Hopf structure on the Van Est spectral sequence in K-Theory
K-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 421-434.
@incollection{AST_1994__226__421_0,
     author = {Tillmann, Ulrike},
     title = {Hopf structure on the {Van} {Est} spectral sequence in $K${-Theory}},
     booktitle = {$K$-theory - Strasbourg, 1992},
     series = {Ast\'erisque},
     pages = {421--434},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {226},
     year = {1994},
     language = {en},
     url = {http://www.numdam.org/item/AST_1994__226__421_0/}
}
TY  - CHAP
AU  - Tillmann, Ulrike
TI  - Hopf structure on the Van Est spectral sequence in $K$-Theory
BT  - $K$-theory - Strasbourg, 1992
AU  - Collectif
T3  - Astérisque
PY  - 1994
SP  - 421
EP  - 434
IS  - 226
PB  - Société mathématique de France
UR  - http://www.numdam.org/item/AST_1994__226__421_0/
LA  - en
ID  - AST_1994__226__421_0
ER  - 
%0 Book Section
%A Tillmann, Ulrike
%T Hopf structure on the Van Est spectral sequence in $K$-Theory
%B $K$-theory - Strasbourg, 1992
%A Collectif
%S Astérisque
%D 1994
%P 421-434
%N 226
%I Société mathématique de France
%U http://www.numdam.org/item/AST_1994__226__421_0/
%G en
%F AST_1994__226__421_0
Tillmann, Ulrike. Hopf structure on the Van Est spectral sequence in $K$-Theory, in $K$-theory - Strasbourg, 1992, Astérisque, no. 226 (1994), pp. 421-434. http://www.numdam.org/item/AST_1994__226__421_0/

[Be] E. Beggs, The de Rham complex on infinite dimensional manifolds, Quart. J. Math. Oxford (2) 38 (1987), 131-154.

[BW] A. Borel, N. Wallach, "Continuous Cohomology", Discrete Subgroups, and Representations of Reductive Groups, Princeton UP, Study 94 (1980).

[B] W. Browder, On differential Hopf algebras, Trans. AMS 107 (1963), 153-176.

[BS1] E. H. Brown, R. H. Szczarba, Continuous cohomology and real homotopy type, Trans. AMS 311 (1989), 57-106.

[BS2] E. H. Brown, R. H. Szczarba, Continuous cohomology and real homotopy type II, Astérisque 191 (1990).

[BS3] E. H. Brown, R. H. Szczarba, Split complexes, continuous cohomology, and Lie algebras, to be published.

[DHZ] J. Dupont, R. Hain, S. Zucker, Regulators and characteristic classes of flat bundles, Aarhus Preprint Series (1992).

[K] M. Karoubi, Homologie cyclique et K-théorie, Astérisque 149 (1987).

[L] J. L. Loday, "Cyclic Homology", Springer Verlag (1992).

[LQ] J. L. Loday, D. Quillen, Cyclic homology and the Lie algebra homology of matrices, Comment. Math. Helvetici 59 (1984), 565-591.

[Mi] W. Michaelis, The primitives of the continuous linear dual of a Hopf algebra as the dual Lie coalgebra, in "Lie Algebras and Related Topics", Contemp. Math. 110 (1990), 125-176.

[M] J. Milnor, On the homology of Lie groups made discrete, Comment. Math. Helv. 58 (1983), 72-85.

[MM] J. Milnor, J. C. Moore, On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211-264.

[Ti] U. Tillmann, Relation of the Van Est spectral sequence to K-theory and cyclic homology, Ill. Jour. Math. 37 (1993), 589-608.

[T] B. L. Tsygan, Homology of matrix algebras over rings and the Hochschild homology (in Russian), Uspekhi Mat. Nauk. 38 (1983), 217-218.