A variational approach to regularity theory in optimal transportation
Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 13, 14 p.

This paper describes recent results obtained in collaboration with M. Huesmann and F. Otto on the regularity of optimal transport maps. The main result is a quantitative version of the well-known fact that the linearization of the Monge-Ampère equation around the identity is the Poisson equation. We present two applications of this result. The first one is a variational proof of the partial regularity theorem of Figalli and Kim and the second is the rigorous validation of some predictions made by Carraciolo and al. on the structure of the optimal transport maps in matching problems.

Publié le :
DOI : https://doi.org/10.5802/slsedp.132
@article{SLSEDP_2018-2019____A13_0,
     author = {Goldman, Michael},
     title = {A variational approach to regularity theory in optimal~transportation},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:13},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2018-2019},
     doi = {10.5802/slsedp.132},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.132/}
}
Goldman, Michael. A variational approach to regularity theory in optimal transportation. Séminaire Laurent Schwartz — EDP et applications (2018-2019), Exposé no. 13, 14 p. doi : 10.5802/slsedp.132. http://www.numdam.org/articles/10.5802/slsedp.132/

[1] M. Ajtai, J. Komlós, and G. Tusnády, On optimal matchings, Combinatorica 4 (1984), 259–264. | Article | MR 779885 | Zbl 0562.60012

[2] G. Alberti, R. Choksi, and F. Otto, Uniform energy distribution for an isoperimetric problem with long-range interactions, J. Amer. Math. Soc. 22 (2009), no. 2, 569–605. | Article | MR 2476783 | Zbl 1206.49046

[3] L. Ambrosio, F. Glaudo, and D. Trevisan, On the optimal map in the 2-dimensional random matching problem, arXiv:1903.12153, 2019. | Zbl 07130132

[4] L. Ambrosio, F. Stra, and D. Trevisan, A PDE approach to a 2-dimensional matching problem, Probab. Theory Related Fields 173 (2019), no. 1-2, 433–477. | Article | MR 3916111 | Zbl 07030875

[5] S. Armstrong, T. Kuusi, and J.-C. Mourrat, Quantitative stochastic homogenization and large-scale regularity, arXiv:1705.05300, May 2017. | Zbl 07053909

[6] S. N. Armstrong and C. K. Smart, Quantitative stochastic homogenization of convex integral functionals, Ann. Sci. Éc. Norm. Supér. (4) 49 (2016), no. 2, 423–481. | Article | Zbl 1344.49014

[7] M. Avellaneda and F.-H. Lin, Compactness methods in the theory of homogenization, Comm. Pure Appl. Math. 40 (1987), no. 6, 803–847. | Article | MR 910954 | Zbl 0632.35018

[8] L. A. Caffarelli, A localization property of viscosity solutions to the Monge-Ampère equation and their strict convexity, Ann. of Math. (2) 131 (1990), no. 1, 129–134. | Article | MR 1038359 | Zbl 0704.35045

[9] —, The regularity of mappings with a convex potential, J. Amer. Math. Soc. 5 (1992), no. 1, 99–104. | Article | MR 1124980 | Zbl 0753.35031

[10] S. Campanato, Proprietà di una famiglia di spazi funzionali, Ann. Scuola Norm. Sup. Pisa (3) 18 (1964), 137–160. | Numdam | Zbl 0133.06801

[11] S. Caracciolo, C. Lucibello, G. Parisi, and G. Sicuro, Scaling hypothesis for the Euclidean bipartite matching problem, Physical Review E 90 (2014), no. 1. | Article

[12] S. Caracciolo and G. Sicuro, Scaling hypothesis for the Euclidean bipartite matching problem. II. Correlation functions, Physical Review E 91 (2015), no. 6. | Article | MR 3491356

[13] G. De Philippis and A. Figalli, The Monge-Ampère equation and its link to optimal transportation, Bull. Amer. Math. Soc. (N.S.) 51 (2014), no. 4, 527–580. | Article | Zbl 06377770

[14] —, Partial regularity for optimal transport maps, Publ. Math. Inst. Hautes Études Sci. 121 (2015), 81–112. | Article | MR 3349831 | Zbl 1325.49051

[15] A. Figalli and Y.-H. Kim, Partial regularity of Brenier solutions of the Monge-Ampère equation, Discrete Contin. Dyn. Syst. 28 (2010), no. 2, 559–565. | Zbl 1193.35087

[16] A. Gloria, S. Neukamm, and F. Otto, A regularity theory for random elliptic operators, arXiv:1409.2678, September 2014. | Article

[17] M. Goldman, M. Huesmann, and F. Otto, A large-scale regularity theory for the Monge-Ampere equation with rough data and application to the optimal matching problem, arXiv:1808.09250, Aug 2018.

[18] —, Quantitative linearization results for the Monge-Ampère equation, arXiv:1905.09678, 2019.

[19] —, In preparation.

[20] M. Goldman and F. Otto, A variational proof of partial regularity for optimal transportation maps, arXiv:1704.05339, 2017.

[21] M. Huesmann and K.-T. Sturm, Optimal transport from Lebesgue to Poisson, Ann. Probab. 41 (2013), no. 4, 2426–2478. | Article | MR 3112922 | Zbl 1279.60024

[22] J. Kitagawa and R. McCann, Free discontinuities in optimal transport, Arch. Ration. Mech. Anal. 232 (2019), no. 3, 1505–1541. | Article | MR 3928755 | Zbl 07045539

[23] M. Ledoux, A fluctuation result in dual Sobolev norm for the optimal matching problem, 2019.

[24] F. Maggi, Sets of finite perimeter and geometric variational problems. An introduction to geometric measure theory, Cambridge Studies in Advanced Mathematics, vol. 135, Cambridge University Press, Cambridge, 2012. | Article | Zbl 1255.49074

[25] F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progress in Nonlinear Differential Equations and their Applications, vol. 87, Birkhäuser/Springer, Cham, 2015. | Zbl 1401.49002

[26] M. Talagrand, Upper and lower bounds for stochastic processes: modern methods and classical problems, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 60, Springer Science & Business Media, 2014. | Article | Zbl 1293.60001

[27] C. Villani, Topics in optimal transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, RI, 2003. | Zbl 1106.90001