Progrès récents sur l'hypothèse du continu
Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Exposé no. 915, pp. 147-172.

Les travaux récents de Woodin ont considérablement renouvelé la théorie des ensembles en lui apportant une intelligibilité globale et en restaurant son unité. Pour la première fois, ses résultats ouvrent une perspective réaliste de résoudre le problème du continu, et, à tout le moins, ils établissent le caractère irréfutablement signifiant et précis de celui-ci.

Woodin's recent work has considerably renewed set theory by restoring its unity and making the domain more globally intelligible. For the first time, his results open a realistic perspective to solve the Continuum Problem, and, at the very least, they show that the latter is an unquestionably meaningful and precise question.

Classification : 03Exx
Mots clés : théorie des ensembles, hypothèse du continu, forcing, axiome de Grand cardinal
@incollection{SB_2002-2003__45__147_0,
     author = {Dehornoy, Patrick},
     title = {Progr\`es r\'ecents sur l'hypoth\`ese du continu},
     booktitle = {S\'eminaire Bourbaki : volume 2002/2003, expos\'es 909-923},
     author = {Collectif},
     series = {Ast\'erisque},
     note = {talk:915},
     pages = {147--172},
     publisher = {Association des amis de Nicolas Bourbaki, Soci\'et\'e math\'ematique de France},
     address = {Paris},
     number = {294},
     year = {2004},
     zbl = {1057.03042},
     mrnumber = {2111643},
     language = {fr},
     url = {http://www.numdam.org/item/SB_2002-2003__45__147_0/}
}
TY  - CHAP
AU  - Dehornoy, Patrick
TI  - Progrès récents sur l'hypothèse du continu
BT  - Séminaire Bourbaki : volume 2002/2003, exposés 909-923
AU  - Collectif
T3  - Astérisque
N1  - talk:915
PY  - 2004
DA  - 2004///
SP  - 147
EP  - 172
IS  - 294
PB  - Association des amis de Nicolas Bourbaki, Société mathématique de France
PP  - Paris
UR  - http://www.numdam.org/item/SB_2002-2003__45__147_0/
UR  - https://zbmath.org/?q=an%3A1057.03042
UR  - https://www.ams.org/mathscinet-getitem?mr=2111643
LA  - fr
ID  - SB_2002-2003__45__147_0
ER  - 
Dehornoy, Patrick. Progrès récents sur l'hypothèse du continu, dans Séminaire Bourbaki : volume 2002/2003, exposés 909-923, Astérisque, no. 294 (2004), Exposé no. 915, pp. 147-172. http://www.numdam.org/item/SB_2002-2003__45__147_0/

[1] J. Bagaria - “Bounded forcing axioms as principles of generic absoluteness”, Arch. Math. Logic 69 (2000), no. 6, p. 393-401. | MR 1773776 | Zbl 0966.03047

[2] P. Dehornoy - “La détermination projective d'après Martin, Steel et Woodin”, in Sém. Bourbaki (1988/89), Astérisque, vol. 177-178, Société Mathématique de France, 1989, exp. no 710, p. 261-276. | Numdam | MR 1040576 | Zbl 0693.03033

[3] M. Feng, M. Magidor & H. Woodin - “Universally Baire sets of reals”, in Set Theory of the Continuum (H. Judah, W. Just & H. Woodin, éds.), MSRI Publ., vol. 26, Springer, 1992, p. 203-242. | MR 1233821 | Zbl 0781.03034

[4] M. Foreman - “Generic large cardinals : new axioms for mathematics ?”, in Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998). | MR 1648052 | Zbl 0917.03022

[5] M. Foreman, M. Magidor & S. Shelah - “Martin's maximum, saturated ideals, and nonregular ultrafilters”, Ann. of Math. 127 (1988), no. 1, p. 1-47. | MR 924672 | Zbl 0645.03028

[6] H. Friedman - “On the necessary use of abstract set theory”, Adv. in Math. 41 (1981), p. 209-280. | MR 630921 | Zbl 0483.03030

[7] K. Gödel - “What is Cantor's Continuum Problem ?”, Amer. Math. Monthly 54 (1947), p. 515-545. | MR 23780 | Zbl 0038.03003

[8] M. Goldstern & S. Shelah - “The bounded proper forcing axiom”, J. Symbolic Logic 60 (1995), no. 1, p. 58-73. | MR 1324501 | Zbl 0819.03042

[9] A. Kanamori - The higher infinite, Springer, Berlin, 1994. | MR 1321144 | Zbl 0813.03034

[10] Yu. Manin - “Georg Cantor and his heritage”, arXiv:math.AG/0209244, 2002. | MR 2101294 | Zbl 1106.03302

[11] Y. Matijasevich & J. Robinson - “Reduction of an arbitrary Diophantine equation in one in 13 unknowns”, Acta Arith. 27 (1975), p. 521-553. | MR 387188 | Zbl 0279.10019

[12] W. Mitchell & J. Steel - Fine structure and iteration trees, Springer, Berlin, 1994. | MR 1300637 | Zbl 0805.03042

[13] Y. Moschovakis - Descriptive set theory, North-Holland, Amsterdam, 1980. | MR 561709 | Zbl 0433.03025

[14] S. Shelah - Proper and improper forcing, 2e 'ed., Perspectives in Math. Logic, Springer, Berlin, 1998. | MR 1623206 | Zbl 0495.03035

[15] S. Todorcevic - “Generic absoluteness and the continuum”, Math. Res. Lett. 9 (2002), p. 465-471. | MR 1928866 | Zbl 1028.03040

[16] W. H. Woodin - The Axiom of Determinacy, forcing axioms, and the nonstationary ideal, Walter de Gruyter and co., Berlin, 1999. | MR 1713438 | Zbl 1203.03059

[17] -, “The Continuum Hypothesis, I and II”, Notices Amer. Math. Soc. 48 (2001), no. 6, p. 567-576, & 8 (2001), no. 7, p. 681-690. | MR 1834351 | Zbl 0992.03063

[18] -, The Continuum Hypothesis and the Ø-Conjecture, Coxeter Lectures, Fields Institute, Toronto, novembre 2002, Notes disponibles à l'adresse http://av.fields.utoronto.ca/slides/02-03/coxeter_lectures/woodin/.

[19] -, “The Continuum Hypothesis”, in Proceedings Logic Colloquium 2000, Paris, à paraître.