Higgs bundles, pseudo-hyperbolic geometry and maximal representations
Séminaire de théorie spectrale et géométrie, Tome 34 (2016-2017), pp. 97-114.

These notes are an extended version of a talk given by the author in the seminar Théorie Spectrale et Géométrie at the Institut Fourier in November 2016. We present here some aspects of a work in collaboration with B. Collier and N. Tholozan [9]. We describe how Higgs bundle theory and pseudo-hyperbolic geometry interfere in the study of maximal representations into Hermitian Lie groups of rank 2.

DOI : 10.5802/tsg.357
Toulisse, Jérémy 1

1 Département de Mathématiques Université Côte d’Azur Nice (France)
@article{TSG_2016-2017__34__97_0,
     author = {Toulisse, J\'er\'emy},
     title = {Higgs bundles, pseudo-hyperbolic geometry and maximal representations},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {97--114},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {34},
     year = {2016-2017},
     doi = {10.5802/tsg.357},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/tsg.357/}
}
TY  - JOUR
AU  - Toulisse, Jérémy
TI  - Higgs bundles, pseudo-hyperbolic geometry and maximal representations
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2016-2017
SP  - 97
EP  - 114
VL  - 34
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.357/
DO  - 10.5802/tsg.357
LA  - en
ID  - TSG_2016-2017__34__97_0
ER  - 
%0 Journal Article
%A Toulisse, Jérémy
%T Higgs bundles, pseudo-hyperbolic geometry and maximal representations
%J Séminaire de théorie spectrale et géométrie
%D 2016-2017
%P 97-114
%V 34
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/tsg.357/
%R 10.5802/tsg.357
%G en
%F TSG_2016-2017__34__97_0
Toulisse, Jérémy. Higgs bundles, pseudo-hyperbolic geometry and maximal representations. Séminaire de théorie spectrale et géométrie, Tome 34 (2016-2017), pp. 97-114. doi : 10.5802/tsg.357. http://www.numdam.org/articles/10.5802/tsg.357/

[1] Alessandrini, Daniele; Collier, Brian The geometry of maximal components of the PSp(4,) character variety (2017) (https://arxiv.org/abs/1708.05361, to appear in Geom. Topol.) | Zbl

[2] Barbot, Thierry; Béguin, François; Zeghib, Abdelghani Feuilletages des espaces temps globalement hyperboliques par des hypersurfaces à courbure moyenne constante, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 3, pp. 245-250 | DOI | MR | Zbl

[3] Bonsante, Francesco; Schlenker, Jean-Marc Maximal surfaces and the universal Teichmüller space, Invent. Math., Volume 182 (2010) no. 2, pp. 279-333 | Zbl

[4] Bradlow, Steven B.; García-Prada, Oscar; Gothen, Peter B. Maximal surface group representations in isometry groups of classical Hermitian symmetric spaces, Geom. Dedicata, Volume 122 (2006), pp. 185-213 | DOI | MR | Zbl

[5] Burger, Marc; Iozzi, Alessandra; Labourie, François; Wienhard, Anna Maximal representations of surface groups: symplectic Anosov structures, Pure Appl. Math. Q., Volume 1 (2005) no. 3, pp. 543-590 | DOI | MR | Zbl

[6] Burger, Marc; Iozzi, Alessandra; Wienhard, Anna Surface group representations with maximal Toledo invariant, C. R. Math. Acad. Sci. Paris, Volume 336 (2003) no. 5, pp. 387-390 | DOI | MR | Zbl

[7] Burger, Marc; Iozzi, Alessandra; Wienhard, Anna Surface group representations with maximal Toledo invariant, Ann. Math., Volume 172 (2010) no. 1, pp. 517-566 | DOI | MR | Zbl

[8] Collier, Brian Finite order automorphisms of Higgs bundles: theory and application, University of Illinois Urbana Champaign (USA) (2016) (Ph. D. Thesis)

[9] Collier, Brian; Tholozan, Nicolas; Toulisse, Jérémy The geometry of maximal representations of surface groups into SO 0 (2,n) (2017) (https://arxiv.org/abs/1702.08799, to appear in Duke Math. J.)

[10] Corlette, Kevin Flat G-bundles with canonical metrics, J. Differ. Geom., Volume 28 (1988) no. 3, pp. 361-382 | MR | Zbl

[11] Eells, James; Sampson, Joseph H. Harmonic mappings of Riemannian manifolds, Am. J. Math., Volume 86 (1964), pp. 109-160 | DOI | MR | Zbl

[12] García-Prada, Oscar; Mundet i Riera, Ignasi Representations of the fundamental group of a closed oriented surface in Sp (4,), Topology, Volume 43 (2004) no. 4, pp. 831-855 | DOI | MR | Zbl

[13] Gothen, Peter B. Components of spaces of representations and stable triples, Topology, Volume 40 (2001) no. 4, pp. 823-850 | DOI | MR | Zbl

[14] Guichard, Olivier; Wienhard, Anna Anosov representations: domains of discontinuity and applications, Invent. Math., Volume 190 (2012) no. 2, pp. 357-438 | DOI | MR | Zbl

[15] Hitchin, Nigel J. The self-duality equations on a Riemann surface, Proc. Lond. Math. Soc., Volume 55 (1987) no. 1, pp. 59-126 | DOI | MR | Zbl

[16] Ishihara, T. The harmonic Gauss maps in a generalized sense, J. Lond. Math. Soc., Volume 26 (1982) no. 1, pp. 104-112 | DOI | MR | Zbl

[17] Krasnov, Kirill; Schlenker, Jean-Marc Minimal surfaces and particles in 3-manifolds, Geom. Dedicata, Volume 126 (2007), pp. 187-254 | DOI | MR | Zbl

[18] Labourie, François Anosov flows, surface groups and curves in projective space, Invent. Math., Volume 165 (2006) no. 1, pp. 51-114 | DOI | MR | Zbl

[19] Labourie, François Flat projective structures on surfaces and cubic holomorphic differentials, Pure Appl. Math. Q., Volume 3 (2007) no. 4, pp. 1057-1099 | DOI | MR | Zbl

[20] Labourie, François Cross ratios, Anosov representations and the energy functional on Teichmüller space, Ann. Sci. Éc. Norm. Supér., Volume 41 (2008) no. 3, pp. 437-469 | MR | Zbl

[21] Labourie, François Cyclic surfaces and Hitchin components in rank 2, Ann. Math., Volume 185 (2017) no. 1, pp. 1-58 | MR | Zbl

[22] Loftin, John C. Affine spheres and convex ℝℙ n -manifolds, Am. J. Math., Volume 123 (2001) no. 2, pp. 255-274 | MR | Zbl

[23] Mess, Geoffrey Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | DOI | MR | Zbl

[24] Milnor, John W. On the existence of a connection with curvature zero, Comment. Math. Helv., Volume 32 (1958), pp. 215-223 | DOI | MR | Zbl

[25] Schoen, Richard M. The role of harmonic mappings in rigidity and deformation problems, Complex geometry (Osaka, 1990) (Lecture Notes in Pure and Applied Mathematics), Volume 143, Marcel Dekker, 1993, pp. 179-200 | MR | Zbl

[26] Simpson, Carlos T. Constructing variations of Hodge structure using Yang–Mills theory and applications to uniformization, J. Am. Math. Soc., Volume 1 (1988) no. 4, pp. 867-918 | DOI | MR | Zbl

[27] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. I, Publ. Math., Inst. Hautes Étud. Sci. (1994) no. 79, pp. 47-129 | DOI | MR | Zbl

[28] Simpson, Carlos T. Moduli of representations of the fundamental group of a smooth projective variety. II, Publ. Math., Inst. Hautes Étud. Sci. (1995) no. 80, pp. 5-79 | MR | Zbl

[29] Simpson, Carlos T. Katz’s middle convolution algorithm, Pure Appl. Math. Q., Volume 5 (2009) no. 2, pp. 781-852 | DOI | MR | Zbl

Cité par Sources :