On montre que la variété de Hecke associée aux formes de Hilbert sur un corps totalement réel est lisse aux points correspondant à certaines séries thêta de poids et on donne aussi un critère pour que le morphisme poids soit étale en ces points. Lorsque les séries thêta sont à multiplication réelle, on construit des formes surconvergentes propres généralisées qui ne sont pas classiques et on exprime leurs coefficients de Fourier à l’aide de logarithmes -adiques de nombres algébriques. Notre approche utilise la théorie des déformations galoisiennes.
We show that the Eigenvariety attached to Hilbert modular forms over a totally real field is smooth at the points corresponding to certain classical weight one theta series and we give a precise criterion for etaleness over the weight space at those points. In the case where the theta series has real multiplication, we construct a non-classical overconvergent generalised eigenform and compute its Fourier coefficients in terms of -adic logarithms of algebraic numbers. Our approach uses deformations of Galois representations.
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1040
Classification : 11F80, 11F33, 11R23
Mots clés : Déformations de représentations galoisiennes -adiques, familles de Hida de formes de Hilbert et formes modulaires de Hilbert de poids .
@article{JTNB_2018__30_2_575_0, author = {Betina, Adel}, title = {Les vari\'et\'es de {Hecke{\textendash}Hilbert} aux points classiques de poids parall\`ele 1}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {575--607}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1040}, zbl = {1441.11131}, mrnumber = {3891328}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/jtnb.1040/} }
TY - JOUR AU - Betina, Adel TI - Les variétés de Hecke–Hilbert aux points classiques de poids parallèle 1 JO - Journal de Théorie des Nombres de Bordeaux PY - 2018 DA - 2018/// SP - 575 EP - 607 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - http://www.numdam.org/articles/10.5802/jtnb.1040/ UR - https://zbmath.org/?q=an%3A1441.11131 UR - https://www.ams.org/mathscinet-getitem?mr=3891328 UR - https://doi.org/10.5802/jtnb.1040 DO - 10.5802/jtnb.1040 LA - fr ID - JTNB_2018__30_2_575_0 ER -
Betina, Adel. Les variétés de Hecke–Hilbert aux points classiques de poids parallèle 1. Journal de Théorie des Nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 575-607. doi : 10.5802/jtnb.1040. http://www.numdam.org/articles/10.5802/jtnb.1040/
[1] On overconvergent Hilbert modular cusp forms, -adic arithmetic of Hilbert modular forms (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 163-193 | Zbl 06720833
[2] Lissité de la courbe de Hecke de aux points Eisenstein critiques, J. Inst. Math. Jussieu, Volume 5 (2006) no. 2, pp. 333-349 | Article | Zbl 1095.11025
[3] Families of Galois representations and Selmer groups, Astérisque, 324, Société Mathématique de France, 2009, xxu+314 pages | Numdam | Zbl 1192.11035
[4] On the eigencurve at classique weight one points, Duke Math. J., Volume 165 (2016) no. 2, pp. 245-266 | Zbl 06556667
[5] Classicité de formes modulaires de Hilbert, -adic arithmetic of Hilbert modular forms (Astérisque), Volume 382, Société Mathématique de France, 2016, pp. 49-71 | MR 3581175 | Zbl 1353.11003
[6] On the units of algebraic number fields, Mathematika, Volume 14 (1967), pp. 121-124 | Article | MR 220694 | Zbl 0171.01105
[7] Eigenvarieties, -functions and Galois representations (Durham, 2004) (London Mathematical Society Lecture Note Series), Volume 320, Cambridge University Press, 2007, pp. 59-120 | Article | MR 2392353 | Zbl 1230.11054
[8] Sur les représentations -adiques associées aux formes modulaires de Hilbert, Ann. Sci. Éc. Norm. Supér., Volume 19 (1986) no. 3, pp. 409-468 | Article | Numdam | MR 870690 | Zbl 0616.10025
[9] Familles -adiques de formes automorphes pour , J. Reine Angew. Math., Volume 570 (2004), pp. 143-217 | MR 2075765 | Zbl 1093.11036
[10] Deformations of induced Galois representations, J. Reine Angew. Math., Volume 556 (2003), pp. 79-98 | MR 1971139 | Zbl 1041.11039
[11] The eigencurve, Galois representations in arithmetic algebraic geometry (Durham, 1996) (London Mathematical Society Lecture Note Series), Volume 254, Cambridge University Press, 1996, pp. 1-113 | Zbl 0932.11030
[12] Overconvergent generalised eigenforms of weight one and class fields of real quadratic field, Adv. Math., Volume 283 (2015), pp. 130-142 | Article | MR 3383798 | Zbl 1393.11038
[13] Stark points and -adic iterated integrals attached to modular forms of weight one, Forum Math. Pi, Volume 3 (2015), e8, 95 pages (Art. ID e8, 95 p.) | MR 3456180 | Zbl 1392.11034
[14] Formes modulaires de poids , Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 507-530 | Article | Numdam | MR 379379 | Zbl 0321.10026
[15] On the eigenvariety of Hilbert modular form at classique parallel weight one point with dihedral projective image, Trans. Am. Math. Soc., Volume 370 (2018) no. 6, pp. 3885-3912 | Article | MR 3811513 | Zbl 1417.11064
[16] The eigencurve is proper, Duke Math. J., Volume 165 (2016) no. 7, pp. 1381-1395 | MR 3498869 | Zbl 06591243
[17] On classical weight one forms in Hida families, J. Théor. Nombres Bordx, Volume 24 (2012) no. 3, pp. 669-690 | Article | Numdam | MR 3010634 | Zbl 1271.11060
[18] Unramifiedness of Galois representations attached to Hilbert modular eigenforms mod of weight 1 (2018) (à paraître dans J. Inst. Math. Jussieu) | Article | Zbl 1437.11081
[19] Deformation ring and Hecke algebra in the totally real case (2006) (https://arxiv.org/abs/math/0602606)
[20] On a properness of the Hilbert eigenvariety at integral weights : the case of quadratic residue fields (2016) (https://arxiv.org/abs/1601.00775)
[21] On -adic Hecke algebras for over totally real fields, Ann. Math., Volume 128 (1988) no. 2, pp. 295-384 | Article | Zbl 0658.10034
[22] Nearly ordinary Hecke algebras and Galois representations of several variables, Algebraic analysis, geometry, and number theory (JAMI, Baltimore, 1988)) (Supplement to the American Journal of Mathematics), Hopkins, 1989, pp. 115-134 | Zbl 0782.11017
[23] On nearly ordinary Hecke algebras for over totally real fields, Algebraic number theory (Advanced Studies in Pure Mathematics), Volume 17, Academic Press, 1989, pp. 139-169 | Article | MR 1097614 | Zbl 0742.11026
[24] Non-abelian base change for totally real fields, Pac. J. Math., Volume Spec. Issue (1998), pp. 189-217 | Zbl 0942.11026
[25] On Galois representations associated to Hilbert modular forms, J. Reine Angew. Math., Volume 491 (1997), pp. 199-216 | Article | MR 1476093 | Zbl 0914.11025
[26] Overconvergent modular forms and the Fontaine-Mazur conjecture, Invent. Math., Volume 153 (2003) no. 2, pp. 373-454 | Article | MR 1992017 | Zbl 1045.11029
[27] Moduli of finite flat group schemes and modularity, Ann. Math., Volume 170 (2009) no. 3, pp. 1085-1180 | Article | MR 2600871 | Zbl 1201.14034
[28] Overconvergent Hilbert modular forms, Am. J. Math., Volume 127 (2005) no. 4, pp. 735-783 | Article | MR 2154369 | Zbl 1129.11020
[29] Pseudo-représentations, Math. Ann., Volume 306 (1996) no. 2, pp. 257-283 | Article | MR 1411348 | Zbl 0863.16012
[30] Hilbert modular forms of weight one and Galois representations, Automorphic forms of several variables (Katata, 1983) (Progress in Mathematics), Volume 46, Birkhäuser, 1983, pp. 333-352 | MR 763021 | Zbl 0549.12006
[31] Surconvergence et classicité : le cas Hilbert, J. Ramanujan Math. Soc., Volume 32 (2017) no. 4, pp. 355-396 | Zbl 1425.11091
[32] On Artin -functions associated to Hilbert modular forms of weight one, Invent. Math., Volume 74 (1983) no. 1, pp. 1-42 | Article | MR 722724 | Zbl 0523.12009
[33] Caractérisation des caractères et pseudo-caractères, J. Algebra, Volume 180 (1996) no. 2, pp. 571-586 | Article | MR 1378546 | Zbl 0857.16013
[34] On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280 | Article | MR 1016264 | Zbl 0705.11031
[35] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | Article | MR 969243 | Zbl 0664.10013
Cité par Sources :