The geometry of the third moment of exponential sums
Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 733-760.

Nous donnons une interprétation géométrique à deux types distincts de sommes d’exponentielles. L’une d’elles correspond au moment d’ordre trois des sommes de Kloosterman sur F q de type K(ν 2 ;q). Nous commençons par établir un lien entre les sommes considérées et le nombre de points F q -rationnels sur certaines surfaces projectives lisses : l’une d’entre elles est une surface K3 et l’autre est une surface cubique lisse. Appliquant la théorie de Grothendieck-Lefschetz, on retrouve alors en particulier une formule pour le troisième moment des sommes de Kloosterman obtenue par D. H. et E. Lehmer en 1960.

We give a geometric interpretation (and we deduce an explicit formula) for two types of exponential sums, one of which is the third moment of Kloosterman sums over F q of type K(ν 2 ;q). We establish a connection between the sums considered and the number of F q -rational points on explicit smooth projective surfaces, one of which is a K3 surface, whereas the other is a smooth cubic surface. As a consequence, we obtain, applying Grothendieck-Lefschetz theory, a generalized formula for the third moment of Kloosterman sums first investigated by D. H. and E. Lehmer in the 60’s .

DOI : 10.5802/jtnb.648
Jouve, Florent 1

1 Dept. of Mathematics The University of Texas at Austin 1 University Station C1200 Austin, TX, 78712, USA.
@article{JTNB_2008__20_3_733_0,
     author = {Jouve, Florent},
     title = {The geometry of the third moment of exponential sums},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {733--760},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {3},
     year = {2008},
     doi = {10.5802/jtnb.648},
     mrnumber = {2523315},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.648/}
}
TY  - JOUR
AU  - Jouve, Florent
TI  - The geometry of the third moment of exponential sums
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2008
SP  - 733
EP  - 760
VL  - 20
IS  - 3
PB  - Université Bordeaux 1
UR  - http://www.numdam.org/articles/10.5802/jtnb.648/
DO  - 10.5802/jtnb.648
LA  - en
ID  - JTNB_2008__20_3_733_0
ER  - 
%0 Journal Article
%A Jouve, Florent
%T The geometry of the third moment of exponential sums
%J Journal de théorie des nombres de Bordeaux
%D 2008
%P 733-760
%V 20
%N 3
%I Université Bordeaux 1
%U http://www.numdam.org/articles/10.5802/jtnb.648/
%R 10.5802/jtnb.648
%G en
%F JTNB_2008__20_3_733_0
Jouve, Florent. The geometry of the third moment of exponential sums. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 733-760. doi : 10.5802/jtnb.648. http://www.numdam.org/articles/10.5802/jtnb.648/

[1] S. Ahlgren, K. Ono, Modularity of a certain Calabi-Yau threefold. Monatsh. Math. 129 (2000), no. 3, 177–190. | MR | Zbl

[2] M. Artin, Supersingular K3 surfaces. Ann. Scient. Éc. Norm. Sup., 4e série, 7 (1974), 543–568. | Numdam | MR | Zbl

[3] A. O. L. Atkin, Note on a paper of Birch. J. London Math. Soc. 44 (1969). | MR | Zbl

[4] W. Barth, C. Peters, A. van de Ven, Compact complex surfaces. Springer, Berlin-Heidelberg-New York, 1984. | MR | Zbl

[5] F. Beukers, J. Stienstra, On the Picard-Fuchs equation and the formal Brauer group of certain elliptic K3-surfaces. Math. Ann. 271 (1985), 269–304. | MR | Zbl

[6] B. J. Birch, How the number of points of an elliptic curve over a fixed prime field varies. J. London Math. Soc. 43 (1968) 57–60. | MR | Zbl

[7] A. Calabri, R. Ferraro, Explicit resolutions of double point singularities of surfaces. Collect. Math. 53 (2002), no. 2, 99–131. | MR | Zbl

[8] P. Deligne, Cohomologie étale, SGA 41 2. Lectures Notes in Math. 569, Springer Verlag 1977. | MR | Zbl

[9] P. Deligne, La conjecture de Weil. II. Inst. Hautes Études Sci. Publ. Math. 52 (1980), 137–252. | Numdam | MR | Zbl

[10] L. Fu, D. Wan, L-functions for symmetric products of Kloosterman sums. J. reine angew. Math. 589 (2005), 79–103. | MR

[11] R. Hartshorne, Algebraic geometry. GTM 52, Springer-Verlag, 1977. | MR | Zbl

[12] B. Hunt, The geometry of some special arithmetic quotients. Lecture Notes in Math. 1637. Springer-Verlag, Berlin, 1996. | MR | Zbl

[13] H. Inose, T. Shioda, On singular K3 surfaces. Complex analysis and algebraic geometry (eds Baily, W. and Shioda, T.), Cambridge (1977), 119-136. | MR | Zbl

[14] K. Ireland, M. Rosen, A classical introduction to modern number theory, Second Edition, GTM 84, Springer-Verlag 1990. | MR | Zbl

[15] H. Iwaniec, Topics in classical automorphic forms. Graduate Studies in Mathematics, 17, American Mathematical Society, 1997. | MR | Zbl

[16] A. J. de Jong, N. M. Katz, Monodromy and the Tate conjecture: Picard numbers and Mordell-Weil ranks in families. Israel J. Math. 120 (2000), part A, 47–79. | MR | Zbl

[17] N. M. Katz, Gauss sums, Kloosterman sums, and monodromy groups. Annals of Mathematics Studies 116. Princeton University Press, Princeton, NJ, 1988 | MR | Zbl

[18] D. H. Lehmer, E. Lehmer, On the cubes of Kloosterman sums. Acta Arith. 6 (1960), 15–22. | MR | Zbl

[19] R. Livné, Cubic exponential sums and Galois representations . Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), 247–261, Contemp. Math. 67, Amer. Math. Soc., Providence, RI, (1987). | MR | Zbl

[20] Yu. Manin, Cubic forms. Algebra, geometry, arithmetic. Second edition. North-Holland Mathematical Library, 4. North-Holland Publishing Co., Amsterdam, 1986. | MR | Zbl

[21] L. J. Mordell, On Lehmer’s congruence associated with cubes of Kloosterman’s sums. J. London Math. Soc. 36 (1961), 335–339. | MR | Zbl

[22] H. Salié, Über die Kloostermanschen Summen S(u,v;q). Math. Zeit. 34 (1932), 91–109. | MR | Zbl

[23] T. W. Sederberg, Techniques for cubic algebraic surfaces. IEEE Comp. Graph and Appl., September 1990.

[24] J. Silverman, The arithmetic of elliptic curves. GTM 106, Springer-Verlag, 1986. | MR | Zbl

[25] J. Silverman, Advanced topics in the arithmetic of elliptic curves, Second Edition, GTM 151, Springer-Verlag, 1999. | MR | Zbl

[26] H. P. F. Swinnerton-Dyer, The zeta function of a cubic surface over a finite field. Proc. Camb. Phil. Soc. 63 (1967), 55. | MR | Zbl

[27] H. A. Verril, The L-series of certain rigid Calabi-Yau threefolds. J. Number Theory 81 (2000), no. 2, 310–334. | MR | Zbl

Cité par Sources :