@incollection{SB_1986-1987__29__55_0, author = {Meyer, Paul-Andr\'e}, title = {Calcul stochastique non commutatif}, booktitle = {S\'eminaire Bourbaki : volume 1986/87, expos\'es 669-685}, series = {Ast\'erisque}, note = {talk:672}, pages = {55--66}, publisher = {Soci\'et\'e math\'ematique de France}, number = {152-153}, year = {1987}, mrnumber = {936848}, zbl = {0639.46056}, language = {fr}, url = {http://www.numdam.org/item/SB_1986-1987__29__55_0/} }
TY - CHAP AU - Meyer, Paul-André TI - Calcul stochastique non commutatif BT - Séminaire Bourbaki : volume 1986/87, exposés 669-685 AU - Collectif T3 - Astérisque N1 - talk:672 PY - 1987 SP - 55 EP - 66 IS - 152-153 PB - Société mathématique de France UR - http://www.numdam.org/item/SB_1986-1987__29__55_0/ LA - fr ID - SB_1986-1987__29__55_0 ER -
%0 Book Section %A Meyer, Paul-André %T Calcul stochastique non commutatif %B Séminaire Bourbaki : volume 1986/87, exposés 669-685 %A Collectif %S Astérisque %Z talk:672 %D 1987 %P 55-66 %N 152-153 %I Société mathématique de France %U http://www.numdam.org/item/SB_1986-1987__29__55_0/ %G fr %F SB_1986-1987__29__55_0
Meyer, Paul-André. Calcul stochastique non commutatif, in Séminaire Bourbaki : volume 1986/87, exposés 669-685, Astérisque, no. 152-153 (1987), Talk no. 672, 12 p. http://www.numdam.org/item/SB_1986-1987__29__55_0/
Quantum Ito's formula and stochastic evolutions, Comm. Math. Phys. 1984, p. 301-323. | MR | Zbl
etQuantum Markov processes on Fock space described by integral kernels. Quantum probability and applications II, p. 361-374. (Heidelberg 1984, L. Accardi et W. von Waldenfels ed.) Lecture Notes in Math. 1136. | MR
Éléments de probabilités quantiques, Sém. Prob. XX, p. 186-312 (J. Azéma et M. Yor éd.). Lecture Notes in Math. 1204, Springer 1986 (à suivre vol. XXI). | Numdam | MR | Zbl
-The Ito-Clifford Integral, J. Functional Anal. 48, 1982 ; J. London M. Soc. 27, 1983 ; Comm. Math. Phys. 89, 1983 ; | MR | Zbl
, , -J. Operator Theory 11, 1984.
Cf. J. Funct. Anal. 58, 1984 ; et , Comm. Math. Phys. 96, 1984. | MR
et ,Uses of non-Fock brownian motion and a quantum martingale representation theorem. Quantum probability and applications II, Proceedings Heidelberg 1984, Lecture Notes in Math. 1136. | Zbl
, -Stochastic integral representation of bounded quantum martingales in Fock space, et Stop times in Fock space quantum stochastic calculus.
et