On some remarkable properties of the two-dimensional Hammersley point set in base 2
Journal de Théorie des Nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 203-221.

Nous examinons une classe spéciale de (0,m,2)-réseaux en base 2. Particulièrement, nous nous occupons du réseau de Hammersley en deux dimensions qui joue un rôle spécial parmi ce type de réseaux, puisque nous démontrons que c’est le plus mal distribué quant à la discrépance à l’origine. En le montrant, nous améliorons un majorant connu pour la discrépance à l’origine de (0,m,2)-réseaux en base 2. De plus, nous démontrons qu’on peut obtenir des réseaux avec une discrépance à l’origine très basse en transformant le réseau de Hammersley d’une manière appropriée.

We study a special class of (0,m,2)-nets in base 2. In particular, we are concerned with the two-dimensional Hammersley net that plays a special role among these since we prove that it is the worst distributed with respect to the star discrepancy. By showing this, we also improve an existing upper bound for the star discrepancy of digital (0,m,2)-nets over 2 . Moreover, we show that nets with very low star discrepancy can be obtained by transforming the Hammersley point set in a suitable way.

@article{JTNB_2006__18_1_203_0,
     author = {Kritzer, Peter},
     title = {On some remarkable properties of the two-dimensional Hammersley point set in base 2},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {203--221},
     publisher = {Universit\'e Bordeaux 1},
     volume = {18},
     number = {1},
     year = {2006},
     doi = {10.5802/jtnb.540},
     mrnumber = {2245882},
     zbl = {1103.11024},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/jtnb.540/}
}
Kritzer, Peter. On some remarkable properties of the two-dimensional Hammersley point set in base 2. Journal de Théorie des Nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 203-221. doi : 10.5802/jtnb.540. http://www.numdam.org/articles/10.5802/jtnb.540/

[1] L. De Clerck, A method for exact calculation of the stardiscrepancy of plane sets applied to the sequences of Hammersley. Monatsh. Math. 101 (1986), 261–278. | MR 851948 | Zbl 0588.10059

[2] J. Dick, P. Kritzer, Star-discrepancy estimates for digital (t,m,2)-nets and (t,2)-sequences over 2 . Acta Math. Hungar. 109 (3) (2005), 239–254. | MR 2187287 | Zbl 1102.11036

[3] M. Drmota, R. F. Tichy, Sequences, Discrepancies and Applications. Lecture Notes in Mathematics 1651, Springer, Berlin, 1997. | MR 1470456 | Zbl 0877.11043

[4] H. Faure, On the star-discrepancy of generalized Hammersley sequences in two dimensions. Monatsh. Math. 101 (1986), 291–300. | MR 851950 | Zbl 0588.10060

[5] J. H. Halton, S. K. Zaremba, The extreme and the L 2 discrepancies of some plane sets. Monatsh. Math. 73 (1969), 316–328. | MR 252329 | Zbl 0183.31401

[6] L. Kuipers, H. Niederreiter, Uniform Distribution of Sequences. John Wiley, New York, 1974. | MR 419394 | Zbl 0281.10001

[7] G. Larcher, F. Pillichshammer, Sums of distances to the nearest integer and the discrepancy of digital nets. Acta Arith. 106 (2003), 379–408. | MR 1957912 | Zbl 1054.11039

[8] H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods. CBMS–NSF Series in Applied Mathematics 63, SIAM, Philadelphia, 1992. | MR 1172997 | Zbl 0761.65002

[9] F. Zhang, Matrix Theory. Springer, New York, 1999. | MR 1691203 | Zbl 0948.15001