We consider an electron in a localized potential submitted to a weak external, time-dependent field. In the linear response regime, the response function can be computed using Kubo’s formula. In this paper, we consider the numerical approximation of the response function by means of a truncation to a finite region of space. This is necessarily a singular approximation because of the discreteness of the spectrum of the truncated Hamiltonian, and in practice a regularization (smoothing) has to be used. Our results provide error estimates for the response function past the ionization threshold with respect to both the smoothing parameter and the size of the computational domain.
Keywords: linear response, scattering, limiting absorption principle, finite-size effects
@article{SMAI-JCM_2022__8__273_0, author = {Dupuy, Mi-Song and Levitt, Antoine}, title = {Finite-size effects in response functions of molecular systems}, journal = {The SMAI Journal of computational mathematics}, pages = {273--294}, publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles}, volume = {8}, year = {2022}, doi = {10.5802/smai-jcm.87}, language = {en}, url = {http://www.numdam.org/articles/10.5802/smai-jcm.87/} }
TY - JOUR AU - Dupuy, Mi-Song AU - Levitt, Antoine TI - Finite-size effects in response functions of molecular systems JO - The SMAI Journal of computational mathematics PY - 2022 SP - 273 EP - 294 VL - 8 PB - Société de Mathématiques Appliquées et Industrielles UR - http://www.numdam.org/articles/10.5802/smai-jcm.87/ DO - 10.5802/smai-jcm.87 LA - en ID - SMAI-JCM_2022__8__273_0 ER -
%0 Journal Article %A Dupuy, Mi-Song %A Levitt, Antoine %T Finite-size effects in response functions of molecular systems %J The SMAI Journal of computational mathematics %D 2022 %P 273-294 %V 8 %I Société de Mathématiques Appliquées et Industrielles %U http://www.numdam.org/articles/10.5802/smai-jcm.87/ %R 10.5802/smai-jcm.87 %G en %F SMAI-JCM_2022__8__273_0
Dupuy, Mi-Song; Levitt, Antoine. Finite-size effects in response functions of molecular systems. The SMAI Journal of computational mathematics, Volume 8 (2022), pp. 273-294. doi : 10.5802/smai-jcm.87. http://www.numdam.org/articles/10.5802/smai-jcm.87/
[1] Spectral properties of Schrödinger operators and scattering theory, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 2 (1975) no. 2, pp. 151-218 | Numdam | MR | Zbl
[2] C0-Groups, Commutator Methods and Spectral Theory of N-Body Hamiltonians: Concepts and Applications, Progress in Mathematics, Springer, 1996 | DOI
[3] A friendly review of absorbing boundary conditions and perfectly matched layers for classical and relativistic quantum waves equations, Molecular Physics, Volume 115 (2017) no. 15-16, pp. 1861-1879 | DOI
[4] The adiabatic theorem and linear response theory for extended quantum systems, Commun. Math. Phys., Volume 361 (2018) no. 3, pp. 997-1027 | DOI | MR | Zbl
[5] Linear response theory for magnetic Schrödinger operators in disordered media, J. Funct. Anal., Volume 226 (2005) no. 2, pp. 301-372 | DOI | Zbl
[6] Time-dependent density functional theory: Past, present, and future, J. Chem. Phys., Volume 123 (2005) no. 6, 062206 | DOI
[7] Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models, ESAIM, Math. Model. Numer. Anal., Volume 46 (2012) no. 2, pp. 341-388 | DOI | Numdam | MR | Zbl
[8] Numerical quadrature in the Brillouin zone for periodic Schrödinger operators, Numer. Math., Volume 144 (2020) no. 3, pp. 479-526 | DOI | Zbl
[9] Non-consistent approximations of self-adjoint eigenproblems: application to the supercell method, Numer. Math., Volume 128 (2014) no. 4, pp. 663-706 | DOI | MR | Zbl
[10] Coherent electronic transport in periodic crystals (2020) (https://arxiv.org/abs/2002.01990)
[11] On the time-dependent Hartree–Fock equations coupled with a classical nuclear dynamics, Math. Models Methods Appl. Sci., Volume 9 (1999) no. 07, pp. 963-990 | DOI | MR | Zbl
[12] A mathematical formulation of the random phase approximation for crystals, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 29 (2012) no. 6, pp. 887-925 | DOI | Numdam | MR | Zbl
[13] Time-dependent density functional response theory for molecules, Recent Advances In Density Functional Methods: (Part I), World Scientific, 1995, pp. 155-192 | DOI
[14] Accurate complex scaling of three dimensional numerical potentials, J. Chem. Phys., Volume 138 (2013) no. 20, 204111
[15] A theoretical investigation of time-dependent Kohn–Sham equations: new proofs, Appl. Anal., Volume 100 (2021) no. 10, pp. 2254-2273 | DOI | MR
[16] Computing spectral measures of self-adjoint operators, SIAM Rev., Volume 63 (2021) no. 3, pp. 489-524 | DOI | MR | Zbl
[17] Evolution of a Model Quantum System Under Time Periodic Forcing: Conditions for Complete Ionization, Commun. Math. Phys., Volume 221 (2001) no. 1, pp. 1-26 | DOI | MR | Zbl
[18] Locality and computational reliability of linear response calculations for molecular systems, Phys. Rev. Mater., Volume 3 (2019) no. 2, 023805
[19] A construction of the fundamental solution for the Schrödinger equation, J. Anal. Math., Volume 35 (1979) no. 1, pp. 41-96 | DOI | Zbl
[20] Resonance theory for periodic Schrödinger operators, Bull. Soc. Math. Fr., Volume 118 (1990) no. 1, pp. 27-54 | DOI | Numdam | Zbl
[21] Convergence rates of supercell calculations in the reduced Hartree- Fock model, ESAIM, Math. Model. Numer. Anal., Volume 50 (2016) no. 5, pp. 1403-1424 | DOI | Numdam | MR | Zbl
[22] Supercell calculations in the reduced Hartree–Fock model for crystals with local defects, AMRX, Appl. Math. Res. Express, Volume 2017 (2017) no. 1, pp. 1-64 | MR | Zbl
[23] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. Henri Poincaré, Phys. Théor., Volume 41 (1984) no. 2, pp. 207-225 | Numdam | MR | Zbl
[24] Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, Volume 12 (1957) no. 6, pp. 570-586 | DOI | MR
[25] Screening in the Finite-Temperature Reduced Hartree–Fock Model, Arch. Ration. Mech. Anal., Volume 238 (2020) no. 2, pp. 901-927 | DOI | MR | Zbl
[26] Absence of singular continuous spectrum for certain self-adjoint operators, Commun. Math. Phys., Volume 78 (1981) no. 3, pp. 391-408 | DOI | MR | Zbl
[27] Complex absorbing potentials, Phys. Rep., Volume 395 (2004) no. 6, pp. 357-426 | DOI | MR
[28] Principles and practices of molecular properties: Theory, modeling, and simulations, John Wiley & Sons, 2018 | DOI
[29] Quantum transport in disordered systems under magnetic fields: A study based on operator algebras, AMRX, Appl. Math. Res. Express, Volume 2013 (2013) no. 2, pp. 176-265 | MR | Zbl
[30] Long-time behaviour of time-dependent density functional theory, Arch. Ration. Mech. Anal. (2021), pp. 1-27 | MR | Zbl
[31] Methods of modern mathematical physics. III: Scattering theory, Elsevier, 1978
[32] Methods of modern mathematical physics. IV: Analysis of operators, Elsevier, 1978
[33] Long-time dynamics of the Schrödinger–Poisson–Slater system, J. Stat. Phys., Volume 114 (2004) no. 1, pp. 179-204 | DOI | Zbl
[34] Approximating resonances with the complex absorbing potential method, Commun. Partial Differ. Equations, Volume 30 (2005) no. 12, pp. 1843-1862 | DOI | MR | Zbl
[35] Non-equilibrium almost-stationary states and linear response for gapped quantum systems, Commun. Math. Phys., Volume 373 (2020) no. 2, pp. 621-653 | DOI | MR | Zbl
[36] Real-time, real-space implementation of the linear response time-dependent density-functional theory, physica status solidi (b), Volume 243 (2006) no. 5, pp. 1121-1138 | DOI
Cited by Sources: