@incollection{AST_2008__317__175_0, author = {De Lellis, Camillo}, title = {Ordinary differential equations with rough coefficients and the renormalization theorem of {Ambrosio} [after {Ambrosio,} {DiPerna,} {Lions]}}, booktitle = {S\'eminaire Bourbaki - Volume 2006/2007 - Expos\'es 967-981}, series = {Ast\'erisque}, note = {talk:972}, pages = {175--203}, publisher = {Soci\'et\'e math\'ematique de France}, number = {317}, year = {2008}, mrnumber = {2487734}, zbl = {1169.35060}, language = {en}, url = {http://www.numdam.org/item/AST_2008__317__175_0/} }
TY - CHAP AU - De Lellis, Camillo TI - Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions] BT - Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 AU - Collectif T3 - Astérisque N1 - talk:972 PY - 2008 SP - 175 EP - 203 IS - 317 PB - Société mathématique de France UR - http://www.numdam.org/item/AST_2008__317__175_0/ LA - en ID - AST_2008__317__175_0 ER -
%0 Book Section %A De Lellis, Camillo %T Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions] %B Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981 %A Collectif %S Astérisque %Z talk:972 %D 2008 %P 175-203 %N 317 %I Société mathématique de France %U http://www.numdam.org/item/AST_2008__317__175_0/ %G en %F AST_2008__317__175_0
De Lellis, Camillo. Ordinary differential equations with rough coefficients and the renormalization theorem of Ambrosio [after Ambrosio, DiPerna, Lions], in Séminaire Bourbaki - Volume 2006/2007 - Exposés 967-981, Astérisque, no. 317 (2008), Talk no. 972, 29 p. http://www.numdam.org/item/AST_2008__317__175_0/
[1] On vector fields as generators of flows: a counterexample to Nelson's conjecture", Ann. Math. (2) 107 (1978), p. 287-296. | DOI | MR | Zbl
- "[2] Rank one property for derivatives of functions with bounded variation", Proc. Roy. Soc. Edinburgh Sect. A 123 (1993), p. 239-274. | DOI | MR | Zbl
- "[3]
, & - In préparation.[4] Lecture notes on transport equation and Cauchy problem for bv vector fields and applications", Lectures of a course given in Luminy, October 2003.
- "[5] Transport equation and Cauchy problem for non-smooth vector fields", Lecture Notes of the CIME Summer school in Cetrary, June 27-July 2, 2005. | MR | Zbl
, "[6] Transport equation and Cauchy problem for vector fields", Invent. Math. 158 (2004), p. 227-260. | DOI | MR | Zbl
, "[7] Well-posedness for a class of hyperbolic systemes of conservation laws in several space dimensions", Comm. Partial Differential Equations 29 (2004), p. 1635-1651. | DOI | MR | Zbl
, & - "[8] Existence, uniqueness, stability and differentiability properties of the flow associated to weakly differentiable vector fields", in Transport Equations and Multi- Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana, Springer Verlag, Berlin-Heidelberg, 2008. | DOI | MR | Zbl
& - "[9] Traces and fine properties of a class of vector fields and applications", Ann. Fac. Sci. Toulouse Math. (6) 14 (2005), p. 527-561. | DOI | EuDML | Numdam | MR | Zbl
, & - "[10] Existence of solutions for a class of hyperbolic Systems of conservation laws in several space dimensions", Int. Math. Res. Not. 41 (2003), p. 2205-2220. | DOI | MR | Zbl
& - "[11] On the chain rule for the divergence of vector fields: applications, partial results, open problems", in Perspectives in nonlinear partial differential équations, 2007, p. 31-67, | DOI | MR | Zbl
, & - "[11] On the chain rule for the divergence of vector fields: applications, partial results, open problems", Contemp. Math. 446, Amer. Math. Soc., Providence, RI. | MR | Zbl
, & - "[12] Functions of bounded variation and free discontinuity problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, 2000. | MR | Zbl
, & -[13] Lipschitz regularity and approximate differentiability of the DiPerna-Lions flow", Rend. Sem. Mat. Univ. Padova 114 (2005), p. 29-50 (2006). | EuDML | Numdam | MR | Zbl
, & - "[14] Very weak notions of differentiability", Proc. Roy. Soc. Edinburgh Sect. A 137 (2007), p. 447-455. | DOI | MR | Zbl
& - "[15] Renormalized solutions to the Vlasov equation with coefficients of bounded variation", Arch. Ration. Mech. Anal. 157 (2001), p. 75-90. | DOI | MR | Zbl
- "[16] On two-dimensional Hamiltonian transport equations with continuous coefficients", Differential Intégral Equations 14 (2001), p. 1015-1024. | MR | Zbl
& - "[17] An ill posed Cauchy problem for a hyperbolic System in two space dimensions", Rend. Sem. Mat. Univ. Padova 110 (2003), p. 103-117. | EuDML | Numdam | MR | Zbl
- "[18] A lemma and a conjecture on the cost of rearrangements", Rend. Sem. Mat. Univ. Padova 110 (2003), p. 97-102. | EuDML | Numdam | MR | Zbl
, "[19] On some analogy between different approaches to first order PDE's with nonsmooth coefficients", Adv. Math. Sci. Appl. 6 (1996), p. 689-703. | MR | Zbl
& - "[20] A note on two-dimensional transport with bounded divergence", Comm. Partial Differential Equations 31 (2006), p. 1109-1115. | DOI | MR | Zbl
, & - "[21] Uniqueness of continuous solutions for vector fields", Duke Math. J. 111 (2002), p. 357-384. | DOI | MR | Zbl
& - "[22] Uniqueness and nonuniqueness for nonsmooth divergence free transport", in Séminaire: Équations aux Dérivées Partielles, 2002-2003, Sémin. Équ. Dériv. Partielles, École polytech., 2003, p. 21. | EuDML | Numdam | MR | Zbl
, & - "[23] Oscillatory solutions to transport equations", Indiana Univ. Math. J. 55 (2006), p. 1-13. | DOI | MR | Zbl
& - "[24] Estimates and regularity results for the DiPerna-Lions flow", J. reine angew. Math. 616 (2008), p. 15-46. | MR | Zbl
& , "[25] Notes on hyperbolic Systems of conservation laws and transport equations", Handbook of evolutionary differential équations, Vol. III, 2006. | MR | Zbl
- "[26] A note on Alberti's rank-one theorem", in Transport Equations and Multi- Hyperbolic Conservation Laws, Lecture Notes of the Unione Matematica Italiana, Springer Verlag, Berlin-Heidelberg, 2008. | DOI | MR | Zbl
, "[27] Non-unicité du transport par un champ de vecteurs presque ", in Séminaire: Équations aux Dérivées Partielles, 2002-2003, Sémin. Equ. Dériv. Partielles, École polytech., 2003, p. 9. | EuDML | Numdam | MR | Zbl
- "[28] Ordinary differential equations, transport theory and Sobolev spaces", Invent. Math. 98 (1989), p. 511-547. | DOI | EuDML | MR | Zbl
& - "[29] Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, 1998. | MR | Zbl
-[30] Measure theory and fine properties of functions, Studies in Advanced Mathematics, CRC Press, 1992. | MR | Zbl
& -[31] On two-dimensional Hamiltonian transport equations with coefficients", Ann. Inst. H. Poincaré Anal. Non Linéaire 20 (2003), p. 625-644. | DOI | EuDML | Numdam | MR | Zbl
- "[32] Renormalized solutions of some transport equations with partially velocities and applications", Ann. Mat. Pura Appl. (4) 183 (2004), p. 97-130. | DOI | MR | Zbl
& - "[33] Sur les équations différentielles ordinaires et les équations de transport", C. R. Acad. Sci. Paris Sér. I Math. 326 (1998), p. 833-838. | DOI | MR | Zbl
- "