Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems
Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 4, 12 p.

This note presents a numerical method based on optimal transport to construct minimal geodesics along the group of volume preserving maps, equipped with the L 2 metric. As observed by Arnold, such geodesics solve the Euler equations of inviscid incompressible fluids. The method relies on the generalized polar decomposition of Brenier, numerically implemented through semi-discrete optimal transport and it is robust enough to extract non-classical, multi-valued solutions of Euler’s equations predicted by Brenier and Schnirelman [Mérigot and Mirebeau, SIAM J. Num. Anal., 54(6), 2016]. In a second part, we explain how this approach also leads to a numerical scheme able to approximate regular solutions to the Cauchy problem for Euler’s equations [Gallouët and Mérigot, J. Found Comput Math, 2017].

Publié le :
DOI : 10.5802/slsedp.109
Mérigot, Quentin 1

1 Laboratoire de Mathématiques d’Orsay Univ. Paris-Sud, CNRS, Université Paris-Saclay 91405 Orsay Cedex France
@article{SLSEDP_2016-2017____A4_0,
     author = {M\'erigot, Quentin},
     title = {Discretization of {Euler{\textquoteright}s} equations using optimal transport: {Cauchy} and boundary value problems},
     journal = {S\'eminaire Laurent Schwartz {\textemdash} EDP et applications},
     note = {talk:4},
     pages = {1--12},
     publisher = {Institut des hautes \'etudes scientifiques & Centre de math\'ematiques Laurent Schwartz, \'Ecole polytechnique},
     year = {2016-2017},
     doi = {10.5802/slsedp.109},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/slsedp.109/}
}
TY  - JOUR
AU  - Mérigot, Quentin
TI  - Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems
JO  - Séminaire Laurent Schwartz — EDP et applications
N1  - talk:4
PY  - 2016-2017
SP  - 1
EP  - 12
PB  - Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
UR  - http://www.numdam.org/articles/10.5802/slsedp.109/
DO  - 10.5802/slsedp.109
LA  - en
ID  - SLSEDP_2016-2017____A4_0
ER  - 
%0 Journal Article
%A Mérigot, Quentin
%T Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems
%J Séminaire Laurent Schwartz — EDP et applications
%Z talk:4
%D 2016-2017
%P 1-12
%I Institut des hautes études scientifiques & Centre de mathématiques Laurent Schwartz, École polytechnique
%U http://www.numdam.org/articles/10.5802/slsedp.109/
%R 10.5802/slsedp.109
%G en
%F SLSEDP_2016-2017____A4_0
Mérigot, Quentin. Discretization of Euler’s equations using optimal transport: Cauchy and boundary value problems. Séminaire Laurent Schwartz — EDP et applications (2016-2017), Exposé no. 4, 12 p. doi : 10.5802/slsedp.109. http://www.numdam.org/articles/10.5802/slsedp.109/

[AF07] Luigi Ambrosio and Alessio Figalli. On the regularity of the pressure field of Brenier’s weak solutions to incompressible Euler equations. Calculus of Variations and Partial Differential Equations, 2007. | DOI | MR

[AHA98] F Aurenhammer, F Hoffmann, and B Aronov. Minkowski-type theorems and least-squares clustering. Algorithmica, 1998. | DOI | MR | Zbl

[Arn66] Vladimir Arnold. Sur la géométrie différentielle des groupes de Lie de dimension infinie et ses applications à l’hydrodynamique des fluides parfaits. Annales de l’institut Fourier, 1966. | DOI | Numdam

[BCMO14] Jean-David Benamou, Guillaume Carlier, Quentin Mérigot, and Edouard Oudet. Discretization of functionals involving the Monge-Ampère operator. 2014. | arXiv | DOI | Zbl

[BL04] Yann Brenier and Grégoire Loeper. A geometric approximation to the Euler equations: the Vlasov–Monge–Ampère system. Geometric And Functional Analysis, 14(6):1182–1218, 2004. | DOI | Zbl

[Bre91] Yann Brenier. Polar factorization and monotone rearrangement of vector-valued functions. Communications on Pure and Applied Mathematics, 1991. | DOI | MR | Zbl

[Bre93] Yann Brenier. The dual least action principle for an ideal, incompressible fluid. Archive for rational mechanics and analysis, 1993. | DOI | MR

[Bre00] Yann Brenier. Derivation of the Euler equations from a caricature of Coulomb interaction. Communications in Mathematical Physics, 212(1):93–104, 2000. | DOI | MR | Zbl

[Bre08] Yann Brenier. Generalized solutions and hydrostatic approximation of the Euler equations. Physica D. Nonlinear Phenomena, 2008. | DOI | MR | Zbl

[Bre89a] Yann Brenier. A combinatorial algorithm for the Euler equations of incompressible flows. Computer methods in applied mechanics and engineering, 75(1-3):325–332, 1989. | DOI | MR | Zbl

[Bre89b] Yann Brenier. The least action principle and the related concept of generalized flows for incompressible perfect fluids. Journal of the American Mathematical Society, 1989. | DOI | MR | Zbl

[cga] CGAL, Computational Geometry Algorithms Library. http://www.cgal.org. | DOI

[CGP07] Mike Cullen, Wilfrid Gangbo, and Giovanni Pisante. The semigeostrophic equations discretized in reference and dual variables. Archive for rational mechanics and analysis, 185(2):341–363, 2007. | DOI | MR | Zbl

[dGBOD12] Fernando de Goes, Katherine Breeden, Victor Ostromoukhov, and Mathieu Desbrun. Blue noise through optimal transport. ACM Transactions on Graphics (TOG), 2012. | DOI

[dGWH+15] Fernando de Goes, Corentin Wallez, Jin Huang, Dmitry Pavlov, and Mathieu Desbrun. Power particles: an incompressible fluid solver based on power diagrams. ACM Trans. Graph., 34(4):50–1, 2015. | DOI | Zbl

[Eul65] Leonhard Euler. Opera Omnia. 1765.

[FD12] Alessio Figalli and S Daneri. Variational models for the incompressible Euler equations. HCDTE Lecture Notes, Part II, 2012. | DOI

[GM17] Thomas O Gallouët and Quentin Mérigot. A Lagrangian scheme à la Brenier for the incompressible Euler equations. Foundations of Computational Mathematics, pages 1–31, 2017. | DOI | MR | Zbl

[Gru04] Peter M Gruber. Optimum quantization and its applications. Advances in Mathematics, 2004. | DOI | MR | Zbl

[Lév14] Bruno Lévy. A numerical algorithm for L 2 semi-discrete optimal transport in 3D. arXiv.org, 2014. | DOI

[MM16] Quentin Mérigot and Jean-Marie Mirebeau. Minimal geodesics along volume-preserving maps, through semidiscrete optimal transport. SIAM Journal on Numerical Analysis, 54(6):3465–3492, 2016. | DOI | MR | Zbl

[Shn94] A I Shnirelman. Generalized fluid flows, their approximation and applications. Geometric and Functional Analysis, 1994. | DOI | MR | Zbl

Cité par Sources :