Walks in rigid environments: symmetry and dynamics
Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), 18 p.
@incollection{AST_2003__286__231_0,
     author = {Bunimovich, Leonid A.},
     title = {Walks in rigid environments: symmetry and dynamics},
     booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {286},
     year = {2003},
     zbl = {1046.37002},
     mrnumber = {2052304},
     language = {en},
     url = {http://www.numdam.org/item/AST_2003__286__231_0/}
}
TY  - CHAP
AU  - Bunimovich, Leonid A.
TI  - Walks in rigid environments: symmetry and dynamics
BT  - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
DA  - 2003///
IS  - 286
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2003__286__231_0/
UR  - https://zbmath.org/?q=an%3A1046.37002
UR  - https://www.ams.org/mathscinet-getitem?mr=2052304
LA  - en
ID  - AST_2003__286__231_0
ER  - 
Bunimovich, Leonid A. Walks in rigid environments: symmetry and dynamics, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), 18 p. http://www.numdam.org/item/AST_2003__286__231_0/

[1] R. K. Ahuja, T. L. Magnanti, J. B. Orlin. Network Flows. Prentice Hall, NY, 1993. | MR 1205775 | Zbl 1201.90001

[2] L. A. Bunimovich. Controlling production lines. In Handbook of Chaos Control, H. Schuster, editor, Wiley-VCH, Berlin, 1999. | Zbl 0966.93081

[3] L. A. Bunimovich. Walks in rigid environments. Physica A 279, 169-179, 2000. | Article | MR 1797139

[4] L. A. Bunimovich and S. E. Troubetzkoy. Recurrence properties of Lorentz lattice gas cellular automata. J. Statist. Phys., 67, 289-302, 1992. | Article | MR 1159466 | Zbl 0900.60103

[5] L. A. Bunimovich and S. E. Troubetzkoy. Topological properties of flipping Lorentz lattice gases. J. Statist. Phys., 72, 297-307, 1993. | Article | MR 1233032 | Zbl 1099.82509

[6] L. A. Bunimovich. Billiards and other hyperbolic systems. In Dynamical Systems, Ergodic Theory and Applications, Ya.G. Sinai, editor, Springer, Berlin, 2000. pp. 192-233. | Zbl 06329579

[7] B. Chopard. Complexity of cellular automata models. In Physics of Complexity, S. Ciliberto, T. Dauxois and M. Dros, eds., Editions Frontiers, Lyon, 1995. pp. 111-136.

[8] E. G. D. Cohen. New types of diffusion in lattice gas cellular automata. In Microscopic Simulation of Complex Hydrodynamic Phenomena, M. Marechal and B.L. Holian, eds., Plenum, NY, 1992. | Article

[9] M. Delorme, J. Mazoyer. Cellular Automata. Kluwer, Dordrecht, 1999. | Article | MR 1787013 | Zbl 0969.68107

[10] Dynamics of Complex Interacting Systems, E. Goles and S. Martinez, eds., Kluwer, Dordrecht, 1996. | MR 1421791

[11] A. Gajardo, A. Moreira and E. Goles. Complexity of Langton's ant. Discrete Appl. Math., 117, 41-50, 2002. | Article | MR 1881266 | Zbl 1050.68047

[12] General physical systems and the emergence of physical structures from information theory. Int. J. Gen. Syst, 27, 1-379, 1998. | Article | Zbl 0943.00041

[13] P. Grosfils, J.-P. Boon, E. G. D. Cohen and L. A. Bunimovich. Organization and propagation in deterministic Lorentz gases. J. Statist. Phys., 97, 375-401, 1999. | Article | MR 1736104

[14] M. Lyubich. The quadratic family as a qualitatively solvable model of chaos. Notices of AMS, 47, 1042-1052, 2000. | MR 1777885 | Zbl 1040.37032

[15] R. K. Mauldin, M. Monticino and H. Von Weizsäcker. Directionally reinforced random walks. Adv. in Math., 117, 239-252, 1996. | Article | MR 1371652 | Zbl 0845.60070

[16] E. W. Montroll and M. F. Shlesinger. On the wonderful world of random walks. In Studies in Statistical Mechanics XI, E.W. Montroll and J.L. Lebowitz, eds. North-Holland Phys. Publ., Amsterdam, 1984. | MR 757002 | Zbl 0556.60027

[17] R. Pemantle. Phase transition in reinforced random walk and RWRE on trees. Ann. Probab., 16, 1229-1241, 1995. | Article | MR 942765 | Zbl 0648.60077

[18] T. W. Ruijgrok and E. G. D. Cohen, Deterministic lattice gas models. Phys. Lett. A., 133, 415-418, 1988. | Article | MR 970743