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PURES ET . 7 TOUÉES.

ASTRONOMIE.

Essai dune nouçelle solution des principaux problèmes
d'astronomie ;

Par M. K R A M P , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

( Troisième mémoire, ) (*}

68. JL/ANS notre second mémoire nous avons entrepris la solution
du problème de déterminer les élémens de l'orbite d'un corps *
planétaire ou cométaire , moyennant un nombre suffisant d'obser-

Voyez les pages 161 et zSy du iv,e volume de ce recueil,

Tom, V, n»Q / , e r , \^ juillet 1814,



2 PROBLÈMES
varions. On sait que ces élémens sont au nombre de six : la lon-
gitude du nœud, l'inclinaison de l'orbite , la position de la ligne
des apsides , le grand axe , l'excentricité et l'instant du passage par
Tune des dtux apsides. En continuant de désigner par * l'angle
que constitue l'excentricité de l'orbe terrestre , chacune de ces six in-
connues pourra être représentée par une série telle que A+Bh+Cx2>-\-t..;
elle sera très-convergente > étant disposée selon les puissances de x
que Ton sait être une fraction angulaire égale à un soixantième à peu
près. Le premier terme A sera ce que devient cette série dans le
cas de A = O : c'est celui d'un mouvement uniforme et circulaire.
Ce premier terme constitue proprement la difficulté du problème ;
les coefficiens des autres se trouveront en suivant une marche ana-
logue à celle de nos problèmes précédens } et qui sera le résultat
de quelques différentiations successives.

69. Dans le problème VII qui a précédé immédiatement celui-ci ,
nous avons supposé la position du plan de Porbite connue ; deux,
observations suffisaient alors pour trouver , dans tous les cas ? les
valeurs générales et rigoureuses des quatre inconnues qu'il restait à
déterminer. Si cette position n'est pas connue d'avance , il y aura
deux inconnues de plus , ce qui rend le problème beaucoup plus
difficile. Il sera convenable alors de s'occuper d'une méthode générale
qui puisse nous conduire à la détermination du plan de l'orbite ,
indépendamment des autres inconnues. Les essais que nous avons
faits pour y parvenir seront l'objet du problème qui suit.

70. PROBLÈME VI1L Trois observations d'une planète ou
d'une comète étant données , déterminer les deux élémens desquels
dépend la position du plan de son orbite : savoir la longitude du
nœud , et l'angle que fait le plan de cet orbite avec celui de
Vècliptique ?

71. Solution. Les notations que nous avons employées dans les

trois problèmes précédens seront conservées. Soient donc
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|...l'angle ESN; longitude du nœud,
/3...l'angle MNL ; inclinaison de l'orbite.
s... l'angle ASN , que fait la ligne des nœuds avec celle des apsides.
b..,1e demi-grand axe de l'orbite de la planète ou de la comète.
&,..l'excentricité de l'orbite ; ce qui donne

^Gos.^., .pour le demi-petit axe ;
bSin.p... pour la distance du foyer au centre.

#.».le demi-grand axe de l'orbite de la terre supposé circulaire.
/?...le temps périodique de la terre, dont le mouvement est supposé

uniforme,
^...le temps périodique de l'astre.
Le premier de ces termes est connu. Quant à l'autre , le tliéorème

Kèplèrien p% : qz = a5:b* nous fait voir qu'il dépend du demi-grand
axe h , et que les deux quantités b et q ne forment qu'une seule
inconnue.

72. Aux cinq élémens désignés par les lettres p , $ 9 1 , p > b
il faut en ajouter un sixième : c'est celui qui doit fixer le
moment du passage de la comète par l'aphélie de son orbite. Nous
supposerons donc que 9 dans cet instant , la terre était au point B
de la sienne. La sixième inconnue sera donc

/*... l'angle NSB que faisait la ligne des nœuds avec le rayon
recteur de la terre SB 9 à l'instant du passage de l'astre par l'aphélie
de son orbite. (*)

^3. Nous continuerons d'employer la lettre 9 pour désigner YAno~
malie craie , et la lettre * pour exprimer Y Anomalie excentrique*
La longitude de la terre , supposée au point T de, son orbite , ou
l'angle EST , sera désignée par ê ; ce qui rend l'angle NST=:0—^
et l'angle BST=0—$—/*. Et comme l'astre emploie le même temps
pour parcourir Tare AM de son orbite , et pour décrire ainsi l'ano-

(*) On suppose toujours qtion a sous les jeux la figure du Deuxième mémoire.
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malle vraie p , & laquelle répondent l'excentrique % et le rayon vec-
teur S M = r 9 on aura les équations qui suivent :

r = I—Sin.^Cos.^

Cos.^Sin.p

Cos,*~
Cos 0—-Sin.t

— •

74. En éliminant de toutes ces formules l'anomalie Traie ç , et
en conservant la seule anomalie excentrique *E, à. laquelle nous
aurons soin de tout réduire 9 les égalités précédentes seront trans-
formées dans celles qui suivent :

te qui jdonne

7 5. En abaissant du point M qui est le lieu de l'astre dans son
orbite , la perpendiculaire MN sur la ligne des nœuds , les deux
coordonnées de ce point seront exprimées comme il suit :

SN =

ce qui donne
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e t , en développant moyennant les formules du n*°

Nous continuerons d'employer les lettres P et Q , dont nous avons
déjà reconnu la nécessité indispensable pour la solution générale
du problème.

76. Les mêmes quantités P et Q peuvent encore être autrement
exprimées , par la longitude et la latitude géocentriques au moment
de l'observation. En continuant de désigner

Par ^f... la longitude géocentrîque „

Par B. •. la latitude géocentrique ;

nous avons fait voir (55) que

bP C

Egalant entre elles les deux expressions équivalentes de P 5 aussi
bien que celles de Q , on aura donc deux équations renfermant
d'un côté l'excentricité ^ 5 l'anomalie excentrique » et l'angle $ que
fait la ligne des nœuds avec celle des apsides , et de l'autre le

rapport — des axes et les deux angles £ et j , desquels dépend la

position du plan de Torbite.
77. Ainsi donc, pour résoudre complètement le problème pro-

posé , nous avons besoin de trois observations. Elles nous fourniront
immédiatement les trois longitudes géocentriques A , A* 5 An , les
trois latitudes géocentriques B , B/

 9 B" P et les trois angles 19 &, */f »
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dont les différences seront supposées proportionnelles aux temps»
Outre les six inconnues déjà mentionnées (71 , 7 2 ) , nous aurons
encore les trois anomalies excentriques * , *f, *;/ qu'il faudra déter-
miner également. Le nombre des inconnues étant ainsi porté à neuf,
il faudra , pour résoudre le problème , neuf équations indépendantes
entre elles. Sise de ces équations seront fournies en égalant entre
elles les deux expressions équivalentes de P , celles de P/ celles
de P" , et de même celles de Q , de Qf 9 de Q". On aura de
plus les trois équations (73) y savoir :

— (0

Ici on pourra * par une simple soustraction, éliminer l'inconnue n
on obtiendra ainsi les deux équations qui suivent :

Nous remarquerons qu'en divisant Tune de ces deux dernières
équations par l'autre , on aura Péquation symétrique qui suit, et

qui est débarrassée du rapport — , savoir ;

0 = é (*/ —»") 4. ê Sin.^Sin^ — Sin.^}

.^Sin.^—-Sin.* )

in-KSin.» —Sin.^ ) .

78* En nous arrêtant aux deux équations obtenues en éliminant
l'angle « , le problème sera réduit à huit équations, renfermant un
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pareil nombre d'Inconnues. Pour le réduire ultérieurement aux deux
seules Inconnues p et $, lesquelles déterminent la position du plan
de l'orbite , II faudrait donc éliminer successivement les six autres
Inconnues , savoir : les trois anomalies excentriques * , *', %lf \ l'angle 1 ;

l'excentricité ^ 5 et le rapport —- ou — ; or , cette élimination est

analitîquement Impossible s tant que l'on conservera la forme trans-
cendante des deux dernières équations , renfermant à la fols les
anomalies excentriques », ^ , * / / , et les sinus de ces mêmes ano-
malies. Reste donc à exprimer les unes par les autres. De pareilles
expressions > au défaut d'être rigoureuses y pourront au moins être
approchées ; et ces approximations seront applicables à notre pro-
blème , pour peu que les observations qu'on emploîra ne soient
pas très-éloignées Tune de l'autre,

79. PREMIÈRE APPROXIMATION. Vangîe est égal à son sinus.
Cela donne ^ — Sin.^ , en désignant l'angle par ^. On a rigoureu-
sement 4 '~Sin.^+iSin. 3^ /+^Sin. 54'+. . . . ; Terreur est donc e'gale
à iSin.34'+^Sin.5^-J-f*'* En prenant Ici pour + la différence da
nos deux anomalies excentriques ou »;—», l'équation

~ (V_*) = *'—

prendra la forme

et sera devenue entièrement algébrique. "La supposition a^r=Sin.^ nô
peut être employée sans erreur sensible qu'autant que l'observation
moyenne ne diffère des deux autres que de l'intervalle de quelques
jours ; cependant 9 elle sert de base aux méthodes de du Séjour
et à'Olbers , comme nous le verrons bientôt ; et , dans tous le§
cas 9 elle fournit une première approximation fort utile,
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80. SECONDE APPROXIMATION. L'angle + est égal à——— • II

n'en diffère effectivement que de ^"••••Î ce qui fait

0,0002, pour ^^zSo0 ,

0,0018, pour 4T=;45O ,

0,0080 , pour ^ = 6 o ° •

Pour un angle moindre que 3o° , la différence est insensible. Ce
théorème se trouve dans l'ouvrage de Snellius , nommé Cyclomêtricus
( Lugd. Batav. 1621 ) ; mais des auteurs très-instruits , en le faisant
remonter plus haut de près de deux siècles , en attribuent l'honneur
au. célèbre et savant cardinal Nicolaus Gusanus. Cette formule
fournit , pour la solution du problème , une approximation plus
exacte, mais elle conduit à des équations plus compliquées.

81. TROISIÈME \APPROXIMATION. L'angle ' ï est égal à

*—nr> * t-Siru^. Il n'en diffère effectivement que de — •+-.•.*, ce*

qui fait
O,000005 ,»**pOUr ^rrSo^ ,

o,oooioo ?...pour 4/=45° ,
03,000800, . . . pour ^ = 6 0 * »

En faisant usage de cette troisième formule , on pourra employer
des observations de quelques mois d'intervalle.

82. Dionis du Séjour > dans son Quatorzième mémoire analitique
( Acad. des sciences , année 1779 > pag* i55 ) y a substitué au
secteur curviligne de l'astre , qui est proportionnel au temps 9 l'aire
rectiiigne comprise entre les rayons vecteurs et la corde corres-
pondante* On a , pour le premier ?

~ (f—é) = ̂ —

«t on aurait pour l'autre?
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L (y—é) = Sin.(*'— *)+Sin.,<Siïi.*'—Sîn.*) .

Cet astronome suppose donc tacitement que la différence entre les
deux anomalies excentriques est assez petite pour être sensiblement
confondue avec son sinus. Le théorème auquel cette supposition Fa
conduit , et qui lui a servi pour déterminer la position du plan
de l'orbite , est identique avec celui qu'Olbers a publié , dans ua
traité allemand en 1797 , et qui revient encore au principe employé
par du Séjour. Cependant cet astronome ne parait pas en avoir
tiré tout le parti qu'il pouvait, parce que 9 dans son traite , il s'est
renfermé dans le seul cas particulier , et peu probable, du mou-
vement parabolique. (*)

83. Comme nous avons

(*) En poussant ces approximations plus loin , j'ai trouvé

X Y • t ——•

V. r^r =
I5O+I5OCOS

* Sin.^

Les erreurs de ces formules approximatives sont respectivement égales à la neuvième 9

la onzième , la treizième et la quinzième puissances de l'angle •vf'. En calculant,
d'après ces mêmes formules , Parc de 6o°5 on le trouve

d'après IV , . . . j | | \ /3 : erreur 0*00004855 ?

d'après V , . . . ^ ^/3 : erreur OJOOOOO36I4665 ,

d*après VI , . . . |^y£ ^ 3 : erreur 0,000000219670 f

d'après VII,»,.~i!^>/3\erreur 0,000000018060 »
Torn. V*
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IP =r

nous en déduirons

ce qui devient , en réduisant

PQ/—p/^=Cos.^Sin.(»/—*)+Cos.A*Sîn.^(Sin,*/—Sîn.*)

De plus , nous avons (77)

ce qui devient 9 en remplaçant l'angle x/—» par son sinus

II en résulte

On aura de même

H
P
H

d'où l'on tire

La dernière peut être appliquée, sans erreur sensible , à tout angle moindre que 900.
Ces approximations , qu'il serait facile de pousser plus loin , peuvent , dans

certains cas , dispenser de l'usage des tables , et donner lieu à d'autres applications
utiles. Elles donnent en particulier des approximations faciles du nombre w, et c'est

î -̂
même dans celte vue que Snellius s'était occupé de la formule —t—-=.
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e'qtf ation essentielle , et remarquable par sa simplicité.
84. Divisant les trois premières de ces équations Tune par l'autre,

on aura

p / Q//_- p/i Q? yi—

Ainsi donc , tant que les observations seront assez rapprochées pour
que les angles K/—» ?

 Yj/—*' puissent être confondus avec leurs sinus ,
sans erreur sensible , les trois différences des produits PQ'—P/Ç ,
P!Q!i—P"Q>, PQti—P^Q, seront proportionnelles aux intervalles
des temps. Il en résulte deux équations entièrement algébriques %

qui ne renferment d'autres inconnues que les deux seuls angles fi 9

^ , desquels dépend la position du plan de l'orbite ? et dont nous
pourrons tirer , avec facilité , les expressions litérales de ces inconnues.

85, Procédons d'abord au développement de ces trois différences

de produits, Faisons— = 772; on aura
a

mP =

mP/ =
Cos.£Cos.(0'—£)-\

Cos./3+Sin,

Cos./3-{-Sin

' " C o s ' " + S i n
s . '

.Sin.(*—A)Cot.B *

t-Sin. /3Sin. ( ̂ —^40 Cot.B'

i3Sin.(̂ — A')Cot.B* *

4-Sin./3Sin.(^—A»)Coi.B"

/3Sin,(£--A")Cot,Bf/

lS\ni(&—^)Cot.JB 7

n/J/f—..})
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86. Pour présenter ces développemens sous la forma la plus

simple j nous ferons d'abord

de manière que ^=/f+/ / ; ces trois lettres désigneront ainsi les in-
tervalles des temps. De plus , nous désignerons les trois dénomi-
nateurs par D , D;, Dff ; de manière que

D =Cos.i3+Sin.ÉSin.(^^ )Co\.B ,

D/ = Cos.j8+Sin.jsSîn.>—A')Cot.B' ,

Enfin nous emploîrons les lettres M 9 N , 0 pour exprimer les
trois différences de produit qui suivent :

M- Sin.(é «—À )Sin.f/ —^)Cot.5—Sin {?

JV=Sin.(« —^ :Sin///—^Cot.S—Sin.(^—A»)S\n.(è—

0 =Sin//—^)Sin.(^—^Cos.5—Sin.(^

87» En faisant usage de ces notations 9 on aura f de la manière
suivante , les développemens qu'on demandait 9 savoir :

D D' (P Qf —P' Q) = Cos.fiS\it.t+MS\n.fi ,

D D^P Ç''— ^ / / Ç)

88, Reste donc simplement à substituer les expressions que nous
venons d'obtenir dans les égalités (84) , savoir

h{P Q> ~P/ Q ) = / (PQ"~~

En mettant ici à la place de D , D/
 f D/;, leurs valeurs respec-

tives $ tirées de (86) ; ensuite à la place de PQf—P'Q, P'Q"—P"Qf t
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—P"Q , leurs valeurs données (87) , on aura les deux équations

du second degré qui suivent :

—.<4> )Cot.i3' Sin./sCos./j

(hM— t

ô = (//Sin./'—/'Sin./^Cos.^

inî*
/Sin.(^—A )Cot.5 Sin.pCos,

(hO—

in.(^—A )Coi.B Sin.

89. Ici je remarquerai d'abord que 9 tant qu'il n'y aura qu'un inter-*
talle de cinq à six jours entre la première et la seconde, de même
qu'entre la seconde et la troisième observations, la valeur numérique
des deux différences de produits >^Sin./—-/SinJi, ^Sin.^—t'SinJi
sera au-dessous d'un dix millième , et qu'ainsi il sera permis de
supprimer les premiers termes de nos équations , sans erreur sen-
sible. Divisant alors par Sin.jS , elles seront rabaissées au premier
degré , et donneront, pour Tang#/3 les deux expressions équivalentes
qui suivent

—tN

~Tang./s = —

go. Essayons de donner aux numérateurs et aux dénominateurs



^H PROBLEMES
de ces deux fractions la forme connue de binôme, savoir JF
Dans cette vue , nous ferons ? pour abréger ?

a — Cos.J Cot.B 5 ^ = S i n , ^ Cot.fi

h-Co$.Af Cot.fi/ , 3'=Sin.^/' Cot.fi'

SuU f

/ = Sin.(^ — A )Cot.B Cos.^ —Sin.(^ —

= Sin8(^ — A )Cot.

91. Enfin, proposons la dernière notation que la nature du pro-
blème exige , et qui parait nécessaire pour présenter l'inconnue sous
la forme la plus simple ; savoir ,

iy=ko—t'n—a'hS\n.t'+b't'Sm.&

F'=b't'n—a'/io 5

G/~bt/n-{~b/t/n/—

ïV^bt'n'—aho' .

92. Les deux expressions (89) deviendront alors
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DCos.£—ES'mJ

D'Cos.*—E'Sin.*

g3. Reste donc , pour trouver l'angle inconnu $, à égaler ensemble
ces deux fractions qui , par la nature du problème , doivent être
équivalentes. On aura l'équation du troisième degré qui suit :

~(DG'—D'G+EF'—E'F)Tmg.

g4» La tangente de l'angle inconnu ^ , duquel dépend la déter-
mination de tous les autres élémens est donc la racine d'une éqyation
assez simple du troisième degré ; et la nature du problème nous
permet de présumer qu'elle est la seule réelle. Remarquons que
nous ne nous sommes permis aucune supposition sur la nature de
l'orbite, le grand système de la gravitation universelle nous apprenant
uniquement que c'est une section conique. Eu appliquant , da$s
chaque cas particulier , les valeurs numériques données par les obser-
vations aux expressions littérales de nos formules , nous verrons
si c'est une parabole, une ellipse ou bien une hyperbole. Dispeuç^s
de l'emploi ordinaire et très-pénible des faussas positions , nous
devons remarquer que notre solution 9 de même que toutes celles
de l'algèbre élémentaire, conduit directement au but qu'on s'était
proposé. En supposant à la terre un mouvement circulaire et uni-
forme, pendant l'intervalle qui sépare les observations, nous avons fait
disparaître de nos formules la Jigne a , demi-grand axe de l'orbe

(*) En ne supppsant point nulles les deux différences hSin>t-tSm.h et hSmM<-t'Sin,h >
l'équation finale qui donne Tang,^ est beaucoup plus compliquée \ mais elle ne
s'élève néanmoins qu'au quatrième degré.
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terrestre ; cette supposition ne peut donc influer sur les résultats
que sous le simple rapport de l'inégalité de nos trois rayons vec*.
teurs : inégalité insensible pendant l'intervalle de temps que nous
avons supposé. Il nous reste donc à enseigner la petite correction
qu'il faut employer , pour faire coïncider l'orbite calculée par notre
méthode avec des observations plus éloignées ; et ce sera l'objet
d'un autre mémoire.

95. Ayant trouvé l'angle £, on trouvera l'Inclinaison de l'orbite,
ou l'angle /3 , moyennant l'une ou l'autre des deux formules (92),
dont l'identité ^pourra servir d'ailleurs à vérifier le calcul. Connais-
sant ainsi les deux angles desquels dépend la position de l'orbite ,
rien n'empêchera de procéder à l'évaluation numérique des fractions
P f P1, P/f > Q> Q? > Q?' > moyennant les formules (85) ; on verra
si les trois différences de produits PQf—P;Ç , P'Q"—P/rQ/ ,
PQ11—P/;Q sont entre elles dans la raison des intervalles des temps f

et si la troisième est égale à la somme des deux autres. Cette
condition étant remplie , on sera sûr qu'aucune erreur n'a pu se
glisser dans l'évaluation numérique des formules générales.

96. Toutefois , rappelons-nous que les formules (85) ne nous
font pas trouver les quantités P , P; , Pft, Q, Q' , Q" , mais

_ . bP bP* bP» bQ bQ> bQ" _ r b
les produits — , — , . , . ; la traction — ,

r a a a a a a a

qui désigne le rapport entre les demi-grands axes des deux or-
bites , étant elle-même une des inconnues du problème. Pour éviter

toute erreur > nous désignerons par la lettre n, la fraction — ? e|

nous ferons
P ~nWL , Q ~nN , R—nO ,

P'^nW , Q!~

Comme nous avons déjà employé la lettre R poar désigner la
racine
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racine quarrée de P2-+-Ç2 , nous désignerons de même par O celle
de Jt/2-J~iV2 ; il en sera de même , lorsque ces lettres seront affectées
d'un ou de deux accens.

97. La position du plan étant déterminée , \e nombre des in-
connues sera réduit à six : savoir,

Les trois anomalies excentriques * , *;
 y

 K/
 y

L'excentricité p ,

L'angle que fait la ligne des
apsides avec la ligne des nœuds e ,

Le rapport des deux axes n .

Pour les déterminer , nous aurons les huit équations qui suivent

(1) nM =Cos sSin.^-4-Cos eCos.»

(2) nM/ =Cos sSin.^-l-Cos.eCos.*^

(3) «iM//=Cos.sSin^-J-Cos.6Cos.»//

,(4) nN =Sin,gSin.^-|-Siri.8Cos.>6 -j-Cos.gCos

(5) nN; z^

(6) /2N//

(7) (̂ / —ê })/-£—*> —x H-Sin.^Sin.^ —Sin.* ) ,

(8) (# / /_^ v / ^3 = « / /_^4-Sin .^Sin .^— Sin.*') .

Six équations suffisent pour trouver les inconnues qui nous restent.
On poerra employer les équations (1 , 2 , 4 » 5 , 7) , en employant
la première et la seconde observations ; ou bien les équations
( 2 , 3 , 5 , 6 • 8) , si l'on veut faire usage de la seconde et de
la troisième. Les deux solutions doivent donner le même résultat,
et serviront à vérifier l'une par l'autre.

98. En choisissant les deux premières observations qui nous
fournissent les six quantités connues M., M/

 7 N? iY / , ̂  $r
7 nous

aurons les cinq équations qui suivent :
. F. 3
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nM =Cos.sSin.^-4-Cos.eCos.* —Sin.

nN = Sin

99. L'élimination de l'angle g nous fournît le moyen de réduire
à /r#z,s les quatre premières de ces équations. Nous avons déjà
observé, dans le précédent mémoire , que

R — Bf ou n{0—O^) =

PQ'-P'Q ou \̂MiV^—

RR'—PP>~QQf ou /

de même que , dans le problème précédent, nous avons employé
les lettres <p et ty pour désigner la demi-somme et la demi-diffé-
rence des deux anomalies excentriques , tellement que ^ r r^ - J -^ y

et *=f—^. Moyennant cette notation , la dernière équation prendra
la forme qui suit : v.

100. Pour présenter nos quatre équations sous la forme la plus
simple dont elles peuvent être susceptibles , nous emploîrons les
quatre lettres a , b 9 c , d 9 de la manière qui suit : soient

elles deviendront alors

72 ^ =
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IOT. Pour tirer de ces quatre équations les valeurs numériques
de nos quatre inconnues, dans des cas quelconques 9 et sans aucua
emploi de moyens approximatifs , il faut employer les fausses po-
sitions. Aiasi , supposant une \aleur quelconque à l'angle <p , la

première et la troisième équations nous fourniront— = Tang./e4Sin.^ ;
c

ce qui fera connaître l'excentricité p. Divisant de même le quarré
de la troisième par la seconde , on aura

OU

d'où Ton tirera facilement l'angle A* > moyennant un nouvel angle,

c
tel que Tai)gx=- , et qui fournira Sin^—Â)=Sin,

On aura ensuite

et les quatre inconnues étant ainsi supposées connues, on en fera
l'éprouve sur la quatrième équation ; on aura soin de noter Terreur
qui en sera résultée , et qui conduira à- une seconde position plus
approchante que l'autre.

iO2. On pourra cependant se passer de l'emploi des faussas po-
sitions , dans le cas où les observations sont assez rapprochées pour
q u e , sans erreur sensible, on puisse faire Sin.4'=:4' , et C o s . ^ ^ i .
Nos quatre équations deviendront alors

n a= Sin /*Sin (pSin.^ ,
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Ii sera tr^s-facile, dans cette supposition , d'exprimer les angles^;
f, + , en » , de la manière suivante :

c—nb)

c—nb)

et substituant, on aura pour n , qui forme la principale Inconnue
du problème , l'expression très-simple qui suit :

» =

io3. Cette expression nous fait connaître, sur-le-champ, les
trois cas de l'ellipse 9 de la parabole et de l'hyperbole. Tant qu'on
aura 2cd2^>(a2^cz)b , le grand axe de l'orbite^ sera positif , ce
qui indique Y ellipse. Dans le cas opposé , de 2£^2 < (02+£a)#, Taxe,
devenu négatif\ indiquera Y hyperbole. On reconnaîtra la parabole
à ce qu'on aura alors 2cd2 = (a*-\-c*)b. Le cercle se reconnaîtra sur-
le-champ à l'égalité des trois rayons vecteurs, qui sont proportionnels
aux radicaux R 5 R' > R" 5 ou bien 0 , 0/ , 0;/. On aura , dans ce
dernier cas, Sin.^:ro, et Cos.^=i ; ce qui donne

n ^ ^

ce qui fournira, entre les trois quantités b , c, d, Téquation de
condition d*~(b2+c*)c*.
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104. Substituant , dans les expressions littérales de ^ , <p , -^, la

valeur de n qu'on vient de trouver , et posant, pour abréger,
fô2Hh^3==^a

 9 on aura les formules qui suivent:

d*

f

h*

io5. Ayant ainsi trouvé les anomalies excentriques » , */ moyennant

Jt/=<p+-^ et « = ^ — ^ , <HI passera aux anomalies vraies <p et tf f

moyennant les équations connues

? Cos.<p= : f
l-f-Sm.^Gos.»

et par conséquent

Cos./wSîn.»
Tang.<p=

ou bien

Tang. ip =

106. Connaissant l'anomalie vraie p , on aura, pour déterminer
Vangle g que fait la ligne des apsides avec celle des nœuds , les
équations suivantes , parmi lesquelles on peut choisir,

PSin.p PCos.<p
Cos.^Sin.»

Sin f , + )= QSin'<p

107. Reste don€ à déterminer le seul angle >? qui fixe l'instant
du passage par le périhélie , et qui sera la seule inconnue de Tune
quelconque des trois équations
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ou

108. Dans cet exposé , on a pris pouF exemple la première et
la seconde observation , qui ont conduit aux anomalies excentriques
» et * / , et de là aux anomalies vraies p et 9'. On pouvait em-
ployer de même la seconde et la troisième observations , par le
moyen desquelles on aurait déterminé les anomalies excentriques nf
et n!f 5 lesquelles auraient conduit ensuite aux anomalies vraies 9 et &•

Les valeurs de l'excentricité ^ , du rapport des deux axes — , de

l'angle s , aussi bien que de l'angle * , qui détermine l'instant du
passage par le périhélie , doivent être les mômes , d'après les deux
procédés ? avec une petite différence , commune à toutes les mé-
thodes proposées jusqu'ici , et qui vient de ce que nous avons supposé
les rayons vecteurs de l'orbite terrestre sensiblement égaux , pendant
l'intervalle qui sépare trois observations ; q*ie de plus nous avons
supposé les différences angulaires x/—* , **fI—*f sensiblement égales
à leurs sinus respectifs ; et qu'enfin nous avons supposé ASin./—/Sin.A
et ^Sin.^—t^'uuh l'une et l'autre évanouissantes, Nous nous réser-
Tons d'enseigner, dans un mémoire suivant , les moyens les plus
expéditifs que fournit l'analise , pour faire disparaître ce reste d'er-
reur ; e t , en même temps , nous essayerons de faire usage d'obser-
vations moins rapprochées entre elles. Nous terminerons le mémoire
actuel , en appliquant notre méthode à quelques exemples ; e t , dans
cette vue , nous choisirons la seconde comète que Méchain à découverte
en I ^ B I , et qu'il a observée pendant les mois d^octobre, de no-
vembre et de décembre. \\ en a calculé l'orbite , supposée Parabolique,
d'après la méthode de Laplaee ; il a trouvé ainsi
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Le lien du nœud ascendant 7 ou l'angle ^=77.° 22/

L'inclinaison de l'orbite , ou l'angle £=27.° i2 ; 4n •
Nous ferons l'évaluation de ces mêmes angles , d'après notre

méthode, laquelle nous apprendra , en même temps , si l'orbite est
Parabolique , Elliptique ou bien Hyperbolique*

109. Des cinq observations de Méchain , faites en novembre > nous
choisirons celles du 14, du 19 et du 25 novembre. Elles sont toutes
rapportées à la même heure du jour 9 savoir à 8 heures 29/ 44//>
temps moyen de Paris : ce qui fournit, pour les neuf élémens de
notre analise , les valeurs angulaires qui suivent :

Longitudes de la terre ? vue du soleil , ou angles ô, ê/ è//,

ê =52.° 53/ 5o" ,

* =57.° 57/ 4." ,

o//=64.° 1' 32» ;

t i= 5.° 3/ 14//=!

donc < /' = 6.° 4f 28" = 2

^ = n . ° *i* 42 / /—4O O^2 / / •
Longitudes géocentriques de la comète , ou angles A% Àf

 9 A
lt \

A =307.° i4 / 45;/

A ' -306.° 5 i ' 2&1

4\* 3*]»

donc

ê —A =—254.° 20' 55" ,

Ô / _ ^ / = — 2 4 8 , ° 54; ^2" ,,

0"—^"=—242.° 4o^ 5" •

Latitudes géocentriques de la comète 9 ou angles B , B;, Bu $

S =55.° i7 / 9// f
£/ =3 9 . ° i4 ; 48" ,

J5" = 29.%58/ 43" .

n o . On en tire la liste des logarithmes qui suivent.

Logarithmes des S in. et Cos. des longitud. Gèocent.

Log.Sin.z4 =9,9009382 9 Log.Cos.^ =9,7819249 t

= 9,9031620 , Log.Cos.^7 =9,7780232 ,

1959040889 , Log.Cos«^"si:9j776363g «

Les sinus des longitudes sont négatifs.
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Log. des Sin. et Cos. des Long, de la terre, pue du soleil»

Log.Sin.' =9>9°776°5 t Log.Cos.* =9,7804949 ,
Log-Siny =9,9281887 . Log.Cos.^ =9,7248022 ,

Log.Sin.^= 9,9537546 ; Leg.Cos.*"=9,64i4446 •

Log* des trois différences Ang. t , t/, h et de leur Sin.

Log./ =8,9455o3i , Log.Sin./ =8,9449^97 ,

,^ =9^2883075 ; Log.Sln.£ =9,2855735 .

U en résulte
^Sîn.^ — t Sin,^=o,oooo853 ,

^Sin.//—^Sin^ = 0,0000907 ;

On peut donc regarder ces deux différences comme évanouissantes,

Log* des Cot. des trois Lat. Gêoc. B , W , B" , et des prod.
Sin*(ô—A)Cot.B , . . . , ;

Log.CotJ? =9,8406070 * Log.Sin.(0 —A }CotJ? =9,824197^ ;

Log.Cot.fi' =0,0878113 , Log.Sin.(ô/---^')CotJB' =0,0676892 ,

Log.Got.5^=o,238935i f Log.Sin.(i//—^OCotfi//=oî 1876247 *

Log. des prod. désignés par a , b , c , a ^ b ' , c ' ; (90)

Log.«=:9,62253i9 , Log.^=9,7415452 ,

Log,b=z9,8658345 f Log ̂ =9^9909733 ,

, Log.r = 0,0162990 ; Log^=9,i43o24o ,

Les produits af
 y bf, cf sont négatifs.

Valeurs des quantités m % n , o , m; , n ; , o' et de leurs logarithmes»

m~—o53454t6o f 77^=—0,3349471 ,

n =—0,6285206 , n'ï=-~o,6368338 ,

Log;
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=9,5383425 , Log/72/=9,5249762 ,

Log.72 =9,7983194 , Log /2/=9,8O4O26J2 ,

Log.o =9,4449948 ; Log. o'=z9,5010711 .

Valeurs des coejicicns V , E , F , G , H , D^, F , F , G ^ f f ; (91}

Z)=—0,0259450 , Z?/=+°?oo38i55 ,

?=-4-o,0747633 , G/=-\~O,O

iî/=—0,0287557 .

Valeurs numériques des produits nécessaires au calcul des coef-
jiciens (93) ;

Ils ont été tous multipliés par la neuvième puissance de dix.

'=—919000 , £7^=—499636 ,

+ i 7 i 5 9 8 , ^^=+553497 .

DG'——153991 ; E&=— 83721 ,

D/H=+ 99751 5

Différences de ces produits , servant à l'équation finale en

, EF'—JF^is—io55ia8 ,

'-D(H=+ 5 i65 9 r , EH'~EfH~-\- 1 2 1 7 7 ,

^ 4
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Équation finale jfmsant connaître

0=1090598

—i494378Tang. »

t a seule racine réelle de cette équation fait connaître la tan-
gente de l'angle $ \ il sera égal à gi . ° i g ' 37 / / : c'est la longitude
du nœud.

De là on passera a l'inclinaison de l'orbite ou l'angle /s 5 les deux
formules (92) s'accordent à donner

ë~iS2.°ii' 56" .

180.0—0= 27.°48/ 4{/ ,

112. Mettons à côté les résultats de la Méthode de LAPLACE,
pour laquelle on a employé les observations , beaucoup plus éloi-
gnées des g octobre , 1 7 novembre et 20 décembre , en admettant
toutefois la supposition peu rigoureuse 5 et même très-peu probable
du mouvement parabjlique. Elle a donné

>=7 7 .o 22. 55" ,

l8o.°— /3 = 27.° 12' 4 " . (*)

(*) Voyez Astronomie de Biot , \2.€ édit. , tom, III , additions , pag. 2.02.
Dans sa, Cométographie , tom. H , pag. 108 , Pingre, d'après Méchain, avait donné

&=']>]? 22! 5 2" ,

180.0—£=27.° iZf 8^ .
J. D. G.
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ï i 3 . Ayant déterminé ainsi la position de l'orbite, îl faudra passer

à l'évaluation des quantités P , P ' , P" 9 Q, Q', Q" 9 toutes mul-

tipliées par le facteur inconnu — , ou divisées par n 9 en faisant

Ui»aj;e des formules (76), En supprimant ce facteur qui est commun
à tous , on aura

P = 0 . 54934i5 , Q = 0 . 8942916 ,

P/ =0 . 3727041 , Q/ = 0 . 995i8o3 f

P'/zzo* 1634109 ; Ç / /==o • 1060116 1

d'où il résulte
PQ'—P'Q = 0 . 2133547 ,

p Ç / / _ p / / Ç = o .4614411 .

Le rapport des deux premières différences s'écarte très-peu du rapport
des temps ; de plus , la somme des deux premières est presque
rigoureusement égale à la troisième dont elle ne diffère que de 0,001 5,
Ou a employé ici les valeurs angulaires trouvées (1 10) , déduites des
observations de i4» 19 et 22 novembre. En se servant de celles
des 17 , 19 et 22 ? on aurait eu

p Qf _ p / Q = 0 . o58855o ,

P'Ç//—P"Q'z=zo . o883i5o ,

p Ç//_ptiQl - o . 147O228 .

La différence entre la troisième et la somme des deux autres n'est
que Je o,oooi5.

114- Reste donc à déterminer le rapport n ou —des axes, l'ex-

centricité p, l'angle s de la ligne des apsides ayee celle des nœuds,
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et l'instant du passage au périhélie. Je me bornerai ici aux deux
premiers. On trouve

70871

20760

Cette valeur négative de n , et conséquemment de h , indique une
branche hyperbolique. Elle explique et justifie la différence entre
nos résultats et ceux de Laplace 9 déduits de l'hypothèse parabolique*
Le cosinus de p deviendra donc imaginaire. Sin.^ sera une quan-
tité réelle , mais plus grande que l'unité. On trouve en effet
Log.Sin.f6=o,66og274 \ donc

in.^=5 . 58o652 ,

Ï—Sin,^=3* 58o652 ;

on aura donc

Distance périhélie ou •— ( i+Sin 8 ^==i

Distance aphélie ou -—(1— Sin.^)$=i?

La première , obtenue par la méthode de Laplace ;

est 0^9609951 ;

Difïérence avec la nôtre 0,087369 :

c'est tin douzième du demi-grand axe de l'orbe terrestre*



DIAMETRES CONJUGUÉS DE L'ELLIPSOÏDE. 2C

GÉOMÉTRIE ANALITIQUE.
Propriétés des diamètres conjugues de Vellipsoïde ;

Par M. GERGONNE,

a ? h , c lés trois demi-diamètres principaux d'un' ellip-
soïde , pris pour axe des coordonnées. Soient ensuite (x , y , z) ,
(# ' , y ' , z;) 9 {xN> y/;

f z") les extrémités de trois autres demi-
diamètres quelconques; on aura

(0

Si Ton veut, en outre ~ que les nouveaux demi-diamSfreS soient
conjugués les uns aux autres ? il faudra exprimer de plus que le plan
tangent à l'extrémité de chacun est, à la fois , parallèle à chacun
des deux autres j ce qui donnera encore

ZfZfl

a* h*

= 0

= 0

En posant ? pouy abréger ,
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(3)

ces équations deviendront

~ o

(4) o ,

-j-r

(5)

O r , il est connu , par la théorie de la transformation des coor-
données dans l'espace (*) , que , lorsqu'on a de telies relations
entre des quantités , on a aussi entre elles les relations suivantes

(6)

(7)

XY'Z"—XZ'Y"-\-ZXiY"~YXlZi'^rYZ'X"-ZY'X>'-1. (8)

En remettant , dans ces relations, les valeurs des symboles qu'elles

(*) Voyez entre autres le tome i.er du Traité de cilcul différentiel et de calcul
intégral de M. Lacroix; page 4^° de la i. re édition 7 et page 5a8 déjà a#e
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renferment, données par les équations (3) , et chassant les déno-
minateurs, il tiendra

(9)

—z»y)* = h

1 o)

( 1 1 )

Si maintenant on désigne par a1
y b' 5 cf les trois demi-diamètres

conjugués dont il s'agit, et par a ? £ , y les angles qu'ils forment
deux à deux respectivement ; il est aisé de voir qu'on aura

(12)

(y Z
f —z

ylf—yf xlfj = 13)

=abc\Ji—Co

Comparant alors la somme des équations (12) à la somme des
équations (9), puis la somme des équations (i3) à celle des équa-
tions (10) et enfin l'équation (14) à l'équation ( n ) , il viendra
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Cos.2/3—Go

Ces relations sont connues (*) ; mais je ne sache pas qu'on y soit
parvenu jusqu'ici d'une manière si simple et si directe.

Le même procédé, qui peut être facilement appliqué à toutes le$
surfaces du second ordre qui ont un centre , s'applique avec la plus
grande facilité aux courbes planes du même ordre.

QUESTIONS PROPOSÉES.
Problème d'architecture.

AJA. base et la montée d'une anse de panier à 2?2-}-Ï centres étant
donnés; construire l'anse de telle sorte que son, périmètre ou que
l'aire comprise entre elle et sa base soit un maximum ou un minimum ?

Il est entendu que la courbure aux naissances doit être perpen-
diculaire sur la base.

Problèmes de Géométrie.

I. Trois cercles tracés sur un même plan , étant tels que chacun
d'eux touche les deux autres ; trouver le rayon du cercle qui passe
par leurs trois points de contact , en fonction des rayons de ces
trois cercles ?

II. Quatre sphères étant tellement situées que chacune d'elles
touche à la fois les trois autres ; démontrer que leurs points de contact
deux à deux sont tous six sur une même sphère, et déterminer le
rayon de cette sphère en fonction des rayons des sphères données ?

O Vojez la page n3 du 3*e volume de ce recueil,
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MATHÉMATIQUES APPLIQUÉES.

EXPÉRIENCES sur la flexibilité , la force et l'élasticité
des bois , avec des applications auoc constructions 9

en général , et spécialement à la construction des
vaisseaux y

Faites à l'arsenal de la marine française à Coreyre en 1811 ;

Par CH. DUPIN ? capitaine en premier au corps du

génie maritime.

PREMIER MÉMOIRE f

Présenté à la première classe de l'institut de France , le 12
d'avril I 8 Ï 3 . (*)

en parcourant un arsenal de marine que GalIIefe , frappé des
grands travaux qui s'offraient à ses regards , conçut l'idée d'appliquer
les sciences mathématiques à la détermination de la forée des bois.

C'est donc sur nos chantiers et dans nos ateliers qu'est née Tap-»
plication du calcul aux travaux des arts* 11 semble en effet que
ce soit là qu'elle ait dû naître ; car , nulle part des ouvrages plus
ïmportans ne sont exéeutés par de plus grands moyens , avec une
précision plus rigoureuse 5 et dans un moindre espace de temps.

(*) Sur le rapport de MM. Carnet, Pronj et Sané rapporteur, ce mémoire
a obtenu l'approbation de la classe le ig âe juillet I 8 I 3 . Il doit paraître dans
le cabïer du journal de l'école polytechnique qui est actuellement sous presse*-

Torn. V* n*° II, i.er août 1814 5
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Après que Galilée eut ouvert ainsi la carrière, elle fut parcourue

par les savans les plus illustres ; dès qu'il y eut un premier germe
de théorie dans les arts 9 la théorie forma des ingénieurs. C'est alors
que la partie expérimentale a fait des progrès plus sensibles, et
qu'on a remplacé plus généralement l'hypothèse et le système par
des données fruits de l'expérience , et par des calculs rigoureux fondés
seulement sur ces données.

Sans retracer ici l'histoire des travaux dont nous venons de parler,
nous nous contenterons de citer la savante préface d'un traité sur
la résistance des solides ? qu'on doit à l'ingénieur Girard qui, lui-
même , a fait de nombreuses et belles expériences sur la force des bois.

Jusqu'ici 9 Ton a cherché principalement à déterminer la résistance
dont les bois sont susceptibles avant leur rupture , soit en les rom-
pant perpendiculairement à leurs fibres , soit en les affaissant sous
des poids qui agissaient dans le sens même de ces fibres.

Sans doute , il est nécessaire de connaître ce point extrême 5 cette
limite de la force des bois , afin d'employer toujours des matériaux
doués d'une force plus grande que tous les efforts auxquels ils
devront résister, dans les constructions et dans les machines où ils
entreront comme élémens ; mais il faut toujours se tenir assez loin
de cette limite ; et, lorsqu'on veut faire des travaux durables , il
faut s'en tenir bien plus loin encore ; car le temps diminue inces-
samment la force des bois , et mille causes concourent à détériorer
leurs qualités primitives.

Il est un autre genre de recherches non moins utile , plus utile
peut-être , et qui cependant me semble avoir été le moins suivi ;
c'est de déterminer les résistances comparées des bois , lorsqu'on
les soumet à des forces capables d'altérer très-peu leur figure, et
de trouver , si je puis m'exprimer ainsi , leur résistance virtuelle.

Lorsque nous construisons nos édifices , nos machines , nos vais-
seaux , nous supposons que les pièces d'une dimension considérable,
et d'ailleurs peu chargées ? conservent la figure qu'un dessin ri-
goureux leur a donnée : il n'en est rien. Dans la nature , les moindres
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forces ont leurs effets certains , quoique par fois trop petits pour
tomber sous nos sens ; et souvent ces effets, insensibles individuel-
lement , s'accumulent au point de produire les résultats les plus
marqués et les plus graves : nous n'en citerons qu'un seul exemple.

Le plus grand édifice que nous puissions construire en charpente
est sans contredit un vaisseau , tel qu'il le faut aujourd'hui pour
entrer en ligne dans nos escadres. Lorsqu'un vaisseau du premier
rang est établi sur les chantiers , ses dernières alonges s'élèvent au-
dessus du faîte des plus hautes maisons. Il doit loger mille hommes
et au-delà , renfermer leurs vivres pour six mois , et toute l'ar-
tillerie d'une place forte de seconde classe. Aussi la solidité de sa
construction répond-elle à l'immensité des objets qu'il doit contenir.
Nous avons nommé murailles ses parois en charpente ; et leur
épaisseur est en effet au moins égale à celle des murs extérieurs
de nos maisons ordinaires. Les liaisons , les supports en tous genres
y sont combinés avec intelligence ; le cuivre , le fer y sont pro-
digués pour maintenir l'ensemble de toutes les parties. Qui douterait
qu'avec des moyens si puissans et si bien disposés , la forme du
vaisseau ne se trouvât assurée d'une manière invariable ? cependant
cela n'est pas. A peine est-il lancé sur la mer, que, d'une part l'inégale
réaction produite dans un sens par les poids accumulés vers les
extrémités , et de Pautre la répulsion de l'eau , concentrée vers le
milieu , courbent à la fois toute cette grande machine , et font
former à ses parties des arcs qui , sur une corde de soixante mètres f

ont présenté quelquefois un demi-mètre de flèche , et au-delà.
Une telle déformation est énorme sans doute ; elle change puis-

samment la stabilité du vaisseau ; elle influe sur toutes ses autres
qualités. Cependant, si nous voulions savoir quelle serait la flèche
d'un arc ayant deux mètres de corde, et ayant d'ailleurs la cour-
bure que nous venons d'indiquer, nous trouverions que le nouvel
arc devrait avoir pour flèche moins de deux dixièmes de millimètres f

c'est-à-dire , une grandeur presque insensible , sur une longueur au
moins égale à notre plus haute stature.
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C'est donc cette altération à peine sensible des bois que je me

suis premièrement préposé d'apprécier. C'est leur résistance à tout
changement d'état , au moment où cette résistance commence à
faire sentir ses » effets 7 c'est-à-dire , lorsque les corps altèrent infi-
niment peu leur forme , en vertu des poids qu'ils supportent, que
jVi eu en vue d'évaluer.

On verra peut-être avec quelque intérêt que les lois et les ano-
malies observées dans les expériences faites en grand sur la rupture
des bois, c'est-à-dire , au point où leur déformation est la plus
grande possible, ne sont que la conséquence nécessaire des variations
extrêmement petites que leurs moindres flexions offrent à l'observateur.
C'est à peu près ainsi que les fonctions intégrales dérivent des lois
qui coordonnent les élémens différentiels de ces mêmes fonctions,
et peuvent en être rigouretisement déduites.

Je vais maintenant passer au détail de mes expériences* Sur un
grand établi , j'ai fait fixer deux supports horizontaux et de niveau,
distants entre eux de deux mètres ; j'ai fait donner la forme d'un
parallélipipède à des morceaux de chêne , de cyprès, de hêtre et
de sapin ou de pin , seuls bois dont je pouvais disposer.

Ces parallélipipèdes 9 ayant un peu plus de deux mètres > étaient
posés tour à tour sur les supports , dont ils mesuraient la plu»
courte distance 7 en dépassant très-peu de chaque côté ; assez seule-
ment pour que la pièce , en prenant de la courbure , ne se ra-
courcît pas au point de tomber entre les appuis.

J'ai chargé ces parallélipipèdes , que j'appellerai simplement de»
règles , par des poids placés à égale distance entre les deux supports ;
alors chaque règle a pris une certaine courbure.

Premièrement ? il est évident que la règle a du se plier suivant
une courbe plane verticale. Secondement , la courbe formée par
chaque arête de la règle est symétrique à droite et à gauche, par
rapport au plan vertical mené par le point milieu où la charge est
appliquée , et perpendiculairement au plan même de la flexion.

[Voilà la courbe dont nous avons voulu déterminer les élé-
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mens ; nous avons toujours considéré la face concave de la règle
pliée.

Or , dans les nombreuses expériences que nous avons faites , nous
avons constamment observé que , quand les poids sont peu consi-
dérables , les flèches des arcs formés par la règle pliée sont pro-
portionnelles à ces poids mêmes.

Mais , quand les flèches sont très-petites , par rapport à la corde
constante de plusieurs arcs , la courbure de ces arcs est directement
proportionnelle aux flèches correspondantes : de là j'ai conclu ce
premier théorème , auquel avait déjà conduit la théorie.

v La flexion des bois produite par des poids très-petits est pro-
portionnelle à ces poids ; en mesurant cette flexion par la flèche
de leur arc, c'est-à-dire, par rabaissement ou la descension du
point milieu de la règle.

Donc aussi ? lorsqu'une même pièce de bois est chargée entre les
mêmes appuis par des poids différons , ces poids sont réciproquement
proportionnels au rayon de courbure de la règle à son point mi-
lieu , et la courbure elle-même est par conséquent proportionnelle
à ces poids très-petits.

Après avoir ainsi déterminé le rapport de la force virtuelle de la
flexion avec le poids qui produit cette flexion , il convenait de voir si la
même loi se conserve , en chargeant le corps par des poids plus
considérables ; ou, si elle ne se conserve pas , quelle est l'altération
que cette loi supporte : c'est ce que j'ai fait , avec beaucoup de
soin et de patience , en employant un double décimètre de KuTSCH ,
parfaitement gradué. L'habitude de prendre des mesures, que j'ai
depuis long-temps été forcé d'acquérir , me fait assurer que toutes
celles que j'ai consignées dans mon travail ne diffèrent par de deux
dixièmes d'un millimètre de leur vraie valeur. Cette quantité, toute
faible qu'elle est , a paru cependant trop forte encore aux yeux
d'un géomètre (*) qui porte dans la physique une précision inconnue

(*) L'auteur de l1Astronomie physique*
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jusqu'Ici. Maïs observons qu'il est, dans chaque genre de recherches,
un degré d'exactitude qu'il serait aussi impossible que superflu de
vouloir outre-passer. C'est ainsi qu'il m'aurait fallu des ébénistes pour
polir mes bois , si j'avais voulu , par exemple , que leurs faces
fussent planes , à moins d'un demi-dixième ou même d'un dixième
de millimètre près. Observons encore que deux dixièmes de milli-
mètre équivalent à l'ancienne mesure appelée point : telle est la
limite de mes erreurs.

J'ai pris les quatre espèces de bois les plus généralement em-
ployées dans les arts : ce sont celles que j'ai déjà nommées. Le
chêne et le sapin étaient coupés depuis peut-être vingt-cinq ans;
puisqu'ils provenaient du vaisseau russe le Michaël, que j'ai dé-
moli en 1810 , et qui avait peut-être alors vingt ans de construction.

Aussi ces bois sont-ils loin d'avoir la force qui leur appartient.
Mais , comme II s'agit ici de déterminer les lois qui régissent la
force et Pélastieité des bois , par des rapports généraux et indé-
pendans de la vigueur absolue des fibres ligneuses, et même indé-
pendans du genre et de l'espèce des arbres , on voit que ces bois
étaient aussi propres à remplir notre objet que s'ils eussent été de
fraîche coupée. Au reste, le cyprès et le hêtre n'avaient guère plus
d'un an d'abattage , et leur élasticité nous a présenté les mêmes
propriétés que les bois que nous venons de dire avoir vingt-cinq
ans de coupe : ce qui démontre notre assertion jusqu'à l'évidence.

On a travaillé quatre parallélépipèdes ayant , comme nous l'avons
dit > quelque chose de plus que deux mètres de longueur ; on leur
a donné trois centimètres d'équarrissage ; ensuite on a placé succes-
sivement chaque règle sur les appuis , et on l'a chargée , sur son
milieu par 4 kilogrammes , puis par 8 , 12, 16 5 . . . , jusqu'à 28
kilogrammes. A notre travail sont joints des tableaux qui font
connaître i.° les flèches de l'arc pris par les règles ; 2.° les diffé-
rences premières de ces flèches.

En jetant les yeux sur ces tableaux, on voit d'abord que 8 kilo-
grammes font plier la règle du double seulement de la flexion
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produite par 4 kilogrammes, ce qui nous fait voir qu'au-dessous
de ces deux charges les différences secondes deviennent trop petites
pour être appréciées, Ce résultat concorde avec ceux d'où nous
avons déduit le premier théorème.

Je remarque ensuite que , dans les tableaux de tous les bois f

du chêne , du cyprès , du hêtre et du sapin , les différences pre-
mières des flèches vont toujours en augmentant.

Elles offrent, il est vrai , quelques légères anomalies ; mais, Immé-
diatement après une différence trop faible , s'en présente une en
sens contraire qui la surpasse beaucoup plus ; et, comme les erreurs
ne portent que sur des dixièmes de millimètres , je ne doute pas
qu'en employant des bois travaillés avec la dernière perfection ,
et en recourant à des moyens d'observer que je n'avais pas à ma
disposition , on n'obtienne des résultats plus exacts , et tels que les
différences secondes soient constantes 5 ou du moins n'éprouvent que
des variations tout à fait insensibles.

Ainsi , nous pouvons regarder les différences secondes des di-
mensions comme constantes, lorsque les poids qui chargent une
même pièce croissent par différences premières constantes , et cette
loi si simple est pourtant tellement concordante avec l'expérience
que , si nous formons , pour le chêne par exemple , le développement
régulier des termes qu'elle exprime , les résultats ne différeront
jamais des observations de quatre dixièmes de millimètre; et la flexion
totale à laquelle nous arriverons est cependant de 4o6 de ces dixièmes»
II est facile d'expliquer cette légère anomalie.

La règle , en se courbant, forme un arc plus long que sa corde;
il faut donc , lorsqu'elle se plie , qu'elle glisse plus ou moins sur
ses appuis. Mais ces appuis étaient de simples arêtes en bois f tra-
vaillé proprement , à la vérité ? mais sans beaucoup d'art ; les
alongemens ont dû se faire , non d'une manière continue , mais
par de petits ressauts plus ou moins sensibles. Qu'on se rappelle
toujours que nous étions dans un pays où tout manquait, jusqu'à
des balances assez précises pour pousser l'exactitude au-delà de«
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dix millièmes J sî même elles y arrivaient 7 et Ton verra qu'aucune
des petites différences de l'observation et du calcul n'est au-delà
de la limite totale de la justesse des opérations.

JNTous avons voulu voir ensuite le résultat des mêmes formules
pour la charge , très-eonsidérable, de 80 kilogrammes. En com-
parant nos résultats avec ceux obtenus pour une charge de 4 kilo-
grammes seulement , nous avons reconnu que , proportion gardée,
le cyprès a le moins de flèche sous la grande charge ? ensuite le
chêne , puis le sapin , enfin le hêtre.

De là nous tirerons cette conséquence remarquable ; Quand même
la résistance virtuelle d'une espèce de lois serait très-forte ; si
les différences secondes étaient considérables pour cette espèce > avec
une charge assez grande 7 ce bois finirait par plier plus que celui
d'une autre espèce, dont la résistance nrtuelle à la flexion serait
cependant plus petite.

On sait qne le hêtre est éminemment élastique ; le tourneur en
fait Tare qui sert de régulateur à son tour. Dans la marine , les
meilleurs avirons > ceux qui supportent sans se rompre les efforts
les plus grands , les chocs les plus brusques 3 sont les avirons de
hêtre. C'est que les différences secondes pour le hêtre étant consi-
dérables , cette grande flexion dont le hêtre est susceptible , avec
des charges données , lui permet de céder à des chocs brusques ,
et le rend peu cassant.

Remarquons , au contraire , que le cyprès , peu flexible et très-
cassant % a ses différences secondes presque insensibles ; elles ne sont
pas le tiers de celles du hêtre.

J'ai déterminé les pesanteurs spécifiques des quatre espèces de boîs
soumises aux expériences précédentes , Tordre de ces pesanteurs est
aussi celui des résistances à la flexion.

De là résulte cette conséquence importante : De deux vaisseaux
dont la charpente sera d'égal volume, celui construit avec le bois
le plus pesant prendra moins d'arc ou de courbure, que celui construit

avec
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'açec le bois le plus léger. Car , toutes choses égales d'ailleurs, Tare
des vaisseaux est proportionnel à la flexibilité virtuelle.

Ainsi , les vaisseaux de la Baltique et de la Hollande doivent
prendre plus d'arc que ceux de la Méditerranée.

Mais, d'après les mêmes calculs , De deux vaisseaux dont la
charpente a le même poids , et qui sont construits en bois diffé-
rens , le vaisseau construit avec le bois le plus léger sera celui
dont l9arc sera le moins considérable, et qui consèquemment pré-
sentera la plus grande solidité*

Le célèbre Don G. Juan paraît avoir entrevu cette vérité, puisqu'il
voudrait que Ton construisît les vaisseaux avec les plus légers des
bois, les bois résineux, et non plus avec le chêne.

Au reste , toutes les expériences précédentes 9 en offrant les élémens
de la résistance virtuelle , donneront les moyens de calculer et par
là d'obtenir des résultats comparables 9 sans en venir aux expériences
coûteuses de la rupture des pièces. Par ce moyen , on connaîtra
mieux les qualités des bois qui conviennent aux divers travaux des
arts en général, et sur-tout des constructions navales ; et on pourra
fixer les dimensions des pièces de chaque navire d'une manière moins
arbitraire. Ces opérations, plus éclairées , conduiront à des résultats
avantageux.

Dans le port où je dois me rendre incessamment > j'espère pouvoir
déterminer les élémens des forces virtuelles des bois 9 mesurés sur
des pièces parfaitement saines , et non plus sur des bois usés, tels"
que ceux dont je pouvais disposer à Corcyre. Si la classe prend
quelque intérêt à ces recherches , j'aurai l'honneur de lui en com-
muniquer les résultats.

Les ingénieurs de la marine agitent en ce moment une question:
importante. On sait qu'autrefois Fa mâture de nos vaisseaux était
faite avec des sapins, ou plutôt des pins du nord, parce que les
rares qualités de ces bois les font rechercher de toutes les nations.-
Depuis long-temps les approvisionnements de ce genre que possédaient
nos arsenaux sont épuisés ou du moins tellement appauvris qu'il

Tom. V. &
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faut recourir à d'autres bois. On a proposé les sapîns de la Toscane
et les pins de la Corse. On a cru trouver en eux plus d'avantage
que dans les anciens bois du nord , dont nous pouvons disposer
encore ; et cela est vrai. Mais en ont-ils plus que les bois du nord
dans leur fraicheur ? voilà ce qui n'est point encore décidé*

Ensuite, il ne suffit pas de considérer la résistance à la rupture;
la résistance à la flexion est aussi d'une considération très- importante.
Car la flexion des mâts ne s'opérant que par Falongement des
cordages qui les soutiennent ; de deux mâts qui casseraient sous le
même effort , celui qui plie le plus exige un plus grand alonge-
ment dans les cordages et par conséquent un plus grand effort de
la part du vent. Donc aussi la force des cordages doit être dans
une relation nécessaire avec la résistance que les mâts opposent à

. toute flexion.
Dans tous les cas, il faut déterminer les dimensions des mâtures

suivant la nature des bois qu'on emploie , et l'on voit que les données
dont nous avons parlé jusqu'ici, sont propres à répandre quelque jour
sur ce beau problème.

Après avoir multiplié les expériences sur les pièces d'une seule
et même forme , nous en avons considéré qui avaient des épaisseurs
tet des largeurs différentes , et nous sommes parvenus k ce résultat
constant :

La résistance a la flexion est proportionnelle aux cubes des
épaisseurs. Nous avons essayé de démontrer par la théorie cette vérité
d'expérience.

Lorsqu'on plie un parallélipipède de bois , les fibres intérieures
sont comprimées, et les fibres extérieures sont alongées ; de manière
qu'il se trouve une fibre intermédiaire d'une longueur invariable ;
et cette fibre est toujours la même , quelque courbure qu'on donne
au parallélipipède. *

Pour démontrer l'effet de Talongement ou du raccourcissement
des fibres ? Duhamel imagina l'expérience la plus ingénieuse. Il scia
par le milieu, et perpendiculairement à la direction des fibres, les
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trois quarts de l'épaisseur de la pièce 7 puis il enfonça dans le trait
de la scie un coin fort mince 9 et d'un bois encore plus dur que
le chêne. La pièce étant ensuite soutenue par les deux bouts , et
la face où était le trait de scie étant en dessus , on chargea cette
pièce par des poids; or , quoiqu'elle fût sciée aux trois quarts , un
quart seul des fibres put résister par son extension ; de manière
que la pièce avait conservé toute sa force. Lorsque le trait de scie
était moins avancé , la force était plus grande ; elle était plus petite
dans le cas contraire. Lorsqu'on aura déterminé par l'expérience là
position précise de la fibre invariable , on volt , par ce que nous venons
de dire , que rien ne sera plus facile que d'en conclure le rapport
des forces nécessaires pour produire un alongement ou un raccour-
cissement déterminé des fibres d'une même pièce de bois : les ex-
périences qui devront servir de base à ce calcul , offrent à faire
une des plus belles recherches que puissent présenter les questions
relatives à la force des bois.

Après avoir chargé les pièces par des poids uniques , je les ai
chargées par des poids uniformément répartis sur toute leur longueur;
et j'ai trouvé que 9 pour le même poids accumulé au milieu d'une
pièce , ou réparti uniformément sur toute son étendue 9 les flèches
ou descensions sont entre elles comme dix-neuf est à trente ; et ce
rapport se conserve le même , soit pour les bois d'une espèce diiïé~
rente , soit pour les bois de différentes dimensions.

Si donc on prend le poids d'une pièce prismatique pour unité ,
en doublant les trente dix-neuvièmes de la flèche qu'elle prend y

lorsqu'on la soutient horizontalement par les deux bouts , on a la
flèche qu'elle prendra lorsqu'on la chargera d'un poids égal au sien,
mais accumulé au milieu. Ce principe donne un moyen simple de
peser , sans balances 9 les bois très-lourds et très-longs , pourvu
que leur épaisseur soit constante.

On voit, par ce que nous venons de dire y que rien ne sera plus facile
que de considérer un poids unique chargeant une pièce par son milieu
comme un poids uniformément réparti le long de cette pièce , et
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réciproquement : considération d'une fréquente utilité' dans les arts.5

J'ai déterminé enfin la flexion des pièces en fonction de la distance
des appuis , et j'ai été conduit à ce résultat : Deux pièces d'égal
èquarrissage se plient suivant des arcs dont les Jlèches sont pro-
portionnelles aux cubes des distances des appuis.

Rappelons-nous d'ailleurs qu'entre les mêmes appuis, les flèches
sont réciproquement comme les cubes des épaisseurs.

En combinant ces deux principes avec cet autre que, pour des
flexions peu considérables , les flèches sont directement proportion-
nelles aux charges ; on arrive à ce résultat singulier :

Deux pièces de bois étant semblables , c'est-à-dire , ayant leurs
dimensions homologues proportionnelles, et étant d'ailleurs supposées de
la même espèce ; en les soutenant par leurs extrémités , les flèches
des arcs qu'elles prendront, en vertu de leur propre poids , seront
directement proportionnelles aux quarrcs des longueurs des pièces ;
et par conséquent , quelle que soit la grandeur absolue de ces
pièces y elles prendront toutes un seul et même rayon 4e courbure.
La même chose aurait encore lieu , si Ton chargeait les pièces par
des poids accumulés ou répartis , mais proportionnels au poids même
de ces pièces.

Ce résultat paraît être de nature à s'appliquer souvent dans les
constructions ; car les édifices de même nature ont ordinairement
tous leurs élémens proportionnels. Si donc nous voulons comparer
deux vaisseaux semblablement construits , avec les mêmes matériaux,
dont les dimensions partielles soient ainsi proportionnelles à celles
même de ces vaisseaux , nous en conclurons que l'arc des vais-
seaux 7 toutes choses égales d'ailleurs , doit avoir un seul et même
rayon de courbure , quelle que soit leur grandeur absolue.

On doit maintenant voir clairement pourquoi les grands vaisseaux >
indépendamment de toute autre cause , ont proportionnellement
beaucoup plus d'arcs que les petits navires : c'est que la flèche de
ces arcs suit la loi des quarrés des dimensions principales du navire.
Ainsi , dans le cas que nous avons déjà cité d'un navire de soixante
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mètres qui prendrait un demi-mètre d'arc , un petit navire d'un mètre
de long, et semblable au premier , ne prendrait pour flèche de son
arc qu'un trois mille six centièmes de demi-mètre , au lieu d'un
soixantième , simple rapport des longueurs.

Jusqu'ici nous n'avons que la flèche de la courbe donnée par la
flexion des bois , et la corde de cette courbe ou la distance des
appuis. Après avoir attentivement examiné la forme offerte par cette
courbe , et l'avoir rapportée , par la pensée , aux formes qui me
sont le plus familières , j'ai jugé qu'elle devait très - peu différer
d'une hyperbole ; je l'ai supposée telle, et voici comment j'ai vérifié
cette hypothèse.

J'ai pris une règle de sapin , dont la longueur excédait un peu
deux mètres ? et dont les autres dimensions étaient om, i et om,oi ;
je l'ai placée sur mes deux appuis , toujours éloignés de deux
mètres l'un de l'autre ; je l'ai fait courber, en chargeant son milieu f

de manière à présenter une flèche de treize centimètres. Cette cour-
bure est très-considérable ; et j'ai voulu qu'elle fût telle , pour
mieux observer les anomalies qui pourraient se présenter dans les
relations hypothétiques que je cherchais à confirmer ou à détruire.

Une ligne droite horizontale , servant de corde à cet arc, et ayant par
conséquent deux mètres m'a servi d'axe des abscisses. Je l'ai di-
visée en vingt parties égales. Par chaque point de division , j'ai
tracé une ordonnée verticale qui allait jusqu'à la courbe ; j'ai donc
pu déterminer ainsi vingt-un points de cette courbe. J'avais pour
plan de projection une planche parfaitement aplanie , que j'appliquai
verticalement le long de la règle pliée , et sur laquelle j'ai tracé
îa courbe, sa corde et ses coordonnées. Ensuite j'ai relevé , avec
tout le soin possible , les abscisses et les ordonnées de cette courbe;
et, pour balancer les erreurs , je prenais la demi-somme des or-
données symétriques , à droite et à gauche du milieu.

Pour déterminer mon hyperbole comparative , j'ai conçu une ligne
de ce genre , dont l'axe réel serait vertical , et dirigé suivant la
flécha de l'arc élastique ; cette ligne d'ailleurs passant par les cinq
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points suîvans : i.e le point milieu de l'arc ; 2.0 et 3.° les deux
points d'appui ; 4«° e* 5.° les deux points qui correspondent au
milieu de chaque demi-corde, à droite et à gauche de la flèche;
de manière que les cinq abscisses de ces points étaient : — i m ; —o,5 ;
O ; + o , 5 ; -{-im« A l'aide de ces données, rien n'est plus facile
que de trouver l'hyperbole comparatrice ; son équation se présente sous
une forme extrêmement simple.

En rapprochant l'hyperbole comparatrice et la courbe élastique pro-
duite par la règle pliée , nous nous sommes assutés que, pour les
mêmes abscisses , les plus grandes différences des ordonnées des
deux courbes ne s'élèvent pas à sept dixièmes de millimètre.

Dans ces différences , il faut toujours comprendre deux dixièmes
de millimètre pour les erreurs qui ont pu être commises , en me-
surant à vue d'œii les dixièmes de millimètre ; l'on concevra alors
que , sur une étendue de deux mille millimètres, et pour une cour-
bure de i3o millimètres , ne pas trouver sept dixièmes de milli-
mètre pour les plus grandes différences , c'est une identité qu'il est
rare de rencontrer , même dans les résultats que la théorie démontre
devoir être les mêmes. Nous pouvons donc conclure premièrement
que , quelle que soit la courbe élastique produite par la flexion
des bois ^ntre deux points d'appui , il est permis de la confondre
avec l'hyperbole, sans crainte d'erreurs appréciables dans la pratique,
même dans les calculs où les approximations seraient poussées
assez loin.

Faisons voir maintenant pour quelle raison la courbe élastique
approche si fort de se confondre avec l'hyperbole. Lorsqu'une règle
est pliée sur deux points d'appui, le long desquels elle peut glisser
pour se mettre en équilibre avec les poids qui la chargent , il faut
que l'effort produit au point d'appui par la tendance au redres-
sement de la pièce soit nul ou , ce qui revient au même , il faut
qu'en ce point la courbure de la règle soit nulle > et par conséquent
le rayon de courbure infini.

C'est parce que , dans l'hyperbole , les rayons de courbure s'ac-
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croissent suivant une loi très-rnpide, en s'éloignant du sommet,
que rhyperbole se trouve encore si voisine de la courbe élastique,
même à des distances assez grandes de ce sommet.

Mais comme , à une distance finie du sommet, le rayon de courbure
de l'hyperbole ne devient pas infini ; on voit que , vers les appuis, la
courbe élastique , ayant moins de courbure que l'hyperbole , lui
sert de corde et passe au-dessus. Donc auprès de ces appuis ( et
intérieurement ) les abscisses de Phyperbole doivent être les plus petites.
C'est précisément à cela qu'il faut attribuer les différences dont le
maximum est, comme nous l'avons dit plus haut , inférieur à sept
dixièmes de millimètre.

Je ne me suis pas borné à l'examen de la courbe produite par
la flexion d'une seule règle ; j'ai plié successivement d'autres règles
en sapin , en chêne , en hêtre ; j'ai constamment trouvé les diffé-
rences de rhyperbole comparatrice à la courbe réelle moindres que
sept dixièmes de millimètre.

Je dois faire remarquer un fait d'expérience vraiment singulier.
Si j au lieu de mettre la charge à égale distance des appuis, on la
rapproche de l'un d'eux d'une quantité peu considérable , la courbe
élastique n'est plus symétrique par rapport à la verticale équidistante
des deux appuis» Néanmoins , cette courbe se confond encore à très-
peu près avec une hyperbole ; mais cette hyperbole, au lieu d'avoir
un axe vertical et l'autre horizontal , se trouve rapportée à deux
diamètres conjugués dont l'un est horizontal et l'autre oblique à
l'horizon.

Il est visible en effet que , dans cette hypothèse , les tensions
de la règle , en chaque point d'appui, ne doivent pas cesser d'être
nulles ; les rayons de courbure doivent donc encore être infinis en
ces points de la règle ; et la courbe, cessant d'être symétrique avec
la verticale , ne peut plus correspondre qu'à un arc d'hyperbole
dont aucun axe ne soit vertical. Lorsqu'on suppose les abscisses
horizontales , les ordonnées conjuguées ne peuvent donc plus être
verticales ; mais ces ordonnées appartiennent toujours à un système
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de diamètres conjugués, et voilà ce que nous voulions faire remarquer.

Après avoir considéré la courbe produite par une flexion unique ,
j'ai cherché à comparer les courbes qui résultent de flexions dif-
férentes. Ici se présente une nouvelle série d'expériences , plus dé-
licates peut-être que les précédentes, et dont j'exposerais la marche
si je n'avais pas déjà dépassé les bornes que cette analise doit avoir.
Je me contenterai de dire qu'après avoir déterminé une courbe simple ,
ayant avec la véritable élastique un contact très-intime > j'ai supposé
leurs rayons de courbure identiques au point qui leur est commun.
Mais , on a de suite ce rayon au sommet de l'hyperbole ; on a
donc aussi le maximum de courbure de l'élastique pour une flèche
donnée.

Je passe enfin à l'explication de la rupture des bois. J'observe
que les bois homogènes doivent rompre au point où leurs fibres
atteignent un certain degré constant d'alongement ou de raccour-
cissement. Cette condition combinée avec les principes exposés pré-
cédemment sur la flexion des bois , me conduit à retrouver et à
démontrer les diverses lois connues sur leur rupture.

Je viens de donner une idée de la première partie de mes r e -
cherches ; l'autre est encore trop incomplète pour être présentée à
la classe» Je me suis occupé , dans cette seconde partie , de la
flexion des bois , lorsqu'on les plie sur des surfaces données. Or*
sait que c'est en pliant ainsi les bois que nous recouvrons par des
hordages > à l'extérieur , et par des maigres , à l'intérieur , toute
la membrure de nos vaisseaux.

Dans les poFts du nord de l'Europe on chauffe les bordages ;
en les mettant dans des étuves ; j'ai cherché a voir quelles alté-
rations ce procédé produit sur la force des bois.

Je me suis ensuite occupé de ce que nous appelons des assem-
blages : ce sont les formes diverses par lesquelles nous joignons une
pièce de bois à une autre. Je nie suis proposé de déterminer la
force de ces assemblages , en appréciant soigneusenient tout ce qui
peut contribuer à leur bonté.

Enfin ;
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Enfin , je me suis occupé de la torsion des bols. Dès que ces

ëlémens des machines sont sollicités par des forces qui ne concourent
pas au même point, il y a tendance à la torsion ; et , comme toute
force produit son effet , il y a réellement torsion. C'est ainsi que
des efforts trop puissans brisent les arbres des pressoirs et des moulins.
Je me suis donc proposé de déterminer les forces de torsion > en
fonction du diamètre des bois , de leur longueur et du temps , qui
entre ici comme un élément d'une puissance extraordinaire.

Si Pinstitut voit ces recherches avec quelque intérêt ? et pense
que leur continuation puisse être utile , je m'appliquerai à les com-
pléter , et j'aurai l'honneur de soumettre au jugement de la classe
ce que de nouvelles observations m'auront appris»

GEOMETRIE DES COURBES.

Description des sections coniques , par les intersections
continuelles de leurs tangentes ;

Par M. GERGONNE*

U À N S le X.e cahier du Journal de l'école polytechnique ( page ^9 } T

M. de Prony a déduit de la théorie des Solutions particulières , un
mode de description des sections coniques , par les intersections
continuelles de leurs tangentes , qui est fort simple et fort
commode , et très - propre conséquemment à faciliter le tracé
des épures des voates* Je suis parvenu au même résultat, par des

Tom. F*. 7
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considérations tout à fait élémentaires, en cherchant à résoudre le
problème suivant,

PROBLÈME. Étant donnés les èlèmens qui déterminent une
section conique, lui mener une tangente parallèle à une droite donnée ?

Solution commune à Vellipse et à l'hyperbole. Soient G le centre ,
À et B les sommets , et F , G les loyers d'une ellipse ( fig, i )
ou d'une hyperbole ( fig. 2, ). De Futi quelconque F des foyers P

soit menée une perpendiculaire FP à la droite a laquelle on veut
que la tangente cherchée soit parallèle ; de l'autre foyer G pris
pour centre , et avec un rayon égal au premier axe AB 5 soit décrit
un arc coupant FP en P , et soit menée GP ; enfin soit menée à
FP par son milieu N une perpendiculaire NM , rencontrant GP en
M ; cette droite KM sera la tangente cherchée , et le point M sera
celui où elle touche la courbe.

Pour le démontrer, soit menée MF, on aura ? par construction,
MF = MP ; on aura donc MG+MF ( fig. 1 ) et MG—MF ( fig. a )
^ M G + M P ( fig. 1 ) et =MG—MP ( fig. 2 ) =GP=AB ; ce qui
prouve déjà que le point M appartient à la courbe. En second lieu ,
la droite MN , faisant des angles égaux avec les droites GP et MF ,
est tangente au point M. Enfin, NM étant perpendiculaire à FP 7 qui
est elle-même perpendiculaire à la droite donnée , sera conséquemment
parallèle à cette droite.

Solution pour la parabole. Soient FH ( fig* 3 ) la direction de
l'axe , F le foyer et HP la directrice de la courbe. Par le foyer F
soit menée à la droite donnée a laquelle on demande que la tengente
soit parallèle une perpendiculaire FP 9 coupant la directrice en P ;
soit menée à cette droite FP , par son milieu îï , une perpendicu-
laire NM coupant en M la parallèle PM menée à l'axe par le point
P ; alors NM sera la tangente cherchée , et le point M sera celui
où elle sera touchée par la courbe.

SI en effet on mène MF , on aura , par construction , MF~MP ;
ee qui prouve déjà que le point M appartient à la courbe, En second
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lieu, l'égalité des angles I%MP , WMF prouve que la droite NM
est une tangente en M. Enfin NM étant perpendiculaire à F P ,
qui est elle-même perpendiculaire à la droite donnée , sera consé-
quemment parallèle à cette droite.

Si Ton conçoit présentement que la droite donnée , a laquelle la
tangente demandée doit être parallèle 5 varie de direction ? par degrés
insensibles , à cause que GP ( fig. 1 , 2 ) doit être oonstamment
égal à AB , le point P ne sortira point d'une circonférence KPH
ayant G pour centre et un rayon égal à AB ; en conséquence, le
milieu N de FP ne sortira point d'une autre circonférence ayant
AB pour diamètre ; ainsi en menant de tous les points P de la
circonférence HPK des droites PF , PG aux deux foyers F ? G ,
et en élevant aux droites PF , par les points N où elles sont coupées
par la circonférence ANB , des perpendiculaires NP terminées en M
aux droites PG , ces perpendiculaires seront des tangentes à la courbe,
et les points M seront ceux où elles la toucheront.

Quant à la parabole , on voit que si , par le foyer F , ( fig. 3 )
on mène une suite de droites FP f terminées en P à la directrice ;
et que , par les points N où ces droites coupent la tangente AN
au sommet A , on leur élève des perpendiculaires NM , terminées
en M par leur rencontre avec les parallèles à Taxe menées par
les points P ; ces perpendiculaires seront des tangentes à la courbe,
et les points M seront ceux où elles la toucheront.

Donc , Si l'un des côté? d'un èquerre passe constamment par
Vun des foyers d'une section conique , et que son sommet parcourt
la circonférence décrite sur le premier axe comme diamètre 9 s'il
s9agit de l'ellipse ou de l'hyperbole, ou une tangente au sommet »
s'il s'agit de la parabole > l'autre côté de Vèquerre sera constam-
ment tangent à la courbe* C'est en cela que consiste le théorème
de M. de Prony»
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QUESTIONS RÉSOLUES.

Démonstrations du dernier des deux théorèmes énoncés

à la page 29G du quatrième volume de ce recueil.

XL NONCE. Dans toute ligne du second ordre qui a un centre ,"
si Von mené deux tangentes parallèles à une même droite fixe
quelconque , et une troisième tangente variahle ; le produit des seg~
mens des deux premières tangentes compris depuis leurs points de
contact jusqu'à la troisième > sera une quantité constante* (*)

Démonstration analitique ;

Par M. BÉRARD , principal et professeur de mathématiques
du collège de Briançon , membre de plusieurs sociétés
savantes.

Les points de contact des deux tangentes parallèles entre elles
étant les extrémités d'un diamètre, nous prendrons ce diamètre, <jue

(*) Dans la Théorie des fonctions analitiques , page l34 de la première édi-
tion et 187 de la deuxième , Lagrange a démontré que , non seulement cette
propriété appartenait aux sections coniques ; mais que de plus elle n'appartenait
qu'à elles seules. Mais sa démonstration sort du cercle des éiémens.
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nous appellerons 2# , pour axe des x y et son conjugué zb pour
axe des y*

Si alors cc; > y/ sont les cordonnëes du point de contact de la
troisième tangente , nous aurons

'*~a*l>2 ; (i)

et l'équation de cette troisième tangente sera

y'^a2^ : (2)

On en déduira la longueur des segmens que cette tangente déter-
mine sur les deux premières , en y faisant successivement x=a et
# = — a y et en prenant les valeurs correspondantes de y , ce qui
donnera

le produit de ces deux segmens sera donc

quantité qui, en vertu de Péquation (1), se réduit à H^ia, c*est-a-
dire , le quarré de la moitié du conjugué du diamètre qui
joint les points de contact des tangentes parallèles.

Démonstration géométrique ;

Par M. BRIANCHON 5 capitaine d'artillerie.

Soient ( fig. 4 > 5 ) C le centre de la courbe , AB un diamètre
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quelconque , DC son demUconjugué , AM et BN des tangentes aux ex-
trémités de ce premier diamètre, M , N les points où elles sont
coupées par une troisième tangente variable quelconque MN. Il
s'agit d'établir que AMxBN est une quantité constante.

Pour cela , soit menée PQ , tangente parallèle à AB ( fig. 4 )
et asymptote ( fig, 5 ) , coupant en P et Q les prolongerions de
M A , WB.

Par une propriété connue du quadrilatère circonscrit aux sections
coniques (*) , les directions des diagonales PN et QM du quadri-
latère MNQP doivent concourir en quelque point S de la direction
du diamètre AB qui joint les deux points de contact opposés ; d'après
quoi les parallèles MP et NQ donneront

SB : SA : : BQ : AM ,

SA : SB : : AP; BN ;

done

AMxBN=APxBQ ?

maïs on a

AP=BQ=CD ;

donc

AMxBN=c52 •

(*) Voyez % entre autres , la page 167 du troisième volume de ce recueil»
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Solution du problème de dynamique propose à la
page 32 o du 4«e volume de ce recueil ;

Par M. DUBUÀT , professeur à l'école de l'artillerie et
du génie.

ÉNONCÉ. Le point de suspension d'un pendule simple 7 à
Vetat de repos , étant subitement entraîné, d'un mouvement rec-
tiligne et uniforme , avec une vitesse connue , le long dune droite
horizontale, on propose d'assigner la nature de la trajectoire dé-
crite par Vextrémité inférieure de ce pendule 9 ainsi que toutes les
autres circonstance du mouvement ; en faisant toutefois abstraction
de la résistance du milieu P

Solution* Prenons le point de suspension du pendule à l'état de
repos pour origine des coordonnées rectangulaires, et la droite par-
courue par ce point pour axe des x ; sî nous prenons pour unité
la longueur du pendule , et que nous supposions q&'à l'époque t
l'abscisse de son point de suspension est x1, et les coordonnées de
son extrémité inférieure x , y, nous aurons les équations de condition

(i) #'=*/ ; (2)

b désignant la vitesse constante du point de suspension»
Si , de plus , nous prenons la masse de ce pendule pour unité ,

et que nous désignons par ^ la tension inconnue de sa verge ? et
par g la gravité , les équations du mouvement seront
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» (3) 5 T = ' * W * : (4)

Soient x—^=Sin.4<P , y=Cos4^ ; on aura 9 en substituant et
ayant égard à l'équation (2) ,

.4ç ; (5)

— 4 ^ Sin,4?—16 f ^ Ycos.4^=^Cos.4^gr ; (6)

équations entre lesquelles éliminant ^ , il viendra

'«t ? en multipliant par 4 ^ e t intégrant

mais l'angle <p devant être nul en même temps que la vitesse an-
gulaire y on doit avoir C—i > et par conséquent , en séparant les
variables

p Sin.

ou enfin

àt



RÉSOLUES. 57

* ë ~ S'm.tp Cos.ç> """ Sin.p Cos.? '

d'où en intégrant et faisant la constante nulle , attendu que t et
tang«4? doivent être nuls en même temps ,

=Log,Sin^—Log.Cos.?=:Log.~— =Log.Tang.<p ?

et par conséquent

de la on tire

et par suite

Sin.4?= (

Donc
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et telles sont les équations qui donnent la situation du mobile à
chaque instant ; on en» tire

rélimination de Al et de e " entre ces deux équations et la valeur
de y donnerait l'équation différentielle de la trajectoire ; mais cette
équation serait probablement fort compliquée.

Si Ton fait / = o , on trouva # = o , y = —i , — = o , ce qui

prouve que les constantes sonj déterminées conformément aux con-
ditions particulières de la question.

Si Ton égale la valeur de y à zéro / il vient

par conséquent

ce qui donne pour / deux valeurs , Tune positive et l'autre négative>
e'est-à-dire , antérieure à l'époque d'où on compte les temps*
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La valeur de — montre ensuite que y parvient à son maximum

lorsque t est infini, et la valeur de y prouve que ce maximum
t +est

Quand à l'abscisse qui répond à y—o ou £2f *^ :=: 3 + 2 y/a #
elle est

elle peut être positive nulle ou négative , suivant que la vitesse &
sera plus ou moins grande.

Il résulte de tout ce qui précède que la courbe décrite par Fex-
trémité inférieure du pendule a une branche très-courte au-dessous
de Taxe des x, et une branche asymptotique au-dessus du même
axe ? l'asymptote étant une parallèle à Taxe des x 9 dont l'ordonnée
constante est égale à l'unité.

Les diverses circonstances que peut présenter la trajectoire sont
représentées par les figures 6 y 7 , 8 , dans lesquelles CP est le
pendule au repos , c'est-à-dire , dans sa position initiale, CD l'ho-
rizontale que Ton fait parcourir, de gauche à droite à son point
de suspension et enfin AB l'asymptote.
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QUESTIONS PROPOSÉES

Problème de statique.

OV£ une verge élastique 7 inextensible , uniformément pesante , dont le
poids et la longueur soient donnés ; et supposons que cette verge doive être
soutenue par deux points fixes , situés sur une même droite horizontale.

Si ces points sont situés aux deux extrémités de la verge , cette
verge > en vertu de son élasticité, affectera une courbure dont la
concavité sera tournée vers le ciel.

S i , au contraire f ces deux points sont réunis au milieu de la verge,
elle prendra, au contraire, une courbure dont la convexité sera tournée
vers le ciel.

Dans ces deux cas extrêmes , il est clair que la courbure de la
Verge sera |>lus grande que pour toute autre disposition des deux
points d'appui.

On propose , d'après cela , d'assigner la situation de ces deux
points qui fera prendre à la verge le moins d'arc possible ; c'est-
à-dire , de manière que la perpendiculaire abaissée sur l'horizontale
qui joint les points d'appui, du point de la verge qui s'en écarte
davantage ? soit en dessus soit en dessous } soit un minimum ?4
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GÉOMÉTRIE ANALITIQUE.

Essai d'un nouveau mode de discussion de Téquation
générale des lignes et de celle des surfaces du second
ordre ;

Par M. GERGONNE,

USQU'lCî on a employé , pour la discussion géométrique de l'équation
générale du second degré, à deux ou à trois indéterminées , ou lat
résolution effective de cetCe équa.ion , ou ta transforo^ation àe-s coor-
données , ou enfin fa connaissance de quelques propriétés appar-
tenant exclusivement aux diamètres principaux des lignes et surfaces
du second ordre.

La discussion par la résolution effective de l'équation on , autre-
ment dit , la méthode de Chezy , est sans doute bien préférable à
ce qu'on rencontrait autrefois sur ce sujet dans les Traités dappli^
cation de i'algèbre à la géométrie ; mais , outre qu'après des calculs
peu symétriques , elle ne conduit , en définitif, qu'à la connais-
sance d'un systèipe unique de diamètres conjugués , c'est à tort v

ce me semble , qu'on la présente comme modèle de la méthode
à suivre , dans la discussion des lignes et surfaces de tfegn\s plus
élevés, puisque, passé le quatrième degré , la résolution de l'équ ac-
tion est impraticable dans l'état actuel de l'analise , et que dès
le troisième , la discussion de l'équation résolue présente des diffi—
cultes à ptu près insurmontables.

La discussion par la transformation des coordonnées semblerait,
% F> n.° 1119 i.er septembre
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pour cette raison , mériter la préférence ; d'autant qu'elle est sus-
ceptible d'une certaine élégance. IVLBret, en particulier,- dans divers
articles de ce recueil, a montré tout le parti qu'on en pouvait tirer.
Cependant , on sait que , déjà pour les surfaces du second ordre ,
elle n'est point exempte de difficultés ; et que, dans tous les cas,
elle exige des calculs assez compliqués , sur-tout lorsqu'on veut
rapporter les grandeur et direction des diamètres principaux aux
axes primitifs , et que ceux-ci ne sont point rectangulaires.

Quant à la discussion tirée de la connaissance préalable de quelque
propriété appartenant exclusivement aux diamètres principaux, bien
qu'elle soit peut-être la plus briève de Joutes , comme M. Bérard
l'a prouvé dans un article de ce recueil et dans un ouvrage par-
ticulier (*) ; on sent pourtant qu'elle ne saurait être considérée comme
un procédé vraiment élémentaire ? puisque c'est a la discussion même
de l'équation qu'il appartient de faire découvrir les propriétés que
cette méthode met en usage.

La méthode dont je me propose de tracer ici Jes principaux
linéamens me paraît n'avoir aucun de ces inconvéniens , et semble
en même temps plus naturelle qu'aucune de celles-là. Elle serait
sans doute susceptible de perfectionnement ; aussi je ne la présente
que comme un simple essai. Elle a sur-tout cet avantage que les
résultats qu'on en obtient forment un tout dont les parties ont entre
elles une étroite liaison. A la vérité , cette liaison n'est pas sans
quelque inconvénient dans les exercices et examens publics , où

'îl est beaucoup plus commode de savoir établir chaque proposition,
indépendamment de toutes les autres ; mais il n'est point du. tout
démontré que ce qu'il faut faire pour briller dans les examens, du
moins suivant leur mode actuel , soit aussi ce qu'il y a de plus
propre à se rendre habile dans la science.

Je vais d'abord m'occuper des lignes du second ordre ; je passerai
ensuite à la considération des surfaces du même ordre. Mais , comme

(*) Voyez la note de la page 294 du 4«me volume de ce recueih
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il a déjà été fréquemment question des unes et des autres dans ce
recueil , j'élaguerai tout ce qui ne sera pas proprement relatif à la
méthode que j'ai en vue d'exposer.

s- i.
Discussion des lignes du second ordre»

Soit l'équation
Jx2+By2-+*2Cxy+2A/x-h2B/y+D~o f (i)

exprimant une courbe rapportée à deux axes quelconques , formant
entre eux un angla ym Soit

y — moc^g ; (2)

Téquation d'une droite quelconque > rapportée aux mêmes axes* En
éliminant y entre elles ? il vient

(A+iCm+Bmi^^A'+B^W+Bmys+iD+zB'g+Bg^o; (3)
ainsi , généralement parlant x la droite (2) coupe la courbe (1) en
deux points.

On sait que si > dans une équation ? on délivre le premier terme
de son coefficient, le coefficient du second terme, pris avec un signe
contraire > devient alors la somme des racines ; et comme , d'un
autre côté , l'abscisse du milieu d'une droite est la demi-somme des
abscisses de ses deux extrémités , il s'ensuit que , pour le milieu,
de la corde interceptée par (1) sur (2) , on a

œ~~ ji+zCm+Bm* ' ™

En substitant cette valeur dans (2) r on trouvera , pour le même
milieu >

Les équations (4) 3 (5) sont donc celles du milieu de la corde
interceptée par (1) sur (2)^

En faisant varier g* , dans les formules (4), (5), sans faire va-
rier 772 ^ on obtiendra lea coordonnées des milieux d'una suite da
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cordes toutes parallèles entre elles. On obtiendra donc Péquatjon du
lieu géométrique de ces milieux , en éliminant g entre ces deux
formules (*) ; ce qui donnera , par la suppression du facteur
A-\-2Cm-{-Bm2 , commun à lous les termes de l'équation résultante ,

) = o ; (6)

(*) Les commençans ont d'ordinaire quelque peine à bien comprendre comment
ces sortes d'éliminations de constantes conduisent au but où l'on veut atteindre :
et c'est qu'en effet la raison qu'on leur en donne communément est plus méta-
physique que mathématique. Il me semble que la chose devient évidente , en
raisonnant à peu près comme il suit :

Soient
<p{x , y , A)=o , («) , ^(x, y , A)—o , (/3) ,

les équations de deux courbes rapportées aux mêmes axes. Si, en les considérant
comme les équations d'un même problème déterminé à deux inconnues , on en
tire les valeurs de x et y , ces valeurs, fonctions de A , seront les coordonnées
de l'intersection des deux courbés.

Si l'on fait varier la valeur de celte constante A , le point d'intersection des
deux courbes variera aussi, et l'on pourra demander quelle est la courbe dont il
ne sortira jamais , quelque valeur que Ton puisse donner à A.

Pour résoudre cette question y on considérera qu'en supposant A déterminée>
le point d'intersection des deux courbes n'est pas seulement donné par les deux
équations (a) , (£) , maïs encore par tout système de deux équations que l'on
voudra déduire de leur combinaison , ou encore par le système de Time quel-
conque d'entre ejles et d'une combinaison quelconque de l'une et de l'autre.

Donc, en particulier, on pourra, dans la recherche du point dont il s'agit,
remplacer l'équation (£) par le résultat de Imagination de A entre «lie et i'équa-!
lion (#) } en sorte que, si ce résultat est

f(x, y)=o y (^)
le système des équations (#), (y) pourra, dans la recherche du point d'intersection
des deux courbes , remplacer celui des équations (#) , (/3).

Mais , lorsque Ja constante A varie , la courbe (7) demeure constamment la
même ; d'où il suit que cette courbe doit contenir tous les points d'intersection
que J.'on - déduirait de la pombinaison des équations (#) , (£) , en donnant suc-
cessivement à la constante A toutes les valeurs imaginables ; cette courbe (y) est
donc la courbe demandée.

Rien ne serait plus facile que d'étendre ces considérations à la géométrie à Iroie
dimensions*
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équation d'une ligne droite , quelle que soit 772. Ainsi les courtes
comprises dans l'équation (i) jouissent toutes , sans exception , de
cette propriété , très-remarquable , que les milieux d'un système de
cordes parallèles ; quelle qu'en soit d'ailleurs la direction commune ,
y sont tous situés sur une même ligne droite que , pour cette raison ,
nous appellerons ? à l'avenir , un diamètre de la courbe. On voit
donc que , non seulement ces courbes ont une infinité de diamètres ,
mais que de plus , ces diamètres affectent, en général , toutes sortes
de directions ; de manière qu'il n'est aucun des points d'une ligne
du second ordre par lequel on ne puisse en concevoir un.

L'équation d'une parallèle quelconque au diamètre (6) doit être
de la forme

d'où il suit que, si on la représente par

y=m'x+g' , (8)

on aura , entre m et m/, l'équation de relation

m/=—-—— , ou Bmm'-^-Cfo+m^+A — o . (9)

Cette équation étant symétrique , par rapport à 772 et 772/
 ? il en faut

conclure que les milieux des cordes parallèles au diamètre (6) sont
sur un diamètre parallèle à (2) ; e t , comme m et m/ demeurent
indéterminés, il s'ensuit, plus généralement, que les milieux des
cordes parallèles à un diamètre quelconque sont sur le diamètre paral-
lèle aux cordes que le premier coupe en deux parties égales. Ainsi,
généralement parlant, à chaque diamètre , il en répond nécessairement
im autre tel que les cordes parallèles à chacun d'eux ont leurs milieux
sur l'autre. A l'avenir nous appellerons diamètres conjugués les deux
diamètres d'un semblable système. On voit donc que , non seulement
les lignes du second ordre ont une infinité de systèmes de diamètres
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conjuge's r mais qu'en outre tout diamètre d'une telle ligne en a
nécessairement un qui lui est conjugué.

D'après ce qui précède , les équations de deux diamètres , conjugués
ou non conjugués r peuvent être représentées ainsi qu'il suit :

(A+Crn )x+(C+Bm )y+(A'+B'm )=o ,

Pour connaître le point où ils se coupent, il faudra combiner ces
équations entre elles. Mais si, auparavant', on prend leur différence,
puis la différence de leurs produits respectifs par m/ et m > en di-
visant chaque fois par m—mf

 9 il viendra

Ainsi, dans la recherche de l'intersection des deux diamètres, on
pourra remplacer le système des équations (10) par le systt-me des
équations ( n ) ; et puisque ces dernières sont indépendantes, de m
et mf , il en faut conclure que tous les diamètres des lignes da
second ordre se coupent en un même point. 1! est de plus aisé de
voir que ce point doit être leur milieu commun , puisqu'à chaque
diamètre répond un conjugué qui doit le couper en, son milieu.
Le milieu commun de tous, les d;amètres d'une ligne da second
ordre est ce qu'on appelle le centre de cette courbe-

Nous remarquerons ? avant d'aller plus, loin , que les équations (i i)
notant autre chose que ce que devient l'équation (6),, lorsqu'on y
fait successivement 772=0, m= 00 ; il en résulte que ces. équations
( Ï I ) sont respectivement celles des diamètres qui coupent en deux
parties, égales les cordes, parallèles à Taxe des y et les. cordes pa-
rallèles à l'axe des x ; c'est-à-dire , en d'autres, termes, , que ces.
équations sont celles des con jugés des diamètres respectivement paral-
lèles aux axes des y et des x.

Sx donc, les axes étaient parallèles à deux diamètres conjugués j>
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les diamètres exprimés par les équations ( i l ) devraient être res-
pectivement parallèles aux axes des x et des y\ on devrait donc
avoir, dans ces équations, et conséquemment dans l'équation (1 ) ,
£ ~ o . Ainsi, le parallélisme des axes des coordonnées avec deux
diamètres conjugués jouit de la propriété de priver l'équation (1)
du rectangle des coordonnées ; il est de plus aisé de yoir que c'est
là la seule circonstance où elle puisse en être privée.

Si le centre de la courbe se confondait avec l'origine, les équa-
tions ( n ) devraient appartenir à deux droites passant par cette ori-
gine: on devrait donc avoir à la fois A'—o, B/=o. Ainsi, "la
situation du centre à l'origine des coordonnées jouit de la propriété
de priver l'équation (1) des premières puissances des deux variables,
et il est de plus aisé de voir qu'elle en jouit exclusivement»

Si donc on prend pour axes des coordonnées deux diamètres con-
jugués quelconques, l'équation (1) prendra la forme très-simple.

Jx2+By*+D=o , (12)

sous laquelle la discussion en deviendra incomparablement plus
facile.

Mais ceci suppose que les droites (11) concourent effectivement
en un même point. En combinant leurs équations, on en tire

( 3 )

d'où Ton voit que , si Ton a C 2 — À B ~ o , la courbe n'a plus de centre ,
ou que du moins son centre étant infiniment éloigné des ^xes pr i -
mitifs ne saurait plus être pris pour origine. Nous verrons bientôt,
au surplus , que la courbe est susceptible d'être expriipée par
une équation fort simple qui convient également au cas où elle
a un centre et à celui où elle en est dépourvue.

Si l'on avait à la fois les trois relations
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C*=AB , BA'^CB* % AB'^CA' f (14)

dont chacune est comportée par les deux autres, les deux équations
( n ) rentreraient l'une dans l'autre ; la courbe aurait donc une in-*
fini té de centres situés sur Tune ou l'autre de ces droites.

Soient # ' , yf les coordonnées de l'un quelconque des points dô\
la courbe, en sorte qu'on ait

en désignant pour abréger par a , b les coordonnées du centre >
l'équation du diamètre passant par ce point sera

Si, par le même point , on mène une parallèle au conjugué de
ce diamètre, son équation sera, en vertu de l'équation (6) >

Mais ^ en vertu des équations ( n ) , on a

—Aa—Cb-A> ,

\—Ca—Bb—B' ;

en conséquence, l'équation (17) deviendra

eu, en développant et transposant,

e»
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ou enfin, en ajoutant l'équation de la relation (13) et réduisant,

(By'+C*'+B0y+(4x'+Cf+A')x+ (A'x'+B'y'+D) ~o ,
ou encore

o. (18)

Cette droite ayant un point commun avec la courbe f et ne pouvant
d'ailleurs en être une corde y puîsqu'alors ce point en serait à la
fois le milieu et l'extrémité ; il faut en conclure que c'est une
tangente à cette courbe.

Si Ton suppose que la tangente est Taxe des y 9 et que le
diamètre au conjugué duquel elle est parallèle est Taxe des x : auquel
cas son point de contact avec la courbe sera l'origine ; leurs équa-
tions devront être respectivement %z=io9 y = o; on devra donc avoir,
outre x' — o , yf = o , les conditions B'—o ? CZZQ 5 jD=o, en sorte
que l'équation (1) deviendra simplement

Aa;2+By*-i-2A'x=o . (19)

Telle est donc la forme que prend l'équation de la courbe , lors-
qu'on prend pour axes un diamètre et la tangente à son extrémité ,
ce qui est toujours possible, toutes les fois que l'équation (1) n'est
point absurde d'elle-même ; c'est-à-dire , toutes les fois qu'il y a
au moins un système .z7, y/ de coordonnées réelles, qui y satisfait.
La discussion , très-facile , de l'équation (19) fera donc connaître
toutes les courbes que peut exprimer l'équation ( Î ) . (*)

(*) Sachant mener une tangente à la courbe par un Je ses points , il ne
sera pas difficile de lui mener une normale par le même point. De là on passera à la
tangente et à la normale par un point extérieur. Nous nous bornons à indiquer
ces divers objets, sur lesquels nous n'aurions rien de nouveau à dire, Mais nous ne devors
pas négliger de remarquer que ce sera naturellement ici le lieu de faire mention
des belles propriétés dont fouissent ce qu'on est convenu d'appeler les pèles de*
lignes du second ordre. On pourra consulter à ce sujet les pages 3Q3 et 3û2 du irai*

volume de ce recueil,

Home F, 10
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Les diamètres conjugués rectangulaires sont ce qu'on appelle les

dlamèîr s principaux de la courbe , et leurs extrémités en sont les
sommets. Pour obtenir les directions de ces diamètres , il suffira
de joindre à l'équation

J+C(m+m')+Bmm'=:o , (9)
l'équation suivante

o (20)

qui exprime que les deux diamètres sont perpendiculaires l'un à
l'autre (*). La symétrie de ces équations prouve que m et mf seront
donnés par une même équation du second degré , et qu'ainsi il n'y
a qu'un système unique de diamètres principaux.

Soient x 9 y les coordonnées de l'un des sommets de la courbe,
et r sa distance au centre ou la longueur du demi-diamètre prin-
cipal qui lui répond ; représentons toujours , pour abréger , par a 9

b les coordonnées du centre , données par les formules (i3) , nous
aurons ? à la fois,

(*) Soient en effet deux droites y~mx , y—m'x , passant par l'origine des
coordonnées que nous supposons former entre elles un angle y. Pour exprimes?
que ces droites sont perpendiculaires l'une à l'autre 3 il est nécessaire et il suffit
d'exprimer que deux points (a , b), (a!

 % b!) pris respectivement sur l'une et l'autre
sont les extrémités de l'hjpoihénuse d'un triangle rectangle dont le sommet de
l'angle droit ast à l'origine. Celle condition donne

©a en réduisant

a
mais on a d'ailleurs

b~ma , V—rnfa} ,

ce qui donnera, en substituant et divisant par aaf > l'équation mentionnée dans le texte*
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(*—*)2+2i>—a)(y—3)Cos.y+(r-^)2=ra , (21)

f—b~m{x—a) . (22)

D'un autre côté l'élimination de m/ entre les équations (9) et (20)
donne

) = o . (a3)

Enfin l'équation (1) peut facilement être mise sous cette forme

A{x—.a)
2-{-B(j—Z>y-t-2 C(x—a)(y—b)

faisant donc

et remarquant qu'en vertu des équations ( n ) on a

Ja+Cb-i-A'=o ,

elle deviendra simplement

A(x—aY+B(j—b)2-ï-2C(x—a)(y—3)=A . (24)

Cela posé ; si , dans les équations (21) et (24) , on introduit
pour y—b sa valeur donnée par l'équation (22) elles deviendront

( x — a y ( \ )
> (25)

équations entre lesquelles éliminant (x—c)2, il viendra.
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éliminant enfin m enjre cette équation et l'équation (20) on aura
d'abord

{AB— £•>•—A(A—2CCos.y+B)r*+A>8\n>y=:o , (26)

et ensuite

C f * — - A C o s . y A r * — A
m Br»—A Cr»—ACoa.y '

L'équation (26) donnera les longueurs des demi-diamètres principaux;
les formules (27) en détermineront la direction ; et ensuite l'une des
équations (2D) % combinée avec l'équation (22) ? fera connaître les
sommets.

Parvenus à l'équation (26), on pourra poursuivre la discussion f

comme l'a fait M, Bérard à la page 106 du 3.me volume de ce
recueil.

Dans le cas particulier où l'on aura AB-=tzCz
 7 la courbe 7 n'ayant

point de centre ? n'aura qu'un diamètre principal et conséquemrnent
qu'un seul sorumet que l'on pourra déterminer comme il suit»
L'équation (16) du diamètre deviendra simplement

y-y ^

en exprimant donc que ce diamètre est perpendiculaire a la tan-
gente à son extrémité , donnée par l'équation (18) il viendra

iAB'~-CA> Ax'+Cf+A') AB'—CA> Axr+Cf+A'__
{BAt—CW ~~ Bf+Cx'+B') 0S'7~~ BA'—CB? * By'+Cx'+ £' ~ ° ?

équation qui, combinée avec l'équation ( i5) , ne donnera, en ayant
égard à la relation AB—CZ, qu'un seul système de valeurs de x*
et y1 lesquelles seront les coordonnées du sommet. Il est aisé de
YOir qu'alors tous les diamètres seront parallèles.
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Lorsque , comme on le fait communément dans les traités élé-

mentaires , on suppose les axes des coordonnées rectangulaires , les
dernières recherches et les résultats qu'on en obtient se simplifient
considérablement.

Discussion des surfaces du second ordre.

Soit l'équation

'Ax2+By^Cz2+2Ayz+2B/zx+2C^icy+2A^jc+2B^y+%Ofz+D^:o , (Ï)

exprimant une surface rapportée à deux axes quelconques , formant
entre eux des angles * ? £ , y. Soient de plus

x—mz+g , y=nz+k , (2)

les équations d'une droite quelconque. En éliminant ce et y entre
elles et l'équation (1), il viendra

o . (3)

En raisonnant comme dans le §. précédent , on verra que le milieu
de la corde interceptée par (1) sur (2) est donné par les équations (2),
pintes à l'équation

mn+zB'm+zA'n * ^ ^

Si donc on élimine g et h entre elles ? l'équation résultante , en
s , y, z 5 sera celle du lieu des milieux des cordes parallèles à {%)•
Cette équation est, toutes réductions faites,
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(Am+Qn+B^x+(Om+Bn^Af)y+(B'm+Arn+C)z+(A"m (5)

équation d'un plan quels que soient m et n. Ainsi, les surfaces comprises
dans l'équation (i) jouissent toutes , sans exception , de cette propriété
très-remarquable , que les milieux d'un syvStème de cordes paral-
lèles , quelle qu'en soit d'ailleurs la direction commune, sont tous si-
tués dans un même plan que , pour cette raison y nous appellerons
à l'avenir plan diamétral de la surface. Ainsi, non seulement ces
surfaces ont une infinité de plans diamétraux, mais ces plans affectentf

en général % toutes sortes de directions • en sorte qu'il n'est aucun
point de l'espace par lequel on ne puisse en concevoir un*

Soient présentement trois droites quelconques

!

x~mz-{-g , x=m/Z'+g/ ,

y=nz-\-h ; y=n
les équations des plans diamétraux qui couperont en deux parties
égalés les cordes parallèles à ces droites seront respectivement

+Bn +A')y+(Bfm +A'n +C)z+(A"m +B"n +C'0=o % {5 )

{Amf +CW +B')*+(C//n' +B»' -f A')y+(&m! +AW + Q z + ( A ' +B%' +C'0==o , (5O

£4m''+C'n"-+&te+(£'m«+Bn"^ (5")

Or 5 la droite (a) étant prise arbitrairement, ce qui fixe la situa-
tion du plan (5) 9 on peut toujours assujettir les droites (s7) , (2/y/)
à ' être J parallëteëf à ce pkiï ; e t , comme par ces conditions elles
demeuFént encore^indéterminées ,, on peut ea outre assujettir l'une
d'elles à être parallèle au plan que détermine L'autre* En se rappelant
donc la condition de parallélisme entre un plan et une droite dans
l'espace , celat donnera, les trois équations, - . . . . -

fi"

47m/V)+JB/(m''+^0+^/(iï/+n^===o , ] (6) .
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puis donc que ces équations sont symétriques en m et n v m/ et n*,
niu et n", il en faut conclure qu'alors chacun des plans (5) , (57) , (57/)
coupera en deux parties égales les cordes parallèles à l'intersection des
deux autres. Les trois plans d'un pareil système sont ce qu'on appelle
des plans conjugés y et leurs intersections deux à deux , lesquelles
ont évidemment leur milieu commun au point d'intersection des
trois plans ^ sont ce qu'on appelle des diamètres conjugués. Ainsi ,
non seulement les surfaces du second ordre ont une infinité de sys-
tèmes de diamètres conjugués, mais ces diamètres aiïectent en général
toutes sortes de directions , en sorte qu'on peut toujours trouver
un système de tels diamètres 9 et même une infinité, où l'un de
ces diamètres passera par un point donné arbitrairement.

Que les plans diamétraux donnés par les équations (5)j(5;)? (5/7)
soient conjugués ou non conjugués , si Ton prend successivement
la somme des produits de ces équations m1—mn\ mf/—m 9 m—m*,
par nf—nn, nn—n ? n—nf

 ; et par m*nn—mNnè\ m/fn—mnN', mn/—m/nf

en divisant 5 dans chaque cas, l'équation résultante par mfnn—m^n?
1 n~-*mnhi-\--ninf—m;n , il viendra

C'JF (7)

équations qui, ayant lieu en même temps que les équations (5),
(5Q , (5;/) , pourront conséquemment leur être substituées , dans
la recherche du point d'intersection des trois plans qu'expriment
celles-ci ; puis donc que les équations (7) sont indépendantes de
m *) n , m/ , n/ , mu

 9 nn , il faut en conclure que les plans dia-
métraux des surfaces du second ordre se coupent tous au mémo
point ; il est de plus facile de voir , par ce qui a été dit ci-dessus ,
que toutes les cordes qui passent par ce point doivent y avoir leur
Hidieu , et en conséquence on l'appelle le centre de la surface.

Nous remarquerons , avant d'aller plus loin , que les équations (7)
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n'étant autre chose que ce que devient l'équation (5) lorsqu'on y
fait successivement m = o & , 72=1:0©, 772 = 72= 0̂ ? il s'ensuit que ces
équations sont respectivement celles des plans diamétraux qui coupent
en deux parties égales les cordes parallèles à Taxe des x, les cordes
parallèles à l'axe des j , et les cordes parallèles à Taxe des z ; c'est-à-
dire , en d'autres termes , que ces équations sont celles des plans
conjugués aux diamètres respectivement parallèles aux trois axes.

Si donc les axes des coordonnées étaient parallèles à trois diamètres
conjugués ou , ce qui revient au même , si les plans coordonne's
étaient respectivement parallèles à trois plans diamétraux conjugués ;
des trois équations (7) la première ne devrait renfermer que x seu-
lement 5 la seconde que y et la troisième que z ; on devrait donc
avoir, dans ces équations, et conséquemment dans l'équation (1)

À*~o , ]S'=o , C'~o •

(Ainsi , le parallélisme des axes des coordonnées avec trois diamètres
conjugués jouit de la propiiété de priver l'équation (1) des rectangles
des coordonnées ; et il est de plus aisé de voir que c'est là la seule
circonstance où elle puisse en être privée.

Si le centre de la surface se trouvait à l'origine > les équations (7)
devraient être celles de trois plans passant par cette origine \ on
devrait donc avoir ? à la fois,

Ainsi , la situation du centre à l'origine des coordonnées jouit de
la propriété de priver l'équation (1) des premières puissances des
trois variables , et il est de plus aisé de voir qu'elle en jouit ex-
clusivement.

Si donc on prend pour axes des coordonnées trois diamètres
conjugués quelconques, l'équation (1) prendra la forme très simple

o > (8)
sous
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sous laquelle la discussion en deviendra incomparablement plus
facile (*).

Mais tout ceci suppose que les équations (7) donnent pour & 7 y ? z
des valeurs finies et déterminées ; en les résolvant par rapport à
ces inconnues ? on obtient

ABC—AA'*--Bb'*--COz+2A'B'C'

B"(B'*—CA)+C"(AA'—B'C')+A»{CC'—A'B')
(9)

Or , si Ton a

la surface n'aura point de centre ; ou , pour mieux dire , son centre
se trouvant à une distance infinie ? ne pourra être pris pour
origine. Si une seule des coordonnées du centre était indéterminée f

chacune des équations (7) se trouverait comportée par les deux autres,
et la surface aurait une infinité de centres 9 situés sur une droite
donnée par le système de deux quelconques de ces équations. Sî
deux des coordonnées du centre se trouvaient indéterminées ? la troi-
sième le serait aussi, alors les trois équations (7) ne seraient point

(*) On remarquera sans doute que ïa démonstration de la possibilité de ramené?
Pëcjualion à cette forme , par un choix convenable des coordonnées , assez diiRcilg
à établir , dans les autres systèmes de discussion t même en supposant les coor—
données primitives rectangulaires, se présente, pour ainsi dire, d'elle-même
celui-cL

Tom. V, xi,
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distinctes les unes des autres , et le plan exprimé par Tune quel-
conque d'entre elles deviendrait le lieu des centres. Au surplus»
nous verrons bientôt que les surfaces du second ordre peuvent être
exprimées par une équation simple qui convient également à celles
qui ont un centre et à celles qui en sont dépourvues.

Soient xf
5 <yf

 5 zf les coordonnées de l'un quelconque des points
de la surface courbe > en sorte qu'on ait

(10)

en désignant, pour abréger , par a , b , c, les coordonnées du centre ,"
les équations du diamètre passant par ce point seront

00

J'équation du plan mené , par l'extrémité de ce diamètre , paral-
lèlement au plan qui contient ses deux conjugués sera , en vertu
de l'équation (5)

C>(*'—a)+B {y'—b-)+A'(z'—C)} (y—y')

'—b)+C (z'—C) ] (z—z>)

Mais , en vertu des équations (7) , on a

—Aa~.C>b—B'c=A"

= o. (12)

—C'a—B b—A'c=B" ,
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—B'a—A'b—Cc—C" ;

en conséquence l'équation (12) deviendra

(A x'-\-C>y'-\-B'z'+A"){x—x<)

ou , en développant et transposant

{A x

Y
fJrA'z'-\-B":y

x'+2C/x'y/-\-A/lx/+B//y''\-C//z/

ou enfin ; en ajoutant l'équation de relation (10) et réduisant

ou encore
Axx'+Byy'+Czz'

+A'(yz'-\-zy/)-\-B/(zx'+xz/)+C{xy>+yx') 03)
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Ce plan a un point commun avec la surface courbe : c'est celui
dont les coordonnées sont xf , y* y z

f ; mais il ne saurait en avoir
plusieurs; car, si cela était , en menant par ce même point des
parallèles aux deux conjugués du diamètre qui s'y termine ? il y
en aurait au moins une qui serait une corde de la surface , et qui ,
au lieu d'avoir son milieu sur le plan diamétral qui doit la couper
en deux parties égales , y aurait au contraire son extrémité ; le
plan (i3) est donc un plan tangent à la surface courbe.

Si l'on suppose que le plan tangent est le plan même des xy ?

et que le diamètre par l'extrémité duquel il passe est l'axe des z ,
auquel cas le point du contact sera l'origine des coordonnées; à
cause de ^ 1 : 0 , y' — o , z/=^o , l'équation ( i3) deviendra d'abord

et , comme alors elle devra se réduire simplement à £ = 0 7 on

devra avoir

A»=o9 B"=o, D=o .

Si de plus les axes des x et des y sont respectivement parallèles
à deux conjugues du diamètre qui se confond avec Taxe des z
ou , ce qui revient au même 9 si les plans des oez et des yz sont
conjugués à celui auquel le plan des ccy est parallèle , on devra
avoir en outre ; comme ci-dessus,

A'=o ? B/—o , C'—o >

l'équation (1) deviendra donc alors simplement

- o ; (14) ' •
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et pourra indistinctement exprimer toutes les surfaces du second
ordre. Cette dernière équation a donc , dans le fond , autant de
généralité que l'équation (i) ; du moins lorsque cette dernière n'est
point généralement absurde ; c'est-à-dire 7 toutes les fois qu'il existe
au moins un système de valeurs de ce v y ? z qui y satisfait, (*)

Les diamètres conjugués rectangulaires d'une surface courbe sont
ce qu'on appelle ses Diamètres principaux, et leurs extrémités en

(*) Sachant ainsi mener un plan tangent à la surface, par un de ses points ,
II ne sera pas difficile de lui mener une normale par le même point. II ne
s'agira pour cela que de connaître les conditions de perpendiculaire entre un plan
et une droite. Or , en supposant , pour plus de simplicité , que l'un et l'autre
passent par l'origine , que la droite est (JC=TOZ , y=/2-s) et que le plan est

z^=.px~^qy , il suffira d'exprimer que deux points {a ? b , c) , {a1 , bf, cf) pris
arbitrairement sur l'une et l'autre sont les extrémités de l'bjpothénuse .d'un triangle
rectangle dont le-sommet de l'angle droit est à l'origine; cette condition donne

+(<?—cO 2+2. Ça—aO (*—£') Cos, y

on en réduisant

mais , par la situation des deux points ? on a

donc 3 il Tiendra, en divisant par c 3
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sont les sommets. Pour s'assurer de l'existence de tels dlamelres,
dans les surfaces du second ordre , et en fixer la direction , il faut
joindre aux équations (6) les équations suivantes

j + m m'+72 nf-\-(m nf -\-m! n )Cos.Q/+(m +m')Cos./3+(n *\-nf )Cos.<a=o ,

i-\-mffm +72% + ( m % +r?2 72'0Cos.y+(ra"+/7i )Cos.^3+(/2//+n )Cos.«=o ;

qyi expriment (*) que les diamètres conjugués sont, deux à deux,
perpendiculaires l'un à l'autre.

et, comme af, V doivent demeurer indéterminés et indépendans , les condition*
elierchées seront

De là on passera aux plans tangens et aux normales par des points extérieurs
et, par suite , aux surfaces coniques circonscrites et à leurs lignes de contact.
On sera conduit ainsi à exposer les propriétés des surfaces du second ordre,.
relativement à ce qu'on est convenu d'appeler leurs pôles. On pourra consulter
à ce sujet , ce qui a été dit aux pages 293 et 3o2 du 3 . m e volume de ce recueil.

(*) Soient, en effet, (x=m2 , y=>nz) , (jjc=m.fz , y=nrz) deux droites que,
pour plus de simplicité ? nous supposons passer par l'origine ; nous exprimerons
qu'elles sont perpendiculaires l'une à l'autre , en exprimant que deux peints (a, b7 c) ,
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Telles sont donc les équations qui , combinées avec les équa-

tions (G) 5 feront connaître m et n , m' et ri , m/f et nu ; e t ,
comme ces trois couples de quantités y entrent symétriquement ,
on est en droit d'en conclure qu'elles doivent dépendre d'une môme
équation du troisième deg'é , et que conséquernment les surfaces
du second ordre n'ont qu'un système unique de diamètres prin-
cipaux ; c'est ce que le calcul va confirmer.

Si Ton prend successivement la différence des produits respectifs
de la première et de la dernière des équations (6) par rnn et ni
et par nu et n 9 les équations résultantes pourront être écrites ainsi:

^^^^m^ — ̂  , (16)

m'n"—n'm") = o , (17)

En opérant exactement de la même manière sur la première et
sur la dernière des équations (i5) , les deux équations résultantes
pourront être mises sous cette forme :

=o , (18)

(mCos /8-f.72Cos,«+i)(7i" — n1 )+(m+nCos.<y+Cos,fr(mW—aW)=o . (19)

(ar, b}
 y c

f) , pris respectivement sur ces deux droites , sont les extrémités de l'hy-

pothénuse d'un triangle rectangle dont le sommet de l'angle droit est à l'origine*

Cette condition donnera, comme dans la note précédente ;

CQê y ;

mais on aura ici

ce qui donnera , en substituant et divisant pai? cc!
 % la première des é

mentionnées dans le texte.
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Or , en éliminant m'—m" entre les équations (16) et (18) , et n"—nf

entre les équations (17) et (19) , mfnff—nfmn disparaîtra de lui-
même des équations résultantes , et elles seront ,

De ces deux équations on déduirait une équation finale en m 9

qui serait du troisième degré seulement ? et dont par conséquent
les racines seraient les valeurs de m > mf

 9 m". On aurait de plus
une valeur de n fonction de m, laquelle deviendrait nf et nfr > en
y changeant m en m/ et mn \ mais il sera plus convenable d?opérer
comme il suit.

Soient x ? y , z les coordonnées de l'un quelconque des sommets
de la surface courbe , et r sa dislance au centre ou la longueur
du demi-diamètre principal qui lui répond ; en continuant , pour
abréger , de représenter par a , b , c les coordonnées du centre ,
données par les formules (9) , nous aurons , à la fois ,

h)(z—c

= ra *

en outre Fé(juation (i) peut facilement être mise sous cette formt
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+2(A a+C'h+B'c+A")*

'+D—Aas—Bh*—Cc*—2A'bc—2B/ca—2C'ab = o ,-

posant, pour abréger ,

a-}-2C/a&—D=A ;

et remarquant qu'en vertu des- équations (7) les coeffîcîens des
premières puissances de x , y,. z sont nuls , elle deviendra simplement

(a3)

Cela posé-, si , dans les équations (21) et (z3) , on introduit,
pour x—a et y—b les valeurs données- par les- équations (22) ,,
elles- deviendront

n*'-+- 2Âfn + zB'm + 2C>mn \ - A

effuations entre lesquelles- éliminauÈ (z—cf * ii viendra*

Tom* V~ '
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+2(C'r2-- ACos.y>n

—ACos.*>+(CVa-A)=o
(25)

éliminant enfin nr et » entre cette équation et les équations (20)
on aura d'abord

{ABC—A A'*—BB'*—C C+zÀ'B'Cy

(BC—A»)-\- 2(B'C>—AACjCos,«

'—BBf) Cos./3

/'— CC)Cos.v

+A=

^ . a — C o s v)

4-i5Sin.!j8—zB^Cos./i— Cos.yCos.*)

+CSin/y—2C/(Cos y — Cos.«Cos.̂ )

—A3(i—Cos.2*—Cos.*£ —

et ensuite

ACos. *)(Qrz—ACos.y)—(Br2—A) (B;r?—ACos.^S)
772 =

—-A) (Br2—A)—(C'r2—ACos.y)2

2—ACos.«)

(Ar*—A)(Br2—A)—(G^2—ACos.y)2

L'équation (26) donnera les longueurs des demi - diamètres prin-
cipaux j les formules (27) en détermineront la direction ? et ensuite



ET SURFACES DU SECOND ORDRE. «7̂
Tune des équations (24) , combinée avec les équations (22) , fera
connaître les sommets.

Parvenus à l'équation (26) , on pourra poursuivre la discussion ,
comme Ta fait M. Bérard , à la page 110 du troisième volume
de ce recueil»

Dans le cas particulier où Ton aura

(28)

la surface , n'ayant point de centre , n'aura qu'un seul diamètre
principal que l'on pourra déterminer comme il suit ; les équations

du diamètre deviendront alors

f_ A»(A' —BC)+B"(jCCJ—>ArB')+C"ÇBBr--QAr)/,
~X — CrrCfAB)J^QgBrCf^+BV(AA<B'U)KZ~

/— B c B C4)+C(AA~BC)+A(CCAB) ^
Y Y — Q'iC'*-AB)—A»iBB'—C'A')+B"(AAr~-B'C') ^Z"~Z J

En exprimant donc que ce diamètre est perpendiculaire au pfan
tangent à son extrémité , donné par l'équation (i3) , on aura d$u:&
équations en xf

 5 y/ » z/ ^t11*1 5 combinées avec l'équation (1 o) , ne
donneront , pour ces trois coordonnées ? en ayant égard à la rela-
tion (28) 7 qu'un seul système de valeurs lesquelles seront les coor-
données du sommet cherché. Il est aîsé de voir qu'alors tous le^
diamètres seront parallèles-

Lorsque , comme on le fait ordina:rement dans les traités élémen-
taires , on suppose les axes des coordonnées rectangulaires 5 lès-
dernières recherche^ et les résultats qu'on en obtient se simplifient
considérablement*,
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QUESTIONS RÉSOLUES,

Démonstration des deux théorèmes de géométrie énoncés
à la page 38Zj. du Zj..e çolume de ce recueil ;

Par un

JL HEORÈME L Si deu& ellipses, tellement situées sur un -plan
que deux diamètres conjugués de Tune soient respectivement paral-
lèles à deux diamètres conjugués de Vautre , se coupent en quatre
points^ ; ces quatre points seront sur une troisième ellipse dans
laquelle les diamètres conjugués égaux seront respectivement paral-
lèles aux diamètres conjugués que Von suppose être déjà parallèles
dans Jes^deus premières^

Démonstration. Soient pris les axes des coordonnées respectivement
parallèles aux diamètres conjugués que Ton suppose F être dans
les deux ellipses dont il s'agit ; les équations de ces deux ellipses
seront de la forme

A x2+By*-\-2D x+zE y+K =o , 1

5(0

Or 3 il est connu que , lorsque deux courbes sont rapportées
aux mômes axes 9 toute combinaison de leurs équations appartient
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I une troisième courbe qui coupe chacune d'elles aux ïftêmes points
où elles se coupent elles-mêmes.

Soit donc ajouté au produit de la première des deux équations
ci-dessus par B/—A1 le produit de la seconde par A—B ? il
tiendra en réduisant

+ 2 {B'(4—B)-rD(Âf—B') ] H-2 {E\A-B)-E(A'~B')}Y

équation d'une courbe qui contient les quatre intersections des
deux premières ; or, on voit que cette courbe est une ellipse dans
laquelle les diamètres conjugués égaux sont respectivement paral-
lèles aux axes des coordonnées 9 c'est-à-dire ? aux diamètres con-
jugués que l'on suppose être parallèles dans les deux premières;
ce qui démontre la proposition annoncée»

Si l'on suppose les axes des coordonnées rectangulaires ; on aura J
pour ce cas particulier ? la proposition suivante :

COROLLAIRE. Si deux ellipses dont les axes sont respective^
ment parallèles se coupent en quatre points , ces quatre points
seront sur une même circonférence. (*)

Ce qui précède ne supposant aucunement que les quatre coefïi-
ciens A, B , A1\ Bf soient plutôt de mêmes signes que de signes
différens ? il s'ensuit que la proposition a également lieu , lorsque

(*) Ce cas particulier avait été proposé par M. Bérard ejuî en avait fourni
une démonstration assez simple que nous aurions mentionnée ici , si celle que
l'oB vient de voir ne se trouvait la comprendre»

J. D. G.
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les courbes données $ au lieu d'être deux ellipses , sont deux hy-
perboles , ou bien une ellipse et une hyperbole. Enfin l'un des
deux ceefficiens A 5 B ou l'un des eoefficiens A9

 7 B1 pouvant
être supposé nul ; il s'ensuit que la proposition est encore vraie r

lors même que Tune des courbes données ou toutes les deux sont
deux paraboles.

Si ? au lieu de multiplier respectivement les équations fi) pa?
B'—A' et A—B^ on les eût multipliées par —AJ—B/ et -\-A-\-B 9

l'équation (3) eût été celle d'une hyperbole équilatérale rapportée
à deux axes parallèles à deux diamètres conjugués parallèles eux-
mêmes aux diamètres conjugués que Ton suppose être parallèles
dans les deux premières courbes ; ce qui peut fournir de nouveaux
théorèmes»

THÉORÈME IL Si trois ellipsoïdes , tellement situes dans
Tespace que trois diamètres conjugués de Vun quelconque soient
respectivement parallèles à trois diamètres conjugués de chacun des
deux autres 7 se coupent en huit points ; ces huit points seront à
la surface dun quatrième ellipsoïde dans lequel les diamètres con-
jugués égaux seront respectivement parallèles aux diamètres conjugués
que Von suppose être déjà parallèles dans les trois premiers.

Démonstration* Soient pris les axes des coordonnées respectivement
parallèles aux diamètres conjugués que Ton suppose l'être déjà dans
les trois ellipsoïdes dont il s'agit *7 les équations de ces ellipsoïdes
seront de la forme

A x*+B v*-$rC z*+2& X+2E Y+ZF z^rK =o ,

' = o t

l/x-\-2E//y-\-2F//zJhK//—& .

Ote * îî est connu <jae , lorsque trois surfaces aont rapportées
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axes , foute combinaison de leurs équations appartient à une

quatrième surface qui contient les points d'intersection des trois
premières.

Soit donc prise la somme des produits respectifs des équa-
tions (i) par

C ~C»B +C»A —A»C

A B'^B A'+B O^C B*-\-C\At--A C

il viendra , en réduisant ,

*+-Etc. . . . =o ;

équation d'une surface qui contient les huit intersections des trois
premières ; or , on ^oît que cette surface est un ellipsoïde dans
lequel les diamètres conjugués égaux sont respectivement parallèles
aux axes des coordonnées , c'est-à-dire , aux diamètres conjugués
que Ton suppose être parallèles dans les trois premiers 5 ce qui
démontre la proposition annoncée.

Si l'on suppose les axes des coordonnées tectangulaires, on aura f

jpour ce cas particulier , la proposition suivante :
COROLLAIRE. Si trois ellipsoïdes , tellement situés dans Vespace
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que leurs axes soient respectivement parallèles , se covpent en huit
points ; ces huit s points seront à la surface d'une même sphère»

On pourrait faire ici des remarques analogues à celles qui ont
été faites sur le premier théorème ; on parviendrait ainsi à établir
que les trois premières surfaces peuvent être trois surfaces quel-
conques du second ordre , et que la quatrième peut être une quel-
conque de celles d'entre elles qui sont pourvues de centres*

QUESTIONS PROPOSEES.

Problèmes de Géométrie»

I. VJN demande trois cercles tels que chacun d'eux touche les*
deux autres ? et qui satisfassent de plus aux conditions suivantes x.
i,° que les points de contact de l'un d'entre eux avec les deux
autres, soient deux points donnés ; 2.°' que ces deux derniers tou-
chent une même droite donnée ?

IL On demande trois cercles A., B > C ^ tels que chacun d'eux;
touche les deux autres , et qui satisfassent de plus aux conditions
suivantes : i.° que le- point de contact de A et B soit un point
donné ; 2.0 que A et C soient tan gens à une même droite donnée ;,
3u° que B et C soient aussi tangcns à une même droite donnée?
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AN ALISE TRANSCENDAIS1 TE*

Essai sur un nouçeau mode d'eœposilion des pjyincipes
du calcul différentiel ;

Par M. SEKVOIS , professeur aux écoles d'artillerie. (*)

»? A mesure que ( l'analise ) s'étend et s'enrichit de
» nouvelles méthodes, elle devient plus compliquée,
M et l'on ne peut la simplifier qu'en généralisai
v et en réduisant, tout à la fois , les méthodes qui
« peuvent être susceptibles de ces avantages, »

( Mécanique anaïitique, page 338. )

î . J E commence par fixer quelques notations et par donner quelques
définitions.

J'exprime
Par fz , fz 9 Fz^ <pz , des fonctions quelconques de laquant

îité quelconque z : je les appelle Fonctions monômes simples.

Par ifz r ifFz:.,..... des fonctions de fonctions de z\ ce sont

des Fonctions monômes composées.

(*) Ce qu'on va lire es t , en substance , extrait de deux mémoires , sur le dé-
veloppement des fonctions en séries, par la méthode différentielle, présentés à la
première classe de l'institut, le i . e r , vers la fin de i 8 o 5 , le 2, r a e , en 1809, et
qui ont reçu l'approbation de la classe , sur un rappoit de MM. Legendre et
ILâCroix , en date du 5- d'octobre I8M>*

Tom. V, n*° IF, i.er octobre
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Par fz , izz , Pz , . . ...inz , Ta fonction marquée par f f prise

successivement ifois 9 sfois , 3fois «fois , de la quantité z : ce
sont des Fonctions monômes du ie r , du 2.% du 3.e ,....</# #.**•
ordre : n est Xeocposant de l'ordre de la fonction.

Par f"1*, f"2z , . ..*. f—*z, des fonctions de z dont la définition
.complète est donnée par l'équation générale

inl-nz-i-nînz~z z (0

ce sont des Fonctions inverses ou d'Ordre négatif.
Si la quantité sous le signe fonctionnaire , c'est-à-dire , le sujet

de la jonction, est polynôme , on le met «ntre parenthèses. Ainsi ,
i{a-\-z) désigne la fonction f du binôme a-\-z. Lorsque le sujet
de la fonction est regardé comme complexe 9 on emploie 5 avec les
parenthèses , des virgules interposées entre les sujets partiels. Ainsi
î\pc , (b-^y) , z , . . . ] exprime la fonction f des quantités x ? iï+y, z9 *. «.

Si fz = z ; c'est-à-dire , si le sujet n'est pris qu'une fois, la
fonction f est le facteur 1. Si iz—az , ou si le sujet est pris a
fois , la fonction f est le facteur a.

En supposant que le sujet z soit complexe y par exemple *
z=ç(x , y , ) , oc % jr . . . . . . étant des quantités variables , ar-
bitraires ou indépendantes qui reçoivent respectivement les accrois-
semens invariables ou .constans quelconques *, j8 , . . . . . , si çn a

la fonction f est ce qu'on appelle Yêtat varié de z. Je propose ,
avec Arbogast ( Calculs des dérivations , n.° 442 ) ^e désigner cette
fonction particulière par la lettre E ; et j'adopte les définition*
suivantes

E z =

) *
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Sï f i=Ez—z , la fonction f est ce qu'on appelle la différence

ie• z , à laquelle est consacrée 9 depuis long-temps , la lettre A>
Ainsi ; on a les deiinitions

= E z - ~ z = , )—-</>(# , y 5 . . . . ) • ( 3 )

On conclut de là , sur-le-champ r cette autre expression de l'état
varié-

Ez-z+Az .. (4)

Quand le sujet z est complexe , on a souvent besoin d'exprimer
que la fonction f n'est prise que par rapport à un seul sujet partiel.
SI donc l'on veut exprimer que la fonction f n'est prise que par

rapport à x f on écrira —z; si la fonction ne doit atteindre que y9
ococ

on écrira —z , et ainsi de suite. —z ? — z , . . . . sont donc lesfonc-
J x y

fions f partielles de z. Ainsi, a étant un* facteur ? on aura la défi-
nition suivante du facteur a partiel

a

De même , d'après {2) , (3) , on aura les définitions suivantes des
états pariés partiels et des différences partielles

— (5)

^z: est toujours égal à z; car?. l'expression^ elle-même indique
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qu'on ne prend pas la fonction f de z, et par conséquent qu'à
cet égard z ne subit aucune modification. Ainsi

z=:aoz=Eoz=Aoz= — z= ~z=...... (6)

Toute fonction inverse admet un complément arbitraire, lorsque
la fonction directe du r.er ordre a la propriété d'annuler dans son
sujet certains termes ? ou d'y rendre égaux à l'unité certains facteurs*
Ainsi, par exemple 7 la différence A annulant , entre autres, les termes
constans , la fonction inverse A~lz prend , à cet égard , pour com-
plément additionnel y la constante arbitraire A.

On a coutume de désigner par %z , 2*2 , . •. • 2"z, des fonctions
de z qu'on appelle intégrales , et dont la définition est dans l'équation

^t , comme on a aussi (i)

AnA~

il s'ensuit que

(7)

Par la même raison, L étant la notation du logarithme naturel
et e celle de la base du système 3 on aura

Ponc aussi

er^lrlz % e^='Lmlz \ (8)

On trouvera de même

z) ; . . . . (9)

car on a
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Pour prévenir toute méprise, le produit de ix par Jy sera repré-
senté par ix .fy. L'expression ixfy signifierait la fonction f Àa
produit de ce par fy. La puissance n de ix sera indiquée par (ix)n.
L'expression ix11 désignant la fonction f de la puissance n de x*

2. Soit

Fz = fz+fz+#z-{-......; (10)

c'est-à-dire, supposons que la fonction F d̂e z est telle que , pour
la former , il faut , à la fonction f de z , ajouter ( algébriquement )
une seconde fonction / de la même lettre 7 puis une troisième marquée
par <p , et ainsi de suite. La fonction F est alors de la classe des

Jonctions polynômes. On peut indiquer cette signification de la
fonction F par une notation très-expressive , qui a le grand avantage
de permettre de traiter les fonctions polynômes comme des fonctions
monômes , sans perdre de vue de quelle manière elles sont com-
posées» On écrit pour cela

il en résulte qu'on a aussi

Si F7 est une autre fonction polynôme de z, donnée par Te'quation

*M- )z ,

on pourra aussi exprimer qu'on prend la fonction F ; de F z , eu
écrivant

et ainsi de suite.
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Rîen n'empêche qu'une ,, plusieurs ou toutes les fonctiorts tno^

nomes composantes ne soient des facteurs* Dans le dernier cas ,
après en avoir averti , on saura, sans équivoque (i i) , (12), que
Fz ? F'Fz , . . . • sont les produits de z multiplié par le polynôme
f+ /+M-. .* . , ou par le produit 0

3, Soit

• • • • 0=W+ty-i- - • • - (13)
Les fonctions qui , comme <p , sont telles que la fonction de
somme ( algébrique ) d'un nombre quelconque de quantités est
à la somme des fonctions pareilles de chacune de ces- quantités >.
seront appelées distributives..

Ainsi 9. parce que-

le facteur et 5 l'état varié E , sont des fonctions, distributives y
mais.,, comme on n'a pas

les sinus y les logarithmes naturels,.^., ne sont point des. fonctions*
distribu tives*.

4 Soit

ffz=ffz . (i4)
Les fonctipns qui , comme f et f , sont telles qu'elles donnent
des résultats identiques , quel que soit l'ordre dans lequel on les*
applique au sujet , seront appelées commutatives entre elles*

Ainsi j parce qu'on a,

adz~baz y àEz='Eaz ; . . . -

les facteurs; constans^ a , h ,, le facteur constant ^ et l'état varié E ' r

sont des fonctions commutatives entre elles ;: mais comme > a étant,
toujours constant et x variable ? on. n'a pas

; JL&z=xJLz, y Axz=-



DU CALCUL D I F F É R E N T I E L . 9Î)

ïï s'ensuit que le sinus avec le facteur constant ? l'état Tarie on la
différence avec le facteur var iab le . . . . . . n'appartiennent point à la
classe des fonctions commutatives entre elles.

5. On recueille de ces simples notions plusieurs théorèmes importans.
Si deux fonctions simples ç , 4" s o n t distributives , la fonction

inonôme composée sera aussi distributive ; car puisque , par hypothèse

on aura évidemment

II suit de là immédiatement que les difïérens ordres d'une fonction
distributive sont aussi des fonctions distributives.

6. Si les fonctions monômes f?%/\ ?>, , . • . . composantes de la
fonction polynôme F sont distributives , la fonction polynôme F
aura aussi la même propriété *3 car, d'après la définition (10) on aura

mais , parce que f, f , ç, sont distributives , cette équation deviendra

On dira la même chose (n.° 5 ) des diiîérens ordres F" de la même
fonction.

7. Si les fonctions f , f> ?>,. , . , sont commutatives entre elles
deux à deux , de manière qu'on ait

et si ensuite , ayant pris un certain nombre n de ces fonctions >
on en forme toutes les fonctions monômes composées que peut
fournir la permutation entre eux des n signes fonctionnaires , toutes
les fontions monômes composées résultantes seront équivalentes*

Ainsi 5 par exemple, si Ton prend les trois premières f , fy <p >
on aura
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Pour le démontrer généralement , considérons la fonction monôme

on pourra, sans en changer la valeur , permuter entre elles deux
lettres fonctionnaires consécutives quelconques 9, + % par exemple»
Car j soit

F . .•.*z~f ?

on aura

or , par hypothèse ,

donc

et, en prenant, de part et d'autre, la fonction composëev

/ fWF z=f f ^F z .

Il suit de là que chaque lettre fonctionnaire peut être amenée h
quelle place on veut de la combinaison première , et partant qu?oi¥
peut faire subir aux lettres fonctionnaires toutes les permutations
possibles , sans altérer la valeur de la fonction composée.

On conclut évidemment de ce théorème que si , avec les lettres
fonctionnaires cornmutatives entre elles deux à deux f, jT? 0-, ..*-
on forme ? à volonté , de nouvelles fonctions , composées de deux r

de trois, lettres, telles que f/z r ^ F z r . . . ^ , toutes celles-fii
seront aussi commutatives entre elles et avec la première.

8. Si f et jT sont commutatives entre elles 5 elles le seront avecr
leurs inverses qui seront aussi oommutatiyes entre elles , c'est-à-
dire 9 que , si l'on a

4 f/z=/fz ,. (r5)

on aura aussï

En. effet % on. a (i);



DU CALCUL DIFFÉRENTIEL» XOI

or, (ib)

donc

« i , en prenant de part et d'autre la fonction f" * ,

C'est le premier des théorèmes (16), et le deuxième se démon îreraîf
de la même manière. Quant au troisième on a ( i )

et , d'après le premier des théorèmes (16) f

laquelle devient le troisième théorème (16), en y changeant fz enzl
g. Des théorèmes ( n,os 7 , 8 ) on conclut ? sans discussion ? k§

formules qui suivent.
Quand f , jf, <p 9 . , . # étant commutatïves entre elles, k 9 m , n >.**%

âont des nombres entiers positifs ? on a

puis , en désignant i.fz par fz ^

<pnz = ïnfnz=fni"z

enfin, en désignant injmz par v

10. Si les fonctions monômes d'une fonction polynôme sont à îâ
fois dLsfîïhuiives et conimutatïves entre elles f tous les ordres de
la fonction polynôme seront des fonctions distribuiïves ( on le sait
di jà d'après le n.° 6 ) et commutatives , non seulement avec les
difîerens ordres des composantes ? mais aussi avec tous les ordres des
fom-tions d'iStnbutîves <̂ ui sont coixuButatiyes avec ces dernières»

Soît
Tom. V. %4
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et supposons que les disîributives f, f , . . . . soient coTnmutaîives tant
entre elles qu'avec une distributive quelconque ç. On aura ( n.° 6 )

+ =Ffz .

On trouvera de même

Ajoutant à cela la considération fournie par la formule (17) , la
proposition se trouvera complètement démontrée.

11. Si les fonctions monômes de deux fonctions polynômes sont
distributives et commutatives entre elles 5 les deux fonctions poly-
nômes seront distributives ( n.° 6 ) et commutatives entre elles.

Soient, en effet ,

on aura évidemment

WF'z = f f'z+£fz+.... +/l'z+J[f>z+.. •. )
} (20)

or , d'après l'hypothèse , ces deux développemens sont composes
de termes identiques deux à deux ; on a donc

Si Ton fait ensuite

^n supposant f;/ ff
 ? . . . . distributives et commutatives entre elles

et avec f, jf , . . . . , V ? j * , . . . . ; F / ; sera commutative avec F ? Ff ;
et par conséquent on aura ( n.° 7 )

FF'F"z=FF / ;F /z=F /FF /^z=F^F^Fz=F"FF'z=F"F*Fz ;

el ainsi du reste.
12» Le développement des fonctions monômes composées ; telles
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que FF ;z 7 F F ^ z , (n.° n ) dont les fonctions simples sont
des fonctions polynômes , lorsque d'ailleurs les fonctions monômes
qui composent ces dernières sont distributives et cocnmutatives entre
elles 9 ne présente aucune difficulté* On a y dans les équations {20) ,
le type de celui de FF'-z ; on passe 7 par le même procédé , de
celui-ci à celui de FF /F / /z > et ainsi de suite ; on sait donc dé-
velopper les fonctions comprises dans la formule

FF/....*=B(f+/+....XP+/+....).-.« - 0»)
Le développement général d'un ordre quelconque ¥nz d'une fonction

polynôme Fz 7 aux fonctions monômes distributives et commutatives,
ressortît à la théorie générale du développement des fonctions en
séries, dont nous allons exposer les principes.

i 3 . Je suppose qu'on ait respectivement

(22>

lorsque <p#:=o, Ç^x—o ? f^x^o?

J'écris la suite indéfinie d'équations

F # = F *4-<? x, F/ x ,

équations que je rends identiques 9 en supposant s

F'x—F/S „ F/ar—Wy
F w ^ ? = ^ f . . . . (24)

Je prends la somme des produits respectifs des équations (23)
par i , cpx, çxtfx , fx&'x.&'x ,*.••.> et j'obtiens , en réduisant,

F^+<p^ • F^-h ^^ • Vx . F ^ + ^ . çte. (p/ẑ r. F / / /^+. . . . (25)

équations; (^4) donnent ensuite , sur-le-champ 9
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Fa—F* __ Fy—F« F?—F*

^>/3 C ' y < p ^ J *

F'8-

(26)

Or , de celles-ci (2C) ou tire facilement les coelïicîens F ^ , F7/y 9

F / 7 / ^ v . . , . . de l'équation (20) , exprimés par les seules fonctions
F ? f, ^ , ^ 7

f , o , . des constantes *i, p , r , , . . , . On a, en effet,

f y

. (pfy .

Voîlà la série (25), de forme très-générale 9 établie analitique-
ment , par un procédé fort naturel et qui a l'apparence de la plus
grande simplicité ; de sorte qu'il semble qu'il n'y ait plus qu'à
descendre de là aux différens cas particuliers. Mais on a bientôt
remarqué que ce procédé présente aussi de graves inconvéniens.
Le premier est de conduire péniblement 3 même dans les cas les
plus simples ? h la loi qui règne entre les coefficïens F7£ , F7/y ,••••;
le deuxième % et il est majeur, est de ne rien donner dans le cas peut-
être le plus utile , celui de l'égalité, en tout GU en partie , entre les cons-
tantes a, y <3 , , . . . ; car 9 alors les coefficiens prennent, tous ou partie 7 la
forme indéterminée *• C'est ce qui a lieu , en particulier, quand toutes
les fonctions $x > ¥OÛ , . , . sont égales , et par conséquent lorsqu'il s5agit
de développer Yx suivant les puissances d'une autre fonction q>x9 ou bien
encore, quand k s fonctions 4>x 9 Q'x,...., étant différentes les unes
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des autres , sont toutes de la forme #"*#. Cependant , après un
examen réfléchi, on reconnaît que ces ineonvéniens ne sont pas insur-
montables , et qu'ils disparaissent quand on modifie un peu le procédé ;
et , en particulier 9 quand on n'attaque pas d'abord le problème
général. Voici ce que j'ai trouvé de plus simple à cet égard.

i4- Dans F^-f-y*) je conbidère y seule comme variable, ayant
a pour accroissement arbitraire et constant. J'écris l'équation identique

laquelle , en faisant

j

devient

(29)

Je prends les différences successives de l'équation (29) , par rapport
\ y seule ; et pour cela je fais observer qu'en général (3)

A(<?y . fy)=
ou bien

après quoi j'ai successivement

A

d'où, je tire , par transposition ,
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(30

prenant enfin la somme des produits respectifs de ces équations (3i) par

il vient en réduisant, et ayant égard à l'équation (29)

ou bien f en transposant

i . a . 3 . «3

On paut donner à ce développement plusieurs autres formes, très-
remarquables.

D'abord je fais oc~\-y—p ; relation qui donne 9 parce que s est
constante ,.

par conséquent Texpression A7lF(o;+y>) devient évidemment An

les diiFérences! étant prises par rapport à /? qui varie de « j
a ainsi

1.2. ><

—et) (X —p —2»)
(33>
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Dans ce nouveau développement ? je change x en x-\-n* \ alors le
premier membre devient (2)

dans le second , x—p devient x—p-\~na. Après cela je change p
en x ; alors Ap devient Ax , et AuFp devient AwF^r ; les diffé-
rences étant prises par rapport à x qui varie de * ; il vient ainsi

n 72—1 _ „ , n n-* ^ f A 3 F ^ L ,3 *

2 * 3

m
Ici je fais n*~rn ; d'où « = — ; et j'ai

- (35)

Dans l'équation (35) 5 je fais x~o ; ce que j'exprimerai , rela-
tivement aux fonctions F^ , . . . . AnFx } en écrivant F # o , . *. AMF^0 |
puis je change m en x 9 et j'ai

Ï<§=^W..(36)

i5. La série (33) est aussi donnée par le procédé du n.° iS*
quand on fait

tpx — x—p j ¥x—x—p—« ; $;/x=X—p—2* ; ;

maïs il est bien plus difficile d'arriver à la forme générale et bien
simple AmFp qui comprend tons les coeiïiciens. Ou conclut sur-le-
champ de cette série la possibilité du développement de Fx suivant

les puissances entières et positives de — ; bien que le procédé du

ti.# i3 ne donne rien à cet égard. En effet, les produits
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a;—p (x—p)(x—p—«) (x—p)(x—p—a)(x—p—a«)

— ' ^ ' 5 '•

étant développés , sont tous de la forme

de sorte qu'après ce développement, 11 s'agirait simplement d'ordonner

par rapport aux puissances I ), ( j ,•• . .• ; et , sana calcul^

x—p
on aperçoit déjà que le coefficient de la première puissance

serait la série

AFp— J A ' F / H - T A T / H . . . . . . (37)

II ne serait même pas. difficile de les déterminer tous d'après cette
seule considération; mais il sera, pi us court d'en faire la recherche
par un procédé analogue à celui qui vient d'être employé ( n.° i4)*

D'abord je prends la somme des produits respectifs des équa-
tions (3.i) par + i , — i , •+•-, —î> + ? ce qui donne ? ei*
déduisant et multipliant par »,

Ici je fais.

A F ^ + j

notation d'après laquelle on aura

^t y en général

(38)

A 3 z ~ . . . . = d z , (39>

la déiinitioa coxaplètê  d'une nouvelle fonction de z, poly-

nôme
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nème et même inftnitinàme 7 en général , que j'appelle la àijfèr
rentielle de z.

il s'ensuit 7 sur-le-champ, que

et j en général

Ad"z— ̂  A2d"z+^ A3d"z— = d«+fz • (4o>

d2z ? d3^,. • . . dnz , sont les différentielles de diffèrens ordres de £*
Cela étant , l'équation (38) devient

* / /=dF(>+ r ;_yà fy .- (4i)

Je prends les différences successives de celle-ci, et j 'ai , eu égard
à la formule (3o) ,

Je prends la somme des produits respectifs de ces équations par
» . I , -4- y, — . . . . et j'ai , en réduisant

équation qui , d'après les notations fixées (3Q) 7 (4o) , devient

ou Bien

Je fais sur celle-ci ks mêmes opérations que sur l'équation ( 4 0 î
c'est-à-dire , que je prends la somme des produits respectifs de
ses différences successives par -f-i , —\> "^75 — ••••• c e 4U* ï n e

donne , en réduisant, ejt ayant toujours égard aux noiations (3Q 9 (4o)>
Tom. F. .*&
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3«AfY=à>F(x+y)-.yàYy . (43)

Le procédé détaillé pour passer de l'équation ( 4 0 ^ l'équation (42)
sert évidemment de formule pour passer de celle-ci à l'équation (43) ,
puis de cette dernière à une nouvelle f et ainsi de suite ; de sorte
que c'est par une induction rigoureuse qu'on obtient la .suite in-
définie d équations

—yà fy B

En prenant ia somme de leurs produits respectifs par

V V 2 V^ Y^
J J f J J

il vient , en ayant égard à Féquation primitive (29),

d':où en transposant,

f ^ g ..- (44)
Série bien analogue avec la série (32) et qui , comme cette der-
nière ? prend, d'après les mêmes procédés , plusieurs formes dif-
férentes , savoir ;

^ ^ dFp+

- iFx+ — i'Tx+^r-à'Fx+... (46)
* ï«2 1*2*0

iF+
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dF+ dFH

£ 7 ^ w (48)
16. Je m'empresse d'appliquer ces formules art développement

des différent ordres d'une même fonction.-
Soit

ïa différence constante de a; étant # , on aura (3)

Si la fonction <p est distribuiive ? cette expression se changera en?

- ' AFX—Q\I>*Z—Z) . (49)

Admettons Thypothèse , et faisons un moment

ç>*z>—z^fz . (5o)

D'après les théorèmes ( n.os 5 , 6 ) , ^* et f seront des fonctions
dïstributives ; et , au lieu de (4$) , nouŝ  aurons

puis j en prenant la différence de celle-ci f

Si la fonction <p est commutative avec les facteurs constans 3

le sera aussi , en vertu du théorème ( n.° 10) , avec la fonction
Binôme f \ (5o) 7 c'est-à dire -, qu'on

Admettons encore rBypotlièse j* parce que f est- distributive,
aurons 9 d'après (5o) 9

ainsi t Téquation (01} devienfe
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On trouverait de même

et, par une induction manifeste

AmFa;=<pxfmz ;

expression qui, si Ton veut faire usage de la notation proposée (n.° 2
devient

Or , on a (6)

donc, par la formule (36), on aura

(53)

Actuellement, d'après la définition (39) et la formule (52) , on
trouve

dF^=AF^-fAaF^...=^[(^-i>-K^-O^+K* l i-1)^--] (54)
Je désignerai, en général, la fonction polynôme ? qui est ici entre

parenthèses, par Lp*z ; L sera ainsi la notation d'une fonction
déterminée de qfz ? dont la définition complète sera donnée par
l'équation

La fonction L s'appellera logarithme et L<P*z sera une fonction
monôme composée qui s'énoncera : logarithme de f* de z. Il est
clair ( n.° 10 ) que la fonction L^* est non seulement distributive ,
mais commutative avec la fonction <P et le facteur constant. Il
n'en est pas de même de la fonction simple L?

? récjuation (54) devient
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De celle-ci on conclut sur-le-champ

à>Fx^<Px(L<P*yz , A*Fx~rÇL<p*fz,.... dmF^=vx(L<i>*)mz ; (56)

par conséquent , en faisant arn=o dans Fa?, dF r̂ , dmF# , on a,
d'après la formule (48) , cet autre développement de ^z :

***=*+ — L?*z+ -^— (L?*)VH—-— (L**)3s+..« (-57)
«» I.2.«a I.2.3.*3 N

Tirons quelques conséquences importantes,» Dans (57) l'accroisse-̂
nient » étant arbitraire , je le fais égala l'unité, et j'ai

(58)

Je compare cette expression, terme à terme , avec celle de l'équa-
tion (57) \ et , parce que x est absolument indéterminé , j'obtiens
la relation

«L<t>z='L<t>*z . (09)

Soit J une fonction distributive et commutative avec tp et les
facteurs constats - prenons de part et d'autre d^ l'équation (58) la
fonction y * , nous aurons, eu égard à la formule ( 1 8 , 11.0 9 ) ^

Développons cliaque terme du second membre de celle-ci, par la
même formule (58) , et nous aurons visiblement

1.2.

4» f l
12 T

(60)
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d'ailleurs. % toujours, d'après, ( 58 ) ,, on a cette autre expression

1.2.

donc , en comparant terme à terme avec (60) ^ nous aurons
causa de rindéterminée x, la relation

. (61)
Supposons*

prenons f de part et d'autre > la fonction inverse L* r , et nous
aurons (1)

4z=Lmt+z ? çrz=(L~ï4<)xz r
et par conséquent, d'après la formule (58) ,

{^^+^^+...... (62)

Soient encore f et $ deux fonctions dîstrîbutîves et commutatîve*
tant entre elles, qu'avec le& facteurs constans { u et a; étant des-
exposant arbitraires^ on a sur-le-champ (i) ;

= L~

maîi (61)^, (09) oa a aussE

donc: (63) on? aura , en: employant la notation, ( n.° 2 )?

furz=hr >
er^ d'après (62)

Faîsonsî quelques hypothèses: particulières f sut lâ  forme de ïm
fiaactiom 4Tj et d'abord soi&
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en supposant « = i , on aura sur-le-champ , d'après (53), (58) , (55)

x r l x x""

Soit

Je prends, de part et d'autre, la fonction inverse f~*, et j'ai

laquelle^ en faisant

f
devient

et d'après la formule (66) , j'obtiendrai

z-\— FzH—. F'zH
I 1 2 , i

z+ ~ L ( + F ) +

Dans celles-cî, je mets pour ^ et F^ leurs expressions d'hypothèse
puis je prends, dans la première et la seconde f de part et d'autre
la fonction f et j'ai
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~

On fera f^-f—<^^=FJJ , et on aura (67) les déveioppemens relatifs

Dansceux-cî, au lieu des différens ordres F 2 ^ , F 3 ^ , . . . . , on mettra
leurs déveioppemens donnés par les mêmes équations (67) ; d'après

On Toit f sans qu'il soît besoin d'insister , comment on arriverait
aux deux déveioppemens de Tordre x de la fonction polynôme
quelconque 1 aux fonctions distributives et commutaûves \ c'est-à-
dire 7 cpxan sait développer la fonction

17. Je vais appliquer ces généralités aux fonctions données par fa
considération des différences des quantités, variables h fonctions que
J'appellerai fonctions différentielles.

En considérant ^ comme fonction; des deux seules variables x yy
( ce que nous dirons pourra s'appliquer sans peine aux fonctions*
d'un plus grand nombre ) , ses fonctions différentielles , totales sfc
partielles , sont ( n.Q 1 )

P a -yoit que ^ d'après la aotation proposée ( n,° 1 ) , pour le&
tions-
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tîons partielles, en général, nous exprimons les différentielles par-

tielles par —£ , — £ , . . . . •

x y
Les définitions des fonctions différentielles totales (3) , (4) > (%) *

exprimées d'après la notation proposée ( n.° 2 ) pour les fonctions
polynômes, seront

. E " ç = ( i - } - A ) \ , A r t^=:(E—i)*i ;

Elles servironi de formules pour exprimer les fonctions différentielles

partielles , en y changeant simplement E , A , d en — , — , — ?
OS OC 3C

E A d
OU en - , — , — respectivement

y y y
Ajoutons la formule qui établit la communication entre les fond-'

lions totales et les fonctions partielles : c'est

E H r 7< ' (70)

Elle est évidemment vraie; car 5 pour avoir <p{x-\~* , jHrjO — F ç *
il suffit de changer d'abord y en y-tffi > c'est-à-dire , de prendre

E
d'abord — ç ; ensuite , dans le résultat y de changer iï en x-\-& $

E E
c'est-à-dire , de prendre l'état varié — , selon % , de — ?•

a? y

Cela posé , il est facile de voir d'abord que toutes les fonctions

différentielles sont distributives. En effet, les états variés E . — , —
00 y

le sont évidemment, ainsi que les facteurs constans. Or > d'après
kurs définitions (6g) T les différences et différentielles totales ou
partielles sont des fonctions polynômes dont les composantes sont
des ordres d'états variés et des facteurs constans ; donc , en vertu»
au théorème ( n. e 6 ) , elles sont elles-mêmes disiributives.
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En second lieu , tous les états variés sont commutatifs avec le

facteur constant; il est même très-remarquable que tout état varié
est commutatif avec toute fonction d'ordre constant - c'est-à-dire ^
qu'on a *

E E E _ ^ E

11 est fort indifférent, en effet, de changer d'abord x en
par exemple , dans la fonction \ , puis de prendre la fonction 9 ,
ou. bien de prendre d'abord la fonction $ de ^ , pour y changer
ensuite w en x-\-x. Il suit de là que les états variés sont commu-
tatifs , tant entre eux qu'avec toutes les différences et différentielles.

En troisième lieu, les différences et différentielles, étant commu-
tatives avec les états variés , et étant des fonctions polynômes com-
posées d'états variés qui sont commutatifs avec les facteurs constans,
èeront , en vertu du théorème ( n.° Î O ) , commutatives avec Les
facteurs constans.

En quatrième lieu , d'après la définition de la différence partielle
À . A d

— 7 , celle-ci sera commutative avec — i et — 7 (n .° î o ) , puisque
m *• y y / r i

E
ees dernières sont commutatives avec — ? et les facteurs constans*

x
En cinquième lieu, d'après la définition de la différentielle par-

d . d •

tîelle — ^ ? celle-ci sera commutative avec — \ ( n.° îo ) , puisque
cette dernière l'est avec les différens ordres de — ? et avec les fac-

x
teurs constans.

De toutes ces observations réunies 9 il résulte que toutes les fonctions
différentielles et leurs différens ordres , positifs ou négatifs , sont
des fonctions commutatives , tant entre elles qu'avec les facteurs
sonstans, On pourra y ajouter les fonctions intégrales

s - - t s f
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ainsi que leurs differens ordres ; puisque ces fonctions ne sont que
des différences et différentielles d'ordres négatifs ( n.° i ).

Ainsi , toutes les formules données dans l'article précédent sont
immédiatement applicables à toutes ces fonctions. On en recueille
sur-le-champ plusieurs expressions abrégées dont voici les plus re-
marquables.

Dans la formule (46) , je mets ^ au lieu de Fx ; je compare
avec l'équation (62), et j'ai

et par conséquent aussi

E " (J i d Y
( L 1 )
( L ) Ç ; Î ( L )î* (72)
\ * / y \ y /

D'après les expressions précédentes et la définition À"^=(E
(6Q) , on a sur-le-champ

En comparant les définitions (69) de la différentielle avec la for-
mule (55) an obtient

Si ^ dans la formule A;|£ = (E— i)wç, on met, au lieu de E j f

Ê E
l'expression équivalente £, qui elle-même (63) est équivalente i

°n



ESSAI SUR LES PRINCIPES

£[', dans d»z=(LE/\ , (74) , on met, au lieu de E^, l'expres-
sion (70) , on aura

( | J ; (76)
or , d'après la formule (61) et les expressions (72) , on a

E E E È d d
L L + L +

donc f au lieu de (76) , on aura

(77)

Si , dans Téquatîon (64) > on change u , f, oc , ? en 772 , —

E
n ? — ? respectivement, on aura

équation qu i , d'après (62) , deviendra

~L~l ( m \-n - )z . (78)

On sait ( n.o s 11 P ï8 ) développer toutes ces expressions abrégées.
C'est ici le lieu de faire observer qu'on peut former, en com-

binant les fonctions différentielles entre elles et avec les facteurs
eonstans «, une infinité de fonctions différentielles nouvelles qui toutes,
d'après nos théorèmes généraux ( p»os 5 . •#. 10 ) seraient distribuées
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«t commutatives , tant entre elles qu'avec les facteurs eonstans.
Ainsi , en affectant des notations particulières à des fonctions po-
lynômes , telles, par exemple , que

on formerait de nouveaux algorithmes qui auraient toutes leurs lois
théoriques et pratiques dans les formules ( n.° iG). Le Calcul des
variations , en particulier , est le résultat d'une considération de
cette espèce*

Les facteurs, étant des fondions éminemment dlstribuiives et com-
tnutatives entre elles, sont visiblement compris comme cas parti-
culiers dans nos formules. Alors l'expression IJÇFZ est le logarithme
naturel du facteur <p* qui multiplie z ; Fautre expression ~L,"1'4/z
est la même chose que l'expression vulgaire %$z , ( n.° i ). Il n'est
pas même nécessaire d'aller chercher ailleurs une théorie des loga-
rithmes ; elle est toute entière dans la définition (55) et les for-
mules ( S Q ) , (61) , (62). Par la même raison , les moyens de déve-
loppement fournis par les élémens , pour élever un polynôme quel-
conque à une puissance quelconque 9 sont tous des cas particuliers
de ceux qui conduisent au développement de la formule (68).

18* Nous avons, dans ce qui précède , esquissé l'ensemble des
lois qui rapprochent et mettent en communication toutes les fonctions
différentielles 5 c'est-à-dire , la théorie la plus générale du calcul
différentiel. La pratique de ce calcul, laquelle n?est autre chose
que l'exécution des opérations indiquées dans les définitions , ne
formerait pas une branche séparée ? si on n'avait pas remarqué que ,
pour certaines classes de fonctions variables ; les fonctions différentielles
réduites se présentent sous des formes beaucoup plus simples qu'on
n'aurait pu le préjuger. D'ailleurs les fonctions, variables en gênera!,
«u égard à l'état actuel de Tanalise , se composent d'un assez
petit nombre d'autres fonctions qu'on appelle élémentaires ? et dont
i! suffit de connaître les fonctions différentielles pour être en état,
d'après les règles du calcul ordinaire , de trouver celles des j>re-
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ttrères. Il serait déplacé d'entrer ici dans aucun détail concernant
les états pariés et les différences des fonctions élémentaires-, je me
borna à la recherche de leurs différend Iles.

Les fonctions élémentaires simples d'une seule variable x sont
les fonctions monômes

» 9 , Cos.x 9

dans lesquelles on attFÎb-ue à x une différence constante. Les fonctions
élémentaires composées sont

x 9 Cos.<px.

Il y a „ pour faire dépendre les différentielles de celles-ci, et f

en général ? des fonctions composées , .dcî celles des fonctions simples %

un théorème important qu'il faut préliminairement établir.
Soient y—$x , et Fy~Fçx ; ç ? F sont dos fonctions quelconques

En supposant que la différence de y est la constante fi , on a*
par la formule (4?)

fi

Ici m est arbitraire ; partant T }e puis fai

7 2 *

(79)

j aurai

F(y-4-z« j=FvH dFv. u$#-4~ dry.*

(805;

d'après la formule (46) , eu égard à l'hypothèse (79) ; on a
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Je développe le second membre de celle-ci, par la même for-
mule (4fy , et j'ai pour F(y-\-m) cette autre expression

1 . 2

laquelle , comparée avec la première (80) ? donne sur-le-champ ,
à cause de l'indéterminée n ,

dFfcr = ^ . d * * '. (81)

Si on avait x=^t, en donnant à # la différence coûtante ^ „ H
est clair qu'on aurait ̂  par la formule (81)

et ainsi de suitîe.
Cela posé , d*après la formule (56) t m y supposant que la

fonction <p devienne le facteur a 5 et que z soit égal à Funité ,
nous avons

dax—axLa* ; (82)

«e étant la variation constante de x. Dans cette hypothèse , on a
# = A # , o=A 2 ^ = A3^== ; par. conséquent , d'après la défi-
nition (39)

D'ailleurs, d'après (59) on a

donc j au lien de (82) , on aura

àax~axàx.lja •

Supposons ensuite



324 ESSAI SUR L E S P R I N C I P E S

Fous aurons , d'après le théorème (Si)

fi

Maïs, diaprés (83) a puisque dy=jS par hypothèse , on

donc , on aura

àa**=a**.à*x.Ui ; (84)

e'est-à-dire , la formule pour différencier les exponentiels,
Si on fait attention que L#^*^#xirL# , et par conséqueiït cjue

ifx. L^ = àha?* r la foTinule (84) deviendra

dam laquelle > sî on fait Fa?=^^r
 9 ce qui est permis r on

(85)

c'est l'expression de ce théorème : la différentielle d'une
Yariable est toujours ^éga|e à cette fonctioa multipliée par la
tentielle de son logarithme.

On en eoîfclut iur-l

€?est la formufe pour différencier les logarithmes naturels.
en faisant attentioa que L(F^)m=^/nLF^ -7 d'après les formules (85)>
(86), on aura

c^est la formule de différentiatiorr dés puissances»
Puisque L(^*Fur) = L*a?-+-LFa?, on aura (85)
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d(<^. F#) = ^ . F*. dL(^. F*;=fcr. F>(dL^+dLF.

donc , d'après (86)

d(<te.Ftf)=Fjr.dftF-H.r.dFtf : (£8)

c'est la fox-mule do différentiatïon des produits.
Soit

« est une constante , % est valable , et Sa différence constante est
On a

puis, en développant, par les formules trigonométiicjues connues
les cosinus et sinus de <*#+# > et en réduisant

par conséquent, en général

AmFa;=

donc, d'après ïa définition (3g), on aura

dF^==F^.[(v/=^.Tang.-)—Kv/^

et, en comparant avec la formule (55) ,

) - (9°)

D'ailleurs (88)

'::^*Sin.^).di ^j^-J -r (91)

, d'uae part, en différenciant la foçmule connue
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C

diaprés (87), on trouve

# = . dSin.*# ;

et par conséquent

£ E ~ x .Sin.*#) ; (g3)

D'autre part, en se rappelant que d#=:i , on a , par la formule (83)

donc , en substituant cette expression et celle (9.3) dans (91) , et
comparant avec (90) , on aura

et de là en faisant

on tire

dSln,«*.ar=^fCos.«^ ; (94)

puis } en mettant cette expression dans (92) ,

dCos,e6^ = —AS\n.«x . (95)

SI on changeait ici *x en x , on aurait ces formules

C d C S i

Ici la différente de x est 1 ; si x était fonction d'une autre variable , on
aurait 5 en vertu du théorème (81)

ih.^zz —d#Cos.# > dCos^=— — d^Sin.^; . (96)

Dans ces formules ; la quantité » est un arc arbitraire.
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Là constante A , quoique impliquée d'imaginaires , est facilement

ramenée à une forme toute réelle. En effet , à cause de la for-
mule connue

l+Tang.2*

on a

et 5 en développant la dernière expression d'après une formule loga-
rithmique connue 7 puis en divisant par \/*^l f

^f=Tang.«—fTang^«4-7Tang.5—.... (97)

Ainsi , quand on ne saurait pas d'ailleurs que cette expression
de A est égale à « , 011 aurait toujours le moyen , d'après les
équations (96) > et (97) * de différencier les fonctions trigonorné—
triques. Au surplus , par les seuls clémens , on démontre que

jl
— = i ( voyez , Théorie des fonctions analitiques 9 n,° 28 de
*&

la i . r e édition, et n.° 23 de la seconde).
19. Nous avons vu naître le calcul différentiel du simple déve~

loppement des fonctions d'une variable suivant les puissances de
cette variable : ce calcul va nous servir maintenant à nous* élever
à quelque chose àe plus général

Supposons qu'on donne > entre les variables s , y , Féquatïônr
jF=o et l'équation z~Yx* On peut du moins imaginer qu'on ait
tiré de la première celle-cï y=.Qx 9 et qu'entre cette dernière et
la seconde, on ait éliminé oc , pour avoir z—fy; de manière que
l'hypothèse revient à donner les trois équations

z=fy * (98)

Alors > d'après la formule (45) % on aura
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f+*=f & +.... (9 9 ,
Dans celle-ci, p est \me arbitraire qui a pour différence constante
/s. Je différencie l'équation (gc)) , par rapport à x seul, et j'ai

d F ^ = d j . — -| —djr . -—+. . . . (100)

puis je suppose qu'en faisant y=/> dans F=o , on trouve entre
autres x=:ê, et réciproquement; on aura (98)

Ensuite ? je fais y~p dans (100), et cette équation devient

dF*=d*'.Ç ; (101)

d'où

fi ~ âçô

L'Àjuatîon (101) est la même que (81) , trouvée d'une autre
manière. Je divise l'équation (IOO) par ày , je différencie par rapport
à x 9 et j'ai

dans celle-ci ? je fais y =/? , et j'ai

à(pù

J'opère sur 1 équation (102) comme j'ai fait sur (gg) et (100)/
g'est-à-dire 9 je divise par ày ? je différencie , je fais y~p9 et j'ai

L'iaduction est manifeste, et Ton voit que j'aurai ? en général ^
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^ H | . . . . { . (io3)

II y a , dans cette expression , un nombre n—i de différentielles
subordonnées. Elle est fort simple 5 mais on en découvre une autre
qui se prête mieux aux développemens que la pratique exige , en
employant un procédé qui n'est pas dépourvu d'élégance.

Je fais, pour abréger ,

Je multiplie successivement l'équation (99) par —— , I —- J 7 . • • ;

je fais d'ailleurs attention qu'en général

y-~p)*n m—l J '(y-p)

relation qui se vérifie aisément, d'après la formule (87) ; et j'ai

eh'* -̂*

(ÏO5)

Or ^ d'après la formule (45), on a

y-~pzz{x—*)d^-J-~ d

puis, en différenciant par rapport à x

dj=d^+(or—^)d2^ + •..«•«• (106)

II suit d'abord d̂  (106) qus {y-~J>)~m et d(y—/>)~ro seront res-
pectivement des formes * .
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(107)

de cette dernière on conclut que , m étant un nombre entier plus
grand que o , il manque > dans le développement de d(y—p)~"m

suivant les puissances ascendantes de (a—ê) 5 le terme multiplié par
(# —ôj"1 ; puis ultérieurement que , n étant aussi un nombre plus
grand que o 5 il manquera 9 dans le développement de (x—^)""f"1.
d(y—p]r~m ? le terme multiplié par (#—0/\ Bailleurs , il est évi-
dent (107) que , tant que n sera égal à m ou plus grand , ce dé-
veloppement ne renfermera point des puissances négatives de(^—ô\
Mais > d'après la formule (87) 9 q étant positif, à\x—if- est nul ^
quand n>^ ; et d"(^r—0)^ est de la forme Pt'Koc—>ê)r , r étant plus
grand que zéro $ quand n<£ç. Donc > en prenant la différence àn

de l'expression (x—ô/l~*rtà(y—p)~~m , tous les termes où {x—ê) a
un exposant moindre que n seront détruits , tous les autres pren-
dront la forme R{x—ôf , puisque , le terme en (^-ô)7î manquant,
dans tous les autres , l'exposant de (x—f) est plus grand que n ;
par conséquent, lorsqu'on fera x=ê ? on aura toujours

p)~m] = o. (108)

11 suit , en second lieu , de l'équation (:o6) 7 q̂ ue l'expression

(x—ê)'1*^1 . est toujours de la forme
-y-?

mais (87) d"(#—£)"z=i.2.3.•••./?; donc , quand on fera^ = ^5 OB
aura toujours

d^ff^*—0N«+I. —• ] = i,2.3 n. CIOQ\
L or-p v y /

Je fais à présent l'application de ces deux observations impor-t
tantes à la suite d'équations (104)*
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Je fais #=0 dans la première ; le premier terme , à cause de

(109) , devient A et les suivans s'anéantissent % donc

[y—p

J'indiquerai par le o ? placé en flanc d'une expression , qu'il faut
faire 7 dans son développement ? x—0=0. *

Je différencie une fois la seconde équation (io4)* puis je fais
x—ô • le premier terme —Ad[x—-i)*à{y—p)~l ] est nul (108) ;

le second Bà\ (or— ê)2 . JL devient B (109) ; tous les suivans s'é-

vanouissent ; donc

Je différencie deux fois de suite la troisième équation (io4) ?
puis je fais #•==& ; les deux premiers termes du second membre *
étant dans le cas de (108) , sont nuls ; le troisième se réduit à C
d'après (109); les suivans sont visiblement nuls; donc

Il n'est pas nécessaire d'aller plus loin pour conclure en toute
rigueur qu'en général

ainsi l'équation (99) devient

y--p

! ) 3 d F , U (xzx)
p/ )o

©u bien , si Ton veut mettre , pour y et p > les expressions
resp#ndadtes $x et 4>é ,
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1.2

( l ï 2 )

C'est la formule du professeur Burman ( voyez Mémoires de
VInstitut 9 i.re classe , tome II , page 16 ) ; dans le second des
deux mémoires dont ceci est l'extrait ? je Pavais déduite de la
célèbre formule de Lagtange pour le retour des suites.

Dans l'expression ( n o ) du terme général des coefficiens de la
formule ( m ) ? on pourra mettre , avant les différentiations , au
lieu de y—p ? son expression en % r si la foraie de IYquation
V~o le permet; sinon, après les différentiations, il faudra subs-

#•—0
tituer pour , ày y à?y y . . . . ce que deviennent ces fonctions ^

qnand %—ô et y—p s'anéantissent à la fois ; ce qui sera possible,
en général , d'après l'équation V~Q.

Si l'équation donnée entre x et y est simplement y=<p^ , ou
aura d'après (io5)

f
en supposant toutefois que Féquation çxzzo ne donne pour
qu'une seule valeur égale à h C'est ce qu'il faudra substituer

lieu de après les développemens.

Si Téquation donnée entre x et y est par exemple
a;—O ĵr

qui donne en effet ^=0 quand yzzp et réciproquement ;
tion ( m ) devient
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Celle-ci 5 quand on fait/?=o, est la formule de Lagrange que nous
Tenons de rappeler.

Soit ? entre les variables x et y , la relation

qui donne # = £ quand y=A , et réciproquement.
Dans la fonction donnée F(JF ? y) et dans (n4)> je regarde Ji

seul comme variable et j 'a i , d'après la formule ( n 3 ) ,

7

F (S, y) et les coeiftciens de (f—x) sont des fonctions de y que
je développe suivant les puissances de (y—x) , par le moyen de
la formule (45) et j ' a i , en faisant d'ailleurs pour abréger v=F(êt K),

d d« - I

Je substitue ces résultats dans ( n 5 ) y j'ordonne suivant les puis-^
sances de (y—h.) 5 et j'ai

^ * ^ ~ + . . . î (1x6}

équation dans laquelle le terme général des coefïieiens est

d" d«-*/d ^ . 72 72—id«-* ( î / d

A

(î/d \
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Telle est (116) une formule très-étendue, dont j'ai fait , dans

mes deux mémoires f de nombreuses applications. J'y étais parvenu
immédiatement, et par une méthode bien différente : celle de l'é-
limination des fonctions arbitraires ? par les difîéreniiations partiel-
les ; méthode qui* , maniée par les Laplace , les Lagrango ? etc. >
a fourni les plus brîilans résultats ; et qui 7 dans la matière dont nous
nous occupons , permet d'aborder avec succès ce problème tiès-ge-
néral : Une équation étant donnée entre plusieurs variables, développer
une fonction proposée d'une ou de plusieurs de ces variables en série
ordonnée suivant les puissances de Tune d'entr'elles , ou suivant les
puissances et produits de plusieurs d'entr'elles. Je ne puis donner
ici qu'une idée de la manière de procéder , en en faisant l'applica-
tion à un cas peu compliqué.

Soit donnée l'équation.

Il s'agît àe développer F(#+/) suivant les puissances et produits
de u , 9?

La résolution de l'équation (118) donnerait pour t une exprès*
sion de la forme £=f(&, vy ai): u$ v% $ n'ayant dailleurs entr'elles
aucune équation de condition ; ainsi , on peut considérer / comme
fonction des trois variables indépendantes u f 9 9 s, dont les diffé-
rences sont constantes et égales à l'unité, Cela étant, on sait, et
il serait d'ailleurs facile de le conclure de la formule ( 78, n.° 17 )f

qu'on a , en désignant 5 pour plus de simplicité , $-\~i par p,

d xiv d d

y 1.2 u y

«f — — I>o +
1*2. 9
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Le zéro > en flanc de Fp , —* Fp s — F/?? , signifie qu'il faut

faire égales a zéro les variables w, ç , après les développemens.
Je différencie successivement Fp par rapport à u , 9 , ce } et j'ai5

en faisant attention au théorème ( 8 Ï ) ,

— t', -¥p-à¥p.-t; -Fp
U V V X

J'élimine entre celles-ci d¥p , et j'ai

- t - t
d ^ d u d _, d _, cF F I > Ï >

Je différencie successivement Téquatlon ( Ï I 8 ) suivant u P 9 ^so et-
j'écris les résultats comme il suit

— t^àfL~uà$p—9àtyp)—$p 9 ( I 2 1 )

— t{àft—uàçp—pà-fyp) — ̂  ? (122)

J'élimine entre ces trois dernières ïe facteur polynôme commun
leurs premiers membres ^ et j'ai

à <pp y d \ d ^p / d \
— / r r - ^ - r i 4 - - / i , — / = — 1-4— t ) > (l245
u àft\ ^ x j ' . ? . à/A oc J ^ x ^

Je mets ces expressions (124) dans les équations (120)* et j'ai

^ ^ ^ r àft ' 9 r oc r àjt \ /

Comme la fonction F est arbitraire P celles-ci donnent
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d d Çp à d 4>P

àJt (126)
d d i^/p
•* 4yP ~ —* rp. »
V x àft t

x
<pp

Quand on fa i t , dans ( 1 1 8 ) , z*=p:=o , il vient ft=o. Supposons

que cette équation donne t=x$ ; on aura F/>0 = F ( # + * ) ; e t , d'après

les équations (12a) ,

Voilà déjà les trois premiers termes du développement (119) entière-

ment déterminés. Pour passer outre , on différencie les équations ( 1 2 5 ) ,

la première suivant u et f , la seconde suivant v \ et on a 7 pour
d2 d d _. d* . . r

—- F/? , —* —F/? 5 — F» , des expressions qui contiennent h -

néaîrement les différentielles, selon u 9 v ? ^ , de Vp , ^/?, typ et /•

O n élimine Les différentielles suivant & et 9 , par le moyen des

équations ( 1 2 4 ) , (12$) ? ( 1 2 6 ) ; e t , réductions fai tes, il vient

u

ans celles-ci, on satisfait a l'hypothèse « = p = o , qui donne
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/jrr^-f*^ e t , d'après ( izS) — / = o ; et on a les trois coefficient

,>^ . , d* d à d3

différentiels — FpQ ; — — F/?o . — F#o,

On continue de la même manière ; c'est-à-dire , on différencie les-

€quations (127) , suivant z/ et ? , pour avoir —F/?5 —• — F/? >

d d2 d3
—> —F/?9 —Fp> Dans les résultats, les différentielles selon u et p

de F/? , ty? , ty sont éliminées par les équations (i^5) , (126) /
d d
-*- / 5 — t le sont d'après (i^4) ; on élimine les deux autres
d d d d . d d d d
^- ,—/ ^ , ^- / qU1 s o n^ ] a même chose que - * - — / , / res-
u x ç as * * x u & v

pcctivement, après avoir différencié suivant % les équations (124)*
-m • d d^

Ensuite on satisfait à l'hypothèse # = ? r : o 9 qui donna 0 = •*• / = — t ;

e t , ce qu'il faut bien remarquer 5 en général •—»/—0; eomme il

«st aisé de le conclure de l'équation ( i s3 ) ; et on a les quatre coefficient

Là route à suivre pour continuer indéfiniment est suffisamment
reconnue ; et il est visible que tout se réduit à des différentiations f

suivant u et p , des derniers résultats obtenus ? et à l'élimination
ûes différentielles ? suivant u et 9 ? de F/?, f/? , $p , d'après ( i 2 5 ) ,

d" d d« d
«t des diiîérentielles de la forme — —- / , t , d'après leâ

se u xv
équations (124) différenciées 7 suivant a , autant de fois qu'il e$^
nécessaire.

Supposons actuellement ? en particulier ft^=-t 9 et partant d/?= 1 ;
an faisant cette hypothèse dans (i^5) et (126) , on aura d'abord
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d ( cl „ , . ^ « ) _ , . _ „ „ < * d T ^ . . d ™ _ d , .

v 7 >+7 > 7

et comme, d'après (*I25), (126)-,

' 30 u r r so r 00 X r

Kçp) (fp) pp^p). - ty> •

Lviendra, ea réduisant,

Op trouvera , de la, même manière .

} (1295

Cela étant , en différenciant successîrement 5 par rapport à u $

première (126), on aura, eu égard à (128),

et 9 en général
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On différenciera ensuite l'équation (i3o) successivement par rapport
à 9 ; et, en faisant attention à (12g) 5 on trouvera

d d"*

9 u £1 fi

et, en général

(•3x)

C5ost le terme générai des coefïiciens da développement cherché ?

où il n'y a plus qu'à satisfaire à la condition ^ = ^=0 , qui (118)
donne / = o . Alors , dans notre terme générai ( Î 3 I ) , / ^ «e change
^n jr ; les différentielles partielles suivant % 9 deviennent totales ;
il est alors

on a enfin (119)

4-

(i33)

Je n^abstiendraî de faire des applications des formules de déye-
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loppernent qu'on vient de lire , pour ne pas excéder les limites
que je me suis prescrites. En effet ? mon projet a été uniquement
d'offrir un aperçu un peu détaillé de la manière dont j'ai traité
les principes du calcul différentiel, dans la î.Te partie du travail
que j'ai eu l'honneur de présenter à la i . r e classe de l'institut;
les applications des formules de développement des fonctions en
séries sont Fobjet d'une seconde partie. J'y suis parvenu à déduire
de ces formules , sans avoir besoin de recourir à aucune notation
îicuvelle , les formules principales fondées jusqu'ici sur Yanalise
combinatoire ou sur le calcul des dérivations. MM. les Commissaires
de la classe ont bien voulu dire ? à cet égard, dans leur rapport;
» En rappelant ainsi au calcul différentiel des méthodes variées, ^t
» dont quelques-unes ne paraissent pas très-convenables à l'état
y> actuel de l'analise , ( l 'auteur) a fait une chose très-utile pour
5» la science. Il faut bien que tous les faits nouveaux , dès qu'ils <com-
» posent un ensemble , quoiqu'ils ne semblent point avoir en eux-
$> mêmes une très-grande importance , soient ramenés aux théories
& qui forment le corps de la science y et dont il est le plus à
» propos d'encourager la culture. *»

II serait encore plus étranger à mon dessein d'entrer dans aucii»
détail concernant la 3*mô partie , dans laquelle je m'occupe de la
recherche des moyens pratiques les plus simples de développer
ultérieurement , et jusqu'à ce qu'on ait mis en évidence les diffé-
rences constantes 9 les différentielles des fonctions composées 5 dont
l'ensemble est donné immédiatement par un premier développement,;
c'est-à-dire , par les formules de la seconde partie.

Mais il pourra n'être pas inutile maintenant de jeter un coup—
d'œil général sur les divers systèmes qui * jusqu'ici , ont été suivis»
dans l'exposition des principes du calcul différentiel ; les réflexions
que cet examen fera naître seront tout à fait propres à faire res-
sortir les avantages de la théorie qui vient d'être exposée , à pré-
venir de fausses interprétations ? et enfin à réfuter les objections aux-*
quelles eette théorie a pu et pourrait encore donner naissaace^
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PHILOSOPHIE MATHÉMATIQUE,

Réflexions sur les divers systèmes cteocposition des
principes du calcul différentiel, et, en particulier 9

sur la doctrine des infiniment petits ;

Par M. SERVOIS , professeur aux écoles d'artillerie»

JLARMI les différentes manières de présenter le calcul différentiel P

je ne dirai pas qu'il y en ait une qu'il soit nécessaire d'adopter,,
Toutes celles qui sont légitimes ont 9 du moins aux yeux de ceux
gui les proposent > quelques avantages particuliers. Mais , s'il est
utile de lier solidement le calcul différentiel avec l'analise algé-
brique ordinaire ; si le passage de Tune à l'autre doit être facile
et s'exécuter, pour ainsi parler, de plain-pied ; si Ton doit pouvoir
répondre, d'une manière k ta fois claire et précise, aux questions;
Qu'est-ce qu'une différentielle ? Quand et comment se présentent
comme d'elles-mêmes les, différentielles ? Avec quelles fonctions ana—
litîques conservent-elles , non de simples analogies 5 mais des rapports
intimes ? Je croirai ne rien accorder à la partialité , en affirmant
qu'on inclinera vers la théorie dont j'ai essayé de tracer une esquisse
rapide dans l'article qui précède celui-ci.

Dans l'analise algébrique , après avoir considéré les quantités comme
déterminées ou constantes , on est mené naturellement à les con-
sidérer comme variables» Toute variation ? qu'elle soit elle-même
constante ou variable , est essentiellement une quantité finie ; au
mains est-ce là le premier jugement qu'on a dû en porter. OF y

Tom. V-> n.° V, i .e r novembre 1814. 19



RÉFLEXIONS
exprimer la variation d'une fonction composée de variables

élémentaires 9 par le moyen des variations de celles - ci : voilà le
premier problème que l'on puisse se proposer dans cette partie ;
les premiers essais dé solution conduisent à des séries. Ainsi ?quand 9

dès l'arithmétique , on n'aurait pas déjà trouvé des séries , telles
que les quotiens et les racines, approchées par le moyen des dé-
cimales , on y serait nécessairement parvenu \ en considérant la quantité
comme variable. Les séries et le calcul différentiel ont donc dû
prendre naissance ensemble ; c'est à l'entrée de ce dernier qu'on
rencontre un premier développement de Y état parié d'une fonction
quelconque, z par exemple. En essayant d'ordonner ce développement
d'une autre manière 5 on ne peut se dispenser de faire attention à
la série très-remarquable de différences

à laquelle on est tenté de donner un nom qui rappelle sa com-
position : celui de différentielle se présente comme de lui-même.
Déjà , en comparant les deux développemens différens dont est
susceptible le binôme élémentaire ( i + # ) m , on avait trouvé la série

\ laquelle on avait donné le nom de logarithme de (\~\-d) ; ainsi,
par la simple analogie , la différentielle est comme le logarithme
de l'état varié (z+Az). Chemin faisant, d'autres rapports ; entre
la différentielle , la différence , l'état varié et les nombres , se sont
manifestés ; il a fallu en rechercher la cause ; et tout s'est expliqué fort
heureusement, quand, après avoir dépouillé, par une sévère abstraction,
ces fonctions de leurs qualités spécifiques , on a eu simplement à
considérer les deux propriétés qu'elles possèdent en commun , d'être
distrilutives et commutatives entre elles.

Cette marche , si naturelle , n'a point été celle des inventeurs.
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II est de fait que le calcul différentiel est né des besoins de la géométrie,.
Or9 le calcul algébrique , qui s'occupe essentiellement de la quantité
discrète9 c'est-à-dire , des nombres , ne peut s'appliquer à la quan-
tité continue y c'est-à-dire T à Y étendue, que lorsqu'on suppose que
les variations numériques deviennent arbitrairement ou indéfiniment
petites. Ainsi , le moyen d'union entre le calcul et la géométrie
est nécessairement la méthode des limites ; c'est pourquoi les in-
venteurs , et les bons esprits qui sont venus après , ont pris , ou
du moins indiqué , pour méthode à? exposition et & application du
calcul différentiel, celle des limites.

Newton n'a point ,. comme Mac-Laurin et quelques autres de
ses compatriotes % transporté sans ménagement la mécanique dans
son calcul des fluxions -, sa théorie est fondée sur celle des der-
nières raisons des quantités -? et ^ suivant lui , Ultimœ rationes
repéra non sunt rationes QUANT ITATUJSî ULTIMATUM p sed
LIMITES ad quos rationes semper appropinquant. ( Livre i . e t

des Principes^ Seolie sur le lemme xi ) ; principe très-lumineux,
et qu'on n'a pas assez, remarquée

Leibnïtz , co-inventeur , professait la même' doctrine ; il a cons-
tamment donné ses différentielles pour des quantités incomparablement
petites; et ^ dans les applications > il a toujours cru qn'on pouvait
rendre les démonstrations rigoureuses par la méthode d'Archimède ;
celle, des limites..... Quod etiam Archimedes sumsit aliique post
ipsum omnes ? et 7ioc ipsum est quod dicitur differentiam esse data
quâvis minorent ; et Archimede quidem FROCESSU res semper deduc—
iione ad ahsurdum confirmari potest. ( Réponse aux difficultés
de Nieuwentiit ; œuvres, tonu 3.me , page 328 )o D'ailleurs , ce
savant homme n'a jamais admis de quantités infiniment petites 7

dans le sens propre de ce terme» On connaît la discussion assez
longue qui a existé entre lui et Jean Bernouilli à cet égard ; dis-
cussion dans laquelle il a constamment tenu la négative ( Yoyez
le Commerce » épistolaire entre ces deux illustres géomètres ; publié;
par Crainer )•
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Euler ne parle pas un autre langage 9 dans la belle préface de

ses Instiiutiones calculi differentza/is...... Hic autem LIMES qui
quasi rationem uliirnam incrément or um constituit , verum est
objectum caïculi differentialis. Et si, dans le cours de son livre,
il échappe à ce grand homme quelques expressions un peu dures , on
doit 5 ce me semble , les interpréter bénignement, d'après ce principe
formellement reconnu.

On sait que d'Aiembert s'est distingué parmi les géomètres qui
ont appliqué la méthode des limites au calcul différentiel. Ainsi ,
on ne doit point être surpris de compter dans les mêmes rangs
les bons géomètres qui sont venus après : tels que Karoten , Kœstner,
Holiand, Tempelhof , Vincent Ricaû et Saladini 5 Cousin , Lhuilier ,
Paoli , Pasquich , Gourief , etc. Il ne serait d'ailleurs pas difficile
de faire voir que les méthodes particulières , telle que celle des
Fonctions dérivées de l'immortel Lagrange ? laquelle a de nombreux
sectateurs 5 et celle des indéterminées , proposée ou recommandée
par Boscowich , Naudenot, Arbogast , Carnot 9 etc., reviennent fon-
cièrement à celle des limites. Comment est-il donc arrivé que cette
étrange méthode des infiniment petits ait acquis , du moins sur le
continent , tant de célébrité ; et même qu'elle soit parvenue à
placer son nom parmi les synonymes de méthode différentielle?

Je pourrais, si j'en avais le loisir, assigner à cette usurpation
plusieurs causes probables ; mais ce qui m'étonne d'avantage , c'est
que la méthode des infiniment petits conserve encore , non seulement des
sectateurs , mais des fauteurs enthousiastes : écoutons un moment ,
un de ces derniers, et admirons ! « Le soin d'éviter l'idée de l'infini\
» dans des recherches mathématiques 9 prouve incontestablement,
$ outre une routine aveugle 3 une véritable ignorance de la signi~
» fication de cette idée ; et nous ne craignons pas d'avouer que
» nous croyons anticiper sur le jugement de la postérité9 en déclarant
» que , quelque grands que puissent être les travaux de certains
0 géomètres , le soin qu'ils mettent à imiter les anciens , dans
i> l'exclusion de l'idée de l'infini, prouve, d'une manière irréfragable#
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y> qu'ils ne sont pas à la hauteur à laquelle la science est portée
» depuis Leibnitz , puisqu'ils évitent cette région élevée où se trouve
» le principe de la génération des quantités , et par conséquent la
» véritable source des lois mathématiques, pour venir ramper dans
» la région des sens , la seule connue des anciens 5 où Ton ne trouve
» que le grossier mécanisme des calculs. » ( Réfutation de la théorie
des fondions antilitiques de Lagrange, Paris , 1812, Page 4o ) Déjà ,
dans un premier ouvrage ( Introduction à la philosophie des mathé-
matiques* Paris, 1811 ) , le même auteur ? en annonçant que « les
» procédés ( du calcul différentiel ) implique une antinomie qui
» les fait paraître , tour à tour , comme doués et comme dépourvus
» d'une exactitude rigoureuse » . . . . ( Philosophie, etc. , page 32 ) ,
avait gourmande les géomètres non infinitaires, avec ce ton tranchant
et cette emphase dogmatique qui forment la couleur dominante des
écrits Inspirés par le Système philosophique ( celui de KÀNT ) dont
il fait profession.

Essayons, un instant, d'apprécier tout cela à sa juste valeur.
D'abord , je me rappelle fort bien que Kant , trouvant Y infini

dans la raison pure et le fini dans la sensibilité, a conclu, delà
coexistence de ces deux facultés dans l'être cognitif , qu'il doit y
avoir , relativement à l'idée cosmologique , par exemple, plusieurs
antinomies qui ne sont au fond que des illusions auxquelles il
n'est point difficile de se soustraire , quand on veut bien distinguer
soigneusement ce que chacune des formes de la cogniiion y apporte
pour sa part. Faisons la même chose , par rapport à la prétendue
antinomie mathématique que le disciple s'applaudit d'avoir décou-
verte dans la théorie du calcul différentiel. Admettons , ce qui est
vrai, que le calcul appartienne exclusivement à la sensibilité qui,
selon ces Messieurs , est la faculté de Y individuel ; il s'ensuivra
qu'il y a , non seulement paralogisme , mais erreur palpable à sou-
mettre au. calcul Y infini y qui est du domaine d'une autre faculté:
celle de Y absolu , ou ce qu'ils appellent la raison pure. Je demande
pardon à mes lecteur de l'emploi que je \iens de faire d'un idiome
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avec lequel t sans doute , peu de personnes en France sont fami-
liarisées ; mais je fais ici un argument que nous appellions jadis
ad hoininem.

Qu'on ne dise pas que cette illusion est tellement nécessaire qu'ont
ne puisse la décliner,..! On marche devant celui qui nie le mou-
vement* Newton ? d'Aiemhert ? Lagrange % etc. 7 ont marché ; c'est-
à-dire , qu'ils ont mis en effet les principes du calcul différentiel
hors de toute dépendance de la chose et même du mot infini.

Mais l'infini n'est-il pas cette région élevée où se trouve le prin~
cipe de la génération des quantités , la véritable source des lois
mathématiques ? Non certainement ? à moins que vous ne soyez bien
décidé à rester sous FinRuenee de l'illusion que vous avez signalée-
J'ajoute 5 relativement au calcul différentiel 5 que l'introduction de
Tidée d'infini n'y est pas même utile.

L'idée d'infiniment petit n'abrège point Y exposition. En effet, it
est impossible d'établir la hiérarchie des infiniment petits de différens
ordres f sans avoir recours à la série de Taylor % ou à quelques autres
équivalens» Je défie de prouver sans cela,,d'une manière satisfaisante,
que 9 par exemple , àz étant un infiniment petit da i.e r ordre ,
à2z en est un du second. Même défaut dans les applications. Si
on n'admet pas l'hypothèse de la courbe polygone , hypothèse qui
paraît si étrange à ceux, qui viennent d'étudier les éLémens de la.
géométrie Euclidienne , je défie qu'on démontre > sans la série de
Taylor 5 que le prolongement ? jusqu'à la tangente , de l'ordonnée
infiniment voisine de celle du point de tangence 5 que la différence
entre- Tare infinitésimal et sa corde ? etc. T sont des infiniment petits
du s.# ordre au plus. Si Ton admet la gothique hypothèse :, le rapport

•-— est rigoureusement égala celui désordonnée à la sous-tangente ;

pourquoi donc alors néglige-t-on des termes en différenciant l'équation;
de la courbe ? D'ailleurs s comme l'a. fort bien remarqué l'auteur
de la théorie des fonctions* analitiques, c'est un fait que les résultats*
dta calcul infinitésimal sont exacts par compensation d'erreurs ior &
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je porte encore le défi d'expliquer ce fait majeur , sans avoir re-
cours aux séries. Cela étant , puisqu'il faut absolument , et avant
tout , être maître du développement en séries , pourquoi ne passe-
rait-on pas de là immédiatement au calcul différentiel, par la porte
de plain - pied qui est ouverte ? et pourquoi reviendrait - on ? par
un circuit ténébreux , celui des considérations infinitésimales , aux.
principes de ce calcul ? Qu'on se forme, si l'on veut , et ce qui
est possible 7 d'après la vraie théorie , des méthodes abrégées qui
permettent de biffer ou d'omettre , à l'avance , des termes de dévelop-
pement , qui disparaîtront à la fin de longs calculs ; je ne m'y oppose pas ;
les géomètres exercés le font tous ; et quand une fois on est en pos-
session de ces méthodes , on peut , dans la géométrie et dans la
mécanique 7 parler un langage gui se rapproche de celui des infi-
nitûires , sans néanmoins attacher aux mêmes termes les mêmes
idées ; niais il serait absolument impraticable de commencer
par là.

Il y a plus. Si Ton consulte l'histoire du calcul différentiel , combien
y verra-t-on de questions puériles ou ridicules , de contestations
plus qu'animées , d'erreurs même , prendre leur source dans l'obs-
curité répandue par les infiniment petits , et dans la difficulté de
Ie*jr maniement. Je ne puis m'engager dans cette discussion ; mais
qui est-ce qui ne se rappelle pas les incomprèhensibilitès de Sturmius ;
les Subtilités de Guido Grandi ; les Pents jetés entre le Jini et
Xinfini de Fôntenelle ; la méprise de Sauveur, dans le problème
de la Brachystochrone ; celle de Jean Bernouilli lui-même , dans sa
première solution du problème des Isopérimetres ; celle de Charles
sur les solutions particulières àes équations différentielles ; les dis-
cussions * relatives à l'expression analitique de la force accélératrice
du mouvement varié : discussions qui dégénérèrent en dispute entre
Parent et Saurin , relativement aux théorèmes d'Huygens sur la
force centrifuge , et qui enfantèrent cette ridicule distinction de la
f'Vce considérée dans la courbe polygone et dans la courbe rigou-
reuse ; discussions enfin qui ne sont pas encore terminées , à en
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juger du moîns par quelques mémoires de Trembley ( Académie
de Berlin, 1801 , etc. ) etc., etc.

En un mot, je suis convaincu que la méthode infinitésimale n'a
m ne peut avoir de théorie qu'en pratique ; c'est un instrument
dangereux entre les mains des commençans 9 qui imprime néces-
sairement, et pour long-temps, un caractère de gaucherie, de pusil-
lanimité , à leurs recherches dans la carrière des applications. Enfin ,
anticipant, à mon tour , sur le jugement de la postérité 5 j'ose prédire
que cette méthode sera un jour accusée , et avec raison , d'avoir retardé
Ite progrès des sciences mathématiques. Mais je dois reprendre le
fil de mes réflexions»

J'ai déjà insinué la distinction que j'établis , d'après Euler , entre
la méthode ^exposition et la méthode ^application du calcul
différentiel. Celle-ci , quand il est question de Vespace et du temps,
objets des principales applications , est nécessairement la méthode
des suites en général. Sous le rapport particulier de la pratique 9

rien P à mon avis, ne surpasse , en élégance , j'allais presque dire en
majesté > la marche tracée dans les deux dernières parties de lVx-~
cellente Théorie des fonctions analitiques* Quant à la première
méthode , celle d'exposition , }'ai toujours tFouvé quelques incon-
véniens à la déduire de la considération des fonctions dérivées > oi*
en général des limites. Un des plus graves , selon moi, est de ne
conduire aux séries fondamentales qu'après leur avoir gratuitement as-
signé leur forme. Cet inconvénient, bien senti par l'auteur des Fondions
dérivées , n'a pas été heureusement écarté par la démonstration pro-
posée ( Théorie des fonctions , p&ge 7 de la i.re édiu et page 8
de la 2.me )» Je m'en suis expliqué franchement , à la tête de mou
second mémoire ; et j'ai cité les opinions conformes d'Arbogast
( Lettre manuscrite ) et de Burja ( Mémoires de Berlin , 1801 ) y mais
personne moîns que moi n'aurait songé a oser fonder là-dessus le scan-
dale d'une REFUTATION de la théorie des fonctions analitiques* J'ai
donc dû porter mes vues d'un autre côté -, et voici la marche que j'ai suivie»

Les premiers dévaloppemens en séries que l'on rencontre ? sont
les
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les résultats de transforuiatlons successives appliquées à une équation
identique, Ecrivons , par exemple f

Exécutons indéfiniment sur le second membre l'opération de la di-
vison , et nous aurons la série

Ecrivons encore l'équation identique

î I

~ IL """""" f ~ •

Faisons successivement # = o , x—û * ^ r z j , , , » • ; et nous
la suite des transformées

a—J a

î î

a—h)

Prenons la somme des produits respectifs de ces équations par ï *
b h(b+c) b(b+)(+)

p a r — p a r par —-—7 , par •• . , •• ; et nous aurons , enr a r a(a+c) r a(a+c)(a±d) k

réduisant > la série

_ 1 b h(h+c)

Jgm* V* 20
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a—b)

C'est avec cette formule que Nicole enseigne à sommer une in-
finité de suites ( Mémoires de l'académie des sciences de Paris. 1727 ).

Ces séries ont la propriété d'être arrêtées à quel terme on veut,
et d'avoir un terme complémentaire , nécessaire pour conserver
Tidentité. Dans la première ? ;ce complément est le reste de la di-
vision à laquelle on sJeo tient 5 divisé par i + # ; et dans la seconde ,
îl se trouve à la fin. Je savais que la série de Taylor a , dans
le fait y un semblable complément qui doit aussi appartenir a toutes
celles qui en dérivent, et par "conséquent à toutes les séries connues;
d'où il m'a été permis de conjecturer que toutes les séries doivent
être le résultat d'une suite de transformations d'équations identiques ;
que toutes doivent jouir de l'avantage d'être arrêtées où Ton veut,
et de conserver l'identité par le moyen d'un terme complémentaire.
Cette conjecture s'est heureusement chajigée en certitude , et il en est
résulté une notion nouvelle , et bien importante ? sur la nature des
séries. On a vu au commencement du précédent mémoire , com-
ment 9 en partant d'équations identiques ? je suis arrivé aux déve-
loppemens fondamentaux. « Le procédé que suit l'auteur ( est-il
» dit dans le rapport de MM. les Commissaires ) a deux avantages
» qu'il faut remarquer; le premier, c'est qu'il n'exige pas que l'on
» connaisse à l'avance la forme des séries qu'on cherche ; le second,
» c'est qu'il permet d'arrêter ces séries à quelque terme que ce soit ».
t a formé du complément se reconnaît sur-le-chahip. Pour la série
de Taylor, en particulier;, cette forme est celle que Ampère a
remarqué le premier , dans un très-beau mémoire d'analise ( xill.e cahier
du Journal de Vécole polytechnique ).

Ici encore , je me trouve en opposition directe avec le Philosophe
transcendantaL « Les séries , prises dans toute leur généralité ? . . . ont,
i> par̂  elles-mêmes % dans le nombre indéfini de leurs termes , eî
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*> sans le secours à'aucune quantité complémentaire , une signification
» déterminée,... c'est là le point philosophique de l'importante
* question des séries -, et c'est ce point que , suivant nous , les
f> géomètres n'ont pas encore atteint, dans l'état où se trouvé la
>y science, » ( Réfutation etc. ? page 58 )." On n5a pas encore besoin
cette fois d'ergodsrne > pour faire ressortir la fausseté de ces asser-
tions, LVquîiîion identique, les transformations successives , la série
et son cornplciLc^t sont des faits. Les séries dïvergentts ne peuvent
être employé)6 qu'avec leur complément; et c'est ainsi qu'on a
deouL long-temps résolu fori heureusement le paradoxe présenté par

le développement de la fraction . Quand la convergence est re-

connue , on prononce la diminution successive et indéfinie du com-

plément , -d'àpï es la comparaison des développemens consécutifs et

la raison d'identité ; alors seulement les séries servent utilement aux

besoins de la pratique , sans avoir égard à ce complément.
On aura remarqué 9 sans doute ? que notre procédé d'exposition

offre un autre avantage considérable ; c'est de conserver aux quan-
tités par rapport auxquelles nos séries sont ordonnées toute la généralité
dont elles sont susceptibles , c'est-à-dire , de ne point exiger de
considérations particulières, sou$ le rapport du positif, du. négatif f

de l'entier ou du fractionnaire*
Un second inconvénient de l'application des limites à Fexposkio»

<ïu calcul différentiel , inconvénient qu'elle partage avec la méthode
infinitésimale , est de laisser sous le voile du mystère ces belles
analogies des fonctions différentielles entre elles et avec les facteurs*
On a vu comment je suis parvenu à déchirer- ce voile. A cet égard ?

MM. les Commissaires ont encore eu la bonté de dire : <c En montrant
» que c'est à leur nature distributive, eu général ? et commuiaiives

* entre elfes eî avec le facteur constant, que les états variés, les
» différences et les différentielles doivent leurs propriétés et les ana-
* logies de leurs développeoiens avec ceux des puissances ? ( l'auteur )
» en donne la véritable origine y et éloigne cette idée de séparaïion
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» des échelles qu'Àrbogast avait imaginée , d'après Lorgna , pour
» expliquer les mêmes circonstances 9 et qai a paru un peu hasardée, :>
En effet, et il ne faut qu'une légère attention pour l'apercevoir y

nous ne perdons jamais de vue , dans nos formules , le sujet des
Jonctions ; et il n'y a ni séparation d'échelles ni opérations qui se
terminent exclusivement à ces échelles. La notation proposée ( n.® 2 )
n'est point d'un usage indispensable ; elle est seulement très-utile r

en tant qu'elle épargne la peine de représenter , à chaque instant,
des fonctions polynômes par de nouvelles lettres. La belle méthode
d'intégrer les équations aux coefficiens constans ? publiée dans les
Annales de mathématiques ( tome 3 , pag. ^44 e t SUIV- ) ? e t qu*
ajoute tant d'intérêt aux formules de l'analogie , ne réclame pas
davantage la séparation des échelles , comme il serait aisé de le
faire voir. Je ne puis rien dire ici d'un autre genre d'application
que ces formules fournissent à Fauteur du mémoire cîté ( ihid* n,os ^
et î o ) ; cela m'engagerait trop loin. Je ferai seulement observer
que , si Ton craint de broncher dans une route scabreuse et peu
fréquentée, il faut ne prendre, pour formules de départ, cpe celles
à la formation desquelles on a assisté , et qui, identiques d'abord f

n'ont été transformées que d'après la double propriété des nombres
d'être distributïfs et commutatifs entre eux. Ainsi , par exemple f

|e conclurais au moins à une révision de la formule de départ, si,
parmi les résultats qu'elle m'aurait donnés , je trouvais une série
comme celle-ci ( ihid. pag. 2S2. ? formule ^3 )

4 x*

En effet ? a cause de

i -JE. 1 "• - , J C «
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d'où , à cause de

on conclut

3 5

Ici je fais Fessai de ^

_J +

i^+^ *+3 ar+5

I . I I I
€>:=:—«- — ~4-«— «M*»- J - * ^ .. — _

et j*aî, en divisant par

résultat qui n'est pas vrai.
Je fais encore l'essai de #— i , et j'ai

résultat encore plus étrange que le prcmîjer, (*)
On me permettra , je pense ; de tirer encore de rna tîieorie des

(*) C'est la formule (2 Ï ) du mémoire cité, empruntée d'Euler, et de laquelle l'auteur
a déduit la sienne (s3) , qui contient le germe de Terreur que je relève ici. Cette
formule d'Euler , vraie pour quelques cas particuliers , n'en est pas moins , en
général, d'une fausseté manifeste 9 puisqu'en y supposant xz^nn # n étant un

entier positif ou négatif, elle donne -y « 2 =:Q •
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fonctions distribuées et commutatives , une conséquence d'une autre
nature : c'est que la notation Leibnîtzienne , pour le calcul diffé-
rentiel, doit être conservée. Laissons aux Anglais leurs lettres ponctuées,
conservons aux accens Futile emploi de multiplier nos alphabets*
et , en nous rapprochant de la notation qui , de l'aveu de tous les
analistes , est la plus parfaite , celle des puissances , des-
tinons exclusivement les exposans numériques à représenter les
difïérens ordres de fonctions répétées. Quand à ma notation des
différentielles partielles , on en pensera ce qu'on voudra ; elle n?a
d'autre avantage que d'être en harmonie avec celle que j'ai cru
devoir adopter pour les fonctions partielles en général , laquelle ne
peut guère être plus simple ni plus significative. Au reste 7 il esl
remarquable qu'Euler en ait proposé une toute semblable , dans un
mémoire qui fait partie des Nova Acte de Petersbourg (i 786 , pag. 17).

J'aurai^ pu me dispenser de donner ( n.° 19 ) une idée de l'ex-
tension dont les séries fondamentales ( n.° i 5 ) sont susceptibles f

si j'avais cru devoir me borner à établir ce qui est précisément né-
cessaire pour différencier les fonctions ; mois 5 à mon avis , le calcul
différentiel pur s'étend plus loin qu'on ne le pense communément;
e t , en particulier, le développement des fonctions en séries appartient
plutôt à la substance de ce calcul qu'à ses applications. D'ailleurs,
j 'ai voulu montrer comment des séries fondamentales on peut s'élever
à ce qu'il y a de plus général , d'une manière fort naturelle* Ici
encore je suis en opposition avec le Philosophe 5 au moins pour
la méthode. On sait avec quel fracas il a communiqué au premier
corps savant de l'Europe ? et ensuite au public , certaine formule
générale , d'où il tire toutes celles que Von connaît pour ïe dève~
loppement des fonctions ; c'est-a-dire 5 qu'il descend 9 pendant que
je m'efforce de monter.

La formule générale du Criticiste présente F# développée suivant
les produits des états variés successifs de $$, savoir

9*
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| étant la différence constante de la variable x. Les coefficiens des
differens termes sont des fonctions très-compliquées des différences
des mêmes fonctions ? dans lesquelles il faut , après tout dévelop-
pement , mettre une des valeurs de & , donnée par la résolution
de l'équation <px~o. On aura sans doute déjà aperçu que cette
formule n'est elle-même qu'un cas particulier de notre formule
( 20 , n.° i 3 )• Effectivement , il suffit de faire

QX—*X , Vx=#(#+!) )

et partant

pour avoir 9 par nos équations (2 3) 9 (27) * et la série et les coef-
ficions du Philosophe*

Pour passer de là à la série ordonnée suivant les puissances de
4x , il suppose £ infiniment petit e t , sous ce prétexte ? il* change
tout bonnement les A en d. Cela pourra paraître fort bien aux
yeux attaqués du strabisme infinitésimal ; mais ce n'est plus de
cela qu'il s'agit ; c'est aux détails de transition f poussés jusqu'à Tune
on l'autre des formes reconnues dans le précédent mémoire ( n.° 19) ,
que je l'attendais. Or , à cet égard 5 il est d'une discrétion mer-
veilleuse. Voyez y en effet 9 les tableaux d'expressions équivalentes
( Réfutation P etc. , pages 18 s 19 , 33 ) liées par ces plirases laco-
niques : # on verra de plus que ces expressions simplifiées davantage
» peuvent être mises sous la forme,,». , on peut facilement trans-
ît former ces expressions en celles-ci..*., » : et ? si vous ne voulez
pas l'en croire sur parole 5 ayez le courage d?entreprendre ces

transformations ! Ajoutez à cela que ses tableaux d'expressions
analytiques ne présentent pas toujours une loi générale bien prononcée :
tel est ? en particulier, celui des expressions marquées par la lettre

.N (page 19). Je l'ai insinué ( n.^ i3 ) , et je l'affirme ici posi-
tivement *? ces difficultés de détail sont un vice capital dans la
nuthode descendante 7 ( que j'appellerais synthétique $ si je ne
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discutais avec un Criticiste ) ; et leur absence de la méthode ascendante
assure à celle-ci tout l'avantage sur sa rivale. (*)

(*) J'ai dît ( n.° i5 > qu'on pouvait, par un simple changement dans la ma*

mère d'ordonner , passer du développement suivant les produits ( J, (-*• - J

i _ J , l L J f ,—L , , f L 1 , • . . . , au développement siuvanê

les puissances [ ^ J , ( -—? ) , [ ^ } . . . . . . On verra peut-être avec quel-

que intérêt comment je puis justifier cette assertion.
Je prends, comme plus simple , le développement de F(3>f-n«). ïl ne faut

qu'une légère attention % après les premiers essais de développement , pour re-
connaître qu'on a

~

nm

kmF#~

équation dans laquelle les eoefficiens A ? JB,. • ^. de la série qui multiplie ——— r

série que , pour abréger 5 je désignerai à l'avenir par Iî , sont, d'après la théorie
générale des équations , et en représentant respectivement par S, ? S t , S^7..» S v

éles sommes de produits l à i , 2 à a , 3 à 3 3 . . . . f p* à & t

est le rang de la lettre M ; A éf&nt supposée la première, Je désignerai par P 1̂

cjui multiplie -r— ; ses coeitlciens seront , —— ç- , . « . . . ?
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On me permettra , avant de terminer , de présenter ici 3 sur

rapplication de la philosophie transcendentale , et en général des

rÀ! , Bf , . . . . étant ce que deviennent A. , B , respectivement , quand on
change m en m-f-i. O r , il est visible qu'on a les relations

d'où l'on conclut sur-le-champ

Je fafs , pour abréger ?

ce qui donne

= n , (3)

la,relation gënérale (2.) devient

^ ± ï } : (5)

f e fais ici 772=0 ; alors (1) A ? B , C , . . . . «ont nuls et j'ai

t« qu'on saît déjà (Î). Je fais ensuite m = i 7 dans (5) ; eE > d^près les
de À > B , C r«lalives à w = o 9 fai
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systèmes métapliyslques aux mathématiques , quelques réflexions qui
ne pourraient que difficilement trouver place ailleurs , et que. le
sujet qui m'occupe semble amener d'une manière assez naturelle.

or, on a l'équation identique

bien

d*où Ton tire

e'est-à-dire (6) qu'on a , lorsque 771=1 ,

^ ^ ^ ^ r . • (7)

En général , si, pour le cas de m , on a la relation (7) , je dis que , pour le
cas de m + i , on aura

En effet, d'après l'hjpolhèse (7) et la telâfiftn générale (5)r, on aura *-
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J'avais bien prévu, en lisant KANT , que les géomètres seraient f
tôt ou tard, l'objet des tracasseries de sa secte. On trouve, dans

I/s=:L+iK+il+ ....= =±i (L+K+I
7 7 2 - f - ^

Je tire de là ces deux résultats

donc , on aura , par la substitution du i.er dans le 2.me
 r

H += ; H ; • + T
772+1 i m + i s m+i

par conséquent

ce qui donne

équation dont le premier membre est , d'après (5) t l'expression de M". Dons
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les prolégomènes de la Critique de la raison pure 9 ce passage
très-significatif : ( Je cite d'après la traduction latine de Born )
Cura enim VÎQ urujuam de malhesi sua philosophait sint ( arduum
sanè negotium ) . • . . tritœ reguîœ atque empiricè usurpatœ iis
sunt instar axiomatum ; mais j'étais loin d'imaginer jusqu'à quel

la relation (8) est vraie <|uand la Relation (7) a lieu ; mais , pour rtr^O , m = l ,
cette dernière est démontrée ; donc elle est généralement vraie. En rappliquant
à l'équation (4) , on aura

lia première Ugne horizontale jê st la même chose (3) que Ait ; la £*me la ménîe
chose que — j-A2n \ la 3 , m e la même chose que 4-

Oest la relation qui règne entre deux séries consécutives , coefîicîens de n , dans
le çléùeloppement àeL^F(x-{-nac) 9 suivant les puissances de n ; relation que nous
avons établie d'une autre manière .( n.° i5 ) j et de laquelle il suit que, si Von
£ait , comme en l'endroit cité ,

On aura

On passe absolument de la même manière du développement de (i+^) ;i > donné
par la formule du binôme , au développement suivant les puissances de n ; d'où
l'on voit <jue c'est pure paresse aux analistes d'introduire îinfini pour effectue?

*|e passage.
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point ils seraient maltraités. Voyez , dans cette fastueuse conclusion
de la Philosophie des mathématiques ( pages ^56 et suivantes ) ,
avec quel superbe dédain on y répond à cette question : Quel était
l'état des mathématiques , et sur-tout de Talgorithmie , avant cette
philosophie des mathématiques ? Vingt fols on y répète : « On ne
* le savait pas . . . . * , on ne s'en doutait même pas „ on n'en avait
» pas Yid.ée .**..* »

Mais sommes-nous bien aussi pauvres qu'on le dit ? et la Phi-
losophie critique ne se pavanerait-elle point un peu aux dépens
de notre plumage ?

« Les théories des logarithmes et des sinus , purement algébriques 9

3» n'étaient point connues. . . . » Quelqu'un a déjà réclamé contre
cette allégation * en citant entr'autres l'ouvrage xle Su rem ai n-de-
Missery ( Théorie purement algébrique des quantités imaginaires ;
Paris 1801 ).

« La loi fondamentale de la théorie des différences n'était pas
connue. . . . . » 'On qualifie ainsi l'expression de la différence ùf* du
xlu produit Yx.fx , parles différences. de Yx et de fa 9 formule que
Taylor a publiée depuis long-temps , dans les Transactions philo-
sophiques ( tome 3o > page 676 , etc. ). Il est bien vrai qu'on ne
l'avait pas « reconnue pour la loi fondamentale de toute la théorie
» des différences et des différentielles » 7 parce qu'il n'est pas vrai
qu'elle jouisse de cette propriété. Les lois vraiment fondamentales
de ces deux théories sont dans les définitions de la différence et de
la différentielle. On déduit de ces définitions quelques faits généraux f

fort utiles pour la pratique ; la prétendue loi est du nombre. Au
surplus , le Philosophe a bien senti l'insuffisance de sa loi , quand
il est question de différencier les fonctions de plusieurs varias
blés ; car elle ne va pas jusqu'à donner la forme des dévelop-
pemens en différences et différentielles partielle!». Maïs admirez le
subterfuge qu'il emploie pour sauver l'universalité de cette loi ; il
affirme .que la forme dont il s'agit « n'a besoin d'aucun artifice
y pour être çléduite ou démontrée. , . . . » ; mais, si cela est, vous
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n'en êtes que plus coupable d'avoir présenté cette forme dans une
formule fausse {Philosophie , etc., formule (bh), page 116 )* On
peut la comparer avec la vraie formule que j'ai donnée dans la
précédent mémoire (76), et qui comprend, comme cas irès-particulier *
la loi philosophique.

« La théorie des grades et gr adules n'était point connue ^
c'est-à-dire , qu'on n'avait pas pensé à créer de nouvelles notationa
pour représenter des expressions aussi simples que

Voilà ? tout au plus ^ ce que je puis accorder. Les nouveaux calculs*
du philosophe sont trop voisins de celui des différences et de celui
des différentielles pour constituer une branche partîtulière de l'ana-
lise ; et certes f ce ne serait pas là peine de faire du calcul diffé-
rentiel lui-même un algorithme sépare de celui des différences , s*
la différentielle s'exprimait en fonction des différences aussi sim-
plement que le gradule s'exprime en fonction des différentielles*
C'est une considération de philosophie toute commune qui a suggéré
aux analistes , à Euler en particulier 5 la triple génération du nombre
suivant les formes N=P+Q f N=P . Q f N-P*?. D'après la
même considération , il n'est échappé à aucun d'eux qu'on peut
faire varier x 9 dans z=<p# ? de trois manières -, c'est-à-dire , éa
supposant que x devienne x-\-% f %.%, ce \ et qu'en conséquence
de chacune de ces hypothèses, la fonction z peut aussi varier de
trois manières , et devenir z-+-| > ̂ « i ? &*'\ de sorte que, pour dé-
terminer ce que devient z , quand l'accroissement | est répété ua
certain nombre de fois , il y a t en général , neuf problèmes à
résoudre* Le calcul des différences et celui des différentielles sont
nés de la considération du premier de ces problèmes , c'èst-à-dîre ,
de la correspondance établie entre les états variés oc-\-% et z + f %
et % si les autres problèmes étaient aussi féconds % il resterait encore*
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tien des nouveaux algorithmes à créer-, de sorte que rénumération $
présentée par la philosophie transcendantale , des branches de ce
qu'elle appelle Théorie de la constitution algorithmique , serait loin
d'être complète. Mais les analistes n'ont pas ignoré que les auties
problèmes -se ramenaient très-bien au premier. Cependant le calcul
des gradules semble se recommander sur-le-champ , par une appli-
cation importante • celle que le philosophe en fait à la recherche
tle la forme des racines d'une équation déterminée , exprimées en
fonction de ses coefficiens,. •. Voilà du moins ce qu'on voudrait nous
faire conclure d'une discussion qui occupe quatorze mortelles page§
in-4.0 {Philosophie ,etc. >*Pag* 83—96 ) hérissées d<es .signes algo-
rithmiques les plus sauvages. Mais quand , peu effraye* de tout cet
appareil , on se donne la peine de discuter îes raîsonnemens , de
simplifier les calculs 5 et de traduire les formules en langue ana-
lytique vulgaire , on ne peut se défendre de refuser net son assen-
timent aux assertions de l'auteur.

Après avoir posé l'équation identique

(a'+a;)(a"+x)....=sA+Bx+..'..=S , (i)

on nous dit que c'est par le calcul différentiel qu'on doit chercher
à exprimer A, B t ,..?* en fonction ,de af

 9 a/; ,*..*, et que réci-
proquement c'est par le calcul des* gradules qi/on doit arriver aux
expressions de a* 9 au , . . •. en fonction de A , B 5 .* . . « En effet
^ le produit (a/+x)(a//-{-a:) ...« ne saurait être décomposé en partiel
» de la sommation que par le calcul différentiel ; et la somme
?> A-\-Bx-\~..... ne peut-être convposée en facteurs que par le calcul
» des gradules » ( ibid. pag, 83 ). La première, proposition ^st
fausse; on a su exprimer les coefficiens en fonction des racines,
long-temps avant la découverte du calcul différentiel. La 2.e pro-
position 9 qui n'est point une -conséquence de Ja- preçnûère, à moins
qu'on ne veuille introduire dans l'analise un vague de raisonnement

repousse l'exactitude de la science , n'est po'mt prouvée. Je
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même découvrir, très-facilement ? par l'analîse commune , le résultat
auquel parvient le philosophe , armé de ses gradules.

Voici des hypothèses évidemment permises

Quand les facteurs ar+x , an*\-% , . / . • . , La fonction S

deviennent
3.°

devient

Pour plus de simplicité , nie prenons que trois facteurs. La première
hypothèse donne

dans ce résultat ? formons la seconde hypothèse ; nous aurons

h9^ Ç2\

Sî l'on avait admis quatre facteurs , on ferait dans ce résultat la
3. e hypothèse. En général ? quand il y a 77? facteurs on fait m—i
hypothèses successives. Actuellement soient faits dans (2) t'~a jj
iifzzb> liU~c > et il viendra

i Tan fait aV h \ c infiniment petits , n ? nf seront aussi infiniment
f etits |
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petits ; et , parce qu'en général ax= i-\-xLa , quand x est infini-
ment petit, l'équation (3) deviendra

expression qui , lorsqu'on suppose « la quantité arbitraire ce égale

x> à zéro , pour plus de simplicité » ( ibid. pag. 90 ) prend la forme

Voilà, bien sérieusement 9 le résultat unique du rôle que Ton
confie au calcul des gradules , pour lui assurer une entrée brillante
dans le monde. Etait-ce bien la peine de le mettre en scène ? J'ose
le demander.

JPai fait remarquer qu'on dispose, dans (4) 3 de l'arbitraire xf

en lui donnant la valeur zéro ; mais cette bypothèse réduit jg à A -f

par conséquent, dans le second membre de (5) > il n'entre plus que
le coefficient Â ; et la racine a/n n'est plus exprimée que par un
seul des eoeiiîciens de l'équation. D'ailleurs cette hypothèse con-
trarie évidemment celle qu'on est oblige de faire plus bas (pag. g5 ) ,
d'après laquelle les différentielles successives de a, savoir àx 7 à*x >.. M
doivent satisfaire à certaines conditions qui , soit dit en passant r
auraient grand besoin elles-mêmes d'être conciliées entre elles. Quoi
qu'il en soit, dato non concesso , que le second membre de (5) soit
une fonction des coefficiens A 9 /? , •«•• ; quelle est la conséquence
qu'on prétend en tirer ? c'est que « la quantité ar// est une quan-
» tité irrationnelle ou radicale de Tordre 3—1 -» ( p a g e 9 0 ) ou de
la forme

(6)

n'y n', n" étant des fonctions des coeificiens A, B,.

Tome F.
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Ici le philosophe a beau s'envelopper du mystère transcendantâl ,

on n'en aperçoit pas moins que son raisonnement se réduit à ceci:
l'expression du second membre de (6) peut être ramenée à la forme
du second membre de (5) ; donc cette expression représente la form^
de a//r. Je nie la conséquence. Pour que deux choses puissent être
prononcées égales entre elles , lorsqu'elles sont égales a une troi-
sième , il faut que celle-ci soit déterminée : or , l'expression second
membre de (5) est complètement indéterminée , puisqu'elle revient

.22 1

a la forme iV °° ou JV°. Je le demande; que dirait-on de la lo-
gique de I'analiste qui, ayant trouvé , au bout de ses calculs , les
deux expressions a=l, b~ \ , en conclurait a—b ?

« La loi fondamentale de l;a théorie de§ nombres était Inconnue,... »
On nous donne pour telle un, théorème algébrique ( ibid. équat. (D),
P3g. 67 ) qui n'est pas plutôt la loi fondamentale de cette théorie
que le théorème connu

x-

dont le premier est une conséquence peu» éloignée. Les nombres
entiers sont des termes de la suite indéfinie de nombres , qui a zéro
pour origine et 1 pour différence entre deux termes consécutifs
Quelconques ; c'est là leur définition , et conséquemment la vraie
lôî fondamentale de leur théorie. Le Philosophe s'empresse de conclure
de son théorème l'impossibilité de soumettre les nombres premiers
à une loi ( ibid. page 68 ) ; mais je serai bien curieux de voir comment
il concilierait cette conséquence avec la remarque singulière que
Lambert a consignée dans son Essai $architecîonique ( Puga, 1771 ,
page 5o7 ) et dont voici la substance : dans le z.mt membre de
l'équation

I—x ï—JC* 1—xm

chaque coefficient est égal au nombre dos diviseurs de 1,'expasant̂
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de manière que tous les termes et les seuls termes affectés du coeffi-
cient 2 ont un exposant premier.

« La résolution théorique des équations d'équivalence était toul
>> à fait problématique....» Malgré les promesses de la philosophie ,
çlle en est encore au même point» Les formes assignées aux racines
( ibid. pag* g4 ) ne sont ni plus ni moins problématiques qu'elles
Tétaient; et la résolution générale des équations ( littérales ) de tous les
degrés, donnée par le philosophe (Paris, 1812) est certes bien loin
d'avoir levé tous les doutes. Voyez, entr'autres, ceux de mon estimable
ami * le professeur Gergonne , dans ce recueil , tom. III, pag. 5i p

Î 3 7 , 206 \
« La résolution des équations différentielles était encore plus im*-

» parfaite... • » La philosophie l'a donc bien avancée 1 Je n'en suis*
point persuadé» J'aurais désiré d'ailleurs qu'on fit au moins une
légère mention des méthodes générales proposées par Fontaine 9

Condorcet t Pezzi * etc. ; quand ce n'eût été que pour les combattre.
ce La loi de la forme générale des séries ( le développement de Fx f

» suivant les puissances de px ) > et encore moins la loi de la forme
» la plus générale de ces fonctions techniques ( le développement
» suivant les produits des états variés), n'étaient nullement connus >*
La première cependant n'est qu'un cas particulier de la formule
de Burman que j'ai donnée (112); elle se trouve dans le Calcul
des dérivations d'Arhogast ( n.a 287 ) ; et l'autre est , comme ja
l'ai dit , un cas particulier de ma formule (23)^ connue au moins*
pour des cas très-étendus 1 tel est celui-ci

car c'est à cela que revient la résolution, du problème de l'article
du Calcul des dérivations. Ajoutons qu'Euler s'est élevé à quelque
chose de plus générai encore * lorsque ? dans un mémoire fort ori-
ginal ( Nova Acta Petrop» 1786 ) sur la fameuse série de
ïj, part de cette expression*
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- * La loi de Taylor ne s'étend qu'aux fonctions données îmmé-
v xlialement , et non à celles données par les équations »
( Réfutation , etc. 9 pag. 3o ). INous avons démontré le contraire
dans notre précédent mémoire ( n.° 19 ).

« Déduire le développement de x ( d'après l'équation donnée
» o—<p(& > a) ) 7 suivant les puissances de +a -, c'est déjà beaucoup
» plus que ce qu'on fait jusqu'à ce jour dans l'algoriihmie.... »
( ibid. pag 3^ ). Cette prétention doit être appréciée après avoir
lu les articles, depuis 318 jusqu'à 3a6 inclusivement , du Calcul
des dérivations.

Je serai plus bref encore sur l'autre question du Criticiste : Quel
sera Vètat de Valgorithmie ? après cette philosophie des mathéma-
tiques? Je vois des promesses *? l'avare lui-même n'en est pas chiche;
et des annonces de résultats • . . . . c'est autre chose encore -7 écoutons*
( Réfutation 5 etc., pag. 38 ).

« Si la philosophie avait déjà donné la législation des mathéma-
» tiques.. •..» Cette législation appartient sans doute à la philosophie,
en général, mais non à aucun système particulier. Les péripatéticiens
Hertinus , Dasypodius et Gomp.c ont mis la géométrie en syllogismes.
Les philosophes de Port-Royal 5 nouveaux Procustes , ont torturé
cette même géométrie 3 pour la réduire aux proportions de leur
étroite logique» Un philosophe allemand, d'abord disciple de Kant,
puis transfuge dans les ,rangs opposés 5 vient de persuader au^mathé-
maticien Langsdorf qu'il fallait refondre les principes de la science ,
admettre , en géométrie * des poùïâs spaciqupo ? çtc. y etc. Voilà y/̂
échantillon des services que Les systèmosArendent aux mathématiques.

« Et qu'elle l'eût garantie ? par l'explication- rigoureuse 4e toutes
» les difficultés.,..» Oui! les difficultés imaginaires du calcul dif-
férentiel , expliquées par une Antinomie cvhiaue ! Les parado^e§ d$
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Kramp résolus par des zéros , ou des infiniment petits, pairs et
impairs ! etc. !

« Et sur-tout par la découverte des lois fondamentales de cette
science ...•.»• Je le répète , il n'y a d'autres lois fondamentales que
les définitions, qui ne sont plus à découvrir.

« Lois qui doivent enfin conduire à la solution des 'grands pro-
j> blêmes qu'on n'a pu~ résoudre jusqu'à ce jour..,.. ». Fiat! Fiat!

« Que resterait-il à faire aux géomètres ? Deux choses : Tune .*..,
» de recevoir5 de la philosophie , les principes des mathématiques...».
Ce serait mon parti 5 si la philosophie était un corps de doctrine
révélée.

« L'autre d'étudier la philosophie transcendantale qui est la base
y> de cette dernière ...... Mais, si le résultat de cette étude était de
ne pas croire au transeendantaiisme , ou du moins d'en douter ?
Car 3 après tout , c'est une opinion jhumaine ; bien plus , c'est un
système enveloppé de ténèbres que peu de personnes peuvent se
flatter de percer. Ch. Villers accuse les académiciens de Berlin de
n'y avoir vu goutte ; d^autres lui adressent la même politesse. Au
milieu du brouhaha des discussions philosophiques d'outre-Rhin } ou
ne distingue bien clairement que ce refrein.... c< On ne m'entend
» pas... ! ». Et Ton prétendrait établir , sur une base de cette na-
ture , la | plus claire et la plus certaine des sciences!....

Pour moi je déclare , en finissant , que je m'en tiens provisoire*
ment à la philosophie des mathématiques dont Dalembert qui en
yalaït bien un autre , et comme philosophe et comme mathémati-
cien , a posé les principes. « Comme la certitude des mathémati-
» ques ,' dit-il P ( Encyclop., Art. APPLICATION ) vient de la sim-
» plicité de leur objet , la métaphysique n'en saurait être trop
$> simple et trop lumineuse ; elle doit toujours se réduire à des
* notions claires , pre'cises et sans obscurité. En eiFet f comment les
» conséquences pourraient-elles être certaines et évidentes , si les
» principes ne Tétaient pas? Plus cette métaphysique , ajoute-t-il ,
» ( /3/V. Art. ÉLÉMgJXS ) est simple et facile , et , pour ainsi dire 9
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» populaire > et plus elle est précieuse ; on peut même dire que la
» facilité et la simplicité en sont la pierre de touche»»

Au surplus , Lien convaincu que j'ai raison contre la Philosophie
critique ; je ne veux point me donner des torts envers le philo-
sophe : je me hâte donc de déclarer que je me plairai toujours à
reconnaître % dans l'auteur de la Philosophie des mathématiques,
un géomètre très-habile et très-instruit J dont les travaux pourraient
devenir extrêmement utiles à la science > s'il parvenait jamais à se
soustraire à l'influence du système philosophique par lequel, suivant
moi r il s'est très-peu philosophiquement laissé subjuguer*

La Fère , le 10 d'août I 8 I 4 *

ARITHMÉTIQUE.

Sur le caractère de divisibilité des nombres par certains
diviseurs ;

Par M. GERGONNE.

K un nombre entier quelconque ^ écrit dans le système de
numération dont b est la base* Concevons qu'on ait partagé ce
nombre % en allant de droite à gauche, en tranches, de m chiffres
chacune * sauf la dernière qui pourra en avoir moins \ et soient,
en allant aussi de droite à gauche, Ao 9 At > At , A,,,«.•• ces
tranches % considérées comme autant de nombres isolés». On aura
évidemment
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Cette équation pourra ensuite être mise sous les trois formes suivantes

. ( i )

(3)
+(Ao+A,+A4+...0—(A

En observant que les premières parties de ces diverses expressions
de N sont respectivement divisibles par hm

 9 bm—.1 , hm-\~i , et
cooscquemment par tous diviseurs de ces trois nombres, on pourra
établir les propositions suivantes.,

i.° Dans tout système de numération, le reste de la division
d'un nombre quelconque par un diviseur quelconque de la m.me

puissance de la base du système , est le même que celui quon
obtient en divisant sa première tranche de m chiffres à droite
par ce diviseur.

2.0 Dans tout système de numération 9 le reste de la division
d"un nombre quelconque par un diviseur quelconque du plus
grand nombre de m chiffres est le même que €elui qu'on ob-
tient en divisant la somme de ses tranches de rn chiffres par-
ce diviseur.

3.° Dans tout système de numération le reste de Ifi division
d'un nombre quelconque par Vun quelconque des diviseurs de la
m.m* puissance\ de la base augmentée d'une unité est le même que
celui quon obtient en divisant par le même diviseur la somme
des tranches de m chiffres de rangs impairs moins la somme des
tranches de m chiffres de rangs pairs.

Afin donc que la première dwbio» réussisse , dans chaque cas %
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il sera nécessaire et suffisant que la seconde , plus simple, réus-
sisse également. Voilà donc autant de caractères de divisibilité des
nombres par certains diviseurs.

Ainsi, par exemple, dans notre système de numération , la di-
visibilité d'un nombre par 3j tiendra à la divisibilité par 37 de la
somme de ses tranches de trois chiffres 5 sa divisibilité par 7 dé-
pendra de la divisibilité par 7 de la somme de ses tranches de
trois chiffres de rangs impairs moins la somme de ses tranches de
trois chiffres de rangs pairs.

Si Ton suppose m=i 7 on retombe sur les caractères connus de
divisibilité par 2 , 3 , 5 5 9 et 11.

QUESTIONS PROPOSEES.

Problèmes de Géométrie.

\. V^UELEE surface décrit le sommet d'un angle trîèdre tri-rectangle
mobile, dont les arêtes sont assujetties à toucher perpétuellement
une surface fixe du second ordre ?

IL Quelle surface décrit le sommet d'un angle trièdre tri-rectangle
mobile , dont les faces sont assujetties à être perpétuellement
gentes à une même surface fixe du second ordre ?
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HYDROSTATIQUE.

De la stabilité des corps flot tans \

Premier mémoire de la seconde partie des dèveleppemens de
géométrie ;

Par M. CH, DUPIK , correspondant de l'institut de France f

associé étranger de celui de Naples > capitaine du génie
maritime , etc%

Rapport sur ce mémoire 9 fait à la première classe de
Vinslitut de France $

Par M* GARNOT,

JYJL Sané, M. Poinsot et moi , avons été cliargers par la classe
de lui rendre compte d'wn mémoire sur la stabilité des corps flottans^
qui lui fut présenté le 10 janvier dernier, par M. Charles Dupin ^
capitaine en preioier au corps du génie maritime f et aux travaux
duquel la classe a déjà plusieurs fois applaudi. Ce mémoire même
â été composé par un jeuoe officier qui s'attendait à chaque mo^
ment à recevoir des ordres pour se rendre aux armées.

Le mémoire de M. Dupia est la première application des me'-*-
thodes exposées par le même auteur dans cinq autres mémoires
de ge'ométrie 3 approuvés par Ja classe , et publiés ensuite sous le

Tom. V7 n.° VI, **er décembre
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titre de Dèveloppemens de géométrie, pour faire suite à la géo-
métrie descriptive et à la géométrie analitique de M. Monge,

En voyant ces premières recherches , notre illustre Lagrange ,
dont les suffrages peuvent être regardés comme les plus beaux titres d'un
jeune géomètre , a fait d'elles cet éloge, confirmé par le jugement de la
classe. « L'auteur a trouvé le secret de dire des choses neuves et
?> intéressantes 5 sur un sujet que nous croyons épuisé. ».

Le nouveau sujet que M. Dupin s'est proposé de traiter , dans
le mémoire dont nous avons à rendre compte , est plus difficile
encore que celui des mémoires précédens , et semblait pareillement
épuisé. La théorie de l'équilibre des corps flottans sur un fluide
sa fait l'objet des recherches des plus grands géomètres. Àrchimède
est le premier qui s'en soit occupé ; et le livre où il traite cette
matière , si peu abordable de son temps , est, avec raison, regardé
comme un des écrits qui font le plus d'honneur à son génie. En
n'employant que la méthode synthétique, Àrchimède recherche les
conditions de l'équilibre des corps sphériques , cylindriques et para-
boliques. Il détermine dans quel Cc*s l'équilibre doit être stable et
dans quel cas il ne doit pas l'être. En admirant la force d'esprit
qu'exigeaient ces premiers résultats dune science alors dans l'en-
fance , on ne peut s'empêcher d'avouer qu'une méthode qui doit,
à chaque corps nouveau dont on s'occupe , recourir à de nouveaux
moyens de solution^ ne soit d'une étude et d'une application ex-
trêmement pénibles.

M. Dupin annonce que, dans un second mémoire * il reprendra
toutes les questions traitées par Archîmède , pour les faire dériver,
comme autant de corollaires, d'un seul et même principe : si cette
partie est bien traitée , ce ne sera pas la moins intéressante de
son travail.

Dix-neuf siècles se passèrent avant qu'on revînt aux questions
traitées par Archimède , pour reculer de ce côté les bornes de la
science. Deux géomètres l'entreprirent, pour ainsi dire , en mênre
temp.s.
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Boùguer, dans le voyage où il fut , avec Lacondamïne , me-

surer sous l'équateur un arc du méridien , employait ses loisirs à
composer le Traité du navire ; tandis qu'Euler , à Pétersbourg ,
écrivait son livre intitulé Scientia navalis. Dans ces deux ouvrages s

On voit la question de l'équilibre des corps flottans traitée sous
un point de vue beaucoup plus général que ne l'avait fait Àrchi-
mède. La seule restriction qu'on s'y permette encore est de re-
garder les corps comme symétriques par rapport a un plan. Telle
est, en effet , la forme de nos vaisseaux de guerre ou de com-
merce , ces grands corps flottans dont l'équilibre et la stabilité sont
d'une considération si îrîîportante,

Bouguer se rapprocha de la méthode des anciens ; il présenta
ses idées sous une forme géométrique ; il les rendit par la plus
sensibles ; et les ingénieurs maritimes de toutes les nations adop-
tèrent sa manière de déterminer la stabilité des corps flottans. Euler
n'abandonna pas sa méthode accoutumée , et parvint au même but
par une analise simple , élégante et facile.

M. Dupin suit une marche différente de celle qu'avaient adoptée
ces deux illustres géomètres ; il emploie une géométrie qui n'était
pas connue de leur temps > et ce nouvel instrument le conduit à
de nouveaux résultats.

Au lieu de se tenir toujours infiniment près de chaque position
d'équilibre , pour voir ainsi ce qui se passe autour d'elle ? il con-
sidère j à la fois ? toutes les positions qu'un corps peut prendre 3,
en flottant sur un même fluide , lorsque ce corps est d'un poids
eonstant et d'une forme extérieure invariable»

Pour que le corps flottant soit en équilibre , il faut, comme ont
sait 9 que son eentre de gravité soit sur la même verticale que le
centre de volume de sa carène ; cette carène étant terminée au
niveau du fluide par un plan horizontal qu'on appelle le plan de'

flottaison»
Mais ? le poids du corps étant supposé constant y le volume â&

la carène l'est aussi* Si donc y par des transpositions dans l'intérieur f
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on fait prendre au centre de gravité du corps flottant toutes les
positions possibles ? sans que la figure extérieure de ce corps change M

on va trouver ? pour ces différens états d'un même corps , une
infinité de plans de flottaison différens, et une infinité de carènef
différentes. Chacune de ces carènes a son centre de volume en un
point particulier. Voilà , par conséquent , une infinité de centres
de carène. Ils forment une surface : c'est la Surface des centres
de carène* Tous les plans de flottaison sont tangens à une autre surface
qui ? par rapport à ces plans , est du genre de celles que M. Monge
a nommées enveloppes : c'est la surface enveloppe des flottaisons*

On n'avait pas encore eu l'Idée d'envisager ces deux surfaces,
et c'est leur considération qui conduit M. Dupin , d'abord à des
théorèmes qui renferment tous ceux que Ton connaît déjà sur
la stabilité des corps flottans , et ensuite à beaucoup d'autres théorèmes
nouveaux.

L'auteur observe premièrement que la définition de la surface
des centres de carène et* celle de l'enveloppe des flottaisons étant
purement géométriques f la recherche des propriétés générale de ces
surfaces doit appartenir uniquement à la science de l'étendue. Il
s'occupe d'abord des propriétés de la première de ces surfaces , et
la traite d'après les principes qu'il a exposés dans ses Développe**
mens de géométrie : voici les résultats auxquels il parvient.

La surface des centres de carène est nécessairement d'une éten-
due finie ; elle est fermée <le toutes parts. Quelle que soit la forme
îrrégulière du corps flottant, la surface des centres de carène est
toujours continue ( en' ce sens que ses plans tangens se succèdent
constamment , par une dégradation insensible dans leurs directions ,
de manière à ne former ni angles ni arêtes sur la surface).

Si l'on place le corps flottant dans une position d'équilibre 7 le
centre de sa carène sera en un certain point de la surface lieu des
centres, et le plan tangent à la surface en ce point sera néces-
sairement parallèle au plan de flottaison , c'est-à-dire horizontal.

De là résulte immédiatement cette autre propriété générale. Dans



DES CORPS FLOTTANS. 177
position d'équilibre quelconque , la droite menée par le centre

de gravité du corps flottant et par le centre de carène , est nor*
çnale ? en ce dernier points à là surface des centres de carène.

Ainsi y dès le principe , l'auteur ramène la recherche des positions
d'équilibre d'un corps flottant à la détermination des droites nor-
males à la surface des centres de carène , en ne prenant, parmi
ces normales que celles qui passent par le centre de gravité du corps,

II ne suffit pas de déterminer une position d'équilibre > il faut
$ 'assurer de plus que cette position est stable.

On voit des corps flottans que l'on cherche vainement à déranger
de leur position primitive. De quelque côté qu'on les incline y ils
tendent toujours à se redresser. On en voit , au contraire qui , dès
qu'on les dérange un peu de leur première position , de quelque
côté qu^on les incline , s'inclinent encore davantage , et ne reviennent
plus à leur première assiette. Enfin on en voit d'autres qui, pen-
chés d'un certain côté , tendent à se redresser , tandis qu'en les
penchant dans une autre direction , ils s'écartent de plus en plus
de la position primitive. Dans le premier cas, on dit que l'équilibre
est stable > dans le second ? qu'il est absolument instable ? et dans
le troisième que cet équilibre est mixte.

Or f rien n'est plus facile que d'assigner les caractères de ces
différens genres d'équilibre , en considérant la surface des centres
de carène. Lorsqu'on incline très-peu le corps flottant , on peut
concevoir qu'il tourne autour d'un axe horizontal. Blaintenant, par
le centre de la carène qui correspond à la position d'équilibre , con-
cevons un plan perpendiculaire à cet axe; ce plan sera verJticai et
coupera normalement en ce point la surface des centres de carène.
Déterminons , pour ce même point, le centre de courbure de cette
section ; il sera sur la même verticale que le centre de gravité du
corps flottant. Cela posé, i,° s'il est au-dessus , l'équilibre est abso-
lument stable ; 2.0 s'il est au-dessous , l'équilibre est absolument
instable ; 3.° s'ils se confondent ? l'équilibre est mixte. Ainsi 9 ce
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«entre de courbure Joue 7 dans la théorie de M. Dupîn , le même
rôle que le mètacentre dans la théorie de Bouguer,

De ces principes résulte ce théorème nouveau et remarquable :
suivant que la position d'un corps Jîottant est stable eu non s ta-
ble 7 la distance du centre de gravité de ce corps au centre de
sa carène est un minimum ou un maximum y par rapport à toutes
les positions voisines que peut prendre le corps Jîottant.

En appliquant à la stabilité les propriétés de la courbure des
surfaces , Fauteur conclut d'abord que , si Ton incline successivementf
autour de tous les axes possibles , un corps en équilibre sur un
fluide , i .• la direction de la plus grande stabilité est celle où Taxe
ast parallèle à la direction de la plus grande courbure de la sur-
face des centres de carène, 2..0 la direction de la moindre stabilité
est celle où l'axe est parallèle à la direction de la moindre cour-
bure de la même surface.

De là il suit immédiatement que les directions de plus grande
et de moindre stabilité d'un corps flottant quelconque se croisent
toujours à angle droit.

Pour examiner les stabilités comprises entre ces deux extrêmes,
M. Dupin se sert encore de la surface des centrer de carène ; il
a recours à la courhe indicatrice et aux tangentes conjuguées de
cette surface. On peut voir, dans le rapport de M. Poisson j sur
les trois premiers mémoires de M. Dupin ? la définition de cette
eourbe et de ces tangentes 7 ainsi que l'exposition de leurs prin-
cipales propriétés , faite avec autant de clarté que de précision. (*)

II nous suffit de dire que , si Ton coupe une surface par un
plan infiniment voisin de son plan tangent et parallèle à ce plaît,
la section est une courbe du second degré , que M. Dupin appelle
indicatrice y parce qu'elle indique en effet la forme de la surface*
à partir du point où elle est touchée par le plan tangent que l'on

£*) Consultez aussi la page 368 du 4*me volume de ce recueil*



D E S C O R P S F L O T T A N S . 179
considère. Les diamètres conjugués de cette indicatrice représentent
autant de systèmes de tangentes conjuguées de cette surface.

Revenons à la surface des centres de carène. Elle a partout ses
deux courbures dirigées dans le même sens: son indicatrice est donc
constamment une ellipse. Les axes de cette ellipse sont parallèles
aux directions de plus grande et de moindre stabilité du corps
flottant.

Les degrés de stabilité du corps flottant sont proportionnels aux
quarrés des diamètres de l'indicatrice ; ces diamètres étant dirigés
dans le sens de l'inclinaison du corps flottant.

Or , les diamètres d une ellipse sont disposés symétriquement de
côté et d'autre des deux axes ; donc les stabilités intermédiaires
sont aussi disposées symétriquement de côté et d'autre des deux
directions de plus grande et de moindre stabilité.

Si l'on appelle 5 avec M. Dupin , stabilités conjuguées, celles qui
appartiennent à des inclinaisons répondant à deux diamètres con-̂
jugués de l'indicatrice , on verra qu'elles jouissent de cette pro-
priété générale : pour une même position d'équilibre , la somore
de deux stabiliios conjuguées est nécessairement constante et «égale
à la somme de h pia~> grande et de la moindre stabilités du corps
flottant.
* Enfin M, Dupin , par le secours de la courbe indicatrice déter-
mine , dans les cas d équilibre mixte , les limites qui séparent les
directions où l'équilibre est stable d'avec celles où il ne Test pas.

Jusqu'ici , l'auteur supposait que la forme extérieure du corps
flottant dut rester constamment la même ; il suppose ensuite que
cette forme varie d'une manière très-générale ; il s'assujettit seu-
lement à laisser constantes les hauteurs des centres de gravité du
corps et de sa carène , ainsi que la figure de la flottaison. Alors
il examine les transformations infinies que peut éprouver la sur-
face des centres de carène ; il ramène ces transformations à celles
dont il a fait l'examen dans ses Dêveloppemens de géométrie. 11 en
conclut que les nouvelles surfaces des centres d& carène auront
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toutes un contact, au moins du second ordre 9 avec la surface prî-~
niitive ; et par conséquent , que tous les nouveaux corps flottant
auxquels ces nouvelles surfaces appartiennent ont la même stabilité
que le premiers corps flottant. C'est ainsi que M. t)upin cherche
à utiliser les principes qu'il a présentés dans ses premiers mémoires.

Telles sont les principales propriétés de la surface des centres de
carène. Après les avoir développées 9 l'auteur considère spécialement;
la surface enveloppe des flottaisons et Faire de chaque flottaison.

Cette seconde surface est, comme la première , fermée de toutes
parts ; elle présente aussi partout ses deux courbures dirigées dan$
le même sens. Elles ont ensemble cette corrélation singulière qu'elles
ne peuvent jamais se couper ; tantôt la première embrasse complè-
tement la seconde ; tantôt la seconde embrasse complètement la
première.

D'après sa définition y l'enveloppe des flottaisons a pour plana
fangens tous les plans de flottaison. Or , le point de contact de
l'enveloppe et de ces plans est le centre de gravité de l'aire d@
chaque flottaison ( cette aire étant terminée par le périmètre du
eorps flottant ). Ce théorème revient, quant au fond , à celui qu'oa
doit à de Lacroix , membre de l'ancienne académie des sciences ;
Euler en parle dans la préface de son traité : Scientia navalis*

M. Dupin fait voir généralement que le plus grand et le plus
petit rayem de courbure de la surface des centres sont égaux au p!u$
grand on au plus petit moment d'inertie de l'aire de la flottaison %

divisé par le volume de la carène.
De là il conclut immédiatement que la direction delà plus grande

ou de la moindre stabilité du corps flottant est parallèle à l'axe
du plus grand ou du plus petit moment d'inertie de l'aire de la
flottaison ; théorème connu.

Par une correspondance bien singulière, la courbure de la surface des
centres de carène dépend donc spécialement de la figure de la flot-
taison ; mais la courbure de la surface enveloppe des flottaisons
dépend de quantités plus compliquées. Cependant , il est ijatéressaxat
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connaître les élémens de ceUe courbure ; ils indiquent dans quelles
directions les stabilités primitives croissent ou décroissent par les
degrés les plus lents ou les plus rapides y et peuvent montrer les
états prochains de stabilité d'un corps flottant dérangé de sa po-
sition d'équilibre. Cette recherche ne peut être que d'un grand intérêt
pour la théorie de la construction des vaisseaux.

Voici , à ce sujet 9 les résultats auxquels l'auteur parvient ; ils
s'offrent sous une forme singulière.

Si Ton charge le contour de la flottaison par des poids propor-
tionnels à la tangente de l'angle formé par la verticale et la paroi
du corps flottant , les axes principaux du plus grand et du plus
petit moment d'inertie de cette ligne pesante seront respectivement
parallèles aux directions de plus grande et de moindre courbure de
l'enveloppe des flottaisons.

Et si Ton divise par la superficie de la flottaison deux fois ce
plus grand ou ce plus petit moment d'inertie , le quotient sera le rayon
de moindre ou de plus grande courbure delà surface des flottaisons.

Après s'être occupé de tout ce qui peut caractériser une p o -
sition d'équilibre 5 considérée isolément , M. Dupin considère , à la
fois , toutes les positions d'équilibre que peut prendre un corps flot-
tant dont la forme est invariable , ainsi que son poids et la po-
sition de son centre de gravités

Cette partie de son travail 9 quoiqu'elle ne paraisse pas devoir
êtie aussi féconde que la première en conséquences utiles y semble
peut-être plus originale, et par la généralité des résultats, et par
la simplicité des moyens de solution.

D'après la théorie précédemment exposée , la recherche de toutes
les positions d'équilibre du corps flottant est ramenée à celle de toutes
les droites que l'on peut 5 du centre de gravité de ce corps } mener
normalement à la surface des centres de carène.

L/autenr prouve d'abord que tout corps solide , flottant sur un
fluide 9 présente au moins deux positions d'équilibre ; l'une dont
la stabilité est absolue j l'autre dont l'instabilité est pareillement ab-

fom. Ff ^4
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solue ; principe qui 'n'avait pas encore été démontré directement.

Ensuite ce géomètre fait voir que le nombre des positions d'é-
quilibre d'un corps flottant est généralement pair ; et il prouve que
le nombre des positions d'équilibre du premier genre est toujours
égal au nombre des positions du second genre.

Et si Ton fait tourner la surface des centres de carène autour
d'un axe quelconque mené par le centre de gravité du corps flot-
tant, puisqu'on détermine la surface de révolution enveloppe de l'es-
pace parcouru par cette surface ; en se dirigeant ensuite sur la courbe
de contact de l'enveloppe et de l'enveloppée , on rencontrera suc-
cessivement tous les centres de carène qui appartiennent aux po-
sitions d'équilibre 5 et ces centres appartiendront alternativement à
des positions stable , instable , su.ble, instable 9 etc.

S'il y a des positions d'équilibre mixtes , il faudra regarder cha-
cune d'elles comme la réunion de deux positions d'équilibre , l'une
Stable et l'autre instable ; et l'on trouvera toujours , en marchant
sur la courbe de contact dont nous venons de parler, que les centres
de carène qui correspondent à des positions d'équilibre 3 appartiennent
alternativement a des positions d'équilibre stable et instable.

Ce nouvel ouvrage de M. Dupin confirme les espérances que ce
jeune savant a données par ses premiers* travaux ; et Fon ne peut
qu'applaudir à ses efforts constans pour en diriger les résultats vers
la pratique du grand art auquel il s'est voué. Nous pensons que le
mémoire de M. Dupîn mérite l'approbation de la classe , et nous
lui proposons de le faire comprendre dans la collection des savans
étrangers.

Signe Sané, Poinsot et Carnot, rapporteur*
Le Secrétaire perpétuel pour les sciences mathématiques certifie

que ce rapport est extrait du procès-verbal de îa séance du mardi So
août 1814.

Signe Delambre, chevalier de îa Légion d'honneur.
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PHILOSOPHIE MATHÉMATIQUE.

De Vusage des infiniment petits dans la géométrie
élémentaire ;

Par M. G E R G O N N E ,

JLJÀ manière dont je me suis expliqué en divers endroits de ce
recueil, et l'emploi fréquent que j 'y ai lait delà série de Taylor^
donnent assez à connaître que je ne pense pas que la méthode
des Infiniment petits doive être employée dans les sciences exactes f

du moins comme méthode d'exposition*

Mais je manquerais de bonne foi b\ je dissimulais les objections
graves que Ton peut opposer^ aux méthodes plus rigoureuses par
lesquelles celle-là rst communément remplacée. Il est certain f en
effet , que ces méthodes sont d'ordinaire longues r compliquées et
difficiles à suivre ^ ce qui est un inconvénient notable f sur-tout dès
l'entrée d'une science, où Ton s'expose 5 par leur emploi prématuré f

à rebuter un grand nombre de commençons que des méthodes moins
sévères auraient au contraire attirés,, et dont.les études et les succès
auraient pu tourner ensuite au profit de la science» Dans les élément
de géométrie r en particulier t la réduction à l'absurde ou la méthode
d'exhaussion 7 constamment employée par les disciples d'Euclide t

présente un vice capital qui consiste dans son opposition formelle
avec l'esprit d'invention ^ et dans la nécessité où elle met souvent
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celui qui enseigne de supposer déjà connus à l'avance , par une
sorte de révélation d'en haut , les résultats dont il va établir la légi-
timité -, résultats qui, par suite , ne se gravent que très-difficilement
dans la mémoire de l'élève qui ne voit immédiatement, par exem-
ple, pourquoi le volume d'une pyramide est plutôt le produit de
sa hauteur par le tiers de sa base que par toute autre fraction de
cette base s et qui ne conçoit pas mieux comment les premiers in-
venteurs sont parvenus à deviner ces sortes de résultats. (*)

C'est là sans doute ce qui a pu déterminer plusieurs auteurs
d'élémens à donner la préférence à la méthode des limites qui , au
surplus , ne diffère guère que par les termes de celle d'exhaubsion ;
mais cette méthode des limites', outre qu'elle ne satisfait peut-être
pas autant l'esprit que la première , n'est point elle-même sans
difficulté , et n'est pas , plus que l'autre , exempte de longueurs , du
moins lorsqu'on veut la présenter d'une manière bierf rigoureuse ,
et en mettre les résultats à couvert de tout soupçon d'inexactitude.

IL y a déjà ^assez long-temps que j'ai songé à substituer à Y un
et à l'autre procédés un tour de raisonnement qui , bien quJil écarte
toute considération d'infiniment petits 5 rénnit cependant à la sim-
plicité et à la concision l'avantage inappréciable de laisser la marche
de l'inventeur tout à fait à découvert, et de ne rien laisser à désirer
du côté de la rigueur. Un seul exemple suffira pour le faire con-
cevoir nettement ; je le choisirai des plus simples.

(*) Ceci me rappelle qu'aux examens d'admission à l'école polytechnique , un
Jeune homme interrogé , il y a quelques années , sur le centre de gravité du volume du
tétraèdre, el débutant ainsi, dans sa réponse : u je vais prouver que le centre de
M gravité du volume d'un tétraèdre est à une dislance de sa base qui ne saurait*
ti être moindre ni plus grande que le quart de sa hauteur » , fut tout à coup
déconcerté 5 par cette brusque apostrophe de l'examinateur : « Comment aves-»
n vous deviné cela ? >J L'examinateur avait raison ; cela semblait en elîet tomber
des nues ; mais le jeune homme n'aurait-il pas été fonde à lui demander , k son
tour , pourquoi il rejetait en statique un mode de procéder dont il venait dt
Raccommoder en géométrie?
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Je suppose que , sachant mesurer les aires des figures rectîlignes,

on ait besoin , pour la première fols , de déterminer celle d'un cercle.
La nouveauté du problème et son peu d'analogie apparente avec
les problèmes antérieurement résolus pourront d'abord causer quel-
que embarras , et la première pensée qui s'ofïrira pour le surmonter,
sera de substituer quelque approximation à une évaluation rigoureuse.

On circonscrira donc au cercle un polygone régulier d'un très-
grand nombre de côtés ; et , supposant entre Tune et l'autre figures
une Identité qui réellement n'a lieu qu'à peu près , on prendra pour
Taire approchée du cercle le produit du périmètre du polygone circons-
crit par la moitié du rayon ; résultat évidemment d'autant plus approché
que les côtés du polygone seront plus nombreux ^ mais P dans tous
les cas 5 plus grand que le véritable.

Dans la vue de le diminuer un peu , et consëquemment d'atté-
nuer encore l'erreur P il se présente assez naturellement à la pensée
de substituer au périmètre du polygone la longueur de la circon-
férence , qui est plus petite, c'est-à-dire, de prendre pour Faire
approchée du cerc**- le produit de sa circonférence par la moitié de
son rayon. On ne pourra plus savoir ici, du moins a priori ? si
Terreur est en plus ou en moins , attendu l'espèce de compensation
introduite dans la première évaluation ; rnais, si l'erreur existe en
effet ? sa grandeur absolue n'en devra pas moins demeurer évidem-
ment subordonnée au nombre des côtés du polygone circonscrit ^ et
décroître à mesure que ce nombre augmentera*

Cette erreur , si elle existait , devrait donc être ? de sa nature ^
essentiellement variable ; mais , d'un autre côtéa elle ne saurait Fêtre,
puisque la considération du polygone n'entre plus pour rien dans
îa dernière évaluation à lacj*«eUe on s'est arrêté 9 et que les élémens
qu'on y emploie sont constans comme l'aire même qu'on cherche à
évaluer : donc l'erreur est tout à fait nulle ; donc il a dû s'opérer
une exacte compensation ; donc l'évaluation est rigoureuse 5 donc5 etc.

J'ai traîné , à dessein ? le raisonnement un peu en longueur 9 afin ,
4'ên. rendre l'esprit plus facile à saisir j mais 7 lorsqu'une fois il
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est devenu assez familier , on peut le rendre beaucoup pïus concis ;
il se réduit en effet à dire que si l'erreur d'un calcul fait sur des
quantite's constantes dans la vue d'évaluer , par approximation , une
autre quantité aussi constante , est de nature à être indéfiniment
décroissante , cette erreur est 5 parla même , tout à fait nulle.

Les mêmes considérations peuvent être facilement transportées dans
le calcul différentiel. On peut y envisager d'abord les àx > les àf}.**
comme des quantités d'une petitesse finie arbitraire > et leur intro-
duction dans les calculs comme un simple procédé d'approximation*
Alors leur évanouissement de certains résultats sera le critérium
de l'exactitude de ces résultats ; ce qui rentre exactement dans les
idées déjà développées depuis long-temps par M. Carnot d'une ma-
nière si lumineuse ( Voyez ses Réflexions sur la mèthaphysique du
calcul infinitésimal y Paris, I 8 I 3 ). Mais il faut convenir qu'ici il
peut s'offrir souvent , relativement aux suppressions de termes, des
difficultés de pratique as^ez sérieuses, et que le recours à la série
de Taylor peut seul faire complètement évanouir*

CORRESPONDANCE.

au Rédacteur des Annales , contenant une
démonstration élémentaire du Lemme énoncé à la
page S/jô du 4«me volume de ce recueiL

MONSIEUR >

J'AURAIS bien désiré pouvoir répondre complètement a l'appel
;vou& faites aux géomètres , dans la note de la page 348 du 4 339. «



CORRESPONDANCE.
Tolume des Annales ; et rendre ainsi tout à fait élémentaire la
belle théorie développée à la page i38 du même volume. En atten-
dant que quelqu'un de plus adroit que moi y soit parvenu } je vais
au moins donner du Lemme de la page 345 une démonstration y

toujours algébrique, mais délivrée du moins de l'emploi du calcul
différentiel.

La question dont il s'agit ( pag. 346 ) est de rendre minimum^
l'expression

in,a0 , (ï)

sous les conditions

(2)

;i£ ^ (3)

A et x étant deux constantes.
Soient fait d'abord passer sous les radicaux , dans (1), les coef-r

fîcîens qui les affectent ; en ayant égard à (3), cette équation de-*
Tiendra

z—k {v/aH-*3

d'où en quarrant et extrayant ensuite la racine quarrée,

équation qui, à l'aide de (2), et en posant, pour abréger

peut facilement être mise sous cette forme

Z = k\/C>+2 {\j£*+K\ay—bx)*-Z } .' (4)
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Or , on voit évidemment que , C étant une constante 9 z ne peut
devenir minimum ? qu'autant que la fonction

sera la plus petite possible ; et , comme d'ailleurs elle ne peut jamais
devenir négative , on ne peut parvenir au but qu'en la rendant abso-̂
lument nulle ? c'est-à-dire , en posant

ee qui donne, en quarrant, réduisant, divisant par x2
 ? extrayant

la racine quarrée et transposant ?

En combinant cette équation avec (3) , il vient

d'où -

4SI

au encore

on enfin

qui est précisément l'équation (6) de Tendroit citév
Agréez ? etc*

21 août
QUESTIONS
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QUESTIONS RÉSOLUES.
Solution du problème de situation proposé à la page

251 du 3.me volume des Annales ;

Par M. ARGAND.

2V. B* Le rédacteur àes Annales a reçu de M. Argand un beau mémoire d'ana-
lise indéterminée > contenant la solution du difficile problème de la î age s3i du
3 me volume de ce recueil. Ce mémoire étant trop étendu pour pouvoir paraître
de suite , l'auteur , à la prière du rédacteur f a bien voulu en faire un extrait,
présentant le procédé pratique , dégagé de tout raisonnement ; extrait très-propre
à aider à l'intelligence du mémoire ? lorsqu'il paraîtra ; c'est cet extrait que l'on va
mettre sous les jeux du lecteur. On doit espérer que IVxcmple de M. Argand
encouragera quelques géomètres à aborder d'autres questions , proposées dans le$
Annales, et demeurées jusqu'ici sans solution.

PROBLÈME, Soit une circonférence divisée en un nombre quel-
conque N de parties égales -, et soient affectés arbitrairement , et
sans suivre aucun ordre déterminé , aux points de division 9 les
numéros 1,2, 3,.,.«N—1 , N. Soient /oints ensuite , par des
cordes , le point 1 au point 2 , celui-ci au point 3 , le point 3
au point 4 » et ainsi de suite , jusqu'à ce quon soit parvenu à
joindre le point N—\ au point N et enfin ce dernier au point r.
On formera ainsi une sorte de polygone de N côtés > inscrit au
cercle, et qui\ en général, ne sera point régulier , puisque ses côtés
pourront être inégaux9 et que même quelques-uns d'entre eux pourront
en couper un ou plusieurs des autres. Si l'on varie ensuite , de
toutes les manières possibles, le numérotage des points de division t

et quon répète y pour chaque numérotage 9 la même opération q e
ci-dessus , on formera un nombre déterminé de polygones inscrits,

.parmi lesquels plusieurs ne digéreront les uns des autres que par
leur situation.

Tome V. *5
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On proposé de déterminer y en général, quel sera le nomhre des

polygones réellement différens ?
Solution. Soit N le nombre des côtés du polygone que , dans les

exemples qui suivront, nous supposerons constamment =6«
1. Soit, en général, suivant la notation de M# Kramp, #*! = 1^2,3,...m :

on aura. ainsi

I ! = I , 2! = 2 , 3! = 6 f k\^%i , 5 1 = i 2 o , 6!==72o.

On sait d'ailleurs que o ! = i .
Employons le symbole m ? à désigner combien il y a de nom-

bres premiers à m dans la suite 1 , 2 , 3 , . . . . m ; on aura ainsi
i ? = i , 2? = i , 3? = 2 , 4? := :2 , 5 ? = 4 » 6 ? = 2 . Il est connu
que si m^za^b^c^...., a ? b 9 c,.... étant des nombres premiers

inégaux, on aura , en gênerai, mi ~m . —7— . . , • . .
CL U C

D% , Dt , D% , . . . . D sont les diviseurs de N, N compris; de
sorte que, s'ils sont disposés par ordre de grandeur, on a / > , = ! ,
D ~N* Représentant donc, en général, par d un de ces diviseurs,
d sera susceptible de « valeurs.

Pour N~6, on a Dt — i , D2 = 2 , # , = 3 , D 4 = 6 , et * ~ 4 ;
les valeurs de J , . dans ce cas 3 seront' donc 1 , 2. , 3 , 6.

dx 9 d% , d >....d sont les diviseurs àe d9 d non compris, de
manière que leur nombre est «, et que , s'ils sont disposés par ordre
de grandeur, on a dt = 1.

Pour ^ = i , on a . . , . • . §~o ,
2 9 J t = i . . . . . . . . . f = ï ,

3 5 ^ t = i 1 = 1 5

6 , é/g = i , ^ = 2 , ^ = 3 g = 3 •

2. P f F f
pA ,.•••• P / , F /

> A 7 , sont des signes de fonctions
dont on va successivement expliquer la nature.

La définition de la fonction P , quel que soit d , est

Ainsi pour N=z
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, = P I = 6 ' . 6 ? I ! = 6 . 2 . * = : 12 ,

?t = P2 = 3 \ 3 ? 2 ! = 9 . 2 . 2. = 36 ,
>,=P3 = 23 2 ? 3 ! = 8 . i . 6 = 48 ,

P 0 4 = P 6 = i « . i ? 6 ! = 1 . 1 . 7 2 0 = 720 .
3. F est une fonction dont la définition est

Pour d impair Td= TS ( ~ Y T 1 ( IL ) ? fd-Tl\ r

Ainsi, pour N~69

= 6 . i 2 * . 6 ? o ! = 6 . i . 2 . 1 = 12 ,

> 1 = r : ï = 3 . 6 ' . 3? l! = 3 . 6 . 3 . 1 = 36 f

TU%— T 3 = 6 . 41.2? i\—6.4.1 .i= ^ 4 *

r / / 4 = r 6 = 3 . 2 3 . i ? 3 ! = 3 . 8 . i • 6 = i 4 4 •

4. A est une fonction dont la définition est

Pour d impair . . . . » . » . *

1* .
J-^pair -̂ — ^

Pour d pair et

pair

Ainsi, pour N~

2. . 36

AJ9 f=A3= T3 =24 ,

S« W 9 F* 9 A
/ sont des fonctions dont la définition générale est

d'où Ton voit que , pour calculer ces sortes de fonctions , 5Î
aller continuellement des plus petits nombres aux plus grands >
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observant que, i n'ayant pas de diviseurs plus petits que lui, on
a simplement F ^ , = F / I = F I .

Comme , par le n.° précédent , on a , dans le cas de d impair,
AJ—rV, et comme d'ailleurs un nombre impair ne peut avoir
que des diviseurs impairs, il s'ensuit qu'on peut, quand d est im-
pair, écrire plus simplement A /Û?=F /</.

À l'aide de ces attentions on trouvera , pour JV=6 ,

t-V'2=V2—Wi =36—12=24 ,
, = p / 3 = P 3 ~ P ' i =48—12=36 ,

>t=r/2=r2—r^i=36—12=24 ;

>,=r /3=r3-r /i=24—12=12,

2+^3)=144—(12-34-125=96

=A2-—A/i = i2—12=0

A'D4=A^=A6~( A'i+A^+Atf)=48—(i 2+ofi 2) =24.

6. Des fonctions F / et A' on tire les fonctions c, J, «•// de la
manière suivante :

d

z

dPour d pair

Pour d impair «• dzz

et J1 ne s'emploient pas dans ce second cas.

Ainsi, pour iYss6 »



RÉSOLUES.

r>D4—<rf 6 = 31^6 = 288

r"# 4 = (r"6.=3A'6= 72

7. Les fonctions P / et <r conduiront aux fondions f , en faisant

Ainsi ; pour 7^=6 ,

|Z? I=|I=P /I—^1= 12— 12= O ,

|D,={2=P /2—<r2= 24 24= O t

|D î = |3=P / 3—0-3s 36— 36= o ,

lD4 = i6=V'6— ^6=648—360=288 .

8. Ce qui précède forme , quand N est impair , la première
partie du procédé ; mais , quand N est pair , il faut, de plus , effectuer
les déterminations suivantes

N =31. puis pour M

pair1

impair Z=̂ =

M

Ainsi, pour N~

On fera ensuite
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Pour M pair

QUESTIONS

Pour M impair

M étant impair , dans notre exemple , on a

g-o .

On posera ensuite , quel que soit M 9

«—a—Q , *={>—2* .
Ainsi, dans notre exemple ,

#«=i44—72=72 , «=f6—2.72=288—-i44=T44 •

g. Voici maintenant la seconde partie du procédé On y* emploie
les fonctions S , S7 , 2 / ;

 5 S qui, comme les précédentes ont pour
sujet les différentes valeurs de d , avec cette restriction que S
s'applique aux valeurs impaires seulement , %f et %/{ aux valeurs
paires , en exceptant la valeur d~N. Quant à S , elle s'applique
à toutes les valeurs de d\ mais en exceptant encore d~N> si N est pain

Les valeurs de ces diverses fonctions sont les suivantes :.
<rd _,. , Jd __..., ^!à ^ td

Ainsi, dans notre exemple,

2.2.6

4» 1.0 ^4

4*2 6 4^

4.3.6 72

ÏO. Quant N est pair, on doit en outre faire
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, 8

Î Q 5

Pour M impair

Ainsi, dans notre exemple, où M'=3 , on a

On fera ensuite , quel que soit M;

h

Q •

ce qui donne , dans notre exemple 9

fit—-, il3 / TJt — e
 o At — Ait — lz — y O — lt± —- Î

t? Jt- — 4 , I* — ~ O , SI —SI ~ - — — I 5 « i , — i 4 4 — i .

i l . Enfin } en nommant II le nombre des polygones qui sont
l'objet du problème 7 ce nombre , dans îe cas de N impair , sera
la somme de toutes les fonctions 2 , SX , S / ; , H ; et ? dans le cas
de N pair , il sera cette somme , augmentée de celle des nombres

Ainsi puisque , dans notre exemple , N—6, nombre pair , on aura
2I+S2

ou n=i2 ,
On aura donc douze polygones essentiellement dilTérens, Si l'on
yeut les construire , il suffira de construire douze cercles 9 de diviser
chacun d'eux en six parties égales , de numéroter ensuite consé-
cutivement les points de division ainsi qu'il suit

123456 , i35264 9 124635 9
126453 , 126543 ? 124653 ,

120634 , 1^5364 « 126354 ?
1^5436 , 1^4365 , 123645 P

et joindre enfin les points de division par des cordes > suivant les
conditions prescrites dans l'énoncé du problème,

12. En faisant successivement diverses suppositions pour N , et
appliquant à chacune d'elles les méthodes qui viennent d'être déve-
loppées ; on trouve ?
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Pour jV=i , 11= o ,

3 ,
4 ,
5 ,
6 ,
7 »
8 ,
9 >
10 ,

ii •

12 ,

I ,

4.
12 ,

39.
202 p

1219 ,

9468 f
83435 ,

836017 '

QUESTIONS PROPOSEES.
Problèmes d'optique*

I. K^VK une table rectangulaire donnée doivent être placées doux
lumières élevées au-dessus de cette table d'une même quantité donnée,
et qui doivent y être tellement posées que leurs projections tombent
sur la droite qui joint les milieux des deux petits côtes du rec-
tangle. On demande de quelle manière ces deux lumières doivent
être placées; i.° pour que le point le moins éclairé du bord de
la table le soit le plus possible ? 2»° pour que le point le plus
éclairé du bord de la table le soit le moins possible ?

IL Résoudre le même problème pour une table elliptique ; le»
deux lumières devant répondre au grand axe ?

III. Résoudre le même problème pour quatre lumières et une
table rectangulaire; les lumières pouvant repondre i,° aux droites
qui joignent les milieux des côtés opposés ; 2.° aux deux diagonales ?

IV» Résoudre en fia le même problème pour une table elliptique ;
les quatre lumières pouvant répondre x.° aux deux axes j z+° aux
deux diamètres conjugués égaux ?
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PHILOSOPHIE MATHÉMATIQUE.

Réflexions sur la nouvelle théorie des imaginaires
suivies dune application à la démonstration ç£un
ihéorèrne danalise j

Par M. À R G À N D .

JLJÀ nouvelle théorie des imaginaires , dont 'il a déjà été plusieurs
fois question dans ce recueil (*) 9 a deux objets distincts et indé-
pendans. Elle tend premièrement à donner une signification intel-
ligible à des expressions qu'on était forcé d'admettre dans l'analise^
mais qu'on n'avait pas cru jusqu'ici pouvoir rapporter à aucune
quantité connue et évaluable. Elle offre ? en second lieu , une
méthode de calcul, ou , si l'on veut, une notation d'un genre par-
ticulier, qui emploie des signes géométriques, concuremment avec
les signes algébriques ordinaires. Sous ces deux points de vue, elle
donne lieu aux deux questions suivantes : Est-il rigoureusement
démontré 9 dan^ la nouvelle théorie , que \/~\ exprime une ligne
perpendiculaire aux lignes prises pour -+i et —i ? La notation
des lignes dirigées peut-elle , dans quelque cas ? fournir des démons-
trations et solutions préférables , sous le rapport de la simplicité'',
de la brièveté ? etc. , à celles qu'elles paraissent destinées à remplacer?

Quant au premier point , il est et sera peut-être toujours sujet
à discussion, tant qu'on cherchera à établir la signification de \/—i

(*) Voyez les pages 6 r , i 33 , 222 et 364 du 4.m e volume.

¥<, n.? VU, i.er janvier 1815».
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par des conséquences d'analogie avec les notions reçues sur îe&
quantités positives et négatives , et sur leur proportion entre elles*
On a discuté et on discute encore sur les quantités négatives ; à
plus forte raison pourra-t-on élever des objections contre les nou-
velles notions des imaginaires.

Mais ,p il n'y aura plus de difficulté si , comme Ta fait M. Français
( Annales , tom. IV , pag. 62 ) , on établit , comme définition , ce
qu'on entend parle rapport de grandeur et déposition entre deux
lignes. En effet, la relation entre deux lignes données de grandeur
et de direction se conçoit avec toute la précision géométrique né-
cessaire. Qu'on nomme cette relation rapport y ou qu'on lui donne
tel nom qu'on voudra, on pourra toujours en faire l'objet de rai-
sonnemens rigoureux , et en tirer les conséquences de géométrie et
d'analise dont nous avons , M. Français et moi , donné quelques
exemples. La seule question qui reste est donc de savoir s'il est
bien permis de désigner cette relation par les mots rapport ou
proportion , qui ont déjà , dans l'analise , une acception déterminée
et immuable. Or , cela est effectivement permis, puisque, dans la
nouvelle acception, on ne fait Rajouter à l'ancienne , sans d'ail-
leurs y rîen changer* On généralise celle-ci de manière que l'acception
commune est , pour ainsi dire , un cas particulier de la nouvelle»
II ne s'agit donc pas de chercher ici une démonstration*

C'est ainsi , par exemple , que le premier analiste qui a dit que

amn=zz —- a dû donner cette équation > non comme un théorème
an A

démontré ou à démontrer , mais comme une définition des puis-
sances à exposans négatifs. La seule chose qu'il eut à faire voir
était qu'en adoptant cette définition $ on ne faisait que généialîser
la définition des puissances à exposans positifs , les seules connues
jusque-là. Il en est de même des puissances à exposans fractionnaires,
irrationnels ou imaginaires. On a dit ( Annales , tom. IV , pag. zo 1)

que Euler avait démontré que (y/HT)V"^I
=^"~"r w

# L e m o t £^

rrontrer peut être exact, en tant qu'on regarde cette équation comme
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tirée de l'équation £**^~Cos.uH-^3TSin..ar, d'où elle dérive fa-
cilemeut ; mais il ne le serait pas relativement à cette dernière ;
car, pour démontrer qu'une certaine expression a telle valeur,
il faut premièrement avoir défini cette expression ; or 3 existe-t~il
des puissances à exposans imaginaires une définition antérieure à
ce qu'on appelle la démonstration d'Euler ? c'est ce qui ne parait
pas. Lorsque Euler a cherché à ramener l'expression aXyr~T à de$
quantités évaluables , il a dû naturellement considérer le théorème

z s2

£T=n-}-— - j - — - -J-... antérieurement prouvé, pour toutes les valeurs réel-

d'où il a dû conclure, non que exf/~=Cos x-4-\/ZI~ÏSln.x f mais
que 9 si Ton définissait l'expression e*^"^ en disant qu'elle représente
une quantité égale à Cos.or+^/^TSin.^: f les puissances à exposans
réels et les puissances à exposans imaginaires se trouveraient liées par
une loi commune. Ce n'est donc là encore qu'une extension de
principes et non la démonstration d'un théorème.

C'est aussi par une extension des principes que j'ai été condurf
a regarder (\/^Î ^~ comme exprimant la perpendiculaire sur le
plan H~i , ZtV^"^* ̂ s deux résultats se contredisent, et assurément
je n'ai garde de prétendre faire prévaloir le nnen ; j'ai voulu $euleme> f
faire observer que MM. Servoîs et Français l'ont attaqué par des
considérations qui , au fond f sont de la même nature que celles
sur lesquelles je m'étais appuyé pour l'établir.

Mais, si !a perpendiculaire dont il s'agit ne peut pas être exprimée
par f|/-^7)^-^, quelle sera donc son expression ? ou ? pour mieux
dire , peut-on trouver une expression telle que, si on l'adopte pour
représenter cette perpendiculaire , toutes les lignes tirées dans une
direction quelconque ( lesquelles auraient alors leur e>pression ) soient
liées par une loi comaiune, comme cela a déjà lieu relativement
à toute ligne tirée dans les plans + 1 * lt\/"-~*^ C'est là nne
question qui semble devoir exciter la curiosité des géomètres , du

de ceu$ d'entre eux <£ui admettent la nouvelle théorie»
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Je reviens au premier point de discussion 7 et j*observe qne la

question y si y/ — i exprime ou non une perpendiculaire sur ^ t 1 »
porte uniquement sur la signification du mot rapport ; cor, tout le
inonde est d'accord d'entendre par cette expression une quantité

telle que ~f-i : \/~i : ; \/^l : —• i ? ou que les rapports 3 — - , - —-

soient égaux. Ainsi l'objection qu'a faite M. Servois ( Annales ;
tom. I V , pag. 228 ) , contre la démonstration du premier théorème
de M. Français , en disant « qu'il n'est pas prouvé que ^a\/—1
» soit moyen de position entre -}-# et —a » , revient à dire que
le sens du mot rapport ne renferme rien de relatif à la position.
Cela est vrai , dans l'acception commune ; et encore pourrait-on
dire que, dans l'idée du rapport de deux quantités de signes dif-
férens , il faut bien faire entrer celle de ces signes. Dans la nou-
velle acception , la direction concourt avec la grandeur pour former
le rapport. C'est donc ^ comme Ton voit, une simple question de
mots , qui se décide par la définition précise qu'a donnée M,
Français , et qui n/est d'ailleurs qu'une extension de la définition
ordinaire.

"Le second point de discussion est plus important. Sans doute
il n'est aucune vérité accessible par l'emploi de la notation des
lignes dirigées , à laquelle on ne puisse aussi parvenir par la marche
ordinaire ; mais y parviendra-t-on plus ou moins facilement par
une méthode que par Tautre ? la question mérite , ce me semble,
d'être examinée. C'est à l'influence des méthodes et des notations
sur la marche progressive de la science que les modernes doivent
leur grande supériorité sur les anciens s en fait de connaissances
mathématiques ; ainsi , quand il se présente une idée nouvelle en
ce genre ? on peut du moins examiner s'il n'y a point de parti à
en tirer. M. Servois est le seul qui 5 depuis la publication de la
nouvelle théorie , ait manifesté son opinion à ce sujet 5 et cette
opinion n'est pas en faveur de l'emploi des lignes dirigées comme
notation. L'usage des formule^ analitiqaeg lui semble plus
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it plus expeditif {Annales , tom. IV, pag. 23o ). Je réclamerai»
à l'égard de ma méthode , un examen plus particulier. J'observe qu'elle
est nouvelle , et que les opérations mentales qu'elle exige , quoique
fort simples , peuvent bien demander quelque habitude ? pour être
exécutées avec la célérité que donne la pratique dans les opérations
ordinaires de l'algèbre. Quelques-uns des théorèmes que j'ai démon-
trés me semblent l'être plus facilement que par la marche pure-
ment analitîque. C'est peut-être une illusion d'auteur , et je n'in-
sisterai pas là-dessus; mais je solliciterai, avec plus, de confmnce,t
la préférence, en, faveur des lignes dirigées , pour là démonstration--
du théorème d'algèbre. « Tout polynôme xn-\-axn~~lr\-..m. est dé-
» composable en facteurs du premier ou du second degré ». Je
crois devoir revenir sur cette démonstration , tant pour résoudre
l'objection qu'y a faite M. Servois ( Annales 9 tom. IV , pag. 231 y
que pour montrer , avec plus de détail , comment elle découle
facilement des nouveaux principes. L'importance et la difficulté de
ce théorème qui a exercé la sagacité des géomètres du premier
ordre , excuseront ? je le présume , aux yeux des lecteurs , quelques
répétitions de ce qui a été dit sur ce même sujet.

Les démonstrations qu'on a données de ce théorème semblent
pouvoir être rangées sous detix classes.

Les unes se fondent sur certains principes métaphysiques relatifs
aux fonctions et aux renversemens d'équations : principes sans doute
vrais en eux-mêmes ? mais qui ne sont point susceptibles d'une dé-
monstration rigoureusement dite. Ce sont des espèces & axiomes r

dont la vérité ne peut être bien sentie qu'autant qu'on possède déjà
Yesprit du calcul algébrique • tandis que ? pour reconnaître la vérité
d'un théorème > il suffit de posséder les principes de ce calcul ;
c'est-à-dire , d'en connaître les définitions et notations. De là vient
que les démonstrations de ce genre ont été fréquemment attaquées.
Le i^cueil auquel je confie ces réflexions en offre, en particulier,
plusieurs exemples ; jet les discussions qui ont eu lieu à ce sujet sont
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un Indice que les raîsonneniens qu'elles ont pour objet ne sont paê
tout à fait sans reproches.

Dans d'autres démonstrations , on attaque de front la proposition
à établir, en faisant voir qu'il existe toujours au moins une quan-
tité , de la forme a*\>b\/"^\ , qui , prise pour s , rend nul le
polynôme proposé , ou bien qu'on peut résoudre ce polynôme en
facteurs-réels du premier ou du second degré. C'est la marche qu'a
suivi Lagrange. Ce grand géomètre a montré que les raisonnemens
faits avant lui , sur ce môme sujet, par d'Alembert, Euler , Fon-
cenex , etc., étaient incomplets ( Résolut, des équat* numériq. notes lX
et X ). Les uns employaient d ?s développemens en séries , es autres
des équations subsidiaires; mais ils n'avaient pas prouvé , ce qui était
pourtant nécessaire, que les coefïieiens de ces équations et de ces
serres étaient toujours réels. Ces géomètres admettent implicitement
le principe « que , si une question dans laquelle il s'agit de dé-
» terminer une inconnue peut être résolue de // manières, elle doit
% conduire à une équation du degré n. » Lagrange lui-même le
regarde comme légitime, quoiqu'il n'en fasse pas usage dans les
les démons!rations citées. Or, ne pourraii-on pas dire encore que
ce principe , extrêmement probable j>ans doute, n'est pas démontré,
et rentre dans la classe de ces sortes d'aVromes dont il était ques-
tion tout à l'heure. 11 semhîe sur-tout q?i<* , comme on ne peut en
acquérir la persuasion que par uoe pratique assez longue daas fa
science , ce n'est, pas le lieu de l'employer , quand il s'agit d'une
proposition qui, dans l'ordre théorique , est une des premières qui
se présentent à démontrer dans l'analise. Cette observation , au reste f

n'a nullement pour objet d'élever une chicane , qui serait aussi
déplacée qu'inutile, sur des conceptions auxquelles tous les géo—
mètres doivent le tribut de leur estime. Elle tend seulement à faire
sentir la difficulté de traiter ce sujet d'une manière satisfaisante.

D*après ces conMderations $ il paraît qu'une démonstration à la
fois directe , simple et rigoureuse peut encore mériter d'être offerte
aux géomètres* Je vais donc reprendre ici celle de la page i4z
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du IV.e volume des Annales ; maïs > pour en écarter toute espèce
de nuage , je l'affranchirai de la considération des quantités éva-
nouissantes.

Il convient de rappeler, en peu de mots, les premiers prinfcîpefc
de la théorie des lignes dirigées.

Ayant pris une direction RA pour celle des quantités positives f

la direction opposée AÏC sera 9 comme à l'ordinaire , celle des quan-
tités négatives. Tirant par K la perpendiculaire BKD , une des
directions KB » RD , la première par exemple , appartiendra aux
imaginaires +^v/—i , la seconde aux imaginaires — a\/"^l. Le trait
au-dessus des lettres indique que la ligne désignée est considérée
comme tirée dans sa direction. On supprime ce trait, quand on
ne considère dans la ligne que sa grandeur absolue.

Prenant 9 à volonté ; des points F , G f H , • . •. P , Q , on a

FG+GÏÏ+ +ÊQ = FQ .

C'est la règle ^addition.
Si Ton a , entre quatre lignes, l'équation

AB_EF
CD~*bfl *

«t que , de plus y l'angle entre AB , CD soïi-éga.l a l'angle ÊF , GH,"
ces lignes sont dites en proportion. De là se tire la règle de
multiplication •, car un produit n'est autre chose qu'un quatrième
terme de poportion dont le premier est Trinilé.

Il faut bien observer que ces dtjuX règles sont indépendantes de
l'opinion qu'on peut avoir sur la nouvelle théorie. Si Ton yeut que
\/ZZi y symbole que l'algèbre s'obstine à nous montrer partout ,
et qui, appelé quelquefois absurde 9 n'a jamais donné néanmoins

. 4es résultats qui soient tels ; si l'on veut, dis-je , que ce symboïa
JÎQ soit rien du tout, sans pouvoir être pourtant égalé à zéro, cela
ne fera pas de difficulté. Les lignes dirigées seront ÏQS signes seu-
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lement des nombres de la forme a-\-b\/^l» Les règles cî-dessu$
n'en seront pas moins légitimes ; mais , au lieu de les déduire ^
a priori, de considérations en partie métaphysiques, on tirera la
première d'une simple construction. La seconde sera une consé-
quence immédiate des formules Sin.(#~H£)= Sin.#Cos.£-{- etc. ;
moyennant quoi l'emploi de ces règles pourra donner des démons-
trations entièrement rigoureuses*

Les lignes dirigées seront donc les symboles des nombres tf"+-#i/--i.
Comme ces nombres, elles seront susceptibles d'augmentation , di-
minution , multiplication , division , etc. ; elles les suivront , pour
ainsi diref dans toutes leurs fonctions ; en un mot, elles les reprè~
senteront complètement. Ainsi , dans cette manière de voir , des
quantités concrètes représenteront des nombres abstraits ; mais les
nombres abstraits ne pourront réciproquement représenter les quan-*
tités concrètes

Dans ce qui suit, lès accens, indifféremment placés , seront em-
ployés pour indiquer la grandeur absolue des quantités qu'ils af-
fectent; ainsi, si a'=>rn~\-n\/'^l , m et » étant réels, on devra,
entendre que #y ou a/i=:^/m^n2^

Soit donc le polynôme proposé

n est un nombre entier ; a , h,.. mf\ g peuvent être de la form«
m^n\/m^l. Il s'agit de prouver qu'on peut toujours trouver une*
quantité de cette même forme qui, prise pour x> rende yx~o.

Pour une valeur quelconque de ce , le polynôme peut être cons-
truit, par les règles précédentes. En prenant K pour point initiai
et nommant P le point final, ce polynôme sera exprimé par KP>
et il faut montrer qu'on peut déterniner x de manière que le
point P coïncide avec ït.

Ot si, dans l'infinité de valeurs dont x est susceptible , il nV
en. avait aucune qui donnât lieu à cette coïncidence, la ligne K^

m
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ne pourrait jamais devenir nulle ; et , de toutes les valeurs de KP,
il y en aurait nécessairement une qui serait plus petite que toutes
les autres. Nommons donc z la valeur de ce qui donnerait ce mi~
nirnum ; on ne pourrait pas avoir

quelle que fût la quantité i.
Or , par le développement, on a

(A) rcr+o^+f^'+C*^^

Comme les coeiïîciens des différentes puissances de / peuvent être
nuls , et que ce cas demanderait des considérations particulières
il conviendra de traiter la question d'une manière générale y en
représentant l'équation précédente par

(B) y«+»=yt+Mr+W+>~+Kv+t'";

de manière qu'aucun des coeiEciens R , Sf*.V ne soît nul, et
que les exposans r , * , • • • • ? , n aillent en augmentant. Il faut
remarquer que, si tous les coefficiens de (A) étaient nuls, l'équation
(B) se réduirait à tfft+ti^Yt^rH1* Faisant donc ity—^9 on aurait
y*(i+i)—o , et 1-e théorème serait démontré pour ce cas dont on peut 9

par conséquent, faire abstraction dans ce qui va suivre. Ainsi nous
supposerons que le second membre de Te'quatKm (B) a au moins
trois termes»

Cela posé, que l'on construise fer-wj» e n prenant

dura
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car il est visible qu'en général p/éj/zxi(pffy.
s e r a représenté par la ligne brisée ou droite KPAB....FGH

cru par KJÏ ; et il faut prouver qu'on peut avoir K H < K P .
Or ? la quantité z peut varier de deux manières ;
i.° En direction • et il est évident que , si elle varie d'un angle

<* ? sa puissance ir variera d'un angle r*. Soit donc « l'angle dont

j*]£zzRir< surpasse K P = j ? . Si aa fait varier i àe l'angle , PA va-
riera de l'angle «r—y , c'est-à-dire , que la direction de J?A deviendra
opposée a celle de RF; en sort^l^ju^le, p,Qi,nt A se trouvera sur la
ligne PK , prolongée , s'il le faut, par son extrémité K.
* La diréctipn de i étant supposée ainsi fixée, on peut, eu second lieu,
Ja faire varier de grandeur ; et d'abord, si P A < K P , on pourra
dftnkiuer /*, jusqu'à ce que PA<KP*, 4e manière que le point A
tombe entre K et P.

Ensuite 9 si la grandeur de / , ainsi réduite, n'est pas telle que
l'on ait

^ en la diminuant encore > obtenir que cette inégalité ait
îïetij car les exp^sans ^ , . . .^ , n sont Caxjs plus^ grands que r.
- 'Or , cette inégalité revient à * !

la distance ÀH sera donc plus petite quePA v £ t* par cou§éq$teftt,
sî l'on trace un cercle du centre A et du rayon ÀP , le point
H sera atf dedans de ceJ cercle / et 4̂1* suit ^ s ^ premiers £ Siemens
de géométrie que, K étant sur le prolongement du rayon PA ; du
côté du centre A 7 on a KH<KP
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J'inviterai le lecteur à tracer une figure 9 pojur suivre celte dé-

monstration. En y appliquant les principes fondamentaux très-simples,
rappelés ci-dessus, on verra qu'à l'exception du développement (A),
qui suppose un calcul algébrique , tous les autres raisonnemens se.
font, pour ainsi dire, à vue , sans avoir besoin d'aucun effort d'aj>*
tendon,

II est presque supperflu de s'arrêter à une objection qu'on pourrait
faire à ce qui précède, en disant que, si Ton entreprenait de dé-
terminer la valeur de x > en suivant la marche qui est prescrite
pour diminuer progressivement y/

x7 il serait possible qu'on n'y par-
vînt jamais , parce que la valeur de / /pourrait , dans les subs-
titutions successives , ne diminuer que per des degrés de plus en plus
petits. Le contraire ne se trouve point prouvé en effet ; mais il
n'en résulte autre chose sinon que les considérations qui précèdent
ne sauraient fournir , du moins sans de nouveaux developpemens,
une méthode d'approximation ; et cela n'infirme aucunement la dé-
monstration du théorème.

L'objection de M, Servoîs se résout facilement. « Ce n'est point
» assez , ce me semble ? dit ce Géomètre , de trouver des valeurs
» de x qui donnent au polynôme des valeurs sans cesse xléerois-
» santés ? il faut de plus que la loi du décaissement amène në->
» cessairement le polynôme à zéro ^ ou qu'elle soit telle que zéro
» ne soit pas, si Ton peut s'exprimer ainsi, Y asymptote du poly-
» nôme. » II a été démontré qu'on pouvait trouver pour yfx> n o t l

seulement des valeurs sans cesse décroissantes 9 mais encore une
valeur moindre que celle qu'on prétendrait être la plus petite de
toutes. Si le polynôme ne peut être amené à zéro , sa plus petite
valeur sera donc autre que zéro 7 et , dans cette supposition la dé-
monstration conserve toute sa force. La dernière phrase de M. Servois
semblerait indiquer qu'il fait une distinction entre une limite infiniment
petite et une limite absolument nulle ; si telle était son Idée , on pourrait
y opposer des considérations tout à fait semblables à celles que M. Ger-
gonne a fait valoir dans une occasion assez^ analogue à celle-ci ; cette
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réponse s'applîquant, presque mot à mot, au cas présent, mutatis mu~
tadis, il suffit d'y renvoyer le lecteur ( Annales , tom. III, pag, 355 ) .
le scrupule de M. Servois tire sans doute sa source de la considération de
l'équation à l'hyperbole y= £. Il est certain en effet que 7 bien
qu'on puisse, dans cette équation , trouver pour y une valeur in-
férieure à toute limite donnée , y ne peut néanmoins devenir zéro ,
qu'autant qu'on supposera x infini. Mais cette circonstance n'a point
lieu dans notre démonstration; car, ce n'est certainement pas par
une valeur infinie de x qu'on rendra nul le polynôme y'x.

Revenons au sujet qui a donné lieu aux développemens ci-dessus;
on pourra demander s'il serait possible de les traduire dans le lan-
gage ordinaire de l'analise ? Gela me parait très-probable ; mais peut-
être serait-il difficile d'obtenir ? par cette voie , un résultat aussi
simple. Il semble que , pour y parvenir , il faudrait rapprocher
l'expression des imaginaires de la notation des lignes dirigées , en
écrivant , par exemple

pourrait être 'appelé le module de aArb\/~i , et repré-
senterait la grandeur absolue de la ligne a-+-b^~, tandis que
l'autre facteur , dont le module est l'unité , en représenterait la
direction. On prouverait seulement i.e que le module de la somme
de plusieurs quantités n9est pas plus grand que la somme des mo-
dules de ces quantités ; ce qui revient à dire que la ligne AF n'est
pas plus grande que la somme des lignes AB ^ BC ,. . . .EF ; 2.0 que
le module du produit de plusieurs quantités est égal au produit
des modules de ces quantités. Je dois laisser le soin de suivre ce
rapprochement à des calculateurs plus habiles. Si Ton y réussît de
manière à obtenir une démonstration purement analitique, aussi simple
que celle qui découle des nouveaux principes , on aura gagné quelque
chose dans Fanatise, en parvenant ainsi , par une route facile $ à
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an résultat dont les difficultés n'ont pas été au-dessous des forces
de Lagrange lui-même. SI, au contraire , l'on n'y réussit pas , la
notation des lignes dirigées conservera , dans ce cas-ci ? un avantage
évident sur la méthode ordinaire ; et , de toutes manières , la non-
relie théorie aura rendu un petit service à la science.

Qu'il me soit permis , en terminant ces réflexions , de placer Ici
une remarque au sujet de la note de M, Lacroix > Insérée aux Annales
( tomT IV, pag. 367 ). Ce savant professeur dit que les Transactions
philosophiques de 1806, contiennent un mémoire de M, Buée dont
le sujet est le même que celui sur lequel M. Français et moi
avons écrit. Or , c'est dans cette même année 1806 que j'ai
fait paraître VEssai sur une manière de représenter les quan-
tités imaginaires dans les constructions géométriques : opus-
cule où j'ai exposé les principes de la nouvelle théorie , et dont
le mémoire Inséré dans le 4«me volume des Annales ( pag. i33 )
n'est qu'un extrait ; et Ton sait , d'autre part , que les volumes
des collections académiques ne peuvent paraître que postérieurement
à Tannée dont ils portent la date. En voilà donc assez pour établir
que 3 si , comme cela est fort possible , M. Buée n'a dû qu'à sçs
propres méditations les idées qu'il a développées dans son mémoire ,
il demeure toujours certain que" je n'avais pu avoir connaissance
de ce mémoire lorsque mon opuscule a paru.
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Koctrafts de diverses lettres adressées au Rédacteur des
Annales, relativement au problème de la Iractoire. (*)

Extrait dune lettre de M. SEnrois , professeur aux
écoles d'artillerie*

X ONTÀINE se trompait certainement , quand il prenait pour une
traduire la courbe décrite par un point circulant librement autour
d'un centre mobile; mais ferons-nous le procès à Huygens qui est,
je crois, Tinvenleur de la tractoire proprement dite , parce qu'il:
a pris cette courbe pour celle des tangentes égales ? .Qu'entend-on
par traîner 9 irahere , d'où traction et tractio ? il me semble que
celui qui traîne un fardeau,. s'arrêiant , le fardeau doit s'arrêter ; en
conséquence, dans le mouvement de traction } proprement dit, la
vitesse imprimée ne se continue pas 4 mais est, à chaque instant,
détruite par le frottement. Alors la courbe décrite ne doit-elle pas
être la courbe aux tangentes égales ?

La Fère, le i3 juillet

C) Voyez les pages 3o5 , 3u et 332 du 4*mc volume de ce recueil.
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-Extrait dune lettre de M. ARGAND.

À la lecture de l'énoncé du problème de la tractoire, il m'a
paru que ce problème pouvait se résoudre par le simple principe
que , si tous les points d'un système reçoivent une impulsion com-
muiie , il n'y aura rien de changé dans leur mouvement relatif.
Si , en effet y on conçoit que tout le système soit emporté d'un
mouvement égal et contraire à celui du point P , ce point demeurera
immobile dans l'espace -, donc le mouvement absolu du point M ne
pourra être qu'un mouvement circulaire uniforme autour de ce poinf
P ; or , en combinant ce mouvement circulaire uniforme avec le
mouvement uniforme et rectiligne du point P , on obtient en effet
une cycloïde ordinaire.

Mais s si Ton suppose que le frottement détruise à chaque ins-
tant la vitesse qu'acquerrait le mobile s'il n'y avait point de résis-
tances ( ce qui est le cas le plus fréquent dans la nature ) ; le
mouvement du mobile M à un instant quelconque i, sera le mêrtie
que si i était l'instant initial, où Ton suppose que le point P com-
mence à se^mojivoir , le, corps M étant immobile. Or 9 dans l'instant
initial 5 la verge qui joint les points P et M est tangente à la
ediirbe ; donc dans ce cas la courbe est celle des tangentes égalés;
résultat contraire à celui que vous avez obtenu. Il ma paru,' Morisiéui',
que le raisonnement de la page 316, par lequel vous avez cherché
à établir que la tractoire ne pouvait pas être la courbe aux tan-
gentes égales ( raisoïmament qu'au surplus vous n'avez pas présenté
comrile une démonstration rigoureuse ) , il m'a paru , dis-je, que ce
raisonnement n'était point exact dans l'endroit où vous dites que la sup-
pression des résistances, revenant à l'introduction d'une force dirigée
dans le sens du mouvement, n'aurait d'autre effet que de, faire varier la
tension ou compression de la verge ; car ceci semble supposer tacitement
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que le sens du mouvement est celui de la verge, ce quî, en gé-
néral, n'est pas et ne peut être en particulier qu'autant que la trac-
foire est la courbe aux tangentes égales. (*)

Paris , le 20 octobre 1814*

Extrait dune lettre de M. FRANÇAIS , professeur à
ïêcole royale de lartillerie et du génie.

Quant aux objections faites contre nos solutions du problème de
la tractoirc, je ne pense pas qu'on doive les regarder comme très-
sérieuses. Ce ne sont pas , en effet , des objections indirectes qui
peuvent détruire les conséquences d'une solution fondée sur des
principes exacts. Il faut attaquer directement ou les équations fon-
damentales ou, la manière dont les conséquences en ont été déduites ;
e t , d'après la discussion de M. Dubuat , il me paraît que nos
Solutions ne souffrent plus le moindre nuage.

Metz, le i i d'octobre

. (*) C'est précisément ce que J'ai supposé et dû supposer 9 non tacitement »
Snais d'une manière très-expresse. J'ai dit , ou du moins voulu dire : admettons
que , suivant le système qu'on nous oppose , la tractoire puisse quelquefois, soit
par le frottement, soit par la résistance du milieu , soit enfin par fout autre obstacle
de nature à agir dans la direction du mouvement, devenir la courbe aux tan-
gentes égales $ la suppression de ce* obstacles , revenant à l'introduction d'une
nouvelle force , également dirïge'e dans le sens du mouvement , n'aurait d'autre*
«ffet que de comprimer la verge MP , sans changer la route décrite par le
mobile, laquelle conséquemraent devrait encore être la courbe aux tangentes égale»£
i>r, nous venons de voir qu'alors eUe ne l'est pas \ donc elle ne saurait l*être no»
plus dans le premier cas,

J. D. G.
Extrait
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Extrait dune lettre de M. DUBUAT > professeur à Vécole
royale de ï artillerie et du génie.

J'ai conféré avec M. Français sur le problème de la tractoire.
Nous voudrions connaître , d'une manière plus précise ? les objections
de MAI. Servois et Àrgand. Il parait que ces Messieurs ne nient
pas que la tractoire ne soit en général une cycloïde ; mais ris pensent
que , dans quelques cas P cette tractoire peut être une courbe à
tangentes égales. S i , en généralisant le problème de la tractoire,
on suppose que le point entraîné soit animé de forces accélératrices
quelconques 5 nul doute qu'alors la tractoire ne puisse devenir une
courbe à tangentes égales, ou même telle courbe que Ton voudra.
Vous l'avez prouvé, Monsieur, dans le IVe volume des Annales.
( pag. 3i 7 et suiv. )• Je me permettrai cependant y à cet égard,
une observation sur la solution du problème énoncé. Vous posez',
pour cette solution, les quatre équations

desquelles vous concluez les forces indéterminées X et Y.
Il me semble que les deux premières équations devraient être

écrites comme il suit 1

Vf

ear , outre les forces qu'on suppose agir sur le point entraîné , il
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faut tenir compte de l'équation de condition (3), c'est-à-dire, des
forces dues à cette équation; forces dont vous avez vous-même donné
Pexpression ( pag. 3i3 )• La quatrième équation n'est pas , à pro-
prement parler , une équation de condition ; car le point entraîné
n'est pas assujetti à se mouvoir sur la courbe a tangentes égales:
ainsi il n'y a pas de forces dans cette équation qui n'est donnée
qu'à posteriori, et qui doit résulter de la valeur des forces X et Y*

Au reste , cette observation ne change rien à la question prin-
cipale qui est de savoir si la tractoire simple est une cycloïde ou
une courbe à tangentes égales.

Cette incertitude ou ce doute sur la légitimité des solutions des
problèmes de mécanique pouvait avoir lieu au temps de Clairaut,
ou même au temps de Dalembert : il n'y avait point alors de mé-
thode vraiment générale pour résoudre les problèmes ; mais aujour-
d'hui , et depuis la. publication de la Mécanique anaîitique de
Lagrange , la solution d'un problème de mécanique ne doit plus
être considérée que comme une application dè̂ s formules générales
du mouvement et de l'équilibre d'un système quelconque. Ces
formules contiennent des termes ou des forces qui sont donnés
quand on a les équations de condition ou de définition du système,
Le reste de la solution n'est plus qu'une affaire de calcul ; c'est
ainsi que, dans la géométrie anaîitique, une courbe étant définie
par son équation , la recherche des tangentes normales ou rayons
de courbure de la courbe 5 ne consiste qu'à substituer 9 dans des
formules connues P des valeurs données par l'équation de cette courbe.
Il ne devrait donc plus y avoir ni différence d'opinions ni différence
de méthodes pour mettre un problème de mécanique en équation :
cette mise en équation est une chose facile pour tous les problèmes;
et , en suivant à cet égard la marche tracée par Lagrange , non
seulement on est dispensé de la recherche du principe qui peut
servir à la solution d'un problème donné ; maïs on est encore à
l'abri des erreurs auxquelles conduit quelquefois l'application du
principe. Voici un exemple singulier de ces erreurs.
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, SU est un principe générai et adopté par tous les auteurs de

mécanique, c'est bien certainement celui-ci : Une force peut être
supposée agir en un point quelconque de sa direction. Ce principe
est énoncé dès les premières pages de tous les traités élémentaires;
on le trouve également dans la Mécanique céleste % dans la Méca-
nique analitique ; et , à la page 34 de sa Mécanique, M. Poisson
s'exprime ainsi : « Si une force donnée P agit au point m suivant
>> la direction mK > on peut lui substituer une force égale et de
» même direction , appliquée au point m/, que je prends au ha~
» satd sur la ligne rnh , et que je suppose lié au point m , par
» la droite inflexible mm' »• La démonstration ou la preuve vient
ensuite 5 et elle n'admet aucune restriction* Cependant , d'après la
définition du moment d'une force , par rapport à un plan $ donnée
page 49 * l'auteur dit , page 67 : « ce moment, dépend du point
» d'application de la force ». Il semblerait donc que , dans ce cas
au moins , c'esî-à-dire > lorsqu'il s'agit des roomens des forces par
rapport à un plan , le principe que le point d'application d'une force
peut être pris au hasard sur sa direction > n'a plus lieu ; car , en
l'admettant, le moment d'une force par rapport à un plan est une
expression vague qui peut devenir tout ce qu'on voudra. Mais non 9>

le principe est général y et Fauteur s'en sert pour trouver les con-^
ditions de la stabilité de l'équilibre des corps flot fans ( pag. 4 r ï

du 2 . m e voL \ 11 substitue aux pressions verticales de l'eau ? qui
s'exercent sur tous les points de la surface du corps qui y flotte,
des forées motrices , agissant sur tous les élérnens matériels de ce
corps, dirigées en sens contraire de la gravité et égales r pour chaque
molécule T au poids d'une molécule d'eau du même volume* L'auteur
parvient de" cette manière aux conditions déjà connues de la sta~
bilité de l'équilibre des corps flottans -y mais supposons ces conditions*
inconnues et qu'il s'agisse de les trouver r on pourra , en faisant
tisage du principe en question ? s'y prendre d'une infinité de m a -
nières qui conduiront à autant de résultats différens^ Car, 1.0* en
ae déplaçant pas les points d'application des pressions verticales <fc
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l'eau , et en les laissant à la surface du corps , on aura , pour la somme
des ces momens de forces , par rapport au plan horizontal du niveau
de T@au , une somme double de l'expression trouvée par M. Poisson ;
2.° en déplaçant les points d'application , ce qu'il y a d^ plus
simple ? c'est de les porter tous sur le pian horizontal du niveau
de l'eau -, la somme des momens sera alors nulle ; 3«° enfin, en
déplaçant encore les points d'application 9 pour les porter au hasard
sur les verticales correspondantes, la somme des momens sera aussi
prise au hasard ; et dès lors les conditions de la stabilité seront
tout ce qu'on voudra,

Metz 9 le i l décembre

Extraits de deux lettres adressées au Rédacteur des
Annales, relativement au pendule à point de suspension
mobile (*).

Extrait dune lettre de ML ARGATW.

Les mêmes considérations qui m'ont conduit , Monsieur , à trourer
qu'abstraction faite des résistances et de toutes forces étrangères,
la tractoire doit être une cycloïde , me semblent pouvoir être égale-
ment appliquées à la question du pendule dont le point de sus-
pension C est entraîné horizontalement d'un mouvement rectiligne
et uniforme. Si Ton suppose , en effet , que tout le système soit
entraîné d'un mouvement égal et contraire à celui du point G, ce
point se trouvant alors immobile dans l'espace , le pendule deviendra
tin, pendule simple ordinaire , dont il ne sera plus question en-
suite que de combiner le mouvement connu , avec un mouvement
du système égal et contraire à celui qu'on aura supposé commun
à toutes ses parties.

La solution de M. Dubuat ne paraît pas s'accorder complètement

CX Yoyex le page 55 de ce volume.
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arec ce résultat. II trouve pour y un maximum + r , indépendamment
de la vitesse b du point de suspension; tandis qu'il est évident,
même sans calcul, que la gravité étant donnée , on peut prendre
la vitesse b assez petite pour que le pendule ne s*écarte de la ver-
ticale qu'aussi peu qu'on voudra , et qu'alors le maximum de y
sera très-près de -r-i.

J'observe que , dans le pendule simple ? on peut imprimer au
poids une vitesse telle qu'elle ne lui fasse pas parcourir une demi-
circonférence d'un même côte de la verticale , auquel cas le ma-
ximum y sera compris entre —ri et -J-T. J'observe , en second
lieu , qu'an peut lui faire dépasser la demi-circonférence ; alors , le
poids tournant constamment autour du point de suspension , il y
aura nécessairement pour y une infinité de positions qui répondront
au maximum - | - j .

Entre ces deux degrés de vitesse , il en existe un qui fait par-
courir au poids une demi-circonférence précise d'un coté de la.
verticale ; mais alors il doit employer un temps infiniment grand
à parvenir à cette verticale.

D'une autre part, on peut imaginer que le point de suspension
t\ le poids reçoivent tous deux une impulsion absolue telle que
l'impulsion relative soit celle qui convient au dernier cas dont je
viens de parler. Je conjecturerais que c'est à ce cas que se rapporte
la solution de 3VI. Dubuat ; du moins les figures qu'il a données ?
son résultat d'un maximum constant pour tous les cas , et l'existence
d'une asymptote , s'accordent fort bien avec les diverses suppositions
qu'on peut faire sur les différentes impuisions absolues ; mais je
n'en puis dire davantage dans une matière sur laquelle je n'ai peut-
être pas des notions suffisamment approfondies.

Si vous trouvez 5 Monsieur, que ces observations soient fondées,
je pense que l'estimable géomètre qu'elles concernent ne sera pas
fâché de les connaître ; et je vous prierai de lui en communiquer
la substance f si vous en avez l'occasion.

le SLQ octobre
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JLxtrait d'une lettre de M* DUBUAT , professeur à
l'école royale de Vartillene et du génie.

Je vous suis très-obligé > Monsieur > de la communication que
vous avezL bien voulu me faire des observations de M- Argand sur
la solution que j'ai donnée du problème de dynamique proposé à
la page 3^o du 4«m* volume des Annales. Je conviens que cette
solution n'est qu'un cas particulier,, et que j'ai choisi la constante
d'intégration telle que le ptùb.eme suit susceptible d'une solution
complète êt finie. Voici la solution générale , qui suppose que la
position d'un pendule simple à centre fixe est donnée en fonctions
du temps*

Les coordonnées du point mobile de suspension étant %f
 s y/ ^

et celles du point entraîné oc 9 y , les équations différentielles de
condition sont ^ en nommant h la vitesse constante du point de
suspension

II, est facile d'en conclure les équations

qui sont celles du mouvement du pendule , sa longueur et s^ masse
étant prises pour unités 5 la gravité étant représentée par g y et
l'indéterminée ^ étant la tension de sa verge* L'élimination de p»
donne

Soït #A~-#=Sin,p- , y/—yrrCosjp % si l'on substitue ces valeurs dans

—- % -r—. Téquation précédente deviendra à cause de —=o et =r o •

Sont Tîntégrale est
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La constante C se détermine par la condition qu'à l'origine dti
mouvement le pendule est dans la situation verticale , ce qui
donne xf—x~o , Sin.<p=o ? Cos.p—i , et par conséquent
àxr—dx èç> Sx . dp . % , -

-—• = — ~t? -— « JLa vitesse angulaire -— est donc , a 1 on-

gîne du mouvement ? égale à la vitesse donnée b , moins la vitesse

—- du pendule suivant Taxe des x ; mais celle-ci étant nulle , ce

qu'il est facile de prouver , par les équations de condition et par
des raisonnemens analogues à ceux des pages 333 et 334 du IV,me

volume des Annales , il en résulte que la valeur de — , à l'origine

du mouvement , se réduit à b.
Substituant cette valeur dans l'intégrale ci-dessus ? et faisant

b*
Cos,<p=i , on trouve C~——i, ce qui donne ? pour l'équation

différentielle entre <p et / ,

équation qui est aussi celle du mouvement d'un pendule simple
à centre fixe 9 dont la longueur est i , et dont la vitesse au point

b*
le plus bas est — •

Cela posé, soit <p=F(/) l'expression de la vitesse angulaire eKt
fonction du temps; on aura, à cause de x/>^zbt et de y*~\

*=£/—Sin.[F(/)] , y=i—Cos.[F(/)] .

Telle est la solution générale ; voici présentement quelques cas par-

ticuliers. î ° Si b=zo le radical Ë/ ~Z ~i-|-L*os.<p est imaginaire %

il n'y a donc pas de vitesse angulaire , et le pendule reste en repos»
Mais si b 9 sans être nul ; est très-petite par rapport à g , le cosinu3
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variable Cos.p est toujours très-près de l'unité, afin que la quan-
tité sous le radical soit positive ; Sin.p est donc toujours très-petit,
en sorte que l'abscisse x diffère très-peu de l'abscisse x/ et qu«
l'ordonnée y diffère très-peu de l'unité. Le pendule entraîné par
son .point de suspension, reste donc toujours, comme M. Argand
le remarque , très-voisin de la verticale,

2*° Si la vitesse h est telle que — = 2 , ou si l'amplitude ver-

ticaie de l'oscillation du pendule simple est égale au diamètre ̂
l'équation différentielle entre à<p et d/ est intégrable ^ et on peut;
avoir les expressions de x et y en fonction du temps sous mie
forme finie quoique transcendante : c'est le cas que j'ai développé
a la page 55 de ce volume ; les calculs doivent y être corriges
d'après la solution générale précédente,

3.° Enfin, si l'amplitude verticale de l'oscillation est égale txx
rayon, ou si # a =2# , l'équation entre àç> et àt prend cette forme
très-simple d<p=d/y/2^Gos.f ; mais elle n'est pas intégrable.

Metz, le il décembre I 8 I 4 -

QUESTIONS PROPOSÉES.
Problème de Dynamique.

ÂB est ufre horizontale donnée sur le milieu de laquelle on a
élevé verticalement une perpendiculaire indéfinie \ on demande en
quel point C de cette verticale doit être placé *le centre d'un pen-
dule df'une longueur égale à CA ou CB , pour que ses oscillations
commençant au point À et se terminant au point B s'exécutent
dans le moindre temps possible ?

Problème d Arithmétique*
Quel est le nombre dont les puissances successives ont pour

leurs n derniers chiffres à droite les n derniers chiffres de ce
nombre , disposés entre eux de la même manière que dans la nombre

il s'agît ?
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ASTRONOMIE.

Essai dune nouvelle solution des principaux problèmes
d astronomie ;

Par M. K R A M P , professeur , doyen de la faculté de§
sciences de l'académie de Strasbourg.

( Quatrième Mémoire ). (*)

I I 5, JLJA position du plan de l'orbite d'un astre étant suppose'©
connue , soit par des calculs antérieurs , soit par des observations
faites près des nœuds , le problème de déterminer les autres élé-
mens a été ramené dans le second mémoire ( Annales, tom. IV t

pag. 2^8 ) aux quatre équations qui suivent ;

na =

n c =s=

(*) Voyez les pages 161 et 2,?>j du IV . m e volume et la page ï . r e de eelui-cL
L'auteur prie ses lecteurs de vouloir bien excuser la distraction qui lui a fait em-
ployer , aux pages 18 , 1 9 , 2 0 , 21 du 3 . m e mémoire, pour désigner la demî̂ *
somme des anomalies excentriques, au lieu de la lettre x qu'il avait destinée à cet
«sage , dans les mémoires précédens ^ la lettre (p qu'il a constamment consacrée
à désigner l'anomalie vraie.

Tom. y , n.° VIII, 1 .er février *8i5. 29
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Les lettres a , h , c , d désignent ici des quantités qu'on peut
immédiatement déduire des deux observations qui suffisent à la
solution du problème , dont les inconnues sont représentées par les
lettres p , # , ^ , n. La première p est l'angle qui détermine
l'excentricité de l'orbite. Les angles # et + sont , l'un la demi-
somme et l'autre la demi-différence des anomalies excentriques de
l'orbite , qui répondent aux époques des deux observations. Enfin n
est une fraction ayant pour numérateur le demi-grand axe
de l'orbite de la terre , et pour dénominateur celui de l'orbite de
l'astre. Cette fraction n est positive dans le cas de Y ellipse , né-
gative dans le cas de Yhyperbole , et nulle dans le cas de la pa-
rabole. Dans les deux derniers cas , nos quatre équations générales
doivent subir quelques modifications dont nous parlerons plus loin.

n 6 . La troisième de ces équations ne renfermé que trois des
quatre inconnues du problème , mais les trois autres les comprennent
toutes les quatre. Il se présente toutefois un artifice assez simple,
pour remplacer les quatre équations par deux autres qui , sans
être plus conpliquées , ne renferment que deux des quatre inconnues,
savoir : l'angle 4" et le facteur /z. Nous poserons d'abord pour cela

117. Ajoutant alors ensemble les quarrés des deux membres des
première et troisième équations , on aura

n\a%-\-c%) ou rc'/^Sin.^Ci— Sin-

donc

mais , la quatrième équation donne , en transposant et quarrant

donc

J I 8 . Si ensuite nous multiplions l'équation



D'ASTRONOMIE.

722/a =Sln.2^(i—Sin.

par le quarré de la troisième

nous aurons

mais , en élevant au quarré les deux membres de la seconde
on a

)

en les ajoutant donc, membre à membre , il viendra

d'où

mais la seconde, étant multipliée par Cos.^, devient

ce qui donne, par soustraction,

n\k—bCos^)

c'est-à-dire ,

n(h—3Cos^)=^Sin.2^ y

d'où

Le problème se trouve donc ainsi réduit aux deux équations

simples

Tld\/ R =
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119. Cette dernière équation nous apprend à trouver l'une des

deux Inconnues n et 4> lorsqu'on connaît l'autre , ou lorsqu'on lui
suppose une valeur quelconque. Supposons d'abord n connue , et
posons, pour abréger ,

nous en déduirons

4c*—fyich-

nb~-R
2.C *

2/2 ch ->* n2 b 2+72 bR

" 2C^

zc

On aura ensuite , en supposant le rayon de l'orbite terrestre égal
à l'unité.

Distance périhélie =

Distance aphélie =

120. Xe cas de la parabole est celui de »n=o , ce qui donne la

distance périhélie égale à :—.Dans celui de l'hyperbole,72 devient
j

négatif, ce qui donne à Cos./* une valeur imaginaire ; Sin.^ est
alors une quantité très-réelle , mais plus grande que l'unité ; la
distance périhélie gardera donc la valeur positive que nous lui supposons
dans l'ellipse ; mais la distance aphélie deviendra négative.

121. Si les observations sont assez rapprochées pour que l'angle ^,
demi-différence des anomalies excentriques , puisse être confondu
avec son sinus, sans erreur sensible, la quatrième de nos équations (i i5)
deviendra

ce qui donne , en substituant à Sin.^Cos.? la valeur équivalente ( Ï I Q )
nb+R ,
— , 1 équation
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2.ncd<sJn = (2C-\-nb*\-R)$mA' ;

et ensuite, en quarrant et mettant (119) pour Sin.*^ sa valeur»

$n*c*d* = (2^—nb*+bR)(2c+nb+Ry .

Le quarré de 2c-^-nb-\-R devient, en développant

%ci+/lnc{b—}i)+2n*b*-t-2(2c-\-nb)R ;

multipliant cette expression par 2ch=nb'-{-bR, il viendra

on aura donc l'équation

ou

(2c—nh+RXb+k) —n2c2d*

d'où

élevant au quarré de part et d'autre , il viendra

ou , en réduisant,

d'où

» est donc déterminée, et conséquemment le problème est résolu,
l±àd* . ,

122. Si le second terme est asse& petit pour que son quarré
puisse être négligé devant le premier terme £a

 ; le radical deviendra
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1 £_|- ; on aura donc , pour trouver n , l'expression entièrement

rationnelle

h+h
d'où

C'est la formule à laquelle nous avons été conduits , dans le mé-
moire précédent , en supposant fciii.4'=^, et de plus Cos.-f=u
La différence entre l'unité et Cos.+ n'a pas été négligée dans l'analise
actuelle; aussi la formule x

doît-elle être regardée comme plus exacte que l'autre. Ainsi donc
la solution rigoureuse du problème où il s'agit de déterminer le
demi-grand axe de l'orbite d'un astre , moyennant deux observations
assez rapprochées pour que la demi-différence des deux anomalies
excentriques puisse être sensiblement confondue avec son sinus 9

conduit finalement à une équation très-simple du second degré.
123. Pour voir jusqu'où peut aller la différence entre les deu£

formules , revenons encore à la seconde comète de Méchain ? dé-
couverte en 1781, qui nous a déjà fourni l'exemple du mémoire
précédent. En faisant usage de l'ancienne formule , nous avons
trouvé

voyons ce que donnera la nouvelle. En faisant usage des observations
des 14 et 19 de novembre , nous aurons

#=-—0,0065710 ,

£=+0,1066774 ,
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£rr-4-o5i 014968 f

^=+0,1071757 j

£+/ /=+o,2 iS853i .

On en tire

£2=o,on38oo68 ,

=0,000000040 .

La petitesse de ce second nombre 5 par rapport au premier, nous fait
prévoir que la différence entre les deux résultats sera peu sensible-
effectivement, la nouvelle formule donne,

la différence est au-dtssous d'un trois millième ; elle sera toujours
d'autant moins sensible qu'on aura employé des observations moins
éloignées entre elles.

124. Revenons aux deux équations (118) desquelles dépend la
solution rigoureuse et générale du problème ; savoir :

Il ne coûtera rien d'éliminer l'inconnue n ; il en re'sultera pout
l'autre inconnue 4* une équation transcendante et de plus très-compliquée.
Pour éliminer ^ , il faudra employer des moyens approximatifs.
En faisant 4/=Sin.<xf/ , Ja première équation deviendra

n ; en combinant cette équation avec l'autre n(h—$
, on aura , en éliminant les sinus et cosinus de l'angle 4* >

une équation en n très-composée du quatrième degré , laquelle
toutefois pourra être réduite à une équation du second , et ce sera
celle que nous avons déjà obtenue (123). En faisant
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on aura pour n une équation encore Lien plus compliquée du
sixième degré.

125. Il est beaucoup plus convenable de s'en tirer par le simple
emploi de la règle de fausse position. On supposera à Vangle ^ une
valeur quelconque , plus ou moins grande , d'après l'intervalle de
temps qui sépare les deux observations. On aura

71 *~

et substituant cette valeur de n dans l'autre

n

on aura , par un calcul très-facile * l'erreur que cette fausse po -
sition aura produite» Un second emploi de la règle donnera ordi-
nairement l'inconnue n qu'on cherche 9 avec une précision suffisante.

126. Effectivement, le problème présente peu de difficultés dans
le cas de l'ellipse ; mais ce n'est pas le eas ordinaire. En appli-
quant la méthode expesée dans le précédent mémoire à dix ou
douze comètes dont les orbites ont été supposées paraboliques P et
calculées dans cette supposition , j?ai presque toujours eu une va-
leur négative pour n 7 indice infaillible de l'hyperbole. Il conviens
donc d'apporter à nos formules les modifications que cette courbe
exige.

127. Soient ainsi C le centre ; A le sommet ; F le foyer; et
soit B le point où l'asymptote est rencontrée par la tangente AB
au sommet A , ce qui donnera AB= CF. Wous conserverons au demi-axe
transverse CA de l'hyperbole la notation qu'il avait dans FeHipse;- c'est-
à-dire , que nous ferons ÀG=#. Et 5 comme l'autre des deux axes ^
àe même que l'angle désigné jusqu'ici par ^ deviennent imaginaires
dans Fhyperbole 9 nous choisirons 9 parmi les angles réels , celui

i se rapproche le phis de €et angte ^ , afin de conserver rem-
ploi
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ploî de cette lettre , et d'établir une analogie convenable entre les
formules elliptiques et hyperboliques. Ainsi , nous désignerons l'angle
ABC par p ; ce qui donnera

L'ordonnée FN , qui répond au foyer de l'hyperbole ? dont le double
est ce qu'on nomme le paramètre de la courbe , et dont nous au-
rons besoin par la suite , deviendra donc iCot.V* L'expression
générale du rayon vecteur FM sera

en continuant de désigner par ç Fanomalie vraie 5 ou l'angle ÀFM*
128. En employant ces notations , on trouvera , pour la surface

du secteur curviligne AFM, proportionnelle au temps , l'expression
qui suit :

Si r dans cette expression 9 on fait

elle deyîendra.

2AFM=AB.BG. g"~e"* — AC. AB.

et si , dans cette dernière , on fait AG~a 9 ËC=^ 7 et que de
plus on remplace AB et * par ib et i%, i étant \ / ^ 7 ? ou retrou-
vera la formule elliptique connue

Tome F: 3a
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l'anomalie excentrique de l'ellipse sera donc remplacée ici par
logarithme naturel de la fraction

On sent , au surplus , que , dans l'hyperbole de même que dans
la parabole , l'anomalie vraie <p , de même que l'excentrique » , est
toujours comptée depuis le périhélie.

I2cj. Il conviendra de choisir quelque signe représentatif des deux

fractions — 3 - et — 9 analogues à Cos*« et Sin.K. Nous
2 2

conserverons ces deux notations, mais en les écrivant, comme nous
venons de le faire , en caractères italiques. Ainsi ? au lieu de
Cos.2»-{-Sin.3*:==i , nous aurons dorénavant

Nous aurons de même

Indépendamment des caractères italiques ? les notations Cos.% et
Sîn** seront toujours reconnaissables en ce que , dans toute cette
analise des orbites hyperboliques , elles seront invariablement liées
avec les angles * et * ' , de même qu'avec leur demi-somme et
leur demi-difFérence , et jamais avec l'excentricité ^ , ni avec les
anomalies vraies <p et <p'.

i3o. Le développement en séries donne

1 1.2. Ï .2 .3 ,4 1.2.3.4.5.6

i.».34.5 + 1.2.3.4.5.6.7 + - • • •
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Ces deux séries connues sont décornposables en facteurs infinis. On

voit que Cos.* et sont toujours plus grands que 1 unité , tandis

^ Sin.x . .
que LrfOS.* et -—- étaient constamment moindres que 1 unité. Heu-
reusement 5 de nos trois sections coniques , l'hyperbole est la moins
fréquente dans ses applications , sans quoi il faudrait construire des
tables de Cos.* et Sirn* ? comme nous en avons pour Cos.* Sin.«.

I 3 I . En introduisant deux angles quelconques * et */
 ; indépendans

entre eux ? on aura les expressions qui suivent

^ ^ i n . H , ' f S i n . K

—*)= Cos.yJCos.»—Sin.x

d'où il résulte

2 CosJCos.*-

2 32. De l'anomalie excentrique « , on repassera facilement à l'ano-
malie vraie que lui répond ; on aura

On aura de même le rayon vecteur FM par la formule

r Cos.x—Sin.^6 Cos.x.

enfin , la surface du secteur AFM se trouvera ; par la formule
très-simple
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2ÀFM

i33. Les deux expressions littérales de P , Q , de même que
de P7 * Qf 7 subiront les modifications suivantes : on aura

Cos.x.—Sin.,

qui se réduit à

P = .f— Cos.16 Cos.$—Cos.^'w^Sin.g ,

zz Cosec.^Cos.i—COJ.^GOS.S—Cos^5//2.»/Sin.s ,

R =Cosec.^. £#.?•*—-i ,

M/=Gosec,p. Cos.*'—i •

ï34. Les expressions R-Bf, PQ'—P'Q, RW—PPt—QQt su-
bissent de même quelques modifications, exposées dans le tableau
qui suit :

i l — R / z = : )

rÀ l'exemple de l'ellipse , nous désignerons par z et ^ la demi-
gomme et la demi-différence des deux anomalies excentriques fic-
tives ** et ». On aura ainsi

d'où

pomme les angles % et + se rapportent aux anomalies excentriques
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* et »' , les notations Sin.x , Cos. x , Sin.*, £<w.+ continueront

d'être prises dans le sens du n.° 129. On aura

En comparant ces équations à celles de l'analise précédente ( Annales,
tome IV ? pag. 247 , et tom. V , pag, 18 ) on volt qu'en divisant
généralement par Sin.V les expressions elliptiques , on parvient à
celles de l'hyperbole»

i35. A ces trois équations, il convient d'ajouter la quatrième,
qui tient à la surface du secteur hyperbolique , proportionnelle au
temps. On a eu ( 3 )

on aura de même, pour une seconde observation

aAFM/=JtCos.i»(<^sec.^iSwï.«/—*Q .

Otant la première de la seconde , il résultera

La surface de ce secteur est proportionnelle au temps qui sépare
les deux observations , c'est-à-dire , à l'angle èf—>ê ; reste donc k
déterminer le facteur par lequel il faut multiplier l'une de ces
deux quantités , pour que le produit soit rigoureusement égal à
l'autre.

i36. Concevons généralement deux astres , tournant autour du
même centre de forces dans deux sections coniques , dont les pa-
ramètres soient ip , zp' ; les lettres p > p/ désigneront ainsi les
ordonnées des deux sections , à leurs foyers respectifs. Supposons
de plus que l'un de ces deux astres décrive le secteur A dans
le temps T 7 et l'autre le secteur A/ dans le temps Tl. On sait

A Af

qu'alors les deux fractions —7= et - ^ seront égales entre elles;
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Ainsi , dans le cas T~7y

 > les aires A, A' étant supposées décrites
dans des temps égaux , on aura la proportion ? très - générale,
A : A/=^\fp : \jpr 5 c'est-à-dire , les aires des secteurs sont entre elles
eomme les racines quarrées des paramètres des deux orbites.

187. Appliquons cette proportion à Panalise qui nous occupe.
L'un des deux astres est la terre , décrivant, sur un cercle du rayon
a y l'angle au centre $f—ê. Le demi-paramètre est ici a 5 et la surface
du secteur est ^2(ô7— êj. L'autre est une hyperbole dont le demi-
axe transverse est b , la distance du foyer au centre ^Cosec.^, et
le demi-paramètre ^Gos.2^. Cette comète aura donc décrit , dans
le temps même qui sépare les deux observations , l'aire MFM7 ,
dont nous venons de donner l'expression littérale. Cela donne la
proportion

d'où résulte l'égalité

ou bien

i38. De même que ? dans les problèmes précédens, nous devons

nous rappeler que la fraction — , qui multiplie P 7 P/, Q , Qf 9

dans les formules du n.° 55 (Annales ? tom. IV , pag. ^45 ) , est
elle - même une de nos inconnues. En faisant , comme ci-dessus f

Or

—=/2 , et en conservant les notations

Q zsnN , R =nO ;

Rt—nQ' ;

les quantités M, NP O, M/, JV7 , Of
 5 seront celles qu'on aura

déduites immédiatement des formules t du n.° 55 , lesquelles , au
signe près > sont identiquement lés mêmes dans l'ellipse et dans
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l'hyperbole. Ces quantités pourront être regardées comme connues ;

a

tandis qu'il faudra regarder comme inconnues la fraction —- =^n #

aussi bien que ^ ^ = # ^ T .
i3g. Nos quatre équations deviendront ainsi

ny/n^—£=zCosec.pCos.xSîn^—2^ .
i4o. En conséquence , en revenant aux notations déjà employées

dans les mémoires précédens ( Annales, tom. V ? pag. 18 ) ? savoir;

za = 0'—0 ,

zb =MN'—M'N ,

2 d = ê/—ê ;

le problème sera facilement réduit aux quatre équations qui suivent;

n # =

n c~

i4 t . En suivant une marche analogue à celle qui a été enseignée
au commencement de ce quatrième mémoire , et en se rappelant, pour
les réductions, que CosSty—SinS^zzi » on parviendra de même à
réduire ces quatre équations à deux , ne renfermant plus que les
deux inconnues n et 4*, savoir :

ndy/n= y/'Sin.

£2, Cette dernière est identiquement la même que dans l'ellipse
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(118), même en ayant égard aux signes. La première diffère de
celle qui a été obtenue pour l'ellipse dans le signe de l'angle + ,
et de plus dans celui de n2f2 , compris sous le radical. On les
résoudra de la même manière • et deux emplois de la règle de
fausse position y suffiront* Une valeur quelconque de ^ qu'on aura
supposée , conduira immédiatement à n ; et substituant cette valeur
dans la première y on s'assurera de Terreur que cette supposition
aura occasionée. Mais il ne faut pas oublier qu'il est question ici
de sinus et de cosinus hyperboliques, pour lesquels on a

En employant les sinus et les cosinus des tables qui nous ont
conduit ( n 8 ) aux deux équations finales

/
©n aurait beau faire pour ^ toutes les suppositions imaginables,
aucune valeur réelle ne pourrait y satisfaire , attendu que , dans
l'hyperbole , la valeur de cet angle est réellement imaginaire.

ANALISE ALGÉBRIQUE.
Recherches sur le développement numérique des fonctions

que M. Kramp a dénotées par A et F % dans son
Arithmétique universelle ;

Par M.

Ï . JLj'EMPLOi fréquent dont les fonctions désignées par M. Kramp
par A et F sont susceptibles, est sans doute un motif pour chercher
a en étendre la théorie, L'objet particulier de cet écrit est de recueillir
quelques résultats tendant à faciliter la détermination numérique de
ïa valeur de ces fonctions , lorsque la variable est donnée.
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2. La fonction désignée par A ( Arith. univ. n.° 56o ) est

An=sBln+Stn*+B4n*+B6n*+ (A)

Bt, J?a , B4 , . . . . étant les nombres de Bernouillî ; et on a le
théorème suivant ( ibid. n.0 Sjo )

«+-A - — À —
—i)r r

J'

faisant — zr/2 9 on obtient

T ( n 11

• <B)

a

n
7—1)72 72 (

On tire de cette dernière équation, en faisant /2 = i ,

f + I -K..+ -i) ; (C)

Mettons x-\-n pour « dans l'équation (B), et nous aurons, en
isolant A(i -+•#),

7£ (D)
or;

donc , en employant la valeur de Log.(i-+-^) , (C) y

]
Réduisant les fractions de (D) en séries ? procédant suivant les

puissances positives de n 9 et substituant la valeur que nous venons
de trouver pour Log. (i~\-p-\-pn) 7 nous aurons

Jom. V4 3i
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A(i+*)~Ai-Log.fi

n n2+ i n n n

-. a 4 8 16

+ 7 +
^ 4

i 2.n ", 4 n 2 8

3 """ 9

. 1 n ,. IT j ~ 11 f - . LI - Maria r - • ,, , • 1 i ^ M WP>

^ /> p a P 2 P 4 F
71 Ç p i ) n

étant arbitraireitraire ? faisons - le infini ; Log. i—-—r- — et

A *-̂ rr disparaîtront, et il restera

équation que nous écrirons ainsi :

A(t+n)=Ai+^ln+Kln
2+>,în

3+ (E)

3. Gr , si Ton fait

étant employé comme indice général , on trouvera
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(F)

or , les séries St , $3 , . . . . sont sommables ( Introd. d'Euler.
Arith* univ. n.° 5gg ) ; on peut donc déterminer les valeurs rm^
mériques des coefïiciens A2 , xt ^«s,.

OQ tire des équations précédentes

formules qu'on peut employer à vérifier le calcul fait par ïea
équations (F).

Observons que, si Ton fait, en général, 7\^=Sf—i , on pourra
substituer T à. S dans les équations (F) , excepté dans la première*

4. Quant à Ai on peut le calculer par la formule (C) , en
prenant pour p un nombrcr assez grand pour qu'en développant

J\—_ p a r la formule primitive (A) , on n'ait pas à craindre l'effet

de l'augmentation progressive des nombres de Bernouillî.
On peut aussi faire n~— 1 dans (E) , ce qui donne

enfin 7 on peut encore employer la formule

T rF T
Ai ae 1—Log.2-4 i -L-f. —t — ;

iï o 4

(H)
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pour vérifier les résultats précédens» Leur conformité servira d'ailleurs
à garantir la justesse des valeurs employées pour Tt f T% , ....

Cette dernière équation se tire de la formule (B) ) qui donne ,
en faisant /?=x ,

^ | A ~ - | (I)

d'où Von tire* en mettant — pour n

n fl+i l n

F a i s o n s s u c c e s s i v e m e n t 7 2 — 1 , 2 * 3 , ; il viendra

d'où, résultera, en prenant la somme de ces équations ;

Ai = i - L o g . 2 + 1 - L o g . ( i + '- ) + f —Log.(i-|- i

et en développant les logarithmes, excepté celui de 2 y

2,

—

en sommant les séries verticales • on obtient l'équation (H).
5. Or, les valeurs de A i , A, , x2t , x$ présentent la série

suivante 7 singulière par son irrégularité , tant dans la succession

des valeurs absolues ? que dans celles des signes :
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Ac = +0,57721066490 , h$ =—0,0000076677.,

A, =+o,644934o6685 , *9 =-+0,0000121980.,

*a =+0,0671228363 z , A, 0 =+O,OOOOO3454* • >

Af =«—0,01018983909 , * £ , =:— 0,000006295.. ?

A 4 = + O , O O I 19469664 > *, *=+o?ooooo4g48. .,

A5 ==+0,0002778979. j À, 5=—o,ooooo2g5o. .5

x7 =+0 ,0001565ag5 . , x, j =-—0,00000047•«•*

Faisons ĝ=:(—>• i)Vg » c e q^î revient à changer les signes des h
à indices impairs 5 nous aurons > par les formules (F) ,

Or 5 la série entre les accolades est toujours positive ; car , en la
désignant par U9 , et en développant les S pour lesquels on peut
prendre les T (n.°3) 9 on aura

+T

i—I ï « s«*î 1 i «—î
2 16 1 a 81 1 a

e t , en sommant verticalement

On voit que les valeurs de UB vont toujours en diminuant , et
on peut même déterminer un indice «+x tel que Z7g+f soit plu^



^z ANALISE
petit qu'une limite donnée £ . Pour cela f soit partagée cette li-
mite en deux parties arbitraires L'+L^—L. Un terme quelconque
de (I) est plus petit que le terme correspondant de la série \ +
1 + ^ + . . , ; mais la somme de celle-ci est finie , donc on peut

prendre dans (I) un terme .( ) , tel que la somme de

tous les termes suivans soit plus petite que V quel que soit s. Le
quantième z étant ainsi déterminé , on pourra prendre g de manière
que la somme des premiers termes

9

soît plus petite que Uf ; car il est visible que , s augmentant , cette
somme décroît plus rapidement que celle des termes d'une pro-

gression géométrique qui aurait — pour raison.

On peut conclure de là que la série des ^ ou des x est con-
vergente , mais la convergence est bien plus rapide qu'elle ne pa^-
raîtrait devoir Têtre en raison des considérations sur lesquelles la
démonstration précédente est appuyée.

Les signes de /*,== Uè présentent cette succession :

i , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , i o , H , 12 , i 3 , 14, i5 , . . . ; . . . . .

H + + h + + + + <+ »

Or , les valeurs absolues de pt décroissant beaucoup plus rapi-

dement que celles de— ?il paraît que la valeur de Ut oscille, pour

ainsi dire , autour de celle de — , en la serrant toujours de plus

près , et qu'il y a quelque chose de circulaire dans le caractère des
eoeiïîciens ^ , considérés comme fonctions de leurs indices. Obser-
vons qu'il y a augmentation dans la valeur de deux ^ consécutifs >
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aux endroits marqués * ; savoir , à l'exception de /«, et j», , aux
deux premiers termes qui suivent chaque changement de signe.
Nous retrouverons cette même circonstance dans le développement
de la fonction F ; et ce qui confirmerait le soupçon que nous éle~
Tons ici sur la nature des coefficiens p , c'est la possibilité de trou-
ver des fonctions circulaires qui présentent le même genre d'irrégu-
larité dans la succession des valeurs et des signes. Soit , par
exemple f

J* a

En faisant successivement # = 0 , i ? z9 3 . * . . . J on trouvera pour
y les valeurs suivantes :

Boooo ? 3a35 , 3093 , 1207 , a4° > 5* ? 7 1 > ̂ 4 > 8 , s. , 3 , Ï •

série qui offre des particularités analogues à celle de la série des ^.
6. La formule primitive (A) donne , en vertu de BjCr-,

A( 72)=À/2—Tl y OU

Faisant cette substitution dans (I) 7 il vient

o«Log,(i+/2)+A(—n)mmA — •

Mettant n— i pour n et transposant, on obtient

A( I -« )= -Log . /H-A ( i - 7 ) ï (K)

et , en développant A f i — — J par la formule (E)
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au moyen de quoi on peut avoir promptement la fonction A d'un
nombre négatif très-grand.

Si Ton met n— i pour n dans (I) on obtiendra

t t , par le développement de A ( i—•— j P

—Hl—
n n*

formule propre à calculer la fonction A d'un très-grand nombre

positif.

7 . Si Ton développe A , , A 2 >AJ , • • . ; dans la formule (E) ? on

aura

=: Aï—• n

4-Y —B*S,

En mettant * - pour n 9 on tirera de cette équation

A^_Ai+Log.^=^+§ + ̂  + ;

et , en faisant n négatif ,
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La différence de ces deux équations donne

hLog. .A — Log. =2 ( — + -7 + —+••••!
72—1 ' ° /î—I 72+1 * + * \ » «3 »5 /

Maïs on sait d'ailleurs ( Introd. d 'Euler, n.° 179) que le second

membre de cette dernière équation est la valeur de n—«*Cot, — ;

donc
A + L o g . A Log. =«—«-Cot. — .

n—I u n—1 72+1 " n+i n

On peut réunir A et Log. dans une seule fonction M en posant
généralement

l'équation précédente prend alors la forme plus simple

M - ^ M-^-=z*—«-Cot. — ,
n—1 »+i n

On aura d'ailleurs , en reprenant l'expression de V% ( n.° 5 ) ,,

8. La fonction T est ( Àrith. uni?. n.° 601 )

| g \ r — h— ;

et on a ( Ihid. n.° 6o3 ) le théorème général

Log.{ I(I+^)(I+^)—[i+C^—0»]} —

En faisant

*+..,^ , (M)
pourrait , au moyen du théorème précédent , déterminer

fom. F. dz
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coefficiens y r , y , ~, v$ > par une méthode analogue à celle du
n.° 2 ; mais le calcul est prolixe , et il est plus simple de les
faire dépendre des coefficiens *, , \ z , A j , . . . . , en employant la
relation

qui existe entre ces fonctions. On trouve alors

A,

(N)

La méthode directe du n.° 2 donnerait

yj=-f- Al — i ,

4/4=—

formules moins simples , rnzlê qui dépendent immédiatement des T;
on pourrait d'ailleurs les tirar des précédentes , par le développement
des A*

On aurait encore
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Ces formules se tirent des équations (N) ? en partant de la troi-
siene ? par ci 3 substitutions successives. On peut aussi les en faire
doriver comme il suit.

1/équation (Kj donne

( ) A ( i — » ) ; (O)

d'où

Log.̂ A, Çn-1 ) -*,(»•- ~ ) +x, («3- £ )—..:

Nous remarquerons, ea passant, que le développement de Log.#
se fait ici suivant les puissances entières de n , sous une forme
très-simple quoique peu usitée ; et c'est un fait d'analise assez sin-
gulier que les coefïiciens d'un tel développement 5 pour une fonction
qui doit également être regardée comme fort simple , soit soumis à
une marche aussi îrrégulière que celle des A.

Soit fait, dans l'équation précédente , n^szi-\-i d'où — = i — i ^ - î *

= x , (2/—/'*+••••)—A2(4/—2/*-|-.,..)+*>(6/—3/24-*M.)—- ...7.

La comparaison des termes qui multiplient les différentes puissances
de i fournira des équations dont les deux premières donneront
également

Or , on a , par exemple

Par (N) 5y,=5Ai—f—

Par (G) 5 A , =

Par (P) - « - =

donc
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5y, =AÔ—.2^ +3A f 4*9

et , en général,

Nous pouvons remarquer que l'équation (O) donne , en vertu
de A(n~i)=r«—2+A(i— n), (n.° 6 )

w t = A l I

mais

=A fi — -

donc

— A ( * \ ( J ^

ou , en reprenant l'expression de M ,

.=M/2—^/? -M
72+1

g. M. Kramp a fait voir que r i = i — ̂ Log.(2«-), ( Annales,
tom. 3 , pag. I I ). On pourra encore calculer ce même nombre
en faisant n——i , dans l'équation (M), ce qui donnera

10. La suite y, , y% y y, , présente les mêmes irrégularités
que celle des coefficiens x, comme les valeurs suivantes le font voir

r i = "-{-0,08106146679 , y9 =+o,ooooo5266.,

y t = + 0 , 0 7 7 2 1 5 6 6 4 9 0 , y l o =—0^000002837 , , ,

, ytl = + 0 , 0 0 0 0 0 1 1 6 3 . # 1

y4==-J~0,0003760073, , y,,=—0,000000062,,,

y$ =—o,oooi43on 8» % Xj 4 = 4~o,ooooooi6. .•,

y6 =+0,0000339978. , yls=—0,00000014...,

y7 = +0,0O00004832, , y, 6=+OjOOOOOO1O—,

yg=: —0,0000067778. ? . ,
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Si on change le signe des y a indices impairs , on aura cette
succession

1 . 2. . 3 . 4 - 5 . 6 . 7 . 8 . g . 10 . 1 1 . 1 2 . i 3 . 14 • *5 . 16...

I -+ + H + + ± +.-

Le signe * indique qu'il y a augmentation dans la valeur absolue
de deux y consécutifs, Cette circonstance a lieu , comme pour les
x , aux deux premiers termes qui suivent chaque changement de
signe.

11. En faisant /?= 1 , dans l'équation (L)* on en tirera

jT/2=—i

et, en mettant /2—1 pour n

puis , développant F ( 1—— J par la formule (M),

expression au moyen de laquelle on pourra calculer facilement là
fonction F d*un trèsrgrand nombre.

12. Une observation qui se présente naturellement est que les
équations précédentes , qui contiennent des logarithmes, donnent des
résultats absurdes, lorsque les nombres de ces logarithmes sont né-
gatifs ; ce qui tient sans doute aux mêmes causes qiil ont conduit
M. Kramp à des conclusions paradoxales ( Annales, tom. 3 , pag. 3
et 343 ). Il a donné a ses lecteurs ( lbidm pag* 344 ) l'espoir d'une
solution satisfaisante de ces ^iiiBaultés. Les géomètres ne peuvent
que désirer avec un vif intérêt les éclaircissemens promis par ce
célèbre professeur, ils seront d'ailleurs' une sorte de mémoire jus-
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tificatîf en faveur de l'algèbre qui , à cet égard , se trouve en
quelque sorte in reaiu.

i3. Nous rapporterons ici, par occasion ? des formules analogues
à celles de la page 118 {Annales, toin. 3 )
gj e-~m£ J - y y5^^.^^2y y 5__. | QQ^y i X ^ W

V-jCoifl+e^ ^ ^ V + f l < ,.2.3 + 6 i.a.d.4.3 ^ )

— _ , ^ _ _ _ _ _

En faisant g = p 9 dans (Q) , on a la secondée des séries de la page 118,
dont les autres "sont tirées. Nous démontrerons ces formules comme
îl suit. _ r

En faisant :A#=?i , on a

A(enxS\n,aa;)=zeux{(enCQ$.a~-i
\ %

on conclut qu'on peut supposer

A f B 9 €, D étant des constantes.
E n effet > différenciant et comparant aux valeurs précédentes ^

on trouve

D'un autre côté, si Ton applique à ^Sin.^^ et enxCos.âœ , (ou
seulement à la première de ces deux fonctions , car elles con-
duisent toutes deux au même résultat) la formule d'intégration

. I x* dz 3c5 fez x* d3z ,

o? 1.2 <J^ i»2.3 d x a 1*2,3.4 cl#3

&z

en obtient ua résultat de la forme
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A et B étant les sénés (Q— ») et (R). Ainsi, ces valeurs peuvent
être égalées aux valeurs (T).

Dans les valeurs (Q) nous avons fait passer la fraction 7 . dans
le premier membre, pour plus de symétrie, ce qui a donné, pour
ce premier membre ,

enCosta—i en—e"n

en—.

La formule (S) dérive de Tune des deux premières 9 en y mettant
y\/~v pour y. ^ :

Observons que les coeffieiens de # = £•*', dans les expressions de
la somme des séries de la page 118, peuvent se déterminer d'une
manière indépendante par les formules

1

I

n

1 2 ,

n y*— i

7 —
II—> ï R«IMa

Ainsi, dans l'exemple de la page n g * on aurait

6—35. I =

A u r e s t e , la suite des coeffieiens ^ , J ? n , . . . , » étant symétrique JJ
il suffit de calculer la moitié des termes.
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PHILOSOPHIE MATHÉMATIQUE.
Considérations philosophiques sur l'interpolation ;

Par M. G E R G O N N E.

XT A. Wronski,dans son Introduction à la philosophie des mathématiques
(pag. 247)? a avancé que certaiues fonctions n'étaient point susceptibles
8interpolation. Quelque confiance que puissent inspirer d'ailleurs
les profondes connaissances de cet habile géomètre , cette assertion
m'a semblé paradoxale ; j'ai donc cru devoir la soumettre à un
examen sévère ; et c'est cet examen qui a donné lieu aux réflexions
que l'on va lire. Elles ne présentent au surplus rien que de très-
élémentaire, et je ne me détermine a les rendre publiques, que dan»
l'espoir qu'en dirigeant sur ce sujet les pensées de mes lecteurs 9

elles pourront donner naissance à <Jes recherches plus importantes
et d'un plus haut intérêt.

I. Quelque voisine de l'invention de Valgehre que paraisse être Pïn~
vention des coejfficiens, on peut cependant concevoir un intervalle
de temps, si court d'ailleurs qu'on voudra, durant lequel, pour
exprimer qu'une quantité quelconque a doit être prise une ou
plusieurs fois, on écrivait simplement

a , a+a , a-\-a+a , a~\~a-\~a+a ,........

Dans cet état naissant des notations algébriques , on ne se serait
sans doute guère avisé de se demander comment on pourrait écrire
que a devait être prise ^ de fois ou ~ de fois , ni ce qui pouvait
résulter d'une opération aussi peu intelligible pour l'esprit.

Bientôt , dans la vue d'abréger la notation d'expressions qui se re-
produisaient très-fréquemment, on songea à substituer aux expressions
ci-dessus les expressions suivantes ;

fi
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a f 2a , oa , 4a > •••••••

que Ton vît être des produits dans lesquels le multiplicande com-
mun a était seul indéterminé. ,

Le penchant qui nous porte naturellement à généraliser nos
idées, et par suite les signes que nous destinons à les représenter ?

dut bientôt conduire à donner au multiplicateur la même Indéter-
mination 9 la même généralité qu'avait le multiplicande ; et c'est
ainsi que ma devint le symbole de a répétée un nombre de fols
quelconque exprimé par m.

Ce fut seulement alors que les anallstes purent songer a se de-
mander ce que pourrait signifier le symbole ma, lorsque m serait

supposée une fraction quelconque, — par exemple; ou? en d'autres*

termes, quel sens on devait attacher à l'expression

11 s'agissait Ici de transformer ce symbole d'opération îmmédiatefrient
inexécutable et même inintelligible , en un symbole d'autres opé*-
rations possibles , quelques valeurs entières que Ton attribuât à p et
€j , et telles néanmoins que le résultat rentrât dans l'expression ma^
toutes les fois que p serait exactement divisible par q*

On avait sans doute remarqué que 9 dans ce cas particulier^
on avait • - *

[ — ) * = — ;

on crut donc que ce qu'on pouvait faire de plus simple et de plus
naturel était d'adopter cette équation 3 comme équation de définition
pour tous les cas.

Mais cette définition était-elle la seule qu'on pût admettre sous
les conditions données ? non sans doute ; et , pour ne prendre ici
qu'un exemple très-simple, on aurait également atteint le but en
adoptant cette autre définition

Tom. V* 33
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A étant un nombre entier quelconque , et «r la moitié de la cir-
conférence dont le rayon est l'unité (*).

Si , changeant m et x , on écrit

on aura

c'est-à-dire ,

autre équation de définition , d'où onf tire

Si l'on veut appliquer à ceci des considérations géométriques ;
on verra que Ton peut envisager a , za 5 3a ;•. ,*ma , . . .• comme
les ordonnées d'une suite dei points isolés, dpnt les abscisses corres-
pondantes sont i , 2 f 3 , m , * . . , ; et que le problème de l'éva-
luation de sa se réduit à faire passer par toixs ces points une
ligne continue quelconque , et h chercher ensuite l'ordonnée de
cette ligne qui répond à l'abscisse x ; or ? ce* problème est susceptible
d'une infinitéde solutions, comme le prouve l'équation yx=xa^-A§'m*X'zr;
et l'emploi de la ligne droite , qui conduit à l'équation de définition

(*) Dans le vrfi , l'équation de définition ( ~ \a^=z — a été empruntée de

l'arithmétique ; mais il convient ici à mon but de supposer que l'invention de
- l'arithmétique n'a point précédé celle de l'algèbre.

On aurait pu admettre 9 comme équivalente à la précédente , l'équation de
définition

^ ( 4 r i ) o u

de laquelle on aurait ensuite déduit l'autre, à peu près comme Euler démontre
Ja formule du binôme ? pour l'exposant fractionnaire 9 à l'aide de l'équation
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généralement admise, n'a d'auire prérogative que de conduire au

but de la manière la plus simple.

II. Jusques vers le temps de Descartes , lorsqu'on voulait exprimer
les produits consécutifs de la multiplication d'un même nombre a
par lui-même , on n'avait d'autre moyen d'éviter les notations in-
commodes de Viète que .d'écrire

a , aa , aaa 7 aaaa ,

Le désir d'abréger fit bientôt remplacer ces expre5sions par leurs
équivalentes

a , a* , a? , ah

et on convint ensuite d'employer le symbole am pour désigner une
puissance quelconque d'un nombre quelconque. ^Wallis se demanda
alors ce que pourrait signifier l'expression am , lorsque m serait une

fraction , — par exemple ; et , comme il avait sans doute remarqué

que , lorsque p est exactement divisible pas g , on a

îl convint librement, et tous les analistes convinrent avec lui, d'adopter
cette équation comme équation générale de définition des puissances9

quels que pussent être d'ailleurs les nombres p et q ; et de lier
ainsi les puissances entières et les puissances fractionnaires par une
loi commune.

Mais cette loi, à la vérité la plus simple, n'était point la seule
qu'on pût adopter* on pouvait prendre, par exemple^

A et sr ayant la même signification que ci-dessus (*).
Si , changeant m en oo 7 on écrit

(*) On pourrait admettre ? comme définition équivalente à celle-là 9 l'équation*
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yx-a
x >

on aura

c'est-à-dire,

autre définition d'où on tire

o u

SI l'on considère a, a* , a? . . . . . . # m , . » . . . comme les ordonnées
d'une suite de points isolés ? ayant respectivement pour abscisses
i , 2 , 3 , Tft , • . . . . , la question de l'évaluation de ^ rev iendra
à faire passer par ces points une courbe continue ? quelle qu'elle
soit , et à chercher ensuite celle de ses ordonnées qui répond à
l'abscisse x* La définition généralement admise revient à choisir
une logarithmique ; mais cette courbe n'a au plus que l'avantage
d'être la plus simple et pourrait , en toute rigueur ? être remplacée
par une infinité d'autres.

III. Considérons encore la suite des fonctions

i

7+

désignons-les respectivement par <pi , q>2 , <p3 , $4 5--«»; il est clair

qu'en général <p.r ne sera immédiatement évaluable , ni môme ex-

primable et concevable s qu'autant que x sera un nombre entier

positif. Cependant , comme il est connu que , dans ce cas 9 on a

= a .

et en déduire ensuite l'antre, comme il a été indiqué dans la note précédente.'
(*) Vojes les Recueils de l'Académie du Gard^ponv ï8i l 3 toiu» I ? pag. 2,63 ?

mémoire de M. Tédçnat g«r XAnalise indéterminée
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et comme d'ailleurs il existe déjà une convention antérieurement
établie sur l'évaluation des puissances fractionnaires ; rien n'empêche
d'admettre cette équation comme équation générale de définition de
ces sortes de fonctions , quel que soit oc ; mais , rien ne s'oppose
non plus à ce qu'on en adopte toute autre ? car il en existe une
infinité qui peuvent remplir le même but*

Si Ton pose } dans ce cas ,

il viendra

et par conséquent

IV. On pourrait parcourir successivement tant d'autres sortes de
fonctions qu'on voudrait > que l'on parviendrait toujours également
aux conclusions suivantes : i.° le problème de l'interpolation ne
peut offrir de difficulté que lorsqu'il est relatif à une fonction qui ;
sous sa forme primitive , n'est évaluable 9 intelligible et même ex-
primable que pour certaines valeurs déterminées ( quoiqu'en nombre
infini ) du sujet de cette fonction; 2.® l'art de le résoudre consiste,
en général, à mettre la fonction proposée sous quelque autre forme
qui , équivalente à la première , pour les cas où celle-ci est immé-
diatement évaluable , puisse être , contrairement à elle , également
évaluée , du moins par approximation 5 dès qu'on attribuera au
sujet une valeur quelconque 9 #utre que celles-là seules pour lesquels
la première pouYait être évaluée ; 3*° ce problème est, généralement
parlant, susceptible d'une infinité de solutions ? sans que Ton puisse
assigner à aucune d'entre elles d'autre motif de préférence sur les
autres que de pures raisons de convenance ou de simplicité.

Le problème de l'interpolation ? envisagé géométriquement, revient
évidemment à trouver l'expression générale de l'ordonnée d'une
courbe assujettie à passer par une infinité de points donnés , s$
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succédant les uns aux autres suivant une loi uniforme quelconque ^
mais non immédiatement susceptible de donner des points inter-
médiaires à ceux-là ; et cette manière d'envisager la chose montre
de nouveau, d'une manière sensible , que le problème doit avoir
une infinité de solutions.

Donnons encore un exemple de l'application de ces principes.
Avant Yandermonde , personne , je crois 7 ne s'était avisé de chercher
à évaluer le produit 1.2.3...,x pour d'autres valeurs de x que des
valeurs entières et positives , et cela parce qu'aucune notation par-
ticulière n'ayant été inventée pour exprimer ce produit , il n'y avait
pas même moyen de récrire 7 lorsqu'on faisait d'autres suppositions

X

pour x. Mais du moment que l'on eut imaginé les symboles [V] 9

r*'1 ? x ! comme équivalent entre eux et à ce produit , on dut
aussitôt se demander ce que pourrait signifier x ! , lorsque x serait
fractionnaire ou négatif, ou même irrationnel ou imaginaire. Tout
se réduisait évidemment à trouver une fonction de x qui devînt
1 , 2 , 6 , 24 , 120 , . . . . lorsqu'on y supposerait successivement
x~i , 2 , 3 , 4 ) 5 , . 1 . . . et qui fût de plus évaluable , du
moins par approximation , dans le cas de toute autre suposition
pour x. Or , ces conditions pouvaient être remplies d'une infinité
de manières différentes ; on pouvait ? par exemple 7 adopter l'é-
quation de définition

dans laquelle les expçs^ns * , *f
 7 *

;/, . . • * £ 9 ^ , j 3 ; / . . . • y 5 y
f
 ? y

N
 9,.. %

en nombre infini ? peuvent être des nombres positifs quelconques 9

et où A f S y C, . . . . se déterminent iacilement par une suite de
suppositions particulières. Si , par exemple , pour plus de simplicité,,
on pose tous les exposans e'gaux à l'unité , on trouve alors

XX X~l CC X—I X-—2 X X 1 #«—« 2. X 3

— + ~ . + 2 - . . — h
1 1 ^ i z d

série dans laquelle les coeiïiciens consécutifs o , 1, 27 gf 44 1 ^65 ?....
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tels que chacun est le produit de la somme des deux pré -

cédens par le nombre total de tous ceux qui le précèdent.
On pouvait tout aussi bien admettre l'expression

x\ — i-\-Ax§\n. hite*$in.— Sin. f-C#3Sin. — Sin. — Sin.— 4-««.«*
3C X X X X SC

dans laquelle les coefficiens Ay B , £ , . . * . auraient également été,
déduits de la considération des cas particuliers , et qui pouvait >
comme les précédentes , être évaluée quel que fût le nombre x.
Mais ce n'est aucune de ces définitions qui a été admise par le
petit nombre des snalistes qui se sont occupés de la fonction x ! ,-
Ils ont admis 9 du mo*ns tacitement, pour équation de définition

Bt9 B4> B6 , . . • . étant les nombres de Bernoulli ; et le choix de
cette définition les a conduit à plusieurs belles applications de ces
fonctions 9 que sans doute l'adoption d'une définition différente ne
leur aurait pas également fournies; mais cela prouve seulement, ce me
semble , que , eu égard aux applications pratiques , il peut y avoir de
l'avantage à préférer une équation de définition à toute autre ; mais
nullement qu'en théorie le choix n'en soit pas tout-à-fait indifférent.
Le seul point important en ceci est de ne point admettre impli-
citement d'une même fonction plusieurs définirions qui ne soient
point concordantes et de subordonner rigoureusement tous ses calculs
à celle qu'on se sera déterminé à préférer. Le défaut de cette
attention ne pourrait évidemment manquer de conduire à des pa-
radoxes.

D'après ce qui précède 9 l'équation connue ( f ) ! = 7 ^ , ne peut
être regardé comme vrai en elle-même , mais seulement comme
conséquence nécessaire de la définition de la fonction x ! qu'il a
plu aux analistes d'adopter ; cette équation (~) ! = | - \ / ^ pourrait donc,
en tonte rigueur , être vraie à Paris et fausse à Londres , sans qu'il
en résultât aucune contradiction réelle ; il s'ensuivrait seulement
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qu'à Londres le symbole x ! ne représente la même chose qu'a
Paris que pour les valeurs entières et positives de x,

JEn posant x ! =yx , il viendra

4'OÏL

équation qui peut être admise comme équation générale de défi-
nition ; je dis générale ; car, à raison du complément variable et
périodique que comporte son intégrale , elle comprend implicitement
une infinité de définitions différentes.

V. Supposons présentement qu'on ait une certaine fonction de x,
dont la forme primitive soit telle qu'on ne puisse en assigner immé-
diatement la valeur que par rapport à certaines suppositions faites
pour la variable , la supposition de x entier et positif par
exemple \ et supposons de plus qu'on n'ait pu encore parvenir à
la mettre sous une forme qui en permette l'évaluation quel que
soit x , faudra-t-il en conclure que cette fonction n'est point in—
terpolable ? qu'elle est essentiellement discontinue ? je ne saurai le
penser. Il est d'abord très-probable qu'au temps de Viète on aurait
été fort tenté de porter le même jugement de la fonction ax ; et
qu'on en aurait dit autant de la fonction .désignée par x ! par
M. Kramp , avant que Vandermonde s'en fût occupé. D'ailleurs ,
dire qu'une fonction évaluable dans une infinité de circonstances
ne Test poiat néanmoins dans toutes r ne reviendrait-il pas à dire
que, par une infinité de points donnés sur un plan , et s'y succédant
suivant une loi uniforme, il est impossible de concevoir une seule
courbe continue ? et, loin que cette assertion paraisse soutenablé,
ne semble-t-il pas , au contraire, que des points donnés , même en
nombre infini, peuvent toujours être conçus liés par une infinité de
courbes différentes ? et n'en résulte-t-il pas inévitablement que,
oLt qu'on: $ac]ae ou cju'on ue sache pas interpoler une fonction r

h
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le problème de son interpolation n'en doit pas moins être réputé
non seulement possible , mais même tout à fait indéterminé. On De
m'opposera pas ici , je pense , l'exemple des systèmes de lignes
remarquées pour la première fois par M. Monge , et qui ne sauraient
fane partie d'aucune surface ; car ces lignes se succèdent sans in-
terruption , tandis qu'il s'agit ici de points isolés»

Cette doctrine sur l'interpolation , quelque saine et raisonnable
qu'elle paraisse , n'est pourtant point celle que professe M. "Wronski.
( Inirod. à la Philos, des Math* pag. 147 ) « Lorsque les déter-
* minations particulières d'une fonction inconnue , auxquelles s'ap-
* pliquent les méthodes d'interpolation ? sont de nature que la
» fonction correspondante n'ait point , par elle-même ̂  une continuité
» indéfinie , les méthodes d'interpolation ne peuvent 7 dit-il , donner
» des fonctions qui aient une telle continuité. Par exemple , les
* fonctions que nous avons remarquées] ci-dessus, en parlant des
* rapports algarïthmiques, et que | nous avons nommées Lameds ,
» ne sauraient , par l'application des méthodes d'interpolation , re-
* cevoir une continuité indéfinie ; parce que , comme nous l'avons
» déjà observé , ces fonctions n'en sont point susceptibles dansr
» leur génération primitive ».

Les fonctions Lameds , dont parle îci M. "Wronski , sont de la
nature que yoici : on pose

et on demande ce que peut signifier yx\ lorsque x est quelconque;
La manière la plus directe de répondre à l'assertion de M*

*Wronski fi serait sans doute de lui donner une expression de fx>
rentrant au fond dans les cas particuliers que je viens de considérer f

et se prêtant à toutes les suppositions qu'on voudrait faire pour
ar ; et, dans ce cas, je pourrais f en attendant mieux ? lui offrir
la formule d'interpolation si connue
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(i— 3â+3aa~~a* ) - * . - .
i 2i 2 3

2. 04

que je n'oserais peut-être pas présenter à tous les anaîîstes ; maïs
que M. ^Wronski doit d'autant moins récuser que , suivant lui,
les séries ont, par elles-mêmes 9 dans le nombre indéfini de leurs
termes , une signification déterminée. Maïs , laissant cette série de
côté 9 je me bornerai à demander à M, "WYonski quelle est la
génération primitive $es fonctions

a 9

a * aa t aaa :. caâa

a

, 1 . 2 . 3 ; 1 . 2 . 3 . 4

et si , datis cette génération prîhiitïve.., elles--sont*-, plus que ses
Lameds, susceptibles d'une continuité indéfinie ?(*)

(*) En représentant les Larttèâs par y , on a évidemment jr^àyssày 9 c'esjt-
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Je suis , certes , loin de supposer à M. Wronski , à qui Je soumets

die bon cœur ces réflexions , une assez forte dose d'amour-propre
pour penser qu'il confonde les bornes de ce qu'il est parvenu à faire
jusqu'ici avec celles du possible. Je ne fais même aucun doute que
la philosophie qu'il professe, et qu'à mon très-grand regret je
connais fort peu , enseigne , comme toutes les autres , qu'on ne
saurait trop se défier de ses lumières ; maïs je serais bien tenté de
croire qu'en cet endroit, comme en plusieurs autres, c'est encore
cette même philosophie qui l'aura égaré , en le faisant sans doute
raisonner comme il suit : « Le (Lriticisme fait trouver tout ce qui
?> est trouvable, et tout ce qu'il fait trouver est parfait ; or , ce
y* Criticisme m'a fait découvrir une nouvelle loi de développement
^ des fonctions en séries ; donc cette loi est parfaite ; donc elle
» est la Loi ABSOLUE ; or , cette même loi n'a aucun empire sur
y> les fonctions Lameds ; donc ces fonctions ne sont point susceptibles
» de développement; donc elles sont essentiellement discontinues;
$> quod erat demonstrandum. » C'est à peu près dans ces termes
que Hobbes parle de la synthèse y et Condillac de Vanalise !

i dx i.a do?* 1.2,5 dx3

e'quation qui ne saurait être aï>surcîe , puisqu'elle ne contiens que deux
seulement \ et qui doit être d'ailleurs assujettie à la loi de continuité*
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QUESTIONS PROPOSÉES.

Problèmes d'optique.

I. \^UËL point du plan d'un triangle donné quelconque faut-3
concevoir lumineux , pour que le point le moins éclairé de son
périmètre le soit le plus possible , ou que le point le plus éclairé
de son périmètre le soit le moins possible ?

IL Quel point de l'intérieur d'un tétraèdre vide donné et quel-
conque faut-il concevoir lumineux , pour que le point le moins
éclairé de sa surface le sok le plus possible , ou pour que le point
le plus éclairé de $a surface le soît le moins possible ?

Problème d'alliage*

Deux tases contenant des volumes F , Vf de mélanges de plusieurs
liquides , dont le nombre et les proportions sont inconnus pour
chaque vase; ne seFait-il pas possible de construire deux vases plus
petits et d'une même capacité , tels qu'en les emplissant dans les deux
vases donnés , et versant ensuite dans chacun le liquide extrait de
l'autre , les mélanges contenus dans les deux vases , après cette opé-
ration , soient exactement de même nature ? et quelle devrait être,
pour cela , la capacité commune des deux vases égaux ?

Il est d'ailleurs supposé que les liquides dont il s'agit ne sont
point susceptibles de se combiner chimiquement , et que conséquent-
ment Us se mêlent sans rien perdre de leur volume totaL
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ASTRONOMIE.
Essai d'une nouçelle solution des principaucc problèmes

d astronomie ;

Par M. KRAMP , professeur , doyen de la faculté des
sciences de l'académie de Strasbourg.

( Cinquième Mémoire ). (*)

i43. JLROBLÈME IX. On demande de représenter les époques
des conjonctions et des oppositions d'une planète quelconque avec
son satellite , par une série ordonnée selon les puissances ascen-
dantes de Vexcentricité de la planète principale y en regardant le
mouvement du satellite comme circulaire et uniforme ?

i44« Solution. Soient AIA; ( fig. 1 ) la demi-orbite de ]a planète
principale ^AA7 son grand axe , A son aphélie, A/ son périhélie , F le
foyer de l'ellipse , occupé par le soleil ; le satellite étant porté sur un épi-
cycle dont le centre parcourt la circonférence de l'ellipse, confor-
mément aux lois connues du mouvement planétaire. Supposons qu'au
moment où la planète principale était a l'aphélie A de son orbite 5

le satellite ait été au point G de Pépicycle. Supposons de plus
qu'au bout du temps t la planète ait parcouru Tare AI de son
orbite , et, ayant mené les lignes 1E , IG , respectivement paral-
lèles a AB, AC ? supposons que, dans le même temps / , le sa-
tellite ait parcouru Farc GH de la sienne.

(*) Voyez les pages 161 et 287 du IV.e volume de ce recueil, et les pagesI
et 221 de celui-ci.

Tom.V, n.° IX, i . e r mars 1815. 35
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145. Désignons par p le temps d'une révolution de la planète,

et par q le temps d'une révolution du satellite. Soient de plus
a , le demi-grand axe de l'orbite de la planète ;
/ZCOS.A , son demi-petit axe ;
h, le rayon de l'orbite du satellite =ÀB==AC=ÀI ;
q>7 l'anomalie vraie AFI ;
* , Fanomalie excentrique correspondante ;

et y l'angle BAC, qui fixe le lieu du satellite 5 au moment du
passage de la planète par son aphélie.

On aura conséquemment
tfSin.A, pour l'excentricité de l'orbite ,
# ( I + C O S . A ) pour son aphélie FA ;
a[i—Cos.A) pour son périhélie FA7 .

146. En conséquence? on aura les équations suivantes:

Cos.ASin.p Cos.p—Sin.A
S i n . « = L s1—Sin.ACos.^ } K 1— S

P

On tire des deux premières

et de la troisième
i * /-,. 1 lmmmSin.xCos p s&ât

r * Cos.2A pt

Ces valeurs, égalées entre elles , donneront

-—d/- ——— dA .
p^QSSA COS.A

D'un autre côté , on a , pour l'expression littérale de l'angle 1FH

£Sin. [ ot-\- — —»$

Tang.lFH , ou Ang.IFH—

V H ~ )
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Cet angle devant s'évanouir en cas de syzygîe , on aura

ou

<p = ^—72«-i , e t d < ? = = : ;
9 9

donc
2 ^ 2 ^ i S i n X C o s ^ ) 2 iSin^C2—Sin.ACos.0)

CosA 77 /?Gos.3A Cos.A

en conséquence

zwdt Cos 2

^/<iA pCosJh—^(1 —Sin.A

Tel est le rapport différentiel àt : dx , dont il faudra de'duire les
coefKeiens de la série que nous cherchons.

1^7* Pour donner à nos formules la simplicité que nos dévelop-
pemens exigent, soient

donc
âx dy ~vd<p z-m? àt *

dA * à\ (̂ dA g ' dh

du dv . ydé i73v dt

dA ' dA ~ dA ^ q * dA

On aura ainsi

pu*—q(l—xyY

et s i , pour abréger, on désigne cette fraction par h > on aura

dx . dy

du dv

dA ? dA 7
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II parait convenable de faire encore, pour abréger, r= i—xy ,

il en résulte
dr

_
dA dA

on a alors

ce qui donne
dr pr(sx+y«—#y)—quvr2

dA pi^—^r a

i48. Si , d'après le but du problème, on désigne par / le temps
au bout duquel il arrive une syzygîe 9 on aura

et les coefficiens A , B 7 C ,« . . . . formeront les inconnues du
problème. Le premier terme A est ce que devient / dans le cas
de A = O , lequel fournit

d'où Ton tire

et telle est la valeur du premier terme de la série. On aura
donc

A •

i4g. Le coefficient B est ce que devient le rapport différentiel

— , dans le même cas de Â =S=O, qui est celui de # = 0 , # = 1 ,
dA

q(n*r—si) <2*rA 2-nA 2.71 A t
<p= = -, dou r=Los . ^ p=Sin. • II en résultera

? — g P J P p
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p

en sorte que le second terme de la série est

pqX ZttA
bin.

p

i5o. Il faudra passer de là aux rapports différentiels — , -— « —, . . .
r r r dA* dA^ dA4

On peut remarquer que tous les termes dont ces rapports sont com-
posés sont compris sous la forme

um. r 8 . *> • s

la lettre s désignant une fonction rationnelle' et entière de x et
y ; tellement que ds^^Mdx-^-Ndf , tandis que dr==—ydx—xdy.
Le problème est donc réduit à trouver la différentielle de la fonction
fractionnaire^

umrsi>s

I 5 Î . On en tire

Log z=/72Log.z

donc

àz màu tdr d*>

^ z/ r v5

on 9 en divisant par dx

dr 7nar tuy hy Mu-\-Nhv

zà\ u r v s

multipliant enfin de part et d'autre par urçs(pu?—

{u?—gr*) —- =
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1B2. Donc, si Ton fait, pour abréger,

F=z —JUTÛCS—iifys+Znrxs—r( i ~{-r)ys—s

H=—mrxs—tu

on aura finalement
<{? uni-** t ri**—i o

i53. Les trois coefficîens F, G , H, sont des fonctions ration-
nelles et entières de a? et y. On trouve , en les développant,

G = (2^»**

On peut remarquer que la première de ces trois fonctions , savoir
F 9 est divisible par r=i—.#y ; on trouve

F

Exemple L Ayant trouvé
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pztV(2—xy)

on demande — ?

Faisant

on aura

donc
dH

reste donc à trouver
1T

Comparant à la formule générale

on trouve
772 =

n =

, s=2—xy

on en tire

donc

dz

donc

—y)
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pq dhz *-r)

i54« Le troisième coefficient C de la série est ce que devient la
an

fraction—- , dans le cas de A = O , qui est celui de # = o , # = o ,

ZLTlA 2.71A - thttA ^^ ,

i= y=Cos.-—-, p = Sin. -~ et r = i . Un aura donc
P J P P

on

le troisième terme sera donc

it55. On vient de trouver la valeur littérale de — .—.composée
pq éK^ r

de trois fractions telles que

dans lesquelles
/ =5y—x%y

Pour passer a — , il faut appliquer la formule générale à

cune des trois fonctions S/, 5 / y , S/;/ en particulier. En conséquence >
nous aurons les différentielles qui suivent.

Exemple IL On demande la différentielle de
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{pu*—(j

On a ici mnj , S^Sj—

d'où il résulte

En suite de quoi on aura finalement

— rr — — ( p2ue — —pu3r2 -—• -+-^2

i56. Exemple 1IL Oa demande la différentielle da

On a ici 772=4 t s/;=^^x-—2y 7

s =2 ,

àenc
Xfl/tt. r i * 36
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JpV/
—» =

à9ou il résulte

H» )

157. Exemple IF- On demande la différentielle de

-///_ ^ ?
(pu3—qr2)$

On a, pour ce cas , T?2=I ? Sf//= ù^x—Zy—

$ = 4 , itfWss 4 —

ce qui
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on I'CTA finalement

âh

i58. Mettant ensemble les exposions dliTérentîelles des trois
Kuniéros précédens 7 on trouve

•pq

Or, on troure , après les réductions

—2&1—31 xy—
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i5g. Le quatrième coefficient D est encore ce que devient le

rapport différentiel jrr-^ , dans le cas de A = O , qui est celui de

= o , K = I , r = i , <p^=- ou p= , et ensuite y=Cos.f
P V—H

et p = Sin,<p, en désignant ici par <p 1 angle = .Cette
. . ° P P-f

supposition donne

jffW5=+ 4
on aura donc
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» _ Sin.* j
~ 6 ( ) 5 (

Les deux termes de cette fraction sont divisibles par le quarré
(p—(fy y ce qui donne

2.vr £( 10/? 2

en conséquence

Jjzzz

i6ot En appliquant les mêmes formules à la recherche du coeffi-
cient suivant JE , j'ai trouvé

(
- 48-e/»-?)* j

En conséquence , voici le tableau des cinq premiers coeffîciens
A , B , C , D , E , de la série J+By+C^+D^+E^-)- ,
qui fait connaître les époques de toutes les conjonctions et oppo-
sitions du satellite avec la planète principale 9 qui peuvent avoir lieu
dans un temps quelconque. On se rappellera que n désigne un
nombre entier quelconque , pair dans les conjonctions , impair dans
les oppositions du satellite vu de la planète. Nous continuerons

2.isrA q(nzr—a)

d'employer la lettre <p , pour désigner l'angle -— = # On
aura

12(p—qf &D = +pç{ 1 o/?2+1 opq~i~4q2)$\n.<p

48(/?—qy^E

et ainsi des autres.



278 PROBLEMES
16 K La révolution* sydérale de Jupi ter , exprimée en jours >

est 4332,5g63o8 ; telle est donc la râleur numérique de p. Quant
à celles de ses satellites > on trouve

Pour le premier . . . . 1,7691378 ,

Pour le second « . . . 3 , 5 5 I I 8 I O ,

Pour le troisième . * . 7,1545528 y

Pour le quatrième • . . 1656887697 .

L e rapport p : q est donc % pour les, quatre satellites „ ainsi qu'il

suit ;

Ponr le premier . • > . . / ? : ^ = 2 4 4 9 : l *

Pour le second . » » . p : ̂ = 1230 : 1 ,

Poiy: le troisième • e . p:q= 606: 1 ,

Pour le quatrième . . • p: q~ 260 : 1 .

L a fraction; — est donG très-petite pour tous les quatre satellites^,

et sur-tout pour les deux premiers dont les. mouvemens se rap-

prochent le plus du mouvement uniforme et circulaire , dont les

inégalités, sont les moins sensibles , et dont les syzygies , très-fré-

quentes , ont le plus, d'intérêt pour nous., En se bornant à la pre-

mière puissance, de cette fraction 9 on. aura <p= — et ensuite
P

et aïn$sl des autres..
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162. La série que l'on vient de trouver comprend donc ce qu'on

m appelé la première inégalité des éclipses. Pour en faire l'appli-
cation ? commençons par démontrer quelques formules générales qui
concernent ces éclipses ; en nous occupant de la longitude seule %

et en supposant ainsi l'orbite du satellite dans le plan même de
celle de la planète principale. De plus , nous continuerons de re-
garder celle du satellite comme circulaire,

163. Soient donc S ( fig. 2 ) le centre et SA=SB le rayon du
soleil ? dont la circonférence est ainsi représentée dans la figure»
Représentons l'orbite de la terre par le cercle décrit du centre S
avec le rayon ST. Soient I le centre et ID—10 le rayon de Jupiter r

D et D ; deux points opposés de sa surface. Du centre I avec le
rayon IL décrivons une circonférence <îe cercle , que nous prendrons
pour l'orbite de quelqu'un de ses satellites. Menant de part et
d'autre les deux tangentes BD , BD/ aux circonférences du soleil
et de Jupiter P on aura en C le sommet du cône ténébreux que
cette planète Laisse derrière elle. Le satellite 5 en parcourant l'arc
GGy de son orbite 5 aura son immersion dans l'un de ces deux
points et son émersïon dans l'autre. Pour que Tune et l'autre
puissent être apperçues de la terre ? II faut que la tangente GO*
menée du point G au bord opposé de la circonférence de Jupitery

traverse, après avoir été prolongée , l'orbite de la terre ? dans les
deux points H et K, Tant que ces intersections seront possibles ,
la durée entière de l'éclipsé pourra être observée ; maïs il faudra
se borner à observer l'une de ses deux phases , lorsque la tangente
GFD prolongée passera entièrement à côté de l'orbite de la terre.
Reste donc à trouver l'expression littérale des deux angles ISH et ISK

164. Les quantités données du problème sont au nombre de
cinq , savoir:

, rayon du soleil ,
, rayon de Jupiter ,

= S K , distance moyenne des centres du soleil et de
la terre 9
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, ^mïS , distance moyenne de Jupiter au soleil ,

J=II/ i=IG=:IG / , distance du centre de Jupiter à son satellite*
i65. Pour dresser la table des valeurs numériques de ces quan-

tités ? j'ai employé les dimensions et distances rapportées sous les
n.os 57 ? 106 et 110 du troisième volume de YAstronamie physique de
Biot. Comme le rayon du soleil est égal à 109, 98 fois celui de
la terre , j'ai divisé tous les nombres par 109 , 98 •, au moyen de
quoi le rayon du soleil devient l'unité commune de tous les nombres
de la table. J'ai désigné par d , d/

 7 d
u
 5 d

/// les distances du centre
de Jupiter à celui de ses premier , second , troisième et quatrième
satellites, respectivement, et j'ai obtenu ce qui suit ;

a— 1,00000 , d = O 5 6 I I 3 6 >

3 = o?io5i7 , df =0^97270 ,

£= 219,19408 , é/7/ =

166. La première chose qui se présente , c'est la longueur dm
cône ténébreux de Jupiter, ainsi que son angle au sommet. On
aura , par les formules connues 9

ce qui fait donc l'a distance moyenne de Jupiter au soleil y=ic?4>039 r

et l'angle C , que Ton pourra fort bien obtenir , avec son sinus
et sa tangente , sera =2 /«4^ / /-

167. Pour passer de là à la position du point F , soit Y\'=zy j

dans FL=J— y et DF = 1/y^—b2. On aura CL= d cm

bh+bd—ad
Zlh— ' quantité que , pour abréger , nous désignerons-

par f. De CL=:/%, nous tirerons GL=/Tang.C, en. continuaat de
désigner par C l'angle DCL On aura ensuite la proportion F D : D I =
FL: GL. ou^ ea éLsvani au quarré y2—bz ib2=z(d—y)2 :f2Tan^2G*

cette équation ? ozi trouve
FI
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FI ou zzy'.

et par conséquent

FL ou d—Y=i

On a eu Sin.C= — , ce qui donne

Cos.c=

et par conséquent

or , comme
^;= 1140,4*663 »

a—h~ 0,89453 ,

on voit que le quarrd de a—h disparaît complètement devant celui

de h, ce qui donne Tang.G= — [et f Tang.C=^^———— . Par

cette même raison , la racine àe ^*—^H^Tang.'C se réduira à d»
-On aura ainsi

-, I F =

On trouvera ensuite
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donc

cd

OU

On aura enfin

Ang.TSH=9o°=(F+QSH) , Ang.TSK=9o°—(F—QSH) ;

et la position des points H et K de l'orbite terrestre sera rigou-
reusement déterminée.

168. En appliquant le calcul numérique à ces formules ; en
employant de plus les cotations F 9 V

/, F" 9 F
/ ; /

 5 pour désigner
les points F et les angles SFQ qui répondent aux premier ,
deuxième 9 troisième et quatrième satellites, respectivement, on trouve

Log.Sin.F = 9 . 5356327 , Ang.F =2o.0 4' 3£",

=9.333868o ? Àng.F^ r=i2.° 2f 26",

= 9 . 1 2 9 6 5 3 3 , Ang.F//— 7.° 44/ 47//,
LLog.Sin.F///= 8. 8824661 , Ang.Fw= 4.* 22/ 3o^

On trouye ensuite les distances IF 7 ainsi qu'il suit :

LogIF = 9 . 4862672 , Dist.IF =o,3o6385,

Log.IF'' =9 ,688o3 i9 , Dist.IF/ =0,487564,

Log.lF" =9.8922466 5 Dîsf.IF// =0,780273,

LogJF^/r^o . i394338, Dist.IF///= i,378585.

169. Passant de là au calcul des angles QSH, on trouve ,

Pour le i.er satellite . . .Cos.QSH= 1,786422 ,

2 . m e . . . . . ; . ' . .Cos:QsH=if 122764 ,

3.me . . . . . . . . . Cos.QSH=o?7o 17543 ,

= 0,3973979 .
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Les valeurs numériques des deux premiers cosinus ? plus grandes
que l'unité , font voir que la durée des éclipses du premier satel-
lite ne pourra jamais être observée t et qu'on ne pourra pas ob-
server non plus celle des éclipses du second , dans les moyennes
distances de la terre et de Jupiter au soleil ; mais cette observation
sera possible dans les deux autres*
On trouve

Pour le troisième , Àng.QSH=45°25/56// ,

Pour le quatrième , Ang.QSH=66°35' 4" ;

d?où 11 résulte

f Ang.TSH^ 36a49
/27^ ,

Pour le troisième 3 \

( Ang.TSHzr
Pour le quatrième r

OPTIQUE.

De la multiplicité des images d'un même objet >
considéré à travers une glace posée obliquement r ou
réfléchi par un miroir plan , non métallique ;

Par M. GERGONNE,

peut remarquer que si ? de nuit y dans une chambre
éclairée par une -seule lumière 9 on interpose % entre l'œil et cette
lumière $ dans une direction très-oblique r ua morceaa de g l̂ace on
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de verre, d'une certaine épaisseur > on aperçoit , à travers cette
glace 9 une multitude d'images de la lumière , dont l'intensité
décroît continuellement , jusqu'à ce qu'enfin elles cessent d'être
aperçues» La même chose a à peu près lieu si , une lumière étant
placée près d'un miroir non métallique s on veut en regarder obli-
quement Timage , de manière que le miroir se trouve interposé
entre l'œil et cette image de la même manière que la glace ou le
verre du premier cas* II arrive seulement ici que, outre les images
décroissant continuellement d'intensité , l'image la plus vive est pré-
cédée d'une autre dont l'intensité est beaucoup moindre. A la
rigueur, les mêmes choses devraient avoir lieu de jour , et pour
tout autre objet qu'une lumière ; mais alors les images sont trop
peu sensibles pour pouvoir être facilement observées.

Ces phénomènes doivent avoir été remarqués depuis long^'
temps. Lacaille ? dans son Optique ( IL* partie, çhap. Vil, n? 3^7 ) ,
fait même mention du second; mais la raison qu'il en donne , n'est
propre qu'à prouver combien de son temps, malgré l'exemple donné
par Newton , la philosophie naturelle était encore imparfaite.
Il n'en est pas de même de M. Haûy qui , dans le deuxième
volume de son Traité élémentaire de physique {page 819 de la
première édition , et page 3io de Ta seconde ) , en a donné la
seule explication véritable , la seule conforme aux principes de Top-
tique. Quant au premier phénomène , si Ton en excepte M. Biot
qui en dit un mot en passant, au commencement de son Mémoire
sur les réfractions extraordinaires 9 il n'est pas à ma connaissance
que quelque auteur en ait fait mention.

Il ne pouvait entrer dans le plan de Fouvsage de M. Haûy d§
soumettre son explication au calcul , qui seul peut faire connaître ,
avec détail et précision , les diverses circonstances que le phénomène
est susceptible d'offrir. Ce savant ne disant rien d'ailleurs de l'autre
phénomène qui a avec celui-là la liaison la plus étroite , j'ai tenté
de compléter la théorie qui les concerne l'un et l'autre. Les ré-
sultats auxquels je suis parvenu ne sont probablement pas connus,
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et me paraissent assez remarquables pour me'riter de l'être. Je
m'occuperai d'abord uniquement du dernier des deux phénomènes;
je ferai voir ensuite comment on peut ramener au premier les calculs
qui lui sont relatifs.

Soient M M o M t M 2 Mn et NN.N , N,, ( fig. 3 ) les
surfaces antérieure et postérieure d'un miroir plan , non métallique,
d'une épaisseur constante. Soit L une lumière ; soit LMN la per-
pendiculaire abaissée du point L sur le plan de la glace , en sorte
que MN en soit l'épaisseur. Soit LM0 l'un des rayons incidens ,
rencontrant la surface antérieure du miroir au point Mo ; une
faible portion de ce rayon sera réfléchi en ce point , comme elle
le serait par un miroir métallique , en sorte que l'angle de ré-
flexion sera égal à l'angle d'incidence. Le surplus du même rayon
sera réfracté suivant M 0 N , , de manière que le rapport du sinus
d'incidence au sinus de réfraction ne dépendra aucunement de la
direction du rayon primitif. Parvenu à Fétamage en N, , et abs-
traction faite des petites dispersion et absorption qui pourront avoir
lieu, ce rayon se réfléchira, suivant NjM*, en faisant un angle
de réflexion égal à l'angle d'incidence. Parvenu en Mj , il se par-
tagera de nouveau en deux parties , dont la plus considérable sera
réfractée suivant M,Ri parallèle à M0R0 , tandis que l'autre, plus
faible, sera réfléchie suivant M,Ng , parallèle à ;M 0N,. Il arrivera
en N , la même chose qu'en N , , en M t la môme chose qu'en
Mj , et ainsi de suite indéfiniment , du moins tant que les absorp-
tions , dispersions , réfractions et réflexions successives n'auront pas
consommé toute la lumière du rayon primitif UVI0. Ce seul rayon
donnera donc naissance à une suite indéfinie d'autres rayons M0Pi0,

M,R f ? M 2 R 2 , MJRB , tous parallèles entre e u x , décroissant
continuellement d'intensité, à partir de MiR, , et faisant, avec le
plan du miroir , le même angle que fait avec ce plan le rayon
incident LM0 , mais en sens inverse.

§i présentement on fait varier la direction du rayon incident
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LMO , chacune des directions qu'il pourra prendre donnera lieu à
un système de rayons réfléchis, tels queMoRo^MjRj, MZR2 ,...M;iRn>

parallèles entre eux , dans chaque système , mais se croisant d'un
système à l'autre ; en sorte qu'en quelque endroit que l'œil soit
placé $ devant la glace , il recevra , à la fois , le premier rayon
d'un système > le deuxième d'un autre système % le troisième d'un
suivant , et ainsi du reste ; d'où il résulte que le spectateur recevrap

en effet * plusieurs images distinctes de la lumière L*
Le seul moyen propre à nous bien éclairer sur la situation de

ces images % par rapport au spectateur, c'est d'assigner la nature
des Caustiques auxquelles les rayons réfléchis de chaque ordre donnent
naissance > par leurs intersections continuelleSa

Si ? par l'œil du spectateur et par la lumière 5 on imagine un
plan perpendiculaire à la glace * il n'y aura que Les seuls rayons
ïncidens qui s9y trouveront compris qui pourront parvenir à ce
spectateur ; on pourra donc supposer que tout se passe dans ce
plan f et réduire ainsi le problème à un simple problème de géo-
métrie plane.

Supposons que le plan dont il s'agit soit celui de la figure ;
soît prolongée LM au de-là de M d'une quantité MI<> = ML \ on
sait que ce point sera le lieu de l'image produite par la réflexion
à la surface antérieure ; c'est-à-dire , de la seule image qu'on aper-
cevrait si cette surface était celle d'un miroir métallique. Soit pris
ce point IQ pour origine des coordonnées rectangulaires ; les oc po-
sitives étant dirigées suivant le prolongement de MIa du côté
opposé au miroir , et les y positives du côté où nous supposons
les rayons incidens*

Soient faits la distance de la lumière à la surface antérieure du
miroir LM=£ 9 l'épaisseur de, ce miroir 1YTN = £ , l'angle d'incidence 5

égal à MLMe = 0; et soit enfin g\h le rapport constant du sinus-
d'incidence r dans l'air, au sinus de rélraction ^ dana la glace*

Soient posés y pour abréger ̂
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— , r , — y , _ r - >

Les sinus d'incidence et de réfraction seront respectivement

A A
V/ i+A* 9 p\/\+A* '

d'où il suit que la tangente de réfraction sera

A A
Vp2+(p*—i)A* "

Or, les triangles M o N ^ , , MjN2M2 , M,N,M, ^..M^NJVT;, sont
tous isocèles et égaux ; ils ont leur hauteur commune =MN = ^,
et leur angle au sommet doit être double de l'angle de réfrac-
tion ; d'où il résulte qu'on doit avoir

M M M M M M M M

et j» par conséquent ,

D'après cela l'équation du rayon réfléchi MnRw sera

ou > en réduisant et chassant les dénominateurs,

(I)

équation indépendante de k ; d'où il résulte que les dimensions
des caustiques que nous obtiendrons devront l'être aussi.

Pour obtenir l'équation générale de ces caustiques , il faut, comme
Ton sait, éliminer A entre l'équation (I) et sa dérivée , prise par
rapport à cette lettre (*)• Cette dérivée est, toutes réductions faites,

(*) Voyez la page 36i du 3.m e volume de ce recueil.
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¥ . (H)

Pour éliminer facilement A entre les équations (I) et (II), con-
sidérons-y # et y comme deux inconnues ; nous en tirerons ainsi

*ne f P V

q*A$ 2.ne f a A ^ 5

f^zne ± = — ' —

et par conséquent

qA

équations, d'où o» tire r en prenant la somme de leurs

= I . (in)
/

et telle est Péquatîon générale des caustiques cherchées.
Mais, en rapportant une ellipse à ses diamètres principaux

zb f Téquation de sa développée est

(*) On sait, en eifet , que Téquation générale de toutes les normales â
l'ellipse est

h& constante* arbitraires a?',, yf étant liées par la relation

bb* .. (2)

Or , îâ  ^veloppée d'une ellipse n'étant autre chose que ïa courbe à laquelle
fautes ces nomales sont tangente* , U s'ensuit ( tom. III f pag, 36i > que, pouï

doru>
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donc nos caustiques sont les développées d'une suite d'ellipses

semblables } dont les axes se confondent avec ceux des X et des y t

et dont les demi-axes 7 donnés par les équations

avoir Téquation de cette développée , il faut d'abord différencier les deux
tions ci~des$us 7 par rapport à x1 et y1

 1 ce qui donnera

d'où on conclura , par rélimînation de -— f

) 0)

©t il ne sera plus question que d'éliminer xf, yf entre les troiŝ  équations ( i ) ,

(A y (3).
Or y si Ton considère x et y comme inconnues % dans les équations (i) 9 (3),

®n en tirera, en ajant égard à l'équation (2) ,

en prenant la somme de ces équations , et ayant toujours égard" à l'équation (2} r

©n obtiendra l'équation indiquée dans le texte»
Ce résultat conduit h soupçonner que souvent des caustiques dont îea équations*

sont très-compliquées pourraient bien être des développées d'autres eotirbes don£ le*
équation* seraient incomparablement plus simples*

?om. F* 38
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a ^_ p h q

ont eonséquemment pour expression

t

quantités proportionnelles à n et £ ^ et dont le rapport ne dépend
que de p et q ; l'expression générale de l'excentricité de ces ellipse^
est

quantité qui , au contraire , est indépendante de p et q.
De ces divers résultats dérivent immédiatement plusieurs consé-

quences , dont les plus remarquables sont les suivantes : i.° de
quelque manière que varie la direction du rayon incident , les
rayons réfléchis d'un même ordre sont constamment normaux à
Tine même ellipse, et conséquemment tangensà sa développée; 2.0 cette
ellipse a son grand axe sur la perpendiculaire menée par la lumière
au plan du miroir ; 3.0 la situation de son centre dépend de celle
de la lumière ; mais ses dimensions en sont indépendantes ; 4»° Ie

rapport entre ses deux axes ne dépend absolument que du pouvoir
réfringent de la glace ; son excentricité est uniquement propor-
tionnelle à l'épaisseur de cette glace ; 5.° Enfin , les ellipses aux-
quelles sont normaux les rayons rcHécliis de différens ordres sont
semblables et concentriques ; et leurs dimensions croissent suivant
une progression arithmétique qui a pour raison les dimensions de
la plus petite d'entr'elles. (*)

<*) Une fois parvenu , par Panalise , h ces divers résultats , rien ne m'eût
été plus facile <jue de les exposer et démontrer ici par des considérations p*»



DES IMAGES. 291
Rien n'est plus facile, d'après ce qui précède; que d'assigner,

avec une approximation suffisante , le lieu des diverses images ,
lorsque Ton connaît, à la fols, l'épaisseur et le pouvoir réfringent
du miroir (*) > la situation de la lumière et celle de l'œil. Pour
abréger le travail ? on commencera par déterminer le centre commun
1Q de toutes les ellipses , puis les foyers et le grand axe de la
plus grande de celles que Ton aura le dessein de tracer. On en
déterminera un grand nombre de points , en se servant de la propriété
des foyers. Divisant ensuite par des droites, en deux pai ies égales,
les angles que foraient les rayons vecteurs de ces differens points,
les intersections consécutives de ces droites formeront sensiblement
la développée. Menant alors par le centre , dans toutes les directions ,
un grand nombre de droites aux points de l'ellipse et de sa déve-
loppée , et divisant chacune d'elles en autant de parties égales qu'il
y a d'unités dans le nombre qui exprime le rang de l'ellipse et
de la développée déjà tracées , on obtiendra ainsi les points homo-
logues des ellipses et développées des ordres inférieurs \ on pourra
donc tracer à peu près toutes ces courbes y ainsi qu'on le voit
dans la figure r où l'on en a supprimé la partie dont on n'avait
pas besoin. SI alors O est le lieu de l'œil ,11 ne sera plus question
que de mener par ce point ^ suivant une direction normale aux
ellipses ou tangente à leurs développées , les droites 01,. , OI2 ,
0 I ? , . . . . . » ; et leurs points de contact If , I s , \% . . . . . . avec ces

développées seront , avec le point Ia , les lieux des diverses images,
lesquelles seront conséquemment situées, avec l?œil O et la lumière

rement géométriques ; mais , outre qu'il est permis de douter qu'il en fut résulté
quelque avantage, sous le rapport de la clarté et de la brièveté , il me semble
qu'il y a une sorte de mauvaise foi à suivre, dans l'exposition àes vérités auxquelles
on est parvenu, àes procédés diiFérens de ceux qui nous les ont fait découvrir.

C) Dans les cas. ordinaires , on aura g : h : : 3 ; z *. ce qui donne p= f ?

:fV5=f environ».
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là, dans un tnïme plan perpendiculaire au tableau. L'image I# sera
peu sensible; l'image lt sera la plus apparente, et les suivantes
I» > ï | * 4̂ > décroîtront progressivement d'intensité , jusqu'à
ce qu'enfin elles deviennent tout à fait insensibles.

On peut désirer de connaître la courbe sur laquelle se trouvent
toutes ces images, pour une situation donnée de l'œil O du spec-
tateur ; voici à quoi se réduit cette recherche. I/équation (3)
donne, en différenciant

tï'où il suit que Inéquation de la tangente par un point \n > dont
les coordonnées sont # ' , yf, est

si Von veut que cette tangente passe par le point O , en désignant
par * , fi les deux coordonnées de ce point, l'équation de la tan-
gente deviendra, en supprimant les accents

eu

ou enfin

& et y étant les coordonnées du point de contact. Il faudrait donc ;
pour obtenir l'équation de la courbe cherchée , éliminer n de celle-ci, '
au moyen de l'équation (III) ; mais 5 puisque n n'y entre pas , il
|aut m conclure qu'elle est elle-même l'équation de cette courbe-
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Ainsi , Iâ nature et la situation de la courte sur laquelle les

diverses Images se trouvent situées est tout a fait indépendante de
l'épaisseur de la glace ; tellement que > si cette épaisseur pouvait
yarier , pendant la durée de l'observation , les images ne feraient
«Implement que se resserrer ou s'écarter les unes des autres, sans
quitter la umrbe dont il s'agit. C'est ce qui arriverait , par exemple»
si Von mettait en expérience un miroir métallique horizontal ? garni
d'un rebord % et recouvert d'une couche d'eau qui augmenterait ou
diminuerait peu à peu d'épaisseur, soit au moyen d'un conduit qui
en apporterait de la nouvelle f soit au moyen d'une ouverture qui
la laisserait au contraire échapper,

II est clair que , toutes choses égales d'ailleurs «> plus la glace
est épaisse et plus ausssi la distance entre les images doit être
grande. On sent aussi que, pour une épaisseur donnée de la glace ,
et une situation donnée de la lumière, il y a une certaine situation
de l'œil , plus favorable que toute autre au parfait développement
du phénomène* Enfin, le plus ou moins grand pouvoir réfringent
de la glace influe aussi sur la distance entre les images; puisque
les ellipses seront plus ou moins excentriques , à proportion que;

ce pouvoir sera moindre ou plus grand.
Dans tout ce qui précède , j'ai constamment supposé que les

Surfaces antérieure et postérieure du miroir étalent rigoureusement
planes et parallèles. Dans un tel état de choses , il est évident que
si cette glace glisse ou tourne , sans sortir de son plan , il n'en
devra absolument résulter aucun changement dans l'aspect du phé-
nomène» Mais il s'en faut bien que les choses se passent ainsi,
dans la réalité 5 et cela prouve qu'il est bien peu de miroirs qui
satisfassent à cette double condition. J'ai même lieu de présumer
que la moindre courbure ou le moindre défaut de parallélisme
dans les deux surfaces du miroir exerce une influence notable sur
l'aspect du phénomène ; c'est ce dont au reste on pourrait s'assurer,
en traitant la question sous un point de vue un peu plu§ général
<jue celui sous lequel je l'ai envisagée*
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Tout étant d'ailleurs daus la figure 4 comme dans la figure 3 ;

supposons présentement que la glace ne soit point étamée ; tout
se passera comme dans le premier cas ; avec cette différence qu'une
partie de la lumière parvenue en N , , N , , N , , N«, sortira
de la glace du côté opposé à la lumière , suivant des directions
NiQx , N z Q t , N 5 Q 5 , N/ZQ7I, parallèles à LM 0 . Ainsi, un
spectateur placé du même côté de la glace que la lumière pourra
observer des effets tout pareils à ceux qui viennent d'être décrits;
si ce n'est pourtant qu'à raison des pertes de lumière qui ont lieu
en N , , N 2 9 N ? , . . . . .•NfI , le phénomène sera beaucoup moins
sensible ; mais , il le sera davantage pour le spectateur placé du
côté opposé , lequel devra être aiîecté d'un nombre indéfini d'images
de la lumière.

Soit pris ici le point L pour origine , en donnant d'ailleurs les
mêmes directions aux axes; nous aurons, comme ci-dessus 3

nous aurons d'ailleurs

l'équation du rayon N t tQa sera dona

#\i 3, en réduisant et chassant le dénominateur *

=={2n—i)eÀ ;

équation qui deviendra Péquation (I) x en y changeant simplement
ea ce et zn~~x en zn.
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II est aisé de conclure de là que tout se passera exactement Ici

(nomme dans le premier cas, avec cette différence i.° qu'en prenant
$ur LÎV1 une partie L L / = M N = ^ 5 le point L ; sera le centre com-
mun de toutes les ellipses et développées; 2.0 que ce centre commun
U ne sera le lieu d'aucune image ; 3.° qu'enfin la première ellipse
n'aura ses dimensions que moitié de celles de Ja première ellipse
du cas précédent ; et que les dimensions de toutes les autres for-
meront une progression arithmétique croissante , ayant pour raison
le double de dimensions de cette première ellipse.

Je terminerai par observer que , dans l'un et dans l'autre cas ,
$1 le pouvoir réfringent de la glace était moindre que celui de l'air;
c'est-à-dire, si h était plus grand que g > q deviendrait Imaginaire f

et les ellipses se changeraient en hyperbole.

QUESTIONS RÉSOLUES.

Solution du premier des deux problèmes de géométrie*
proposés à la page 92 de ce çolume ;

Par M. J, B. DURRANDE (*).

JrROBLÈJUE. Deux points étant donnes de position par rapport
à une droite indéfinie ; on propose de décrire trois cercles 7 de
manière que deux dentr'cux se touchent 9 touchent la droite donnée
et touchent respectivement le troisième aux deux points donnés ?

(*) M. Durrande est un géomètre de 17 *ias , qui a appris les mathématiques
sans autre secours que celui des livres. / , D. G»
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Solution. Les deux points donnés peuvent être situés d'un même

côté de la droite donnée ? ou bien ils peuvent être situés de difTérens
côtés de cette droite, ce qui fait deux cas que nous allons con-
sidérer successivement.

Premier cas. Soient KHG ( fig. 5 , 6 , 7 ) la droite indéfinie
donnée, et A , B les deux points donnés d'un même côté de cette
droite. Il s'agit de décrire trois cercles tels que deux d'entre eux
se touchent > touchent la doite donnée et touchent le troisième
l'un en A et l'autre en B.

Concevons que le problème soit résolu. Soient AFGPM , BFHQN
deux cercles se touchant en F , touchant respectivement la droite
"Sonnée en G et H , et touchant un troisième cercle le premier en
A et le second en B ; soient D 7 E % G les centres respectifs de
ces trois cercles.

Soient menées une droite MABN par les deux points donnés
et une autre PDFEQ par les centres des deux premiers cercles %
il est connu (*) que ces deux droites concourront en un même
point K de la droite donnée j et n puisque À et B sont donnés f

le point k le sera aussi.
Par la propriété des sécantes et par une autre propriété connue*

©Û aura les troi* proportions

KA:KF::KP:KM r

KNrKQ::£FrKB ,

KQ:KN::KMtKP <**) ^

cïescpielïes on conclura r par multiplication et réduction r

O Voyes VJpollonius- Qallus de Yiètc
i**): Ibidem,



RESOLUES, 297

KA : KF : : KF : KB ;

KF est donc moyenne proportionnelle entre les longueurs données
KA et KB ; cette longueur KF est donc donnée , et par conséquent
si Ton imagine du point K comme centre , et avec la longueur
KF pour rayon un arc RFS , cet arc sera aussi donné; e t , comme
il touchera à la fols en F les deux cercles dont les centres sont
D et JE , le problème sera réduit à décrire deux cercles touchant
à la fois la droite donnée et Tare RFS , et passant de plus le
premier par A cl le second par B (*). Ces deux cercles étant décrits,
le concours des prolongemens des rayons DA et EB déterminera
le centre C du troisième.

Cette construction serait en défaut, si la droite qui joint les deux
points donnés était parallèle à la droite donnée ; mais alors la per-
pendiculaire sur le milieu de cette droite serait une tangente commune
aux deux premiers cercles ; de manière que le problème serait
réduit à celui-ci : décrire un cercle qui, touchant les deux côtés
d'un angle droit, passe en outre par un point donné (**).

Si Ton exigeait que les deux cercles qui doivent toucher la droite
donnée fussent intérieurs l'un à Pautre , ils ne pourraient toucher
cette droite qu'au môme point. Alors A et B étant toujours les
/deux points donnés ( fig« 8 ) , et F étant le point où les cercles
dont les centres sont D et E ; touchent la droite donnée. Il est
connu que le cercle qui touche le côté CE du triangle des centres
et les prolongemens des deux autres DE et DC > passe par les trois
points de contact A , B , F ; AB est donc une corde de ce cercle-

(*) Voyez , pour ces problèmes ? les pages 35o, 353 et 354 du IV volume
de ce recueil.

<**) Ibidem.
J. D. G.

T&m, V. 3g
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et , comme iL doit avoir son centre sur la droite donnée ,
tangente commune à deux des, cercles , ce centre O sera
rintersection de cette droite avec la perpendiculaire sur le mi-
lieu de AB. Décrivant donc de ce point comme centre , et avec
O A = O B pour rayon, un arc ; cet arc , par son intersection avec
.la droite donnée , déterminera le point commun de contact F J et
alors le problème n'aura plus de difficulté.

Deuxième cas. Les points donnés A et B étant de différens côtés
de la droite donnée OF ( fig. g 9 i o ) , les deux cercles qui doivent
toucher cette droite la toucheront aussi de différens côtés ; e t , comme
ils- doivent de plus se toucher,, ils ne pourront la toucher qu'au
même point F qui sera aussi leur point commun ; on se trouvera
donc encore dans le dernier cas que nous venons d'examiner -, il
ne s'agira donc encore ici que d'élever sur le milieu de AB une
perpendiculaire coupant la droite donnée en O , et de décrire ensuite
du point O comme centre, et avec OÀ=OB pour rayon, un arc
qui déterminera sur la droite donnée le point de contact F ,

Lorsque la droite menée par les deux points donnés est per~
pendiculaire à la droite donnée , toutes ces constructions sont
superflues ? et le problème devient de la première facilité,
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QUESTIONS PROPOSÉES-

Problèmes de Géométrie.

L VJONSTRUIRE quatre sphères de manière que trois d'entre elles
se touchent deux à deux , touchent un même plan donné et
touchent la quatrième en trois points donnés ?

II. Construire quatre sphères de manière que deux d'entre elles
se touchent en un point donné , que les deux autres se touchent
aussi en un point donné , touchent chacune de celles-là ? et touchent
à la fois les deux faces d'un angle dièdre donné ?

Problème dAnalise.

Assigner l'intégrale finie et complète de l'équation différentielle

fXdx *~JXdx v /_

dons laquelle X est supposé une fonction quelconque de x dont
la différentielle est Xlàx P et où e est la base des logarithmes
naturels ?





TomJ, Plan!l,pcta. ZOJ -:
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QUESTIONS RÉSOLUES.

Solution des deuœ problèmes de géométrie proposés à
la page 32 de ce çolume j

. Par M. J. B. DURRÀNDE*

JLJEMME. Dans un quadrilatère 9 qui à deux angles droits
ûpppsés Vun à Vautre , un angle oblique et les deux côtés adjacens
étant donnés , déterminer les deu$ autres côtés , ainsi que la
diagonale qui joint les sommets des deux angles obliques ?

Solution. Soient £ l'angle oblique donné, g , h les deux côtés
qui le comprennent 5 y et œ les côtés respectivement opposés , ef
z la diagonale qui joint les sommets des angles obliques.

g est la somme des projections de h et y sur sa direction ; ef
h est pareillement la somme des projections de g et x sur sm
direction ; d'où il résulte qu'on doit avcHr

maïs on a de plus

donc, en substituant ̂

Z
SinJ

Tom. V % #.° X9 i .eT avril 1815.



QUESTIONS
PROBLÈME I. Trois cercles , tracés sur un même plan ; étant

tels que chacun d'eux touche les deux autres ; trouver, en fonction
de leurs rayons 9 i.° le rayon du cercle qui passe par leurs points
de contact deux à deux ; 2.0 le rayon du cercle qui passe par
leurs centres ?
, Solution. Soient A j B , G les centres et a , h , c les rayons
respectifs des trois cercles dont il s'agit. Le triangle ABC pourra
être quelconque , puisqu'il se trouve dépendre de trois élémens ar-
bitraires et indépendans.

Le cercle inscrit à ce triangle a , par la propriété des tangentes
partant d'un même point, ses points de contact avec les côtés tellement
bitués que chaque sommet est également distant des points de contact
avec les côtés qui concourent à ce sommet ; d'où il suit que ces
points sont aussi les points de contact des cercles deux a deux»
Ainsi 5 le cercle qui passe par les points de contact des cercles
donnés deux à deux n'est autre chose que le cercle inscrit au
triangle ABC. Quant au cercle qui contient leurs centres , c'est
évidemment le cercle circonscrit au même triangle.

Là question proposée se trouve donc ramenée à déterminer, en
fonction de a ? h , c , les rayons des cercles inscrit et circonscrit
au triangle ABC; soient D , E leurs centres respectifs, d9 e leurs
rayons.

Par les formules connues ? on a

À C V B C 1 — À B 1

Cos.C— zzzr~zzz: • ;
2AC . BG

mais , on a d'ailleurs

donc , en substituant

et de là



RÉSOLUES. V3

Sm.C= fJ

En remarquant que Taire / du triangle est la moitié du produit
de deux côtés par le sinus de l'angle compris , on, aura

Les perpendiculaires abaissées du centre D sur les côtés CA , CB ?

et dont la longueur commune est d, formeront avec ces côtés un
quadrilatère bi-rectangle dont les deux autres côtés ont aussi une
longueur commune c et comprennent entre eux l'angle C , connu
par ce qui précède ; on aura donc ( Lemrne )

Sin*G

e'est-à-dire, en substituant,

tel est donc le rayon du cercle qui contient les points de contact»
Si Ton voulait avoir la distance DC , on trouverait 4'a

2(1—CW.Q
. y

puis, en substituant

DC=

Les perpendiculaires abaissées du centre E sur les côtes €A el
CB , forment avec ces côtés j*n autre quadrilatère bi - rectangle ;
dont un angle oblique est encore C et dont les deux côtés adjacent
sontf(V+#) et ^(£+^)* La diagonale qui joint les deux angles obliq
étant e > on aura ( Lemme >
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aôïra.C

, en substituant ,

*~2(c+a)(c+h)Cos.C+jc+b)* .

et tel est le rayon du cercle qui contient les centres.
Si Ton représente de plus par * la perpendiculaire abaissée du même

point sur le côté £G, on aura

—(b+c)Cos.G
aSin.C 5

c'est-à-dire , en substituant ,

PROBLÈME IL Quatre sphères étant tellement situées dans
Tespace que chacune d'elles touche les trois autres ; on propose de
démontrer que leurs six points de contact 9 deux à deux, sont
sur une même sphère ? On demande y en outre, de déterminer ,
en fonction des rayons de ces quatre sphères s i.° le rayon de
la sphère qui contient leurs points de contact deux à deux; 2.0 le
rayon de la sphère qui passe par leurs centres ?

Solution. Soient A , B , C , D les centres et a , b , c , d , les
rayons respectifs des quatre sphères données. Le tétraèdre ABCD
ne pourra être quelconque, puisqu'il se trouve uniquement dépendre
de quatre élémens arbitraires et indépendants , lesquels sont les
rayons des quatre sphères données. On voit, en effet, que , l'une
quelconque de ses arêtes étant nécessairement la somme des rayons
de deux de ces sphères , l'arête opposée doit être la somme des rayons
des deux autres ; de sorte qu'il y a entre les six arêtes de ce
tétraèdre ces trois relations ? que la somme de deux arêtes opposées
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quelconques est constante et égale à la somme des rayons des quatre
sphères données.

Concevons qu'on ait Inscrit des cercles aux quatre faces de ce
tétraèdre ; les points de contact de ces cercles avec les arêtes qui
terminent respectivement les faces auxquelles ils sont inscrits seront
évidemment {Problème 1) les points de contact des quatre sphères
deux à deux ; d'où il résulte que les deux cercles tangens à une
même arête la toucheront au même point ; ou , ce qui revient au
même , que les quatre cercles se toucheront deux à deux en six
points ? où ils auront les arêtes pour tangentes communes.

Par les points de contact qui appartiennent aux trois arêtes d'un
même angle trièdre quelconque, concevons trois plans respectivement *
perpendiculaires à ces arêtes ; ces plans passant 9 deux à deux ,
par les centres des trois cercles inscrits correspondants se couperont
suivant les axes de ces cercles , qui conséquemment concourront en
un même point ; et il est aisé d'en conclure que les axes des
quatre cercles concourent en ce point.

Le point de concours des quatre axes est évidemment également
distant de tous les points de la circonférence de chaque cercle,
en particulier ; puis donc que ces cercles ont , deux à deux , un
point qui leur est commun , il faut en conclure que le point de
concours .des quatre axes est également distant de tous les points
de toutes les circonférences , et conséquemment des six points de
contact de nos cercles deux à deux , lesquels se trouvent toris
conséquemment sur une même sphère , dont nos quatre cercles sont
les intersections avec les faces du tétraèdre , et à laquelle toutes
ses arêtes sont tangentes* Quant à la sphère qui contient les centres
des quatre sphères données, c'est évidemment la sphère circonscrite
au tétraèdre ÀBCD.

La question proposée se trouve donc ramenée à déterminer ? en
fonction de a 9 h 9 c , d , le rayon de la sphère qui touche à la
fois les six arêtes du tétraèdre ÀBCD , et le rayon de la sphère cir-
conscrite au même tétraèdre : problème qu'au surplus on ne saurait se
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proposer pour un tétraèdre quelconque. Soient E , F les centres
de ces sphères et e , f leurs rayons respectifs.

En désignant simplement les angles dièdres par leurs
l'angle trièdre D donnera , par les formules connues 9

, Cos.ADB—C05.CDAC05.CDB
C

Mais on a ( ProbL I )

Los.Aun—

donc
{c+dy \ d*+(a+b(d--ab \

= ;—

ou, en développant et re'duisant

—— _ c2

ÔS.&C—

de là

2cd\/ ab(a+c+d) (b+c+dy

Si l'on se rappelle que le volume T d'un tétraèdre est les deux
tiers du produit des aires de deux de ses faces multiplié par 1̂
sinus de leur inclinaison et divisé par l'arête qu'elles déterminent *f

«t si l'on fait attention ( Prob. 1 ) que

CAT)=\/acdia+c+d) , CBD = \/b

on trouvera facileaiçnt
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fonction symétrique de a , b , c, d, comme on pouvait bien s'y
attendre.

Si du point E on abaisse des perpendiculaires sur les plans des
faces CAD 7 GBD , et qu'on joigne leurs pieds au point de contact
de DC avec la sphère dont E est le centre ; on formera un qua-
drilatère bi-rectangle , dans lequel deux côtés seront les rayons des
cercles inscrits à ces mêmes faces : rayons que nous représenterons
respectivement par u et fi. L'angle compris sera égal a l'angle dièdre DC ,
et la diagonale qui joindra son sommet au sommet opposé sera le
rayon e de la sphère qui contient les points de contact $ on aura
donc ( Lemme )

\/ *2—2 «fi Cos .DC-h fi*

Sîn.BC

Mais , nous avons les valeurs de sinus et cosinus DG > et l'on a
de plus ( Prob. 1 )

b+c+d >

il viendra donc, en substituant

lahcâ

y abcd(a+b+c+d)2—(ab+cd)(ac-^-bd) (bc-\-ad)

ou encore
ù, abcd

c'est-à-dire , que le rayon de la sphère qui contient les six points
de contact de quatre sphères dont chacune touche les trois autres,
est les deux tiers du quotient de la division du groduit des rayons
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des quatre sphères par le volume du tétraèdre qui â ses sommets
à leurs centres.

Du centre F soient abaissées des perpendiculaires sur les plans
des deux faces CAD , CBD ; ces perpendiculaires et les droites qui
joindront leurs pieds au milieu de l'arête CD formeront un qua-
drilatère bi-rectangle , dans lequel un angle sera encore égal à l'angle
dièdre CD ; ses deux côtés comprenant cet angle seront les distances
de l'arête CD aux centres des cercles circonscrits aux mêmes faces :
distances que nous désignerons respectivement par p' et «! ; ainsi,
en désignant par k la distance du point F à Parête CD, cette
distance sera la diagonale du quadrilatère • on aura donc ( Lemme )

_ {/ a'*—z

mais , Sin.C et Cos.Q sont connus , et Ton a d'ailleurs ( Prob. I )

a— cd

îl viendra donc , en substituant

i = — ~8/ - {b^c^diï-cdjfr^c^ d)a-cd}{c*(ad-{>bd->afy+d*Çac\' Bc-ab)}

maïs., en menant FD==/? cette droite est l'hypolbénuse d'un triangle
rectangle,, dont k et \(e~{-d) sont les côtés de l'angle droit;
îl auit qu'on doit avoir

en se rappelant donc que

fl viendra
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ou en développant réduisant et décomposant

Telle est donc l'expression du rayon de la sphère qui contient
centres des quatre sphères données.

Solutions du problème d'arithmétique proposé à la
page 220 de ce volume*

ENONCE. Quels sont les nombres dont toutes les puissances
ont, pour leurs n derniers chiffres à droite ? respectivement, les ti
derniers chiffres à droite de ces nombres eux-mêmes ?

Première solution ;

Par M. TÉDENAT , correspondant de l'institut, recteur d@
l'académie de

I. Soient jV, N' deux facteurs de n chiffres au moins, et concevons
qaron les ait partagés , l'un et l'autre en deux tranches dont la
dernière à droite ait n chiffres. Soient alors respectivement a , af

les tranches de gauche et b , hf les tranches de droite , considérées
les unes et les autres comme des nombres Isolas, on aura ainsi
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à'oh on conclura

À cause du facteur ioB qui affecte la première partie de ce
produit, elle n'aura aucune Influence sur ses n derniers chiffres à
droite , lesquels ne dépendront ainsi que de b et bf ; c'est-à-dire que,
pour que le produit de deux nombres ait à sa droite n chiffres
donnés , disposés daus un ordre donné , il est nécessaire et il suffit
que la dernière tranche de n chiffres de la droite du multiplicande ,
multipliée par la dernière tranche de n chiffres de la droite du
multiplicateur donne un produit qui ait ces mêmes n chiffres à sa
droite , disposés entre eux dans l'ordre assigné.

Il suit évidemment de là i.° que, pour que toutes les puissances
d'un nombre aient à leur droite les mêmes n derniers chiffres ,
il est nécessaire et il suffit que les n derniers chiffres de la droite
de son quarré soient respectivement les mêmes que les n chiffres
qui le terminent lui-même ; 2.0 que pour que les n derniers chiffres
de la droite du quarré d'un nombre soient respectivement les mêmes
que les n derniers chiffres de la droite de ce nombre , il est néces-
saire et il suffit que le quarré de sa dernière tranche de n chiffres
à droite soit lui-même terminé par ces mêmes chiffres.

Voilà donc la question proposée réduite à celle-ci : Quels sont
les nombres de n chiffres qui terminent eux-mêmes leur quarrè ?
c'est sous ce point de vue que nous allons l'envisager.

II. Il suit 5 de ce qui vient d'être dit que tout nombre de n
chiffre qui termine lui-même son quarré doit avoir pour sa dernière
tranche de p chiffres à droite un nombre qui termine aussi lui-même
son quarré , p étant un nombre quelconque moindre que n.

Supposons que , le problème ayant déjà été résolu pour les nombres
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de /2—-t chiffres , on veuîHe le résoudre pour les nombres de n
chiffres; les nombres cherchés ne pourront être autres que les nombres
4éjà trouvés , augmentés d'un chiffre sur leur gauche ; et il s'agira
d'assigner ce chiffre.

Spit a l'un des nombres qui résolvent le problème pour le cas
de Ji—i chiffres , et soit b la tranche de son quarré qui est à
gauche de ses n—i derniers chiffres , en sorte qu'on ait

a2—IO^1 b+a .

Soit ensuite A le chiffre qu'il faut écrire a la gauche de a pour
parvenir à un nombre correspondant de n chiffres qui résolve le
problème ; ce nombre sera ainsi

dont le quarré sera

ou, d'après la précédente valeur de a7 ,

n
et il faudra que ce quarré soit terminé par io"~ f . ^+dr , c*est~à
dire, qu'il soit égal à ce nombre plus un multiple quelconque de io
Mais comme, excepté le cas où l'on aurait « = 1 , io2""""* est tou-
jours tout au moins égal à iow ; il s'ensuit qu'on peut n'avoir aucun:
égard à la partie io lw~"*.^a de ce quarré , laquelle tombera toujours*
au delà du 7?.me chiffre à gauche, et se contenter de poser

ce qui dènne, en réduisant , transposant et divisant pas io n ~ r

(2.0 Ï)AT=ZYQX b 'r
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équation que Ton pourra simplifier , dans chaque cas particulier >

à raison de l'indétermination de x, en rejetant toutes les dixaines
qui se trouveront, dans 2#—i et b.

Nous voilà donc en état de résoudre le problème, pour une
valeur quelconque de n , si nous savons le résoudre pour la va-
feur de n immédiatement inférieure à celle-là. Nous pourrons donc
le résoudre pour toutes les valeurs de n, si nous savons le résoudre
pour la seule valeur / 2 = i .

Or , pour trouver les solutions qui conviennent à ce cas particulier,
il suffit de comparer tous les nombres d'un seul chiffre , y
pris o , à leurs cjuarrés, ce qui donnera

Ce cas ainsi résolu , rien ne sera plus facile que de s'élever aux
suivans.

Pour n~2 , on aura

«Toi on conclura

A = o , o , 2 , 7 .

Pour n~Z 9 on aura

a=oo , oi , 25 , 76 ,

i= o 9 o , 6 , 7 ,

2^—1= 9 , 1 , g , I ;

d'ol on conclura
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# = 0 , 0 , 6 , 1 ;

A - a , o , 6 , 3 .

Pour # = 4 > on aura

#=000 , oof , 62a , 076 %

b = o } o , o , 1 ,

20—1 = 9 , 1 , 9 , 1 ;

4'où on conclura

DC = 0 , O , O , I S

Pour 72 = 5 , on aura

^z=ooo© , 00© r , 0625 P 9^76 p

£ = o , o , 9 , p ;

2*~-is= 9 , i , 9 , 1 |

d'où on conclura

#—0 » ° » 9 9 ° 3

A~O , O ; O • O »

On pourrait poursuivre ainsi indéfiniment ; mais il e$t aisé
de voir

Î .° Que la série de valeurs o , 00 , 000 , .« . . . se poursuivra
toujours indéfiniment suivant la même loi , sans qu'il soit besoin
d'en faire le calcul.

2° Qu'il en sera exactement de même pour la série de valeurs
Ï ? 01 , 001 ,

3,° Que 9 pour la série de valeurs 5 , s5 , 625 , . . . . . , 2#-— i?
délivré de ses dixaines, sera toujours 9 ; en sorte que l'équation
à résoudre sera 9^ = 10^—^5 mais, parce que 9 ^ = 1 0 ^ — A 7 et
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que s peut éfre changé en A—x f on pourra à cette équation
substituer la suivante

j£.° Qu'enfin , pour la série de valeurs 6 t 76 , 376, •• .• ^ 2&—1 ,
délivré de ses dixaines, sera toujours 1 ; en sorte que l'équation à
résoudre sera simplement

A~ioœ—h .

On voit donc que , pour parvenir aux solutions T autres que o
et i , qui doivent répondre aux diverses valeurs de n % on n'aura
à résoudre que la double équation

\e signe supérieur ou le signe inférieur devant être pris 9 suivant
qu'il s'agit de vaieurs4erminées par 5 ou de valeurs terminées par 6 j:
et h ayant une valeur propre à chacun de ces deux cas»

Or, comme „ d'après ce qui précède, b% se réduit toujours à u»
nombre d'un seul chiffre f et conjme A doit aussi avoir un seul
chiffre,,\\ faudra faire , pour le signe supérieur , ^r=o, et^pour le
signe inférieur # = 1 t ce qui donnera les deux formules

A = & 1 A=io—h *

Si donc on sp rappelle que h f délivré de ses dïxalnes ^ Bfesl
autre chose que le /z^me chiffre de droite à gauche du quarré de at

x>n verra que la première série de valeurs peut se calculer direc-
tement par cette règle fprt,simple : Quarrez le nombre d'un seul
chiffre , en rejetant tous les chiffres de ce c/uarré au delà du
second ; et vous aurez ainsi le nombre de deux chiffres- Quarrez
eelui-ci , en rejetant tous les chiffres de ce quarré au delà du
troisième ; et cous aurez le nombre de trois chiffres. Poursuivez
ainsi de la même manière * aussi loin que cous le désirerez. Voici
ta type du calcul t
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5 ? premier nombre,
5

25 , deuxième nombre,

25

12,5
5o

6^5 , troisième nombre.
€25

5o

0625 , quatrième nombre,
0625

3i25

90626 > cinquième nombre.

H n'y aurait pas grand changement à faire 1 cette rîgte ]
la rendre propre au calcul de la seconde série de valeurs ; il ne
s'agirait en effet pour cela que de substituer au dernier chiffre
admis sur la gauche de chaque produit son complément à 10 \ ainsi
qu'on le voit ici

6 , premier nombre.
6

76 9 deuxième nombre.
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76 , deuxième nombre.

troisième nombre*

quatrième nombre*

09876 , cinquième nombre.

Maïs I! existe > entre les nombres.des deux séries, une relation
qui peut conduire plus rapidement au but > et qui est trop curieuse
pour la passer sous silence. Remarquons , en effet que, d après
les résultats déjà obtenus , on a

62 54-376 =1001 *

0625+9376=10001 9

ce qui nous conduit à soupçonner que A ejt A/ étant deux
de n chiiFres qui résolveat le problème 9 on pourrait bien avoir
en géaéral

O r ,
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Or, c'est une chose facile à vérifier. A étant un nombre qui résout
le problème , on doit awir

> en éliminant À entre ces deux équations, il vient

©u, en posant zA'-^oc—io«~~- I = , Z / ,

; (3)

ce qui prouve que A; , lie'e à A par la relation (1) , résout égale-
ment le problème. Au moyen de cette remarque , on n'aura qu'une
seule série de valeurs à calculer,

HT. Au lieu de demander que les rfiêmes n derniers* chiffres se
reproduisent à la droite de chaque puissance , on pourrait exiger
seulement qu'ils se reproduisissent de deux en deux puissances,
ou de trois en trois, de quatre en quatre, , et généralement
de m en m ; et d*abord les nombres que nous venons précédemment
de trouver résoudraient le problème ; puisque toute suite de termes
égaux peut, être considérée. comme une suite périodique dont les
périodes ont tant et si peu de termes qu'on veuU Mais si Tort
exigeait que les mêmes n derniers chiffres* reparussent d& m en m
puissances et pas plutôt ? le problème deviendrait possible ou im-
possible suivant la nature des nombres m et n ? ainsi qu'on var-
ie voir.

Supposons ? en premier lieu , que les mêmes n> derniers chiffres
doivent se reproduire de deux en deux puissances ; la question se1

réduira évidemment à trouver un nombre de n chiffres dont les*
chiffres soient respectivement les n derniers chiffres de là droit &
de son cube.

Tom. F. 42
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Soît a F un des nombres de n—i chiffres qui résolvent le pro-*

blême ; soit b la partie de son cube qui est à gauche de ses
72—1 derniers chiffres ; considérée comme un nombre isolé j ou
aura

Soit ensuite A le chiffre qu'il faut écrire à la gauche de a pour
obtenir un nombre de n chiites qui résolve le problème -, ce nom-
bre sera i

dont le cube sera

Les deuxt premiers termes de ce cube n'ayant aucune influence
sur ses n derniers chiffres à droite , seront des nulle considération ;
en les supprimant donc , et remettant pour a1 sa valeur ion~~l*b+a $

il faudra que le nombre résultant soit terminé par ion~*~l.A-\-a ;
on aura donc

ee qui donnera , en réduisant, transposant et divisant par io**1 J"

(3^2— I ) ^ = I O # — b ;

équation, çu*à, cause de l'indétermination de %, on pourra Amplifier
dans chaque, cas particulier^ en ne prenant que le seul chiffre des
imités dans le# deux nombres 3a*—i et b.

Il ne s'agit donc plus présentementf que de connaître toutes les
sqlutipns pour la valeur n = i ; or 5 il suffit pour cela de comparer
successivement tous les nombres d'un seul chiffre, y compris o ,
au dernier chiffre de leurs cubes ; ce qui donne sur-le-champ

A—o , i , 4 ', 5 , 6 , 9 .

On passera de là aux autres cas ainsi qu'il suit :
Pour # = 2 , on aura
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4 , 5 , 6 , g ,.

on conclura

x = o , o ou i , 2 , i pu 3 5 5 , i ou 2 j

^ = 0 , o ou 5 , 2 , 2 ou y , y , ^ ou 9 .

Pour 72=r3, on aura

tf=oo , oi , 5 i , 24 , 25 , 75 , 76 , 4g 5 99 >

^ = = 0 , 0 , 6 , 8 , 6 , 8 , 9 , 6 , 2 ,

3 ^ _ x _ 9 , - 3 , 3 ^ 7 , 4 , 4 , 7 , 2 , 2 *

(Toù on conclura

ir =ro 9 o ou 1 y 1 au 2 ? 5 , 1 ou 3 , 2 ou 4 J 3 , 1 ou 2 , 1 ou 3- ,-

Ldf = oj o ou 5 , 2 ou 7 , 6 , 1 ou 6 , 3 ou 8 , 3 , 2 ou 7 , 4 ou g |

st ainsi de suite.
Ainsi , en nous bornant là , on voit que les seuls nombres dont

lès trois derniers chiffres se reproduisent perpétuellement à la droite4

de leurs puissances impaires 9 sont les nombres terminés par

©00 , oox , 5oi , 261 , 751 , 624 9 125 , 625 , 37S , 875 ,

M9 » 749 , 499 1 999 *

Si l'on demandait que la même terminaison reparûr seulement'
<Je trois en trois puissances , la question se réduirait à trouver un*
nombre de n chiffres qui terminât lui-même sa quatrième puissance.
En raisonnant comme nous l'avons fait ci-dessus , on trouverait5

facilement que , a étant un des nombres qui réstmt le problème*
pour le cas de n—1 chiffres , et b étant le ^.2ïie chiiFre de sa
quatrième puissance; si Ton désigne par A le nombre d'un seiîV
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chiffre qu'il faut écrire à la gaucîie de a , pour obtenir un
de n chiffres qui résolvent également le problème , on doit avoir
l'équation

dans laquelle 4#3—i peut être réduit à ses seules unités.
La comparaison des nombres d'un seul chiffre à leur quatrième

puissance donné, pour le cas de 72=1 ?

À^o , 1 , 5 , 6 .

On aurait ensuite, pour n~2,

a^o 9 1 , 5 , 6 ,

W—1=9 9 3 , 9 , 3 ;

d'où on conclurait

# = 0 , 0 , 2 , 3 ,

A ~ o , 0 , 2 , 7 .

Ainsi , il n'y a que les seuls nombres terminés par 00 , 01 * s5 , 76
dont les deux derniers chiffres se reproduisent périodiquement à la
droite de leurs puissances de trois en trois.

En suivant le même raisonnement pour les cas subséquents, on
trouvera facilement que , s'il faut que les mêmes n derniers chiffres
se reproduisent périodiquement de m en m puissances ; en désignant
par a un des nombres de n—1 chiffres qui résolvent le problème ,
par A Le nombre d'un se&l chiffre qu'il faut écrire à sa gauche
poyr obtenir un nombre de n chiffres qui le résolve également ;
et enfin p#r fi \ç a**1* chiffre de am^"1 ; on doit avoir

et les applications à des cas particuliers sç feroot comme U
.cl-dessua.
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IV. On pourrait compliquer encore la question ï en demandant

<jue les terminaisons des puissances ne soient pas immédiatement
périodiques ; de manière que les terminaisons périodiques soient
précédées d'un nombre donné de terminaisons qui leur soient étran-
gères ; comme on en yoit un exemple dans les nombres terminés par 15,
dont les puissances successives ont pour terminaisons i5 , z5 , ~j5 ,
z5; 75 , ; de manière que les périodes, qui ont deux termes*
sont précédées du terme i5 qui leur est étranger ; ce qui tient à
ce que la fraction ~- réduite à ses moindres termes est ~ , dont
le dénominateur 20 conserve un facteur 5 commun avec la base i5.
Mais nous n'insisterons pas davantage sur ce sujet qui se rattache
{Tailleurs à une théorie déjà développée dans les Annales d'una
manière fort lumineuse (*).

Deuxième solution ;

Par M. J. F. FRANÇAIS , professeur à Vécolc impériale
de l'artillerie et du génie.

La question proposée revient évidemment à trouver un nombre
«de n chiffres <jui se reproduise lui-même à la droite de son quarré (**).

Or, indépendamment de n zéros et de l'unité précédée de n—1
zéros y qui résolvent évidemment le problème, il peut encore être
résolu par Tun ou l'autre de deux nombres $ et y satisfaisant a la
double condition

car on a , dans le premier cas ,

(*) Voyez un mémoire de M. Penjon , sur la Transformation des fractions
dans le IV.e volume des Annales , page 262»

C**) Vojez la précédente solutîo».
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et dans le second

d'où Ton volt qu'à cause du facteur io" qui affecte la première
partie des valeurs de x% et y*, ces deux quarrés seront respectivement
terminés par x et y.

Tout se séduit donc à résoudre les deux équations indéterminées*

Voici leurs solutions pour divers cas particuliers

3'. 92 t

3 ,
4,
5 y.

6 ,
7 .

etc.,

*9
47

586
293

1709

5554:2

etc.

= 1

1

5 y

9 > a831 ,

76 ,

376 ,

9376 ,

09376 ,

2.5 y

625,,

06a 5 ,

90625 ,:

i5 ,

3 r 29

7 , 57 9 13916 r 109376 ., 890625 ,

91 , 37 ,22583 r 7109376 , 2890625 ,:

etc>, etc., etc. r etc. , etc.

Ainsi, tout nombre terminé par quelqu'une des valeurs de ce on-
de y aura toutes ŝ s puissances terminées par cette même valeur^

Réfleooions sur le même problème ;;

Par M, GERGOINE;

£ La question proposée revient évidemment à la suivante : Trouver
un nombre de n chiffres qui , retranche de son (juarrà 9 donne
un resie qui; ait au moins n zéros à sa droite t



RESOLUES.
Soit x le nombre cherché , et soît généralement B la base du

système de numération relativement auquel on se propose de ré-
soudre le problème ; en désignant par y un nombre entier indé-
terminé 9 l'équation de ce problème sera

«#3—x ou x{x-~ i ; :

& ne devant pas avoir plus de n chiffres.
On satisfait dabord généralement à cette équation > quel que soît

B, en posant y = o 7 d'où

X^zzQ OU X*^ I •

Ainsi, dans tout système de numération, tout nombre terminé par
n zéros ou par l'unité précédée de n—i zéros, a toutes ces puis-
sances terminées aussi par n zéros ou par l'unité précédée de n—c
zéros * respectivement ; ce qui est d'ailleurs évident. Nous ne nous
occuperons donc plus à l'avenir de ces deux solutions,

Pour parvenir à la découverte des autres 5 remarquons d'abord
que x> et à plus forte raison x—i, étant moindre que Bn , ne
sauraient 5 ni l'un ni l'autre , être divisibles par ce diviseur ; e t ,

"comme d'ailleurs ces deux nombres x et x—i sont nécessairement
premiers entre eux, Us ne sauraient être divisibles, respectivementj
que par deux nombres aussi premier entre eux.

Soit donc supposé

p et q étant deux facteurs premiers entre eux , difKrens de Bn et
de l'unité. Bn étant le plus petit des nombres de n-\-i chiffres;
il s'ensuit que p et q seront Fun et l'autre moindres que x et
x—i ; en choisissant donc x de manière que l'un des deux soit
divisible par p et l'autre par q , on remplira les conditions du
problème , puisqu'on aura l'une ou l'autre des équations

x x—i x x—i
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dont les premiers membres sont entiers , par l'hypothèse t et qui
ont pour second membre un nombre entier indéterminé

Posant dona

30 ~pt p i'

v—i=qu ; S
ou

zqu

rélimination de x donnera

x—\-=zpu s?

pt—qu~\ ou qt—yra=r .

Ayant donc trouvé un système de valeurs de / et u satisfaisant
l'une ou à l'autre de ces deux équations , oa aura ensuite

ou

et le problème sera résolu»,
On volt par là qu'outre les, solutions communes à tous les sys-9

tëmes de numération déjà mentionnés , le problème admettra encore
deux fois autant de solutions qu'il y aura de manières de décomposer
Bn en deux facteurs premiers entre eux * différent de lui-même el
«Eè l'unité..

Soit supposé"

*r, V, c',..-..^-étant dés nombres premiers inégaux, au nombre cfe
m. Il est éyident qu'il y aura, autant de manières de décomposer1

Bn en deux facteurs premiers entre eux , dont aucun ne soit l'unité'»*
qju'il y, aurait de manières d'exécuter cette décomposition sut là*
èimgle produit;

ahc . «.. ... gH r

aussi de m> facteurs. Or r soit ZmmV ce nombre de décompositions
le produit de m—~i* facteurs

aie. .....g ,.

an; introduisant lé- m.^e facteur h ? on pourra Introduire indiffé-
remment
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remment, pour chaque décomposition , dans le premier ou dans
le second facteur , ou bien encore le prendre à lui seul pour un
facteur; ce qui prouve qu'on doit avoir Zm—2Zmmt-{-i j ce qui
donne * en général 9

maïs, lorsque m = 2 ? on a évidemment Zm~i , donc £ = - , et
par conséquent

le nombre des solutions % autres que les deux mentionnées ci-dessus
sera donc

en y joignant donc ces deux-là , leur nombre total s'élèvera à 2m ;
m indiquant combien la base B a de sortes de facteurs premiers.

IL Lorsqu'on a trouvé un nombre dont les n derniers chiffres
à droite se reproduisent perpétuellement à la droite de toutes ses
puissances , il est évident qu'à plus forte raison ses n1 derniers chiffres
à droite > nf étant moindres que n7 se reproduiront aussi perpétuellement
à la droite de toutes ses puissances. Les solutions du problème >t

pour la valeur n , donnent donc en même temps des solutions >
pour la valeur nf

 ? moindre que n ; puis donc que ? par ce qui
précède le nombre des solutions pour chaque valeur de n est tou-
jours le même et ne dépend que de m , il sera le même pour
n' que pour n 9 et conséquemment les solutions pour la valeur n
donneront toutes les solutions pour la valeur n'.

Ainsi y lorsqu'on voudra avoir les solutions pour plusieurs valeurs-
de n ; au Jieu de monter successivement de plus petites valeurs à
la plus élevée , il sera incomparablement préférable d'attaquer direc-
tement le problème pour cette dernière ; puisque les solutions qu'oa
obtiendra renfermeront implicitement toutes les autres*

Tom. V* 4$
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p p q n çcç généralités à notre système de ntamêra^îon ; et

cherchons à résoudre le problème , dans ce système, pour les 2&
premières valeurs dç n. Pour cela nous poserons sur-le-champ n~2Q,
INous avons d'ailleurs 2 ? = i o = . 2 . 5 , d'où 2?;i = 22 O .5 a o -, et nous
n'aurons conséquemment que le seul système de valeurs

en sorte qu'il faudra résoudre successivement les deux équations
indéterminées

2*° .t—S*°.U=l , 52O./-*~22O.U~l ;
ou du moins chercher les plus petits nombres qui y satisfont -, en

posant ensuite

Or f on a
210,= i 048 576 ,
5 a 0 = 9 4 9^6 806 640 6^5 ;

SI Ton cherche le plus grapd coipmijin diviseur entre eps deux.
notpbres, les quotiens successif? seront

9994947° * 5 , 1 , I , I , 3 , 1 , 1 , 3 , 1 , 1 , 1 , i , 10 f 1 , 12 ;

À l'aide de ces quotîens , sauf le dernier , oq trouvera pp^r la
' 5 2 0

derpièra fraction Convergente vçrs —— ,

7386006028926

81199

On conclura de là , par les théories connues (*) , que le plus
petit système de valeurs dé / et u , dans Téquatioa

(*) Voyez le 2.* voiumf de VAlgèbre d'Epier , ou la Théorie des nombres
e M. Legendre.
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2a<\/-r-5*°.tf=:i
est

/ =^7385006028926 ,

«=81199 5

que par conséquent, pour Péquatiou

ce plus petit système de valeurs est

* =2"—81199 ,

B=5a0—7085006028926 .

On aura donc

# = 2 2 d . 7385006028926 ;

Oa trouvera ainsi que tous lp^ nombres ej ï̂ s seuls nombres
un certain nombre des derniers chiffres à drqite seront les même$/

dans l'un quelconque des quatre pombres

00000 00000 00000 00000 |

• • . • • 00000 00000 00000 0000Ï j

. • . . . 07743 74008 19871 09376 ,

92256 25991 82128 90625 f

auront aussi les mêmes derniers chiffres à droite, en même
bre % à toutes leurs puissances.

On traiterait d'une manière analogue le cas où Ton exigerait seu-
lement que les terminaisons des puissances successives fussent
périodiques (*)•

(*) Le Rédacteur a reçu postérieurement de M. Durrande une autre solution du
même problème, qui rentre pour le fond dans celles qui viennent d'être mentionnée*.
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QUESTIONS PROPOSÉES.

Problème de Combinaison*

ZxVEC m choses toutes différentes les unea des autres , de combien
de manières peut-on faire n parts ; avec la faculté de faire des
parts nulles ?

Problèmes de Géométrie.

L Diviser graphiquement Faire d'un triangle en un nombre quel-
conque de parties égales , par des parallèles à sa base ?

IL Diviser graphiquement le volume d'an tétraèdre en un nombre
quelconque de parties égales % par des plans parallèles à sa base ï
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GÉOMÉTRIE ANALITIQUE.
Théorie analitique de la ligne droite et du plan

Par M. BRET , professeur de mathématiques à la faculté
des sciences de l'académie de Grenoble.

IN ors avons déjà employé dans ce recueil (*) 9 pour exprimer
analitîquement une droite dans l'espace , trois équations telles que

nous avons observé que *, £ , y étaient les coordonnées d'un pomt
fixe, pris à volonté sur la droite; que r était la distance variable
de ce point fixe à un point mobile de la même droite ; et qu'enfin
a, b y c étaient trois constantes , déterminant là direction de la
droite dont il s'agît > et ne variant pas conséquemment lorsque cette
*4roite se meut parallèlement à elle-même. Ces trois constantes doivent
d'ailleurs être liées par une relation que nous avons donnée albr$ 7

mais que nous allons enseigner à déterminer directement.
Substituons d'abord'à notre droite sa parallèle passant* par l'origine *

et dont les équations seront conséquemmerft'

x=ar , \

X=br9 V (r)

z=cr ; )

et supposons ? pour un moment , que les coordonnées soient rectan-
gulaires ; r sera alors la diagonale du parallélipipède rectangle
construit sur x , y, z\ d̂ où il suit qu'on aura

Voyez notamment la page 93 du IV.e

Tom.F, n.° XI,i.tx mai i8i5.. 44
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c'est-à-dire, en substituant et divisant par r f ,

Soit ensuite une autre droite

z/=c/r/ ;
rapportée aux mêmes axes ; nous aurons pareillement

et ensuite , par un tliéorème sur les triangles rectilignes

ou , en substituant , ayant égard aux relations ci-dessus , réduisant,
divisant par zrr1 et transposant

Cos.(r , r)~aa<Arblt-\-ccf ,

Cela posé , concevons présentement que les équations (r) appar-
tiennent à un système d'axes non rectangulaires. Par la même
origine concevons un système rectangulaire ; soient t , u 5 *> , lés
projections de r sur les axes de ce système ; eu sorte qu'on ait '

soient de plus oc } y , z les projections obliques de r sur les axes
primitifs ; et soient enfin

i , u 7 y y

H/ ijti çH

//// 7y/// cUt

les projections respectives de

sur les axes rectangulaires 9 ce qui donnera conséquemment

ffl %Jir-uf/ *~k~ç// 2~y%

et en outre , par ce' qui prêeède ,
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z) ,

Présentement r est diagonale commune de deux parallélépipèdes
l'un rectangle ayant pour ses arêtes t, u , *>, et l'autre obliquangîe^
qui a pour arêtes x 9 y , z dont nous connaissons les projections
sur celles du premier ; or , comme on peut aller d'une extrémité
de r à son autre extrémité en parcourant ces trois arêtes , il s'en-

h qu'on doit avoir

En prenant la somme des quarrés de ces équations , et ayant égard
à toutes les relations ci-dessus , on aura

substituant enfin pour x , y ,- z leurs valeurs données par l'équa-
tion (r) et divisant par r2 , on aura , pour la relation demandée ,

^2-f~^2+^2+2^Cos.(f , z)-\-2caCos.(z, x)-\~2>abCo$.(x, / ) = r. (R)

II est aisé de voir qu'en supposant

r deviendra4
J ?

z .

a — i 9 b—o 9 £~o ,

Soient

tes équations de deux droites passant par un' même pointe Si
par ces deux droites on conçoit un plan 9 et que sur les grandeurs
et directions de p et c/ on construise un parallélogramme ? son
sommet variable opposé au point de concoure des deux droites sera*
tbnné par les trois équations*
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y ~
Z =

Or comme, en variant les grandeurs et les signes de p et tj , ce
commet peut devenir un quelconque des points du plan où il est
situé , et n'en peut jamais sortir ; il s'ensuit que ces équations sont
celles de ce plan.

Dans le cas padAçidier où * , £ , y sont auls , le plan passe par
l'origine, et ses équations sont simplement

(pq)
z—fp+hq .

Ce plan passe alors par deu?; droites dont lejs équations sjont

z ~fp ;
(p) y~h(i v (9)

z = % ;

d'où il suit cju'on a, entre les six constantes d% e> f* g* h9 &*
qui déterminent la direction du plan/?y, les (Jeux relations

s.(x , jr)=i , (P)

8.(*, ,y)=i ,' (Q)

mais les trois dernières sont tout à fait indépendantes des trois
premières.

On doit remarquer encore que , lorsqu'on a ,

devient

^ y

(II)

Cherchons l'angle de deux droites r, r* \ $i Yon joint Uur$ &&**
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îtés par une droite on formera un triangle reetiligne , dans

lequel on aura , par ce qui précède,

yfz—z<)Cos.(Y, z)
a—rr'Co$.(r, r ' ) = l

En substituant pour s , y , z , x;, y', z' leurs valeurs #r , 3r ^
^r , «V , i V , cfrl , ayant égard aux relations (R) ̂  (B/)-» ré-
duisant et divisant par —zrr', x>n aura

^ ^/+(fo'+^)Cos.(y , z) \
Cos.(r,H)=s J +^+(^*HP/?0GOS. ( JK f ar) ! . ( i)

Sî , au moyen des conditions (1) , an fait successivement coïncidât
la droite rf avec cliacun des a^es, on aura

Cos^(r, x)=a-\-bCo&»(x , y)+cCas/Kz, ai) ,

Cos.(r f y)^b-\-cCos.(y , z)+aCos.(x, y) ,

Cos.(r , z) ~c-\-aGos.(z , x)-\-bGos.(yf z) 5

mais récjuaîion de relation (R) peut être écrite ainsi

a \ tf+#Cos.(# , y)+^Gos (z 9 x) ) 1

f z)+aGos.(x f y)} \ = 1 j

s.( z y x)+bGos.(y ,z)} )

pourra donc (2) être remplacée par celle-ci

#Cos.(r, #)+£Cos*(r , y)-i-cCos.(r , z)=i *

Pareillement, on peut écrire ainsi la formule (i)

+^x{^+rCos,(f, z)-{-aCo$.(x , y)i > ;1

pourra donc (2) lui substituer celle-ci
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Cos.(r jr ')=# /Cos.(r, x)-+-b/Cos.(r 9y)-\-c/Cos.(r t z) ; , (4)

et il est clair qu'on pourrait écrire pareillement

Cos.(r 5 rtyzzzaGos^r*, ^r)-4-3Cos.(r/, y)'*\-cCos»(r/
 5 z) * (5)

En posant f pour abréger,

les équations (2) donnent
os.(r,

b= — &

Si Ton substitue ces valeurs dans l'équation de relation (5) , on
obtiendra la suivante qui exprime la relation entre les six angles
que forment deux à deux quatre droites x 9 y t z 5 r dans l'espace
ou , ce qui revient au même % entre les six distances deux à deux:
de quatre points quelconques d'une sphère 5

(7)

Les mômes valeurs substituées dans la formule (5) la change en
celle-ci ? qui fait Connaître l'angle de deux droites r , /v en fonction
des. angles qu'elles forment avec trois autres droites x, y, z ou,
ce qui revient au même, la distance entre deux points d'une spbère
en fonction- des six distances de ces deux points à. trois autres-
points , pris, arbitrairement sur cette spbère

(8).
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Cherchons présentement l'angle d'une droite r avec un plan pq ;

et d'abord occupons-nous des conditions de leur perpendicularité.
Pour que r soit perpendiculaire à pq , il est nécessaire et il suffit
qu'elle le soit à la fois aux deux droites p et q ou 5 ce qui
revient au môme , que les cosinus des angles qu'elle forme avec
ces deux droites soient nuls , ce qui donne (5)

ûCos/Kp , ^)+3Cos.(/? 5y)+^Cos.( /? , z)=zo ,

(9)
aCos.(<? i x)~\-hCo$.(q > y)-{-cCos.(q, z)=o .

Si Ton combine ces conditions avec la relation (R) ., en posant,

pour abréger <>

X= Cos.(p , y)Cos.(q , z)—Cos.(p 9 z)Cos.(q , y) ,
p , z Cos.(q , x)—Gos.( p, &)Cos,(q , z) ,

os\q,y)—

et ensuite

n-X2 i

il viendra

i

Mais on a

4-T3+Z24
§r * *

X

(a)

-zYZCo

b-I- C—
An

10)
J

Cos.( p-, y) = é? +/Cos.( y ,

Cos.Çq , .r) =

s,(z , x) ,
s.(^, y) ,

s.(x, y)

Substituant donc, et posant encore , pour abréger

A-ek—fh ,

il viendra
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, y)—Cos.(y, z)

,*)—Cos.(z , ̂

et de là on conclura

5in.2(y , z)—2,BC{Cos.(y, *)— Cos.(z, x)Cc

5in.a(z , #)—zCA{Cos.(z , #) —Cos.(# ,y)Cos.(f ;
îih.\'# > r)—2^f2?{Cos.(o;, r)—Gos.fr, z)Gos.(z, x)}

Ainsi, a , b , c pourront être exprimés immédiatement, en fonction
de d * e, f ^ g > h , k et des angles que forment deux à deux les
axes des coordonnées.

Cherchons présentement Pangle de la droite r avec le plan pçm

Pour l'obtenir, imaginons une autre droite r1 perpendiculaire à ce
plan ; nous aurons

Sïn.(pç , r)—Gos.(r, r*) y
c'estrà-dire (i)

-\-c/{c-AraGos*(z y ^r)-4râGos.(y , £)}

Mais ici les valeurs de af, P , cf sont les mêmes que celles, de
a>h 9 c dans, le cas précèdent; on aura donc f en substituant,

i

An

X \ os .(

.(^r, y) }

.(y;, z)}

, en mettant pour X , Y , leurs ya'eurs

n

on pourra donc exprimer immédiatement Sm.(pç ? r) > en fonction
de a y t>, c, d, e, f, g ̂ hy k etvd.es angles que forment deux
si. deux les axes dès coordonnées,.

Sî,
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Si , au moyen des conditions (I) , on fait successivement coïncider

T avec les trois axes , on aura

n
AB

> J J n >

' Z) n •

Si , au moyen des conditions (II) , on fait successivement coïncider
pq avec les trois plans coordonnés ? on aura

Aa
Sin.

, r ) =

Si , enfin , par le concours des conditions (I) et (II) ; on fait
successivement coïncider le plan pq avec chacun des plans coordonnés
et la droite r avec Taxe qui lui est opposé , il viendra , en chassant
les dénominateurs,

Sin.( y , z)S\n.(yz , #) = A ,

Sîn.(z 9 ^;)SIn.(z^ ? y) — A , (l£)

ces dernières équations prouvent que , dans tout triangle sphérîque 9

les produits des sinus des côtés par les sinus des arcs perpendi-
culaires, abaissés sur leur direction des sommets opposés, sont constans*

Si l'on compare à l'équation ( n ) la somme des produits des équa-
tions (12) par a , h , c , on aura

équation qu'on aurait pu , au surplus, déduire immédiatement de
l'équation (5)»

A Vit* ê f * "TF **
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E n o b s e r v a n t q u e , d ' a p r è s l e s v a l e u r s d e À 9 B ^

/ , g* h, k, on a

gA+hB+kC=o ;

les équations (12) donneront encore

, z) = o ,
(16)

, z)=o )

La comparaison des équations ( Ï 3 ) et (f4) donne

Si l'on substitue ces valeurs dans la relation (3) , on arrivera à ee

S) Ton substitue ces mêmes valeurs dans la formule (5) 9 on

+ ~ Cos/r*, z) . ( IQ)

E s les substituant enfin dans la formule (i5) on obtient

S i

Occupons-nous, en dernier lieu, àe la recherche de Tangle de
deux plans pq , pfqf. Le cosinus de cet angle n'est autre que le
eosinus de deux droites r , H qui seraient respectivement
pendiculaires a ces deux plans» On aura donc , (1) et ( Ï O ) ?
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XX'+(YZ'-{-ZY')COS.(Y, Z)

-k-YY'+{ZX<+XZ')Cos.{z, x)

{x, y)

339

X' \ <zyx)}

•(y -, z)~\-XCos.(x, y)} \. (22)

.(z , x)+YCos.(y, z)} )

X, Y,Z, I I et A ont été déterminés précédemment, et on obtiendra

X' t Y'} Z1 en changeant dans X , Y, Z,\es quantités A,B,,C

en AA, B1, 6 v j on aura d'ailleurs

A'-e'k'—fh' ,.

O^d'h'—e'gf ..
On? trouvera , au surplus

X+rCos.(^ , y)+ZCos.(z, x)—A2A,
Y-hZCos.(y, z)+XCos.(x, y) = A2B ,.
Z+XCos.(z , x)+rCos,(y, z)=A'C<.

E» conséquence, la formule (22) deviendra
AX'+BY'+CZi A'X+B'Y+C'Z

COS.(P9 , / / / ) =

ou encore
, z)—Cos.(z, #)

in.*(o?, y)—(AB'+BA>)

Au moyen de cette dernière formule , il sera très-aisé d'exprimer
immédiatement Cos.(/?^ 9p

/Ç/) > en fonction de d, e 9 f 9 g, A , k ,
d19 e/ 9 JJ y §; J & 7 k' e t ^es% a i l g k s q u e forment deux à deux les
axes des coordonnées.

Si ?,au moyen des conditions (II) , on fait successivement coïncider*

le P ^ n Pf{i/ a ^ e c ^es t r ° î s plans coordonnés 3, on
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)zx)-=^BSin,2^^—C {Cos.(#,y)-—Cos.(j,2

au moyen de quoi la formule (23) deviendra

» yz)
(«4)

ou encore

ïnaia ? en éliminant A entre les formules (i2)et(i4)> il vient

ASln.(f,z) Sin.(pq,x)
n Sin.çyz^x) 9

CSin. (^,y) Sin. (p^,

Iï

substituant ces valeurs dans la forme (25) , elle deviendra

SI ? au moyen des conditions (II) , on fait successivement coïncider
les deux plans pq , p*qf avec deux plans coordonnés différens f

on tiçera des formules (28)
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S{n.(z,x)&m.(xJy)Cos.(zx,xy)zzïCos.lyiz)—COS.(^T)COS.(O!?,JO X

Sin.(xJy)Sln.(yiz)Gos.(xyJyz)^=zCos,(z,xy)—'Cos.0r,j0 Cos. (•>",£) ,

On reconnaît ici les équations fondamentales de la trigonométrie
sphérique.

Il n'aura pas au surplus échappé au lecteur que toutes les
formules que nous -venons d'obtenir ? et beaucoup d'autres que nous
aurions pu en déduire, sont des formules de trigonométrie sphérique >

auxquelles peut-être on parviendrait beaucoup moins facilement en
employant les voies ordinaires.

GEOMETRIE.
Théorèmes relatifs auœ polygones réguliers ;

Par feu FRANÇAIS , professeur aux écoles d'artillerie.

JLL a été fait menton , dans le IV.e volume de ce recueil ( pages 70 et i33)
d'une communication faite par M. Legendre à feu M» Français 3 au sujet de la
nouvelle théorie des imaginaires de M. Argand, Ce qu'on va lire est la subs-
tance d'une réponse à cette communication , datée de La Fère, 7 novembre 1806.
M. Français mande à M. Legendre qu'il était , dès Pan X 5 en possession des
théorèmes que sa lettre renferme 5 qu'il en supprime les démonstrations , pour éviter
les longueurs ; mais qu'il pense qu'elles doivent se rattacher facilement à la nou-
velle théorie, II termine ainsi :

a Je suis intimement persuadé que la Géométrie de position va enfin voir le
1» jour. Depuis Leibnitz, plus d'un siècle elle fut annoncée, aux savans. C'en est
f) fait, je crois, elle va naître ou elle est née : gloire à son-auteur ».

Nous aurions .pu tenter de donner les démonstrations de ces théorèmes ; nous
avons pensé qu'il était plus convenable *de laisser au lecteur le plaisir de les
découvrir.

Dans tout ce qui va suivre , nous représenterons constamment
par S, , Sj 5 Ss 5 . . . . les sommets d'un polygone régulier; C sera
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son centre; r r r; seront respectivement les rayons des cercles cir-
conscrit et inscrit ; P sera un point placé à une distance a du centre ,,
et dont nous indiquerons la situation dans chaque cas ; m et n
seront des nombres abstraits r entiers et positifs ; et «• sera la demi*-
circonférence du cercle dont le rayon = i . Nous ferons connaître
las autres notations à mesure qu'elles nous, seront nécessaires.

THÉORÈME L Dans tout polygpne régulier de m côtés y où,
le point P est quelconque; n étant <T?2 -, on a

PS, +PS 2 +PSj + . +PSm —— I {a*—2tfrCos./34-r2)«.d,r;

l'intégrale étant prise 3 dans le second membre , depuis 0=0 jus-
qu'à iŜ rsrK

Corollaire L P et P7 étant deux quelconques des points de la
circonférence dfun cercle concentrique à notre polygone P et n étanfe

on a
%n in

PSX +PS,
'Corollaire /i*.Deux polygones réguliers SIS2S5...Sm, S^S^S'j . M S ^

étant inscrits au lïiême cercle; si'Ton a n<^m et n!<^m\ on aura?

F étant quelconque
2 «

ps,
-2/1- %n 2vi . i. • m lî

PS',

Corollaire III. P étant toujours quelconque ;. soit mené au
circonscrit le rayon CD , perpendiculaire à CP r, et. soient jpints>

ea aura

=772. P D * .

Corollaire IV* P étant un quelconque des points de la cîrcon^
lërence- da cercle circonscrit au polygone , et n étant toujours

on a
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— m — Ï « « m 1,3.5.7 (art—1) , A

PS, +PS, +PS, + -t-PSm = _ £ _ ! _ _ . W ( 2 r ) " .
Corollaire V. P étant encore quelconque sur la circonférence da

cercle circonscrit , et zm étant le nombre des côtés du polygone ; en.
supposant toujours 72<772 ; on aura

2 n . 2 n 2 n — 2 K — - 2 n — 2 n 2 n 1 «

PS, -+-PS, + P S , +..-.-I-PS„,.., = PS, +PS 4 -H?S6 -+-....-J-PS ira*

THÉORÈME //. P étant toujours quelconque ? sur la circon-
férence du cercle circonscrit, et le nombre des côtés du polygone
étant 2772+Ï 5 quel que soit le rapport de m à .72 ; on aura

(
PS,

(2/1+1) C

=PS â + P S ,
THÉORÈME 11. Deux polygones réguliers S IS tS1....S im+, l et

S /,S /
1S /j — S /

2 / c _ I , de 2/72+1 et 2772—1 côtésétant inscrits au même
cercle ; et P , P / étant deux quelconques des points de la circonférence de
ce cercle; PQ étant la corde qui divise l'angle SmPSm<+l en deux
parties égales 5 si Ton a 272 < 2772—1 , on aura

THÉORÈME IV. Deux polygones réguliers S, , S2 , S,,M.SajIf

et S / ,S /
ïS

/
3 . . . .S /

t m _ 2 , ^e 2m e t 2m—*2 c ^ s étAut inscrits au
même cercle -, et deux points P , Pj/ étant pris quelconques sur la
circonférence de ce cercle ; en supposant 72 < 2772—1 , on aura

JPS, +PS, +...+PSlmJ-lP/S'1

THÉORÈME V* Le point P étant quelconque , et 772 étant le
nombre des côtés du polygone ; soit ÀB le diamètre du cerclé
circonscrit passant par P ; soit pris 7 sur la circonférence de ce

, à partir du point A^ un arc AJL—m.ASi 5 si de plus on
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prend, sur ce diamètre AB } ou sur son prolongement ; un point F

tel que Ton ait CFr=—-—, et si enfin on joint EF , on aura

Corollaire L Le point P étant pris arbitrairement sur la direction
de CS t ,et le nombre des côtés du polygone étant toujours =772 ;
on aura

PS^PS^PS, VSm=±(**—an) ;

suivant que le point P sera intérieur ou extérieur au polygone.
Corollaire IL Le point P étant quelconque , sur la circonférence

du cercle circonscrit, et m étant le nombre des côtés du polygone-
si Fan prend , à partir de P , Tare PSjG = /72 .PS 4 , et qu'on mène
la corde PG -7 on aura

P S , . P S , . P S , P S ^ P G . r * - 1 .

THÉORÈME VI. Tout étant ici comme dans le Thêor. V, si
€ô n'est que le nombre des côtés du polygone est supposé rz2m *r

si Ton prend , sur la direction du diamètre AB , un point F /
J aussi

éloigné du centre que Test le point F 9 mais du côté opposé j eu
joignant F(E 9 an aura

PS PS PS PiS —FF rm~~l

PS,.PS4,PSâ.....PSîm =EF / .rm- ï •

a

les points F , W étant tels que C F ^ C F ^ - ^ - j et le point E étant

tel que l'arc kS&=m.k$»
Corollaire L Deux jx>inls P , P / étant quelconques 9 sur la cîr~

cenférence d'un cercle concentrique à un polygone régulier de zm
côtés ; on a

Corollaire 11. Le point P étant quelconque, sur la direction de5

CS,;
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CSg ; suivant que ce point sera extérieur ou intérieur au polygone f

supposé de 2m côtés * on aura

On aura aussi, quel que soit P sur CSf ?

—«—
PS1 .PS4 .PS t f . . . . .PS i ms=CP

Corollaire III. P et ¥' étant quelconques sur la direction de
CS, et 2m étant toujours le nombre des côtés du polygone; on aura

A ^ 2 • J r ^ 4 ••*•*• x&zmlll-*-^ 1 • * ^% nuH

les signes supérieurs devant être pris dans les deux membres , si
P et P7 sont intérieurs au polygone ; les signes inférieurs , s'ils lui
sont tous deux extérieurs ; enfin le signe inférieur du premier membre
devant être pris avec le signe supérieur du second , si P est exté-
rieur et F7 intérieur.

Corollaire IV* Deux polygones réguliers de 2m côtés étant con-
centriques , et ayant leurs côtés respectivement parallèles; et P étant
quelconque sur la direction CS/

1SI -, on aura

PS î.PS4....PS lm±PSI.PS5....PSIm_ i ;

Les signes supérieurs devant être pris , dans les deux membres r,
si le point P est extérieur aux deux polygones; les inférieurs,-
s'il est intérieur à tous deux ; enfin, le signe supérieur du premier
membre devant être pris avec l'inférieur du second si le point P
est situé entre les deux polygones*-
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Dans tout ce qui va suivre H, , H2 , H-, .••••• seront les pieds

des perpendiculaires abaissées du point P sur les directions des côtés
S,S t ; S2S5 ? SjS4 , respectivement; T, , T , , T , , seront
les points de contact des mêmes côtés avec le cercle inscrit.

THÉORÈME VIL Le point P étant quelconque, et le nombre
des côtés du polygone étant m>n ; on a

PHf «f-PHj+PH *"+" •••••• ""J^PH/TI13 — i (r/-—aCos.p)ndfi ;

l'intégrale étant prise entre £=0 et j8=w#

Corollaire L P et P / étant deux points quelconques d'une cir-
conférence concentrique à un polygone régulier > dont le nombre
des côtés est m*>n\ on a

Corollaire IL Le point P étant toujours quelconque , et m, m/

étant les nombres de côtés de deux polygones réguliers circonscrits
tu même cercle ; on aura

+PH

Corollaire 111. Quel que soit le point P et le nombre m des
jtôtés d'un polygone régulier ; on a

Corollaire IV» P étant quelconque sur la circonférence du cercle
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inscrit et le nombre des côtés du polygone étant toujours
on a

PH t , +PH, + 4-PHOT = '•" (

1.2.34 ....... 2/2

Corollaire V» P étant toujours sur la circonférence du cercle
inscrit, et le nombre des côtés du polygone étant encore m>n%
on aura

-2tt

PT, - +PTn
~tn

Plï"-hPH 1+PH" + + PH

Corollaire VI. Tout étant comme dans le précédent corollaîrej
on aî ra encore

„ «—n — n

PHf +PH, +PH,
l m = — / ( Cos.— —Cos./î j . d/S ;

*J \ m J

T étant le rayon du cercle circonscrit, et l'intégrale devant être*
prise entre yS=o et fi = zr.

THÉORÈME* FUI. P étant quelconque , et-i?2 étant le nombre
des côtés du polygone; en posant l'angle PGTj — * , on aura

P H ^ P H ^ P H , P H m "

m

Corollaire / . Si ; par un point P extérieur à un polygone régulier
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de #72 côtes on mène au cercle inscrit une tangente PT , le
touchant en T -7 en posant l'angle CPT=2/3 ? et conservant à «s
sa précédente valeur ; on aura

Corollaire IL Si le point P est au contraire intérieur au poly-
gone ; en élevant à CP en P une perpendiculaire PK , terminée en*
K à la circonférence du cercle inscrit , menant le rayon CK et
posapt l'angle PCK=2j3 -7 on aura

Corollaire IIL P étant sur la circonférence du cercle inscrit ; on â

Corollaire IV. Si ? au contraire 5 P est $ur la circonférence du
cercle circonscrit ; on aura

PHS , PH t .PH ? PH^~~4(îr)mCos.*m* :

'Corollaire V. Deux polygones réguliers de m côtés étant l'un
S1S2SJ Sm circonscrit et l'autre S /

ÎS
/
ÎS

/
Î S ^ inscrit à un

même cercle ^ d'un rayon r , de telle manière que leurs côtés soient
respectivement parallèles y et P étant un point quelconque de la
circonférence *? on a , abstraction faite des signes des perpendiculaires ?

m P M PT4" J . P M / PTT/ T>T4V "DT47 / / * *.V« -
2 . i r j j i | t«*« Jrrl/72'

e-f-jr x l t • jrjtl' £ • Jrxj/ , »... J r J r l ^^^ i J f - r ) •

[Corollaire VL Si 7 au contraire, les sommets de l'inscrit répondenl
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aux milieux des côtés du circonscrit ; on aura ; en faisant toujours
abstraction des signes des perpendiculaires,

Corollaire VIL Le point P étant sur la circonférence du cercle
circonscrit à un polygone régulier de m côtés ; on aura

<PSI.PS1.PSJ....PSm)* , . m

PHx.PH2.PH3 PH^ v '

THÉORÈME IX. Les côtés d'un polygone régulier de m côtes
étant prolongés jusqu'à la rencontre d'une transversale quelconque
en L, ? L2 , L } ? . . . .* Lm ; et la perpendiculaire CP abaissée du
centre du polygone sur cette droite étant supposée ~a; en dési-
gnant toujours par 2# l'angle T'CP formé par CP avec le rayon
CT/=r/ du cercle inscrit qui se termine au milieu T' du premier
côté SjS^ ; on aura ; si m est impair^

et ? si T?2 est pair ?

abstraction faîte des signes.
Corollaire / . Si la transversale est tangente au cercle inscrit ; et

si, ayant pris l'arc PTXE=m .PT7
 5 on mène par E une tangente

EL , rencontrant la transversale en L ; en faisant toujours abstraction
des signes , on aura ? si m est pair %

at si m eat impair^
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Corollaire IL Si la transversale est tangente au cercle circonscrit
en P ; ea prenant , à partir de P ? l'arc PS 1 E=T?2PS I , menant
au cercle 7 par E , la tangente EL , rencontrant la transversale en
L \ on aura , toujours abstraction faîte des signes 9 si m est impair ^

P L , . P L , .PL 3 P L m =

et % si m est pair 9

PL,. PL,, PL ? . . . . .PL^I

Corollaire III. Enfin , la transversale étant supposée passer par
le centre du polygone ; si par l'un M des points où cette droite
Coupe le cercle inscrit, on mène à ce cercle une tangente perpen-
diculaire à la transversale ^ et si , après avoir mené le rayon CA ,
parallèle à cette tangente , et pris Tare AT'E — m .AT'zzm^ir-MT') ,
on mène le rayon CFN par le milieu F de Farc ATXE , et pro-
longé jusqu'à la rencontre de la tangente en N ; on aura ; en faisant
encore abstraction des, signes ; si m est impair %

PL, .PL , .PLj , . . .PLm=CN.(2r0"-1 i

e t , si m est pair ,

PL, . PL t . PL, . . . . PLm=CÎN \ (ârOB- * : C)

(*) II serait curieux de rechercher si les polygones étoiles de M. Poinsot, ou
même- ceux qaî ont ete considérés par M. Argand , à la page 189 de ce volume ,
ne jouissant pas de quelques propriétés analogues ; en supposant toutefois , pour
ces derniers, ou que leurs sommets sont uniformément distribués sur une cir-
conférence de cercle, ou que leurs côtés sont tangens à un même cercle , et
QiU leurs points de contact avec lui uniformément distribués sur la circonférence-
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QUESTIONS RÉSOLUES.

Solutions des deux problèmes de géométrie proposée
à la page 172 de ce volume $

Par M. BRET , professeur de mathématiques à la faculté
des sciences de l'académie de Grenoble,

X , y , z les coordonnées du sommet d'un angle trièdre,
rapporté à trois axes rectangulaires; et soient X , Yy Z les coor-
données courantes dans l'espace. Soient les coordonnées des arêtes
de l'angle trièdre ainsi qu'il suit :

X^x+ar , X=x+a'r? , X=x+a»r" ,

T^y+hr , r=y+Vr> , Y=y+b"r" , (1)

Z^zz+cr , Z-z+c'r* , Z=z+c"r» ;

nous aurons, entre les constantes f les équations de conditioa

a + + ,
(2)

Si l'angle trièdre est tri-rectangle , on aura , en outre

(3)
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II est d'ailleurs connu qu'à ces relations on peut substituer , comme
équivalentes , les relations que voici :

"' =i , S (4) ca+c'a'+c"a"=o , (5)

tt <ju3on en peut encore , entr'autres , déduire les suivantes t

at

c"a—a»c

ca!~—acf

(6)

t e s 3quatioris des faces de l'angle trîèdre sont

, Z=z-\-cr-\-c'r/ .

Sî , entre les trois équations de chacune: d?elles on. élimine les deux
variables qui leur sont communes, on trouvera pour nouvelles équations
de ces mêmes faces, en. ayant égard aux relations (5) ,

a —x)-\-b (Y~y)-\-c (Z—z) = o ,
a' iX—x)-\-b' (Y—y)-\-c> (Z—z)=o ,

Ces choses entendues , nous pouvons procéder à la solution des
deux questions proposées.

PROBLÈME L Quelle surface décrit h sommet d'un angle*
triedrg
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iriedre tri - rectangle mobile, dont les arêtes sont assujetties à
toucher perpétuellement une surface jixe du second ordre ?

Solution* Soît

jx*+Br>+cz*+2j'X+2B'r-\- *cz=o (8)

l'équation de la surface fixe du second ordre* En la combinant (i)
avec celles de l'arête r , pour éliminer X, Y y Z\ exprimant que
Féquatîon résultante du second degré en r a ses deux racines égales^
et posant, pour abréger,

= K

^D , DZ—AK-D/ ,

on aura

On exprimera donc <jue les trois arêtes sont tangentes à la surface-
courbe , en écrivant

Va %+E/b *+F'c z+2EFb c +2FDc a -\~zDEa h ==o ;

a* V =o >

en ajoutant entr?elles ces trois équations, et ayant égard aux
tlons (4) et (5) ? il viendra

e'est-à-dîre P

Tom. K.
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ou encore

pu m&n , en déyeloj?pant et ordonnant

A (B+C)*'+B (C+J)r+ C

Telle est Téquatlon de la surface cherchée.

PROBLÈME H. Quelle.JSMTface sdU-rit le sommet d'un angle
triedre tri-rectangle mobile , dont les faces sont assujetties à être
perpétuellement tangentes à une même surface donnée du second ordre ?

Solution. L'équation du plan tangent a la surface (8) , par un
point de cette surface dont les coordonnées sont X/, J 7 , Z* 9 est

les trois coordonnées X7, T7 , Z; étant liées entr'elles parla relation

laquelle peut être écrite ainsi

+ . (n)
Mais l'équation du plan de la face rfru est (7)

s\ donc on veut exprimer que cette face est tangente à la surface
du second ordre, il faudra -écrire *cjue les équations (ÎO) et (12)
ne diffèrent au plus que par un facteur , ce qui donnera
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En éliminant Ar /, I 7 , Z* , * entre ces quatre équations et ré
tien ( ix )* JBt posant, pour abréger,

^E , CAE*—K=.E> ,

on obtient aisément

Afin donc que les trois faces de l'angle trlèdre soient tangentes à
la surface courbe ? on devra avoir

c +BFBca

En prenant la somme de ces trçis équations 9 et ayant égard aux
relations (4) et (5) , il vient

^ est-à-dire ,

vou encore

> = 0 ,

—-(BC+CA+AB)(BCA'*+CAB'2+ABO*) )

ou enfin ? en développant , ordonnant et réduisant ?
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Telle est donc Féquatiqn de la surface cherchée. On voit que cette
surface est une sphère ; et, en écrivant son équation sous cette forméei

A»

ABC l

on voit que les coordonnées de son centre sont

Al Bf O

et que son rayon est

v\± C

QUESTIONS PROPOSEES.

Problèmes de Géométrie-*

I. U N donne les4 distances du centre du cercle circonscrit a un*
triangle à ses trois côtés, et on demande de construire le triangle ?/

II. On donne- les distances du, centre du cercle inscrit à un?
triangle à- ses trois sommets 9 et on demande de construire le
triangle ?
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GEOMETRIE DES COURBES.

Essai sur la recherche des grandeur et direction des
diamètres principaux , dans les lignes et surfaces
du second ordre qui ont un centre \

Par M. BKET , professeur de mathématiques à la faculté
des sciences de l'académie de Grenoble.

N s'est servi plusieurs fois, avec avantage , dans ce recueil , de
la propriété de maxïma et de minima dont jouissent les diamètres prin-
cipaux , dans les lignes et surfaces du second ordre qui ont un centre ,
pour la reclierclie des grandeur çt direction de ces diamètres. Nous nous
proposons de montrer ici que , par des considérations plus élémen-
taires ? on peut parvenir au même but , d'une manière tout ai>
moins aussi simple.

J. Soit l'équation

II est connu , et il est d'ailleurs facile de démontrer i.° que , si
l'on a

e1—ah<£o , (2)

cette équation n'exprimera absolument rîerï ; 2.0 qu'elle exprimera
]e système de deux droites se coupant à l'origine , si l'on a au-
contraire

c*—ah>o ; (a)
3.* qu'enfin , dans le cas particulier où Ton aura*

Tom. V + n.° XII, \JT juin i8i-5*. 48
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c*—ab-o , (4)

les deox droites se confondront en une seule , donnée de direction
par l'une ou l'autre des deux équations équivalentes

(5)

lesquelles en effet , par réliminaiion de $ et y , reproduisent la
relation (4)*

Cela posé ; soit

l'équation d'une ligne du second ordre , ayant son centre à l'ori-
gine des coordonnées, que nous supposons former entre elles un
angle y. L'équation d'un cercle ayant son centre à l'origine et son
rayon égal à r sera

#2+y3+2.TyCos.y=r2 . (7)

Ce cercle coupera la courbe en des points dont r exprimera la
distance à l'origine.

Soit prise la différence des produits de l'équation (6) par r2 et
fie l'équation (7) par D ; nous aurons ainsi

(Jr*— D>2+(LV2—Z%2+2(Cr2—DCos.y)xy=o , (8)

équation qui ? ayant lieu en même temps que (6) et (7,) , doit
appartenir à une ligne contenant les points d'intersection de celles
qu'expriment ces deux-là.

\Par la comparaison de (1) et de (8), on a

d'où il suit i.° que , si l'on prend (2) l'arbitraire r de telle sorte
qu'on ait

)3—(^r2— T)){Br*—£)<o , (9)
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l'équation (8) n'exprimera rien -, et par conséquent le cercle (7) ne
coupera pas la courbe (6) -, 2.* que , si au contraire on prend (3)
l'arbitraire r de telle sorte qu'on ait

(Cr*—DCos,yy—(Ar*—D)(Br*-~D)>o , (10)

cette équation (8) exprimera le système de deux droites se coupant
à l'origine f lesquelles contiendront les quatre intersections de la
courbe (6) avec le cercle (7); 3.° qu'enfin, dans Je cas particulier
(4) où l'on prendra l'arbitraire r de telle sorte qu'on ait

(Cr2—DCos,yy~~(Jr> ~B){Br*~B) = o , ( n ) "

les deux droites se confondront en une seule -, de sorte que le cercle
touchera simplement la courbe.

Or, il est visible qu'alors cette droite unique deviendra l'un ou l'autre
des diamètres principaux 9 et. que r sera la longueur de la moitié
de ce diamètre ; ainsi , les longueurs des demi-diamètres principaux;
sont donnés par l'équation ( u ) qui, développée 5 revient à

(C2 ~~ ÂB)r*+D(A+B—-iCCos.y)r* — D2Sin.V=o ;

et leur direction est donnée (5) par l'une ou l'autre des deux
équations équivalentes

Si r dans l'équation (8) , on suppose r = CP , cette équation devient

et exprime conséquernment le système de deux droites coupant la
courbe (6) aune distance infinie ; mais r pour cela ,. il faut qu'on ait

C2—JB>O ; '

ainsi , c'est là le seul cas où cette courbe puisse avoir des asymptotes*

IL Soit l'équation.
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axz+by*+cz*-{~2a/yz+2b/zx-\-2{:/xy—o % (i)

II est connu, et il est d'ailleurs facile de démontrer que , suivant
que la fonction

abc —aaf*—lb'*—cc!**\~iafbfcf (2)

sera positive ou négative , l'équation (1) n'exprimera absolument
rien, ou exprimera une surface conique ayant son centre à l'origine;
et qu'en particulier , lorsque celte fonction sera nulle > la surface
conique dégénérera en une ligne droite , donnée par le système de

quelconques des trois équations

(3)

donc chacune est en effet comportée par les deux autres , toutes
les fois que la fonction (2) est nulle.

Cela posé ; soit

J^+Byt+Czt^J'yz+iB'zx+zC'xy-D (4)

Téquation d'une ligne du second ordre , ayant son centre à Porigine j
les coordonnées faisant entre elles les angles que voici :

Àng.(y tz)=« > Ang.(z , JT)=/& , Ang.(j?, y) = y .

L'équation d'une splière ayant son centre à l'origine et son rayon
égal à r sera

.y'z=:rz . (5)

cette sphère coupera la surface courbe suivant tous ceux de ses
points qui seront à la distance r de l'origine.

Soit prise la différence des produits de l'équation (4) P ^ r* e*
4e l'équation (5) par D ; nous aurons ainsi
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(Ar*—D)x*+2(A/r*—DCos.*)yz

(6)

équation qui, ayant lieu en même temps que (4) et (5), doit, en
général, exprimer une surface qui passe par la commune section
des deux premiers.

Par la comparaison de (i) et (6) , on a

b~Br*—D , b'=B'r%—

d'où Ton voit que , suivant les diverses valeurs qu'on voudra assi-
gner à r\ l'équation (6) pourra être; absurde d'elle-même, ou ex-
primer une surface conique ayant son centre à l'origine , laquelle
passera par l'intersection de la sphère avec la surface du second
ordre. En particulier , cette sphère deviendra tangente a la surface
(i) , et la surface conique se réduira à une droite (2) , lorsqu'on aura

<7Ï

Or * il est visible qu'alors cette droite unique deviendra l'un des
diamètres principaux , et que r sera la longueur de la moitié de
ce diamètre ; ainsi, les longueurs des demi-diamètres principaux sont
données par l'équation (7) qui 7 développée revient à

"i
—D j -h(CA—B'*)+2.(C>AJ—BB/)Cos.fi
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s.y—Co&.«Cos.js)

—COS.2«—CoS.2j3—COS 2

et leur direction est donnée (3) par le concours de deux quelconques
des trois équations

En raisonnant comme nous l'avons fait ci-dessus on trouvera
que l'équation

est celle de la surface conique asymptotique de la surface proposée j
mais que 9 pour qu'elle puisse signifier quelque chose , il faut qu'on ait.

ainsi, ce-cas. est le seul où la surface proposée ait une surface
conique asymptotique*

III. Quelque simple et élégante que puisse paraître la précédente
analise , nous pensons que > dans un traité élémentaire de géoméhïe
analitique ,, on doit lui préférer encore soit la discussion donnée
par M* Gergonne5 à la page 61 de ce volume* soit celle que nous
avons donnée nous-même , par la transformation des coordonnées ,
( tome II , page 33 , et tome IV , page g3 ) 7 et où nous avons
fait connaître pour la première fois l'équation qui donne les longueurs
des diamètres principaux des surfaces du second ordre , en fonction,
des coefficiens de Téquatioa primitive*.
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AVALISE TRANSCENDANTE.

Développement en séries des Jonctions logarithmiques
et exponentielles ;

Par M. GERGONNE,

J ' A I donné, dans le troisième volume de ce recueil (page 344)?
une méthode de développement des fonctions circulaires en séries qui
me semble fort courte et fort simple. Je me propose Ici de parvenir, par
des moyens analogues, au développement des fonctions logarithmiques
et exponentielles ; de manière que les deux articles pourront se servir
de suite l'un à l'autre.

I. Le logarithme de l'unité étant nul , dans tout système logarith-
mique , on est fondé à supposer P quel que soit a ,

Log.(i+^)=^+^2+^3+D^4+,.... ; (i)

A% S , C , # . . s . étant des coefïiciens inconnus qu'il s'agit de dé-
terminer.

On aura semblablement

M ais on a
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substituant donc les valeurs ( i ) , (2 ) , ( 3 ) , il viendra, en divisant
les deux membres de Inéquation résultante par ar—y 9 et en le&
multipliant par 1 + / *

Dans cette dernière équation , x et y demeurant indéterminés et
îndépendans, on peut supposer y—x-r elle devient ainsi

©u , ens développant et réduisant,

zB

+A

0 -

+3C

€ev
 CJVX donnera, à cause de l'indétermination de x},

2.B+ A=.o ,

•o ;

d'où

B — — \A ,

substituant donc dans ( i ) , il viendra

^(*-j*2-4-7*3->H- (4)

Dans cette foi-mule, A demeure arbitraire ; mais cela doit être ainsï>
puis<yu5â raison du cboix arbitraire de la b^se, à un même nombre
peut répondre une infinité de logarithmes différens.

Si , dans cette formule (4) > on change x en oc—1 9 elle deviendra

Log.*=.*{(*— I ) _ K ^ - 0 2 + T ( ^ ~ 0 3 - K ^ - 0 ' + — F - (5)
Soit h la~ base du système logarithmique , et soit successivement

changi
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change x , dans cette dernière formule, en \/lc et en \/J, elle
deviendra

d'où on conclura , en divisant,

Lo *= - (^-O-r(

expression que Ton peut toujours facilement rendre convergente à
Tolonté , en prenant pour m et n des puissances de 2 d'un degré
très-élevé. On trouvera , au surplus ? dans le premier volume de
ce recueil ( page 18 ) de très-amples développemens sur le parti
que Ton peut tirer de la formule (4) > dans le calcul des tables
de logarithmes.

II. Le logarithme de l'unifé étant nul , dans tout système de
logarithmes , on est fondé àN supposer, quel que soit x ,

x= i+^Log^+5Log.^+CLog. 3^-h. . . . (6)

<A , B , C,.»... étant des coeiEciens inconnus qu'il s'agit de déterminer;
On aura semblablement

et

~ = i+JLoë. -+BLog> ~

série que l'on peut encore écrire ainsi

+ ( g g j ) ( g g j ) t ( g g y ) ^ - . . . (8)

Mais on* a

substituant donc les valeurs (6) , (7) , (8) , il viendra, en divisant
les deux membres de l'équation résultante paj Log.ar—Logy ,

Tom. V. - 49



366 FONCTIONS

Dans cette dernière équation , x et y devant demeurer indéterminés
et indépendans, on peut supposer y~x ; elle devient ainsi

^+25Log^4-3CLog.2^+4DLog.3ar+ =Ax ;

ou 5 en mettant pour x sa valeur (6) et réduisant,

ce qui donnera , à cause de l'indétermination de x t

A*.

ZC-AB ,

4D-JC ,

d'où

1.2.

A*

1.2.34 V

substituant donc dans (6,N, il viendra

(9)l - 1.2 1.2.3

formule dans laquelle A demeure arbitraire , pour les même raisons
que ci-dessus,

III. On se tromperait étrangement si Ton pensait que l'indéter-
minée A est la même dans la formule (9) que dans la formule
(4) \ puisque ces deux formules ont été déterminées Indépendamment
l'Une de l'autre. Il existe néanmoins entre ces deux indéterminées
une relation simple facile à découvrir. Observons pour cela qu'on
tire de$ équations (5) et (9) , en changeant A en A/ dans la première f
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ce qui donne , en multipliant membre à membre , et supprimait
de part et d'autre le facteur (x—i)Log.#,

faisant enfin>7 dans cette dernière équation x~i ? on arrivera à cette
Relation simple

Ainsi , l'on peut écrire

1 i.a i.2,3

la constante A étant alors la même dans les deux formules-
Cette constante étant arbitraire , la supposition la plus simple

qu'on puisse fa^p à son égard est A=i ; on tombe alors sur les
logarithmes népériens ou naturels* En les désignant simplement
par 1 r on a

1*=(*~I ) -H*-0 2 +T(*-0 3 - r ( ta)

^ = H 1 ; + (10)

"Si, dans la dernière de ces deux: formules r on changea en e^ ?

h étant la base d'un système quelconque ? on aura
, x\b x2l2b xWb .

ix^i+ — + - H—r+...
î 1.2 1.2.i

En désignant par e la base du système de TNéper , et* changeant
h tu. e v dans cette dernière formule, on aura

X' OC% X3
, X OCe*= H 1

I 1 2
+

1.2 1.2.3-

Si enfin dans celle-ci on fait # = 1 ? on aura ? pour calculer la*
base ^ du système de Néper ? cette série très ~ commode et très—*
convergente

1 . 2
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QUESTIONS RÉSOLUES.
Solution du problème d'alliage proposé la page 264

de ce volume ;

Par M. J. B. DURRANDE.

JLROBLÈME. Deux cases contenant des volumes connus V , V/
de mélanges de plusieurs liquides, dont le nombre et les proportions
sont inconnus pour chaque vase % ne serait-il pas possible de cons-
truire deux rases plus petits et d'une même capùcitè , tels qu'en
les emplissant à la fois dans les deux cases donnés , et versant
ensuite dans chacun le liquide extrait de Vautre 9 les mélanges
de liquides contenus dans les deux vases 9 après cette opération ;
soient exactement de même nature ? et quelle devrait être pour cela
la capacité commune des deux vases égaux?

Solution* Puisqu'on suppose les liquidas exactement mêles dans
chaque vase 5 on peut considérer les mélange^ comme deux liquides
de nature différente qu'il faut mêler exactement, par l'opération
proposée.

$oit donc désignée par w la capacité commune des deux Vases
égaux et inconnus ; l'opération exécutée , les volumes des deux
liquides contenus dans les deux vases seront

Premier liquide • V—x J
Premier vase

Deuxième liquide x ,

1 Premier liquide. « . . . s >

Deuxième liquide . . . •
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afin donc que les deux mélanges soient exactement faits dans les
mêmes proportions, on doit avoir

^F = ^ b ' ou *a=(v-
d'où on tire

*~ v+v ;

ainsi la capacité commune des deux vases demandés est le produit
des volumes des deux mélanges , divisé par leur somme.

Soit Y>V/; on a
V—V V V

ce qui montre que la capacité ce est toujours plus grande qne la
moitié du plus petit des deux volumes donnés , mais moindre que
la moitié du plus grand.

Dans le cas où l'on a V / = V , on trouve simplement a;= { y j
ce qui est d'ailleurs évident.

On voit donc que l'on peut ? par une opération unique , méLer
exactement deux liquides contenus dans deux vases différens , lors-
qu'on n'a pas la faculté de les verser en totalité dan$ un troisième
vase. Il serait intéressant d'étendre cette jnéthode à un plus grand
nombre de liquides contenus dans autant de vases.

Solutions de deux des problèmes d optique proposes à îck
page 196 de ce volume Î

Far un ABONNE.

JLROBLÈME I. Sur une talle rectangulaire donnée doivent être
placées deux lumières de même intensité, élevées au-dessus de cette.
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table d'une même quantité donnée, et qui doivent y être tellement
posées que leurs projections tombent sur la droite qui joint les
milieux des deux petits côtés de cette table , et soient également
distantes de part et d'autre du milieu de cette droite. On demande
de quelle manière ces deux lumières doivent être placées ; i.° pour
que le point le moins éclairé du bord de la table le soit le plus
possible ^2 . ° pour que le point ler plus éclairé du bord de la table

" le soit te moins possible ?
Solution*. Soient za l'un des longs côtés, 2b l'un des petits côtes

de la table , c la hauteur commune des deux lumières au-dessus
de son plan t et z la distance commune.de Leurs projections au
centre de la table* Pour plus de simplicité, prenons pour unité

1 d'intensité L'intensité commune de nos deux lumières et pour unité
d'illumination la clarté que "donne l'Une d'elles à une distance égale
à l'unité de longueur, et rappelons-nous que la lumière se propage
en- raison inverse du quarré dfes distances,

Examinons 9 en premier lieu , ce qui se passe le long de l'un
des'petits côtés de la table. Il est d'abord évident que son milieu
en sera le point le plus éclairé, puisque chacune des deux lumières
sera plus voisine de ce milieu que de tout autre point du même
bord, 11 -est clair en outre que l'illumination de ce même bord ira
sans cesse en décroissant continuellement^ de part et d'autre de ce
milieu; de manière ~que Jiàî jcUifcX* extœmités^de l'un des petits côtés,
en seront les points les moins éclairés,
' L^iHtitrrination du milieu de Fun des petits côtés - sfera.

j A

et celle de Tune de ses extrémités sera.

Su^pojspns actuellement que z yaxie et vojpnç ce qui en devra
résulter* Si d'abord on avait z~ 00 9 il est évident que le milieu.
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du petit côté serait infiniment peu éclairé ? et qu'il en serait de
même de ses deux extrémités.; mais-, à; mesure que z diminuera
l'illumination deviendra plus vive ; cependant , comme cette illu-
mination redeviendra de nouveau infiniment petite, lorsqu'on aura
£ = — 00 , il s'ensuit qu'entre ces deux valeurs il doit s'en trouver^,
une qui donne pour le milieu du petit côté , et conséquemment
aussi pour ses extrémités , un maximum d'illumination ; et l'on voit
même que ce maximum répondrait à z~a , si l'on avait £ = 0 ,
puisqu'alors-l'une des lumières se, confondrait avec, le milieu du.,,
petit côté.

Pour savoir à. quelle valeur de z répond le n^^ccimum dont .
il s'agit, lorsque ^ nLesl^paint. nul^ différencions la formule (1)
par rapport à cette» Tariable g en divisant par àt^ nous trouverons ainsi

4
AZ • -

d'où, en égalant h zéro,

z=o 7 ou (

En rejetant tout emploi de signes qui rendrait inévitablement z
imaginaire 9 ainsi que le double signe de z 7 la seconde équation
donne simplement

et encore , pour que cette valeur puisse être admise , faudra-t-il
qu'on n'ait pas ië< \/a2-\-c2. Ainsi , en élevant au milieu de la table
une perpendiculaire à son plan égale à la hauteur commune de*
deux lumières 5 il faudra que la distance de l'extrémité de cette
perpendiculaire au milieu du petit côté n'excède pas la longueur
totale de la table 7 pour que cette valeur de z puisse être admise;

Pour savoir présentement laquelle de cette valeur ou de la valeur
z = o répond au maximum 7 passons a la différentielle seconde >
que nous trouverons être , en la divisant par àz* >
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'4-4:

{ C f 4 - c 2 ) 2—402^2 j 3

En posant z~o % la seconde fraction s'évanouit et la première devient!

quantité négative ou positive, suivant que 2a sera moindre ou plus
grand que \Zaz+b* ; ainsi, la valeur z = o x répondra a un maxi-
mum , si la valeur

z =

est imaginaire; et cette valeur z = o répondra à un minimun% &*
au contraire , Tautre valeur de z est réelle.

Si ensuite on pose

ou i ce qui revient au même %

st au contraire 7 la. première fraction qui s'évanouit % tandis
seconde devient

quantité- négative ou positiver, suivant que 2# sera plus grand pu pîu&
petk que \Za*+c* ; et comme, dans le dernier de ces deux cas , la va-
leur de z- devient imaginaire , il s'ensuit que ^ lorsque cette valeur

z = ËS{2a^- y/â^Çc*) \/az-\-c*

est possible > elle répand toujours à un maximum»
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Voîci donc de quelle manière variera l'illumination du milieu de

Pun des petits côtés de la table , et conséquemment de tous les
points de ce petit côté , par suite des variations de la distance
commune z des projections des deux lumières au centre de celte
table. Si l'on a za < \/a2-±-c* ; ce milieu sera infiniment peu éclairé
lorsqu'on aura £== oo -9 la clarté qu'il recevra augmentera ensuite de
plus en plus r à mesure que z deviendra plus petit ; de manière
qu'elle sera à son maximum lorsqu'on aura z=o ; z prenant ensuite
des valeurs négatives de plus en plus grandes , cette clarté dimi-
nuera de nouveau jusqu'à ce qu'enfin elle deviendra encore infini-
ment petite lorsqu'on aura z=— oo.

Si , au contraire , on a 20 > \/ a*+c* ; la clarté reçue par le milieu
du petit côté de la table sera toujours la moindre possible ou nulle,
lorsqu'on aura £ = 00 ; elle croîtra ensuite de plus en plus à mesure
que z diminuera , mais de manière qu'elle aura atteint son maxi-
mum lorsqu'on aura

~~s/ax*\-ct)\/a%-\-c1' ;

elle décroîtra ensuite à mesure que z diminuera et parviendra S
son minimum pour z = o ; croissant ensuite de nouveau , pour z
négatif; elle parviendra à un nouveau maximum , égal au premier,,
lorsqu'on aura

après quoi elle diminuera de nouveau continuellement pour devenir
encore nulle, lorsqu'on aura * = —00.

Dans le cas particulier où l'on aurait za = \/a*-±*c2, les Jeux
maxima se confondraient avec le minimum de part et d'autre duqueE
ils se trouvent en général symétriquement situés ; ils répondraient
ainsi tou& trois à la valeur ,2=0; mais il est clair que , dans la*

Tome F* 5o
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question quî nous occupe, cette valeur devrait être réputée donner
un maximum.

D'après les formules (i) et (2) , on voit <jue , lorsque ^ = 0 , la
lumière que reçoit le milieu de l'un des petits côtés de la table est

tandis que la lumière reçue par Tune des extrémités de ce petit côté est

Si au contraire on fait

~T+^Î • (5)

valeur extrêmement facile à construire ; la lumière reçue par le
milieu de l'un des petits côtés de la table sera

2-—a) ' (6)

tandis que la lumière reçue par Tune des extrémités de ce petit
côté sera

On voit donc que , si l'on ne voulait avoir égard qu5à l'éclairage
des petits côtés de la table 9 on pourrait établir en principe que
plus cette table sera longue relativement à la hauteur commune des
deux lumières au-dessus de son plan , et plus aussi il faudra re-
tirer ces lumières vers ses extrémités ; tandis xju'au contraire plus
elles seront élevées au-dessus de son plan relativement à sa longueur 9

0t plus aussi îl sera nécessaire de les ramener vers son centre.
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Maïs considérons présentement ce qui se passera sur chacun des

longs côtés de la table; et remarquons dabord que , si Ton avait
z~o9 c'est-à-dire 7 si les deux lumières se confondaient, de ma-
nière à répondre au milieu de la table , le milieu de chacun de
ces longs côtés en serait le point le plus éclairé ; tandis que ses
autres points le seraient de moins en moins , à mesure qu'ils ea
seraient plus distans. Dans cette hypothèse % l'illumination du milieu*
de l'un des longs côtés serait

et quant à celle de l'une des extrémités de ce long côté elle serait
la même que ci-dessus (4)* On sent par là que ? tant que les
deux lumières demeureront à une certaine proximité Pune.de l'autre, ce
sera toujours le milieu de chacun des longs* côtés qui en sera le
point le plus éclairé -7 tandis que l'illumination sera la plus faible
pour ses extrémités^

Supposons au contraire que h étant toujours fini on ait z = oo.̂
il est clair qu'alors l'illumination du milieu de Tun des longs côtés
sera nulle , tandis qu'il se trouvera, de part et d'autre de ce milieu r

deux maxima d'illumination qui répondront directement vis-à-vis*
ie chaque lumière 7 et auront l'un et l'autre pour expression*

et l'on peut inférer de là que tant que les deux lumières se trou--
veront à une certaine distance Tune de l'autre , il y aura au milieux
de chaque long côté un minimum d'illumination , compris entre
deux maxima symétriquement situés par rapport à lui 9 et moins*
distans de ce milieu que les points du long bord qui répond di-*-
sectement à chaque lumière.* Au delà de ces maxima l'illumination*
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décroîtra continuellement , et pourra même devenir moindre que
«elle du milieu , si la table est suffisamment longue.

Confirmons présentement ces aperçus par le calcul. Considérons
un point de l'un des longs cotés dont la distance au milieu de ce
long côté soit égale à x*; la lumière reçue par ce point sera

* JL-» t ~1 I f~* I , \ î / « a l , ~1 I £2_l_/»2>2 f.*r2«r*1 \tJS

Supposons z donné et constant ; la différentielle de cette expression
prise par rapport à s et divisée par àx aéra

d'où., en égalant à zéro ,

* xzzo9 ou (x

En rejetant tout emploi de signes qui rendrait inévitablement %
imaginaire 9 ainsi que le double signe de x 9 la seconde équation
donne simplement

et encore faut-il, pour que cette valeur puisse être admise , que
\Zz2+b2+c* ne soit pas plus grand que 2z ; c'est-à-dire, en d'autres
termes, que la distance de Tune des lumières au milieu de l'un
des longs côtés n'excède pas sa distance à l'autre lumière.

Pour savoir présentement laquelle de cette valeur ou de la
valeur # = o répond au maximum ou au minimum, passons à la
différentielle seconde qui, divisée par àx% , est
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- a 0**-f 2*+b2+c*){(x2+z*~{-b*-{-c2y—iz*x*}—

En posant # = 0 , la seconde fraction s'évanouît , et la première
devient

quantité négative ou positive ? suivant que zz sera moindre ou plua
grand que \/z

2-{-b2~{-c2 ; ainsi, la valeur x~o répondra à un ma-
ximum y si la valeur

est imaginaire ; et cette valeur # = 0 répondra à un minimum ê si
au contraire l'autre valeur de oc est réelle*

Si ensuite on pose

ou, ce qui revient au même,

c'est au contraire la première fraction qui s'évanouit ^ tandis que la
seconde devient

quantité négative ou positive , suivait que 22 sera plus grand ou
plus petit que \/z2+b2+c2 ; et comme , dans le dernier de ces deux cas,
la valeur de & devient imaginaire , il s'ensuit que 9 lorsque cette
valeur
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est possible ? elle répond toujours à un maximum.
Voici donc quel sera l'état de l'un des longs côtés , suivant la

situation des deux lumières. Si d'abord la distance de Tune de ces
lumières à l'autre est moindre que la distance de cette même lu-
mière au milieu du long côté ^ ou , ce qui revient au même , si
les droites menées de ce milieu aux deux lumières forment entre
elles un angle moindre que 6o° 9 ce même milieu sera le point
le plus éclairé du long côté r dont l'illumination diminuera ensuite
Je plus en plu& à droite et à gauche y en allant vers ses extrémités.

Mais si, au contraire ,, l'angle formé par ces deux droites est
plus grand que 60 degrés , le milieu du long côté présentera un
minimum d'illumination ; ce minimum se trouvera situé entre deux.
mgxima qui en seront: distans de part et d'autre d'une quantité

et à droite et à gaucbe de ces minima la: lumière: ne cessera; plus*
dbj décroître,.

Dans le cas particulier où Ton aurait

c'est-à-dire> dans le cas oà le* triangle des deux lumières et du*
milieu du long côté serait équilatéral ? le maximum et les deux
minima' se confondraient en ce milieu ^ mais il est clair que, dans
la» question qui nous occupe s ce milieu doit, alors- être' considéré
©omme recevant un maximum de lumière.,

Sï dans, la formule (9) on fait
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quantité très-facile à construire ^ lorsque z est donné , -elle deviendra

telle est donc l'expression de la lumière reçue par le point le plus
éclairé du long côté de la table.

Si Ton veut profiter de l'indétermination de z pour rendre cette
quantité de lumière"maximum ou minimum ^ il faudra recourir
à sa différentielle prise par rapport à z, laquelle ^ en la divisant
par dz, est

et ne peut conséquemment devenir nulle. Àînsî , la fonction (10)
n'est proprement susceptible ni de maximum ni de minimum.

Mais il est aisé de voir que, z étant indéterminé ^ plus on le
prendra petit et plus aussi le point le plus éclairé du plus long
bord de la table recevra de lumière : cette lumière ^fant d'ailleurs
toujours comprise entre

et

et îl en sera de même de son point du milieu.'
Voyons enfin, si ; à raison de l'indétermination de z} la quantité

de lumière reçue par les angles , qui sont en général les points
les moins éclairés, ne serait point susceptible de devenir un ma~
&imum. Cette quantité de lumière est
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Sa différentielle, prise par rapport à z et divisée par àz est

4

d'où Ton tire , en égalant à zéro f

& analogie de ces résultats avec ceux que nous avons obtenus pré-
cédemment , nous autorise à poser sur-le-dbamps les maximes que
voici i

Soit portée une dès lumières au centre de la table $ si alors la
distance de cette lumière à l'un quelconque des angles n'est pas
moindre que la longueur de cette table , ce sera en cet endroit
qpe les dexpt lumièrea devront être placées pour que les angles soient!
autant éclairés qu'ils peuvent l'être.

Mais s i , comme il arrivera le plus souvent ? la distance de cette
lumière à Fun des angles est moindre que la longueur de la table ;
ajors r pour que les angles reçoivent le plus de lumière possible r

les deux lumières devront être placées sur la droite qui joint les
milieux des petits côtés, de part et d'autre du centre > de maniera
que les distances de leurs projections à ce centre soient

2a— )

quantité très-facile à construire*

PROBLÈME IL Résoudre le même problème pour une table
elliptique ; les deux lumières devant être placées de telle manière

que
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que leurs projections tombent sur le grand axe 9 à une même dis-
tance de part et d'autre'du centre de la table.

Solution* Soient za le grand axe et 2b le petit axe de l'ellipse y

en sorte que son équation soit

atyt+btxt^atbt . (1)

Soit tcfujours c la hauteur commune des deux lumières au-dessus
du plan de la table } et soit enfin z la distance de la projection
âe chacune d'elles au centre de cette table.

D'après cela 5 la lumière reçue par un point du périmètre de l'ellipse
dont les coordonnées sont x, y r sera*

. l z(x+y+z+c)

En y mettant pour y sa valeur tirée de l'équation (1) et posanf r

pour abréger , ^*— bi—e1 , il vient

Supposons z déterminé, et voyons quelle valeur il faudrait donner
a x pour que le point que nous considérons fût plus ou moins
éclairé que tous les autres; La différentielle de cette expression r

prise par rapport à x est divisée par àx est

*

en l'égalant à zéro, on

a
30 T~l O O U cC''"m mmmmm

e2

On prouvera, comme ci-dessus, que la, valeur ^ = 0 est minimum
ou maximum suivant que l'autre est réelle ou imaginaire j et que 5

dans tout le cas où cette dernière est réelle 9 elle répond à un maxi-
mum. En particulier 9 si Ton a?



582 QUESTIONS

e

tm , ee qui revient au même ,

ie maximum et le minimum se trouvent réunis e& un même point
qui n'est autre chose que l'extrémité du petit axe , et qui doit
être considéré comme présentant un maximum.

Pour la première valeur XZZZQ , l'expression (3) devient

donc là la lumière reçue par l'extrémité du petit axe ; si
c'est un minimum qui y A lieu, il faudra , suivant les; conditions
du problème , rendre ce minimum le plus grand possible , ce à quoi
on parviendra , en posant £ = o , si c'est au contraire un maximum ,
il faudra le rendre le plus petit possible <•, en prenant z aussi grand
qu'il se pourra, sans faire devenir ce point minimum.

Mettons dans la formule (3) la valeur

elle deviendra,

2—az)

«Si Ton veut profiter de l'indétermination de z pour rendre cette
fonction la plus grande ou la moindre possible , il faudra passer
% sa difFéren'tielle qui 9 divisée par d^, sera
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En égalant tette différentielle à zéro , chassant le radical , et re-
mettant pour e% sa valeur a*—b* , on obtient l'équation

d'où , en n'admettant que la racine réelle positive , on tirera

valeur que f on trouvera résoudre complètement la question et qu'U
sera facile de construire.

Remarques. I. On résoudrait, par des principes et des méthodes
analogues, le cas où il s'agirait de quatre ou même d'un plus grand
nombre de lumières à distribuer de la manière la plus convenable
sur une table , soit rectangulaire soit elliptique ; mais il paraît qu^alors
les calculs se compliqueraient d'une manière notable.

IL Au lieu de demauder que Péclairage du bord de la table soit
aussi uniforme que possible , on peut demander que le point le
moins éclairé de sa surface soit autant éclaire que faire se pourra.

I I I . On peut transporter ces sortes de recherches dans l'espace
et en faire la base d'une théorie de l'éclairage des galeries ou appar-
ternens rectangulaires ou elliptiques , surmontés d'un plafond , d'une
voûte en berceau ou d'un dôme , et éclairés par des lustres ou
plaques; pu même de jour, par des fenêtres ou vitrages supérieurs >
dont il s'agirait alor£ de régler la distribution de. la manière la
plus avantageuse.
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QUESTIONS PROPOSÉES,

Problème de probabilité*

JL/EUX urnes contiennent Tune i boules blanches et n noires , et
^autre br boules blanches et nf. On doit prendre à la fols et au
hasard avec les deux mains dans les deux urnes un même nom-
bre x de boujes , et porter ensuite dans chacune d'elles les boules
extraites de l'autre Quel doit être ce nombre x r pour que la pro-
babilité qu'alors les boules blanches et les boules noires seront
uniformément réparties dans les deux urnes soit unr maximum ?.

Problème de Géométrie*

Décrire l'ellipse du moindre périmètre f entre toutes celles qm
pissent par les quatre* mêmefr points donnés ?

Théorèmes de Géométrie*

Tout quadrilatère,, plan ou gauche y rectiligne ou sphérlque*r danŝ
lequel la somme de deux côtés opposés est égale à la somme des>

autres côtéŝ  est circonscriptible au- cercle^

DIT T O M E : CINQUIÈME;.



TABLE D E S MATIERES. 385

TABLE

Des matières contenues dans le K.e volume des Annales.

ANALISE ÉLÉMENTAIRE.

JLAÉMONSTRÀTION élémentaire d'un Lemme relatif aux maxima et aux minîma 5

par un Abonné. 186-̂ —189.

Solution d'un problème d'alliage ; par M. J . B. DurranâtL. 368—36g,

.ANALISE TRANSCENDANTE.

Essai sur un nouveau mode d'exposition des principes du calcul différentiel; p&r
M. Servois, 93—14*»

Recherches sur le développement numérique des fonctions que M. Kramp a
dénotées par Aet r , dans son Arithmétique universelle ; par M. Argand 2.36—252,.

Développement en séries de5 fonctions logarithmiques et exponentielles ; par M.
Cergonne* t 363—368.

ARITHMETIQUE.

Sur les caractères de divisibilité des nombres , par certains diviseurs ; par Mo

Gergonne. 171—172.

Solution d'un problème d'arithmétique ; par MM. Tèdinat ? J , F*. Français e£
Gergonne. 309—3^8.

ASTRONOMIE.

Beeherche directe des ëlémens de Porbite d'un astre 9 au moyen de trois obser~
vations peu distantes; par M. Kramp. 1—29

Recherche des élémens autres que ceux qm déterminent le plan de Porbite y au
moyen de dpux observations , lorsque ce plan est déjà, connu ; par M. Krarnp.

J22 I — 2 3 6 .

Recherche des époques Ses conjonctions et oppositions des satellites des planètes ,
et de celles de leurs éclipses ; par M. Kramp. 2o5—2&8*

COMBINAISONS.

Solution d'un problème de situation, relatif aux polygones ; par M. Argant?*

Tom. F~ 53



586 T A B L E

CORRESPONDANCE.

Lettre d'un Ahonnè au rédacteur des Annales, li86-*»ï8g>.

Extraits de diverses lettres de MM. Sewois , Argand 1 J. F, Français et Dtf-
iuat, au rédacteur des Annales. aïo^-aso.

DYNAMIQUE.

Réflexions sur le problème de la tfactoire plant ; par MM. Serçois , Argand f

Français et Dubuat. 210—-216*
Observations sur ie problème du pendule à point de suspension mobile ; par MM,

Argand et Dubuat* ai6«-»2ao

GEOMETRIE ANALITIQUE.

Recherche des diverses relations entre les diamètres conjugués de l'ellipsoïde ; pat?
M. Gergonne. ZQ-^&Z»

Démonstration d'une propriété des lignes du second ordre \ par MM«* Gérard et
ÏÏrianchon. 5a—55#

Essai sur un nouveau mode de discussion de Véquation générale cLes lignes , fct
de celle des surfaces du second ordre ; par M» Gergonne. 61—-88.

, Démonstration de deux théorèmes relatifs aux lignes et surfaces du second ordre;
par un Abonné. 88-*~92.

Théorie analitique de la ligne droite et du plan ; par M. Bref. 329—341.
Essai sur la recherche des grandeur et direction des diamètres principaux , dans

les lignes et surfaces du second ordre, qui ont un centre ; par M. Bret* 357**363.

GEOMETRIE DES COURBES.

F Description des sections coniques, par les intersections continuelles de leurs tan-
gentes; par M. Gergonne. * 49-"""53*

Démonstration d'une propriété de$ lignes du second ordre qui ont un centre $
par MM. Bèrard etBrianchon. 52—55.

Essai sur la recherche des grandeur et direction des diamètres principaux de$
lignes et surfaces da second ordre , rapportées à des coordonnées obliques 3 par M«
Gergonne. 6j—- 88.

Démonstration de deux théorèmes relatifs aux lignes et surfaces du second ordre ;
par un Abonné. 88—»§z*

Solution de deux problèmes relatifs aux surfaces du second ordre ; par M. Bref.

Essai sur la recherche des grandeur et direction des diamètres principaux, dans
6 lignes et surfaces du second ordre qui ont un centre \ par M* Bret. 357—363«



D E S M A T I E R E S . S87
GÉOMÉTRIE ÉLÉMENTAIRE.

Solution d'un problème relatif à la détermination de trois cercles qui se touchent
âeux à deux ; par M. J. B. Burrande. 295—299.

Solution de deux problèmes de géométrie relatifs au triangle et au tétraèdre , par
M. «7. B, Burrande. 3oi—309,

Théorèmes curieux , relatifs aux poligones réguliers ; par feu Français, 34l-*-35i.

HYDROSTATIQUE.

Rapport de M. Carnot à la première classe de l'institut 9 SUF un mémoire relatif
i la stabilité des corps flottans; par M. Ck. Dupin. 172—«i83.

MATHEMATIQUES APPLIQUÉES.

Expériences sur la flexibilité, la force et l'élasticité des bais; par M. Ch. Dupm.

OPTIQUE.

De la multiplicité des images d'un même objet , considéré à travers une glace
posée obliquement , ou réHéchi par un miroir plan, non métallique ; par M. Ger~
gonne. ^83—295,

Recherches sur le meilleur système d'éclairage d'une table rectangulaire ou
elliptique ; par un Abonné. 369—384»

PHILOSOPHIE MATHEMATIQUE.

Réflexions sur les divers systèmes d'exposition àes principes du caïeuî différer
îiel ? et en particulier sur la doctrine des infiniment petits; par M. Servoîs. 141—17Î0

De l'usage des infiniment petits dans la géométrie élémentaire ; par M. Gergonne.
183—186.

Réflexions sur la nouvelle théorie des imaginaires, suivies d'une application à WÏ
théorème d'analise ; par M. Arganâ, 197—21a.

Considérations philosophiques sur FinterpolatioB ; par M^ Gsrgonne. a



DES MATIERES. 388

C O R R E S P O N D A N C E

Entre les questions proposées et l.s q- estions rcso'ues.

Tome III, page zii

Tome IV, page

Page

Page

Tome V , page

Page

ag«

Page

Page

Page

Page

Problème

Problème
Problème

Problème

Théorème

Théorème

Ç Problème.
3 2 0 \ Théorème
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CORRECTIONS ET ADDITIONS

Pour le tome cinquième des Annales.

A AGE 3 , lignes 21 et 28 — u. ; lisez : *j.
Page 4 » ligne 6 — p ; Usez : n.

Page 6 , ligne 16—-— ; lisez: — .

•^5
Page S . l i g n e a - — ;

Page 12 , ligne 16 — B ; Z/5
Pag. i4 1 ligne 7 , — Sin.0'; lisez : Sin.0.

ligne 8 , — SinJ , lisez : S'mJ'.

Pages 1 8 , 1 9 , 2 0 , 2 1 — changez tous les <p en %.

Page 23 , ligne r4 — o" ; lisez : 0".
Page 24 Î ligne 6 , en remontant — 9,1430240 ; lisez : Oji43o24o.
Page 3 i , ligne 4 1 en remontant — abc ; /*Vtf̂  : afbfcf.
Page 3 s , problème d'architecture — donnés; lisez : données*
Page 69 , ligne 1 —* de la relation ; lisez : de relation.

( i3) ; lisez: (i5)
Page 99 , ligne 8 — Avant on aura évidemment ; écrivez :

en posant ^^c=f, -$*y=u.
Pag, 100 , ligne i3 —la fonction composée; ajoutez :/...£.
Page n 3 , équation (60) première ligne — après ( L / ) 2 ; écrivez: z.

C , ,. C
12:9, équations(io4) Ueligne (x—é)df'9hsez:—(ix—fi(jr--p)af.

2.e ligne —A{x—0 ;

B(x—ê) i
(jpx—<pê) *

Page i32 , équation (112), dernier terme —» après — — ; mettez : a**

Page i43 , ligne 9 , en remontant — Archimede ; lisez : Archimede$>
x44? ligne i t — Karoten j lisez: Karsten.

Rœstner ; lisez : Kaestner,



39o CORRECTIONS ET ADDITIONS.
Page i45 9 ligne ro — implique ; lisez : impliquent.
Page 148, ligne 4 — après théorie ; mettez ( ; ).

après pratique ; supprimez (; ).
Page i56 , h la note , équation (1) *—(ra-i) ; lisez : (tfi-f*i)»
Page 162 y ligne 7 , en remontant — changez tous les | en £•

ligne 2 , en remontant —- £+f ; foer : ^+£<»
Page 168, ligne 8 — ce qu'on fait; lisez : ce qu'on a fait,

ligne 20 — Hertïnus ; lisez 1 Herlinus.
Page 1 &4 , ligne 4 "*• y®1 n e y0lt 5 Usez : qui ne voit pas.
Page 187 , ligne 4 — supprimez : au moins.
Page 2.08 , ligne 12 — de Tanalise ? Zw&z : de l'anatise^? (*) ; et mettez en note es

gui suit :
(•) Cela a été exécuté par M. Legendre , dans la seconde édition de sa théorie

des nombres , pag. I 5 I , n,° 1^9.
J. D. G.

Page ^47 9 après la ligne i3 , ajoutez cet alinéa»

Cette série pourrait sembler en contradiction avec la série connue

n

maïs f outre que 9 dans les applications aux nombres , elles donnent
les mêmes résultats , leur coexistence se trouve justifiée par la
légitimité des procédés qui conduisent à l'une et à l'autre. Elles
admettent toutes deux un complément qui tend sans cesse à devenir
le même ? à mesure que Ton prend un plus grand nombre de
termes.
Page 261, ligne 16 —• algarithmîques ; lisez 1 algorithmiques.
Page 276 ? ligne 2, ? en remontant. — avant 5Cos.*<p : mettez : —»

Supplément à /'Errata au tome

Pages i 5 ï , î 5 3 , i5o , au titre — ORDRE % lisez : DEGRÉ,
Page a4j ? ligne i3 — *'—-*=J2^ ; /we^ : */~*=^2i£.




