Nodal sets of eigenfunctions, Antonie Stern’s results revisited
Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015), pp. 1-37.

These notes present a partial survey of our recent contributions to the understanding of nodal sets of eigenfunctions (constructions of families of eigenfunctions with few or many nodal domains, equality cases in Courant’s nodal domain theorem), revisiting Antonie Stern’s thesis, Göttingen, 1924.

DOI : https://doi.org/10.5802/tsg.302
Classification : 35P15,  49R50
Mots clés : Nodal domains, Courant theorem, Pleijel theorem, Dirichlet Laplacian
@article{TSG_2014-2015__32__1_0,
     author = {B\'erard, Pierre and Helffer, Bernard},
     title = {Nodal sets of eigenfunctions, {Antonie} {Stern{\textquoteright}s} results revisited},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {1--37},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {32},
     year = {2014-2015},
     doi = {10.5802/tsg.302},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/tsg.302/}
}
TY  - JOUR
AU  - Bérard, Pierre
AU  - Helffer, Bernard
TI  - Nodal sets of eigenfunctions, Antonie Stern’s results revisited
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2014-2015
DA  - 2014-2015///
SP  - 1
EP  - 37
VL  - 32
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.302/
UR  - https://doi.org/10.5802/tsg.302
DO  - 10.5802/tsg.302
LA  - en
ID  - TSG_2014-2015__32__1_0
ER  - 
Bérard, Pierre; Helffer, Bernard. Nodal sets of eigenfunctions, Antonie Stern’s results revisited. Séminaire de théorie spectrale et géométrie, Tome 32 (2014-2015), pp. 1-37. doi : 10.5802/tsg.302. http://www.numdam.org/articles/10.5802/tsg.302/

[1] Arnold, V.I Topological properties of eigenoscillations in mathematical physics, Proceedings of the Steklov Institute of Mathematics, Volume 273 (2011), pp. 25-34 | MR 2893541 | Zbl 1229.35220

[2] Band, R.; Bersudsky, M.; Fajman, D. A note on Courant sharp eigenvalues of the Neumann right-angled isosceles triangle (2015) (https://arxiv.org/abs/1507.03410v1)

[3] Band, R.; Bersudsky, M.; Fajman, D. Courant-sharp eigenvalues of Neumann 2-rep-tiles (2016) (https://arxiv.org/abs/1507.03410v2) | MR 3535866

[4] Bérard, P.; Helffer, B. Partial edited extracts from Antonie Stern’s thesis, Séminaire de Théorie Spectrale et Géométrie, Volume 32, Institut Fourier, 2014-2015

[5] Bérard, P.; Helffer, B. Courant-sharp eigenvalues for the equilateral torus, and for the equilateral triangle (2015) (https://arxiv.org/abs/1503.00117, To appear in Letters in Mathematical Physics)

[6] Bérard, P.; Helffer, B.; Baklouti, Ali; El Kacimi, Aziz; Kallel, Sadok; Mir, Nordine Dirichlet eigenfunctions of the square membrane: Courant’s property, and A. Stern’s and Å. Pleijel’s analyses, Analysis and Geometry. MIMS-GGTM, Tunis, Tunisia, March 2014. In Honour of Mohammed Salah Baouendi (Springer Proceedings in Mathematics & Statistics), Volume 127 (2015), pp. 69-114 | MR 3445517

[7] Bérard, P.; Helffer, B. On the nodal patterns of the 2D isotropic quantum harmonic oscillator (2015) (https://arxiv.org/abs/1506.02374)

[8] Bérard, P.; Helffer, B. A. Stern’s analysis of the nodal sets of some families of spherical harmonics revisited, Monatshefte für Mathematik, Volume 180 (2016), pp. 435-468 | Article | MR 3513215

[9] Bérard Bergery, L.; Bourguignon, J.P. Laplacians and submersions with totally geodesic fibers, Illinois Journal of Mathematics, Volume 26 (1982), pp. 181-200 | MR 650387 | Zbl 0483.58021

[10] Bonnaillie-Noël, V.; Helffer, B. Nodal and spectral minimal partitions, The state of the art in 2015 (2015) https://arxiv.org/abs/1506.07249, To appear in the book “Shape optimization and spectral theory”. A. Henrot Ed. (De Gruyter Open)

[11] Charron, P. On Pleijel’s theorem for the isotropic harmonic oscillator (2015) (Masters thesis)

[12] Charron, P. A Pleijel type theorem for the quantum harmonic oscillator (2015) (https://arxiv.org/abs/1512.07880, To appear in J. Spectral Theory)

[13] Charron, P.; Helffer, B.; Hoffmann-Ostenhof, T. Pleijel’s theorem for Schrödinger operators with radial potentials (2016) (https://arxiv.org/abs/1604.08372)

[14] Cheng, S.Y Eigenfunctions and nodal sets, Commentarii Mathematici Helvetici, Volume 51 (1976), pp. 43-55 | MR 397805 | Zbl 0334.35022

[15] Courant, R. Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke, Nachr. Ges. Göttingen (1923), pp. 81-84

[16] Courant, R.; Hilbert, D. Methods of Mathematical Physics, 1, Wiley-VCH Verlag GmbH & Co. KGaA. New York, 1953 | Zbl 0053.02805

[17] Courant, R.; Hilbert, D. Methoden der Mathematischen Physik, Heidelberger Taschenbücher Band 30, I, Springer, 1968 (Dritte Auflage) | MR 344038 | Zbl 0156.23201

[18] Eremenko, A.; Jakobson, D.; Nadirashvili, N. On nodal sets and nodal domains on 𝕊 2 , Annales Institut Fourier, Volume 57 (2007), pp. 2345-2360 | Numdam | MR 2394544 | Zbl 1178.58012

[19] Gauthier-Shalom, G.; Przybytkowski, K. Description of a nodal set on 𝕋 2 (2006) Research report (unpublished)

[20] Helffer, B.; Hoffmann-Ostenhof, T. Minimal partitions for anisotropic tori, Journal of Spectral Theory, Volume 4 (2014), pp. 221-233 | MR 3232810

[21] Helffer, B.; Persson Sundqvist, M. Nodal domains in the square – The Neumann case, Moscow Mathematical Journal, Volume 15 (2015), pp. 455-495 | MR 3427435

[22] Helffer, B.; Persson Sundqvist, M. On nodal domains in Euclidean balls, Proceeding of the American Mathematical Society, Volume 144 (2016), pp. 4777-4791 | MR 3544529

[23] Jakobson, D.; Nadirashvili, N. Eigenvalues with few critical points, Journal of Differential Geometry, Volume 53 (1999), pp. 177-182 | MR 1776094 | Zbl 1038.58036

[24] Kuznetsov, N. On delusive nodal sets of free oscillations, European Mathematical Society Newsletter, Volume 96 (2015), pp. 34-40 | MR 3379499

[25] Léna, C. Courant-sharp eigenvalues of a two-dimensional torus, C. R. Math. Acad. Sci. Paris, Volume 353 (2015) no. 6, pp. 535-539 (doi:10.1016/j.crma.2015.03.014) | MR 3348988

[26] Léna, C. On the parity of the number of nodal domains for an eigenfunction of the Laplacian on tori (2015) (https://arxiv.org/abs/1504.03944)

[27] Léna, C. Pleijel’s nodal domain theorem for Neumann eigenfunctions (2016) (https://arxiv.org/abs/1609.02331)

[28] Lewy, H. On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere, Communications in Partial Differential Equations, Volume 12 (1977), pp. 1233-1244 | MR 477199 | Zbl 0377.31008

[29] Leydold, J. Knotenlinien und Knotengebiete von Eigenfunktionen (1989) Diplom Arbeit (unpublished)

[30] Leydold, J. On the number of nodal domains of spherical harmonics, Topology, Volume 35 (1996), pp. 301-321 | MR 1380499 | Zbl 0853.33012

[31] Pleijel, Å. Remarks on Courant’s nodal theorem, Communications in Pure and Applied Mathematics, Volume 9 (1956), pp. 543-550 | MR 80861 | Zbl 0070.32604

[32] Pockels, F. Über die partielle Differentialgleichung Δu+k 2 u=0 und deren Auftreten in mathematischen Physik, Teubner- Leipzig, 1891 (Historical Math. Monographs. Cornell University http://ebooks.library.cornell.edu/cgi/t/text/text-idx?c=math;idno=00880001)

[33] Stern, A. Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen (1925) (Ph. D. Thesis)

[34] Sturm, C. Mémoire sur les équations différentielles linéaires du second ordre, Journal de Mathématiques Pures et Appliquées, Volume 1 (1836), p. 106-186, 269-277, 375-444 | EuDML 235613

[35] Vogt, A. Wissenschaftlerinnen in Kaiser-Wilhelm-Instituten. A-Z, Veröffentlichungen aus dem Archiv der Max-Planck-Gesellschaft, 12, Archiv der Max-Planck-Gesellschaft, 2008

Cité par Sources :