@incollection{SB_2000-2001__43__85_0, author = {Herzlich, Marc}, title = {L'in\'egalit\'e de {Penrose}}, booktitle = {S\'eminaire Bourbaki : volume 2000/2001, expos\'es 880-893}, series = {Ast\'erisque}, note = {talk:883}, pages = {85--111}, publisher = {Soci\'et\'e math\'ematique de France}, number = {282}, year = {2002}, mrnumber = {1975176}, zbl = {1042.53022}, language = {fr}, url = {http://www.numdam.org/item/SB_2000-2001__43__85_0/} }
TY - CHAP AU - Herzlich, Marc TI - L'inégalité de Penrose BT - Séminaire Bourbaki : volume 2000/2001, exposés 880-893 AU - Collectif T3 - Astérisque N1 - talk:883 PY - 2002 SP - 85 EP - 111 IS - 282 PB - Société mathématique de France UR - http://www.numdam.org/item/SB_2000-2001__43__85_0/ LA - fr ID - SB_2000-2001__43__85_0 ER -
%0 Book Section %A Herzlich, Marc %T L'inégalité de Penrose %B Séminaire Bourbaki : volume 2000/2001, exposés 880-893 %A Collectif %S Astérisque %Z talk:883 %D 2002 %P 85-111 %N 282 %I Société mathématique de France %U http://www.numdam.org/item/SB_2000-2001__43__85_0/ %G fr %F SB_2000-2001__43__85_0
Herzlich, Marc. L'inégalité de Penrose, in Séminaire Bourbaki : volume 2000/2001, exposés 880-893, Astérisque, no. 282 (2002), Talk no. 883, 27 p. http://www.numdam.org/item/SB_2000-2001__43__85_0/
[1] « Coordinate invariance and energy expressions in General Relativity », Phys. Rev. 122 (1961), p. 997-1006. | MR | Zbl
, & -[2] « On a construction of coordinates at infinity on manifolds with fast curvature decay and maximal volume growth », Invent. math. 97 (1989), p. 313-349. | MR | Zbl
, & -[3] « Lower eigenvalues estimates for Dirac operators », Math. Ann. 293 (1992), p. 39-46. | MR | Zbl
-[4] « The mass of an asymptotically flat manifold », Commun. Pure. Appl. Math. 39 (1986), p. 661-693. | MR | Zbl
-[5] _, « New definition of quasi-local mass », Phys. Rev. Lett. 62 (1989), p. 2346-2348. | MR
[6] _, « Quasi-spherical metrics and prescribed scalar curvature », J. Diff. Geom. 37 (1993), p. 31-71. | MR | Zbl
[7] Geometry of manifolds, Pure Appl. Math., vol. XV, Acad. Press, New York, 1964. | MR | Zbl
& -[8] « Stabilité par déformation non-linéaire de la métrique de Minkowski », Sém. Bourbaki n° 740, Astérisque, vol. 201-202-203, Soc. math. France, 1991, p. 321-358. | Numdam | MR | Zbl
-[9] « Proof of the Riemannian Penrose conjecture using the positive mass theorem », J. Diff. Geom., 59 (2001), p. 177-267. | MR | Zbl
-[10] « Curvature estimates and the positive mass theorem », Commun. Anal. Geom., 10 (2002), p. 291-306. | MR | Zbl
& -[11] « Recent proofs of the Riemannian Penrose inequality », Current Developments in Mathematics, Harvard Univ., 1999. | MR
& -[12] « Non-existence of multiple black holes in asymptotically euclidean vacuum spacetimes », Gen. Rel. Grav. 19 (1987), p. 147-154. | MR | Zbl
&, -[13] « Positive energy theorems », Relativity, groups and topology II, Les Houches XL, 1983 (B. De Witt & R. Stora, éds.), Elsevier, Amsterdam, 1984, p. 740-785. | MR | Zbl
-[14] « Boundary conditions at spatial infinity from a Hamiltonian point of view », Topological properties and global structure of spacetime, Erice 1985 (P. Bergmann & V. de Sabbata, éds.), Plenum, New York, 1986, p. 49-59. | MR | Zbl
-[15] _, « On the invariant mass conjecture in General Relativity », Commun. Math. Phys 120 (1988), p. 233-248. | MR | Zbl
[16] « The energy determined in General Relativity on the basis of the traditional Hamiltonian approach does not have physical meaning », Theor. Math. Phys. 56 (1983), p. 832-838, english translation. | Zbl
& -[17] « Motion of level sets by mean curvature », J. Diff. Geom. 33 (1991), p. 635-681. | MR | Zbl
& -[18] « Energy extraction », Ann. N. Y. Acad. Sci. 224 (1973), p. 108-117. | Zbl
-[19] _, « General Relativity », in Differential geometry, Proc. Symp. Pure Math., vol. 27, Amer. Math. Soc., Providence, 1975. | MR
[20] « An evolution problem for linear growth functionals », Comm. Partial Differential Equations 19 (1994), p. 1879-1907. | MR | Zbl
& -[21] « Gravitational radiation in an expanding universe », J. Math. Phys. 9 (1968), p. 598-604.
-[22] The large-scale structure of space-time, Cambridge Univ. Press, Cambridge, 1973. | MR | Zbl
& -[23] « Compactification conforme des variétés asymptotiquement plates », Bull. Soc. math. France 125 (1997), p. 55-92. | Numdam | MR | Zbl
-[24] _, « A Penrose-like inequality for the mass of Riemannian asymptotically flat manifolds », Commun. Math. Phys. 188 (1997), p. 121-133. | MR | Zbl
[25] « Première valeur propre de l'opérateur de Dirac et nombre de Yamabe », C. R. Acad. Sci. Paris 313 (1991), p. 865-868. | MR | Zbl
-[26] « The inverse mean curvature flow and the Riemannian Penrose inequality », J. Diff. Geom., 59 (2001), p. 353-437. | MR | Zbl
& -[27] _, « Proof of the Penrose inequality », Int. Math. Res. Not. 20 (1997), p. 1045-1058, annonce. | Zbl
[28] Elliptic regularization and partial regularity for motion by mean curvature, Memoirs Amer. Math. Soc., vol. 520, Amer. Math. Soc., Providence, RI, 1994. | MR | Zbl
-[29] « The positive energy conjecture and the cosmic censor hypothesis », J. Math. Phys. 18 (1977), p. 41-44. | MR
& -[30] « Positive energy in General Relativity », Sém. Bourbaki n° 593, Astérisque, vol. 92-93, Soc. math. France, 1982, p. 315-330. | Numdam | MR | Zbl
-[31] « Maximal extension of the Schwarzschild metric », Phys. Rev. 119 (1960), p. 1743-1745. | MR | Zbl
-[32] « The Yamabe problem », Bull. Amer. Math. Soc. 17 (1987), p. 37-91. | MR | Zbl
& -[33] Théories relativistes de la gravitation et de l'électromagnétisme, Masson, Paris, 1955. | Zbl
-[34] _, « Spineurs harmoniques », C. R. Acad. Sci. Paris 257 (1963), p. 7-9. | MR | Zbl
[35] « Pseudosolutions of the time-dependant minimal surface problem », J. Diff. Eq. 30 (1978), p. 340-363. | MR | Zbl
& -[36] « Fredholm properties of a class of elliptic operators on non-compact manifolds », Duke Math. J. 48 (1983), p. 289-312. | MR | Zbl
-[37] « Elliptic differential operators on non-compact manifolds », Ann. Scuola. Norm. Sup. Pisa 12 (1985), p. 409-447. | Numdam | MR | Zbl
& -[38] « Solutions for the two-phase Stefan problem with the Gibbs-Thompson law for the melting temperature », Eur. J. Appl. Math. 1 (1990), p. 101-111. | MR | Zbl
-[39] « Trapped surfaces and the Penrose inequality in spherically symmetric geometries », Phys. Rev. D 49 (1994), p. 6931-6934. | MR
& -[40] Minimal surfaces of codimension one, North-Holland Math. Stud., vol. 91, Elsevier, 1984. | MR | Zbl
& -[41] Semi-Riemannian geometry, Acad. Press, San Diego, 1983. | MR | Zbl
-[42] « Conformal treatment of infinity », Relativity, groups and topology (C. de Witt & B. de Witt, éds.), École d'été de Physique Théorique, Les Houches 1963, Cordon and Breach, 1963, p. 563-584. | MR | Zbl
-[43] _, « Naked singularities », Ann. N. Y. Acad. Sci. 224 (1973), p. 125-134.
[44] « On the proof of the positive mass conjecture in General Relativity », Commun. Math. Phys 65 (1979), p. 45-76. | MR | Zbl
& -[45] _, « On the structure of manifolds with positive scalar curvature », Manuscripta math. 28 (1979), p. 159-183. | MR | Zbl
[46] _, « The energy and linear-momentum of spacetimes in general relativity », Commun. Math. Phys. 79 (1981), p. 47-51. | MR | Zbl
[47] « Über das Gravitationsfeld eines Masses nach der Einsteinschen Theorie », Sitz. König. Preuss. Akad. Wiss. (1916), p. 189-196. | JFM
-[48] Lectures on geometric measure theory, Proc. Centre Math. Anal., vol. 3, Austr. Nat. Univ., 1983. | MR | Zbl
-[49] « Regularity of constrained area minimizing hypersurfaces », J. Diff. Eq. 94 (1991), p. 83-94. | MR | Zbl
, & -[50] « Nucleation and mean curvature flow », Comm. Partial Differential Equations 23 (1998), p. 17-53. | MR | Zbl
-[51] General Relativity, Univ. Chicago Press, Chicago, 1984. | MR | Zbl
-[52] « A new proof of the positive energy theorem », Commun. Math. Phys. 80 (1981), p. 381-402. | MR | Zbl
-