Nous présentons des algorithmes pour le calcul des formes de Humbert binaires extrémales sur les corps quadratiques réels. Grâce à ces algorithmes, nous sommes capables de calculer les formes de Humbert extrémales pour les corps de nombres et . Enfin nous calculons la constante d’Hermite-Humbert pour le corps de nombres .
We present algorithms for the computation of extreme binary Humbert forms in real quadratic number fields. With these algorithms we are able to compute extreme Humbert forms for the number fields and . Finally we compute the Hermite-Humbert constant for the number field .
@article{JTNB_2005__17_3_905_0, author = {Pohst, Michael E. and Wagner, Marcus}, title = {On the computation of {Hermite-Humbert} constants for real quadratic number fields}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {905--920}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {3}, year = {2005}, doi = {10.5802/jtnb.526}, mrnumber = {2212131}, zbl = {05016593}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.526/} }
TY - JOUR AU - Pohst, Michael E. AU - Wagner, Marcus TI - On the computation of Hermite-Humbert constants for real quadratic number fields JO - Journal de Théorie des Nombres de Bordeaux PY - 2005 DA - 2005/// SP - 905 EP - 920 VL - 17 IS - 3 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.526/ UR - https://www.ams.org/mathscinet-getitem?mr=2212131 UR - https://zbmath.org/?q=an%3A05016593 UR - https://doi.org/10.5802/jtnb.526 DO - 10.5802/jtnb.526 LA - en ID - JTNB_2005__17_3_905_0 ER -
Pohst, Michael E.; Wagner, Marcus. On the computation of Hermite-Humbert constants for real quadratic number fields. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 3, pp. 905-920. doi : 10.5802/jtnb.526. http://www.numdam.org/articles/10.5802/jtnb.526/
[BCIO] R. Baeza, R. Coulangeon, M.I. Icaza, M. O’ Ryan, Hermite’s constant for quadratic number fields. Experimental Mathematics 10 (2001), 543–551. | MR 1881755 | Zbl 1042.11045
[C] R. Coulangeon, Voronoï theory over algebraic number fields. Monographies de l’Enseignement Mathématique 37 (2001), 147–162. | MR 1878749 | Zbl 02140367
[Co1] H. Cohn, A numerical survey of the floors of various Hilbert fundamental domains. Math. Comp. 19 (1965), 594–605. | MR 195818 | Zbl 0144.28501
[Co2] H. Cohn, On the shape of the fundamental domain of the Hilbert modular group. Proc. Symp. Pure Math. 8 (1965), 190–202. | MR 174528 | Zbl 0137.05702
[H] P. Humbert, Théorie de la réduction des formes quadratique définies positives dans un corps algébrique K fini. Comment. Math. Helv. 12 (1940), 263–306. | MR 3002 | Zbl 0023.19905
[Ica] M.I. Icaza, Hermite constant and extreme forms for algebraic number fields. J. London Math. Soc. 55 (1997), 11–22. | MR 1423282 | Zbl 0874.11047
[Pohst et al] M.E. Pohst et al, The computer algebra system KASH/KANT, TU Berlin 2000, http://www.math.tu-berlin.de/~kant/
Cité par Sources :