Soit une forme nouvelle de poids sans multiplication complexe. Soit un sous-corps du corps des coefficients de . Nous résolvons complètement la question de la densité de l’ensemble des premier tels que le -ième coefficient de engendre . Cette densité est déterminée par les tordues intérieures de . Comme cas particulier, on obtient que cette densité est pour le corps des coefficients de , pourvu que n’ait pas de tordue intérieure non-triviale. Nous présentons aussi quelques données nouvelles sur la réductibilité de polynômes de Hecke suggérant des questions pour des recherches à venir.
Let be a non-CM newform of weight . Let be a subfield of the coefficient field of . We completely settle the question of the density of the set of primes such that the -th coefficient of generates the field . This density is determined by the inner twists of . As a particular case, we obtain that in the absence of nontrivial inner twists, the density is for equal to the whole coefficient field. We also present some new data on reducibility of Hecke polynomials, which suggest questions for further investigation.
@article{JTNB_2008__20_2_373_0, author = {Koo, Koopa Tak-Lun and Stein, William and Wiese, Gabor}, title = {On the generation of the coefficient field of a newform by a single {Hecke} eigenvalue}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {373--384}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.633}, mrnumber = {2477510}, zbl = {1171.11027}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.633/} }
TY - JOUR AU - Koo, Koopa Tak-Lun AU - Stein, William AU - Wiese, Gabor TI - On the generation of the coefficient field of a newform by a single Hecke eigenvalue JO - Journal de Théorie des Nombres de Bordeaux PY - 2008 DA - 2008/// SP - 373 EP - 384 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.633/ UR - https://www.ams.org/mathscinet-getitem?mr=2477510 UR - https://zbmath.org/?q=an%3A1171.11027 UR - https://doi.org/10.5802/jtnb.633 DO - 10.5802/jtnb.633 LA - en ID - JTNB_2008__20_2_373_0 ER -
Koo, Koopa Tak-Lun; Stein, William; Wiese, Gabor. On the generation of the coefficient field of a newform by a single Hecke eigenvalue. Journal de Théorie des Nombres de Bordeaux, Tome 20 (2008) no. 2, pp. 373-384. doi : 10.5802/jtnb.633. http://www.numdam.org/articles/10.5802/jtnb.633/
[1] S. Baba, R. Murty, Irreducibility of Hecke Polynomials. Math. Research Letters 10 (2003), no. 5-6, 709–715. | MR 2024727
[2] D. W. Farmer, K. James, The irreducibility of some level 1 Hecke polynomials. Math. Comp. 71 (2002), no. 239, 1263–1270. | MR 1898755 | Zbl 0995.11032
[3] W. Fulton, J. Harris, Representation Theory, A First Course. Springer, 1991. | MR 1153249 | Zbl 0744.22001
[4] J. Kevin, K. Ono, A note on the Irreducibility of Hecke Polynomials. J. Number Theory 73 (1998), 527–532. | MR 1658012 | Zbl 0931.11011
[5] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties. Math. Ann. 253 (1980), no. 1, 43–62. | MR 594532 | Zbl 0421.14008
[6] K. A. Ribet, On l-adic representations attached to modular forms. II. Glasgow Math. J. 27 (1985), 185–194. | MR 819838 | Zbl 0596.10027
[7] J.-P. Serre, Quelques applications du théorème de densité de Chebotarev. Inst. Hautes Etudes Sci. Publ. Math. 54 (1981), 323–401. | Numdam | MR 644559 | Zbl 0496.12011
[8] W. Stein, Sage Mathematics Software (Version 3.0). The SAGE Group, 2008, http://www.sagemath.org.
Cité par Sources :