Nous illustrons une classification des espace-temps (2+1) globalement hyperboliques a courboure constant, en terms de certaines structures projectives complexes portées par les surfaces de niveau de leur temps cosmologique canonique. Ceci derive d’une theorie des rotations de Wick canoniques, developpée en collaboration avec Riccardo Benedetti [6], qui sera egalement brievement illustrée.
@article{TSG_2004-2005__23__9_0, author = {Bonsante, Francesco}, title = {Constant curvature $(2+1)$-spacetimes and projective structures}, journal = {S\'eminaire de th\'eorie spectrale et g\'eom\'etrie}, pages = {9--48}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {23}, year = {2004-2005}, doi = {10.5802/tsg.230}, zbl = {1104.83031}, mrnumber = {2270222}, language = {en}, url = {http://www.numdam.org/articles/10.5802/tsg.230/} }
TY - JOUR AU - Bonsante, Francesco TI - Constant curvature $(2+1)$-spacetimes and projective structures JO - Séminaire de théorie spectrale et géométrie PY - 2004-2005 SP - 9 EP - 48 VL - 23 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/tsg.230/ DO - 10.5802/tsg.230 LA - en ID - TSG_2004-2005__23__9_0 ER -
%0 Journal Article %A Bonsante, Francesco %T Constant curvature $(2+1)$-spacetimes and projective structures %J Séminaire de théorie spectrale et géométrie %D 2004-2005 %P 9-48 %V 23 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/tsg.230/ %R 10.5802/tsg.230 %G en %F TSG_2004-2005__23__9_0
Bonsante, Francesco. Constant curvature $(2+1)$-spacetimes and projective structures. Séminaire de théorie spectrale et géométrie, Volume 23 (2004-2005), pp. 9-48. doi : 10.5802/tsg.230. http://www.numdam.org/articles/10.5802/tsg.230/
[1] L. Andersson, G. Galloway, R. Howard. The Cosmological Time Function, Classical Quantum Gravity, 15 (1998), 309–322. | MR | Zbl
[2] L. Andersson. Constant Mean Curvature Foliations of Flat Space-times, Comm. Anal. Geom., 10 (2002), 1125–1150. | MR | Zbl
[3] B. N. Apanasov. The geometry of Nielsen’s hull for a Kleinian group in space and quasi-conformal mappings, Ann. Global Anal. Geom. 6 (1988), 207–230. | Zbl
[4] T. Barbot. Globally hyperbolic flat spacetimes, J. Geom. Phys. 53 (2005), 123–165. | MR | Zbl
[5] J. Beem, P. Ehrlich. Global Lorentzian Geometry. 2nd edition, Monographs and Textbooks in Pure and Applied Mathematics, 202 Marcel Dekker, Inc., New York 1996. | MR | Zbl
[6] R. Benedetti, F. Bonsante. Wick rotation and rescaling in -gravity In preparation.
[7] R. Benedetti, E. Guadagnini. Cosmological time in -gravity, Nuclear Phys. B 613 (2001), 330–352. | MR | Zbl
[8] R. Benedetti, C. Petronio. Lectures on Hyperbolic Geometry, Universitext, Springer-Verlag, Berlin-Heidelberg-New York 1992. | MR | Zbl
[9] F. Bonsante Deforming the Minkowskian cone of a closed hyperbolic manifold, Ph.D. Thesis, Pisa, 2005.
[10] F. Bonsante Flat spacetimes with compact hyperbolic Cauchy surfaces To appear. | MR | Zbl
[11] F. Bonsante Flat regular domains In preparation.
[12] Y. Choquet-Bruhat, R. Geroch. Global aspects of the Cauchy problem in general relativity, Comm. Math. Phys. 14(1969), 329–335. | MR | Zbl
[13] D. B. A. Epstein(ed.). Analytical and Geometric Aspects of Hyperbolic Space. (Papers of two symposia), Warwick and Durham (England) 1984, London Mathemathical Society Lecture Note Series 111, Cambridge University Press, Cambridge 1987. | MR | Zbl
[14] R. Geroch. Domain of Dependence, J. Mathematical. Phys. 11 (1970), 437–449. | MR | Zbl
[15] S. W. Hawking, F. R. Ellis. The Large Scale Structures of Space-time, Cambridge Monographs on Mathematical Physics, Cambridge University Press, London-New York 1973. | MR | Zbl
[16] R. Kulkarni, U. Pinkall. A canonical metric for Moebius structures and its applications, Math. Z. 216, 89–119. | EuDML | MR | Zbl
[17] G. Mess. Lorentz Spacetime of Constant Curvature, Preprint (1990). | MR
[18] K. Scannell. Flat conformal structures and the classification of De Sitter manifolds Comm. Anal. Geom., 7 (1999), 325–345. | MR | Zbl
Cited by Sources: