0q6 .
AD,=AN1=I"1=12 ,
AND,=AN2=A2—N1=12e=m12=0 ,
AND,=N3=T"3=12,

ND =N6=A6—(N 14N 24A3)=48—(1240%12)=24.

6. Des fonctions IV et A/ on tire les fonctions », ¢ , ¢ dela
maniére suivante :

vomZra,

Pour & pair o = 4 Ad
- 2 >

v d=old4o'd
Pour 4 impair » d=dI"d ;

# et // ne semploient pas dans ce second cas.

Ainsi, pour N=6,
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oD, =c1=["1=12 ,
eD,=c2=0/2~s""2=24,
oD, =c3=31"3=36 ,

¢/ D =o' 6=3T"6=288
oD, =s6=0¢64+"6=360.
o/'D =6 =3A6= 72
7. Les fonctions P/ et + conduiront aux fonctions ¢, en faisant
t =P/ —,.
Ainsi , pour N=6,
D, =t1=P/1—¢1= 12— 12= O,
¢D, =t2=Pla—s2= 24— 24= o,
tD, =t3=P/3—e3= 36— 36= o,
tD,=6=P/6—r6=64/8=~360=288 .
8. Ce qui préctde forme , quand N est impair , la premidre
partie du procédé ; mais, quand N est pair, il faut, de plus , effectuer

les déterminations suivantes

. or
pair L= — ,
N . 2
— =M . puis pour M
2 IV]emay

impair Lz=me—— ;
2

a=2"M.M!, Q=2"M?L!,
Ainsi, pour N=6,

6 Jem1
M=e=3, L=—=1
2 2

e=2%3.3'=144 , Q=23.3*.1!l=7y2:

‘On fera ensuite
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=0, §=0 .,
h=o , A=Q,

Pour M pair Pour M impair
g'=/N—Q , g/=N,
;1/26'//N R b/:lf”N"—Q .

M étant impair, dans notre exemple, on a
g=o0, k=72, g/'=7/6=288, A'=d6—72=0.
On posera ensuite , quel que soit M,
e=a—( , o=fN—2«.

Ainsi, dans notre exemple,

w=144—72=72 , a=tb—2.72=288—144=144 .

9. Voici maintenant la seconde partie du procédé On y- emploie
les fonctions %, =/, =/, B qui, comme les précédentes ont pour
sujet les différentes valeurs do & , avec cette restriction que =

sapplique aux valeurs impaires seulement , 3/ et =/ aux valeurs
& , elle sapplique

paires , en exceptant la valeur d=N. Quant a

a toutes les valeurs de 4. mais en exceptant encore =N, si N est pair.

Les valeurs de ces diverses fonctions sont les suivantes:.
od old td

Sd=——- d= — Sd = —— HSd= — .
2dN ° aN '~ 2N > 777 4aN

2

Ainsi, dans notre exemple,

2D,:21=%=:—:=1 5 2’1),:2’2:222.6:-3%:1;
2D,=23:%:—2§=x; 2”0,:2”22.;,—:?5: ;(:4-:0‘
— — $
:'D':;[:ZE{SZZOZ:O’
ED'ZE:z:Zz:G: %:o,
&5
ED,-:EB:ZEE:—;)::O-

10, Quant N est pair, on doit en outre faire
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_ 8 G=o, ‘
Pour M pair SN Pour M impair A
H—o ; H= 5\72

b
Ainsi, dans notre exemple, od M=3, on a
G=o0, H=%3=>2.

On fera ensuite , quel que soit M,

g » @ »
/ — H/"""—— (el U i e —
6/= 2Nz’ TN A =d4/= alNs @ 4N 7

ce qui donne, dans notre exemple,
==, H=~=o0, A=d4/=2=1, Q=%2=1
11. Enfin , en nommant IT le nombre des polygones qui sout
Iobjet du probléme , ce nombre, dans le cas de N impair, sera
la somme de toutes les fonctions 2, =/, =/, E; et, dans le cas
de N pair , il sera cette somme , augmentée de celle des nombres
G, H, G,H,6 A, A7, Q.
Aiosi puisque , dans notre exemple , N==6, nombre pair, on aura
D=3 1423~} Z/24= N 2mfuE 1 |- E 223w jn G Hod= G/ Hlpm Al e AV 2
=14 14140 orfrodrofrofafrftof1a4-1
ou M=12.
On aura donc douze polygénes essentiellement différens. Si l'on
veut les construire , il suffira de construire douze cercles, de diviser
chacun d’'eux en six parties égales , de numéroter ensuite consé-
cativement les points de division ainsi qu’il suit
123456 , 135264 , 124635,
126453 , 126543 , 124653 ,
125634 , 125364 , 126354,
125436 , 124365, 123645,
et joindre enfin les points de division par des cordes , suivant les
conditions prescrites dans ’énoncé du probléme.
12. En faisant successivement diverses suppositions pour N , et
appliquant & chacune d’elles les méthodes qui viennent d’étre déve-
loppées , on trouve,
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Pour N=1 , II= 0

2, 1,
3, 1,
4 2,
5‘ 4|
6, 12,
7 s 39;
8, 202 ,
9, 1219 ,
10 , 9468 ,
11, 83435 ,
12, 836017 ,

® e« o ¢ o s 8 s s 0 .

—

QUESTIONS PROPOSEES.
Problémes doptique.

L SUR une table rectangulaire donnée doivent étre placées deux
lumidres élevées au-dessus de cette table d’'une méme quantité donnée,
et qui doivent y étre tellement posées que leurs projections tombent
sur la droite qui joint les milicux des deux petits cotes du rec-
tangle. On demande de quelle maniére ces deux lumiéres doivent
étre placées; 1.° pour que le point le moins éclairé du bord de
la table le soit le plus possible ? 2.° pour que le point le plus
éclairé du bord de la table le soit le moins possible?

II. Résoudre le méme probléme pour une table elliptique ; les
deux lumiéres devant répondre au grand axe?

I1L. Résoudre le méme probléme pour quatre lumicres et une
table rectangulaire; les lumiéres pouvant repondre 1.° aux droites
qui joignent les milieux des cotés opposés ; 2.° aux deux diagonales ?
. 1V. Résoudre eunfin le méme probléme pour une table elliptique ;
. Jes quatre lumieres pouvant répondre 1.° aux deux axes ; 2.° aux
deux diametres conjugués égaux ?
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e =

PIIILOSOPHIE MATHEMATIQUE.

Reflexions sur la nouvelle théorie des imaginaires ;
suivies dune application & la démonstration dun
theoréme d'analise ;

Par M. ArcaND.

(o % Vo Mo Vo o Vo Vo 4

LA nouvelle théorie des imaginaires, dont'il a déji été plusieurs
fois question dans ce recueil (*), a deux objets distincts et indé-
pendans. Elle tend premiérement a donner une signification intel-
ligible & des expressions qu’on était forcé d’admettre dans I'analise,
mais qu’on n’avait pas cru jusqu’ici pouvoir rapporter A aucune
quantité connue et évaluable. Elle offre , en second lieu , une
méthode de calcul, ou, si Pon veut, une notation d’un genre paf-
ticulier, qui emploie des signes géométriques, concuremment avec
les signes algébriques ordinaires. Sous ces deux points de vue, elle
donne lieu aux deux questions suivantes : Est-il rigoureusement
démontré , dans la nouvelle théorie , que /=1 exprime une ligne
perpendiculaire aux lignes prises pour =1 et —1 ? La notation
des lignes dirigées peut-elle, dans quelque cas , fournir des démons-
trations et solutions préférables , sous le rapport de la simplicité’,
de la bri¢vetd, etc. , & celles qu’elles paraissent destinées a remplacer?

Quant au premier point, il est et sera pcut-étre toujours sujet
3 discussion , tant qu'on cherchera A établir la signification de /=1

(*) Voyez les pages 61, 133, 222 et 364 du 4.m¢ volume.
Jo D.. G..

Jom. ¥, n.° V1L, 1.° jansier 1815.. 26
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par des conséquences d’analogic avec les notions regues sur les
quantités positives et négatives , et sur leur proportion entre elles.
On a discuté ct on discute encore sur les quantités négatives ;
plus forte raison pourra-t-on élever des objections contre les nou-
velles notions des imaginaires.

Mais ," il n’y aura plus de difficultd si , comme I'a fait M. Frangais
( Annales , tom. IV, pag. 62 ), on établit , comme définition , ce
qu'on entend par le rapport de grandeur et de position entre deux
lignes. En effet, la relation entre deux lignes données de grandeur
et de direction se congoit avec toute la précision géométrique né-
cessaire. Qu’on nomme cette relation rapport,ou qu'on lui donne
tel nom qu'on voudra, on pourra toujours en faire I'objet de rai-
sonnemens rigoureux , et en tirer les conséquences de géométrie et
d’analise dont nous avons, M. Frangais et moi, donné quelques
exemples. La seule question qui reste est donc de savoir s'il est
bien permis de désigner cette relation par les mots rapport ou
proportion , qui ont déja, dans I'analise , une acception determinée
et immuable. Or, cela est effectivement permis, puisque, dans la
nouvelle acception, on ne fait qu'gjouter 4 l'ancienne, sans d’ail-
leurs y rien changer. On généralise celle-ci de maniére que l'acception
commune est, pour ainsi dire, un cas particulier de la nouvelle.
Il ne sagit donc pas de chercher ici une démonsiration.

Clest ainsi , par exemple, que le premier analiste qui a dit que

l -
g"'= — a di donner cette équation , non comme un ?hdoréme
[/

démontré ou i démontrer , mais comme une définition des puis-
sances & exposans négatifs, La seule chose qu’il eut a faire voir
était qu’en adoptant cette delinition , on ne faisait que généraliser
la definition des puissances 3 exposans positifs , les seules connues
jusque-la. 1l en est de méme des puissances 4 exposans fractionnaires,

irrationnels ou imaginaires. On a dit ( dnnales , tem. 1V , pag. 2317)

que Euler avait démontré que (\/:T)\,-x=e—7'. Le mot dé-
montrer peut étre exact, en tant qu'on regarde cette équation comme
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tirde de Déquation. ¢=7T=Cos.x~+1y/ =1Sin.z, d'olt elle dérive fa-
cilement ; mais il ne le serait pas relativement A cette dernicre;
car, pour démontrer qu'une certaine expression a telle valeur,
il faut premiérement avoir défini cette expression ; or, existe-t-il
des puissances & exposans imaginaires une definition antérieure A
ce quon appelle la démonstration d’Euler ? c’est ce qui ne parait
pas. Lorsque Euler a cherché & ramener Dexpression a*=7 i des
quantités évaluables, il a di naturellement considérer le théordme

z z? ).
=14} - == -}-... antérieurement prouvé, pour toutes les valeursréel-
1.2

. —_— . o= = =
les de z. En faisant z=zy/ 7 , il a trouvé £* o2V —3
1 2

d’otr il a d& conclure, non que ex¥=T=Cos z-+/—;Sin.z , mais
que, si 'on définissait P’expression =7 en disant qu’elle représente
une quantité égale 3 Cos.a~+{/=iSin.z, les puissanees & exposans
réels et les puissances 4 exposans imaginaires se trouveraient liées par
une loi commune. Ce n'est donc Ja encoré qu'une extension de
principes et non la démonstration d’'un thecreme.

Clest aussi par une extension des principes que jai ¢té conduit
a3 regarder (¢/ =1 Y=7 comme exprimant la perpendiculaire sur le
plan 11, /=i Les deux résultats se contredisent, et assurément
je n’ai garde de prétendre faire prévaloir le mien ; j'ai voulu seulemes 8
faire observer que MM. Servois et Frangais P’ont attaqné par des’
considérations qui, au fond , sont de la méme nature que cclles’
sur lesquelles je m’étais appuyé pour I’établir.

Mais, si la perpendiculaire dont il s’agit ne peut pas étre exprimée
par (y/ =i)”~1, quelle sera donc son expression ? ou, pour mieux
dire , peut-on trouver une expression telle que, si on I'adopte pour
représenter cette perpendiculaire , toutes les lignes tirées dans une
directinn quelconque ( lesquelles auraient alors leur expression ) soient
lices par une loi commune, comme cela a deja lieu relativement
a toute ligne tirde dans les plans 1, ¢y 7 ? Clest 12 uvre
question qui semble devoir exciter la curiosité des géomeétres , da
moins de ceux d'entre eux qui admettent la neuvelle théorie.
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. Je reviens au premier point de discussion ; et jobserve que la
question , si {/—1 exprime ou non une perpendiculaire sur =1,
porte uniquement sur la signification du mot ramport ; car, toutle
monde est d’accord d’entendre par cette expression une quantité

— Y

telle que =1 : /1 ::y/=1: —1, ou que les rapports YE =
soient égaux. Ainsi l'objection qu’a faite M. Servois ( Annales ;
tom. 1V, pag. 228 ), contre la démonstration du premier théoréme
de M. Frangais, en disant « qu’il n’est pas prouvé que +ay/ =%
» soit moyen de position entre -2 et —a » , revient a dire que
le sens du mot rapport ne renferme rien de relatif 3 la position.
Cela est vrai, dans l'acception commune ; et encore Ppourrait-on
dire que, dans I'idée du rapport de deux quantités de signes dif-
férens , il faut bien fairc entrer celle de ces signes. Dans la nou-
velle acception , la direction concourt avec la grandeur pour former
le rapport. C’est donc, comme l'on voit, une simple question de
mots , qui se décide par la définition précise qu’a donnée M.
Francais , et qui nest d'ailleurs qu’une extension de la définition
ordinaire.

Le second point de discussion est plus important. Sans doute
il n’est aucune vérité accessible par l’emploi de la notation des
lignes dirigées , 4 laquelle on ne puisse aussi parvenir par la marche
ordinaire ; mais y parviendra-t-on plus ou moins facilement par
une méthode que par l'autre ? la question mérite, ce me semble,
d’étre examinée. Clest 3 linfluence des méthodes et des notations
sur la marche progressive de la science que les modernes doivent
leur grande supériorité sur les aunciens , en [fait de connaissances’
mathématiques ; ainsi, quand il se présente une idée nouvelle en
ce genre , on peut du moins examiner §’il n’y a point de partia
en tirer. M. Servois est le scul qui , depuis la publication de la
nouvelle théorie , ait manifesté son opinion & ce snjet, et cette
opinion n’est pas en faveur de U'emploi des /rgnes dirigées comme
notation. L’usage des formales analitiques lui scmble plus simple
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2t plus explditif ( Annales , tom. IV, pag. 230 ). Je réclamerai,
a I'égard de ma méthode , un examen plus particulier. J'observe qu’elle
est nouvelle , et que les opérations mentales qu’elle exige , quoique
fort simples, peuvent bien demander quelque habitude, pour étre
exdcutées avec la célérité que donme la pratique dans les opérations’
ordinaires -de l'algébre. Quelques-uns des théorémes que j’ai démon-
trés me semblent ’é¢tre plus facilement que par la marche pure~
ment analitique. C’est peut-étre une illusion d’auteur , et je n’in-
sisterai pas la-dessus ; mais je solliciterai, avec plus, de confiance,.
la préférence , en. faveur des lignes dirigées , pour la démonstration:
du théoréme d’algebre. « Tout polyndéme z"-4-az"'~f-... est .dé-
» composable en facteurs du premier ou du second degré ». Je
crois devoir revenir sur cette démonstration , tant pour résoudre
I'objection qu’y a faite M. Servois ( Annales , tom. 1V , pag. 231)
que pour montrer , avec plus de détail , comment elle découle.
facilement des nouveaux principes. L’importance et la difficulté de
ce théoréme qui a exercéd la sagacité des géometres du premier
ordre ; excuseront , je le présume , aux yeux des lecteurs, quelques
répétitions de ce qui a été dit sur ce méme sujet.

Les démonstrations qu’on a données de ce théortme semblent-
pouvoir étre rangées sous deux classes.

Les unes se fondent sur certains principes métaphysiques relatifs
aux fonctions et aux renversemens d’équations : principes sans doute
vrais en eux-mémes , mais qui ne sont point susceptibles d'une dé-
monstration rigoureusement dite, Ce sont des espéces d’axiomes ,
dont la vérité ne peut étre bien sentie qu’autant quon posséde déji
Vesprit du calcul algébriqué; tandis que , pour reconnaitre la vérité
d'un théoréme , il suffit de posséder les principes de ce calcul ;
c’est-a-dire, d’en connaitre les définitions et notations. De 1a vient
que les démonstrations de ce genre ont été fréquemment attaquées.
Le recueil auquel je confie ces réflexions en offre, en particulier,
plusieurs exemples ; et les discussions qui ont eulicu & ce sujet sont’
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un indice que les raisonnemens qu’elles ont pour objet ne sont pas
tout A fait sans reproches.

Dans d’autres démonstrations, on attaque de front la proposition
3 établir, en faisant voir qu'il existe toujours au moins une quan-
tité , de la forme a--by/ =7 , qui , prise pour z , rend nul le
polynéme proposé , ou bien qu'on peut résoudre ce polynéme en
facteurs' réels du premier ou du second degré. Clest la marche qu’a
suivi Lagrange. Ce grand géométre a montré que les raisonnemens
faits avant lui, sur ce méme sujet, par d’Alembert, Evler, Fon-
cenex , etc., étaient incomplets ( Résolut. des équat. numériq. notes 1X
et X ). Les uns employaient d»s développemens en séries, es autres
des équations subsidiaires ; mais ils n’avaient pas prouvé , ce qui était
pourtant nécessaire, que les coefliciens de ces équations et de ces
series €taient toujours réels. Ces géometres admetient implicitement
le principe « que ., si une «uestion dans laquelle il s'agit de dé-.
» terminer une inconnuc peut étre resclue de # manieres, clle doit
» conduire & une cquation du degré n. » Lagrange lui-meéme le
regarde comme légitime, quoiqu’il n’en fasse pas usage dans les
les démonstrations citées. Or, ne pourrail-on pas dire encore que
ce principe , estrémement probable sans doute, n’est pas démontré,
et rentre dans la classe de ces sortes d’aviomes dont il était ques~.
tion tout & P'heure. Il semble sur-tout que, comme on ne peut en
acquérir la persuasion que par une pratique assez longue dans la
science , ce n'est pas‘ le licu de I'employer , quaod il s’agit d’une
proposition qui, dans l'ordre thécrique , est une des premiéres qui
se présentent & démontrer dans I'analise. Cette observation , au reste,
n’a nullement pour objet délever une chicane , qui serait aussi
déplacée qu'inutile, sur des eoneeptions auxquelles tous les geo=
metres doivent le tribut de leur estime. Elle tend seulement 4 faire
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