Quels invariants d’une -extension galoisienne de corps local (de corps résiduel de charactéristique et groupe de Galois ) déterminent la structure des idéaux de en tant que modules sur l’anneau de groupe , l’anneau des entiers -adiques ? Nous considérons cette question dans le cadre des extensions abéliennes élémentaires, bien que nous considérions aussi brièvement des extensions cycliques. Pour un groupe abélien élémentaire , nous proposons et étudions un nouveau groupe (dans l’anneau de groupe où est le corps résiduel) ainsi que ses filtrations de ramification.
Which invariants of a Galois -extension of local number fields (residue field of char , and Galois group ) determine the structure of the ideals in as modules over the group ring , the -adic integers? We consider this question within the context of elementary abelian extensions, though we also briefly consider cyclic extensions. For elementary abelian groups , we propose and study a new group (within the group ring where is the residue field) and its resulting ramification filtrations.
@article{JTNB_2005__17_1_87_0, author = {Byott, Nigel P. and Elder, G. Griffith}, title = {New ramification breaks and additive {Galois} structure}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {87--107}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {1}, year = {2005}, doi = {10.5802/jtnb.479}, mrnumber = {2152213}, zbl = {1162.11394}, language = {en}, url = {http://www.numdam.org/articles/10.5802/jtnb.479/} }
TY - JOUR AU - Byott, Nigel P. AU - Elder, G. Griffith TI - New ramification breaks and additive Galois structure JO - Journal de Théorie des Nombres de Bordeaux PY - 2005 DA - 2005/// SP - 87 EP - 107 VL - 17 IS - 1 PB - Université Bordeaux 1 UR - http://www.numdam.org/articles/10.5802/jtnb.479/ UR - https://www.ams.org/mathscinet-getitem?mr=2152213 UR - https://zbmath.org/?q=an%3A1162.11394 UR - https://doi.org/10.5802/jtnb.479 DO - 10.5802/jtnb.479 LA - en ID - JTNB_2005__17_1_87_0 ER -
Byott, Nigel P.; Elder, G. Griffith. New ramification breaks and additive Galois structure. Journal de Théorie des Nombres de Bordeaux, Tome 17 (2005) no. 1, pp. 87-107. doi : 10.5802/jtnb.479. http://www.numdam.org/articles/10.5802/jtnb.479/
[1] M. V. Bondarko, Links between associated additive Galois modules and computation of for local formal group modules. J. Number Theory 101 (2003), 74–104. | MR 1979653 | Zbl 1037.11079
[2] N. P. Byott, G. G. Elder, Biquadratic extensions with one break. Can. Math. Bull. 45 (2002), 168–179. | MR 1904081 | Zbl 1033.11054
[3] G. G. Elder, Galois module structure of integers in wildly ramified cyclic extensions of degree . Ann. Inst. Fourier (Grenoble) 45 (1995), 625–647; errata ibid. 48 (1998), 609–610. | Numdam | MR 1340947 | Zbl 0820.11070
[4] G. G. Elder, Galois module structure of ambiguous ideals in biquadratic extensions. Can. J. Math. 50 (1998), 1007–1047. | MR 1650942 | Zbl 1015.11056
[5] G. G. Elder, On the Galois structure of the integers in cyclic extensions of local number fields. J. Théor. Nombres Bordeaux. 14 (2002), 113–149. | Numdam | MR 1925994 | Zbl 1026.11083
[6] G. G. Elder, The Galois module structure of ambiguous ideals in cyclic extensions of degree . To appear in the Proceedings of the International Algebraic Conference dedicated to the memory of Z. I. Borevich, Sept 17–23, 2002.
[7] R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics: A Foundation for Computer Science. Addison Wesley, Reading MA 1989. | MR 1397498 | Zbl 0668.00003
[8] J. V. Kuzmin, Representations of finite groups by automorphisms of nilpotent near spaces and by automorphisms of nilpotent groups. Sibirsk. Mat. Ž. 13 (1972), 107–117. | MR 369505 | Zbl 0229.20007
[9] J-P. Serre, Local Fields. Springer-Verlag, New York, 1979. | MR 554237 | Zbl 0423.12016
[10] A. Weiss, Rigidity of -adic -torsion. Ann. of Math. (2) 127 (1988), 317–332. | MR 932300 | Zbl 0647.20007
[11] B. Wyman, Wildly ramified gamma extensions. Amer. J. Math. 91 (1969), 135–152. | MR 241386 | Zbl 0188.11003
Cité par Sources :