This paper considers some refined versions of the Inverse Galois Problem. We study the local or global behavior of rational specializations of some finite Galois covers of .
On considère des versions raffinées du Problème Inverse de Galois. Nous étudions le comportement local et global des spécialisations rationnelles de quelques revêtements galoisiens finis de .
@article{JTNB_2005__17_1_271_0, author = {Plans, Bernat and Vila, N\'uria}, title = {Galois covers of $\mathbb{P}^1$ over $\mathbb{Q}$ with prescribed local or global behavior by specialization}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {271--282}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.490}, zbl = {1087.11068}, mrnumber = {2152224}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.490/} }
TY - JOUR AU - Plans, Bernat AU - Vila, Núria TI - Galois covers of $\mathbb{P}^1$ over $\mathbb{Q}$ with prescribed local or global behavior by specialization JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 271 EP - 282 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.490/ DO - 10.5802/jtnb.490 LA - en ID - JTNB_2005__17_1_271_0 ER -
%0 Journal Article %A Plans, Bernat %A Vila, Núria %T Galois covers of $\mathbb{P}^1$ over $\mathbb{Q}$ with prescribed local or global behavior by specialization %J Journal de théorie des nombres de Bordeaux %D 2005 %P 271-282 %V 17 %N 1 %I Université Bordeaux 1 %U http://www.numdam.org/articles/10.5802/jtnb.490/ %R 10.5802/jtnb.490 %G en %F JTNB_2005__17_1_271_0
Plans, Bernat; Vila, Núria. Galois covers of $\mathbb{P}^1$ over $\mathbb{Q}$ with prescribed local or global behavior by specialization. Journal de théorie des nombres de Bordeaux, Volume 17 (2005) no. 1, pp. 271-282. doi : 10.5802/jtnb.490. http://www.numdam.org/articles/10.5802/jtnb.490/
[1] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups. New York: Clarendon press, 1985. | MR | Zbl
[2] S. Beckmann, On extensions of number fields obtained by specializing branched coverings. J. Reine Angew. Math. 419 (1991), 27–53. | EuDML | MR | Zbl
[3] S. Beckmann, Is every extension of the specialization of a branched covering? J. Algebra 165 (1994), 430–451. | MR | Zbl
[4] B. Birch, Noncongruence subgroups, Covers and Drawings. Leila Schneps, editor, The Grothendieck theory of dessins d’enfants. Cambridge Univ. Press (1994), 25–46. | MR | Zbl
[5] E. Black, Deformations of dihedral 2-group extensions of fields. Trans. Amer. Math. Soc. 351 (1999), 3229–3241. | MR | Zbl
[6] E. Black, On semidirect products and the arithmetic lifting property. J. London Math. Soc. (2) 60 (1999), 677–688. | MR | Zbl
[7] J.-L. Colliot-Thélène, Rational connectedness and Galois covers of the projective line. Ann. of Math. 151 (2000), 359–373. | EuDML | MR | Zbl
[8] P. Dèbes, Some arithmetic properties of algebraic covers. H. Völklein, D. Harbater, P. Müller, and J. G. Thompson, editors, Aspects of Galois theory. London Math. Soc. LNS 256 (2). Cambridge Univ. Press (1999), 66–84. | MR | Zbl
[9] P. Dèbes, Galois Covers with Prescribed Fibers: the Beckmann-Black Problem. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 28 (1999), 273–286. | EuDML | Numdam | MR | Zbl
[10] P. Dèbes, Density results for Hilbert subsets. Indian J. pure appl. Math. 30 (1) (1999), 109–127. | MR | Zbl
[11] C. U. Jensen, A. Ledet, N. Yui, Generic polynomials. Cambridge Univ. Press, Cambridge, 2002. | MR | Zbl
[12] J. Klüners, G. Malle, A database for field extensions of the rationals. LMS J. Comput. Math. 4 (2001), 182–196. | MR | Zbl
[13] J. Klüners, G. Malle, Counting nilpotent Galois extensions. J. reine angew. Math. 572 (2004), 1–26. | MR | Zbl
[14] G. Malle, B. H. Matzat, Inverse Galois Theory. Springer, Berlin, 1999. | MR | Zbl
[15] J.-F. Mestre, Extensions régulières de de groupe de Galois . J. Algebra 131 (1990), 483–495. | MR | Zbl
[16] J.-F. Mestre, Relèvement d’extensions de groupe de Galois . Preprint (2004), arXiv:math.GR/0402187.
[17] J. Montes, E. Nart, On a Theorem of Ore. J. Algebra 146 (1992), 318–334. | MR | Zbl
[18] L. Moret-Bailly, Construction de revêtements de courbes pointées. J. Algebra 240 (2001), 505–534. | MR | Zbl
[19] Y. Morita, A Note on the Hilbert Irreducibility Theorem. Japan Acad. Ser. A Math. Sci. 66 (1990), 101–104. | MR | Zbl
[20] Ö. Ore, Newtonsche Polygone in der Theorie der algebraischen Körper. Math. Ann. 99 (1928), 84–117. | EuDML | JFM | MR
[21] B. Plans, Central embedding problems, the arithmetic lifting property and tame extensions of . Internat. Math. Res. Notices 2003 (23) (2003), 1249–1267. | MR | Zbl
[22] B. Plans, N. Vila, Tame -extensions of . J. Algebra 266 (2003), 27–33. | MR | Zbl
[23] B. Plans, N. Vila, Trinomial extensions of with ramification conditions. J. Number Theory 105 (2004), 387–400. | MR | Zbl
[24] D. Saltman, Generic Galois extensions and problems in field theory. Adv. Math. 43 (1982), 250–283. | MR | Zbl
[25] J.-P. Serre, Groupes de Galois sur . Sém. Bourbaki 1987-1988, no 689. | EuDML | Numdam | MR | Zbl
[26] J.-P. Serre, Topics in Galois theory. Jones and Bartlett, Boston, 1992. | MR | Zbl
[27] R. Swan, Noether’s problem in Galois theory. J. D. Sally and B. Srinivasan, editors, Emmy Noether in Bryn Mawr. Springer (1983), 21–40. | MR | Zbl
[28] N. Vila, On central extensions of as Galois group over . Arch. Math. 44 (1985), 424–437. | MR | Zbl
Cited by Sources: