In this note we survey different results on critical exponent. After giving the general setting and classical known results we study critical exponent associated to a pair of Teichmüller representations acting on by diagonal action. We will give new examples of behaviour of this critical exponent. We finally explain the link of this invariant with Anti-De Sitter geometry.
@article{TSG_2014-2015__32__115_0, author = {Glorieux, Olivier}, title = {Critical exponent of graphed {Teichm\"uller} representations on $\mathbb{H}^2 \times \mathbb{H}^2$}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {115--135}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {32}, year = {2014-2015}, doi = {10.5802/tsg.306}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.306/} }
TY - JOUR AU - Glorieux, Olivier TI - Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$ JO - Séminaire de théorie spectrale et géométrie PY - 2014-2015 SP - 115 EP - 135 VL - 32 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.306/ DO - 10.5802/tsg.306 LA - en ID - TSG_2014-2015__32__115_0 ER -
%0 Journal Article %A Glorieux, Olivier %T Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$ %J Séminaire de théorie spectrale et géométrie %D 2014-2015 %P 115-135 %V 32 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.306/ %R 10.5802/tsg.306 %G en %F TSG_2014-2015__32__115_0
Glorieux, Olivier. Critical exponent of graphed Teichmüller representations on $\mathbb{H}^2 \times \mathbb{H}^2$. Séminaire de théorie spectrale et géométrie, Volume 32 (2014-2015), pp. 115-135. doi : 10.5802/tsg.306. http://www.numdam.org/articles/10.5802/tsg.306/
[1] Simultaneous uniformization, Bull. Am. Math. Soc., Volume 66 (1960) no. 2, pp. 94-97 | MR | Zbl
[2] Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal., Volume 5 (1995) no. 5, pp. 731-799 | MR | Zbl
[3] Hausdorff dimension and Kleinian groups., Acta Math., Volume 179 (1997) no. 1, pp. 1-39 | MR | Zbl
[4] Three rigidity criteria for , Bull. Am. Math. Soc., Volume 24 (1991) no. 1, pp. 117-123 | MR | Zbl
[5] Bouts des variétés hyperboliques de dimension 3, Ann. Math., Volume 124 (1986), pp. 71-158 | MR | Zbl
[6] The geometry of Teichmüller space via geodesic currents, Invent. Math., Volume 92 (1988) no. 1, pp. 139-162 | MR | Zbl
[7] Hausdorff dimension of quasi-circles, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979) no. 1, pp. 11-25 | Numdam | MR | Zbl
[8] The Weil-Petersson metric and volumes of 3-dimensional hyperbolic convex cores, J. Am. Math. Soc., Volume 16 (2003) no. 3, pp. 495-535 | MR | Zbl
[9] Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank 2, Int. Math. Res. Not., Volume 1993 (1993) no. 7, pp. 217-225 | MR | Zbl
[10] Group invariant Peano curves, Geom. Topol., Volume 11 (2007) no. 3, pp. 1315-1355 | MR | Zbl
[11] Shadow lemma on the product of Hadamard manifolds and applications, Sémin. Théor. Spectr. Géom., Volume 25 (2006-2007), pp. 105-119 | Numdam | MR | Zbl
[12] Remarks on Hausdorff dimensions for transient limits sets of Kleinian groups, Tohoku Math. J., Volume 56 (2004) no. 4, pp. 571-582 | MR | Zbl
[13] Behaviour of critical exponent (2015) (https://arxiv.org/abs/1503.09067v1)
[14] A proof of the collar lemma, Bull. Lond. Math. Soc., Volume 13 (1981) no. 2, pp. 141-144 | MR | Zbl
[15] Two extensions of Thurston’s spectral theorem for surface diffeomorphisms, Bull. Lond. Math. Soc., Volume 46 (2014) no. 2, pp. 217-226 | MR
[16] The asymptotic geometry of Teichmuller space, Topology, Volume 19 (1980) no. 1, pp. 23-41 | MR | Zbl
[17] The Nielsen realization problem, Ann. Math., Volume 117 (1983), pp. 235-265 | MR | Zbl
[18] Large deviations, averaging and periodic orbits of dynamical systems, Commun. Math. Phys., Volume 162 (1994) no. 1, pp. 33-46 | MR | Zbl
[19] Das Wachstum der Äquivalenzklassen geschlossener Geodätischer in kompakten Mannigfaltigkeiten., Arch. Math., Volume 40 (1983), pp. 559-568 | MR | Zbl
[20] Hausdorff dimension of limit sets of discrete subgroups of higher rank Lie groups, Geom. Funct. Anal., Volume 14 (2004) no. 2, pp. 400-432 | MR | Zbl
[21] Uniquely ergodic quadratic differentials, Comment. Math. Helv., Volume 55 (1980), pp. 255-266 | MR | Zbl
[22] Dynamics of Kleinian Groups–The Hausdorff Dimension of Limit Sets, Trans. Am. Math. Soc., Volume 204 (2001), pp. 23-44
[23] Hausdorff dimension and conformal dynamics I: Strong convergence of Kleinian groups, J. Differ. Geom., Volume 51 (1999) no. 3, pp. 471-515 | MR | Zbl
[24] Lorentz spacetimes of constant curvature, Geom. Dedicata, Volume 126 (2007), pp. 3-45 | MR | Zbl
[25] The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge university press, 1989, pp. xi+221 | MR | Zbl
[26] The limit set of a Fuchsian group, Acta Math., Volume 136 (1976), pp. 241-273 | Zbl
[27] Regards croisés sur les séries de Poincaré et leurs applications, Géométrie ergodique (Monographie de L’Enseignement Mathématique), Volume 43, Genève: L’Enseignement Mathématique, 2013, pp. 93-116
[28] Autour de l’exposant critique d’un groupe kleinien (2010) (https://arxiv.org/abs/1010.6022) | MR
[29] Divergence exponentielle des sous-groupes discrets en rang supérieur, Comment. Math. Helv., Volume 77 (2002) no. 3, pp. 563-608 | MR | Zbl
[30] Ergodicité et équidistribution en courbure négative, Mém. Soc. Math. Fr. (2003) no. 95, pp. A-96 | Numdam | MR | Zbl
[31] Un théorème de Fatou pour les densités conformes avec applications aux revêtements galoisiens en courbure négative, Isr. J. Math., Volume 147 (2005), pp. 333-357 | MR | Zbl
[32] Exposants critiques et moyennabilité, Géométrie ergodique (Monographie de L’Enseignement Mathématique), Volume 43, Genève: L’Enseignement Mathématique, 2013, pp. 61-92 | MR
[33] Entropy, minimal surfaces, and negatively curved manifolds (2014) (https://arxiv.org/abs/1404.1105)
[34] The correlation of length spectra of two hyperbolic surfaces., Commun. Math. Phys., Volume 153 (1993) no. 2, pp. 423-430 | MR | Zbl
[35] The Manhattan curve and the correlation of length spectra on hyperbolic surfaces., Math. Z., Volume 228 (1998) no. 4, pp. 745-750 | MR | Zbl
[36] The density at infinity of a discrete group of hyperbolic motions, Publ. Math., Inst. Hautes Étud. Sci., Volume 50 (1979), pp. 171-202 | Numdam | MR | Zbl
[37] Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups, Acta Math., Volume 153 (1984), pp. 259-277 | MR | Zbl
[38] Minimal stretch maps between hyperbolic surfaces (1998) (https://arxiv.org/abs/math/9801039)
[39] The horoboundary and isometry group of Thurston’s Lipschitz metric (2010) (https://arxiv.org/abs/1006.2158v1) | MR
[40] The length spectra as moduli for compact Riemann surfaces, Ann. Math., Volume 109 (1979), pp. 323-351 | MR | Zbl
Cited by Sources: