Rational points on curves
Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 257-277.

This is an extended version of an invited lecture I gave at the Journées Arithmétiques in St. Étienne in July 2009.

We discuss the state of the art regarding the problem of finding the set of rational points on a (smooth projective) geometrically integral curve C over . The focus is on practical aspects of this problem in the case that the genus of C is at least 2, and therefore the set of rational points is finite.

Ceci est la version longue de l’exposé invité que j’ai donné aux Journées Arithmétiques de St. Étienne en juillet 2009.

Nous discutons l’état de l’art pour le problème de trouver l’ensemble des points rationnels sur  d’une courbe C (projective lisse) géométriquement intègre. Nous nous concentrons sur les aspects pratiques de ce problème dans le cas où le genre de C est au moins 2, et par conséquent l’ensemble des points rationnels est fini.

DOI: 10.5802/jtnb.760
Classification: 11D41, 11G30, 14G05, 14G25
Stoll, Michael 1

1 Mathematisches Institut Universität Bayreuth 95440 Bayreuth, Germany.
@article{JTNB_2011__23_1_257_0,
     author = {Stoll, Michael},
     title = {Rational points on curves},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {257--277},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {23},
     number = {1},
     year = {2011},
     doi = {10.5802/jtnb.760},
     zbl = {1270.11030},
     mrnumber = {2780629},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.760/}
}
TY  - JOUR
AU  - Stoll, Michael
TI  - Rational points on curves
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2011
SP  - 257
EP  - 277
VL  - 23
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - http://www.numdam.org/articles/10.5802/jtnb.760/
DO  - 10.5802/jtnb.760
LA  - en
ID  - JTNB_2011__23_1_257_0
ER  - 
%0 Journal Article
%A Stoll, Michael
%T Rational points on curves
%J Journal de théorie des nombres de Bordeaux
%D 2011
%P 257-277
%V 23
%N 1
%I Société Arithmétique de Bordeaux
%U http://www.numdam.org/articles/10.5802/jtnb.760/
%R 10.5802/jtnb.760
%G en
%F JTNB_2011__23_1_257_0
Stoll, Michael. Rational points on curves. Journal de théorie des nombres de Bordeaux, Volume 23 (2011) no. 1, pp. 257-277. doi : 10.5802/jtnb.760. http://www.numdam.org/articles/10.5802/jtnb.760/

[1] M.J. Bright, N. Bruin, E.V. Flynn, A. Logan, The Brauer-Manin obstruction and Ш[2], LMS J. Comput. Math. 10 (2007), 354–377. | MR

[2] N. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract 133, 77 pages (2002). | MR | Zbl

[3] N. Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27–49. | MR | Zbl

[4] N. Bruin, N.D. Elkies, Trinomials ax 7 +bx+c and ax 8 +bx+c with Galois groups of order 168 and 8·168, in: Algorithmic number theory, Sydney 2002, Lecture Notes in Comput. Sci. 2369, Springer, Berlin (2002), pp. 172–188. | MR | Zbl

[5] N. Bruin, E.V. Flynn, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), 4329–4347. | MR | Zbl

[6] N. Bruin, E.V. Flynn, Exhibiting SHA[2] on hyperelliptic Jacobians, J. Number Theory 118 (2006), 266–291. | MR | Zbl

[7] N. Bruin, M. Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), 181–189. | MR

[8] N. Bruin, M. Stoll, 2-cover descent on hyperelliptic curves, Math. Comp. 78 (2009), 2347–2370. | MR

[9] N. Bruin, M. Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, LMS J. Comput. Math. 13 (2010), 272–306. | MR

[10] Y. Bugeaud, M. Mignotte, S. Siksek, M. Stoll, Sz. Tengely, Integral points on hyperelliptic curves, Algebra Number Theory 2 (2008), 859–885. | MR | Zbl

[11] J.W.S. Cassels, Second descents for elliptic curves, J. reine angew. Math. 494 (1998), 101–127. | MR | Zbl

[12] J.W.S. Cassels, E.V. Flynn, Prolegomena to a middlebrow arithmetic of curves of genus 2, London Math. Soc., Lecture Note Series 230, Cambridge Univ. Press, Cambridge, 1996. | MR | Zbl

[13] C. Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885. | MR

[14] C. Chevalley, A. Weil, Un théorème d’arithmétique sur les courbes algébriques, Comptes Rendus Hebdomadaires des Séances de l’Acad. des Sci., Paris 195 (1932), 570–572. | Zbl

[15] R.F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), 765–770. | MR | Zbl

[16] J.E. Cremona, T.A. Fisher, C. O’Neil, D. Simon, M. Stoll, Explicit n-descent on elliptic curves. I. Algebra, J. reine angew. Math. 615 (2008), 121–155. II. Geometry, J. reine angew. Math. 632 (2009), 63–84. III. Algorithms, in preparation. | MR

[17] J.E. Cremona, T.A. Fisher, M. Stoll, Minimisation and reduction of 2-, 3- and 4-coverings of elliptic curves, Algebra Number Theory 4 (2010), 763–820. | MR

[18] B. Creutz, Explicit second p-descent on elliptic curves, PhD Thesis, Jacobs University Bremen, 2010.

[19] V.A. Dem’janenko, Rational points of a class of algebraic curves (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 30 (1966), 1373–1396. | MR | Zbl

[20] T. Dokchitser, Computing special values of motivic L-functions, Experiment. Math. 13 (2004), 137–149. | MR | Zbl

[21] G. Faltings, Endlichkeitssätze für abelsche Varietäten über Zahlkörpern, Invent. Math. 73 (1983), 349–366. | MR | Zbl

[22] E.V. Flynn, An explicit theory of heights, Trans. Amer. Math. Soc. 347 (1995), 3003–3015. | MR | Zbl

[23] E.V. Flynn, A flexible method for applying Chabauty’s theorem, Compositio Math. 105 (1997), 79–94. | MR | Zbl

[24] E.V. Flynn, The Hasse Principle and the Brauer-Manin obstruction for curves, Manuscripta Math. 115 (2004), 437–466. | MR | Zbl

[25] E.V. Flynn, Homogeneous spaces and degree 4 del Pezzo surfaces, Manuscripta Math. 129 (2009), 369–380. | MR | Zbl

[26] E.V. Flynn, B. Poonen, E.F. Schaefer, Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J. 90 (1997), 435–463. | MR | Zbl

[27] E.V. Flynn, N.P. Smart, Canonical heights on the Jacobians of curves of genus 2 and the infinite descent, Acta Arith. 79 (1997), 333–352. | MR | Zbl

[28] M. Girard, L. Kulesz, Computation of sets of rational points of genus-3 curves via the Dem’janenko-Manin method, LMS J. Comput. Math. 8 (2005), 267–300. | MR | Zbl

[29] Su-Ion Ih, Height uniformity for algebraic points on curves, Compositio Math. 134 (2002), 35–57. | MR | Zbl

[30] V.A. Kolyvagin, Finiteness of E() and Ш(E,) for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Vol. 52 (1988), 522–540. | MR | Zbl

[31] A.K. Lenstra, H.W. Lenstra, Jr., L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), 515–534. | MR | Zbl

[32] A. Logan, R. van Luijk, Nontrivial elements of Sha explained through K3 surfaces, Math. Comp. 78 (2009), 441–483. | MR

[33] Y. Manin, The p-torsion of elliptic curves is uniformly bounded (Russian), Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969), 459–465. | MR | Zbl

[34] J.R. Merriman, S. Siksek, N.P. Smart, Explicit 4-descents on an elliptic curve, Acta Arith. 77 (1996), 385–404. | MR | Zbl

[35] L.J. Mordell, On the rational solutions of the indeterminate equations of the 3rd and 4th degrees, Proc. Camb. Phil. Soc. 21 (1922), 179–192.

[36] B. Poonen, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), 415–420. | MR | Zbl

[37] B. Poonen, E.F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. reine angew. Math. 488 (1997), 141–188. | MR | Zbl

[38] B. Poonen, E.F. Schaefer, M. Stoll, Twists of X(7) and primitive solutions to x 2 +y 3 =z 7 , Duke Math. J. 137 (2007), 103–158. | MR | Zbl

[39] B. Poonen, M. Stoll, A local-global principle for densities, in: Scott D. Ahlgren (ed.) et al.: Topics in number theory. In honor of B. Gordon and S. Chowla. Kluwer Academic Publishers, Dordrecht. Math. Appl., Dordr. 467 (1999), 241–244. | MR | Zbl

[40] E.F. Schaefer, Computing a Selmer group of a Jacobian using functions on the curve, Math. Ann. 310 (1998), 447–471. | MR | Zbl

[41] V. Scharaschkin, Local-global problems and the Brauer-Manin obstruction, Ph.D. thesis, University of Michigan (1999). | MR

[42] J.-P. Serre, Algebraic groups and class fields, Springer GTM 117, Springer Verlag, 1988. | MR | Zbl

[43] J.-P. Serre, Lectures on the Mordell-Weil theorem. Translated from the French and edited by Martin Brown from notes by Michel Waldschmidt. Aspects of Mathematics, E15. Friedr. Vieweg & Sohn, Braunschweig, 1989. | MR | Zbl

[44] S. Siksek, M. Stoll, On a problem of Hajdu and Tengely, in: G. Hanrot, F. Morain, and E. Thomé (Eds.): ANTS-IX 2010, LNCS 6197, pp. 316–330. Springer Verlag, Heidelberg, 2010.

[45] D. Simon, Solving quadratic equations using reduced unimodular quadratic forms, Math. Comp. 74 (2005), 1531–1543. | MR | Zbl

[46] S. Stamminger, Explicit 8-descent on elliptic curves, PhD thesis, International University Bremen (2005).

[47] M. Stoll, On the height constant for curves of genus two, Acta Arith. 90 (1999), 183–201. | MR | Zbl

[48] M. Stoll, Implementing 2-descent on Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), 245–277. | MR | Zbl

[49] M. Stoll, On the height constant for curves of genus two, II, Acta Arith. 104 (2002), 165–182. | MR | Zbl

[50] M. Stoll, Descent on Elliptic Curves. Short Course taught at IHP in Paris, October 2004. arXiv:math/0611694v1 [math.NT].

[51] M. Stoll, Independence of rational points on twists of a given curve, Compositio Math. 142 (2006), 1201–1214. | MR | Zbl

[52] M. Stoll, Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), 349–391. | MR | Zbl

[53] M. Stoll, Rational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math. 11 (2008), 367–380. | MR

[54] M. Stoll, On the average number of rational points on curves of genus 2, Preprint (2009), arXiv:0902.4165v1 [math.NT].

[55] M. Stoll, Documentation for the ratpoints program, Manuscript (2009), arXiv:0803.3165 [math.NT].

[56] A. Weil, L’arithmétique sur les courbes algébriques, Acta Math. 52 (1929), 281–315. | MR

[57] J.L. Wetherell, Bounding the number of rational points on certain curves of high rank, Ph.D. thesis, University of California (1997). | MR

Cited by Sources: