On the mathematical contributions of Jacob Palis
Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), 24 p.
@incollection{AST_2003__286__1_0,
     author = {Newhouse, Sheldon},
     title = {On the mathematical contributions of {Jacob} {Palis}},
     booktitle = {Geometric methods in dynamics (I) : Volume in honor of Jacob Palis},
     editor = {de Melo, Wellington and Viana, Marcelo and Yoccoz, Jean-Christophe},
     series = {Ast\'erisque},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {286},
     year = {2003},
     zbl = {1047.37019},
     mrnumber = {2052295},
     language = {en},
     url = {http://www.numdam.org/item/AST_2003__286__1_0/}
}
TY  - CHAP
AU  - Newhouse, Sheldon
TI  - On the mathematical contributions of Jacob Palis
BT  - Geometric methods in dynamics (I) : Volume in honor of Jacob Palis
ED  - de Melo, Wellington
ED  - Viana, Marcelo
ED  - Yoccoz, Jean-Christophe
T3  - Astérisque
PY  - 2003
DA  - 2003///
IS  - 286
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_2003__286__1_0/
UR  - https://zbmath.org/?q=an%3A1047.37019
UR  - https://www.ams.org/mathscinet-getitem?mr=2052295
LA  - en
ID  - AST_2003__286__1_0
ER  - 
Newhouse, Sheldon. On the mathematical contributions of Jacob Palis, dans Geometric methods in dynamics (I) : Volume in honor of Jacob Palis, Astérisque, no. 286 (2003), 24 p. http://www.numdam.org/item/AST_2003__286__1_0/

[1] J. F. Alves, C. Bonatti, and M. Viana. SRB measures for partially hyperbolic systems whose central direction is mostly expanding. Invent. Math., 140(2),351-398, 2000. | Article | MR 1757000 | Zbl 0962.37012

[2] A. Andronov and L. Pontryagin. Systèmes grossiers. Dokl. Akad. Nauk. USSR, 14, 247-251, 1937. | JFM 63.0728.01 | Zbl 0016.11301

[3] D. V. Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov., 90, 209, 1967. | MR 224110 | Zbl 0163.43604

[4] M. Benedicks and L. Carleson. The dynamics of the Hénon map. Ann. of Math. (2), 133(1), 73-169, 1991. | Article | MR 1087346 | Zbl 0724.58042

[5] C. Bonatti, L. J. Díaz, and E. R. Pujals. A C 1 -generic dichotomy for diffeomorphisms: weak forms of hyperbolicity or infinitely many sinks or sources. Preprint, 1999. | MR 2018925 | Zbl 1049.37011

[6] P. Brunovský. On one-parameter families of diffeomorphisms. II. Generic branching in higher dimensions. Comment. Math. Univ. Carolinae, 12, 765-784, 1971. | EuDML 16464 | MR 309130 | Zbl 0239.58010

[7] C. Camacho, N. H. Kuiper, and J. Palis. The topology of holomorphic flows with singularity. Inst. Hautes Études Sci. Publ. Math., 48, 5-38, 1978. | Article | EuDML 103956 | Numdam | MR 516913 | Zbl 0411.58018

[8] M. J. Dias Carneiro and J. Palis. Bifurcations and global stability of families of gradients. Inst. Hautes Études Sci. Publ. Math., 70, 103-168, 1989. | Article | EuDML 104058 | Numdam | MR 1067381 | Zbl 0706.58042

[9] W. De Melo and J. Palis. Moduli of stability for diffeomorphisms. In Global theory of dynamical systems (Proc. Internat. Conf., Northwestern Univ., Evanston, Ill., 1979), pages 318-339. Springer, Berlin, 1980. | Article | MR 591192 | Zbl 0445.58020

[10] W. De Melo, J. Palis, and S. J. Van Strien. Characterising diffeomorphisms with modulus of stability one. In Dynamical systems and turbulence, Warwick 1980 (Coventry, 1979/1980), pages 266-285. Springer, Berlin, 1981. | Article | MR 654895 | Zbl 0482.58022

[11] L. J. Díaz. Robust nonhyperbolic dynamics and heterodimensional cycles. Ergodic Theory Dynam. Systems, 15(2), 291-315, 1995. | MR 1332405 | Zbl 0831.58035

[12] L. J. Díaz, E. R. Pujals, and R. Ures. Partial hyperbolicity and robust transitivity. Acta Math., 183(1), 1-43, 1999. | Article | MR 1719547 | Zbl 0987.37020

[13] L. J. Díaz and J. Rocha. Large measure of hyperbolic dynamics when unfolding heteroclinic cycles. Nonlinearity, 10(4), 857-884, 1997. | Article | MR 1457749 | Zbl 0908.58042

[14] J. M. Franks. Time dependent stable diffeomorphisms. Invent. Math., 24, 163-172, 1974. | Article | EuDML 142275 | MR 345136 | Zbl 0275.58011

[15] N. K. Gavrilov and L. P. Šil'Nikov. Three-dimensional dynamical systems that are close to systems with a structurally unstable homoclinic curve. I. Mat. Sb. (N.S.), 88(130), 475-492, 1972. | EuDML 70432 | MR 310355 | Zbl 0251.58005

[16] J. Guckenheimer. Absolutely Ω-stable diffeomorphisms. Topology, 11, 195-197, 1972. | Article | MR 296973 | Zbl 0246.58013

[17] J. Guckenheimer and R. F. Williams. Structural stability of Lorenz attractors. Inst. Hautes Études Sci. Publ. Math., 50, 59-72, 1979. | Article | EuDML 103965 | Numdam | MR 556582 | Zbl 0436.58018

[18] C. Gutiérrez. Structural stability for flows on the torus with a cross-cap. Trans. Amer.Math. Soc., 241, 311-320, 1978. | Article | MR 492303 | Zbl 0396.58017

[19] S. Hayashi. Connecting invariant manifolds and the solution of the C 1 stability and Ω-stability conjectures for flows. Ann. of Math. (2), 145(1), 81-137, 1997. | Article | MR 1432037 | Zbl 0871.58067

[20] M. V. Jakobson. Absolutely continuous invariant measures for one-parameter families of one-dimensional maps. Comm. Math. Phys., 81(1), 39-88, 1981. | Article | MR 630331 | Zbl 0497.58017

[21] S.-T. Liao. On the stability conjecture. Chinese Ann. Math., 1(1), 9-30, 1980. | MR 591229 | Zbl 0449.58013

[22] M. Lyubich. Almost every real quadratic map is either regular or stochastic. Annals of Math. To appear. | MR 1935840 | Zbl 1160.37356

[23] R. Mañé. Contributions to the stability conjecture. Topology, 17(4), 383-396, 1978. | Article | MR 516217 | Zbl 0405.58035

[24] R. Mañé. An ergodic closing lemma. Ann. of Math. (2), 116(3), 503-540, 1982. | Article | MR 678479 | Zbl 0511.58029

[25] R. Mañé. A proof of the C 1 stability conjecture. Inst. Hautes Études Sci. Publ. Math., 66, 161-210, 1988. | Article | EuDML 104026 | Numdam | MR 932138 | Zbl 0678.58022

[26] J. M. Marstrand. Some fundamental geometrical properties of plane sets of fractional dimensions. Proc. London Math. Soc. (3), 4, 257-302, 1954. | Article | MR 63439 | Zbl 0056.05504

[27] L. Mora and M. Viana. Abundance of strange attractors. Acta Math., 171(1), 1-71, 1993. | Article | MR 1237897 | Zbl 0815.58016

[28] C. A. Morales, M. J. Pacifico, and E. R. Pujals. Robust transitive singular sets for 3-flows are partially hyperbolic attractors and repellers. Preprint, 1999. | MR 2123928 | Zbl 1071.37022

[29] C. A. Morales, M. J. Pacífico, and E. R. Pujals. On C 1 robust singular transitive sets for three-dimensional flows. C. R. Acad. Sci. Paris Sér. I Math., 326(1), 81-86, 1998. | Article | MR 1649489 | Zbl 0918.58036

[30] C. G. Moreira and J.-C. Yoccoz. Stable intersections of regular Cantor sets with large Hausdorff dimension. Preprint 1998. | MR 1865980 | Zbl 1195.37015

[31] C. G. Moreira and J.-C. Yoccoz. Tangences homoclines stables pour les ensembles hyperboliques de grande dimension fractale. Preprint 2000. | Numdam | MR 2583264 | Zbl 1200.37020

[32] S. E. Newhouse. Nondensity of Axiom A(a) on S 2 . In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 191-202. Amer. Math. Soc., Providence, R.I., 1970. | MR 277005 | Zbl 0206.25801

[33] S. E. Newhouse. Diffeomorphisms with infinitely many sinks. Topology, 13, 9-18, 1974. | Article | MR 339291 | Zbl 0275.58016

[34] S. E. Newhouse. The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms. Inst. Hautes Études Sci. Publ. Math., 50, 101-151, 1979. | Article | EuDML 103959 | Numdam | MR 556584 | Zbl 0445.58022

[35] S. E. Newhouse and J. Palis. Bifurcations of Morse-Smale dynamical systems. In Dynamical systems (Proc. Sympos., Univ. Bahia, Salvador, 1971), pages 303-366, New York, 1973. Academic Press. | MR 334281 | Zbl 0279.58011

[36] S. E. Newhouse and J. Palis. Cycles and bifurcation theory. Astérisque, 31, 43-140, 1976. | Numdam | MR 516408 | Zbl 0322.58009

[37] S. E. Newhouse, J. Palis, and F. Takens. Bifurcations and stability of families of diffeomorphisms. Inst. Hautes Etudes Sci. Publ. Math., 57, 5-71, 1983. | Article | EuDML 103989 | Numdam | MR 699057 | Zbl 0518.58031

[38] J. Palis. On Morse-Smale dynamical systems. Topology, 8, 385-404, 1968. | Article | MR 246316 | Zbl 0189.23902

[39] J. Palis. Vector fields generate few diffeomorphisms. Bull. Amer. Math. Soc., 80, 503-505, 1974. | Article | MR 348795 | Zbl 0296.57008

[40] J. Palis. A differentiable invariant of topological conjugacies and moduli of stability. Astérisque, 51, 335-346, 1978. | Numdam | MR 494283 | Zbl 0396.58015

[41] J. Palis. A global view of dynamics and a conjecture on the denseness of finitude of attractors. Astérisque, 261, XIII-XIV, 335-347, 2000. Géométrie complexe et systèmes dynamiques (Orsay, 1995). | Numdam | MR 1755446 | Zbl 1044.37014

[42] J. Palis and S. Smale. Structural stability theorems. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 223-231. Amer. Math. Soc., Providence, R.I., 1970. | MR 267603 | Zbl 0214.50702

[43] J. Palis and F. Takens. Stability of parametrized families of gradient vector fields. Ann. of Math. (2), 118(3), 383-421, 1983. | Article | MR 727698 | Zbl 0533.58018

[44] J. Palis and F. Takens. Cycles and measure of bifurcation sets for two-dimensional diffeomorphisms. Invent. Math., 82(3), 397-422, 1985. | Article | EuDML 143292 | MR 811543 | Zbl 0579.58005

[45] J. Palis and F. Takens. Hyperbolicity and the creation of homoclinic orbits. Ann. of Math. (2), 125(2), 337-374, 1987. | Article | MR 881272 | Zbl 0641.58029

[46] J. Palis and F. Takens. Hyperbolicity and sensitive-chaotic dynamics at homoclinic bifurcations. Cambridge University Press, 1993. | MR 1237641 | Zbl 0790.58014

[47] J. Palis and M. Viana. High dimension diffeomorphisms displaying infinitely many periodic attractors. Ann. of Math. (2), 140(1), 207-250, 1994. | Article | MR 1289496 | Zbl 0817.58004

[48] J. Palis and J.-C. Yoccoz. Centralizers of Anosov diffeomorphisms on tori. Ann. Sci. École Norm. Sup. (4), 22(1), 99-108, 1989. | Article | EuDML 82249 | Numdam | MR 985856 | Zbl 0675.58029

[49] J. Palis and J.-C. Yoccoz. Rigidity of centralizers of diffeomorphisms. Ann. Sci. École Norm. Sup. (4), 22(1), 81-98, 1989. | Article | EuDML 82248 | Numdam | MR 985855 | Zbl 0709.58022

[50] J. Palis and J.-C. Yoccoz. Differentiable conjugacies of Morse-Smale diffeomorphisms. Bol. Soc. Brasil. Mat. (N.S.), 20(2), 25-48, 1990. | Article | MR 1143172 | Zbl 0726.58027

[51] J. Palis and J.-C. Yoccoz. Homoclinic tangencies for hyperbolic sets of large Hausdorff dimension. Acta Math., 172(1), 91-136, 1994. | Article | MR 1263999 | Zbl 0801.58035

[52] J. Palis and J. C. Yoccoz. Nonuniformily hyperbolic horseshoes unleashed by homoclinic bifurcations and zero density of attractors. C. R. Ac. Sc. Paris, 2000. To appear. | MR 1873226 | Zbl 1015.37024

[53] M. M. Peixoto. On structural stability. Ann. of Math. (2), 69, 199-222, 1959. | Article | MR 101951 | Zbl 0084.08403

[54] M. M. Peixoto. Structural stability on two dimensional manifolds. Topology, 1, 101-120, 1962. | Article | MR 142859 | Zbl 0107.07103

[55] V. A. Pliss. Analysis of the necessity of the conditions of Smale and Robbin for structural stability for periodic systems of differential equations. Differencial'nye Uravnenija, 8, 972-983, 1972. | MR 301766 | Zbl 0286.34088

[56] C. Pugh. The closing lemma. Amer. J. Math., 89, 956-1009, 1967. | Article | MR 226669 | Zbl 0167.21803

[57] C. Pugh and M. Shub. The Ω-stability theorem for flows. Invent. Math., 11, 150-158, 1970. | Article | EuDML 142049 | MR 287579 | Zbl 0212.29102

[58] E. R. Pujals and M. Sambarino. Homoclinic tangencies and hyperbolicity for surface diffeomorphisms: a conjecture of Palis. Annals of Math., 2000. To appear. | EuDML 120908 | MR 1779562 | Zbl 0959.37040

[59] E. R. Pujals and M. Sambarino. On homoclinic tangencies, hyperbolicity, creation of homoclinic orbits and varation of entropy. Nonlinearity, 13(3), 921-926, 2000. | Article | MR 1759008 | Zbl 0983.37059

[60] J. W. Robbin. A structural stability theorem. Ann. of Math. (2), 94, 447-493, 1971. | Article | MR 287580 | Zbl 0224.58005

[61] C. Robinson. Structural stability of vector fields. Ann. of Math. (2), 99, 154-175. 1974. | Article | MR 334283 | Zbl 0275.58012

[62] C. Robinson. Structural stability of C 1 diffeomorphisms. J. Differential Equations, 22(1), 28-73, 1976. | Article | MR 474411 | Zbl 0343.58009

[63] C. Robinson. Bifurcation to infinitely many sinks. Comm. Math. Phys., 90(3), 433-459, 1983. | Article | MR 719300 | Zbl 0531.58035

[64] A. Sannami. The stability theorems for discrete dynamical systems on two-dimensional manifolds. Nagoya Math. J., 90, 1-55, 1983. | Article | MR 702250 | Zbl 0515.58022

[65] S. Smale. Differentiable dynamical systems. Bull. Amer. Math. Soc., 73, 747-817, 1967. | Article | MR 228014 | Zbl 0202.55202

[66] J. Sotomayor. Generic one-parameter families of vector fields on two-dimensional manifolds. Inst Hautes Études Sci. Publ. Math., 43, 5-46, 1974. | Article | EuDML 103932 | Numdam | MR 339279 | Zbl 0279.58008

[67] R. Thom. Stabilité structurelle et morphogénèse. W. A. Benjamin, Inc., Reading, Mass., 1972. Essai d'une théorie générale des modèles, Mathematical Physics Monograph Series. | MR 488155 | Zbl 0294.92001

[68] R. F. Williams. The "DA" maps of Smale and structural stability. In Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), pages 329-334. Amer. Math. Soc., Providence, R.I., 1970. | MR 264705 | Zbl 0213.50303