Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law
The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 53-89.

This article is the first of a series where we develop and analyze structure-preserving finite element discretizations for the time-dependent 2D Maxwell system with long-time stability properties, and propose a charge-conserving deposition scheme to extend the stability properties in the case where the current source is provided by a particle method. The schemes proposed here derive from a previous study where a generalized commuting diagram was identified as an abstract compatibility criterion in the design of stable schemes for the Maxwell system alone, and applied to build a series of conforming and non-conforming schemes in the 3D case. Here the theory is extended to account for approximate sources, and specific charge-conserving schemes are provided for the 2D case. In this article we study two schemes which include a strong discretization of the Ampere law. The first one is based on a standard conforming mixed finite element discretization and the long-time stability is ensured by a Raviart-Thomas finite element interpolation for the current source, thanks to its commuting diagram properties. The second one is a new non-conforming variant where the numerical fields are sought in fully discontinuous spaces. Numerical experiments involving Maxwell and Maxwell-Vlasov problems are then provided to validate the stability of the proposed methods.

Publié le :
DOI : 10.5802/smai-jcm.20
Classification : 35Q61, 65M12, 65M60, 65M75
Mots clés : Maxwell equations, Gauss laws, structure-preserving, PIC, charge-conserving current deposition, conforming finite elements, discontinuous Galerkin, Conga method.
Campos Pinto, Martin 1 ; Sonnendrücker, Eric 2

1 CNRS, Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions, 4, place Jussieu 75005, Paris, France
2 Max-Planck Institute for plasma physics, Boltzmannstr. 2, D-85748 Garching, Germany, Mathematics Center, TU Munich, Boltzmannstr. 3, D-85747 Garching, Germany
@article{SMAI-JCM_2017__3__53_0,
     author = {Campos Pinto, Martin and Sonnendr\"ucker, Eric},
     title = {Compatible {Maxwell} solvers with particles {I:} conforming and non-conforming {2D} schemes with a strong {Ampere} law},
     journal = {The SMAI Journal of computational mathematics},
     pages = {53--89},
     publisher = {Soci\'et\'e de Math\'ematiques Appliqu\'ees et Industrielles},
     volume = {3},
     year = {2017},
     doi = {10.5802/smai-jcm.20},
     mrnumber = {3695788},
     zbl = {1416.78028},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/smai-jcm.20/}
}
TY  - JOUR
AU  - Campos Pinto, Martin
AU  - Sonnendrücker, Eric
TI  - Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law
JO  - The SMAI Journal of computational mathematics
PY  - 2017
SP  - 53
EP  - 89
VL  - 3
PB  - Société de Mathématiques Appliquées et Industrielles
UR  - http://www.numdam.org/articles/10.5802/smai-jcm.20/
DO  - 10.5802/smai-jcm.20
LA  - en
ID  - SMAI-JCM_2017__3__53_0
ER  - 
%0 Journal Article
%A Campos Pinto, Martin
%A Sonnendrücker, Eric
%T Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law
%J The SMAI Journal of computational mathematics
%D 2017
%P 53-89
%V 3
%I Société de Mathématiques Appliquées et Industrielles
%U http://www.numdam.org/articles/10.5802/smai-jcm.20/
%R 10.5802/smai-jcm.20
%G en
%F SMAI-JCM_2017__3__53_0
Campos Pinto, Martin; Sonnendrücker, Eric. Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampere law. The SMAI Journal of computational mathematics, Tome 3 (2017), pp. 53-89. doi : 10.5802/smai-jcm.20. http://www.numdam.org/articles/10.5802/smai-jcm.20/

[1] Adam, J.-C.; Gourdin Serveniere, A.; Nédélec, J.-C.; Raviart, P.-A. Study of an implicit scheme for integrating Maxwell’s equations, Computer Methods in Applied Mechanics and Engineering, Volume 22 (1980), pp. 327-346 | DOI | MR | Zbl

[2] Arnold, D.N.; Falk, R.S.; Winther, R. Finite element exterior calculus, homological techniques, and applications, Acta Numerica (2006) | DOI | MR

[3] Arnold, D.N.; Falk, R.S.; Winther, R. Geometric decompositions and local bases for spaces of finite element differential forms, Computer Methods in Applied Mechanics and Engineering, Volume 198 (2009) no. 21, pp. 1660-1672 | DOI | MR

[4] Arnold, D.N.; Falk, R.S.; Winther, R. Finite element exterior calculus: from Hodge theory to numerical stability, Bull. Amer. Math. Soc.(NS), Volume 47 (2010) no. 2, pp. 281-354 | DOI | MR

[5] Barthelmé, R.; Parzani, C. Numerical charge conservation in particle-in-cell codes, Numerical methods for hyperbolic and kinetic problems, Eur. Math. Soc., Zürich, 2005, pp. 7-28 | DOI | Zbl

[6] Boffi, D. A note on the deRham complex and a discrete compactness property, Applied Mathematics Letters, Volume 14 (2001) no. 1, pp. 33-38 | DOI | MR | Zbl

[7] Boffi, D. Compatible Discretizations for Eigenvalue Problems, Compatible Spatial Discretizations, Springer New York, New York, NY, 2006, pp. 121-142 | DOI | MR | Zbl

[8] Boffi, D.; Brezzi, F.; Fortin, M. Mixed finite element methods and applications, Springer Series in Computational Mathematics, 44, Springer, 2013 | MR | Zbl

[9] Boris, J.P. Relativistic plasma simulations - Optimization of a hybrid code, Proc. 4th Conf. Num. Sim. of Plasmas, (NRL Washington, Washington DC) (1970), pp. 3-67

[10] Bossavit, A. Whitney forms: a class of finite elements for three-dimensional computations in electromagnetism, Physical Science, Measurement and Instrumentation, Management and Education - Reviews, IEE Proceedings A (1988), pp. 493-500 | DOI

[11] Bossavit, A. Computational electromagnetism: variational formulations, complementarity, edge elements, Academic Press, 1998 | Zbl

[12] Brezis, H. Functional analysis, Sobolev spaces and partial differential equations, Springer, 2010 | DOI

[13] Buffa, A.; Perugia, I. Discontinuous Galerkin Approximation of the Maxwell Eigenproblem, SIAM Journal on Numerical Analysis, Volume 44 (2006) no. 5, pp. 2198-2226 | DOI | MR | Zbl

[14] Buffa, A.; Sangalli, G.; Vázquez, R. Isogeometric analysis in electromagnetics: B-splines approximation, Computer Methods in Applied Mechanics and Engineering, Volume 199 (2010) no. 17, pp. 1143-1152 | DOI | MR | Zbl

[15] Campos Pinto, M. Constructing exact sequences on non-conforming discrete spaces, Comptes Rendus Mathematique, Volume 354 (2016) no. 7, pp. 691-696 | DOI | MR | Zbl

[16] Campos Pinto, M. Structure-preserving conforming and nonconforming discretizations of mixed problems, hal.archives-ouvertes.fr (2017)

[17] Campos Pinto, M.; Jund, S.; Salmon, S.; Sonnendrücker, E. Charge conserving FEM-PIC schemes on general grids, C.R. Mecanique, Volume 342 (2014) no. 10-11, pp. 570-582 | DOI

[18] Campos Pinto, M.; Lutz, M.; Mounier, M. Electromagnetic PIC simulations with smooth particles: a numerical study, ESAIM: Proc., Volume 53 (2016), pp. 133-148 | DOI | MR | Zbl

[19] Campos Pinto, M.; Mounier, M.; Sonnendrücker, E. Handling the divergence constraints in Maxwell and Vlasov–Maxwell simulations, Applied Mathematics and Computation, Volume 272 (2016), pp. 403-419 | DOI | MR | Zbl

[20] Campos Pinto, M.; Sonnendrücker, E. Compatible Maxwell solvers with particles I: conforming and non-conforming 2D schemes with a strong Ampère law (2016) (HAL preprint, hal-01303852v1) | Zbl

[21] Campos Pinto, M.; Sonnendrücker, E. Compatible Maxwell solvers with particles II: conforming and non-conforming 2D schemes with a strong Faraday law (2016) (HAL preprint hal-01303861) | Zbl

[22] Campos Pinto, M.; Sonnendrücker, E. Gauss-compatible Galerkin schemes for time-dependent Maxwell equations, Mathematics of Computation (2016) | DOI | MR | Zbl

[23] Cessenat, M. Mathematical methods in electromagnetism, Series on Advances in Mathematics for Applied Sciences, 41, World Scientific Publishing Co., Inc., River Edge, NJ, 1996 | MR | Zbl

[24] Christiansen, S.H. Stability of Hodge decompositions in finite element spaces of differential forms in arbitrary dimension, Numerische Mathematik, Volume 107 (2007) no. 1, pp. 87-106 | DOI | MR

[25] Christiansen, S.H.; Winther, R. Smoothed projections in finite element exterior calculus, Mathematics of Computation, Volume 77 (2008) no. 262, pp. 813-829 | DOI | MR | Zbl

[26] Crestetto, A.; Helluy, Ph. Resolution of the Vlasov-Maxwell system by PIC Discontinuous Galerkin method on GPU with OpenCL, ESAIM: Proceedings, Volume 38 (2012), pp. 257-274 | DOI | MR | Zbl

[27] Demkowicz, L. Polynomial exact sequences and projection-based interpolation with application to Maxwell equations, Mixed finite elements, compatibility conditions, and applications, Springer, 2008, pp. 101-158 | DOI | Zbl

[28] Demkowicz, L.; Buffa, A. H 1 , H( curl ) and H( div )-conforming projection-based interpolation in three dimensions: Quasi-optimal p-interpolation estimates, Computer Methods in Applied Mechanics and Engineering, Volume 194 (2005) no. 2, pp. 267-296 | DOI | MR | Zbl

[29] Depeyre, S.; Issautier, D. A new constrained formulation of the Maxwell system, Rairo-Mathematical Modelling and Numerical Analysis-Modelisation Mathematique Et Analyse Numerique, Volume 31 (1997) no. 3, pp. 327-357 | DOI | Numdam | MR | Zbl

[30] Eastwood, J.W. The virtual particle electromagnetic particle-mesh method, Computer Physics Communications, Volume 64 (1991) no. 2, pp. 252-266 | DOI

[31] Ern, A.; Guermond, J.-L. Finite Element Quasi-Interpolation and Best Approximation (2015) (hal-01155412v2)

[32] Esirkepov, T.Z. Exact charge conservation scheme for Particle-in-Cell simulation with an arbitrary form-factor, Computer Physics Communications, Volume 135 (2001) no. 2, pp. 144-153 | DOI | Zbl

[33] Falk, R.; Winther, R. Local bounded cochain projections, Mathematics of Computation, Volume 83 (2014) no. 290, pp. 2631-2656 | DOI | MR | Zbl

[34] Fezoui, L.; Lanteri, S.; Lohrengel, S.; Piperno, S. Convergence and stability of a discontinuous Galerkin time-domain method for the 3D heterogeneous Maxwell equations on unstructured meshes, ESAIM: Mathematical Modelling and Numerical Analysis, Volume 39 (2005) no. 6, pp. 1149-1176 | DOI | Numdam | MR | Zbl

[35] Girault, V.; Raviart, P.-A. Finite Element Methods for Navier-Stokes Equations – Theory and Algorithms, Springer Series in Computational Mathematics, Springer-Verlag, Berlin, 1986

[36] Gjonaj, E.; Lau, T.; Weiland, T. Conservation Properties of the Discontinuous Galerkin Method for Maxwell Equations, 2007 International Conference on Electromagnetics in Advanced Applications, IEEE (2007), pp. 356-359 | DOI

[37] Hesthaven, J.S.; Warburton, T. Nodal High-Order Methods on Unstructured Grids, Journal of Computational Physics, Volume 181 (2002) no. 1, pp. 186-221 | DOI | Zbl

[38] Hesthaven, J.S.; Warburton, T. High-order nodal discontinuous Galerkin methods for the Maxwell eigenvalue problem, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Volume 362 (2004) no. 1816, pp. 493-524 | DOI | MR | Zbl

[39] Hiptmair, R. Canonical construction of finite elements, Mathematics of Computation, Volume 68 (1999) no. 228, pp. 1325-1346 | DOI | MR | Zbl

[40] Hiptmair, R. Finite elements in computational electromagnetism, Acta Numerica, Volume 11 (2002), pp. 237-339 | DOI | MR | Zbl

[41] Hiptmair, R. Maxwell’s Equations: Continuous and Discrete, Computational Electromagnetism, Lecture Notes in Math., Vol. 2148 (Bermúdez de Castro, A; Valli, A, eds.), Springer International Publishing, Switzerland, 2015, pp. 1-58 | MR | Zbl

[42] Issautier, D.; Poupaud, F.; Cioni, J.-P.; Fezoui, L. A 2-D Vlasov-Maxwell solver on unstructured meshes, Third international conference on mathematical and numerical aspects of wave propagation (1995), pp. 355-371 | Zbl

[43] Jacobs, G.B.; Hesthaven, J.S. High-order nodal discontinuous Galerkin particle-in-cell method on unstructured grids, Journal of Computational Physics, Volume 214 (2006) no. 1, pp. 96-121 | DOI | MR

[44] Jacobs, G.B.; Hesthaven, J.S. Implicit–explicit time integration of a high-order particle-in-cell method with hyperbolic divergence cleaning, Computer Physics Communications, Volume 180 (2009) no. 10, pp. 1760-1767 | DOI | MR | Zbl

[45] Joly, P. Variational methods for time-dependent wave propagation problems, Topics in computational wave propagation (Lect. Notes Comput. Sci. Eng.), Volume 31, Springer, Berlin (2003), pp. 201-264 | DOI | MR | Zbl

[46] Kraus, M.; Kormann, K.; Morrison, P.J; Sonnendrücker, E. GEMPIC: Geometric electromagnetic particle-in-cell methods, arXiv preprint arXiv:1609.03053 (2016)

[47] Langdon, A.B. On enforcing Gauss’ law in electromagnetic particle-in-cell codes, Comput. Phys. Comm., Volume 70 (1992), pp. 447-450 | DOI

[48] Lau, T.; Gjonaj, E.; Weiland, T. The Construction of Discrete Gauss Laws for Time Domain Schemes, Magnetics, IEEE Transactions on, Volume 44 (2008) no. 6, pp. 1294-1297 | DOI

[49] Leis, R. Initial-boundary value problems in mathematical physics, B. G. Teubner, Stuttgart; John Wiley & Sons, Ltd., Chichester, 1986 | Zbl

[50] Makridakis, C.G.; Monk, P. Time-discrete finite element schemes for Maxwell’s equations, RAIRO Modél Math Anal Numér, Volume 29 (1995) no. 2, pp. 171-197 | DOI | Numdam | MR | Zbl

[51] Marder, B. A method for incorporating Gauss’s law into electromagnetic PIC codes, J. Comput. Phys., Volume 68 (1987), pp. 48-55 | DOI | Zbl

[52] Monk, P. A mixed method for approximating Maxwell’s equations, SIAM Journal on Numerical Analysis (1991), pp. 1610-1634 | DOI | MR | Zbl

[53] Monk, P. Analysis of a Finite Element Method for Maxwell’s Equations, SIAM Journal on Numerical Analysis, Volume 29 (1992) no. 3, pp. 714-729 | DOI | MR | Zbl

[54] Monk, P. An analysis of Nédélec’s method for the spatial discretization of Maxwell’s equations, Journal of Computational and Applied Mathematics, Volume 47 (1993) no. 1, pp. 101-121 | DOI | Zbl

[55] Monk, P. Finite Element Methods for Maxwell’s Equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, University of Delaware, Newark, 2003 | Zbl

[56] Monk, P.; Demkowicz, L Discrete compactness and the approximation of Maxwell’s equations in R3, Mathematics of Computation, Volume 70 (2001), pp. 507-523 | DOI | Zbl

[57] Moon, H.; Teixeira, F.L.; Omelchenko, Y.A. Exact charge-conserving scatter–gather algorithm for particle-in-cell simulations on unstructured grids: A geometric perspective, Computer Physics Communications, Volume 194 (2015), pp. 43-53 | DOI | MR | Zbl

[58] Munz, C.-D.; Omnes, P.; Schneider, R.; Sonnendrücker, E.; Voß, U. Divergence Correction Techniques for Maxwell Solvers Based on a Hyperbolic Model, Journal of Computational Physics, Volume 161 (2000) no. 2, pp. 484-511 | DOI | MR | Zbl

[59] Munz, C.-D.; Schneider, R.; Sonnendrücker, E.; Voß, U. Maxwell’s equations when the charge conservation is not satisfied, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, Volume 328 (1999) no. 5, pp. 431-436 | DOI | MR | Zbl

[60] Na, D.-Y.; Omelchenko, Y.A.; Moon, H.; Borges, B.-H.; Teixeira, F.L. Axisymmetric Charge-Conservative Electromagnetic Particle Simulation Algorithm on Unstructured Grids: Application to Vacuum Electronic Devices, arXiv:1112.1859v1 [math.NA] (2017) | Zbl

[61] Nédélec, J.-C. Mixed finite elements in R 3 , Numerische Mathematik, Volume 35 (1980) no. 3, pp. 315-341 | DOI

[62] Pazy, A. Semigroups of linear operators and applications to partial differential equations, Springer-Verlag, New York, 1983 | Zbl

[63] Raviart, P.-A.; Thomas, J.-M. A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods, Lecture Notes in Math., Vol. 606, Springer, Berlin, 1977, pp. 292-315 | DOI | Zbl

[64] Rieben, R.N.; Rodrigue, G.H.; White, D.A. A high order mixed vector finite element method for solving the time dependent Maxwell equations on unstructured grids, Journal of Computational Physics, Volume 204 (2005) no. 2, pp. 490-519 | DOI

[65] Schöberl, J. A posteriori error estimates for Maxwell equations, Mathematics of Computation, Volume 77 (2008) no. 262, pp. 633-649 | DOI | MR | Zbl

[66] Squire, J.; Qin, H.; Tang, W.M. Geometric integration of the Vlasov-Maxwell system with a variational particle-in-cell scheme, Physics of Plasmas (1994-present), Volume 19 (2012) no. 8, 084501 pages | DOI

[67] Stock, A.; Neudorfer, J.; Riedlinger, M.; Pirrung, G.; Gassner, G.; Schneider, R.; Roller, S.; Munz, C.-D. Three-Dimensional Numerical Simulation of a 30-GHz Gyrotron Resonator With an Explicit High-Order Discontinuous-Galerkin-Based Parallel Particle-In-Cell Method, IEEE Transactions on Plasma Science, Volume 40 (2012) no. 7, pp. 1860-1870 | DOI

[68] Stock, A.; Neudorfer, J.; Schneider, R.; Altmann, C.; Munz, C.-D. Investigation of the Purely Hyperbolic Maxwell System for Divergence Cleaning in Discontinuous Galerkin based Particle-In-Cell Methods, COUPLED PROBLEMS 2011 IV International Conference on Computational Methods for Coupled Problems in Science and Engineering (2011)

[69] Stowell, M.L.; White, D.A. Discretizing Transient Current Densities in the Maxwell Equations, ICAP 2009 (2009)

[70] Villasenor, J.; Buneman, O. Rigorous charge conservation for local electromagnetic field solvers, Computer Physics Communications, Volume 69 (1992) no. 2-3, pp. 306-316 | DOI

[71] Weiland, T. Finite Integration Method and Discrete Electromagnetism, Computational Electromagnetics, Springer Berlin Heidelberg, Berlin, Heidelberg, 2003, pp. 183-198 | DOI | MR | Zbl

[72] White, D.A.; Koning, J.M.; Rieben, R.N. Development and application of compatible discretizations of Maxwell’s equations, Compatible Spatial Discretizations, Springer, New York, 2006, pp. 209-234 | DOI

[73] Yee, F.S. Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media, IEEE Trans. Antennas Propag., Volume 14 (1966), pp. 302-307 | DOI

[74] Yosida, K. Functional analysis, Classics in Mathematics, 123, Springer-Verlag, Berlin, 1995

[75] Zaglmayr, S. High order finite element methods for electromagnetic field computation, Universität Linz, Diss (2006) (Ph. D. Thesis)

[76] Zhao, J. Analysis of finite element approximation for time-dependent Maxwell problems, Mathematics of Computation, Volume 73 (2004) no. 247, pp. 1089-1106 | DOI | MR | Zbl

Cité par Sources :