Shadow lemma on the product of Hadamard manifolds and applications
Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007), pp. 105-119.

In this paper we analyze the limit set of nonelementary subgroups acting by isometries on the product of two pinched Hadamard manifolds. Following M. Burger’s and P. Albuquerque’s works, we study the properties of Patterson-Sullivan’s measures on the limit sets of graph groups associated to convex cocompact groups.

@article{TSG_2006-2007__25__105_0,
     author = {Dal{\textquoteright}Bo, Fran\c{c}oise and Kim, Inkang},
     title = {Shadow lemma on the product of {Hadamard} manifolds and applications},
     journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie},
     pages = {105--119},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {25},
     year = {2006-2007},
     doi = {10.5802/tsg.250},
     mrnumber = {2478811},
     zbl = {1163.53320},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/tsg.250/}
}
TY  - JOUR
AU  - Dal’Bo, Françoise
AU  - Kim, Inkang
TI  - Shadow lemma on the product of Hadamard manifolds and applications
JO  - Séminaire de théorie spectrale et géométrie
PY  - 2006-2007
DA  - 2006-2007///
SP  - 105
EP  - 119
VL  - 25
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/tsg.250/
UR  - https://www.ams.org/mathscinet-getitem?mr=2478811
UR  - https://zbmath.org/?q=an%3A1163.53320
UR  - https://doi.org/10.5802/tsg.250
DO  - 10.5802/tsg.250
LA  - en
ID  - TSG_2006-2007__25__105_0
ER  - 
Dal’Bo, Françoise; Kim, Inkang. Shadow lemma on the product of Hadamard manifolds and applications. Séminaire de théorie spectrale et géométrie, Tome 25 (2006-2007), pp. 105-119. doi : 10.5802/tsg.250. http://www.numdam.org/articles/10.5802/tsg.250/

[1] Albuquerque, P. Patterson-Sullivan theory in higher rank symmetric spaces, Geom. Funct. Anal., Volume 9 (1999) no. 1, pp. 1-28 | MR 1675889 | Zbl 0954.53031

[2] Benoist, Y. Propriétés asymptotiques des groupes linéaires, Geom. Funct. Anal., Volume 7 (1997) no. 1, pp. 1-47 | MR 1437472 | Zbl 0947.22003

[3] Bourdon, Marc Structure conforme au bord et flot géodésique d’un CAT (-1)-espace, Enseign. Math. (2), Volume 41 (1995) no. 1-2, pp. 63-102 | Zbl 0871.58069

[4] Burger, Marc Intersection, the Manhattan curve, and Patterson-Sullivan theory in rank 2, Internat. Math. Res. Notices (1993) no. 7, pp. 217-225 | MR 1230298 | Zbl 0829.57023

[5] Dal’bo, Françoise Géométrie d’une famille de groupes agissant sur le produit de deux variétés d’Hadamard, Séminaire de Théorie Spectrale et Géométrie, No. 15, Année 1996–1997 (Sémin. Théor. Spectr. Géom.), Volume 15, Univ. Grenoble I, Saint, 1997, pp. 85-98 | Numdam | Zbl 0898.53027

[6] Dal’bo, Françoise Remarques sur le spectre des longueurs d’une surface et comptages, Bol. Soc. Brasil. Mat. (N.S.), Volume 30 (1999) no. 2, pp. 199-221 | Zbl 1058.53063

[7] Dal’Bo, Françoise; Kim, Inkang A criterion of conjugacy for Zariski dense subgroups, C. R. Acad. Sci. Paris Sér. I Math., Volume 330 (2000) no. 8, pp. 647-650 | Zbl 0953.22013

[8] Dal’Bo, Françoise; Kim, Inkang Marked length rigidity for symmetric spaces, Comment. Math. Helv., Volume 77 (2002) no. 2, pp. 399-407 | Zbl 1002.22005

[9] Dal’bo, Françoise; Peigné, Marc Some negatively curved manifolds with cusps, mixing and counting, J. Reine Angew. Math., Volume 497 (1998), pp. 141-169 | Zbl 0890.53043

[10] Ghys, Étienne; de la Harpe, Pierre La propriété de Markov pour les groupes hyperboliques, Sur les groupes hyperboliques d’après Mikhael Gromov (Bern, 1988) (Progr. Math.), Volume 83, Birkhäuser Boston, Boston, MA, 1990, pp. 165-187 | Zbl 0731.20025

[11] Guivarc’h, Yves Produits de matrices aléatoires et applications aux propriétés géométriques des sous-groupes du groupe linéaire, Ergodic Theory Dynam. Systems, Volume 10 (1990) no. 3, pp. 483-512 | Zbl 0715.60008

[12] Heintze, Ernst; Im Hof, Hans-Christoph Geometry of horospheres, J. Differential Geom., Volume 12 (1977) no. 4, p. 481-491 (1978) | MR 512919 | Zbl 0434.53038

[13] Kim, Inkang Ergodic theory and rigidity on the symmetric space of non-compact type, Ergodic Theory Dynam. Systems, Volume 21 (2001) no. 1, pp. 93-114 | MR 1826662 | Zbl 0978.37016

[14] Kim, Inkang Marked length rigidity of rank one symmetric spaces and their product, Topology, Volume 40 (2001) no. 6, pp. 1295-1323 | MR 1867246 | Zbl 0997.53034

[15] Kim, Inkang Rigidity on symmetric spaces, Topology, Volume 43 (2004) no. 2, pp. 393-405 | MR 2052969 | Zbl 1049.53031

[16] Kim, Inkang Isospectral finiteness on hyperbolic 3-manifolds, Comm. Pure Appl. Math., Volume 59 (2006) no. 5, pp. 617-625 | MR 2172803 | Zbl 1102.53028

[17] Link, Gabriele Limit sets of discrete groups acting on symmetric spaces (2002) (Dissertation)

[18] Nicholls, Peter J. The ergodic theory of discrete groups, London Mathematical Society Lecture Note Series, 143, Cambridge University Press, Cambridge, 1989 | MR 1041575 | Zbl 0674.58001

[19] Quint, J. F. Sous-groupes discrets des groupes de Lie semi-simples réels et p-adiques (2001) (Ph. D. Thesis)

Cité par Sources :